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A new self-consistent model is developed to treat the static contact of a micro-
particle with a flat barrier in the presence of molecular adhesion and surface
roughness. Separation between their mean datum planes is modeled considering
the elastic deformation of the microparticle and surface. The contact pressure is
computed from the Lennard-Jones law following the Derjaguin approximation.
The elastic deflection of the mean datum plane is calculated from the effective
pressure by the half-space elastic theory. Roughness is modeled by introducing a
Gaussian distribution to the gap between the surfaces. An effective pressure is
defined as the statistical average of the contact pressure over the roughness
heights. A solution satisfying all of the above conditions gives a self-consistent
method of modeling adhesion between the microparticle and the flat barrier. Using
collocation methods the equations are discretized as a large system of nonlinear
algebraic equations. A continuation method is used to find the multiple numerical
solutions for the mean separation and the effective contact pressure. Finally,
adhesive contacts of both smooth and rough surfaces are simulated in a com-
parative manner to elucidate the features of surface roughness in the presence of
molecular adhesion. The standard deviation of the Gaussian distribution is used
as a parameter to assess the effects of roughness on the pull-off force. It is shown
that increasing surface roughness significantly reduces the pull-off force and
decreases the tendency for the microsphere to snap-on and snap-off.
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INTRODUCTION

The modeling of microparticle adhesion has direct relevence to many
engineering applications. Examples include those involving dry fric-
tion, fine particle agglomeration and separation, and microforce
measurements such as those using the surface force apparatus, atomic
force microscope, etc. [1]. More recent applications now can be found in
Micro-Electro-Mechanical Systems (MEMS) and nanotechnology.

Adhesion between dry surfaces in contact with one another usually
is modeled in continuum mechanics through the surface energy or the
work of adhesion in separating adhering surfaces. Various adhesion
models and hypotheses have been developed. These are summarized in
the following in order to place the present study in proper context.

Modeling of Adhesion for Smooth Surfaces

As early as 1932, Bradley [2] found that the force of adhesion between
two rigid spheres with radii R1 and R2 is 2pRg, where R is the
equivalent radius R1R2

R1þR2
and g is the combined surface energy,

g ¼ g1 þ g2 � g1g2. Derjaguin [3] found the same result from the Der-
jaguin approximation, assuming that the unit interaction energy
between infinitesimal areas of solids is the same as the energy per unit
area between half-infinite solids. For elastic spheres, two major
models were developed, namely the JKR model [4] and the DMT model
[5]. The JKR model modifies the Hertzian theory by considering the
adhesion between surfaces within the contact region. The model was
derived from the conservation of elastic energy, mechanical potential
energy, and later using Griffith surface energy following a fracture
mechanics approach. The DMT model assumed that adhesion acted
outside the Hertzian contact region. The two models were seemingly
contradictory until Tabor [6] suggested that they describe two opposite
extremes of Tabor’s parameter, m. This parameter is the ratio of the
elastic displacement of the surface at the point of separation (pull-off)
to the effective range of surface forces characterized by the ‘‘equili-
brium spacing,’’ E, at which intermolecular forces vanish:

m ¼ Rg2

E2E3

� �1=3

: ð1Þ

E is the combined elastic modulus of the microparticles, where

1

E
¼ 1 � n1

2

E1
þ 1 � n2

2

E2
: ð2Þ
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E1 and E2 are Young’s modulus and n1 and n2 are the Poisson’s ratios
for the two contacting surfaces.

After Tabor’s suggestion, Muller et al. [7] conducted a pioneering
numerical simulation using a self-consistent model. Their model is
termed ‘‘self-consistent’’ because the surface stress is coupled mathe-
matically with the elastic deformation of the contacting surfaces. The
surface tensile stress computed from the Lennard-Jones potential is
used to calculate the elastic deformation of the surfaces. The surface
deformation changes the molecular separation between surfaces, and
the change of separation in turn changes the surface tensile stress
according to the Lennard-Jones law. The solution considering all these
factors satisfies both the Lennard-Jones law and the elastic deforma-
tion. The results of Muller et al. showed the continuous transition
from the DMT model to the JKR model with increasing Tabor para-
meter values. This work was followed by a series of computational and
analytical studies. Maugis [8] offered insight into the DMT-JKR
transition through an analytical study using a Dugdale model. The
Maugis-Dugdale theory gives an analytical description of the DMT-
JKR transition. However, the Dugdale model is approximate in that it
assumes that the surface force is a constant up to a maximum
separation beyond which it decreases to zero. Multiple solutions are
possible as long as they produce the same surface energy.

The Lennard-Jones model captures some unique features. Attard
and Parker [9] performed a numerical study using the Lennard-Jones
model. Unfortunately, because of a singularity in an integral, a
nonmonotonic trend of pull-off force was found as Tabor’s parameter
was increased. The first detailed computation based on the Lennard-
Jones model was done by Greenwood [10]. He repeated the computa-
tions done by Muller et al. [7] with more numerical accuracy and in
greater detail. He found that the load-approach curves exhibited ‘‘S-
shaped’’ inflections for values of Tabor’s parameter larger than one,
leading to snap-on and snap-off during contact. Recently, Feng [11]
demonstrated a more reliable numerical method in finding multiple
numerical solutions for the external load and displacement relation-
ship. The snap-on and snap-off procedure during adhesive contact was
described accurately. The studies of Muller et al. [7], Maugis [8], and
Greenwood [10] collectively have led to a rigorous theory based on the
self-consistent model using the Lennard-Jones force law and the half-
space elastic deformation. Guided by these results, Johnson and
Greenwood [12] constructed an adhesion map for the contact of elastic
spheres showing valid regions for various adhesion models. It now is
commonly accepted that the existing adhesion models for perfectly
smooth elastic spheres can be set in the framework of two parameters
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and one limit: the external load ratio, P, Tabor’s parameter, m, and the
limit to remain in the elastic range. The magnitude of the pull-off
force, Pc, varies from the DMT value, 2pgR, for m < 0:1 to the JKR
value, 3

2pgR, for m > 5. The seemingly contradictory models have been
shown to have a common basis using the Lennard-Jones law.

