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A Mathematical Model of the Impact and 
Adhesion of Microspheres 
Raymond M. Brach and Patrick F. Dunn 
Department of Aerospace and Mechanical Engineering, University of Notre Dame, 
Notre Dame, IN 46556 

A model is presented for the low velocity planar im- 
pact of a micrometer-sized sphere (microsphere) having 
an arbitrary angle of approach to a surface in the 
presence of arbitrary contact and external forces. This 
model, based upon classical impact dynamics and 
Hertzian theories, analytically relates the velocity 
change of the microsphere to the physical parameters 
of the microsphere and the surface and to the micro- 
sphere-surface adhesion forces. The model is based 
upon two fundamental assumptions, namely, that the 
energy losses due to the process of material deforma- 
tion and the process of adhesion are independent, and 
that the energy loss due to the adhesion process occurs 

only during the rebound phase of the impact. No 
assumptions are made about the nature of inelastic 
deformations in the formulation of the model, permit- 
ting it to apply equally well to viscoelastic, elastic-plas- 
tic, or other materials or combinations thereof. The 
utility and accuracy of the model is assessed by com- 
paring its predictions to experimental results. The 
model and the experimental data are used further to 
explore the relationship between the work done by the 
adhesion fracture force during rebound and the theo- 
retical energy associated with the van der Waals adhe- 
sion force. The ability of the model to predict critical 
velocities is illustrated and discussed also. 

INTRODUCTION 

The impact of micrometer-sized particles 
with surfaces occurs in a variety of situa- 
tions. These include the confined flow, 
filtration, surface contamination, spray 
coating, resuspension, and dispersion of 
particles. Modeling of the process of 
particle-surface impact is complicated, pri- 
marily because it is dynamic and nonlinear. 
During impact, a short-duration mechanical 
contact is established, generating a variety 
of forces. For micrometer-sized particles, 
geometric surface and particle irregularities 
and molecular-level forces can be signifi- 
cant. In some instances, the particles may 
have a significant electrical charge, which 
introduces additional forces into the prob- 
lem. All of these can occur while the parti- 
cle remains within the influence of a flow 
field above the surface. 

In this article, a model of the low veloc- 
ity impact of a micrometer-sized sphere 
(microsphere) against a surface in the pres- 

ence of arbitrary contact and noncontact 
(external) forces is described. The model is 
developed by combining concepts of contact 
surface adhesion energy, Hertzian mechan- 
ics of elastic spheres, and classical impact 
theory. Its utility is demonstrated using the 
microsphere-surface impact data of Wall et 
al. (1990). The model is considerably more 
general than previous ones in that it takes 
into account not only normal but also trans- 
verse velocity changes as well as the effects 
of rolling in the presence of adhesion. It is 
capable of handling any form of material 
stress-strain relationship and any type of 
energy dissipation mechanism. 

PREVIOUS RESEARCH 

When spherical particles of most engineer- 
ing materials with diameters well above 100 
pm collide with each other or with a surface 
at very low velocities, the collisions are 
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52 R. M. Brach and P. F. Dunn 

almost perfectly elastic and the ratio of the 
final normal velocity to the initial normal 
velocity tends to approach a value near unity. 
As the initial velocity is increased, the ratio, 
often called the coefficient of restitution, 
decreases usually monotonically and often 
significantly. When the particle diameters 
are in the range of 1 pm- 100 pm and with 
relatively high initial velocities, the rebound 
velocities typically follow the same trend 
[Wall et al. (l99O)I. But, as the initial veloc- 
ities become smaller (below - 10 m/s), the 
rebound velocities drop off considerably, 
as shown in Figure 1 from the results of 
Dahneke (1975) for spherical particles of 
1.27 pm diameter. For these microspheres, 
forces such as electrostatic and van der 
Waals exert an influence which plays a 
significant role in reducing the rebound 
velocity. 

The adhesion force often is quantified 
through the use of an adhesion energy which 
is distributed over the contact surface of the 
two contacting bodies. Johnson, Kendall, 
and Roberts (JKR) (1971) define a surface 
energy due to adhesion equal to yna2 ,  
hereby denoted as E,,, where a is the 
radius of the circular sphere-surface contact 

FIGURE 1. Ratios of final-to-initial normal veloc- 
ities (V,. / I/;) from impacts of microspheres (1.27 
pm diameter) against a flat surface [data of 
Dahneke (1975) with permission of Academic Press, 
copyright 19751. 

area and y is the surface energy adhesion 
parameter, i.e., an energy per unit contact 
area, which depends upon the bodies' mate- 
rials and the interface properties. For given 
materials and particles, y is considered to 
be a constant, at least for static contact. 
Bowling (1988), among others, discusses the 
variety of forces such as the van der Waals 
force that contribute to adhesion and, hence, 
to y. Much of the basic work in the area of 
contact adhesion is done from the view of 
static or a very slowly developing interface. 
Roberts and Thomas (1975), for example, 
measure the contact force developed over a 
smooth rubber and glass interface which is 
established over periods of hours to days. In 
this context, the adhesion force is an "at- 
tractive" one in that an attraction takes place 
between the two surfaces of the interface 
and the adhesion "grows." Even when ad- 
hesion is viewed as a static equilibrium 
problem, forces are treated as attractive in 
nature over small separation distances of the 
order of molecular dimensions. Being a 
function of the separation distance, the van 
der Waals force is conservative. To account 
for inevitable energy losses, the view is 
often taken that after contact is established 
all of the adhesion energy required to sepa- 
rate a particle from a surface is lost in the 
separation process. Consequently, some re- 
searchers associate the van der Waals force 
solely with the process of separation. Among 
others, this view has been proposed by 
Billings and Wilder (1970), Clift (1985), 
and Hinds (1982). 

