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Three-Dimensional Modeling of Microsphere
Contact/Impact with Smooth, Flat Surfaces

W. Cheng, R. M. Brach, and P. F. Dunn
Particle Dynamics Laboratory, Department of Aerospace and Mechanical Engineering,
University of Notre Dame, Notre Dame, Indiana

A three-dimensional (3D) simulation model of a microsphere
in contact with a nominally-smooth, � at surface is established.
The model is based on Hertzian contact stresses, an idealized ring
force distribution of adhesion, nonlinear damping, and friction.
Although originally developed for the study of oblique impact, the
model also is shown to describe the motion of a microsphere in
sustained contact with a � at surface, including nonlinear normal
oscillatorymotion in the presence of sliding and rolling. Nonlinear,
normal oscillatory motion is illustrated using conventional phase-
plane techniques. Methods for the determination of damping co-
ef� cients associated with normal motion from impact experiments
are discussed. The signi� cance and modeling of rolling resistance
and implicationsof asymmetriccontactstressdistributionsare pre-
sented.Simulations show that energyexchangebetween translation
and rotationcan play an important role during oblique impact.The
effects of complex initial conditions on the rebound and capture
of a microsphere are signi� cant as are the effects of contact fric-
tion. Results show that the inability to measure and the failure to
account for rotationalvelocitiesin experimentalmeasurements can
limit the intepretation of the results.

INTRODUCTION
Microsphere contact/impact with surfaces has many applica-

tions and much theoretical signi� cance. The modeling of mi-
crosphere contact/impact is important in predicting particle de-
position on and rebound from surfaces. The results can be used
in contaminationmonitoring and control, especially in environ-
mental particle sampling and collection. On the other hand, the
issue of microsphere contact/impact is closely related to ad-
vances in micro-scale contact mechanics, for example, in the
understanding and modeling of various surface forces. The re-
sults can be useful in an even wider range of areas. Microsphere
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contact with � at surfaces relates to the interpretation of the out-
put of surface force apparatus such as Atomic Force Micro-
scope (AFM) (Burnham et al. 1997). More recent applications
are found in the area of Micro Electro Mechanical Systems
(MEMS) and nano-technology,which involvesmicrometer- and
nanometer-sized components (Rollot et al. 1999). Also, the mi-
crosphere contact/impact model is fundamental in granular � ow
and geomechanics modeling. The Hertzian elastic contact the-
ory for spheres is used with discrete element approaches for the
constitutive model of granular materials. Fundamental aspects
in the modeling of discrete element systems are summarized by
Cundall and Hart (1992). More applicationscan be easily found
for single and multimicrosphere contact/impact models.

Classical studies on the contact/impact problem may be di-
vided into 3 chronological stages. In the � rst stage, models
were restricted to rigid bodies. The basic ideas were based on
Newton’s third law and Coulomb’s friction law for rigid bod-
ies. Some of the results are still used widely today. In the sec-
ond stage, local elasticity over the contact area was included.
The geometry and deformation of a contact body was assumed
such that a closed-form solution could be found by using the
available mathematical and mechanical tools. Application of
Hertz’s work on the static contact problem of 2 spheres is re-
garded as a milestone in the � eld (Hertz 1881, 1882). Following
this work, many researchers studied contact problems between
elastic bodies of different shapes under different circumstances
with or without friction. One of the leading contributions is the
Johnson-Kendall-Roberts (JKR) model (Johnson 1985). Exam-
ples can also be found in Goldsmith (1960) and Gladwell (1980).
The third stage is numerical simulation.Computationalmethods
including � nite-elementmethods are widely used in simulations
in contact mechanics in which contact bodies are discretized as
the collection of � nite elements. More complicated geometry,
boundary conditions, and loading can be considered. The con-
tact bodies may deform in an arbitrary way. Examples can be
found in Zhong (1993) and Quesnel et al. (1998). Except for
the advantages of third-stage methods, the modeling of surface
interactive forces such as adhesion and friction on the contact
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boundary still depends on the results of the second stage. The
roughness of the nominal smooth surface is still modeled by the
contact of microspherical asperities with or without friction and
adhesion. The sphere contact/impact model remains the funda-
mental case for interface analysis.

Most studies have focused on the normal attraction acting
between solid surfaces (detailed explanations can be found in
Israelachvili and Tabor (1972)). The theoretical adhesive con-
tact area of spherical surfaces under elastic deformation is de-
rived by Johnson et al. (1971) and Derjaguin et al. (1975). The
tangential friction problem for obliquecontact/impact still is not
fully solved. Some effort has been made to model the tangen-
tial adhesion contact to extend the JKR model for the case of
tangential loading (Savkoor and Briggs 1977; Thornton 1991).
Criteria for tangential separation have been proposed, including
that a tangential force is capable of causing normal separationof
the surface, which is called “peeling.” Skinner and Gane (1972)
and Ando et al. (1995) measured the relationship between the
dry friction and the normal attraction forces between surfaces
under micro-loads when tangential motion occurs. Several im-
pact models have been developed recently to predict the oblique
rebound velocity of the microsphere (Brach and Dunn 1995;
Dahneke1975;Wall et al. 1990;Tsai et al. 1991;Xu and Willeke
1993).

