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ABSTRACT
This paper presents a performance analysis of an acceler-
ated 2-D rigid image registration implementation that em-
ploys the Compute Unified Device Architecture (CUDA)
programming environment to take advantage of the parallel
processing capabilities of NVIDIA’s Tesla C870 GPU. We
explain the underlying structure of the GPU implementa-
tion and compare its performance and accuracy against a
fast CPU-based implementation. Our experimental results
demonstrate that our GPU version is capable of up to 90×
speedup with bilinear interpolation and 30× speedup with
bicubic interpolation while maintaining a high level of accu-
racy. This compares favorably to recent image registration
studies, but it also indicates that our implementation only
reaches about 70% of theorectical peak performance. To an-
alyze our results, we utilize profiling data to identify some
of the underlying limitations of CUDA that prohibit peak
performance. At the end, we emphasize the need to man-
age memory resources carefully to fully utilize the GPU and
obtain maximum speedup.

Categories and Subject Descriptors
I.4.3 [Image Processing and Computer Vision]: En-
hancement—Registration

Keywords
GPGPU, CUDA, image registration, performance analysis

1. INTRODUCTION
Image registration is the process of aligning two or more

images in order to determine the point-by-point correspon-
dence among a set of images [3]. This technique is used in a
variety of applications such as remote sensing, map updat-
ing, weather forecasting, and computer vision to provide an
integrated view of the image data [17]. In the medical field,
image registration is used in clinical tasks such as diagno-
sis, radiotherapy, and image-guided surgery. Because of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPGPU 2009, Washington, DC USA
Copyright 2009 ACM 978-1-60558-517-8/09/03 ...$5.00.

widespread use of this procedure and the immense compu-
tational workload required, image registration has been a
popular target for acceleration in recent studies.

One form of image registration is rigid registration, which
primarily deals with global image alignment and shifting.
This is in contrast to elastic registration which can account
for changes in local morphology over time [12]. In this inves-
tigation, we focus on 2-D rigid image registration where the
objective of the registration procedure is to find a transfor-
mation to apply to a source image that best aligns it with
a target image (or visa versa). To accomplish this task, the
following pipeline is commonly used:

1. Image Generation: Generate a temporary image us-
ing the source image and a transformation estimate.

2. Similarity Measurement: Compare this temporary
image to the target image to test for similarity.

3. Optimization: Update the transformation estimate
using the similarity measurement as a cost function in
an optimization algorithm.

This process is repeated until an acceptable level of toler-
ance (high similarity between the target and temporary im-
ages) is achieved. The resulting transformation data from
this procedure maps the relationship between the target and
source and is used for integrated analysis.

In most registration implementations, the image genera-
tion and similarity measurement, are the most computation-
ally intensive aspects of the registration process since they
involve performing convolutions or computations on each
image pixel. For this study, we accelerate a 2-D rigid im-
age registration application by implementing these compo-
nents using NVIDIA’s CUDA programming environment to
take advantage of the parallel processing capabilities of the
NVIDIA Tesla C870 GPU. The intrinsic data parallelism
in image registration makes the GPGPU (general-purpose
computing on graphics processing units) approach a suit-
able platform for acceleration.

This paper examines the process of porting the CPU im-
plementation to the CUDA framework and analyzes the re-
sulting performance gains along with any potential pitfalls.
Although a sizable amount of speedup is obtained, the im-
plementation still falls short of the maximum potential speed
increase. Our study focuses on understanding the limita-
tions of CUDA that inhibit maximum performance and ex-
amines various methods to overcome some of these obstacles
encountered in developing the image registration applica-
tion.
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The remainder of this paper is as follows: The next section
covers related work involving accelerating image registra-
tion using GPGPU. After this, we provide a brief overview
of the CUDA programming model and then we present our
CUDA implementation of the image registration algorithm,
while examining potential programming traps and highlight-
ing key practices to achieve good speedup. Next, we com-
pare the CUDA implementation’s performance and accuracy
versus the CPU version and use profiling data to analyze the
experimental results. Finally, we discuss the general lessons
learned from the project and possible improvements to the
CUDA programming environment to obtain further perfor-
mance and productivity gains.

