
Scalable Distributed Image Transcoding using
Python-WorkQueue

Jeffrey Westphal and Peter Bui
Department of Computer Science

University of Wisconsin - Eau Claire
Eau Claire, WI 54702

{westphjm, buipj}@uwec.edu

Abstract
Transcoding large amounts of digital media from one format to another is a common data
intensive workflow. In this paper, we present a scalable image transcoding system based
on Python-WorkQueue that significantly reduces the amount of time required to convert
images from one format to another by mapping transcoding tasks across a distributed pool
of remote workers. We test our system using a Condor cluster and varying amounts of files
and number of workers. Our results show that we are able to achieve speed increases up
until a certain limit.

1 Introduction
Given the rapidly growing deluge of data in both scientific research and industrial applica-
tions, there is an increasing need for scalable and effective solutions for processing large
amounts of data in a timely manner [6]. A common data intensive workflow that consumes
a great deal of time is the transcoding or conversion of media files from one format to
another. For instance, videos uploaded to YouTube are transcoded into a variety of for-
mats and resolutions. Likewise, data in a scientific experiment is usually collected in a
raw format that is later transformed into a more usable format. To speedup the process of
transcoding a large number of files, distributed systems are often used to divide the work
across multiple machines. Unfortunately, programming applications that work in such en-
vironments can be difficult and complex.

One common approach to processing large amounts of data is to use the MapReduce [4]
abstraction. In this programming model, developers only need to specify (1) a map function
that filters, selects, or transforms an input dataset and (2) a reduce function that aggregates
or collects the results. The major advantage of this framework is that the complexities of
distributed programming are abstracted away from the programmer, who is then free to
focus on the particular domain application rather than low-level systems details. Today,
many companies and researchers utilize Hadoop [5], an open source Java implementation
of MapReduce, to perform extensive data analysis on large datasets.

Although MapReduce is an effective and powerful data processing abstraction, it is unnec-
essary for transcoding media files from one format to another. For this type of workflow,
we simply need a Map abstraction as shown in Figure 1.

1 def Map(function, dataset):
2 results = []
3 for data in dataset:
4 results.append(function(data))
5 return results

Figure 1: Map Abstraction

The Map abstraction involves applying a user-specified function to every item in an input
dataset in order to produce another dataset. Because each element can be processed in-
dependently, this pattern of computation is considered naturally parallel and thus can be
performed concurrently. For a transcoding workflow, the function is usually a conversion
application such as ImageMagick [1] and the dataset is the collection of media files.

In this paper, we present our prototype of a distributed Map abstraction implementation
based on the Python-WorkQueue [3] framework. We evaluate this system by utilizing it to
perform a series of image conversions on different datasets. Our results show that the image
transcoding system significantly reduces the running time of the conversion workflow by
splitting the transcoding of files across a distributed computer cluster. At the end of the
paper, we discuss how much speedup is gained and analyze the limitations to our approach.

1

2 Design
In order to create a scalable and distributed Map abstraction, we utilize Python-WorkQueue
to coordinate the computation in our workflow. Python-WorkQueue is a Python binding to
the WorkQueue master-worker distributed computing framework. In the master-worker
paradigm, a master application creates a set of tasks and sends it to a pool of workers who
perform the specified computation and return the results. Because the workers can execute
on different machines, WorkQueue applications are distributed. Likewise, WorkQueue ap-
plications are scalable because the framework allows for workers to come and go, and
handles fault-tolerance for the developer. Using Python-WorkQueue, our image transcod-
ing system internally implements the Map pattern to construct a distributed workflow that
is executed by a pool of workers running on multiple machines.

Condor Cluster

WQ
Worker

WQ
Worker

Images

WQ
Worker

WQ
WorkerWQ Master

Transcoding
Mapper

Convert

Figure 2: Transcoding System Overview.

The overall design of our image transcoding system is shown in Figure 2. Using the master-
worker paradigm provided by Python-WorkQueue, our application implements the Map
pattern to schedule one conversion task per image in the input dataset as follows:

1. For each image in the input data set, our application creates a transcoding task con-
sisting of the input image, the conversion function, and the parameters for the output
image. In our workflow, the transcoding function is the ubiquitous ImageMagick
convert utility.

To ensure that convert works on any remote worker, we utilize the starch [9]
application archiver to produce a standalone application archive capable of executing
on different machines even if they lack the necessary libraries.