The mechanism by which adhesion en- 
ergy is lost can be illustrated by considering 
an ideal mass-spring system in which the 
spring is connected between the mass and a 
massless platform. Impact is initiated when 
the platform contacts a rigid, sticky surface. 
Following platform contact, the mass will 
compress the spring due to its initial kinetic 
energy. This will be followed by a rebound 
with all of the kinetic energy restored when 
the mass returns to the position it had at the 
time of initial contact. At this point the 
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Impact and Adhesion of Microspheres 

platform itself, however, will not leave the 
surface. Because of the platform's adhesion, 
the spring will begin to stretch and develop 
a tensile force. If the strength of the adhe- 
sion bond is high, the platform will remain 
attached and the mass will continue to oscil- 
late (eventually dying out in a real applica- 
tion). With a lower strength, however, the 
adhesion bond will fracture as the tensile 
spring force builds up, at which time the 
mass and spring leave the surface with a 
velocity less than v, and a corresponding- 
ly lower kinetic energy. This can be com- 
pared to the "snap instability" reported by 
Johnson (1976). The energy loss depends 
upon the adhesion strength and the strain 
energy in the spring when the adhesion frac- 
ture occurs. 

A similar mechanism is attributed to the 
case of microsphere impact with a flat sur- 
face. An adhesion bond is established during 
the approach phase of the impact and is 
fractured during rebound. An essential dif- 
ference is that in the case of microsphere 
impact, the fracture process is continuous. 
During rebound the circular contact area is 
typically composed of an inner region of 
compressive stresses and an outer annulus of 
tensile adhesion stresses. A tensile adhesion 
force, FA (to be discussed later) equal to 
2 aaf,, develops, where a is the radius of 
the contact circle. As the mass center moves 
away from the surface, the annulus shrinks 
and the adhesion bond progressively frac- 
tures (a process usually referred to as "peel- 
ing"). The work done, WA, by this adhe- 
sion fracture force is part of the energy that 
is dissipated during rebound. Vibrations and 
inelastic strains in the microsphere and sur- 
face account for the remainder of the energy 
loss. 

The above effects are taken into account 
from the point of view of classical impact 
theory, which treats an impact as a "rapid 
static event," ignoring vibrational motion. 
From an energy balance perspective, the 
initial kinetic energy of the particle, in addi- 
tion to whatever kinetic energy is gained as 

a result of the attractive (adhesion) forces, is 
available for rebound or dissipation. The 
energy associated with the rapid deformation 
of the particle and surface can be dissipated 
in a variety of ways, depending on the mate- 
rials and deformation rates. The most widely 
encountered energy dissipative mechanisms 
are hysteresis, viscoelasticity, and plastic 
deformation. These types of energy losses 
occur during both the approach and rebound 
phases of impact. An assumption is made 
herein that the energy loss associated with 
material deformation does not interact sig- 
nificantly with the establishment and loss of 
adhesion energy. Consequently, these effects 
are treated independently with the adhesion 
energy loss occurring only during the re- 
bound phase of the impact. 

Many different analytical and experimen- 
tal approaches have been used to examine 
and model the impact of particles with sur- 
faces. For example, Dahneke (1971) and 
Loeffler (1973) report on measurements and 
classification of the probability of capture. 
They also use the conservation of energy 
along with a coefficient of restitution to de- 
velop an expression for the initial normal 
particle velocity below which rebound does 
not occur, a velocity which typically is re- 
ferred to as the critical or capture velocity. 
Another approach is to adapt theories of 
continuum mechanics to the problem of par- 
ticle-surface interaction. The most common 
is to use the static elastic theory of com- 
pressed spheres of Hertz [see Timoshenko 
and Goodier (1951)l to provide a mathemat- 
ical model with a compatible stress distribu- 
tion in the contact region. The correspond- 
ing forces and displacements are used in a 
quasi-dynamic fashion to model the impact 
process. Recent activity in this area centers 
around the analytical and experimental work 
of a number of researchers. They use energy 
conservation principles of the kinetic and 
potential energies during impact and the 
work done by various significant forces. 
Johnson et al. (1971) have developed a model 
for the stresses induced by a static adhesion 
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force. Johnson (1976) treats the viscoelastic 
problem. Rogers and Reed (1984) and Fich- 
man and Pnueli (1985) have combined the 
Hertzian theory and the JKR theory for im- 
pact of elastic-plastic materials. Details of 
these models are discussed in Reed (1986) 
and Fichman and Pnueli (1986). Wall et al. 
(1989) report experiments in which ammo- 
nium fluorescein microspheres impacted var- 
ious target materials and present a summary 
of how their experimental results agree with 
the energy balance equations and the 
elastic-plastic Hertzian theories. Through the 
introduction of stain rate effects, they show 
quite good agreement with the Rogers and 
Reed theory but claim that the adhesion 
force parameters are not yet realistic. 