2. PREVIOUS WORK
The growing popularity and use of graphics processing

units in scientific computing has been summarized by Owens,
et al. in their overview of GPU computing [11]. They note
that due to the increasing amount of memory bandwidth
and computational horsepower on graphics processing units,
GPUs substantially outpace their CPU counterparts, thus
making them attractive acceleration platforms. For instance,
the NVIDIA programming guide [9] states that current GPUs
such as NVIDIA’s Tesla C870 have up to 128 concurrent
processors capable of over 300+ giga-floating point opera-
tions per second (in aggregate) while providing high memory
bandwidth (80+ GB/s) to data stored locally on the graph-
ics units. According to Fung and Mann [2], these attributes
make GPUs attractive platforms for accelerating image pro-
cessing applications such as image registration which exhibit
data-level parallelism and have high computational costs.

In the past, applications using the GPGPU approach for
application acceleration have employed the method of map-
ping their computations onto the shader and vertex pro-
cessors of the graphics unit. This is done by programming
in various shading languages such as Cg, GLSL, or HLSL,
along with graphics libraries such as OpenGL or DirectX
and loading those programs directly into the graphics ren-
dering pipeline [4]. Ino et al. used this technique to present
a fast rigid registration method in their OpenGL-based im-
plementation [6] that demonstrated between 5.0× and 9.6×
speedup while maintaining a tolerable level of accuracy. Ku-
bias et al. were able to post similar results in their imple-
mentation of rigid image registration [7] with the added twist
that they implemented eight similarity measurements on the
GPU and used these in aggregate to optimize the registra-
tion. Both of these studies took advantage of not only the
parallel processing abilities of the GPU, but also the hard-
ware supported bilinear filtering provided by textures. Of
course, this technique requires programmers to manipulate
their algorithms and data structures to fit the graphics pro-
gramming model, which is not always straightforward.

The introduction of NVIDIA’s CUDA, however, allows
programmers to avoid using graphics programming libraries
and instead work in a stream processing environment [9].
In this framework the vertex or fragment processors in the
graphics pipeline are unified and abstracted as a set of pro-
grammable concurrent stream processors. Rather than use
shading languages, programmers use a C/C++-like program-
ming environment with common programming constructs
such as arrays, pointers, and variables to program the GPU.
This increase in user programmability allows developers with-
out a deep graphics programming background to quickly and

effectively take advantage of the parallel processing abili-
ties of the graphics processing unit. Recently, Sugiura et
al. [14] have taken advantage of this programming environ-
ment to accelerate rigid image registration used in broncho-
scope tracking by a factor of 16× with moderate levels of
accuracy. Likewise, Muyan-Özçelik et al. use CUDA to im-
plement fast deformable (elastic) image registration with a
factor of 55× speedup [8]. They also provide an exhaustive
and detailed accounting of their implementation and exper-
imental results.

In this study, we implement a 2-D rigid image registration
system similar to Ino [6] and Kubias [7] using the CUDA pro-
gramming environment. We use a pyramid-based algorithm
outlined by Thévenaz [15], but we omit cubic spline rep-
resentations and use the simplex optimizer function from
the GNU Scientific Library [1] rather than the proposed
Marquardt-Levenberg algorithm. Unlike previous studies,
we implement the more computationally intensive bicubic
interpolation scheme in addition to the hardware supported
bilinear interpolation method in order to increase registra-
tion accuracy which is needed in some applications such as
motion tracking. Furthermore, we follow the methodology
of Muyan-Özçelik [8] in providing a thorough analysis of
the implementation of our algorithm, noting possible CUDA
traps and how to optimize for maximum speedup. To aid in
this analysis we examine the efficiency of our implementation
and profiling data to identify limitations of the CUDA plat-
form. At the end, we review the obstacles and issues present
in the CUDA framework and propose potential means of ad-
dressing them.

3. METHOD
Before examining the details of the image registration im-

plementation, it is first necessary to provide a brief overview
of the CUDA programming model.

3.1 CUDA Programming Model
In CUDA, the programmable units of the GPU expose a

single-program multiple-data (SPMD) programming model.
The user passes a program to the device in the form of a ker-
nel. The GPU in turn processes many elements (threads)
in parallel using the specified kernel on each thread. This
is similar to the traditional single instruction, multiple data
(SIMD) model provided by Intel’s SSE and MMX CPU in-
structions. CUDA, however, allows for limited branching
within the kernel, permitting different elements to take di-
vergent code paths and provides a much broader instruction
set. These threads are organized into warps or groups of 32
parallel scalar threads where each warp executes one kernel
instruction at a time.

