
WIDLE: A Web Based Linux Interface

Lucas Novoa, Charles Volzka, and Peter Bui
Department of Computer Science

University of Wisconsin - Eau Claire
Eau Claire, WI 54702

{novoalg, volzkacj, buipj}@uwec.edu

Abstract
For novice students coming from graphically oriented operating systems, navigating remote
Unix command line shells can be as difficult as learning a new language. In order to reduce
this complexity, we developed WIDLE, a Web based Interactive Development and Learning
Environment. WIDLE is a RESTful web server that allows remote file system browsing,
interaction, and editing through a standard web browser. It also provides an interface to
view multimedia files from remote systems and an easy method to transfer files making
it useful for advanced users as well as novices. In the following paper, we discuss our
development methodology, the design of the project, and the implementation decisions
we made. Furthermore, we provide an evaluation of WIDLE by presenting the survey
responses from our first group of participants to test an alpha build of the project.

1 Introduction
Although Linux and other Unix-like operating systems are powerful programming envi-
ronments, the command line interface of the standard Unix shell often serves as a discour-
aging barrier for novices. Coming from more traditional graphical environments such as
Windows or Mac OS X, these students may view the Unix shell as intimidating and may
possibly be deterred from continuing their exploration of computing due to its complexity.
To address this problem, we developed WIDLE, a web server that supports basic file sys-
tem navigation and file editing services in a graphical browser interface along with other
advanced features such as the ability to view multimedia files, upload files, and receive no-
tifications. By providing a convenient and approachable graphical platform for interacting
with Linux systems, we hope to enable students to focus on high-level computing concepts
instead battling the mechanics of Unix file system manipulation and operation.

The main contributions of this paper are the presentation of the design and implementation
of WIDLE, and a discussion of the use of Agile development in managing this project.

Figure 1: WIDLE - Folder View Figure 2: WIDLE - Editor

2 Background
The general idea behind WIDLE is inspired by the IPython Notebook [6], which is a web
server that provides a convenient graphical interface for executing Python code on a re-
mote machine via a web browser. In fact, many of WIDLE’s features or characteristics
are derived from such web-based applications. For instance, the procedure for starting WI-
DLE and authenticating with a secure token was again inspired by the IPython Notebook
and the Cherokee [3] applications, which both use similar startup methods. Likewise, the
notifications for user feedback are inspired by the website HackerRank [5]. Finally, WI-
DLE utilizes the popular Bootstrap framework [2] and Font Awesome icons [4], which are
used in many modern web applications. What distinguishes WIDLE, then, is its focus on
enabling novice uses to operate remote Linux systems via a graphical web interface.

The project’s focus on students who are unfamiliar or uncomfortable with remote Linux
system comes from the authors’ experience. At many schools, systems programming

1

courses (typically involving C/C++) are taught using remote Linux terminals. Unfortu-
nately, according to a recent report [10] in 2014, 94.67% of desktop web users used Win-
dows or Mac OS X while Linux accounted for only 1.55%. While Windows and Mac OS
X both offer command line tools, many users don’t know of their existence and fewer still
take advantage of them. Linux users are generally more command line savvy but make only
a tiny faction of the user base. This means that for the majority of students, a systems class
will likely be their first time working extensively in a command line environment. This
creates extra cognitive load for students who we believe could be better served by focusing
on new programming ideas and less on environment navigation. This is where WIDLE
comes in.

WIDLE was born out of a desire to reduce this extra load without needing to use compli-
cated integrated development environments such as Eclipse, Visual Studio or Xcode. By
running a WIDLE server on the remote Linux system, the student will be able to easily
navigate the file system in an intuitive graphical interface right from a web browser. In
addition, we have included functions to create and edit text files and view multimedia files.
We believe these features will make WIDLE a useful tool, not only for novices but also
intermediate and advanced students. In addition to being useful, we hope WIDLE will give
teachers options to create assignments with multimedia components in addition to tradi-
tional text manipulation and numerical computing.

Figure 3: WIDLE - Design

3 Design
The overall design of WIDLE is shown in Figure 3. As shown in the diagram, the focus
of our project is creating a web server which acts as a bridge between a remote Linux
system and a local user. To ensure the correct file permissions are enforced, each user must
first login to the remote Linux system and launch their own WIDLE instance. At launch,
WIDLE displays a URL and a randomized session token to ensure secure access to the web
interface. After logging in, the user sees a list of files from their home directory as shown in
Figure 1. Files and folders are clickable with different actions based on type. For example,
clicking on a folder will display its contents in the same folder view, while selecting text

2

files will lead to a page with an inline text editor as shown in Figure 2. Furthermore, files
whose MIME types are recognized by the browser are displayed automatically by the web
browser (i.e. images, audio, video etc.).

