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Abstract*In this study the dissipative e!ects due to microsphere rotation in the presence of
adhesion during contact were investigated by means of mathematical analysis and numerical
simulation. Three sources of rotational moments were considered: a moment about the mass center
of the tangential contact force, a moment associated with the material rolling deformation and
another with the peeling of the adhesion bond. The latter two are couples proximate to the contact
region. A numerical model based on the results of the mathematical analysis was used to simulate
the two-dimensional normal and oblique impact of a microsphere. The results show that the
magnitude of rolling deformation and adhesion bond peeling moments are proportional to a power
of the contact radius. Consequently, because of the small radius of microspheres, the e!ect of
rotational dissipation due to these moments can be neglected. For example, when predicting
microsphere rebound during impact, only the moment of the tangential force needs to be considered
when considering microsphere rotation. ( 1999 Elsevier Science Ltd. All rights reserved

1 . INTRODUCTION

Friction at the contact area through the development of a tangential frictional impulse
plays a signi"cant role in the oblique impact of microspheres with surfaces. The tangential
impulse and its resulting e!ect on the translational and rotational velocities of the micro-
sphere not only in#uence its rebound direction but also contribute signi"cantly to impact
energy loss (see Brach and Dunn, 1995). Various studies (see the review by Ziskind et al.,
1997) have pointed out that an adhesion moment can play a role in the process of particle
detachment from a surface. An adhesion moment often is modeled as the product of an
adhesion force, F

A
, which is considered as a single-point force acting normal to and at the

center of the contact circle. The moment arm is the radius of this circle at equilibrium,
r
!%

(Wang, 1990). In this approach (for detachment studies), it is assumed that due to the
action of external lift and drag forces, the particle tips about a forward edge of the
(unchanging) contact area and lifts from the surface as the adhesion force and its moment
about the tipping axis are overcome. This approach is somewhat naive as it neglects
changes in the contact area due to its decrease in size (as a result of the lifting) and due to the
sphere's movement along the substrate (as a result of rolling). Rolling is accompanied by an
establishment of adhesion contact at the leading edge of the contact area and peeling of the
existing adhesion contact at its trailing edge. The peeling of the trailing edge of the contact
area and its corresponding dissipation is one of the e!ects studied in this paper. The analysis
is applied to impact but has implications on attachment and detachment as well.

In this paper, expressions of the moments due to rolling contact are developed based
upon an analysis of forces distributed over the contact area. Their e!ects on microsphere
motion and energy dissipation are assessed both analytically and numerically for two-
dimensional microsphere impacts, based on the equations of the simulation impact model
presented by Brach and Dunn (1995).

A few comments are appropriate to explain the approach used to establish the distribu-
tion of the rolling moments over the contact surface. Three primary contact forces for
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Fig. 1. A rolling microsphere in contact with a #at surface.

microspheres are considered: an adhesion attraction force, the Hertzian repulsive force and
the Coulomb friction force. The adhesion force is modeled as an idealized normal tensile
ring force around the periphery of the contact circle. The Hertzian force is a surface
compressive stress normal to and hemispherically distributed over the contact area of the
microsphere. A primary goal of this paper is to assess the rolling resistance of the contact
moments, that is, the energy dissipation during rolling contact. The forces of interest are the
dissipative forces associated with adhesion and Hertzian compression and not the forces
themselves (the adhesion and Hertzian stresses are mechanically conservative, that is, they
are nondissipative). Little to nothing is known about the time dependence and distribution
of the forces of the dissipation associated with adhesion and rolling compressive contact.
Some very primitive assumptions must be made. The dissipation forces associated with
adhesion and Hertzian compression are assumed to have the same distribution as the forces
themselves (for example, adhesion dissipation is distributed as a ring force around the
periphery of the contact area) and they are assumed to have a time dependence propor-
tional to the local relative contact velocity.

The following study is carried out assuming a linear velocity-dependent dissipation. It is
possible, if not likely, that a nonlinear model would be more realistic. An extension of the
following analysis that includes nonlinear dissipation was carried out. It was found that
nonlinearities in the dissipation terms of the model equations can make di!erences, which,
under most circumstances, are small. The added complexity of the nonlinear model does not
make a signi"cant di!erence. This is even more so considering the fact that rolling
dissipation is negligible during microsphere impact (which will be shown). The numerical
simulation using linear velocity dependent dissipation presented by Li et al. (1998) showed
good agreement with the experiment data, so the accuracy of the linear dissipation model
likely is acceptable. Furthermore, until more is learned about the actual behavior of
dynamic dissipation associated with adhesion, there is no rational way of making a choice
about the nature of any nonlinearities.