2. Once these tasks are scheduled, the application waits as the internal WorkQueue
master distributes the tasks to a pool of remote workers. In our setup, these workers
execute on a local Condor pool and contact the master for tasks to execute. When
contacted by the workers, the master sends the transcoding tasks to the workers by

2

transferring an input image file and the transcoding executable to the remote machine
who then performs the appropriate task.

3. Eventually, all of the tasks are completed and the results of the computations are re-
turned to the transcoding application. If a worker is evicted or crashes, the WorkQueue
library will internally re-schedule that task to run on another worker and thus handles
failure transparently for the user. If additional workers join the pool, the master will
utilize these as long as there are tasks to be execute and thus the application can scale
dynamically at run-time.

By utilizing the Map abstraction in conjunction with Python-WorkQueue, we are able to
implement a scalable distributed image transcoding system.

3 Methodology
This section provides further details about our implementation of a scalable distributed im-
age transcoding system and how we evaluated its effectiveness.

As noted in the previous section, we utilize Python-WorkQueue to manage the complexities
of coordinating a distributed pool of remote workers. The bulk of transcoding implemen-
tation therefore involves utilizing the Map pattern to schedule the appropriate conversion
tasks and waiting for them to execute.

1 # Path to files to be converted
2 path = sys.argv[1]
3 files = os.listdir(path)
4

5 # For each file in path, determine if it is an image and then schedule it
6 for filename in files:
7 infile = os.path.join(path, filename)
8

9 # Check if file is an image
10 if imghdr.what(infile) is not None:
11 outfile = os.path.splitext(filename)[0] + '.' + sys.argv[2]
12 command = './convert.sfx %s %s' % (filename, outfile)
13

14 # Create WorkQueue Task
15 t = Task(command)
16

17 # Specify input and output files
18 t.specify_file('convert.sfx', 'convert.sfx', WORK_QUEUE_INPUT)
19 t.specify_file(infile, filename, WORK_QUEUE_INPUT)
20 t.specify_file(outfile, outfile, WORK_QUEUE_OUTPUT)
21

22 # Submit Task to Master
23 q.submit(t)

Figure 3: Task Construction Code.

3

Figure 3 contains the portion of our application that handles the scheduling of the tasks.
The process of generating tasks goes as follows:

1. After instantiating the WorkQueue master object, our application grabs the list of
files to process from the command line.

2. Next, the program loops through all files found and generates a complete path to each
file and determines whether a given file is, in fact, an image. If it is not, the file is
passed over and the next file is tested.

3. If the file is an image, our application must then create a WorkQueue task object
consisting of the command to run, the input files to send, and the output file to receive.

As noted previously, we utilized a starched version of the ImageMagick convert com-
mand as the transcoding function. Because our system is operating in a heteroge-
neous distributed environment, we have to send both the data and the executable to
the remote worker. Fortunately, by specifying in the task object, WorkQueue will
manage the data for us and will even cache files between tasks. This means that the
convert.sfx is only transferred to the remote worker once.

4. Once the task is fully specified, we then submit it to the WorkQueue master object
who will send it to remote workers when they become available.

As can be seen, the process of scheduling tasks is similar to the pattern in the Map ab-
straction. Rather than applying the function immediately, our transcoding system creates a
task which serves as a future or promise [2]. That is, the actual execution of the function is
delayed until a later time. To retrieve the results of these delayed computations, the tasks
are then executed concurrently across a pool of remote workers, which enables an increase
in the throughput of the entire transcoding workflow.

1 # As long as the queue is not empty, wait for a task to complete
2 while not q.empty():
3 t = q.wait(5)
4 if t:
5 print "task (id# %d) complete: %s (return code %d)" % \
6 (t.id, t.command, t.return_status)
7 print t.output

Figure 4: Task Waiting Code.

Figure 4 shows how our transcoding system waits for all the tasks to complete. To do this,
we simply loop until the WorkQueue master’s task queue is empty. As long as there are
tasks in the queue, we wait and simply print out the results of a completed tasks. Because
WorkQueue manages fault-tolerance and data transfers for us, we do not need to manually
reschedule tasks from failed workers or retrieve output files. Instead, we simply wait for
the tasks to complete. In total, our transcoding system consisted of 82 lines of Python code.

4

We benchmarked our solution to test for scalability and performance by running a series of
image transcoding workflows on our local Condor cluster. This system consists of thirty
CPU cores on five machines (some physical and some virtual). Each computer in the clus-
ter runs the 64-bit version of CentOS 6 and shares a repository of software via NFS.