A fresh approach to the impact process is 
taken in this article that stems from recent 
work of Brach (1991a, b) on the classical 
impact problem. A departure from previous 
researchers is to associate the coefficient of 
restitution with the mechanical energy lost 
in the normal deformation of the sphere and 
surface, exclusive of the adhesion energy. A 
new feature is the introduction of the effects 
of tangential and rotational motions of the 
microsphere. This permits accounting for 
the energy lost due to transverse forces such 
as friction. The equations are also developed 
to include the effects of adhesion for rolling 
during impact such as observed by Roberts 
and Thomas (1975) in static experiments. As 
done by many others, the classical Hertzian 
model of the forces, stresses and deforma- 
tion of an elastic sphere is used. Transverse 
elastic deformation of spheres was analyzed 
by Mindlin and Deresiewicz (1953) and has 
been observed in discs during impact by 
Maw et al. (1977). These effects can be 
included in the impact equations as shown 
by Brach (1991b) but are not herein. 

A considerable amount of effort of recent 
researchers has been concentrated on devel- 
oping an impact theory for spheres made of 
elastic-plastic materials. The equations in 
this article apply to these materials but are 
not restricted to them. The point of view is 
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taken that other classes of materials such as 
viscoelastic (polymers and elastomers) and 
brittle (fly ash) are equally important and a 
more general theory is sought. In addition, 
the elastic-plastic theories that have devel- 
oped include a ring of infinite tensile stresses 
on the outer edge of the contact circle during 
both approach and rebound, even for very 
low velocities. The plastic deformation cor- 
responding to these large stresses apparently 
never has been observed experimentally, 
opening the possibility that this model may 
be somewhat unrealistic. Furthermore, ac- 
cording to Timoshenko and Goodier (195 I), 
compressive plastic deformation in ductile 
spheres takes place, at least initially, be- 
neath the surface, and at very low velocities 
can cause residual stresses but is not likely 
to produce significant changes in spherical 
shape. For this reason, permanent deforma- 
tion per se does not play a role in the 
following model, although any correspond- 
ing energy loss is considered. 

IMPACT MODEL 

Classical Impact Theory 

In the absence of transverse spin (roll spin) 
or spin about the vertical axis (yaw spin) the 
impact of a sphere with a surface can be 
viewed as a planar mechanics problem. Some 
of the pertinent assumptions for this problem 
are as follows: 

The particle need only be nearly spheri- 
cal provided it has a spherical shape in 
the contact region and its mass center 
lies on or very near the perpendicular 
from the contact surface. 
The particle retains its original shape 
following impact. 
At lower initial velocities (when cap- 
ture is likely) the energy loss associated 
with material deformation is small but 
not necessarily negligible. 
Adhesive losses are significant only 
during the rebound phase of the impact 
and correspond to a fracture of the 
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Impact and Adhesion of Microspheres 55 

adhesion bond at the periphery of the 
receding contact surface. 
The processes of adhesion energy loss 
and deformation energy loss are inde- 
pendent. 

Figure 2 shows a sphere of radius r, a 
normal and tangential n - t coordinate sys- 
tem and the impulse components of the 
forces felt by the sphere and which are 
distributed over the contact surface and con- 
tact duration. Throughout this article, upper- 
case V's refer to final velocities at the end 
of a time interval, and lower-case u's refer 
to initial velocities at the beginning of a time 
interval. The approach phase of the impact 
is from the time of initiation of the contact, 
r l ,  to the time 5, at which the mass center 
of the deformed sphere comes to rest. The 
rebound phase is from 5 to the time 7, 

when contact ends. For the approach phase 
in the normal direction, Newton's laws in 
impulse and momentum form give 

forces of deformation of the sphere and 
surface, and P/ is the approach-phase im- 
pulse of any significant external forces (such 
as those resulting from electrostatic attrac- 
tion or repulsion). For the rebound phase, 
the corresponding expression is 

where V, is the final rebound velocity at 7, 

and PA is the impulse of the adhesion frac- 
ture force. For the entire contact duration, 

where P, is the resultant normal impulse. In 
the tangential direction for the entire contact 
duration, 

m ( v t -  u t )  = P t ,  (4) 

where Pt is the resultant tangential impulse. 
Over the full duration, for rotational motion, 
the change in angular momentum must equal 
the impulse moments; that is, 

where I is the particle's inertia, w its angu- 
lar (rotational) velocity before impact and Q 
after, r is its radius, and M is the impulse 
of the surface moment. 

In Brach (1991b), different forms for the 
coefficient of restitution, R ,  are discussed. 
A kinematic definition is used here where R 
is defined as 

Here, rn is the mass of the particle, u, is the 
initial normal velocity ( u ,  < 0), P/ is the 
approach-phase impulse corresponding to the 

Two other coefficients are defined. The first 
is the impulse ratio p ,  where 

1 Pn 
FIGURE 2. Diagram of a sphere in contact with a 
flat surface showing impulse components, velocity 
components, and the normal and tangential coordi- 
nate system. 