From this folder view, WIDLE supports a variety of common file manipulation operations.
Items in the folder view can be deleted, moved, renamed, and new files and folders can be
created. Some additional features include:

1. Shortcuts to quickly jump between folders

2. Upload files from the browser to the remote file system

3. Download files or entire folders in a single click. Folders are downloaded as a zip
file with their original hierarchy preserved.

Operations are represented as simple icons with tool-tip style descriptions. Deviating from
the Unix ”no news is good news,” we also incorporated a color coded notification system
to inform the user of the success or failure of various actions as shown in Figure 4.

Figure 4: WIDLE - Success and Failure Notifications

4 Implementation
To implement WIDLE, we utilized a variety of web technologies. We used Python as
our main programming language along with JQuery, Bootstrap and JavaScript to provide
formatting and dynamic client side operations. We incorporated Tornado [7] as the base
web server framework. In addition, the ACE [1] editor was integrated to provide text editing
functionality and basic syntax highlighting. For reference, our implementation of WIDLE
can be accessed at https://bitbucket.org/pbui/widle.

Most of the functionality of a WIDLE server comes from the implementation of custom
handlers. Tornado maps these handlers to specific URL patterns that respond to HTTP
GET and POST methods. These custom handlers allowed us to use a RESTful [9] design
approach that gives functionality to the web application while enabling a modular design.

3

4.1 BaseHandler
As the name implies, the BaseHandler is an abstract class which provides the other
handlers methods to render web pages, provide error messages, and get current user in-
formation. All of the following handlers are derived from this base class and utilize its
methods for consistent page generation and error handling. Each individual handler, then,
implements either a GET or POST method (sometimes both), which defines what actions
should be taken when the corresponding HTTP request is made from the client.

4.2 AuthenticationHandler and SessionHandler
In order to add a measure of security, we implemented the AuthenticationHandler
and SessionHandler classes. These two handlers work together to make sure the user
who started the server and the one at the web browser is the same person. When the
user starts the WIDLE server, he is shown the server address along with an automatically
assigned port number for his specific WIDLE instance. A unique session key is also created
as a form of authentication to guard against malicious access by a third party scanning the
range of expected ports.

Although it may seem tedious, having each user run his or her own WIDLE server serves
two purposes beyond security. First the server can run as a process of that user meaning
their file permissions are preserved. Second, WIDLE does not need root or administrator
access to start a server. That is, any user with permission to access the remote system can
start their own WIDLE server.

Other WIDLE handlers, described below, have an authenticated property which is
checked in order to prevent a malicious user from directly sending requests to the WIDLE
instance without completing authentication. Since we currently do not support pausing a
session, the SessionHandler’s only function is to terminate an active session. Currently we
do this by redirecting the user to a page notifying them that the server has been terminated
and then end the server’s main I/O loop. To make sure the notification page fully displays,
we added a two second delay between the page redirect and loop termination.

4.3 NotificationHandler
Demonstrated in Figure 4, the NotificationHandler is simple, but critical to the
user experience. The server application stores a list of notifications that can be created by
any of the other handlers. The NotifcationHandler’s GET method then returns the
list of notifications as JSON which can be displayed via JQuery to the user. The handler
then clears the list of notifications to prevent duplicates from being show on a redirect. In
addition to displaying notifications whenever a page is loaded, we added a method to call
for them explicitly as well. This allows us to display error messages after POST events
such as Save or Save As where redirection proved unsuitable because of the inadvertent
loss of unsaved changes.

4

4.4 ShortcutHandler
The ShortcutHandler provides an extra level of convince for the user. This han-
dler allows the user to easily save links to previously visited locations in the file system.
When its POST method is called, the currently displayed path is added to the list of short-
cuts. We used JQuery and AJAX to allow users to remove shortcuts by dragging them
out of the shortcut bar. A POST is called with the path of the selected shortcut and an
extra ’remove shortcut’ argument. The list of shortcuts is then enumerated and the
matching shortcut is removed from the list.