1 #!/bin/bash
2

3 # Run our distributed convert program
4 # $1 Number of Workers
5 # $2 Number of Files
6 # $3 Image Files
7 benchmarking() {
8 ./work_queue_convert $3/$2 png $1 $2
9 rm *.png

10 }
11

12 # Loop over sets of images
13 for t in archlogo galaxy falls
14 do
15 # Loop over numbers of workers
16 for i in 1 2 4 8 16 24 30
17 do
18 # Create $i number of workers on the Condor cluster
19 work_queue_pool -T condor dplsubmit.cs.uwec.edu 9123 $i &
20 id=$!
21 # Loop over numbers of files that a trial will run
22 for j in 10 100 1000
23 do
24 # Loop to run individual trials
25 for k in {1..10}
26 do
27 benchmarking $i $j $t
28 done
29 done
30 # Terminate work_queue_pool and all workers it is maintaining
31 kill $id
32 sleep 5
33 done
34 done

Figure 5: Benchmarking Shell Script.

To ensure consistency in our experiments, all source files were JPEG images and were con-
verted to PNG format. Three image sizes are used: fifteen kilobytes, one megabyte, and ten
megabytes. Additionally we organized the images into sets of ten, one hundred, and one
thousand files of each size. For each of these combinations of group size and image size, we
utilized our application to transcode the images and timed the execution to determine the
length of time necessary to convert each set of images using a given number of WorkQueue
workers. We varied the number of workers in the following increments: 1, 2, 4, 8, 16, 24,

5

and 30. To further ensure consistency of our results, we measured the execution time of the
transcoding application across multiple trials for each combination of image size, group
size, and worker count.

In order to test our application in an automated manner, we use the shell script shown in
Figure 5. The script first loops over the images and number of workers that will be used.
The script uses work_queue_pool, a utility designed to create, destroy, and maintain
WorkQueue workers to ensure the proper number of workers exist at a given time. The
script starts the pool in the background and saves its process id. The script then loops
over the number of images and then runs ten trials for each combination of image, number
of workers, and number of files by passing this information to a function that runs our
application, referred to as work_queue_convert. After the transcoding is complete,
the script terminates the pool and waits five seconds to ensure that all the workers are
terminated properly; otherwise, the workers will not finish cleaning themselves up before
the next trial if the script does not wait.

4 Evaluation
This section analyzes the results of our benchmarks and evaluates the performances of our
system. Table 1 shows averages of all the speedup results for every configuration we tested.

Based on our results, it is clear that the time needed to convert a given number of files is
reduced as more WorkQueue workers are added unless the number of workers exceeds the
number of files. Given a set of ten files, the speedup increases until the number of workers
exceeds the number of files. At this point, times begin to be erratic, with most trials showing
improvement but a small number of individual trials manifesting a very large increase in
time needed, greatly reducing overall speedup. In general, increasing the number workers
lead to speedups, albeit not linearly.

File Size # of Files # of Workers
1 2 4 8 16 24 30

15KB
10 1x 1.47x 1.56x 2.13x 1.85x 2.00x 2.40x

100 1x 1.60x 2.80x 4.43x 5.96x 6.42x 6.44x
1000 1x 1.65x 3.12x 5.02x 7.97x 9.27x 9.31x

1MB
10 1x 1.65x 2.40x 2.78x 3.05x 3.73x 3.87x

100 1x 2.10x 3.87x 6.55x 9.56x 7.65x 8.27x
1000 1x 2.17x 4.28x 7.75x 11.2x 10.5x 12.12x

10MB
10 1x 1.84x 2.46x 2.88x 4.48x 3.43x 3.27x

100 1x 1.98x 3.90x 4.95x 7.34x 4.61x 4.76x
1000 1x 1.74x 3.97x 5.63x 6.26x 4.75x 4.93x

Table 1: Benchmark Speedups Results.

6

Figure 6: Execution Times and Performance Speedup for 10 1MB files.

Figure 6 shows execution times and performance speedup results for 10 1MB files. As the
graphs show, when the number workers exceeds the number of files, the execution times
stop decreasing in all trials. In a small number of trials, execution times are actually signif-
icantly increased. This leads to a great decrease in average performance speedup as more
workers are added above the number of files. This erratic behaviour is mostly due to id-
iosyncrasies within the WorkQueue scheduler and the timing in which workers connect to
the master.