Experiments and numerical simulations have focused on the
accurate prediction of the rebound velocities of spheres in pla-
nar motion. However, three-dimensional (3D; degrees of free-
dom) measurements and simulationshave not been reported.Yet
the full nonlinear nature of the problem can only be visualized
through 3D simulations with a wide range of initial conditions.
3D simulationsre� ect the propertiesof the simulationmodel and
generate useful informationneeded to improve understandingof
contact/impact problems. Another reason for 3D simulations is
that in reality microparticle impacts are almost always 3D with 6
degrees of freedom. In this paper a 3D simulation model for mi-
crosphere impactwith a � at surface is developed.Then an exper-
imental data � tting method is introduced to determine the damp-
ing coef� cients required as known parameters in the simulation.

The focus of this paper is the oblique impact of microspheres.
However, some aspects of dynamics of established contact are
also covered. The model for friction and rolling resistance in
this paper is different from those used by other researchers such
as Wang (1990) and Ziskind et al. (1997). Some existing mod-
els of rolling are fundamentally limited when external or inertia
forces are not included in the balance of moments, leading to
incomplete moments for rolling. In the current simulation the
surfaces of the microsphere and the substrate are considered to
be smooth. Even though all surfaces are rough at the micro-
scopic level, there are compelling reasons to assume that the
surfaces are smooth. In reality roughness has scale levels. In or-
der to keepa nominal � at geometry, roughnessmust have a much
smaller wavelength and height than the curvature or the radius
of the contact area. Any surface irregularity with approximately
the same order in height and wavelength as the contact area

is considered as a large geometry problem and contradicts the
assumptionofa single sphere Hertziancontactwith a � at surface.
A result of this reasoning is that no moment is generated from the
normal contact.Anotherdifference relates to the tangential load-
ing or tangential inertia force. In Ziskind et al. (1997), because
the tangential loading is assumed to be much smaller than the
dry friction force (in other words, sliding does not occur), the
tangential contact was modeled as a linear elastic spring. For
impact, there is little or no experimental evidence to indicate
that tangential elasticity plays a signi� cant role. On the other
hand, ample evidence exists (Brach et al. 2000) that a tangential
contact force composed primarily of dry friction is appropriate.

Some argue that in particle removal, when external forces
such as gravity are weak, an energy method based on vibrational
resonance may be used. This may not be a productive approach
because the concept of resonance is linear, whereas Hertzian
contact and sphere vibration is a nonlinear phenomenon. The
approach in this paper considers the nonlinear properties of the
normalcontactthroughBrach and Dunn’s model.The possibility
of resonance is discussed.

Several cases of 3D oblique impact are simulated to identify
the effects of changes in initial conditionsand surface friction on
the energy dissipation and rebound velocities.The sensitivityof
parameters and some potential sources of errors in experiments
are identi� ed through the numerical simulations. The results
show that 3D simulation and nonlinear analysis are important
tools to understand the mechanism of particle impact and depo-
sition with surfaces.

SIMULATION MODEL
The current simulation model was proposed by Brach and

Dunn (1995) and was based on Hertzian contact theory under
adhesion loading.Figure 1 shows the coordinate system pertain-
ing to the 3D impact between a microsphere and a � at surface
where Çn < 0 initially. Typically the contact radius, a, is small
compared to the sphere radius, r , and the radius of curvature
of the contact area. Because the particle is small, the elastic
force and the adhesion force are the dominant forces. Gravity is
negligible and not considered. Energy is dissipated through the
material and adhesion damping.

According to Newton’s second law, the equation of normal
motion is

mn̈ D FH C FH D C FA C FAD: [1]

The � rst term on the right side of Equation (1) is the Hertzian
elastic force, FH . It is calculated from the Hertzian theory

FH D
p

r K (¡n)3=2; n · 0; [2]

where n is the relative displacement of the mass center and
n · 0 during contact. The original radius of the microsphere is
r . The effective material stiffness is K , which is de� ned by the
following equations:

K D
4

3¼ (k1 C k2)
; [3]
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Figure 1. Schematic of a sphere in contact with a � at surface.

and

ki D
¡
1 ¡ º2

i

¢

¼ Ei
; i D 1; 2; [4]

where ºi and Ei are Poisson’s ratio and Young’s modulus, re-
spectively, for the sphere and the substrate material. The adhe-
sion force, FA , in Equation (1) is modeled as a ring force acting
on the periphery of the circular contact area, where the intensity
of the adhesion ring force is f0:

FA D ¡2¼a f0: [5]

As predicted by Hertzian theory, the contact radius, a, is

a D
p

¡rn: [6]

The calculation of the intensity of the adhesion ring force, f0,
uses a relationship between Brach and Dunn’s model and the
JKR model. It is assumed that both models produce the same
contact radius at the equilibrium position. Thus the following
equation was used to calculate f0 (Li et al. 1999):

f0 D
³

9
2¼

Krw2
A

´1=3

: [7]

In Equation (7), wA is the combined surface energy between the
sphere and the surface materials. wA can be obtained through
Dupré’s equation:

wA D F1 C F2 ¡ F12; [8]

where F1 and F2 are surface free energies of body 1 and body 2,
respectively, and F12 is the interfacial free energy. In reality, the
surface tensions of the 2 bodies, °1 and °2, and the interfacial
tension, °12, are used instead:

wA D °1 C °2 ¡ °12: [9]

The interfacial tension can be estimated by

°12 D °1 C °2 ¡ 2812(°1°2)1=2: [10]

Note that the interaction parameter, 812, is not exactly at unity.
Practically, however, it is near unity. The uncertainty in using
812 D 1 is <2%. This small correction is a second-order effect
that is negligible in the current model. Thus the surface energy
can be estimated as follows:

wa
»D 2

p
°1°2: [11]

The values of f0 for different cases used in the simulation
are listed in Table 1. Dynamic damping is included using � rst-
power velocity dependence for the material damping, FH D , and
the adhesion damping, FAD:

FH D D ¡FH CH Çn; [12]

and

FAD D FACA Çn: [13]

The damping coef� cients, CH and CA, can be put into
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Table 1
The basic parameters for numerical simulation

Density
Reference r (¹m) (kg/m3) K (£109 Pa) f0(N=m) ³A ³H f Descriptions

Wall et al. (1990) 1.29–3.45 1350 1.776 5.340–7.390 29.0 0.50 0.15 Figure 3
Wall et al. (1990) 3.45 1350 1.776 7.422 29.0 0.50 0.15 Figures 5, 7–12
Wall et al. (1990) 3.45 1350 1.776 7.422 29.0 0.50 0.10–0.90 Figures 13–14

nondimensional forms:

³A D CA

³
r 3K

p
vn

m

´2=5

; [14]

³H D CH

³
r3 K

p
vn

m

´2=5

; [15]

where vn is a reference velocity, typically the initial normal ve-
locity.The nondimensionaldampingcoef� cients are determined
through an experimentaldata � tting procedure that will be intro-
duced in the following section. Two tangential directions in the
Cartesian coordinate system, t and t 0, are considered to include
the “off-plane” spin and sliding in the simulation. The equation
of motion in the t direction is

mẗ D Ft : [16]

The equation of motion in the t 0 direction is

mẗ 0 D Ft 0 : [17]

A form of Coulomb friction with a coef� cient f is used for the
tangential friction. At the beginning and the end stage of con-
tact, the normal force is negative due to the fact that for small
displacement, n, the adhesion force is larger than the Hertzian
elastic force. Thus a friction for “pulling” force contact has to
be modeled. In the current simulation model, an assumption is
made that the contact is tangentially rigid and the tangential de-
formation is neglected. The tangential friction force is assumed
to be proportional to the magnitude of the “pulling” force based
on the fact that in the “snap-on” and “snap-off” procedure, the
particle is in “contact” with the substrate surface and the fric-
tion still exists due to the relative motion at the interface. This
friction model agrees with the measurement results of Skinner
and Gane (1972). The frictional force has components Ft and
Ft 0 that oppose the relative tangential contact velocity and are
proportional to the resultant normal force, Fn . Except for an iso-
lated special case, the initial relative tangential contact velocity
is nonzero for oblique microsphere impacts. This means that a
friction force exists initially. If during contact friction causes
sliding to end, a sphere continues to move under the condition
of pure rolling and sliding cannot reoccur.

It shouldbe mentioned that the behaviorof tangential friction
in the presence of adhesion is still not fully understood, particu-

larly when tangential elastic deformation is signi� cant. An elas-
tic model and an extension of the JKR model in the tangential
direction have been discussed (Ziskind et al. 2000; Savkoor and
Briggs 1977; Thornton 1991). However, for impact problems
in which the initial relative tangential contact velocity is large,
separation likely occurs over the whole contact area. The tran-
sition from shear traction to sliding friction can be neglected.
The model is tangentially rigid in the current simulation. Even
though this condition is simpli� ed, it appears suitable for the
simulation of impact problems.