The user programmable kernels are executed by an array
of concurrent stream processors (SPs) which support 32-bit
integer and single-precision floating point operations. These
SPs are clustered together in groups of 8 to form a single
stream multi-processor (SM) core with each SP executing
one thread. The SPs within a SM share a local store referred
to as shared memory. Collections of warps are known as
thread blocks and these threads all run on the same MP and
share a part of the local store. The number of warps in such
a thread block is defined by the user when calling the kernel.

In addition to the shared memory, the CUDA program-
ming environment exposes a limited memory hierarchy in
the form of registers, constant memory, global memory, and
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textures. The register file is the fastest level in this on-
chip hierarchy but only supports a limited amount of space
(32-64KB). After this, shared memory is provided which is
slower and smaller (16KB). Constant memory is a subset of
device memory (64KB) that is shared by all the SPs and
cannot be modified at run-time by the device. Other device
memory is generally grouped as global memory which per-
mits both read and write operations from all threads, but
is uncached and has long latencies. The amount of global
memory available depends on the specific hardware config-
uration of the GPU. Texture memory is also a subset of the
device memory similar to the constant memory in that it is
read-only on the device. However, unlike global memory, it
provides cached reads and thus is faster. Moreover, it allows
addressing through a specialized texture unit which allows
for filtering and clamping.

Accelerating an application using CUDA, then, requires
identifying program bottlenecks and mapping into this pro-
gramming model. This involves careful structuring of the
user defined kernels to ensure that all the SPs are executing
at peak performance and strict management of data access
patterns to fit into the limits imposed by the memory hierar-
chy. For data intensive programs such as image registration,
this latter issue of memory management is key to obtaining
good speedup.

3.2 Image Registration Algorithm
The image registration algorithm used in this study fol-

lows the general process outlined in the introduction:

Image Generation

↓
Similarity Measurement

↓
Optimization

Figure 1: Registration Pipeline

For the image generation component, we allow for the nor-
mal set of affine transformations: rotation, translation, and
scaling in both the X and Y direction. The image gener-
ator uses the transformation data (usually in the form of
a matrix) to transform or map the source image into the
temporary image. To compute the intensity values in the
temporary image at these new coordinates produced by the
mapping, we use bicubic interpolation. This involves com-
puting 5 convolutions on a 4×4 neighborhood of pixel values
(4 for each row, and then 1 along the first column). This
is done instead of the more common bilinear interpolation
because former produces more accurate intensities than the
latter, albeit at the cost of more computation.

To measure similarity, we use the mean squared error
(MSE) metric defined by following formula:

MSE =

P P
(Temporary(x, y)− Target(x, y))2

NumberOfPixels
(1)

where Temporary(x, y) and Target(x, y) are intensity values
in the temporary and target images at coordinates (x, y),
and NumberOfPixels is the total size of one image.

As mentioned earlier, we utilize the Nelder-Mead Sim-
plex multi-dimensional minimizer from the GNU Scientific
Library as the optimization algorithm in our image regis-
tration implementation. This function uses the MSE as the

cost function to update the transformation estimate in order
to find the set of rotation, translation, and scaling transfor-
mations that produces the least amount of error.

To algorithmically improve registration time, we employ
a pyramid scheme to provide a coarse-to-fine grain registra-
tion process. This is done by taking the source and target
images and reducing them using a mean filter into quarter-
sized images for each successive pyramid level. The whole
registration process is performed on each level of the pyra-
mid, starting with the smallest level and working up to the
full sized image. After this final level, we will have the trans-
formation matrix. This pyramid technique allows for faster
image alignment as detailed by Thévenaz [15].

3.3 Implementation and Test Environment
The image registration algorithm was first implemented

in C on a host system featuring a Intel Quad-Core Q6700
2.66 GHz CPU and 8.0 GB of RAM and running Ubuntu
Linux 8.04 (kernel 2.6.20). The graphics unit on the system
is the NVIDIA Tesla C870 which has 128 stream processors
and 1.5 GB of on-chip memory [9]. To compile the program
codes we used GCC 4.1.2 with an optimization level of 3
(i.e. -O3) and NVIDIA’s CUDA 1.1 development kit. Table
1 contains a complete listing of the images we used to test
our codes. For each of these images, we registered these
source images against target images that contained various
amounts of rotations, translations, and scaling.