4.5 ThumbnailHandler
The ThumbnailHandler adds extra convenience by displaying thumbnails for image
files in the folder view instead of the default file icon. When requesting the icon for image
files, the folder view redirects the request to the ThumbnailHandler. First, the handler
creates an SHA1 hash of the requested picture (a secure 160-bit hash value). If a thumbnail
does not already exist for the file, a new one is created from the picture and placed in the
cache folder named as <hash>.jpg. Finally the thumbnail for the image returned to the
browser as the icon for the requested image.

We chose to name the thumbnails based on a hash of the image for three reasons. First,
this allows us to store the images in a flat folder without worry of name collisions. Second,
this method enables constant time lookup of the thumbnails regardless of the number of
thumbnails stored. Lastly, if the same image existed in multiple locations, this approach
would only need to create one thumbnail as multiple copies should hash to the same value.

4.6 FileHandler
The FileHandler provides the methods which let the user interact with the remote com-
puter’s file system. When displaying folder contents, we use stacked Font Awesome icons
to indicate whether the items are files or folders. If an item has special permissions such as
read only, write only, or no access, we stack an additional sub-icon to the item to visually
indicate those permissions to the user.

The FileHandler uses a dictionary to match argument strings to lambda callback
functions. Some filtering is applied based on the path the handler receives and whether
the path is a folder or a file. Folders display their contents as shown in Figure 1. Files
are filtered on mime types. Text files open in the ACE editor as shown in Figure 2, while
multimedia files are viewed in browser. Finally remaining files are directly downloaded to
the client’s machine when clicked.

In addition to viewing files and folders, the Actions column provides an interface to
the extra features of the FileHandler. Files and folders can be moved, deleted, or
downloaded. The download action for folders required special implementation. First, we
create a new temporary folder in the system’s temp directory, this way we can name the
zip file the same as the original folder without fear of name collision. Then, we walk the

5

path of the original source folder copying its contents to our new zip file. Thus, we walk
the path item by item to make sure we preserve the hierarchy of the source in the new zip
file. Finally, after the file is created, it is downloaded by the client and deleted from the
temp directory. We also watch for exceptions to ensure the zip file is removed even if an
unexpected error occurs.

4.7 Development Strategy
In addition to deciding on an implementation design we also needed to adopt a development
strategy that allowed us to work as a team despite conflicting schedules. To accomplish this,
we used a modified Agile development methodology. Recognizing the chaotic schedules
of those involved, we followed Agile’s “individuals and interactions over processes” [11]
philosophy. We decided to integrate our scrum and sprint meetings into single weekly
events augmented with chat sessions over IRC channels as needed. In order to keep the
project manageable, sprints were fixed at one week.

As needed our weekly meetings would be used as longer project overview meetings where
features and general project goals were decided. Following the Agile approach, the project
evolved as it progressed. For instance, we moved from focusing on new students to also
adding multimedia features for more experienced users based on feedback. Tasks would be
broken down as much as necessary to turn them into one week tasks. In this manner, new
features were added iteratively over time with the project left in operational states between
each task. We used Trello [8] to maintain a backlog list of tasks and record discovered
bugs. Reported bugs would be addressed as future tasks.

The more common, shorter weekly meetings focused on what we accomplished the week
before, discussed what was and wasn’t working in the process, and pulling from the back-
log. As a team, we discussed our availability and skills to split off tasks rather than have
them assigned by a managing authority. Additionally, the weekly meetings kept all of us
in contact and up to date throughout the project. The fixed one week sprints provided a
consistent momentum throughout development. It prevented individual tasks from being
insurmountable while also ensuring continuous progress.

Overall, the use of the Agile development process allowed for the students to take equal
ownership of the project and empowered them to not only realize their goals but to also
shape the project’s evolution and direction.

5 Evaluation
To evaluate WIDLE, we gave a class of 12 systems programming students a chance to
use an alpha version of the project, and had them complete a survey of their experience.
With the small sample size, the results should not be considered conclusive, but should
still serve as an excellent feedback mechanism for this stage of the project. The survey
included both quantitative and qualitative questions. To prepare the students, we started
with a short demonstration on how to start a WIDLE server as well as an overview of its

6

features. After the demonstration we had the participants complete a series of self guided
tasks (Figure A.1) designed to give them a chance to experience each of the features. After
the self-guided tour, we asked the participants to fill out the survey of their experience. The
results of the quantitative questions are shown in Figures 5 - 11.