The Role of Surface Roughness

Even though adhesion is well described mathematically by a self-
consistent model that couples the intermolecular forces with elastic
deformation, the model is limited to smooth surfaces. It has long been
realized that surface roughness significantly reduces adhesion in real
contact (see Krupp [13], Sharpe [14], Tabor [6], and Johnson [15]).
Effects on large spheres were observed and measured (see Fuller and
Tabor [16]). Effects of roughness on adhesion have been observed in
atomic force microscopy measurement (see Schaefer et al. [17], Mizes
[18], Briscoe et al. [19], and Rabinovich et al. [20]) and in flow-induced
particle detachment experiments (see Reeks et al. [21] and Soltani and
Ahmadi [22]). Modeling of the effects of surface roughness is crucial in
many problems. For example, in microparticle resuspension it has
been realized that a rolling resistance model that does not consider
surface roughness underestimates the microparticle detachment rate
significantly. In order to match the experimental data, roughness
effects must be included in the adhesion model (see Ingham and Yan
[23] and Ziskind et al. [24]).

Existing adhesion models can be extended to consider rough surface
contact. Rough surfaces are modeled by superposition of spherical
asperities. Adhesive contact of a single asperity with a flat surface (or
a large sphere) is modeled by the JKR or DMT theory. The adhesion of
single asperities can be integrated to get the total adhesion force that
results from multiple asperities (see Johnson [15], Ziskind et al. [24],
Greenwood and Tripp [25] and Majumdar and Bhushan [26]). How-
ever, because of the nonlinearity of the problem, simple superposition
may not be appropriate. Real adhesive contact with rough surfaces
also involves overlapping contact areas due to neighboring asperities
and possibly multiple snap-on and snap-off events for individual
asperities. At present, it is impossible to include the effects of multiple
snap-on and snap-off for each individual asperity summit. So, models
based on single asperity contact are restricted to rough surfaces with
sparse asperities such that single asperities are separated by long
distances and do not interfere each other.

Computations in this paper are inspired by the pioneering work of
Greenwood and Tripp [25] on pure elastic contacts of rough surfaces.
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Greenwood and Tripp describe a rough surface as a series of hemi-
spherical asperities with the same radii. The heights are assumed to
follow a Gaussian distribution. Even though asperities on real sur-
faces can have any shape and any height distribution, there are rea-
sons to justify their assumptions. According to the description of
Greenwood and Williamson [27], there is a tendency for the heights to
follow a Gaussian distribution about the mean surface. Studies also
indicate that the essential behavior of elastic contact is determined
primarily by the asperity height and secondarily by the shape of the
asperities (see Greenwood [28]). By describing surface topology
through probability distribution functions, the effects of roughness on
elastic contacts can be analyzed statistically in a systematic manner.

This article presents a new method that introduces randomness to
the pressure distribution of the self-consistent model of a single con-
tact presented by Greenwood and Tripp [25] and later enhanced by
Greenwood [10]. In the new model, instead of assuming multiple
spherical asperities, the gap between a single contact of two spheres is
perturbed with a statistical distribution that is a function of the con-
tact radius. A Gaussian distribution is used in this paper, but others
are possible. According to the Greenwood-Tripp model, separation
between the mean datum planes of the contacting rough surfaces is
computed by considering the elastic deformation caused by the contact
pressure. With the statistical perturbation, an effective pressure is
calculated as the statistical average of the Lennard-Jones forces over
the random surface heights. Using collocation methods, the discrete
governing equation becomes a large system of nonlinear algebraic
equations. Then matrix-inverse-free path-following and pseudo arc-
length methods are used to find multiple numerical solutions. Finally,
both adhesive contacts of smooth and rough surfaces are simulated in
a comparative manner to elucidate the salient features of surface
roughness in the presence of molecular adhesion. The method gen-
erates detailed results on rough surface deformation and surface
pressure during the contact. Results show that surface roughness can
cause significant changes in the average properties of pull-off and in
the status of snap-on and snap-off.

DESCRIPTION OF SURFACE ROUGHNESS

The first step in the modeling of rough surface adhesion is to define the
surface roughness. It has been realized that surface complexity has a
wide range of scales in height and spatial distributions. A rough sur-
face can have a surface variation larger in size than the local contact
spots, microscopic surface irregularities the same size as the contact
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spots, and submicrometer and nanometer roughness, which has a
scale much smaller than the contact spot or local asperity curvature.
Therefore, real contact is a multiscale problem. Even if the tre-
mendous computational difficulties can be handled, at present it still is
impossible to include all scales to get meaningful conclusions.

This work considers a surface having submicrometer and nano-
meter-scale roughness. Effectively, the roughness scale is much
smaller than the typical radii of micrometer-size particles. The
roughness can be assumed to be spatially homogenous. Therefore, the
relative shape of the rough microparticle and the rough flat barrier is
described as a smooth sphere superposed with random perturbations
(Johnson [29]). The smooth sphere denotes the mean datum plane and
the random perturbations are refered to as roughness heights. Evi-
dence shows that surface roughness heights follow a Gaussian dis-
tribution about the mean surface (see Greenwood and Williamson
[27]). If the roughness height about the mean surface is s, then the
probability distribution of s is

fðsÞ ¼ 1

ss

ffiffiffiffiffiffi
2p

p e
� s2

2s2
s ; ð3Þ

where s2
s is the variance of roughness heights. Even though a Gaus-

sian distribution is assumed, a real distribution can be used easily in
the methods introduced in this paper. Using the above assumptions,
an expression for the separation between two contacting spherical
microparticles, or a microparticle and a flat barrier and its relation-
ship with the statistical average contact pressure, can be derived.