Image Dimensions (Pixels)
lenna 512× 512

ndbuntu 768× 768
halo 1024× 1024

jump 1536× 1536
victory 2048× 2048

crabnebula 3072× 3072

Table 1: List of test images

3.4 CUDA Algorithm
After profiling the CPU version, it was observed that the

image generation and similarity measurement components
composed 95−99% of the run-time and thus were prime tar-
gets for acceleration. Since both procedures involve scanning
the image pixels and performing the same computation for
each element there is a high level of data parallelism. This
means that both components easily map into the CUDA
programming model, making the GPU a suitable platform
for accelerating these functions.

Moving the image generation and similarity measurement
to the GPU produces the pipeline in Figure 2. As can be
seen in this figure, the image generation (represented by
the transform and interpolate blocks) and similarity mea-
surement (calculate error) components are moved to the
GPU. After our first complete CUDA implementation, we
also implemented the pyramid on the GPU, since the com-
putations performed by the pyramid component map well
to the architecture. The optimization part remains on the
CPU as it does not affect the run-time that much (less than
1− 5% of the total run-time). This is because the optimiza-
tion function is just a short computation with no data par-
allelism and thus unsuitable for accelerating on the graphics
unit.
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Figure 2: CUDA Registration Pipeline

3.5 CUDA Implementation
As noted in previous studies [6, 7, 8], two keys to achieving

good performance on a GPU is (1) to minimize the num-
ber of kernel calls and (2) to limit the number and size of
data transfers to and from the host (CPU) and the device
(GPU). To accomplish this, we moved the pyramid compo-
nent to the GPU and generated the different pyramid levels
on the device. This allowed us to store all the images on the
GPU and removed the need to transfer whole images to and
from the host and device. Additionally, we implemented the
image generation and part of the similarity measurement all
in one kernel rather than two separate modules. This means
we do not have to pass image data between kernels and only
need to invoke one kernel per optimization iteration, thus
reducing costly memory transfers costs and avoiding having
to scan through the image twice (once for generation, and
again for similarity measurement).

1 g l o b a l void
2 b i l i n e a r k e r n e l ( f loat ∗ dp , s i z e t d s t r ide ,
3 uint rows , u int columns )
4 {
5 /∗ Thread column , row ∗/
6 int i c = threadIdx . x ;
7 int i r = threadIdx . y ;
8

9 /∗ Target column , row ∗/
10 int tc = ( blockIdx . x∗blockDim . x)+ i c ;
11 int t r = ( blockIdx . y∗blockDim . y)+ i r ;
12

13 /∗ Map source column , row using matrix ∗/
14 f loat sc = ( matr ix a ( ConstantMatrix )∗ tc ) +
15 ( matrix b ( ConstantMatrix )∗ t r ) +
16 matr ix e ( ConstantMatrix ) ;
17 f loat s r = ( matr ix c ( ConstantMatrix )∗ tc ) +
18 ( matrix d ( ConstantMatrix )∗ t r ) +
19 matr ix f ( ConstantMatrix ) ;
20

21 /∗ Compute error , s t o r e in l o c a l memory ∗/
22 l o c a l e l emen t ( ic , i r ) = g e t s r c t e x e l ( sc , s r ) ;
23 l o c a l e l emen t ( ic , i r ) −= g e t t g t t e x e l ( tc , t r ) ;
24 l o c a l e l emen t ( ic , i r ) ∗= lo ca l e l emen t ( ic , i r ) ;
25 sync th r eads ( ) ;

26

27 /∗ I f f i r s t thread , compute p a r t i a l mse ∗/
28 i f ( ( i c + i r ) == 0) {
29 f loat sum = 0 . 0 ;
30 for ( i r = 0 ; i r < BLOCK SIZE ; i r++)
31 for ( i c = 0 ; i c < BLOCK SIZE ; i c++)
32 sum += lo ca l e l emen t ( ic , i r ) ;
33 dp [ b lockIdx . y∗ d s t r i d e+blockIdx . x ] = sum ;
34 }
35 }

Listing 1: Bilinear CUDA Kernel

To examine how we implemented this single kernel, the
CUDA bilinear kernel is shown in Listing 1. Each pix-
el/thread executes the following:

• Lines 06 - 11: Calculate the location of current thread
with respect to the local thread block and the tempo-
rary image.

