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TRANSLATOR'S PREFACE.

THE following translation was undertaken at the instance
of Dr T. Archer Hirst, F.R.S., the translator of the first
collected edition (mentioned in the Author’s Preface below)
of Professor Clausius’ papers on the Mechanical Theory of
Heat. The former work has however been so completely re-
written by Professor Clausius, that Dr Hirst’s translation has
been found scarcely anywhere available; and I must there-
fore accept the full responsibility of the present publication.
I trust it may be found to supply a want which I have
reason to believe has been felt, namely, that of a systematic
and connected treatise on Thermodynamics, for use in
Universities and Colleges, and among advanced students
generally. With the view of rendering it more complete for
this purpose, I have added, with the- consent of Professor
Clausius, three short appendices on points which he had left
unnoticed, but which still seemed of interest, at any rate
to English readers. These are, (1) The Thermo-elastic pro-
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perties of Solids; (2) The application of Thermo-dynamical
principles to Capillarity; (3) The Continuity of the Liquid
and Gaseous states of Matter. My best thanks are due to
Dr John Hopkinson, F.R.S,, both for the suggestion of these
three points, and also for the original and very elegant
investigation from first principles, contained in the first
Appendix, and in the commentement of the second. My
thanks are also due to Lord Rayleigh, F.R.S., E. J. Routh,
Esq., and Professor James Stuart, for kindly looking through
the first proof of the translation, and for various valuable
suggestions made in connection with it.

WALTER R. BROWNE.

10, Vicroria CHAMBERS, WESTMIKSTER,
November, 1879.



AUTHOR’S PREFACE.

MAaNY representations having been made to the author from
different quarters that the numerous papers “On the Me-
chanical Theory of Heat,” which he had published at different
times during a series of years, were inaccessible to many who,
from the widespread interest now felt in this theory, were
anxious to study them, he undertook some years back to
publish a complete collection of his papers relating to the
subject.

As a fresh edition of this book has now become necessary,
he has determined to give it an entirely new form. The
Mechanical Theory of Heat, in its present development, forms
already an extensive and independent branch of science.
But it is not easy to study such a subject from a series of
separate papers, which, having been published at different
times, are unconnected in their form, although they agree
in their contents. Notes and additions, however freely used
to explain and supplement the papers, do not wholly over-
come the difficulty. The author, therefore, thought it best
s0 to re-model the papers that they might form a connected
whole, and enable the work to become a text-book of the
science. He felt himself the more bound to do this because
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his long experience as a lecturer on the Mechanical Theory
of Heat at a Polytechnic School and at several Universities
had taught him how the subject-matter should be -arranged
and represented, so as to render the new view and the new
method of calculation adopted in this somewhat difficult
theory the more readily intelligible. This plan also enabled
him to make use of the investigations of other writers, and
by that means to give the subject greater completeness and
finish. These authorities of course have been in every case
duly recognized by name. During the ten years which have
elapsed since the first volume of papers appeared, many fresh
investigations into the Mechanical Theory of Heat have been
published, and as these have also been discussed, the contents
of the volume have been considerably increased.

Therefore in submitting to the public this, the first part
of his new investigation of the Mechanical Theory of Heat,
the author feels that, although it owes its origin to the second
edition of his former volume, still, as it contains so much
that is fresh, be may in many respects venture to call it a new
work.

R. CLATUSIUS.

' Boxw, December, 1875.
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ON THE MECHANICAL THEORY OF HEAT.

MATHEMATICAL INTRODUCTION,

ON MECHANICAL WORK, ON ENERGY, AND ON THE
TREATMENT OF NON-INTEGRABLE DIFFERENTIAL
EQUATIONS,

§ 1. Definition and Measurement of Mechanical Work.

" Every force tends to give motion to the body on which
it acts; but it may be prevented from doing so by other
opposing forces, so that equilibrium results, and the body
remains at rest. In this case the force performs no work.
But as soon as the body moves under the influence of the
force, Work is performed.

In order to investigate the subject of Work under the
simplest possible conditions, we may assume that instead
of an extended body the force acts upon a single material
point. If this point, which we may call p, travels in the
same straight line in which the force tends to move it,
then the product of the force and the distance moved
through is the mechanical work which the force performs
during the motion. If on the other hand the motion of
the point is in any other direction than the line of action
of the force, then the work performed is represented by
the product of the distance moved through, and the com-
ponent of the force resolved in the direction of motion.