THE MATHEMATICAL THEORY

According to the half-space theory, for a given axisymmetric normal
surface traction, pðrÞ, the normal surface deflection, wðrÞ, can be
estimated by the following equation (see Johnson [29]):

wðrÞ ¼ 4

pE

Z 1

0

t

t þ r
pðtÞKðkÞdt; ð4Þ

where r is the radial coordinate. Equation (4) is derived by assuming
that surfaces are frictionless or made of similar material (the same
assumption also is used for Hertzian theory). The combined elastic
modulus, E, is defined in Equation (2). KðkÞ ¼ Fð1

2pjk2Þ is the complete
elliptic integral of the first kind, and k2 ¼ 4tr

ðtþrÞ2. In the present model,

the contacting surfaces never really touch. The Lennard-Jones force
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law is used to model the tensile stress, s, between two bodies sepa-
rated by a distance function, h (see Greenwood [10]):

sðhÞ ¼ 8g
3E

E
h

� �3
� E

h

� �9
� �

; ð5Þ

where E is the spacing (at r ¼ 0). Because h ¼ hðrÞ, the stresses are
distributed according to Equation (5). The Derjaguin approximation is
used in the current model assuming that the Lennard-Jones law can
be applied between infinitesimal areas of surfaces. Figure 1 shows the
stress-separation relationship from the Lennard-Jones law. At the
equilibrium spacing, h ¼ E, the stress between two surfaces vanishes,
so s ¼ 0. When the separation is smaller than the equilibrium spacing,
h < E, there is a repulsive stress between the two surfaces and s > 0.
When the separation is larger than the equilibrium spacing, h > E,
there is attractive stress and s < 0. The maximum attractive stress is

FIGURE 1 The stress-separation relationship according to the Lennard-
Jones law.
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16g
9
ffiffi
3

p
E

when the separation is h ¼ 3
1
6E. The separation between two infi-

nitesimal areas can never touch because p ! 1 as h ! 0.
Assume that an elastic microparticle with radius R is in contact

with the flat elastic barrier as shown in Figure 2 (R can also be a
combined radius of curvature, R ¼ R1R2

R1þR2
, between the microparticle

with radius R1 and a curved surface with radius of curvature R2).
Because roughness is homogeneously distributed spatially, the
separation, h, between two mean datum planes is axisymmetric as
expressed in the following equation:

hðrÞ ¼ �aþ Eþ r2

2R
þ wðrÞ; ð6Þ

where a is the mass center approaching distance between two micro-
particles, r2

2R is the combined surface height for a parabola with a

FIGURE 2 A microparticle in contact with a flat barrier.

936 W. Cheng et al.



combined radius R, and wðrÞ is the elastic deflection of the mean
datum plane. The expected value of the axisymmetric tensile stress,
pðrÞ, from the Lennard-Jones law, can be estimated statistically as:

pðrÞ ¼
Z 1

�1
sðhðrÞ � sÞfðsÞds

¼ 8g

3
ffiffiffiffiffiffi
2p

p
Ess

Z 1

�1

E
hðrÞ � s

� �3

� E
hðrÞ � s

� �9
" #

e
� s2

2s2
s ds: ð7Þ

The problem is to find the pressure distribution pðrÞ 
 p�ðrÞ that
satisfies Equations (4), (6), and (7). For convenience, the following
dimensionless variables are introduced:

1. Separation: H ¼ h=E� 1
2. Displacement: W ¼ w=E
3. Approaching distance: l ¼ a=E
4. Roughness height: S ¼ s=E
5. Variance of roughness height: s2

S ¼ s2
s=E

2

6. Radial coordinate: r ¼ r=
ffiffiffiffiffiffi
ER

p

Combining Equations (4), (6), and (7), the governing equation in the
dimensionless form is:

HðrÞ þ l� r2

2
� 32m3=2

3
ffiffiffiffiffiffiffiffi
2p3

p
sS

Z 1

0

t

t þ r
KðkÞ

�
Z 1

�1

1

½HðtÞ � S þ 1�9

"
� 1

½HðtÞ � S þ 1�3

#
e
� S2

2s2
S dS dt ¼ 0; ð8Þ

where m is Tabor’s parameter defined from the radius of curvature of
the mean datum plane. For two microparticles or a microparticle and a
flat barrier with the combined radius of curvature, R, the Tabor
parameter is:

m 
 Rg2

E2E3

� �1=3

: ð9Þ

The Tabor parameter is a nondimensional quantity that includes the
effects of surface energy per unit area, g, microsphere radius, R,
material elastic modulus, E, and interatomic spacing, E. As the particle
size or adhesion increases, the Tabor parameter increases. As the
elasticity or interatomic spacing increases, the Tabor parameter

Roughness Effects on Microparticle Adhesion 937



decreases. So, for example, a large flexible (soft) particle will have a
large value of the Tabor parameter and a small, hard particle will have
a small value of the Tabor parameter.

The dimensionless contact pressure is defined as:

PðrÞ ¼ 1ffiffiffiffiffiffi
2p

p
sS

Z 1

�1

1

½HðrÞ � S þ 1�9
� 1

½HðrÞ � S þ 1�3

" #
e
�S2

s2
S dS: ð10Þ

METHODS OF SOLUTION

Discretization

The effective pressure and the mean datum plane separation satisfy-
ing the elastic deflection and the Lennard-Jones law can be found
numerically. The half-infinite domain, r ¼ ½0; 1�, is approximated by a
computational domain, r ¼ ½0; rm�, with rm large enough to give suffi-
cient accuracy. The continuous physical domain for r is discretized into
a finite number of elements. Element i corresponds to the subdomain
confined between two neighboring nodes, ½ri; riþ1�. The total number of
nodes is N and the total number of elements is N � 1. To guarantee a
smooth solution for the pressure, the separation is assumed to be
linearly continuous on the nodes:

H ¼ Hi
riþ1 � r

riþ1 � ri
þ Hiþ1

r � ri

riþ1 � ri
: ð11Þ

Equation (8) can then be discretized in the computational domain. The
residuals at the discrete nodes by the collocation method are:

Gi ¼ Hi þ l� r2
i

2
� 32m3=2

3p

XN
j¼1

AijPj: ð12Þ

Pj is evaluated by the Hermite integration. In the current study the
16-abscissa formula is used to achieve sufficient accuracy (see Abra-
mowitz and Stegun [30]):

