
Lecture 08: Hierarchical Modeling with
Scene Graphs

CSE 40166 Computer Graphics
Peter Bui

University of Notre Dame, IN, USA

November 2, 2010

Symbols and Instances

Objects as Symbols

Model world as a collection of object symbols.

Instance Transformation
Place instances of each symbol in model using
M = TRS .

1 g l T r a n s l a t e f (dx , dy , dz);

2 g l R o t a t e f (angle , rx, ry , rz);

3 g l S c a l e f (sx , sy, sz);

4 g l u C y l i n d e r (quadric , base , top , height , slices , stacks);

Problem: No Relationship Among Objects

Symbols and instances modeling technique contains no information
about relationships among objects.

I Cannot separate movement of Wall-E from individual parts.

I Hard to take advantage of the re-usable objects.

Solution: Use Graph to Model Objects

Represent the visual and abstract relationships among the parts of
the models with a graph.

I Graph consists of a set of nodes and a set of edges.

I In directed graph, edges have a particular direction.

Example: Robot Arm

1 display ()

2 {

3 g l R o t a t e f (theta , 0.0, 1.0, 0.0);

4 base ();

5 g l T r a n s l a t e f (0.0, h1, 0.0);

6 g l R o t a t e f (phi , 0.0, 0.0, 1.0);

7 lower_arm ();

8 g l T r a n s l a t e f (0.0, h2, 0.0);

9 g l R o t a t e f (psi , 0.0, 0.0, 1.0);

10 upper_arm ();

11 }

Example: Robot Arm (Graph)

1 ConstructRobotArm(Root)

2 {

3 Create Base;

4 Create LowerArm;

5 Create UpperArm;

6
7 Connect Base to Root;

8 Connect LowerArm to Base;

9 Connect UpperArm to LowerArm;

10 }

11
12 RenderNode(Node)

13 {

14 Store Environment;

15
16 Node.Render ();

17
18 For Each child in Node.children:

19 RenderNode(child);

20
21 Restore Environment;

22 }

Scene Graph: Node

Node in a scene graph requires the following components:

I Render: A pointer to a function that draws the object
represented by the node.

I Children: Pointers to the children of the node.

It may also contain the following:

I Transformation: Homogeneous-coordinate matrix that
positions, scales, and orients node and children relative to
parent.

I Material properties: Values that define the color or
materials of object.

I Drawing Style: Settings that determine the drawing style for
the object.

Scene Graph: Node (C)

Simple implementation using a left-child, right-sibling structure.

1 t y p e d e f v o i d render_func_t(SSG_Node *n);

2
3 s t r u c t SSG_Node {

4 render_func_t *render;

5 s t r u c t SSG_Node *child;

6 s t r u c t SSG_Node *sibling;

7 v o i d *data;

8 };

Scene Graph: Node (C++)

Simple implementation using STL lists and C++ classes:

1 c l a s s SSG_Node {

2 p u b l i c :
3 SSG_Node ();

4 v i r t u a l ~SSG_Node ();

5 v i r t u a l render ();

6 v o i d add_child(SSG_Node *n);

7 p r o t e c t e d :

8 std::list <SSG_Node *> mChildren;

9 };

Scene Graph: Traversal

To render or process a graph, we have to traverse it. The most
common method is recursively using a depth-first and preorder
approach:

1 v o i d
2 ssg_node_render(SSG_Node *n)

3 {

4 i f (n == NULL) r e t u r n ;

5
6 glPushMatrix ();

7 i f (n->render)

8 n->render(n);

9
10 ssg_node_render(n->child);

11 glPopMatrix ();

12
13 ssg_node_render(n->sibling);

14 }

I Why the check if n == NULL?

I Why push and pop the matrix?