• Lines 14 - 19: Compute the coordinates that map
the temporary image and the source image using the
transformation matrix stored in constant memory.

• Lines 22 - 25: Get the pixel intensity for the current
pixel location by performing a texture fetch and store
it in a local shared memory array. Then compute the
squared error and save it in the same location.

• Lines 28 - 34: If this is the first thread in the block,
then compute the partial sum of mean squared errors
and save it to the destination array in global memory.

For the bicubic kernel, the first 19 lines are the same.
After line 25, we decompose the coordinates sc and sr into
their integer and fractional parts. Then, we replace line
22 with calls to the cubic convolution function defined in
the CUDA device for a 4 × 4 neighborhood as explained
earlier. Once the intensity is computed, we then continue
with the rest of kernel by calculating the squared error and
if appropriate, the partial sum for the block. These kernels
fit into the complete CUDA image registration pipeline in
the following manner:

1. Pyramid Construction: Both the source and target
images are transferred to the GPU and a pyramid of
images is generated using parallel reduction algorithm.

2. Registration: For each level of the pyramid, starting
with the smallest level (i.e. most coarse image), do the
following:

(a) CUDA Kernel: After each thread has executed
the kernel as explained above, the partial sum of
mean squared errors for all the thread blocks are
stored in global memory.

(b) Similarity Measurement: The host will down-
load the partial sums created by the CUDA kernel
and complete the summation and division to pro-
duce the mean squared error.

(c) Optimization: The MSE computed in the pre-
vious step is used by the optimization function to
update the transformation matrix.
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Once the registration for a particular pyramid level is
complete, use the computed transformation estimate
for the registration of the next pyramid level. After
we register the final pyramid level (i.e. the full sized
images), we have found our transformation data and
return that to the user.

There are a few key ideas to note in this implementation.
First, we only the send the source and target images once to
the GPU where they are stored as CUDA arrays and bound
to texture references. A pyramid kernel is called on each im-
age for every pyramid level and the output is stored on the
GPU. The use of textures is important because they provide
the CUDA threads cached reads to our image data. More-
over, using the texture memory gives us hardware support
for bilinear interpolation as shown in Listing 1 and auto-
matic clamping. This negates the need to explicitly check
the computed intensities for overflow and underflow.

Second, originally there were explicit instructions to load
the transformation matrix into a local shared memory array
used by all the threads in the block. This was important
because the kernel received the transformation matrix as
a pointer argument rather than explicit arguments, which
means that the values are stored in global memory rather
than registers in the local frame. To compute the mapping,
each thread would have been forced to fetch the same 6
floating point numbers for each kernel execution if this pre-
fetching was not done. Not only would this have lead to
contention on the memory bus amongst the threads, but it
would also mean that each thread was performing memory
fetches from the slow uncached global memory. To prevent
this, the technique of locally caching frequently used data
was employed. Storing the transformation matrix in the
shared memory allows all the threads within a block to fetch
the data from the much faster shared memory space. This
idea was also applied to the storing of the pixel intensities.
Rather than write to global memory, each thread saves its
computed intensity to a local shared array, which is later
summed by the first thread of each group.

In a later revision of our implementation, we replaced the
shared transformation matrix array with a constant memory
array. As noted earlier, constant memory provides limited
cached read-only memory to the threads. Rather than man-
ually loading the transformation matrix in, we can simply
read the values in from constant memory. This simplified
the code as shown in Listing 1 and provided slightly better
performance than manually pre-fetching the matrix (since
we no longer needed to synchronize the threads after load-
ing the data).

Third, we implemented two image generation kernels: the
first one uses the built-in bilinear filtering provided by the
texture map, and the second one uses our own implementa-
tion of bicubic interpolation. This was done because there
are some applications that require more accuracy than what
bilinear interpolation can provide, and so bicubic interpola-
tion is presented in a separate kernel as described above.

Finally, it must be noted that we only compute partial
sums of the squared error on the GPU and finish the simi-
larity measurement on the CPU. This was mainly done for
simplicity of implementation. Initially, we implemented a
parallel prefix version of the mean squared error calcula-
tion, but perhaps due to poor implementation on our part
the calculations accumulated too much error and thus pro-
duced poor results (i.e. low accuracy). To limit our exposure

to error and due to ease of implementation, we only com-
puted partial sums on the GPU and performed the rest of
the computation on the CPU.