As a result of the tangential friction, moments, torque, and
rotation are also produced about the mass center. The micro-
sphere is considered as a rigid body in modeling the spin and
rotation. The spin about the normal axis, n, is described in the
following rigid-body equation:

I ‚!n D 2¼

Z a

0
f jpnj½2d½ D ¡

75¼ f aFn

64r 2
; [18]

where I is the centroidal moment of inertia of the sphere and pn

is thenormal contactpressure over the contactarea.The torsional
moment caused by friction in Equation (18) is calculated by the
integration of Coulomb friction about the center of the contact
area. The equations of rotation about the tangential axes are the
following:

I ‚!t D ¡r Ft 0; [19]

I ‚!t 0 D r Ft; [20]

In order to describe and compare the simulation results, sev-
eral coef� cients are de� ned. The restitution coef� cient, en , is
the ratio of the magnitude of rebound (subscript, r ) to initial
(subscript, i ) normal (subscript, n) velocities:

en D
vrn

vin
: [21]

The tangential impulse ratios, ¹t and ¹t 0 , are de� ned as the ratio
of tangential impulse to normal impulse after impact in t and t 0

directions:

¹t D
vtr ¡ vti

vnr ¡ vni

; [22]

¹t 0 D
vt 0

r
¡ vt 0

i

vnr ¡ vni

: [23]
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In the absence of adhesion, the upper limit of the tangential im-
pulse ratio is the Coulomb friction coef� cient, f . However, in
the current nonlinearmodel, when the “snap-on” and “snap-off”
period is long, the tangential impulse ratio can be larger than f .
The normalized total kinetic energy loss coef� cient, K t , is the
percentage of total energy loss (total energy means the summa-
tion of translational and rotational kinetic energy) after impact:

K t D
m

¡
v2

i ¡ v2
r

¢
C I

¡
!2

i ¡ !2
r

¢
¡
mv2

i C I !2
i

¢ : [24]

The normalized translationalkinetic energy loss coef� cient, KL ,
is de� ned as the ratio of translational kinetic energy loss to the
initial translational kinetic energy:

KL D
v2

i ¡ v2
r

v2
i

: [25]

A reason for de� ning 2 different kinetic energy loss terms
is because, experimentally, the rotational kinematics typically
are not measured. Consequently, experimental kinetic energy
loss values reported in the past correspond to Equation (25),
yet the total kinetic energy loss is given by Equation (24). The
simulationallows both to be determined(Brach and Dunn 1996).

Figure 2. Schematic for the analysis of the rolling resistance.

ROLLING RESISTANCE
The equations for rolling in the current simulation (Equa-

tions (19) and (20)) are different from those used by other re-
searchers. It is suggested (for example, see Wang (1990)) that a
moment, or couple, due to adhesion over the contact area pro-
duces a resistance to rotation. The magnitude of this resistance
is estimated as the product of a “pull-off” force and the con-
tact radius. Although this theory has been commonly accepted
(Ziskind et al. 1997), it can overestimate rolling resistance sig-
ni� cantly. Figure 2 illustrates schematically the conditions that
occur when a microsphere in contact with a surface rolls in
the presence of adhesion. Both the Hertzian and adhesion con-
tact forces develop an asymmetry, causing their lines of ac-
tion to move away from the normal axis, n. In the case of the
adhesion force, this asymmetry is due to the leading edge of
the contact area establishing new contact and the trailing edge
pulling away. This causes a moment, Mt 0 , that resists rolling
where

Mt 0 D xa Fa C xh Fh : [26]

The force Fa includes the adhesion force, FA, and the corre-
sponding adhesion damping, FAD, and the force Fh includes the
Hertzian force, FH , and the corresponding Hertzian damping,
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FH D. The distances xa and xh are the offsets of the lines of
action of the adhesion and Hertzian forces, respectively. This
phenomenon was modeled for the process of impact by Brach
et al. (1999b), where it was found that rolling resistance has a
negligibleeffect during impact and attachmentof microspheres.
Some evidence exists to indicate that this rolling resistance may
also be negligible for particle resuspension (Dunn et al. 2001).
For this reason it is not included in the model presented in the
previous section.

DETERMINATION OF THE DAMPING COEFFICIENTS
The Runge-Kutta-Gill (R-K-G) method was used to solve the

previously described governing equations. In the 3D simulation,
4 parameters are required: the effective material stiffness, K , the
adhesion line force, f0, the nondimensional Hertzian damping
coef� cient, ³H , and the nondimensional adhesion damping co-
ef� cient, ³A. The estimation of the material stiffness and the
adhesion line force are introduced in the previous section. The
dampingcoef� cients,³H and ³A, can be determinedby the � tting
of the 2D microsphere impact data. For each set of experimen-
tal conditions, an optimal set of ³H and ³A is found to � t the
coef� cient of restitution, en . Figure 3 shows an example of the
least-square regression of the experimental data of Wall et al.
(1990). After � tting, the values of ³H and ³A are � xed and the
set with the least-square error are selected for 3D simulation.
The values used in the simulation are listed in Table 1.