Pj ¼
1ffiffiffiffiffiffi

2p
p

sS

Z 1

�1

1

ðHj � S þ 1Þ9
� 1

ðHj � S þ 1Þ3

" #
e�S2=s2

S dS; ð13Þ

� 1ffiffiffi
p

p
X16

l¼1

wl
1

Hj �
ffiffiffi
2

p
sSxl þ 1

 !9

� 1

Hj �
ffiffiffi
2

p
sSxl þ 1

 !3
2
4

3
5: ð14Þ

The influence matrix, Aij, is a function only of the sizes of the ele-
ments, and can be calculated once for the collocation method. Special
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treatment for singular elements and the numerical method for the
elliptic integral of the first kind can be found in Feng [11]. The
quantities xl and wl (l ¼ 1;2; . . . ; 16) are the abscissas and weight
factors for Hermite integration. The physical meaning of Hi is the
separation between the mean datum planes of the two contacting
surfaces at the ith grid node. By the collocation method, the residuals
at grid nodes defined in Equation (12) are equal to zero. The
unknowns, Hi, then are determined by solving the system of N
equations, Gi ¼ 0; i ¼ 1;2; . . . ;N.

Numerical Procedure

Solutions for Equation (12) are determined by two parameters: Tabor’s
parameter, m, and the variance of the surface roughness heights, sS.
For a given set of m and sS, the separation vector, H, is a function of the
approach distance, l. Therefore, the nonlinear equation can be
rewritten as a nonlinear eigenvalue problem:

GðH; lÞ ¼ 0; G : R � RN ! RN ; ð15Þ

where H ¼ ðH1;H2; . . . ;HNÞT is the vector of unknowns and
G ¼ ðG1;G2; . . . ;GNÞT is the vector of residuals. The solution path of
Equation (15) can be found by the natural continuation method using l
as a natural continuation parameter. The initial point ðH0; l0Þ must be
found at the beginning of the procedure. Usually, the extreme solution
at a very large separation between the microparticle and the flat
barrier (l � 0) can be found easily and adopted as the initial point.
The natural continuation method repeats two steps as illustrated in
Figure 3:

� predictor step predicts a solution along the tangent of the solution
path by linear extrapolation (or Taylor expansion); and

� corrector step finds a point approximately on the solution curve
and close to the predicted point, in the current simulation, by
Newton-Raphson steps (Press et al. [31]).

Suppose that the solution at the nth step ðHn; lnÞ has been found.
The above two steps are used to find the solution ðHnþ1; lnþ1Þ at lnþ1.
In the predictor step, the tangent of the solution path at point ðHn; lnÞ
is found first from the following equation:

Gn
Hf0 ¼ �Gn

l ð16Þ

and
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_HHn ¼ af0;
_ll
n
; ð17Þ

where a is determined from the following equation to normalize
ð _HHn; _ll

nÞ:

a ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ jjf0jj

2
q : ð18Þ

If the sign of a is not properly chosen, either the iteration will be
trapped at the same point or it will reverse the direction and compute
the same path again. The sign of a must be chosen from the condition
shown in the following equation (Keller [32]):

a½ _HHT;n�1f0 þ _ll
n�1� > 0: ð19Þ

With a step size D, an initial guess for the solution at lnþ1 ¼ ln þ D can
be made from the extrapolation along the tangential direction:

FIGURE 3 Illustration of the continuation method.
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Hnþ1 ¼ Hn þ D _HH
n
: ð20Þ

In the corrector step, the Newton-Raphson method is used to find the
accurate neighboring solution:

Hnþ1 ¼ Hnþ1 þ dH; ð21Þ

where dH is the solution of the linearized equation

Gnþ1
H dH ¼ �Gnþ1; ð22Þ

where GH is the Jacobian of the residual, G, to the separation, H:

GH ¼ @G

@H
: ð23Þ

The Jacobian, GH, is evaluated using the value of H derived in the
previous iteration. The method has a quadratic convergence. The
iteration stops when the relative error, dHTdH þ ðdlÞ2, is less than a
tolerance (10�15).

In Equations (16) and (22) the inverse of the Jacobian, GH, is needed
when finding the tangent of the solution path and the correction terms
for the Newton-Raphson iteration. Therefore, natural continuation
works only for regular points at which the inverse of the Jacobian
exists. However, l involves an additional bifurcation parameter;
multiple solutions may exist at certain values of l. The points A and B
shown in Figure 3 represent two turning points. They are simple
singular points at which the Jacobian, GH, is singular. Between points
A and B, with the same value of l, multiple solutions exist for H. The
solution branch between A and B is unstable. The unstable solution
can be used to explain the snap-on and snap-off behavior in adhesive
contact. In order to find the whole solution path, including the
unstable branch, a special technique to find solutions with a singular
Jacobian is required. For a multiple solution problem such as this one,
an addition parameter must be introduced to unfold the solution path
about the turning points so that continuation methods can still be
used. One possible parameter is the arc length. For the convenience of
computation, a pseudo arc length is used instead when the value of the
arc length is small. The main idea of pseudo arc length continuation is
to drop the natural parameter, l, and use the pseudo arc length as a
new parameter to unfold the solution path. A calculated regular point
on the solution path is ðHn; lnÞ. The tangent of the solution path at this
point is ð _HHn; _llnÞ. The following equation describes a plane perpendi-
cular to the tangent ð _HHn; _llnÞ at a distance D from ðHn; lnÞ:
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QðHnþ1; lnþ1;DÞ ¼ _HHT;nðHnþ1 � HnÞ þ _ll
nðlnþ1 � lnÞ � D: ð24Þ

The plane described by Equation (24) intersects the solution path, G, if
D and the curvature of G are not large. The intersection point is the
solution for the next step. Using Newton’s method, this leads to a new
linear system:

Gn
H Gn

l

_HH
T;n _ll

n

 !
dH

dl

� �
¼ � Gn

Qn

� �
; ð25Þ

and the iterations are Hnþ1 ¼ Hn þ dH and lnþ1 ¼ ln þ dl. It is easy to

prove that at the turning points GH is singular but
�

Gn
H

Gn
l

_HHT;n _lln

�
is not

singular (see Keller [32]). Therefore, by introducing the equation for
the pseudo arc length, turning points can be passed and the whole
solution path can be found.