4. RESULTS
For our experiment, we compared the performance and

accuracy of the CUDA implementation against our fast CPU
version on the data set described earlier. We ran our tests
15 times across a period of about a week and the results
are summarized in Table 2. In the proceeding tables and
graphs, CUDA 0 refers to the image registration using the
bilinear kernel while CUDA 1 is the one using the bicubic
kernel.

lenna Version Run-time Speedup PSNR
CPU 5.19 1.00 56.32

CUDA 0 0.69 7.48 51.60
CUDA 1 0.80 6.50 55.43

ndbuntu Version Run-time Speedup PSNR
CPU 12.49 1.00 56.35

CUDA 0 0.74 16.80 47.05
CUDA 1 0.98 12.64 51.27

halo Version Run-time Speedup PSNR
CPU 23.73 1.00 44.19

CUDA 0 0.83 28.40 31.70
CUDA 1 1.30 18.25 34.60

jump Version Run-time Speedup PSNR
CPU 48.09 1.00 55.86

CUDA 0 1.04 46.41 47.92
CUDA 1 2.07 23.22 48.34

victory Version Run-time Speedup PSNR
CPU 92.50 1.00 52.83

CUDA 0 1.36 67.89 42.31
CUDA 1 3.16 29.17 42.85

crabnebula Version Run-time Speedup PSNR
CPU 205.31 1.00 54.26

CUDA 0 2.24 91.47 44.86
CUDA 1 6.24 32.92 45.80

Table 2: Summary of experimental results for each
image, with the run-time in seconds

4.1 Performance
Figure 3 shows the average execution time for each reg-

istration on all the test images which are displayed along
the X axis in sorted order (by size). It is clear from this
chart that the running time of the CPU version is much
higher than that of the CUDA versions. Moreover, this gap
appears widen as the size of the input images grows. Addi-
tionally, the running time for the bicubic version is slightly
higher than the bilinear, manifesting that it is slower than
its simpler counterpart.

The graph in Figure 4 presents the speedup of the CUDA
versions over the CPU implementation. The bilinear imple-
mentation was able to achieve between 7.5× - 91.5× speedup
while the bicubic implementation was able to obtain be-
tween 6.5× - 33× speedup. This difference in speedup is
as expected as bicubic interpolation is not only more com-
putationally complex than bilinear filtering, but it also re-
quires 16 memory fetches while bilinear only needs 4. The
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Figure 3: Average running time for all implementa-
tions for each test image set

additional memory fetches, in effect, stall the threads in the
bicubic kernel, increasing the running time. This is readily
apparent in Figure 5 which shows the efficiency (i.e. how
well we are using the CUDA device). As demonstrated in
this graph, because of the increased memory accesses the
bicubic kernel is much less efficient than the bilinear imple-
mentation.
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Figure 4: Average speedup over CPU version as im-
age size increases

These graphs also reveal that the bilinear version scales
well as image size increases while the bicubic version levels
off much more quickly. Once again, this is mainly due to the
increase in memory accesses leading to less efficient kernels.

4.2 Accuracy
To check the quality of the image registrations we calcu-

lated the mean square error between the image produced
by the registration and the actual target image. The MSE
was then used to compute the Peak-Signal-to-Noise Ratio
(PSNR). As explained by Obukhov and Kharlamov [10], the
PSNR is commonly used to evaluate image reconstruction
quality. Generally values between 30, 50 denote high fidelity,
while anything above 50 says the results are nearly identical.
The PSNR was computed using the following formula:

PSNR = 10 ∗ log10(
MaxIntensity2

MSE
) (2)
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Figure 5: Average efficiency as image size increases

where MaxIntensity is the maximum pixel intensity value.
Since we used portable grayscale pixmaps to store our image
data, this value was 255.
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Figure 6: Average Peak-Signal-to-Noise Ratio for
All Images

The chart in Figure 6 reveals that across the board the
CPU version had a higher PSNR than the CUDA implemen-
tations. These means that it had higher accuracy and pro-
duced the best registration. However, the CUDA versions
are still relatively accurate for the most part. As expected,
the bicubic interpolation kernel produced a higher PSNR
than the bilinear kernel. Overall all of the implementations
produced PSNRs in the range 35 − 55, which denotes high
similarity to the actual target image. This discrepancy be-
tween the CPU and CUDA versions is most likely due to
the non-standard floating point implementation in the GPU
which leads to subtle but possibly damaging errors [10] [5].