Note that p generally is not a coefficient of 
friction; it is a ratio of impulses, not a ratio 
of forces. In some special cases (such as for 
sliding throughout the entire contact dura- 
tion), p can be equal to the coefficient of 
friction. For further clarification, see Brach 
(1991a). A third coefficient, the moment 
coefficient, em is defined as 

e m M / I =  (1 + em)Q.  @I 
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56 R. M. Brach and P.  F. Dunn 

Note that em has an analogous purpose for 
angular motion as the coefficient of restitu- 
tion R for motion normal to the contact 
surface. From Eq. 8, it is clear that for 
em = 0, 8 = 0, which represents a totally 
inelastic rotational impact. For em = - 1, 
however, M = 0 and is the case where no 
rotational effects due to the contact force 
exist. The coefficient em is bounded by - 1 
r em r 1 and can be used to simulate adhe- 
sion energy loss in a sphere that rolls during 
impact, such as was observed for nonimpact 
adhesion by Roberts and Thomas (1975). 

Equations 1-8 represent a complete set of 
system equations for the planar impact prob- 
lem. If the initial velocities, coefficients, and 
external impulses are assumed known, the 
unknowns are V,, Vt, 8, p i ,  P:, P,, P t ,  
and M. All of the solution equations for 
these unknowns could be written here, but 
only those needed will be introduced. At this 
point attention is turned to the impulse, PA, 
of the adhesion force. The work done by an 
impulse is equal to its product with the 
average velocity along its direction of appli- 
cation. For the work of the resultant normal 
impulse, P, , this gives 

wn = Pn(v ,  + vn)/2. (9) 
The final normal velocity is found using 
Eqs. 1, 2, and 6; this gives 

v,= -Run-  P A / m  

- (p i  - R P / ) / ~ .  ( lo) 

Although they are easily carried through the 
full analysis, at this point the arbitrary, ex- 
ternal impulses P; and P/ are assumed to 
be zero. Substitution of Vn from Eq. 10 into 
Eq. 9 yields an expression for PA in terms 
of the energy lost through deformation, (1 - 
~' ) rnv;  12, and the work done, WA, in 
overcoming the adhesion energy (note that 
WA < 0). This is 

At this point the unknown final velocities 
can be expressed in terms of the initial 
velocities, the coefficients, and the work of 
adhesion. For example, 

and 

The impulse components P, and Pt can be 
found by using these expressions for the 
final velocities and Eqs. 3 and 4. 

The choice of appropriate values of the 
coefficients R ,  em, and p needs some dis- 
cussion. Because R is defined as the restitu- 
tion coefficient in the absence of adhesion 
(and electrostatic) effects (when the ap- 
proach and rebound components of PA and 
P, are negligible compared to the corre- 
sponding PD components), its behavior is 
expected to follow usual trends of decreas- 
ing with increasing v,. In the following, this 
is approximated by 

where the appropriate values of constants k 
and p can be found from experimental data. 
Of course, other appropriate expressions 
could be used in place of Eq. 15; for very 
low initial velocities, a constant value such 
as R = 1 could be used. The equations for 
the relationship R(v,) do not have to be 
experimental ones, but they can be theoreti- 
cal. For example, Wall et al. (1989) discuss 
the elastic-plastic model of Rogers and Reed 
(1984) and indicate that it provides good 
results if modified to take into account plas- 
tic strain rate effects. Based on this model, 
R = [ l  - Kp / K ~ ] ' / ~ ,  where Ki  is the initial 
kinetic energy and Kp the energy lost due 
to plastic deformation, with Kp depending 
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Impact and Adhesion of Microspheres 57 

on the yield strength, initial kinetic energy, 
elastic constants, etc. Another example by 
Brach (1991a) shows that viscous damping 
can be modeled (if appropriate) using R = 
exp[ - n [/(I - [2)112], where is the 
damping ratio encountered in linear vibra- 
tion theory. Such analytical expressions for 
R can be used as alternatives for Eq. 15, 
which illustrates an important feature of the 
mathematical model presented herein, name- 
ly, its generality. 

Little or no theoretical information or 
experimental data is available from the liter- 
ature on the impact of microspheres that can 
provide information for the moment coeffi- 
cient e,. This phenomenon is relegated to 
future research, and at this point a value of 
- 1 is used which corresponds to the as- 
sumption that the moment impulse M = 0. 
To simplify the model further, the rotational 
energy of the pertinent range of particle 
sizes is assumed to be insignificant and a 
point mass impact model is developed (which 
implies that rotational velocities are all zero). 

Finally, appropriate values of the impulse 
ratio p must be determined. Most intended 
applications are for low velocity impacts 
(including small spin velocities). In particu- 
lar, a primary interest here lies in those 
conditions where the particle attaches itself 
to the surface. In this case it is reasonable to 
assume that friction or any other tangential 
force (such as indentation for a hard particle 
and soft surface) is sufficiently large to cause 
the particle's tangential contact velocity to 
become zero during the impact. From Eq. 
13, zero final tangential velocity for a parti- 
cle requires that the impulse ratio be 

where 7 = u, / vn = 1 /tan a (see Figure 2). 
Note that for a normal impact, v, = 0, 

pO= 0, and by Eq. 7, P,=O. That is, no 
tangential impulse is possible in this case. If, 
as discussed by Brach (1991a), in the pres- 
ence of low values of friction, the final 

tangential velocity is not zero, then p in Eq. 
13 is replaced by the value of the coefficient 
of friction. 