The natural continuation or pseudo arc length continuation steps
are chosen depending on the value of _ll. Since _ll ¼ 0 at the turning
point, it is reasonable to switch to pseudo arc-length continuation
when _ll < 0:5. Once the turning point is passed, _ll increases again and
the natural continuation is switched back.

To achieve an adequate accuracy, a large number of nodes is needed.
Therefore, Equations (22) and (23) are large systems of linear equa-
tions. It is computationally unbearable in time to find their solutions
by Gaussian elimination methods. A more efficient standard Gen-
eralized Minimum Residual (GMRES) iteration method is adopted
instead. Because the inverse of the matrix is not needed in the
GMRES method, the procedure is called a matrix inverse-free con-
tinuation method. The approach used in this paper is very efficient.
The computation time for the whole solution path is in a PC time scale.

RESULTS AND COMPARISONS

Feng [11] showed that the upper limit of the computational domain,
r1, can be set at 10 for smooth spherical contact. Results in the cur-
rent study show that this value is also adequate for rough surface
contact. To improve computational accuracy and efficiency, the nodes
are unevenly distributed over the computational domain. The total
number of evenly-distributed nodes are Ne ¼ 501. Extra nodes are
added near the regions where H and P change significantly. The total
number of nodes for most cases is N ¼ 531. Both smooth and rough
contacts are simulated in a comparative manner to elucidate the
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salient features of surface roughness in the presence of molecular
adhesion.

Results for Smooth Surfaces

The dimensionless net external load, F, is defined by the equation

F ¼ 8

3

Z r1

0

PðrÞr dr: ð26Þ

A positive value of F corresponds to compression and a negative value
of F corresponds to attraction. Figure 4 shows the computed load-
approach relationship for small Tabor parameter values (m < 1:0).
Each value of l corresponds to one external force. In other words, the
external force can be measured by the approaching distance. However,
the load-approach relationship is not monotonic and cannot be mea-
sured by the external force. In microparticle attachment, when two

FIGURE 4 The load-approach curves for m ¼ 0:01; 0:1; 0:3, and 0.5 for smooth
surfaces.
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surfaces are separated by a relatively large distance (l � 0) the net
external load is attraction. The attraction and the approach increase
when the surfaces become closer. The attraction force reaches its peak
at a certain distance, lp. The force, Fp, at l ¼ lp is defined as the pull-
off force. For very small Tabor parameter values (m < 0:1), lp is near
zero. The value of lp decreases when m increases. The pull-off force for
small Tabor parameter values is approximately equal to 1 scaled by
2pgR, which is the value from the DMT theory. An extreme case is
when m ¼ 0, for which the pull-off force and the corresponding
separation can be found directly according to Equation (8)

HðrÞ ¼ �lþ r2

2
¼ 0: ð27Þ

Substituting Equation (27) into Equations (26) and (10) gives the fol-
lowing expression for the external force as m ¼ 0 (see Feng [11]):

F ¼ 1 � 4ð1 � lÞ6

3ð1 � lÞ8
: ð28Þ

Thus, for m ¼ 0 the pull-off force is �1 at lp ¼ 0. Figure 4 shows that
when m is very small the solution on Fp and lp agrees with the
asymptotical solution for m ¼ 0. When the approach increases further,
the external force begins to increase again. At the equilibrium posi-
tion, which corresponds to the approach, le, the net external force
vanishes. The equilibrium approach distance for m ¼ 0 is le ¼ 1 � 2�1=3

from Equation (28). The equilibrium approach for m ¼ 0:01 is
approximately 0:206, which is very close to the value for m ¼ 0. When
the contacting surfaces approach each other further (l > le), the net
external force changes to compression (F > 0) and increases rapidly
because of elastic deformation and the Lennard-Jones model. The
effect of intermolecular adhesion becomes more significant when
m � 1:0.

The snap-on and snap-off process exists as discussed by Attard and
Parker [9], Greenwood [10], and recently by Feng [11]. As shown in
Figure 5 on the curve of m ¼ 1:0, there are two special points, A and B,
at la ¼ �1:74 and lb ¼ �1:63, respectively. The values of the slope at A
and B are 1 and the Jacobians at A and B are singular. Points A and B
are turning points because the stability of the solution changes around
these two points. In the interval of �1:74 � l � �1:63, three branches
of solutions for the separation, HðrÞ, and the contact pressure, PðrÞ,
exist. The branch between points A and B is unstable and the other
two branches are stable, as shown in Figure 5.
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In microparticle attachment, F decreases continuously during
approach as l increases (the two surfaces become closer). At l ¼ la

(point A), because solutions between points A and B are unstable, the
solution falls to the lower stable branch. This phenomenon is called
‘‘snap-on,’’ and point A is called the snap-on point. The theory followed
here is static; inertia does not play a role and the external force
decreases instantaneously. Figure 6 shows the profiles of separation
and surface stress just before and just after snap-on. Just before snap-
on, the whole profile of the surface stress is attraction. There is no
significant change in the profile of separation. After the instability, the
stress in the contact area reduces and the separation over the contact
region is relatively flat as shown in Figure 6. The slope of the
separation at the edge of contact changes significantly. The peak of
attraction stress moves from the center to the periphery of the contact
region. The location of the peak of the stress is the same as the location
of a significant change in the slope of the separation profile. Therefore,
the edge of contact can be located as the center of the peak of the
attractive stress, as shown in Figure 6.