The performance speedup graphs in Figure 7 demonstrate a closely logarithmic increase in
speed as workers are added to the task of transcoding 100 and 1000 1MB files. Similarities
between the two diagrams also demonstrate the consistency in behavior given large num-
bers of moderately sized files. The two figures show very similar behavior in relation to
the best fit curve, with the 1000 files figure simply scaled up, demonstrating the continued
performance enhancement of additional workers.

7

Figure 7: Performance Speedup for 100 and 1000 1MB files.

With sets of one hundred files, speedup will continue to improve as more workers are
added. Figure 7 shows a contrary result where the speedup gained by adding a new worker
is reduced as more workers are added. This is likely due to the time needed to transfer
data across a network. As file sizes increase, the speedup gained by adding more workers
decreases. If ten megabyte files are used, speedup will decrease after sixteen workers are
added. This is likely caused by network transfer speeds being unable to cope with such
large files. Moreover, because we utilize a master-worker paradigm and we transfer files
from the master, it is likely that the master becomes a bottleneck when we benchmark larger
number of files and larger sized files.

In summary, our benchmark results show that the image transcoding system we developed
does indeed scale with the number of workers, albeit non-linearly. For medium numbers
and sizes of files, we see a good amount of speedup as the number of workers increases.

8

Figure 8: Performance Speedup for 1000 1MB files.

For small file sizes and small number of files we see only slight improvements, while for
large large file sizes and large number of files we witness erratic behavior most likely due
to network transfer bottlenecks.

5 Related Work
As noted in the introduction, our transcoding system design is heavily inspired by MapRe-
duce [4] and Hadoop [5]. We decided against using Hadoop for the following reasons:

1. We did not need the full MapReduce programming model. Instead we simply needed
a Map abstraction to form media transcoding workflows.

2. We did not have the ability to configure a full Hadoop cluster. Therefore, we uti-
lized Python-WorkQueue [3] as a light-weight distributed computing framework that
would work on our existing Condor [8] cluster.

3. We wanted the experience of building a distributed computing abstraction rather than
utilizing a pre-existing solutions.

Architecturally, the master-worker model is not new [7], but it is effective and fits well with
our pattern of computation. Similar systems have been built in the past and are in use today,
but we wished to build a transcoding system ourselves and to analyze its performance.

6 Conclusion
Overall, our transcoding application was able to effectively reduce the amount of time
required to transcode a large number of image files of varying sizes. Unfortunately, the
amount of performance increase diminishes after a certain number of workers, meaning

9

that simply adding more machines to the application will not yield continued speedup.
This demonstrates that while our system scales with the number of files and workers, there
are limits to this scalability that must be considered in determining an optimal system con-
figuration.

While the system was designed for image transcoding, it can also be modified for other
applications as well. Because the system is designed to use a map to apply the same action
to multiple files, it can be easily modified for alternative applications. The system could
be modified to replace convert with a different program so that a different task could
be applied to a set of files. Alternatively, the application could be modified to allow more
flexible input of files, currently simply working on all valid files in a given directory. Our
future goal is to generalized our image transcoding application to provided a general Map
abstraction tool that can be utilized in many different contexts.

References
[1] ImageMagick. http://www.imagemagick.org/, 2013.

[2] H. C. Baker, Jr. and C. Hewitt. The incremental garbage collection of processes. In
Proceedings of the 1977 symposium on Artificial intelligence and programming lan-
guages, pages 55–59, New York, NY, USA, 1977. ACM.

[3] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain. Work Queue + Python:
A Framework For Scalable Scientific Ensemble Applications. In Workshop on Python
for High Performance and Scientific Computing at SC11, 2011.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In Operating Systems Design and Implementation, 2004.

[5] Hadoop. http://hadoop.apache.org/, 2007.

[6] A. J. Hey, S. Tansley, and K. M. Tolle. The fourth paradigm: data-intensive scientific
discovery. Microsoft Research Redmond, WA, 2009.

[7] J. Linderoth, S. Kulkarni, J.-P. Goux, and M. Yoder. An enabling framework for master-
worker applications on the computational grid. In IEEE High Performance Distributed
Computing, pages 43–50, Pittsburgh, Pennsylvania, August 2000.

[8] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In F. Berman, A. Hey,
and G. Fox, editors, Grid Computing: Making the Global Infrastructure a Reality. John
Wiley, 2003.

[9] A. Thrasher, R. Carmichael, P. Bui, L. Yu, D. Thain, and S. Emrich. Taming complex
bioinformatics workflows with Weaver, Makeflow, and Starch. In Workflows in Support
of Large-Scale Science (WORKS), 2010 5th Workshop on, pages 1 –6, 2010.

10