Figure 5: Results of first question. ”Initial learning curve, which is easier to use?”

5.1 Quantitative Questions
The quantitative questions focused on measuring participants reaction to WIDLE. Many of
the results favorably skewed towards WIDLE over the command line interface despite its
alpha standing. Figure 6 was closer to neutral and Figure 7 slightly favorited the command
line interface. Further study is needed but for Figure 6, a common sentiment during the
demo was a desire for tab completion when interacting with directories. This feature was
previously planned for inclusion in the project and it will be interesting to compare results
after it has been implemented.

Figure 6: Results of second question. ”Navigation (changing directories, viewing files),
which is easier to use?”

Figure 7: Results of third question. ”Opening/Editing documents, which is easier to use?”

7

The slight favoring of the command line interface in Figure 7 is more confusing. In this
alpha build, the ACE editor’s capabilities are limited and similar to the command line’s
nano program. Since the participants have already completed a half semester of C pro-
gramming, it is possible they have already become familiar with more advanced features of
editors like Vim or Emacs. Alternately the alpha version lacks the ability to execute edited
source code which may also effect utility of editing files from the browser.

Figure 8: Results of fourth question. ”Viewing multimedia files, which is easier to use?”

Figure 9: Results of fifth question. ”Transferring files from the local computer to remote
systems, which is easier to use?”

Figures 8 and 9 showed a strong favorable response towards WIDLE. While the project’s
primary goal as an entry level tool for new students responded well, its secondary goal of
making remote multimedia and file access easier for advanced users appears to have had
a stronger response. Once the project reaches a beta stage, another demonstration at the
start of the semester may show a greater balance. Regardless, we believe it is clear that
development should continue enhancing these features and place them in equal priority
with the original WIDLE vision.

Figure 10: Results of sixth question. ”Would WIDLE have made your introduction to
systems (C) programming easier?”

Finally, Figures 10 and 11 indicate that even after a brief demonstration of WIDLE, the stu-
dents felt that the application was both useful and would make their systems programming
class easier.

8

Figure 11: Results of seventh question. ”Do you think WIDLE would be useful as a general
tool for connecting to remote Linux systems?”

5.2 Qualitative Questions

Figure 12: Results of the eighth question. ”What feature(s) seemed most useful?”

For the qualitative section of the of the survey we asked participants four questions related
to their experience with WIDLE. Unlike the quantitative portion of the survey, these ques-
tions did not require any answer. Figure 12 showed participants liked a wide variety of
features of the project. While viewing multimedia was mentioned twice, many features
were mentioned by respondents as useful. A notable absence is any mention of the editing
features. Given Figure 7 this was not surprising and means either extensive work is needed
on the utility of this feature or development resources should be diverted to other features.

Figure 13: Results of the ninth question. ”What feature would you most like to see added?”

The question in Figure 13 was designed to give us feedback on where to focus future
development on the project. From the comments it appears there are two general requests
for future development. First, there is a strong sentiment to bring more terminal features to
the project. This includes adding tab completion to the dialog boxes as well as an ability to
issue arbitrary terminal commands from the web page. Second, there is a desire to increase

9

the ease of use for the project as a whole. Tab completion again falls under this category as
well as removing the need to start a server from a ssh connection.

Figure 14: Results of the ninth question. ”Find any bugs? What were they and how critical”

The few noted bugs in Figure 14 focused on issues with multimedia files. It showed that
we need to expand breadth of testing for such files. Our previous method of testing a few
random files did not catch issues such as videos that used a variety of encoding methods as
well as testing the larger file sizes created by high-definition videos. This problem will only
become more pronounced as we extend our list of supported browsers. It may be advisable
that we incorporate a third party player, or formalize our testing procedure to catch such
issues in the future.

Figure 15: Results of the ninth question. ”Any other thoughts, comments, or suggestions”

The final survey question in Figure 15 shows an overall positive response to the project. In
addition to getting feedback about its current state, the demo has given us an opportunity
to expose other students to the project. This positive exposure gives us an opportunity to
demonstrate the utility of student research to younger students as well as the possibility of
recruiting more student researchers to replace graduating members.