NONLINEAR DYNAMICS OF NORMAL
OSCILLATORY MOTION

Most, if not all, previous studies of microsphere impact have
considered only before-and-after contact conditions.Numerical
simulation offers a way to understand the dynamics of particle

Figure 3. Numerical simulation results (solid lines) and Wall et al. data (1990), ³A D 29:0, ³H D 0:50.

impact and the effects of parameters during contact as well. This
is particularlypertinentafter attachment,when it occurs. Ziskind
et al. (2000) estimate a natural frequency of vertical oscillation
using a simpli� ed contact model. The system is linearized near
the equilibrium position and damping is neglected. However,
nonlinear systems do not possess a single natural frequency be-
cause of a strong dependence on initial conditions. Even for a
linear system, an over-damped system has no natural frequency.
The model covered in this paper can be used to simulate vertical
oscillatory motion of an attached microsphere.

Because the tangential and rotational motion is driven by the
normal contact for a Coulomb frictional system, proper repre-
sentation of the nonlinear dynamics of the normal process is
crucial. By changing the coordinate system, x D ¡n, the equa-
tion of motion at the normal direction can be rewritten as

mẍ D ¡
p

r K x 3=2(1 C CH ‚x) C 2¼ f0
p

rx1=2(1 ¡ CA ‚x ): [27]

Using the same symbols for the displacementof the mass center,
x , and the time, t , the nondimensional form of Equation (27) is

ẍ D ¡x3=2(1 C C1 ‚x) C x1=2(1 ¡ C2 ‚x): [28]

The following length, X , and time scales, T , are used in nondi-
mensionalization:

X D
2¼ f0

K
; [29]

T D
m

p
r K

X¡1=2 D
m

p
2¼r f0K

: [30]

The length scale, X , is also the equilibrium displacement, and
the time scale, T , is set so that the Hertzian force is at the same
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Figure 4. Bifurcation on the parameter plane.

order of the adhesion force, which is true for adhesive impact
problems. The nondimensionaldamping parameters, C1 and C2

(different from ³H and ³A), are

C1 D CH
X

T
D CH

r
r

K

(2¼ f0)3=2

m
; [31]

and

C2 D CA
X

T
D CA

r
r

K

(2¼ f0)3=2

m
: [32]

The system form of Equation (28) is

»
‚x D y

‚y D ¡x3=2(1 C C1y) C x1=2(1 ¡ C2y)

¼
: [33]

The Jacobian of Equation (33) is

J (x; y)

D
³

0 1

¡ 3
2 x1=2(1 C C1 y) C 1

2 x¡1=2(1 ¡ C2y) ¡x3=2C1¡ x 1=2C2

´
:

[34]

Because translation of the coordinates, x and y, does not affect
the Jacobian, J , the frequency of the solution at any point (x; y)
in the phase portrait is the imaginary part of the eigenvalueof the
Jacobian, J . Because the eigenvaluesof J are functions of both
x and y (the displacement and the impact velocity), it is clear
that no single natural frequency exists for the contact/impact
problem based on the model with adhesion and damping.

Equation (33) has 2 equilibrium points. The nonlinear prop-
erties of the contact system can be studied at the equilibrium
position of the adhesion contact (x D 1; y D 0). The Jacobian
at 1; 0 is

J (1; 0) D
³

0 1
¡1 ¡C

´
; [35]

where C D C1 C C2. The eigenvalues of J (1; 0) are

¸ D
¡C §

p
C2 ¡ 4

2
: [36]

A bifurcationon the parameter plane occurs with a critical point,
C D 2. Figure 4 shows the parameter plane. When C > 2, both
eigenvalues are real. It corresponds to the over-damped system
and no frequency is possible at all. When C D 2, a double non-
zero eigenvalueappears; this corresponds to a critically-damped
case in which the frequency is zero. When C < 2, a damped os-
cillation occurs. The frequency is

p
4 ¡ C2 and the point (1; 0)

is a spiral sink because the real part of the eigenvalue is nega-
tive (represents an amplitude decay). Physically, these different
properties of the equilibrium position correspond to 3 kinds of
solutions in the simulation: rebound (spiral sink, large incident
velocity,Figure 5a), capture with oscillation (spiral sink, low in-
cident velocity,Figure 5b), and capture without oscillation (pure
sink, Figure 5c).

The nonlinear analysis of the nondimensional system can be
projected back to the dimensional system. In the dimensional
sphere contact/impact problem, 3 types of numerical solutions
from the 3D simulation model are shown in Figure 5 that corre-
spond to the experiments of Wall et al. (1990) for microspheres
with a radius of 3.45 ¹m.



1052 W. CHENG ET AL.

Figure 5. Phase portraits for variations of incident velocities.