In detachment, the approach decreases from the equilibrium posi-
tion (l ¼ le) to the turning point B (Figure 5) by passing the attraction
peak, P. At l ¼ lb, the solution jumps to the stable branch and the
external force increases suddenly toward zero. In Figure 7, just before
snap-off, negative attractions concentrate on the periphery of the
contact region. At point B, microparticles snap-off and contact is lost.
The peak of the surface stress relocates to the center at r ¼ 0. When
m � 1:0, at least one snap-on and one snap-off point exist as shown in
Figure 8. When m � 5:0, secondary turning points appear due to strong
intermolecular attraction. Figure 9 shows the secondary snap-on and
snap-off in detail for m � 2.

The strong intermolecular force also affects the value of the pull-off
force. Figure 8 shows that the pull-off force for m � 5:0 is near the JKR
value, 3

2pRg. JKR theory is the extreme case for large Tabor parameter
values. Figure 10 shows the profile of separation and surface stress at
the pull-off position for m ¼ 0:01 and 3:0. When the Tabor parameter
value is large (m � 1:0), the attractive stress concentrates at the edge
of the contact area. The slope of the attractive stress changes sharply
and the attractive stress decays suddenly near the edge of the contact
area. When m is very large, the solution approaches the asymptotic
solution from the JKR theory. The stress is not as concentrated and
the slope of separation does not change as rapidly at the edge of con-
tact such as for the case of m ¼ 0:01. Therefore, the JKR theory is not
accurate for small Tabor parameter values and the DMT theory is
more suitable.
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Another important feature affected by the Tabor parameter is the
equilibrium position at which the external force vanishes (F ¼ 0).
According to the computation results shown in Figure 8, the equili-
brium positions are le ¼ 2:07 and 13:44 for m ¼ 1:0 and m ¼ 7:0,
respectively. With an increase in the value of the Tabor parameter the
approach distance at the static equilibrium, le, increases significantly.
This indicates that when the Tabor parameter is large (corresponding
to a large, soft microparticle with a flat barrier), the microparticle is
highly deformed at the static equilibrium state. Figure 11 shows the
profile of separation and surface stress for m ¼ 0:01 and m ¼ 3:0 at the
equilibrium position. It clearly reveals that at the equilibrium position
the microparticle is deformed more significantly with a larger contact
radius when m ¼ 3:0. Even though in both cases the net external loads
are zero, because of a higher elasticity a small deformation corre-
sponds to a higher contact pressure. Therefore, the case of m ¼ 0:01 has
a stronger repulsive stress. The deformation of the microparticle is
more significant for larger Tabor parameter values.

The effect of the value of the Tabor parameter can be observed also
from the separation and surface stress profile at l ¼ 0. Figure 12
shows the profile of separation and tensile stress for m ¼ 0:01 and 3:0
at l ¼ 0. There is little deformation for m ¼ 0:01 but obvious defor-
mation for m ¼ 3:0. It demonstrates clearly that the change of the slope
of the attractive stress and the separation at the edge of the contact is
sharper for higher Tabor parameter values.

Effects of Surface Roughness on Microparticle Adhesion

As shown by the governing equations, the microparticle adhesion
considering surface roughness is determined not only by the value of
Tabor’s parameter but also by the variance of the roughness heights.
The effects of various Tabor’s parameter values have been demon-
strated previously for smooth surfaces. This section focuses on the
effects of surface roughness on microparticle adhesion. To understand
more easily the effect of surface roughness, we define the reduction
rate of the pull-off force, fr, as

fr ¼ 1 � Fp

Fp0
; ð29Þ

where Fp is the pull-off force for a rough surface and Fp0 is the pull-off
force for a smooth surface.

Figure 13 shows the load-approach curves for m ¼ 0:01 for Gaus-
sian surface roughness. The pull-off force for a smooth surface

952 W. Cheng et al.
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(sS ¼ 0) is Fp ¼ �1 (the DMT value). Surface roughness reduces the
pull-off force dramatically. For example, for sS ¼ 0:20, the pull-off
force is �0:64. Compared with the smooth value, the reduction rate,
fr, of the pull-off force is 36%. When sS ¼ 0:4, the pull-off force
reduces to 0:18 and the reduction rate is fr ¼ 82%. When sS ¼ 1:0,
the pull-off force is only 0:03 and the corresponding reduction rate is
fr ¼ 97%. The variance of roughness heights, sS, is scaled by the
intermolecular equilibrium spacing, E � 4 Å. Therefore, sS ¼ 1:0
corresponds to a very small distance of approximately 4 Å. In reality,
submicrometer or nanometer roughness can easily exceed this value.
As a result, the pull-off force can easily be reduced by 97% when
Tabor’s parameter value is small. Surface roughness also causes the
shift of the approach of pull-off. For a smooth surface, the pull-off
force occurs at lp ¼ 0. When small roughness is considered, e.g.,
sS ¼ 0:2, the pull-off force appears at lp ¼ �0:42. The approach dis-
tance of the pull-off force decreases with increasing roughness. For
an even higher surface roughness, e.g., sS ¼ 1:0, the net external
load reaches the pull-off value at lp ¼ �5:78. In a dimensional
measure, the approach for the pull-off force decreases about
5:78E � 23:1 Å when sS ¼ 1:0. The approach for the equilibrium
position also decreases significantly due to surface roughness. For a
smooth surface, the approach at the static equilibrium position is
le ¼ 0:21. However, when the surface roughness scale is sS ¼ 1:0, the
approach at equilibrium is le ¼ �5:71. This result indicates that the
microparticle deforms more severely if the surface is smooth because
of a stronger surface stress and a closer separation between the
microparticle and the barrier. Microparticles with rough surfaces
deform less compared with those with smooth surfaces. The results
also show that the difference between approach distances of pull-off
and equilibrium is very small both for the smooth and rough sur-
faces. In the case of sS ¼ 1:0, lp � le � 0:07, which is about 0:28 Å.