4.3 Profiling
In order to understand what parts of the pipeline the

CUDA implementations were spending their time in, we pro-
filed each test run by timing each relevant function call. Fig-
ures 7 and 8 show the break down of the functions and their
percentage of the running time for the lenna and crabnebula
images respectively.

The lenna image is the smallest in our data set and had a
total running time of 0.7 - 0.8 seconds for both CUDA ver-
sions. As can been seen in Figure 7, the vast majority of the
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Figure 7: Function running time percentage for
lenna

time is spent in the pyramid construction. This means it is
spending most of its time waiting for the CUDA device to
startup. Since this number is unpublished, we performed a
startup micro-benchmark and found that the CUDA device
takes about 0.5 − 0.6 seconds to initialize before any exe-
cution on the GPU can occur. Since the total run-time for
lenna is only 0.7 - 0.8 seconds, this 0.5 - 0.6 second startup
cost completely dominates the running time, distorts the
run-time cost of the pyramid component, and prevents an
overall larger speedup in the application.

Note, this micro-benchmark does not refute the claims
of Volkov and Demmel [16], as they measured the cost to
launch a kernel and not the startup time of the CUDA de-
vice. Before any kernel can be called, the CUDA driver
must perform some configuration. This is why many of the
examples in the NVIDIA software developer’s kit include
sections of code to “warm up” the device, masking away this
startup cost from the final timing information. Our micro-
benchmark measured this time to be around 0.5-0.6 seconds.

Everything Else
Calculate MSE
Transform
Pyramid Construction
CUDA Transform Kernel
CUDA Transform Init

  0%

  20%

  40%

  60%

  80%

  100%

cp
u
_
0

cp
u
_
1

cp
u
_
2

cp
u
_
3

cu
d
a_

0
cu

d
a_

1

cp
u
_
0

cp
u
_
1

cp
u
_
2

cp
u
_
3

cu
d
a_

0
cu

d
a_

1

cp
u
_
0

cp
u
_
1

cp
u
_
2

cp
u
_
3

cu
d
a_

0
cu

d
a_

1

P
er

ce
n
ta

g
e 

o
f 

R
u
n
n
in

g
 T

im
e

Image Transformations
crabnebula_dx_05 crabnebula_rot_05 crabnebula_scale_1.5

Figure 8: Function running time percentage for
crabnebula

The run-time percentage chart for the largest image, the
crabnebula data file, manifests a different set of issues. In
this case, the transformation kernel execution dominates the
running time which is desirable because this means that we
are mainly occupied in the data parallel section of our code
rather than the serial portion. Since the CUDA kernel domi-
nates the running time, we are able to obtain a large amount
of speedup.

However, there are a few other interesting trends in Figure
8 that need to be pointed out. First, the “Everything Else”
portion of the algorithm grew in percentage relative to the
lenna profiling. This portion of the code is mainly reading

the image from the filesystem and storing it in host mem-
ory. Due to the large size of the image, this serial portion
became a bigger factor in terms of running time percentage.
Likewise, the pyramid component remains a big factor in
the speed of the program. Once again, the startup cost of
the CUDA device is a serious bottleneck and limits overall
speedup.

The key point here is that in porting our CPU imple-
mentation to the GPU, we introduced new issues and reveal
potential bottlenecks such as the startup time of the CUDA
device and the increased role of serial portions of the imple-
mentation. Although a GPU core is very different from a
CPU core, it is reasonable to say that since the Tesla C870
has 128 stream processors, a perfect linear speedup would
mean that the maximum theoretical speedup on the CUDA
device is 128×. As shown above, our code is achieving up
to 90× speedup with the bilinear kernel and 33× with the
bicubic, which is about 71% and 26% of the total possible
speedup, respectively. As noted, the addition of unantici-
pated bottlenecks and sources of serialization contribute in
limiting our speedup. Furthermore, the high cost of mem-
ory fetching greatly reduced the efficiency of the kernels and
also prohibited performance gains.