When the forces on the right side of Equation (1) balance, the
microsphere is attracted to the surface and reaches the equilib-
rium position. The velocity at the equilibrium position is zero,
and the displacement at the equilibrium position is the equilib-
rium displacement, ne D X . Physically, a microsphere sitting
on the surface with no external force is at its static equilibrium
position or an equilibrium position can be approached after a
microsphere is attached on the surface.

De� ne a constant, CT , where CT D CH C CA, a total damp-
ing coef� cient. The property of the equilibrium position is de-
termined by the following conditions:

1. When CT < 2(2¼ f0)¡5=4r ¡1=4 K 3=4m1=2, the equilibrium
position is a spiral sink. The solution around the equilib-
rium position is a damped oscillation with an asympotic
frequency:

! f D

q
4X1=2 ¡ C2

T
X
T

2
X3

2T
: [37]

It can be shown from Equations (37), (14), and (15) that
! f depends not only on the material properties and the
radius of the sphere but also on the initial velocity vn .
! f cannot be considered as a single natural frequency
of the system because the Hertzian damping and adhesion

dampingforces are nonlinear. Thedampedoscillationnear
the equilibrium position identi� es the energy dissipation
mechanismfor particlecapture. It also indicatesa potential
mechanism for particle resuspension.

2. When CT D 2(2¼ f0)¡5=4r ¡1=4K 3=4m1=2, the solution
around the equilibrium position is a critical damping
oscillation.

3. When CT > 2(2¼ f0)¡5=4r¡1=4K 3=4m1=2, the system is an
over-damped system. The equilibriumpoint is a sink. The
sphere is captured by the surface without oscillation.

If all the material parameters are � xed and the damping co-
ef� cients, CH and CA, have the form as shown in Equations
(15) and (14), the property of the solution is determined by the
incident velocity. The critical velocity, vc , is de� ned as

vc D 25=4¼ 25=4 f0
25=4r¡19=4 K ¡23=4m¡1=2(³H C ³A)5: [38]

The critical velocity for the case in Figure 5 is vc D 2:25 £
10¡5 m/s. When the incident velocity is larger than the critical
velocity (see Figures 5a and 5b), the equilibriumpoint is a spiral
sink. In the case of vn(0) D 1:0 m/s, the maximum displacement,
nmax , is far away from the equilibrium displacement, ne. Thus
the inertia of the sphere in the � rst cycle is large enough to over-
come the attraction of the spiral sink and the sphere rebounds
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Figure 6. Schematic of the incident angles.

after impact. In Figure 5a, the impact begins with zero normal
displacement and a negative velocity, ¡1 m/s, and ends with
a zero normal displacement and a positive impact velocity. In
the case of vn(0) D 0:5 m/s, Figure 5b, the incident velocity
is not large enough and nmax is near ne . The microsphere falls
into the path of the spiral sink and is captured. The velocity
and displacement then form a damped cyclic path near the � nal
equilibrium point. This phase portrait indicates a vibrational
contact.The frequencyof vibrationnear theequilibriumposition
in Figure 5b according to Equation (37) is 2:0£107 Hz. The � nal
velocity of the particle is zero, but the � nal static equilibrium
displacement is negative. This type of motion exists whether the
initial conditions are due to impact or external forces.

When the incidentvelocityis smaller than thecritical velocity
(the case vn(0) D 1:0 £ 10¡5 m/s, Figure 5c), the equilibrium
point is a pure sink and the particle is capturedand retainedby the
surface without oscillation. Detailed theoretical analysis offers

Table 2
The initial conditions used to simulate their effects on 3D impact

Case number Conditions Descriptions

No. 2.1 v D 0:2 ! 10 m/s, ® D 0± ! 30± Figures 7, 8
No. 2.2 v D 0:2 ! 10 m/s, ® D 0±, !t 0 D 0 ! 1:8 £ 105 rad/s Figures 9, 10
No. 2.3 v D 0:2 ! 10 m/s, ® D 0± ! 30±, !t D 2:9 £ 105 Figures 11, 12
No. 2.4 v D 0:2 ! 10 m/s, ® D µ D 0±, !t D !t 0 D 2:9 £ 105 rad/s, f D 0 ! 0:9 Figure 13
No. 2.5 v D 0:2 ! 10 m/s, ® D µ D 0±, !t D !t 0 D 2:9 £ 106 rad/s, f D 0 ! 0:9 Figure 14

the accurate expressions for the capture velocity as a function
of material parameters (Cheng et al. 2000).

EFFECTS OF INITIAL CONDITIONS
In order to understand the energy dissipation and the rela-

tionship between rotation and tangential motions, 3D oblique
impacts are simulated.Figure 6 is a schematic diagram illustrat-
ing the geometry and the incident direction. The values for the
initial conditions used in the example cases are listed in Table 2
and the values of the correspondingbasic parameters in Table 1.
The normalized translationalkineticenergy loss coef� cient, KL ,
normalized total kinetic energy loss coef� cient, K t , restitution
coef� cient, en , and tangential impulse ratio, ¹, are compared by
variations of the initial conditions over the range listed in Table
2. The magnitudeof the initialvelocitiesin Table 2 is represented
by v.
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Figure 7. Energy loss for case No. 2.1 (® D 5± increment).