Figure 14 shows the case for a larger Tabor parameter value of
m ¼ 2:0. It clearly reveals that surface roughness also has significant
effects on contact for larger Tabor parameter values. The effects of
surface roughness on the pull-off force and the approach for pull-off
force are similar to the cases of small Tabor parameter values. The
pull-off force is significantly reduced, and the approach at which the
pull-off force occurs decreases. For a smooth surface the pull-off force
is Fp ¼ �0:79 at lp ¼ �1:66. When the surface is rough, i.e., sS ¼ 0:2,
the pull-off force reduces to Fp ¼ �0:52 with a reduction rate of 34% at
lp ¼ �1:71. When sS ¼ 0:4, the pull-off force is Fp ¼ �0:167 at
lp ¼ �2:31 and the reduction rate is 79%. For sS ¼ 1:0, the pull-off
force is �0:03 at lp ¼ �5:91 and the reduction rate is 96%.
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Figure 14 also shows some features related particularly to large
Tabor parameter values. The snap-on and snap-off are the results of
strong intermolecular attractions. Surface roughness severely reduces
intermolecular adhesion because of the large gaps formed by the
roughness heights. The scale and existence of the snap-on and snap-off
are changed by surface roughness. Figure 14 shows that the snap-on
and snap-off exist only for relatively smooth surfaces in which
0 � sS < 0:4. The range of the unstable branch, however, is shortened
by surface roughness. Snap-on and snap-off disappear when sS � 0:4.
This can be illustrated by some of the computational results. When
sS ¼ 0:0 (a smooth surface), the snap-on happens at la ¼ �2:55. The
corresponding external load is Fa ¼ �1:82. The snap-off happens at
lb ¼ �3:38 and the corresponding external load is Fb ¼ �4:54. The
range of the unstable branch is �3:38 � l � �2:55. When sS ¼ 0:2,
the snap-on point is la ¼ �2:58 and the snap-off point is lb ¼ �2:95.
The external loads are �1:80 and �3:17 for the snap-on and snap-off,
respectively. The range of the unstable branch decreases to the
interval of �2:95 � l � �2:58. In other words, the snap-on and the
snap-off points are closer. It is also observed that surface roughness
decreases the approach for snap-on and snap-off. The change of the
status of snap-on and snap-off is confirmed by the case of a higher
roughness level. For sS ¼ 0:3, la ¼ �2:61 and lb ¼ 2:63. The external
force at snap-on and snap-off is �1:79 and �2:01, respectively. The
snap-on and snap-off points are even closer because the interval for
the unstable branch is �2:63 � l � �2:61. A critical state is reached
when the snap-on and snap-off points are the same. The variance of
roughness height that leads to this critical state can be found through
refined simulations by changing the value of sS in very fine steps.
When sS ¼ 0:4, no snap-on and snap-off points are found. The load-
approach curves in Figure 14 also demonstrate the shift of the equi-
librium approach due to surface roughness when the value of Tabor’s
parameter is large. The equilibrium approach values are le ¼ 4:00;
2:59; �0:364; and � 5:28 for sS ¼ 0; 0:2; 0:4, and 1:0, respectively. It is
clear that the equilibrium approach decreases significantly as the
variance of roughness heights increases.

The effects of roughness can be understood further by analyzing the
mean separation and effective stress profiles of the microparticle
associated with the pull-off, the snap-on, and snap-off, and the static
equilibrium states. Figure 15 shows the separation and surface stress
profiles at pull-off for m ¼ 2:0 with different variances of roughness
heights. For relatively smooth surfaces (sS � 0:4), the microparticle
deforms mainly over the local region near r ¼ 0. The outer region
is affected less. Because of the strong surface stress and elastic
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deformation, the separation profile over the deformed region is rela-
tively flat. The surface stress decays in the outside region because of
the large separation between the microparticle and the barrier.
Therefore, the separation over the less affected region still follows
the shape of the microparticle. For a high roughness case,
e.g., sS ¼ 1:0, the microparticle is basically undeformed at pull-off.
The contact region is extremely small. The deformed region shrinks
as surface roughness increases. The scope of the deformed region
is within r � 3:0; 2:5; 2:0, and 0:5 for sS ¼ 0:0; 0:2; 0:4, and 1:0,
respectively.

The scale of the deformation of the microparticle at pull-off also
reduces severely as surface roughness increases. This can be shown by
the increase of the separation at r ¼ 0. For all cases, the smallest
separation occurs at r ¼ 0. It is the closest point between the micro-
particle and the barrier in an average manner. Figure 15 shows that
the mean separations at r ¼ 0 are �0:009; 0:419; 1:760, and 5:902 for
sS ¼ 0; 0:2; 0:4, and 1:0, respectively. The increase of the mean

FIGURE 15 Mean profiles of separation and surface stress at pull-off for
m ¼ 2:0 with sS ¼ 0:0; 0:2; 0:4; and 1.0.
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separation at r ¼ 0 is evident as the surface roughness increases. The
gap at the pull-off position between the mean datum plane of the
microparticle and the barrier is larger if the surface is rough.

As separation changes, surface stress at pull-off changes accord-
ingly. Figure 15 also shows that the approximate compression regions
are within r � 1:19; 0:99; 0:52, and 0:0 for sS ¼ 0:0; 0:2; 0:4, and 1:0,
respectively. The compression region is reduced as surface roughness
increases. When the variance of roughness is relatively large, e.g.,
sS ¼ 1:0, there is no compression region. A very small attractive stress
distributes over the whole surface and the microparticle is barely
deformed. As the compression region shrinks, the peak of the repulsive
pressure also decreases. When sS ¼ 1:0, there is no repulsive stress
and the peak of the repulsive stress is 0:0554; 0:0466, and 0:0250 for
sS ¼ 0:0; 0:2, and 0:4, respectively. For a smooth surface, a positive
separation corresponds to an attractive surface stress according to the
Lennard-Jones law. However, for a rough surface, a positive separa-
tion of the mean datum plane still corresponds to a repulsive stress
because of averaging over roughness heights. For sS ¼ 0:2 and 0:4, the
mean separation at r ¼ 0 is positive but the corresponding effective
surface stress is repulsive. Because of surface roughness, the dis-
tribution of the attractive stress is no longer concentrated on the edge
of the contact area. The peak and the slope of the attractive stress
decrease dramatically. The peaks of the attractive stress are �0:3837,
�0:2582; �0:0493; and �0:0035, located at r ¼ 2:0233; 1:6337;
0:8120; and 0:3860 for sS ¼ 0:0; 0:2; 0:4; and 1:0, respectively. The
distribution of the attractive stress is smoothed and the attractive
region is enlarged, while the magnitude of the attractive stress is very
small. For sS ¼ 1:0, the attractive stress does not exceed �0:0035 over
the entire contact region.