2 . THE DYNAMIC SIMULATION IMPACT MODEL

Figure 1 shows some pertinent features of a microsphere in contact with a surface or
substrate. Typically the radius, a, of the contact area is small compared with the radius, r, of
the microsphere and the radius of curvature of the contact area (Bowen et al., 1995). Only
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elastic deformation is considered (with no permanent deformation). Because the particle is
small, gravity is not considered. The mathematical model currently used is based on the
two-dimensional impact model established by Brach and Dunn (1995). The equation of
motion for the normal direction is
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where, q is time, r is the undeformed particle radius, m is the particle mass and

K"

4

3n (k
1
#k

2
)

(3)

and

k
i
"

1!l
i
2

nE
i

, (4)

in which l is Poisson's ratio and E is Young's modulus. An e!ective value of K should be
used for greater accuracy. When an applied compressive force exists such as the normal
inertial force during impact in combination with adhesion, a reduced sti!ness K"K

R
should be used (see Brach et al., 1998).

The "rst terms to the right-hand side of equations (1) and (2), F
H

and JrKn3@2, represent

the classical Hertzian restoring force; the second terms, F
HD

and JrKn3@2C
H
nR , are the

Hertzian dissipation force. The third terms represent the idealized adhesion attraction as
a circumferential (line) force, and the last terms are the dissipation force due to adhesion.
C

H
and C

A
are the corresponding damping constants for the Hertzian and adhesion

dissipation forces.
The tangential force over the contact surface is modeled using Coulomb friction and is

determined by the motion status, consisting of either sliding and rolling or pure rolling. The
equation of tangential motion is

mtK"F
t
(q), (5)

F
t
"G

!f F
n
(q)sgn (tR!rhQ ), tR!rhQ O0,

0, tR!rhQ "0,
(6)

where f is a friction coe$cient, tROrhQ represents the condition of sliding and tR"rhQ
represents that of pure rolling.

The rotational motion equation is

mk2hG"!rF
t
(q)#M

A
(q)#M

H
(q), (7)

where k is the centroidal radius of gyration. The "rst term on the right-hand side of equation
(7) is the moment of the tangential force about the mass center. The second term is
a moment due to peeling of the adhesion ring force at the trailing edge of the contact surface
during rolling and the last term is the rolling friction moment associated with Hertzian
deformation.

3. ANALYSIS OF MOMENTS

Two kinds of moments are considered in equation (7) to simulate the e!ects of rotation:
the tangential force moment, !rF

t
(q), and the rolling dissipation moments, M

A
and M

H
.

The latter two depend upon the contact surface area, whereas the former does not. Rolling
dissipation is related to the distribution of local relative velocities of the sphere's surface
over the contact surface area. Figure 1 is the schematic of the cross section of a rolling
sphere in contact with a rigid #at surface over a circular contact area of radius a. Along the
periphery of the contact area, the normal microparticle surface velocity due to rotation is
not unidirectional. Consider a microsphere that has begun contact. Its mass center is either
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Fig. 2. A schematic illustration of the parameters involved in calculating M
A

and M
H
, where

cos a"¸/a, sin c"¸/o, h"r!n, o2"¸2#h2, a2"¸2#d2.

approaching or receding from the surface with general planar motion. The angular velocity
of the sphere is u and the normal velocity of the mass center is nR . Consider points P and Q.
Due to rotation, the relative normal velocity at point P is nR #ur cos h and the relative
normal velocity at point Q is nR !ur cos h. Hence, the relative normal velocity of the
sphere's surface is not uniform. In the current impact model, the Hertzian force and
Hertzian dissipation force are related to the relative normal velocity. The normal velocity
distribution can result in a distribution of damping forces over the contact area implying the
existance of M

A
, the moment of the adhesion dissipation force about the rotation center,

and M
H
, the moment of the Hertzian dissipation force about the rolling center. In the

following, each of these two moments will be analyzed in more detail in order to determine
the extent of their contributions to the sphere's rotational motion.

3.1. ¹he analysis of the adhesion rolling dissipation moment

The dissipation due to M
A

is caused by the irreversibility of the adhesion process, that is,
the making and breaking of the adhesion bond over the periphery of the contact surface of
the microsphere as the microsphere rolls. Figure 2 is used to determine M

A
. The normal

velocity of the mass center produces only a uniformly distributed adhesion force and does
not contribute to the rolling dissipation moment. The presence of u"hQ during rotation
does contribute to M

A
and M

H
.