Another important equation expresses the 
lunetic energy loss of the microsphere that 
results from impact. The energy loss TL is 
found simply by subtracting the final kinetic 
energy of the particle from its initial. This 
gives 

For the special case of normal impact this 
yields 

which implies that the work of adhesion can 
be determined using Eq. 15 (or a suitable 
alternative), directly from the measurements 
of vn and Vn. 

Hertzian Theory 

As reasoned by Brach and Dunn (1991) and 
discussed above, the adhesion bond estab- 
lished during the approach phase is over- 
come or fractured during the rebound phase 
through a force distributed over the periph- 
ery of the receding circular contact area. An 
idealized line force is chosen such that when 
the radius of the contact area is a, the force 
is FA = 2 n afo , where fo is the circumfer- 
ential ' 'tension" of the adhesion fracture 
force with units of N l m .  Up to this point 
no assumptions have been made about the 
nature of the microsphere or surface mate- 
rial. From here on, it is assumed only that 
Herzian theory can be used to approximate 
its deformation. The Hertzian equations of 
the elastic behavior of a sphere in contact 
with an elastic surface as presented by 
Timoshenko and Goodier (1951) are now 
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58 R. M. Brach and P. F. Dunn 

used to determine the work, WA, corre- 
sponding to the fracture of the adhesion 
bond. 

The work done by FA during rebound is 

W, = -47r foaL/3r  

= -2a2 ,~ , /3 r ,  (19) 

where a, is the maximum contact area ra- 
dius. From Hertzian theory the maximum 
contact area radius is 

where k i  = (1 - v?)/ xE, and v, and Ei are 
Poisson's ratio and Young's modulus for the 
particle and surface materials. Now, if the 
work of the adhesion force is set equal to the 
JKR surface adhesion energy, E,, , then, 
using Eq. 19 and the definition of FA, the 
surface energy adhesion parameter becomes 

y = 2FA /3xr .  P I )  

This consequently yields 

( k ,  + k2)]2'5yr21 v,14", (22) 

where p is the particle's material density. 
Equation 22 can be used to eliminate WA 
from previous equations to determine the 
particle's rebound velocities, the energy loss, 
and the critical velocity in the presence of an 
adhesion force, coefficient of restitution, and 
tangential effects as characterized by the re- 
spective parameters y, R ,  and p. Further- 
more, using Eqs. 15, 18, and 22, the surface 
adhesion energy parameter y can be found 
directly for the case of normal impact exper- 
iments in which v, and V, are measured. 

of the features of the model. In their experi- 
ments, ammonium fluorescein (NH , F1) mi- 
crospheres of 2.58 pm, 3.44 pm, 4.90 pm, 
and 6.89 pm diameter impacted normally 
against smooth, flat surfaces made of molyb- 
denum, silicon, mica, and Tedlar (poly- 
vinyl-fluoride) over an initial velocity range 
of approximately 3-120 m/s. The data cor- 
responding to 4.90 pm diameter spheres and 
the molybdenum target are the most numer- 
ous and are used for illustration. The values 
of the material properties and impact param- 
eters for one case in this data set are pre- 
sented in Table 1 for illustrative purposes. 

For the data, which include three target 
surfaces (mica, molybdenum, and silicon), 
the least squares fit of Eq. 15 produces the 
equation 

R = 45.3/(45.3 + / u,/0718) (23) 

with a correlation coefficient value of 0.969 
for 19 samples, which corresponds to a 
99.9% probability of fit (Taylor 1982). This 
can be used in the above equations to pro- 
vide a means of predicting the final rebound 
velocities. For the 4.90 pm diameter micro- 
spheres and a molybdenum target, Figure 3 
shows the predicted and experimental final- 
to-initial normal velocity ratios over the 
range of experimental initial normal veloci- 
ties, with obvious good agreement between 
the two. 

Based on the low velocity data, i.e., less 
than 10 m/s, Brach and Dunn (1991) have 
already shown that the surface energy adhe- 
sion parameter y appears to be dependent 
on the initial normal velocity. This can be 
examined further by comparing the y's for 
all target materials and particle diameters in 
this velocity range, as shown in Figure 4. 
The data are described best by the simple 
relation 
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y=O.341vnI , 

The Surface Adhesion Energy 
(24) 

which is the solid line plotted in Figure 4. 
The data for normal impacts acquired by The quantity y usually is considered to be a 
Wall et al. (1989) for ammonium fluorescein constant. The experimental data as reflected 
microspheres are used here to illustrate some in Eq. 24 show otherwise. The significance 
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Impact and Adhesion of Microspheres 

TABLE I. Impact of an Ammonium Fluorescein Sphere against a Molybdenum Surface 

Ammonium fluorescein sphere 
p ,  density 

E, Young's modulus 
u ,  Poisson's ratio 

n , index of refraction 
t ,  dielectric constant 

d ,  diameter 
m, mass 

Molybdenum surface 
E, Young's modulus 

u ,  Poisson's ratio 
n, index of refraction 
t ,  dielectric constant 

z0 , intermolecular distance 
h ,  Lifschitz-van der 

Waals constant 

Impact mechanics 
v,, initial velocity 
V,, final velocity 

V, / v,, velocity ratio2 
or,, elastic displacement' 

a,, contact radius' 
Hertzian contact force (max)' 