5. FUTURE WORK
We would like to increase the performance of our imple-

mentation by moving remaining portions of the algorithm to
the GPU, improving the current CUDA kernels, extending
the functionality of the image registration application and
investigating alternative optimization algorithms. To get a
better idea of how the CUDA platform compares to the tra-
ditional OpenGL and DirectX methods, it may be prudent
to implement a version of the image registration algorithm
using the older GPGPU techniques and test it on the Tesla
C870.

In terms of improving our current CUDA code, we may
want to try to reduce the memory bottleneck in the bicu-
bic kernel. As of this moment, our bicubic kernel performs
16 texture references to perform a precise bicubic interpola-
tion. It is possible to take advantage of the bilinear texture
hardware to perform an imprecise but fast high order inter-
polation with less memory access as explained by Sigg and
Hadwiger [13]. Additionally, we can amortize the startup
cost of the CUDA device if we considered an image registra-
tion system that worked on a stream of input images such
as from a video source or a time lapsed camera. Another
possible improvement would be to revisit the mean square
error calculation and fully implement it with a parallel pre-
fix algorithm, although the pay off for this seems limited as
indicated by our profiling data.

Furthermore, we can further improve our implementation
by using a more advanced optimizer. We mainly chose the
Simplex optimizer because it was readily available in the
GNU Scientific Library, allowing us to focus on the CUDA
portion of the application. However, previous research stud-
ies have performed steepest descent and gradient optimizers
on the GPU and these could be viable candidates for port-
ing to CUDA. Perhaps, even the Marquardt-Levenberg algo-
rithm would be a viable candidate for implementation. The
reason to explore alternative optimization algorithms is that
these more advanced optimizers can perform the minimiza-
tions in less iterations than the Simplex algorithm and thus
algorithmically reduce the running time of the application.
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6. CONCLUSION
In developing this application, it became quite apparent

that the key to achieving the most performance from the
CUDA device is to effectively manage the program’s mem-
ory access patterns. Developers must minimize the amount
of global memory accesses and take full advantage of the
texture, constant, and shared memories. Our initial naive
CUDA implementation simply passed the transformation
matrix in as kernel parameter and we were only able to
achieve 3× - 8× speedup on all of the test images. It was
only after we reorganized our memory access pattern did we
get drastic improve performance.

Although GPUs offer a vast amount of computational
power, they still face the age old problem of the memory
wall : meaning there are cases where the processors idle be-
cause data cannot be streamed in fast enough. In the case
of image registration, due to the nature of interpolation, it
is difficult to structure accesses that benefit from memory
coalescing (reading a coherent block of memory with a block
of threads) and thus the processors are required to wait for
data to be fetched. Unfortunately, GPUs are designed for
high throughput and not low latency, so these memory ac-
cesses, particularly to global memory, are quite costly. It
is up to the programmer to effectively group the data ac-
cess patterns and take advantage of the available memory
resources.

In regards to programming in CUDA, there are a variety
of things NVIDIA can do to improve the platform. For in-
stance, a profiling tool that can provide timing information
amount the memory access patterns would be quite benefi-
cial for developers. It would allow programmers to structure
their programs to take full advantage of the GPU’s memory
hierarchy which is vital to achieving full performance. More-
over, NVIDIA should consider exposing more of the built-in
hardware through the CUDA API. For instance, although
the GPU contains mipmap hardware units, this feature is
only exposed through the traditional graphics programming
interfaces. Likewise, the texture handling needs to be re-
fined a bit. Currently it is not possible to have an array
of texture references, nor is it possible to pass in a texture
reference to a kernel thus forcing messy kludges to select the
appropriate textures. These last two issues were particularly
relevant to our implementation of the pyramid component
where we had to implement our own parallel reduction and
had to perform a conditional check to determine if we should
store a source or target image.

Overall, the study presented in this paper presents a thor-
ough performance analysis of our CUDA 2-D rigid image reg-
istration implementation. The investigation reveals some of
the problems encountered in the converting the CPU imple-
mentation to the CUDA framework and identifies key tech-
niques and practices to overcoming these obstacles. Like-
wise, we also examine some of the limiting factors that pre-
vent obtaining maximum performance on the CUDA device
and discuss a few recommendations on how to not only speed
up the image registration application, but also to improve
the CUDA platform as a whole. In the end, our CUDA im-
plementation is able to achieve up to 90× speedup with the
bilinear kernel and 33× with the bicubic version.
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