The mean separation and effective surface stress at the equilibrium
position for m ¼ 2:0 are illustrated in Figure 16. The separations
between the mean datum planes at the equilibrium position increase as
the surface roughness increases. The lowest separation between the
mean datum planes at r ¼ 0 are �0:0270; 0:4154; 1:7512; and 5:7412
for sS ¼ 0:0; 0:2; 0:4; and 1:0, respectively. At equilibrium for all values
of sS, the microparticle deforms significantly at the region around
r ¼ 0. Consequently, the separation over the deformed region is flat-
tened. The flattened region shrinks as sS increases. The ranges of the
flattened region are r � 3:39; 2:81; 1:69; and 0:95 for sS ¼ 0:0; 0:2;
0:4; and 1:0, respectively. The effective attraction and its slope reach a
peak value at the edge of the flattened region. The peak of attraction
reduces significantly as sS increases. The peak of attraction is
�0:3223, �0:2583, �0:0493, and �0:0035 for sS ¼ 0:0; 0:2; 0:4; and 1:0,
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respectively. At the equilibrium position, the repulsion and attraction
are balanced so that the net external force vanishes. When sS is large,
the intensity of the attraction is extremely small. To balance the
repulsion the attraction region has to be significantly large. When
sS � 1:0 the magnitude of the attractive stress is negligible. This stress
distribution does not agree with either the DMT or the JKR theory; a
Hertzian distribution may be more appropriate.

Figure 17 shows the reduction rates of the pull-off force, fr, as a
function of the variance of roughness heights, sS, for different Tabor
parameters. It is clear that fr is quite sensitive to sS. The difference of
reduction rate for different Tabor parameter values is very small.
When sS � 1:0, no significant difference in reduction rate is observed
as the Tabor parameter value changes. The variance of roughness
heights, sS, becomes the dominant factor for the reduction rate. There
are two regions in the curve. The slope in the interval of 0 � sS � 0:4
is relatively steeper than that of s > 0:4. This can be explained by

FIGURE 16 Mean profiles of separation and surface stress at equilibrium for
m ¼ 2:0 with sS ¼ 0:0; 0:2; 0:4; and 1.0.
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the profile of separation shown in Figure 15. When sS > 0:4, the mean
datum plane of the microparticle is barely deformed at pull-off. The
major interaction between the microparticle and the flat barrier is
attraction. According to the Lennard-Jones law, the attraction decays
very slowly at large separation. Therefore, a change in the reduction
rate is less because of the slow decay rate of attraction for large
separations. Results also show that surface roughness has a sig-
nificant effect on the pull-off force. Even with a very small variance of
roughness height, the pull-off force reduces dramatically. The pull-off
force reduces about 50% at sS ¼ 0:24 (ss ¼ 0:24E). For both small and
large Tabor parameter values, the reduction rate can easily achieve
95% when sS � 1:0 (ss � E). At sS ¼ 1:2, the reduction rate reaches
a value of 97%. Further reduction is difficult to achieve with
submicrometer-level surface roughness. A larger scale of surface
irregularity as discussed previously is needed. Figure 18 shows the
pull-off force as a function of the Tabor parameter value for different

FIGURE 17 Reduction rates of the mean pull-off force, fr, as a function of the
variance of roughness heights, sS, for different Tabor parameter values.
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values of sS. For sS ¼ 0:0, because the same numerical method and
theory are used, the results are the same as those of Greenwood [10]
and Feng [11]. It reveals a smooth transition from the DMT theory
(Fp ¼ 2pRg) to the JKR theory (Fp ¼ 3

2 pRg). The pull-off force decrea-
ses at almost the same rate as shown in Figure 17 when sS increases.
Figure 18 can be used as a map to find the reduced pull-off force for
different Tabor parameter values and different surface roughnesses.

Finally, it must be mentioned that the results presented in this paper
are based upon statistical averaging over the Gaussian distribution
of the roughness height shown in Equation (10). The solution for a
specific rough surface is more complicated. Individual asperities cause
multiple contacts and, therefore, multiple snap-off, snap-on, and pull-
off. The smooth load-approach curve and profiles for separation and
surface stress become irregular. The statistical averaging method used
in this paper can give more systematic results, which demonstrate the
effects that surface roughness has on mean adhesive contact behavior.

CONCLUSIONS

This paper presents a method for investigation of effects of roughness
on adhesion for a microparticle in contact with a nominally flat surface
over a circular area. The statistical mean load-approach curves, the
profiles of the mean separation, and the effective surface stress are
computed for a Gaussian gap perturbation. It is found that surface
roughness dramatically changes the status of snap-on and snap-off.
When the variance of roughness heights is relatively large, snap-on
and snap-off can disappear. The separation and stress distributions for
very rough surfaces are similar to those predicted by Hertzian theory.
Results also reveal that surface roughness significantly reduces the
pull-off force. When the surface roughness is large, the variance of
roughness heights is the dominant factor in the reduction of the pull-
off force. With even a very small variance of roughness height the pull-
off force reduces dramatically. Further reduction is difficult to achieve
with submicrometer-level surface roughness, implying that a larger
scale of surface irregularity may be needed to achieve this. The sta-
tistical distribution used in this work was Gaussian (normal); a log-
normal distribution may be more realistic. In addition, the statistical
variations added to the contact gap were introduced as a small per-
turbation, and it is not known if the results for large values of the
standard deviation are realistic. Although the trends between adhe-
sion force and roughness found in this paper agree with existing
measurements, comparisons with experimental measurements for
surfaces with controlled random roughness should be carried out.
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