FA, adhesive force   ma^)'.^ 
7, contact duration' 

R , coefficient of r e s t i t u t i ~ n ~ , ~  
q, initial kinetic energy 
Tf. final kinetic energy 

( l - ~ ' ) m  u i  12, deformation energy 2.3 

W,, work of adhesion f r a ~ t u r e ' . ~  
Eh , van der Waals energy (max)'.j 

' Hertzian Theory 
:Experimental 
'Theoretical 

of this is unknown at present and could 
reflect a defect in the model or an incorrect 
view of y with respect to the process of 
adhesion. This topic is not pursued here. 

Critical Velocity 

The critical velocity is the initial velocity 
for which V; + V: = 0. It is conveniently 

Initial Velocity (mls)  

FIGURE 3. The final-to-initial normal velocity ra- 
tios for 4.90 p m  diameter NH4F1 spheres against a 
molybdenum target from the data of Wall et al. 
(1990). 

expressed as 

However, when expressed in this form, u, is 
contained implicitly on the right-hand side 

Initial Normal Velocity (mls) 

FIGURE 4. Values of the surface energy adhesion 
parameter from the data of Wall et al. (1990) for 
four diameters of NH4FI spheres and four target 
materials. The solid curve is calculated from Eq. 
24. 
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60 R. M. Brach and P. F. Dunn 

of this equation. This is because both WA 
and R ,  as specified by Eqs. 22-24, are 
functions of v,, which equals v, for this 
case. 

Proceeding along these lines, Eqs. 22-24 
can be applied to the case when v, = v, and 
substituted into Eq. 25 and rearranged to 
yield an expression for the critical velocity 

L 1 

3/2 2/5 where H = 0.51 [5r2(k ,  + k2)/4p ] , 
which is a function solely of material con- 
stants. This equation still remains an equa- 
tion that is transcendental in v, because R is 
evaluated at v, and is empirically based 
because of the use of Eq. 23. Equation 26 is 
solved best by iteration, four solution points 
of which are presented in Figure 5 for the 
case of a molybdenum target. The values of 
the critical velocities for mica and silicon 
were found all to be within approximately 
2% of the molybdenum values for each of 
the four diameters examined and therefore 
are represented by the same four points 
shown in Figure 5. Those for the Tedlar 
surface are not presented because no high 

velocity data was available to determine an 
appropriate fit to Eq. 15 that would yield R 
as a function of v,. Also shown are the 
solutions for v, using Eq. 26, in which the 
values for q and R are fixed and assumed 
not to be a function of v,. The solution 
curves for 7 = 0 and R = 1 and 0.9 bound 
the transcendental equation solutions, where 
for normal initial impact R was found to 
range from 0.952 to 0.983 over the critical 
velocity range from 3.14-0.70 m/s. This 
implies that, for application to the subject 
experiments, R can be assumed to be a 
constant without introducing substantial er- 
ror when determining the critical velocities. 
Further, it can be seen that oblique inci- 
dence impacts may yield critical velocities 
approximately a factor of 6 higher than their 
normal incidence counterparts for the same 
R value. This is because of the additional 
energy loss due to friction for oblique im- 
pacts. A reduction in R for the same angle 
of incidence also leads to an increase in the 
critical velocity because of the inherent in- 
crease in kinetic energy loss upon impact. 

The Eq. 26 solution results shown in the 
figure also closely match to within - 20% 
those reported by Wall et al. (1990) that 
were determined for the molybdenum, sili- 
con, and mica cases in a different manner 
but using the same data. The slope of a line 
through the four Eq. 26 solution points 
equals - 1.53, which compares quite favor- 
ably with those of Wall et al. (1990), which 
equalled - 1.22, - 1.40, and - 1 S 8  for the 
molybdenum, silicon, and mica cases, re- 
spectively. These slopes are comparable also 
to those of several other investigators cited 
by Wall et al. (1990). 

1 10 

Particle Diameter (ym) 

FIGURE 5. Critical velocities for the normal and 
oblique impacts of NH,F1 spheres against a molyb- 
denum target surface for various R and q. These 
parameters represent the energy loss due to material 
deformation and angle of incidence, respectively. 

Adhesion Force 

Further insight into the role that the adhe- 
sion force plays can be gained by consider- 
ing the forces that arise as a result of defor- 
mation which must be overcome if the 
microsphere is to rebound from the surface. 
These forces (in N), whose sum is denoted 
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Impact and Adhesion of Microspheres 

by F,, can include the van der Waals force 
acting over the contact area F,,,, the capil- 
lary force resulting from the presence of 
liquid along the periphery of contact F,,,, 
the gravitational force F,, and two electro- 
static forces Fi and F,,, originating from 
the image and contact potential forces, re- 
spectively. [These forces are described col- 
lectively by Bowling (1988) and 
(1982) .] These considerations imply 

Fx=F,dw+F,,+Fg+F,+Fcp, 

where 

F,,,= hak /8nz3 ,  

F,, = [3.75 x + 3.38 

x lo-' %RH] r ,  

Fg = ,og4nr3/3, 

F, = q2/16acreor2,  

and 

F,, = r ~ , r Q , ~ / z .  