Scene Graph: Viewer/Engine

Once we have a scene setup in a graph, we need another class or
object that will view or process the scene graph. This object is
normally a wrapper for the traditional OpenGL, GLUT functions
we have been using and will contain the global variables we have
been using:

1 /∗ Data S t r u c t u r e ∗/
2 s t r u c t SSG_Viewer {

3 const char *title;

4 s i z e t width;

5 s i z e t height;

6 i n t frame;

7 double eye_x;

8 double eye_y;

9 double eye_z;

10 double camera_distance;

11 double camera_longitude;

12 double camera_latitude;

13 i n t mouse_x;

14 i n t mouse_y;

15 };

16
17 /∗ Methods ∗/
18 SSG_Viewer *ssg_viewer_create(const char *title , s i z e t width , s i z e t height);

19 v o i d ssg_viewer_initialize(SSG_Viewer *v, i n t *argc , char *argv []);

20 v o i d ssg_viewer_show(SSG_Viewer *v, SSG_Node *n);

Scene Graph: Robot Arm

1 SSG_Node *root = NULL;

2 SSG_Node *base = NULL;

3 SSG_Node *lower_arm = NULL;

4 SSG_Node *upper_arm = NULL;

5 SSG_Viewer *viewer = NULL;

6
7 /∗ Crea te nodes ∗/
8 root = ssg_node_create(NULL , NULL);

9 base = ssg_node_create(cylinder_render , NULL);

10 lower_arm = ssg_node_create(cube_render , NULL);

11 upper_arm = ssg_node_create(cube_render , NULL);

12
13 /∗ Connect nodes ∗/
14 ssg_node_connect(root , base);

15 ssg_node_connect(base , lower_arm);

16 ssg_node_connect(lower_arm , upper_arm);

17
18 /∗ Setup v i ewe r and r end e r s cene ∗/
19 viewer = ssg_viewer_create("robot arm", 640, 480);

20 ssg_viewer_initialize(viewer , &argc , argv);

21 ssg_viewer_show(viewer , root);

Scene Graph: Transformations and Animation

In a scene graph, nodes are not restricted to drawing objects. They
could also be:

I Lighting: Adjust lighting for different sets of objects.

I Camera: Move camera around per object or group of objects.

I Transformation: Apply transformation to children in a
hierarchical fashion.

I Animation: Control animation of different objects based on
time of key-frames.

I Switch: Activate or deactivate child nodes based on some
parameter.

I Event: Have keyboard, mouse, or timer events trigger
changes in animation or objects.

Scene Graph: Robot Arm Animation

Suppose we want to add animation to our robot arm. We would
need to create a graph like so:

Demo example 23.

Scene Graph: Summary

A scene graph is basically a n-tree or DAG where we order our data
into a hierarchy such that parent nodes affect the child nodes.

Normally, each node contains a transformation matrix and a
renderable object. As tree is traversed during rendering, the
matrices are concatenated and objects are rendered wth the
resulting transformation.

Scene Graph: Applications

Used in may real-world applications such as:

I Graphics Editing Tools: AutoCAD, Adobe Illustrator,
Acrobat 3D.

I Modeling Systems: VRML97, OpenSceneGraph.

I Multimedia: MPEG-4.

I Games: Quake.

Scene Graph: Why use them?

I Transform Graph: Model hierarchical objects such that child
objects are defined relative to parents.

I Abstraction: Only concern yourself with what’s in the scene
and any associated behavior or interaction among objects.

I Culling:Allow for high-level culling or object removal.

I Easy of manipulation: Break object down into individual
nodes and we can animate pieces separately.

I State Sorting: All objects rendered are sorted by similarities
in state.

Focus on what to render, rather than how to render.

Scene Graph: Spatial Partitioning

Besides simplifying and possibly speeding up rendering, scene
graphs can also be used to help in collision detection by adapting
them into a set of bounding volume hierarchies.

1. Check if probe object is in gallery object’s volume.
2. If in volume, then check repeat for childre of gallery object.
3. If not in volume, then skip the rest of gallery object’s children.