The normal component of the relative velocity at point A on S (the edge of the contact
area) shown in Figure 2 is

v
n
"v cos a"u¸. (8)

From Fig. 2, the geometric relation, ¸"a cos a, can be used to give

v
n
"u¸"ua cos a. (9)
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According to the impact model, the intensity of the adhesion dissipation force at point
A is proportional to the relative normal velocity of the particle at this point. That is

dF
A
"f

0
C
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v
n
ds"f

0
C

A
ua2 cos a da. (10)

Thus, the local moment of dF
A

about the rotation center is

dm
A
"¸ dF

A
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0
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A
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Integrating the local moment over the edge of the contact area S gives

M
A
(q)"P

2n

0
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0
C
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0
C

A
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The impact model assumes that the adhesion force dissipation is signi"cant only when
surfaces are separating. This assumption is made here also and leads to:

z if nR (!au, the normal velocities of all the points of the contact area S on the microsphere
surface are negative (leaving the substrate); thus all the points are in the rebound stage and
M

A
"nf

0
C

A
ua3,

z if nR *!au, the velocities of all the points of the contact area S are positive (approaching
the substrate); thus all points are in the approaching stage and M

A
"0,

z if !au(nR (au, only the points within the angle 0(a(a* on the contact area are in
the rebound stage and M

A
"(a*#1

4
sin 2a) f

0
C

A
ua3, where a* is the coordinate angle of the

point which has the zero relative normal velocity, nR !au"0.

3.2. ¹he analysis of the Hertzian rolling dissipation moment

The Hertzian dissipation force is related to the normal stresses distributed over the
contact area. The dissipation moment due to the Hertzian dissipation force, M

H
, is

attributed to the normal velocity distribution over the contact area in this analysis.
At the point B (o@, a@) in the contact area (refer to Fig. 2), the relative velocity caused by

rotation has a normal component

v
n
"u¸@"uo@ cos a@. (13)

The Hertzian dissipation force intensity due to rotation at point B (o@, a@) is

dF
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H
v
n
(o@, a@)o@ dado@ (14)

where, P(o@, a@) is the Hertzian force at point B. Integrating equation (14) over the entire area
S in Fig. 2 to "nd the moment about the t@ axis gives
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Here, F(o@)"o@3(1!o@2/a2)1@2. Thus,

M
H
"

K
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n

R
C

H
ua4. (18)

3.3. Summary of the analysis of the rolling dissipation moment

In the impact simulation presented by Brach and Dunn (1995), the equation of rotation is

mk2hG"!rF
t
(q)#g (q), (19)
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Fig. 3. Numerical results: Final rotational velocity, ), as a function of the parameter j for impact.
Three cases: h

0
"0, normal impact (&&s''), h

0
"#403 (&&]'') and h

0
"!403 (&&*''), all for

u
0
"106 degree s~1.

where g(q) is a dissipation moment due to adhesion damping during rotation

g (q)"jf
AA

r3Kv1@2
n

m B
~2@5

ahQ (20)

and f
A

is a nondimensional dissipation parameter de"ned as

f
A
"C

AA
r3Kv1@2

n
m B

2@5
(21)

Thus,

g(q)"jC
A
ahQ . (22)

Equating g (q) and M
A

from equation (14) gives

j"na2f
0
. (23)

Equation (23) is an analytical expression for the adhesion rolling dissipation moment
parameter j. It is a dimensional parameter with the units of Nm. It is proportional to a2. In
the case of microsphere impact, because the particle radius is on the order of 10~6 m and
f
0

correlates with the particle radius as: f
0
\r1@3 (Li et al., 1998), the order of j is about

10~10Nm.
Figure 3 shows the e!ect on the "nal rotational velocity, ), of the microsphere of varying

the value of j over a wide range. Three cases are considered: the normal impact, #403
oblique impact and !403 oblique impact. In each case, the magnitude of the initial velocity
of the mass center is 1.66 m s~1 and the initial angular velocity is 106 degree s~1. When
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Fig. 4. Numerical results: Magnitude of the tangential force moment (dash line) and the rolling
dissipation moments (solid line) during normal impact with u

0
"106 degree s~1.

Table 1. The parameters for numerical simulation

Initial vel. (m s~1) u
0

(degree s~1) r (km) Density (kg m~3)

1.66 106 35 8000

K(]1010Pa) f
0
(N/m) f

A
f
H

11.4 325 400 100

j(10~7 Nm, there is no change in the "nal rotational velocities. This implies that the
e!ect of rolling dissipation due to adhesion is negligible for microspheres. This is supported
by equation (12), in which M

A
\a3, and by equation (18), in which M

H
\a4. Thus, it is

reasonable to neglect both M
A

and M
H

in the case of microsphere impact.