In these expressions, h is the Lifshitz-van 
der Waals constant, which depends upon the 
dielectric constants of the materials involved 
[see Rumpf (1990) or Bowling (1988)], z is 
the atomic separation or adhesion distance 
that occurs between the materials during 
deformation, %RH is the relative humidity 
in percent, q the particle charge, E, the 
relative dielectric constant (1.00059 for air), 
e0 the permittivity of free space (8.85 x 
10-l2 F/m), and Q, the contact potential 
difference. This potential difference arises 
from the difference in the thermionic work 
functions of the two materials. The expres- 
sion for F,, is empirical, as presented by 
Hinds (1982). An estimate for q can be 
made for the case when a charge is not 
deliberately imposed upon the particle by 
assuming an equilibrium (Boltzmann) charge 
state, where q = fie, with fi, the average 
number of either positive or negative 
charges, approximated by the empirical ex- 
pression 2 = 3350 r1I2 and e = 1.6 x 

10- l9 C [Hinds (l982)I. The expression for 
the electrostatic image force implicitly as- 
sumes no charge loss during impact, i.e., 
the particle acts as a dielectric during the 
duration of contact, which was of the order 
of - 1 ps in Wall's experiments. 

As shown by Bowling (1988), under typi- 
cal conditions, the van der Waals force is 
the dominant force for microspheres. Substi- 
tution of the parameter values that are ap- 
propriate for the subject experiments (h = 1 
eV, z = 4  x 10-'Om, and Q, = 0.5 V) yields 
the same conclusion. For these calculations, 
the value of the Lifshitz-van der Waals 
constant chosen was the average of the range 
of values presented by Bowling (1988) for a 
polymer particle collision with a polymer or 
metallic surface. Reported values for h for 
various materials range from approximately 
0.1-10 eV [Bowling (1988)l. The value of 
cI, is a typical maximum value [Bowling 
(1988)l and that of z is that typically chosen 
as a representative value [Dahneke (1972)l. 
Subject to these conditions, the magnitude of 
the van der Waals force ranges from approx- 
imately 1-10 PN. Over the entire range of 
experimental conditions, this is at least one 
to two orders of magnitude greater than the 
capillary force and several orders of magni- 
tude greater than the electrostatic and gravi- 
tational forces. Hence, for the subject exper- 
iments, the van der Waals force dominates 
such that F, can be approximated by FudW. 

For the static case of a microsphere rest- 
ing on a flat surface, the work, W,, re- 
quired to fracture the adhesion bond equals 
the energy resulting from the van der Waals 
attraction, Eh,  assuming all other forces 
contributing to F, remain negligible. For 
the dynamic case of microsphere impact, 
however, the microsphere's initial kinetic 
energy, in addition to the energy acquired 
during the approach phase by the van der 
Waals attraction, is available to overcome 
adhesion during rebound. Only a fraction of 
Eh,  i.e., W, / Eh,  is found from the experi- 
ments to be necessary to overcome 
adhesion. 
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62 R. M. Brach and P. F. Dunn 

The energy acquired during the approach 
phase from the van der Waals attraction for 
this case is 

Substitution of the expression for a ,  (Eq. 
20) into this equation reveals the relation- 
ship between E,,, u,, and r ;  that is, 

In this expression, h ,  r ,  p ,  k ,  , and k ,  are 
fundamental or calculated material and geo- 
metric constants. The adhesion distance z is 
also assumed to be constant. Using this ex- 
pression and that for W, (Eq. 22) with Eq. 
24 reveals that the ratio W, /Eh varies in- 
versely with the product rl v, This im- 
plies that, for a particle of a given size, as 
the initial normal velocity is increased, the 
fraction of the energy required. to fracture 
the adhesion bond decreases. Furthermore, 
for a given initial normal velocity, this frac- 
tion decreases with increasing particle size. 
An empirical evaluation of this ratio, how- 
ever, requires that the values of h be known 
for each of the combinations of materials 
and medium considered. 

The specific values for the Lifshitz-van 
der Waals constant for each of the four 
combinations of materials and medium ex- 
amined in Wall's experiments are not avail- 
able in the literature. The Lifshitz-van der 
Waals constant, found directly from the 
Hamaker constant A ,  where h = 4 aA 13, 
can be determined in a straightforward man- 
ner for various combinations of nonconduc- 
tors, as described by Israelachvili (1985). 
This, however, requires a knowledge of 
the medium's and materials' dielectric per- 
mittivities and refractive indices, which 
are wavelength dependent. For situations 
involving conductors, the method to deter- 
mine A is more complex: a wavelength- 
dependent integral solution is required. 

Consequently, for the present comparison 
with experiment, the values of h for the 
combinations of NH ,F1-air-mica and 
NH,Fl-air-Tedlar were determined using 
Israelachvili's approach and found to be 
equal to 1.71 and 1.43 eV, respectively, 
assuming the properties of NH4F1 to be 
those of polystyrene. The values of h for 
the combinations of NH , F1-air-molybdenum 
and NH,Fl-air-silicon were estimated for 
each combination as arithmetic averages of 
the h's for the interactions of each of the 
two component materials with themselves 
across air and were found to be equal to 
4.56 and 4.42 eV, respectively. 