An oblique impact is complicatedbecause the friction is non-
linear and rolling and sliding of the microsphere are dif� cult to
predict. In order to understand the energy loss by friction and
energy transport between rotation and tangential translation, the
total energy loss coef� cients and translational energy loss coef-
� cients are plotted as a series of curves related to the incident
angles and incidentvelocities.The curves show the sensitivityof
the energy loss to the incident velocitiesand the incident angles.

The sensitivity of energy loss to the magnitude of incident
velocities and impact angles is shown in Figure 7. For the same
impact angle®, bydecreasing the magnitudeof the impact veloc-
ity, both KL and K t increase. For the same magnitude of impact
velocity, when the impact angle, ®, increases, KL and K t in-
crease. When the incident velocity is smaller than the capture
velocity, the particle is captured by the surface and the energy
loss is the maximum. In Figure 7, the normalized energy losses
for captured particles are constant. For oblique impacts, follow-
ing capture, microspheres continue to roll. In the current simu-
lation, rolling friction is neglected and the energy loss ratios for
captured particles are ·1.0. In reality, because of rolling friction
all of the initial kinetic energy eventually would be dissipated.
The difference between KL and K t shows that the translational
energy loss, KL , is larger than the total energy loss, K t , in the
oblique impact without initial rotational velocities. For nonzero
incident angles, in addition to the energy dissipation, part of the

translational energy transforms into rotational energy. It is also
clear in Figure 7 that the increase of the impact angle, ®, causes
the increase of the difference, KL¡K t . This reveals that for a
shallow impact angle (a large ®), the rotational energy becomes
signi� cant and measurement of rotationalvelocities is crucial in
an experiment.

Figure 8 shows the sensitivity of the tangential impulse ratio,
¹, and the coef� cient of restitution, en , to impact velocities and
impact angles. It is clear that ¹ can be sensitive to the increase
in approach angle. This means that near capture a small error
in the measurement of the impact angle, ®, can cause a large
difference between the experimental and simulation results in
tangential velocities. A high accuracy in angle measurement is
needed in oblique impact experiments. The numerical simula-
tions show that en drops at low incident velocities and when the
incident velocity is smaller than the capture velocity, en is zero.
The effects of the incident angle on en are signi� cant at low
velocities (depending on the physical properties of the sphere
and the surface). This means that the normal rebound velocity
is more sensitive to the incident angles for low velocity oblique
impacts.

The effects of initial rotational velocities on normal impacts
are shown in Figures 9 and 10. Figure 9 shows that neither KL

nor K t is sensitive to the initial rotationalvelocities for the range
of initial angular velocitieschosen. In order to make a difference
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Figure 8. en and ¹ for case No. 2.1 (® D 5± increment).

Figure 9. Energy loss for case No. 2.2.
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Figure 10. en and ¹ for case No. 2.2.

in KL and K t , an initial rotational velocity on the order of
105 rad/s is needed. However, in reality, the rotation of the par-
ticle may still be important because it is possible to have such
high initial rotational velocities for microspheres. For a radius
of 6.89 ¹m, a velocity of 1.0 m/s at the center of mass, and
zero velocity at the contact area, the rotational velocity is 2.9 £
105 rad/s. The difference, KL¡K t , is associated with the mag-
nitude of incident velocities.The magnitudeof KL¡K t is larger
at low incident velocities. The rotational energy dissipation is
important for low velocity impact. In Figure 9, the values of
KL ¡ K t are negative because the initial rotational velocity of
the particle increases the initial tangential contact velocityof the
particle and in� uences the translational energy loss.

Figure 10 shows the effects of initial particle rotationalveloc-
ity on ¹ and en . The particle rotation has no effect on the normal
impact, which is characterized by the coef� cient of restitution,
en . All the values for en under different initial angular veloci-
ties fall onto a single curve. However, the effects of the particle
rotation on the tangential impulse ratio, ¹, are quite obvious.
In order to explain the experimental results of particle impact,
the rotational rate of the particle, which is extremely dif� cult to
measure for small particles, must be included.The values for en-
ergy losses and ¹ are not calculated when the incidentvelocities
are smaller than the capture velocity in Figures 9 and 10.