10

6 Conclusion
Our main goal in this project is to design a new interface that can ease the transition for
new systems programming students and offer useful functionality for expert users. From
Figure 10 it is clear more work is needed to complete our primary goal as an introductory
systems tool. While 50% of participants thought it would have made their initial introduc-
tion to systems programming easier, the other 50% were ambivalent. That said, Figure 11
showed all the students believed WIDLE could be a useful general tool. Additionally their
comments following the survey expressed interest in the future of the project, indicating
that the project is on the right track.

We have also learned new things about software development techniques and early life
cycle development. By applying an Agile style of development we were able to keep
connected despite working individually in a distributed manner. Additionally by accepting
feedback throughout the process we were able to redirect development time toward the
multimedia functions of the project. While multimedia was not a key component of the
original product vision, the flexibility allowed us to add features which ultimately had the
strongest favorable response from the participants.

By presenting common file system tasks in a graphical browser interface, we hope new
students can focus more on high-level computing concepts. New and experienced users
alike should be able to appreciate the ability to easily view audio/visual files from remote
Linux systems and easily transfer files without mounting remote systems or use of obscure
command lines.

References
[1] Ace. ”Ace - The High Performance Code Editor For the Web” [Online].

http://ace.c9.io/. [Accessed: 28 Feb 2015].

[2] Bootstrap. ”Bootstrap: The World’s most popular mobile-first and responsive front-end
framework” [Online]. http://getbootstrap.com/. [Accessed: 28 Feb 2015].

[3] Cherokee. ”Cherokee Web Server” [Online]. http://cherokee-project.com/. [Accessed:
28 Feb 2015].

[4] Font Awesome. ”Font Awesome, the iconic font and css toolkit” [Online].
http://fontawesome.io/. [Accessed: 28 Feb 2015].

[5] Hacker. ”Programming problems and challenges :: HackerRank” [Online].
https://www.hackerrank.com/. [Accessed: 28 Feb 2015].

[6] IPython. ”IPython: Interactive Computing”. [Online]. http://ipython.org/. [Accessed:
28 Feb 2015].

[7] Tornado. ”Tornado Web Server”. [Online]. http://www.tornadoweb.org/en/stable/. [Ac-
cessed: 28 Feb 2015].

11

[8] Trello. ”Trello”. [Online]. https://trello.com/. [Accessed: 28 Feb 2015].

[9] C. Pautasso, O. Zimmermann, and F. Leymann. ”Restful web services vs. ”big” web
services: Making the right architectural decision”. In Proceedings of the 17th Inter-
national Conference on World Wide Web, WWW 08, pages 805814, New York, NY,
USA, 2008. ACM.

[10] ”Desktop Operating System Market Share”. Jan 2015. [Online]. Net-
marketshate http://marketshare.hitslink.com/operating-system-market-
share.aspx?qprid=10&qpcustomd=0&qpsp=2014&qpnp=1&qptimeframe=Y [Ac-
cessed: 28 Feb 2015].

[11] Beck. K. et al. ”Manifesto for Agile Software Development”. 17 Feb 2001. [Online].
http://agilemanifesto.org [Accessed: 28 Feb 2015].

12

Appendix

WIDLE - Self Guided Demo
To Start

1. ssh into dplsubmit
2. run command: /data/software/all/bin/./widle
3. Copy and paste* url into browser
4. Copy and paste* session token in to WIDLE

 *Remember in Putty to copy text, select it and right-click (or use Putty menu)
 *In Putty control-c quits the server instead of copying the text

1. Shortcuts

1. Navigate to /data/scratch/widle/<uwecid>
2. Create a shortcut
3. Click “Home”
4. Use shortcut to return to your scratch folder

2. Moving files

1. Rename colored pictures as red.jpg, blue.jpg, green.jpg
2. Create a folder called “b and w”
3. Move the black and white pictures to the new folder

3. Editing

1. Open the source code and make some changes

4. Downloading Folders

1. Go up one folder (Parent Directory)
2. Download your scratch folder
3. Expand zip file on the local machine. F

5. Deleting

1. Delete your scratch folder from dplsubmit
2. Try the shortcut you created earlier
3. Remove the shortcut to your scratch folder

6. Uploading

1. In another tab/window, go to http://www.videezy.com
2. Pick a short clip and download it
3. Go to your home folder and upload the clip
4. View the movie from dplsubmit in the browser

7. Quit WIDLE

1. Or leave it running if you like
2. Fill out survey at: http://bit.ly/1MrVIss

Figure A.1: Self guided demo given to survey participants

13