With these values in hand, the fraction of 
the energy acquired by the van der Waals 
attraction that is required to fracture the 
adhesion bond during impact can be evalu- 
ated for all of the 16 cases examined by 
Wall et al. (1990). The results of this com- 
parison are displayed in Figure 6. It is ap- 
parent for each of the four target materials 
that a smaller percentage of E, is required 
to fracture the adhesion bond with increas- 
ing values of E h ,  which also corresponds to 
increasing initial normal velocity. For the 
two "softer" target materials having the 
lowest elastic modulus values (Tedlar and 
mica), this percentage ranges from approxi- 
mately 70-80% at the lowest initial normal 
velocity ( - 2 m/s) to approximately 25 % at 
the highest velocity ( -  10 m/s). For the 
other two ' 'harder" target materials, this 
percentage is reduced to the range of ap- 
proximately 25% at the lowest velocity to 
approximately 5 %  at the highest velocity. 
Further, for the same initial normal veloc- 
ity, as shown in the Figure 6, the percentage 
of Eh decreases with increasing values of 
the elastic modulus of the target material. 
Finally, the effect of the size of the micro- 
sphere for a given material is not apparent in 
the figure. This is primarily because the 
large range of values presented in the figure 
and the relatively small difference in diame- 
ters studied in the subject experiments 
masked this dependency, which was pre- 
dicted and described previously. 
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Impact and Adhesion of Microspheres 63 

van der Waals Energy (J) 

FIGURE 6. The work, W,, required to fracture 
the adhesion bond versus the energy, E,, acquired 
by the van der Waals attraction for the four differ- 
ent diameter microsphere impact cases of Wall et 
al. (1990). 

SUMMARY AND CONCLUSIONS 

A model for the low velocity impact of 
microspheres with surfaces based upon clas- 
sical impact dynamics and Hertzian theories 
was developed and presented. The model is 
broadly applicable to rounded particles un- 
dergoing oblique impact with a relatively 
massive surface. Any system of surface 
forces and moments can be treated. A unique 
feature of the model is that energy losses 
due to material deformation are included 
through the use of the coefficient of restitu- 
tion, whereas adhesion energy losses are 
treated independently through use of the 
work WA of the adhesion fracture force FA. 

The model's utility and accuracy were 
demonstrated using the experimental data of 
Wall et al. (1990), which involved the dy- 
namics of four different diameter ammonium 
fluorescein particles impacting molyb- 

denum, silicon, mica and Tedlar surfaces. 
With the coefficient of restitution and the 
Johnson-Kendall-Roberts (JKR) surface 
energy adhesion parameter fit to the experi- 
mental data, the model predicted the mea- 
sured particle dynamics with high accuracy. 

Using the model to analyze the experi- 
mental data rather than a predictive tech- 
nique permitted the examination of the 
behavior of the JKR surface energy adhesion 
parameter. It was found that for all four 
surface materials and four particle diame- 
ters, the JKR parameter y was proportional 
to the square root of the initial normal veloc- 
ity of the particle (with an exceptionally 
high and statistically significant correlation 
coefficient). If y is presumed to be a con- 
stant, this implies that some feature of the 
model may be incorrect. For example, a, 
might be different from that predicted by the 
Hertzian model. If so, a better model for 
computing more realistic values of a ,  is 
required. A study of this nature is planned 
for future research. The ability of the model 
to predict critical velocities accurately was 
also demonstrated. 

A review was presented of the variety of 
forces that arise during the contact of 
micrometer-sized particles with a surface. 
For the application corresponding to Wall's 
data, the van der Waals force is dominant. 
Again, the characteristics of the impact 
model permitted the examination of the rela- 
tionship between the work required to frac- 
ture the adhesion bond and the energy ac- 
quired from the van der Waals attraction. 
The comparison revealed that for impact not 
all of the adhesion energy is lost during 
separation. Here, a smaller fraction of the 
van der Waals energy is needed to fracture 
the adhesion bond during rebound with in- 
creasing initial velocity for a given target 
material and with increasing elastic modulus 
for different target materials at the same 
initial velocity. 

The model is also capable of treating 
oblique impacts, where energy losses due to 
friction are encountered. However, its accu- 
racy for such cases cannot be assessed at 
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64 R. M. Brach and P. F. Dunn 

present because of the sparcity of data in 
this area. For a given initial particle veloc- 
ity, the normal and tangential components 
depend on the angle of approach, a, that is, 
v, = V, cos a and v, = v, sin a. The intro- 
duction of these into Eqs. 16 and 17 shows 
that the resultant effect is not a simple one. 
The nature of rebound depends not only on 
the usual effects (restitution and adhesion), 
as already shown, but also on the approach 
angle, the friction coefficient, and its effect 
on the impulse ratio (which depends upon 
whether or not sliding ends before contact 
ceases). Such complexity is illustrated in the 
data of Wang and John (1988), where some 
cases show that the capture rate increases 
then decreases as a changes from normal to 
grazing impact. Clearly, additional study of 
this complex problem is necessary, with the 
ultimate goal of an experimentally verified 
model that considers tangential effects as 
well as particle and target electrical charge. 
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