Figures 11 and 12 show the combined effect of initial “off-
plane” spin, !t , and the incident angle, ®, on the impact re-
sults. The initial rotational velocity, !t , is 2.9 £ 105 rad/s. From

Figure 11, by changing the value of ®, both KL and K t show
similar behavior as in Figures 7 and 9. The difference KL¡K t

is the combinationof Figures 7 and 9. At low velocities (<4 m/s
in the simulated cases), the effects of initial rotation are more
signi� cant. The values of KL¡K t are negative. At high veloci-
ties, the effect of incident angle becomes more important. The
values of KL¡K t are positive. In Figure 12, the changing of ®

has signi� cant effects on the tangential impact along the t direc-
tion, which is represented by ¹t . It has less effect on the normal
restitution coef� cient, en , and tangential impulse ratio along the
“off-plane” direction,¹t 0 . The variationsof en and ¹t 0 are caused
by the variation of normal impact velocity at different incident
angles. Near the capture velocity, the tangential impulse ratio,
¹t 0 , is much larger than the friction coef� cient, f , because of
the signi� cant “snap-on” and “snap-off” effects. This result in-
dicates that the coupled effects of adhesion and friction can be
signi� cant near capture.

Simulation results also show that the friction coef� cient af-
fects the tangential motion and rotation of the microsphere. The
effects are closely related to the initial rotation and the rela-
tive tangential velocities as shown in Figures 13 and 14. It is
reasonable that the initial spin has no effect on the restitution
coef� cient. In Figure 13, because the initial rotational velocity
is small for all the values of the friction coef� cients shown in
Table 2, the particle is rolling at the end of impact (except in the
case of zero friction). All the curves for ¹t and ¹t 0 fall onto a sin-
gle curve. However, in Figure 14, the initial rotational velocity
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Figure 11. Energy loss for case No. 2.3 (® D 5± increment).

Figure 12. en and ¹ for case No. 2.3 (® D 5± increment).
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Figure 13. en and ¹ for case No. 2.4 ( f D 0 ! 0:9 increment).

Figure 14. en and ¹ for case No. 2.5 ( f D 0:1 increment).
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is large. The effects on tangential impulse ratios in both t and
t 0 directions are signi� cant and this is even more so for smaller
normal impact velocities. For very low velocity and high spin
impact or contact, the determination of friction coef� cient is
very important. On the other hand, in order to measure the fric-
tion coef� cient accurately, the experiment should be conducted
in the very low velocity and high rotational velocity range. The
above-sensitivity analysis can be valuable in the design of the
experiment of particle impact.

The results can be summarized as follows:

1. By changing the incident angle, ®, at low velocities, the
impulse ratio, ¹, and the restitution coef� cient, en , change
signi� cantly. The changes of the coef� cient of restitution,
en, at high velocities and energy loss, KL and K t , are not
as signi� cant.

2. The effects of initial angular velocities are signi� cant on
all the calculations, including ¹ and energy losses. The
effects are more signi� cant for low initial velocities.

3. When the adhesion and damping forces increase, the par-
ticle is captured by the surface, followed by damped vi-
bration with a decayingsolution.On the contrary, rebound
occurs for low adhesion and low damping cases.

CONCLUSIONS
This study clearly demonstrates that 3D simulations can pro-

vide important information for microsphere contact/impact.
Through numerical simulation, the parameter sensitivity, prop-
erties of the forces, and factors that control the particle deposi-
tion and rebound are understood.The simulation shows that the
rolling and translationalenergy transport plays an important role
during attachment, including oblique impact. The results offer
a better understanding of the friction and adhesion model. The
tangential motion of a particle during impact is quite sensitive
to the incident angles and the initial rotation.

The nonlinear analysis shows that any one of 3 types of mo-
tion can occur for a microsphere impact: rebound, capture with
damped oscillation, and capture without oscillation. Which oc-
curs is determined by the material parameters and the normal
incident velocity. Two characteristic velocities, the capture ve-
locity and the critical velocity, are de� ned in determining the
conditions for capture and different types of motions after the
capture, respectively. Capture occurs when the incident veloc-
ity of the microsphere is lower than the capture velocity such
that the phase path of the microsphere falls into the sink on the
phase portrait. The occurrence of oscillation after the capture is
determined by the normal incident velocity and the critical ve-
locity. If the normal incident velocity is smaller than the critical
velocity, no oscillation occurs after the capture. The asymptotic
frequency of the oscillation near the equilibrium position is de-
termined by the material properties and the radius of the sphere.
Because of the nonlinearity of the system, the asymptotic fre-
quency is also dependenton the incident velocity if the damping

coef� cients, CH and CA , have the form shown in Equations (15)
and (14).

The simulation results also identify potential sources of er-
rors in experiments and the best incident velocities for the mea-
surement of different parameters. It is clear from the simulation
results that experimental measurements of the rotational veloc-
ity of microspheres would greatly increase the understanding
of low velocity oblique impacts. Analysis and experimental re-
sults show that some rolling models are not able to characterize
rolling friction accurately. In order to simulate rolling resistance
during established contact, the asymmetric distribution of the
normal contact pressure over the contact area must be modeled
properly. However, for impact problems, the rolling resistance
can be neglected because the contact radius is very small and
the duration of microsphere-substrate contact is very short.
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