
Lecture 5: Viewing

CSE 40166 Computer Graphics (Fall 2010)

Review: from 3D world to 2D pixels

1. Transformations are represented by matrix
multiplication.

o Modeling
o Viewing
o Projection

2. Clipping volume used to throw out objects.

3. Correspondance between transformed coordinates
and screen pixels.

Camera Analogy

• Setup tripod and point
camera at scene (viewing
transformation)

• Arrange scene to be
photograph (modeling
transformation)

• Choose a camera lens or
zoom (projection
transformation)

• Determine how large final
image should be (viewport
transformation)

Vertex Tranformation Pipeline

Cube Example

void display(void) {
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);

glLoadIdentity(); /* viewing transformation */
gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glScalef(1.0, 2.0, 1.0); /* modeling transformation */
glutWireCube (1.0);
glFlush();

}

void reshape(int w, int h) {
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
glMatrixMode (GL_MODELVIEW);

}

Viewing and Modeling
Transformations

• Viewing and modeling transformations are
inextricably related in OpenGL and are in fact
combined into a single modelview matrix

o Do you want to move the camera in one direction,
or move the object in the opposite direction?

o Each way of thinking about transformations has
advantages and disadvantages, but in some cases
one way more naturally matches the effect of the
intended transformation.

Transformation Order Matters

glTranslatef()
glRotate()
draw_flower_pot()

glRotatef()
glTranslatef()
draw_flower_pot()

Grand, Fixed Coordinate System

• Matrix multiplications affect the position,
orientation, and scaling of your model.

Transformations move object in fixed global
coordinate system.

• Multiplications occur in opposite order from how
they appear in code.

Moving a Local Coordinate System

• Instead of fixed coordinate system, image a local
coordinate system that is tied to the object you are
drawing.

• All operations occur relative to this changing
coordinate system (and thus multiplications are
same order as in the code)

• Extremely useful for hierarchical objections (i.e
arms, legs, joints).

• Scaling may be problematic (translations move by
a multiple since they are stretch).

Transformation Order Redux

glTranslatef()
glRotate()
draw_flower_pot()

glRotatef()
glTranslatef()
draw_flower_pot()

Modelview Duality

• There is no real difference between moving an object
backward and moving the reference system forward.

• Viewing transformation, therefore, is essentially nothing
but a modeling transformation that you apply to the viewer
before drawing objects

Modeling Transformations

glTranslatef

glRotatef

glScalef

Viewing Transformations

• Changes position
and orientation
of viewport.

• Camera moves in
opposite direction
as objects.

• To set viewing transformation:
o glTranslate, glRotate
o GluLookAt

• Viewing transformations must be called before any
modeling transformations are performed.

gluLookAt

• Construct a scene around origion or some
convenient location, and then want to look at it
from an arbitrary point.

• gluLookAt: let's you specify location of viewpoint,
a reference point toward which a camera is aimed,
and which direction is up.

Projection Transformations

• The purpose of the projection transformation is to
define a viewing volume.

• Determine how an object is projected onto the
screen.

• Defines which objects or portions of objects are
clipped out of final image.

• Viewpoint exists at one end of viewing volume.

• Two main types of projections:
o Perspective
o Orthogonal

Perspective Projection

• Major characteristic is
foreshortening:

Farther an object is from
the camera, the smaller
it appears in the final
image.

• Viewing volume is a frustrum of a pyramid.
o Objects inside volume are projected toward apex of

pyramid.
o Objects closer to viewpoint appear larger.

glFrustrum, gluPerspective

Orthographic Projection

• Parallel projection, all the polygons are drawn onscreen with
exactly the relative dimensions specified.

• Used often for 2D drawing purposes where you want an exact
correspondence between pixels and drawing units.
o CAD, blueprints, text, on-screen menus

Hidden Surface Removal

• Remove surfaces that should not be visible to
viewer.

• OpenGL provides z-buffer algorithm (depth
buffer).

Z Buffer Algorithm

• As polygons are rasterized, hardware keeps track of depth
or z buffer:
o Initially, depth value is registered to far side of viewing volume
o For each fragment, we compute the depth (distance from viewer).

 If this depth is closer to viewer than current value, then we update color
value and depth

 Otherwise, we disregard it.

Code:

glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB|GLUT_DEPTH);

glEnable(GL_DEPTH_TEST);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Reversing the Pipeline

• How do we map from a mouse coordinate to
object coordinates?

o Have to reverse the transformation process to map from
window coordinates back to object space.

o gluUnProject performs this reversal
 Works best with orthographic projections
 Requires a wz argument, which specifies the depth:

 0.0: near clipping plane
 1.0: far clipping plane

gluUnProject Example

GLdouble modelview[16];
GLdouble projection[16];
GLint viewport[4];
double wx, wy, wz, ox, oy, oz;

glGetDoublev(GL_MODELVIEW_MATRIX, modelview);
glGetDoublev(GL_PROJECTION_MATRIX, projection);
glGetIntegerv(GL_VIEWPORT, viewport);

wx = MouseX;
wy = viewport[3] - MouseY - 1;
glReadPixels((int)wx, (int)wy, 1, 1,
GL_DEPTH_COMPONENT, GL_FLOAT, &wz);

gluUnProject(wx, wy, wz, modelview, projection,
viewport, &ox, &oy, &oz);

Picking

● Logical operation that allows user to identify object
on the display.

● OpenGL provides a mechanism called selection:
● Adjust clipping region and viewport.
● Keep track of primitives rendered into region

near the cursor.
● Possible selected primitives stored in a hit list.

Start picking

GLint viewport[4];

glGetIntegerv(GL_VIEWPORT, viewport); // Get viewport information

glSelectBuffer(SBSIZE, SelectBuffer); // Setup hit buffer

glRenderMode(GL_SELECT); // Switch to selection mode

glInitNames(); // Setup name stack

glMatrixMode(GL_PROJECTION); // Adjust projection to limit

glPushMatrix(); // area we are interested in

glLoadIdentity(); // (5x5 area around mouse position)

gluPickMatrix(MouseX, viewport[3] – MouseY, 5, 5, viewport);

gluPerspective(45.0, (GLdouble)(WindowWidth)/(GLdouble)(WindowHeight),
 0.1, 1000.0);

glMatrixMode(GL_MODELVIEW);

// draw scene

Stop picking

GLint hits;

glMatrixMode(GL_PROJECTION);

glPopMatrix();

glMatrixMode(GL_MODELVIEW);

hits = glRenderMode(GL_RENDER);

if (hits > 0)

process_hits(hits, SelectBuffer);

Process Hits

void process_hits(GLint hits, GLuint *buffer){

GLuint names;

GLuint *bp = buffer;

for (GLint i = 0; i < hits; i++) {
names = bp; // # names, min, max, name0, ...
bp += 3;

// process hits
bp += names;

}

Resources/Credits

• OpenGL Programming Guide:

http://glprogramming.com/red/chapter03.html

• OpenGL Super Bible:

http://www.opengl-doc.com/Sams-
OpenGL.SuperBible.Third/0672326019/ch04lev1se
c2.html

http://glprogramming.com/red/chapter03.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