4 . THE NUMERICAL SIMULATION OF THE ROLLING PARTICLE IMPACT

Equations (1), (5) and (7) are three second-order, nonlinear, ordinary di!erential equa-
tions which can be solved using standard numerical techniques. As part of the simulation of
Brach and Dunn, the Runge}Kutta}Gill method was used. The nondimensional dissipation
parameter f

A
is de"ned in equation (21) and f

H
is de"ned as

f
H
"C

HA
r3Kv1@2

n
m B

2@5
. (24)

Values of parameters chosen for the numerical simulation are shown in Table 1.
Figure 4 shows the magnitude of the moments about the mass center of the microsphere

that arise as functions of time during normal impact. In this "gure, the total rolling
dissipation, M

A
#M

H
, is compared to the tangential force moment, !rF

t
(q). The
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Fig. 5. Numerical results: The particle angular velocity during impact. Three cases: h
0
"0, (normal

impact), h
0
"#403, and h

0
"!403 all for u

0
"106 degree s~1. Dashed line: j"10~3 N m,

Circles: j"10~4 Nm, solid line: the analytical model.

tangential force moment increases during the attachment phase of impact and then
decreases to zero at \100 ns when the relative tangential velocity on the contact area
becomes zero (the beginning of pure rolling). The numerical results con"rm that the
magnitude of the tangential force moment is much greater than the sum of the rolling
dissipation moments.

Figure 5 shows the temporal evolution of the particle rotational velocity during contact
under di!erent incident angles. Three cases are compared: normal impact, positive angle
oblique impact (h

0
"403) and negative angle oblique impact (h

0
"!403) . Two di!erent

models for adhesion rolling dissipation were used in the simulations. One is the constant
j model by solving equations (19) and (20) (the rolling dissipation moment parameter, j, is
treated as constant). The other is the analytical model by solving equation (7). In this model
M

A
and M

H
are given by equations (12) and (18), respectively. The dashed line is for the

result of the constant j model with j"10~3 Nm, the line of circles for j"10~4 Nm and
the solid line for the analytical model. The modeling of rolling dissipation plays a signi"cant
role in the impact simulation. By the constant j model, when j is large (refer to the results
for j"10~3 Nm and 10~4 Nm), the adhesion rolling dissipation is predominant, the "nal
particle angular velocity reduces to zero during contact, which implies a very &&sticky''
contact surface. Nevertheless, the smaller the value of j the longer the time for the particle to
stop rolling. The results of the analytical model (in which the equivalent j is not constant
but smaller than 10~7 Nm) show that the microsphere remains at a constant rotational
velocity at the end of the contact. Thus, the rolling dissipation is not signi"cant as compared
with the case of larger j. On the other hand, the incident angle also plays a role in particle
contact. For the constant j model (j"10~3 and 10~4 Nm), the time at which the angular
velocity of the particle reduces to zero in the normal impact is shorter than that for the
oblique impacts, even though for all the cases the angular velocities reduce to zero during
contact (because the rolling dissipation is predominant). By the analytical model, for the

1328 R. M. Brach et al.



case of normal impact and positive angle oblique impact (h
0
"403), the angular velocity of

the particle does not change direction during contact, whereas for a negative angle oblique
impact (h

0
"!403), the angular velocity changes direction in the contact time. This result

agrees with what one would intuitively expect.

5 . CONCLUSIONS

From the above analysis, the rolling dissipation due to Hertzian and adhesion contact
moments are related directly to the size and shape of the contact area. Because of the
typically small contact radius of microspheres during impact these rolling dissipation
moments are negligible. In other words, among the terms on the right-hand side of the
rotational equation of motion (equation (7)) DM

A
#M

H
D;rF

t
. Therefore, changes in

angular velocity are dominated by the moment of the tangential (frictional) force about the
mass center of the microsphere. On the other hand, for pure rolling, F

t
"0 but M

A
and

M
H

still exist. However, for this case, the e!ect of these moments is still insigni"cant because
the duration of contact is short and the rotational displacement is very small.

In nonimpact situations, the duration of rolling can be relatively long and the rolling
dissipation can play a signi"cant role in the total energy loss. A hint of this is shown in Fig.
5. For the case when h

0
"!403 and j"10~4 Nm, the angular velocity changes sign and

eventually returns to zero (hQ "0) and rolling stops. Although the value of j"10~4 Nm is
unrealistically high, for lower values of j the rolling dissipation (M

A
#M

H
) for a longer

duration of pure rolling could be signi"cant. In particular, this would be the case in the
studies of microsphere resuspension.
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