This component of force in the line of motion may be
positive or negative in sign, according as it tends in the

c. . 1
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2 ON THE MECHANICAL THEORY OF HEAT.

same direction in which the motion actually takes place,
or in the opposite. The work likewise will be positive in
the first case, negative in the second. To express the
difference in words, which is for many reasons convenient,
recourse may be had to a terminology proposed by the
writer in a former treatise, and the force may be said to
do or perform work in the former case, and to destroy work
in the latter,

From the foregoing it is obvious that, to express quan-
tities of work numerically, we should take as unit that
quantity of work which 1s performed by an unit of force
acting through an unit of distance. In order to obtain a
scale of measurement easy of application, we must choose,
as our normal or standard force, some force which is
thoroughly known and easy of measurement. The force
usually chosen for this purpose is that of gravity.

Gravity acts on a given body as a force always tending
downwards, and which for places not too far apart may be
taken as absolutely constant. If now we wish to lift a
weight upwards by means of any force at our disposal,
we must in doing so overcome the force of gravity; and
gravity thus gives a measure of the force which we must
exert for any slow lifting action. Hence we take as our
unit of work that which must be performed in order to
lift a unit of weight through a unit of length. The units of
weight and length to be chosen are of course matter of indif-
ference; in applied mechanics they are generally the kilo-
gram and the metre respectively, and then the unit of work
is called a kilogrammetre. Thus to raise a weight of a
kilograms through a height of b metres ad kilogrammetres
of work are required ; and other quantities of work, in cases
where gravity does not come directly into play, can also be
expressed in kilogrammetres, by comparing the forces em-
ployed with the standard force of gravity.

§ 2. Mathematical determination of the Work done by
variable components of Force.

In the foregoing explanation it has been tacitly assumed
that the active component of force has a constant value
throughout the whole of the distance traversed. In reality
this is not usually true for a distance of finite length. On
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the one hand the force need not itself be the same at diffe-
" rent points of space; and on the other, although the force
may remain constant throughout, yet, if the path be not
straight but curved, the component of force in the direction
of motion will still vary. For this reason it is allowable to ex-
press work done by a simple product, only when the distance’
traversed is indefinitely smal&dz:.e. f;ggfs;n element of space.
, Let ds be an element of $face, ahd S the component in
the direction of dsof the force acting on the point p. We
have then the following equation to .obtain d W, the work
done during the movement through the indefinitely small
. space ds: :
dW=_8ds ........... ST (1).
If P be the total resultant force acting on the point p, and
¢ the angle which the direction of this resultant makes with
the direction of motion at the point under consideration,

then
’ S=Pcos¢,
whence we have, by (1), '
AW =P cos pds ceuueerienrnnnnnnnn (2).

It is convenient for calculation to employ a system of
rectangular co-ordinates, and to consider the projections of
the element of space upou the axes of co-ordinates, and the
components of force as resolved parallel to those axes.

For the sake of simplicity we will assume that the motion
takes place in a plane in which both the initial direction of
motion and the line of force are situated. We will employ
rectangular axes of co-ordinates lying in this plane, and will
call # and y the co-ordinates of the moving point p at a
given time, If the point moves from this position in the
plane of co-ordinates through an indefinitely small space ds,
the projections of this motion on the axes will be called da
and dy, and will be positive or negative, according as the
co-ordinates # and y are increased or diminished by the
motion. The components of the force P, resolved in the
directions of the axes, will be called X and Y. Then, if a
and b are the cosines of the angles which the line of force
makes with the axes of # and y respectively, we have

X=aP; Y=0P.

1—g, —

-
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Again, if a and B are the cosines of the angles which the
element of space ds makes with the axes, we have

dr=ads; dy=pds.
From these equations we obtain
' Xda + Ydy = (aa + b8) Pds.
But by Analytical Geometry we know that
aa+ b8 = cos ¢,

where ¢ is the angle between the line of force and the .
element of space : hence

Xdz + Ydy = cos ¢ Pds,
and therefore by equation (2),
AW=Xdz+ Ydy.....cec0vvvvrrrrruennn. (3).

This being the equation for the work done during an indefi-
nitely small motion, we must integrate it to determine the
- work done during a motion of finite extent.

§ 3. Integration of the Differential Equation for Work

In the integration of a differential equation of the form
given in equation (3), in which X and Y are functions of z
and y, and which may therefore be written in the form

AW=¢(@y)de+Y(@y)dy.cccccvvene.en. (3a),

“a distinction has to be drawn, which is of great importance,
not only for this particular case, but also for the equations
which occur later on in the Mechanical Theory of Heat; and
which will therefore be examined.here at some length, so
that in future it will be sufficient simply to refer back to the
present passage.

According to the nature of the functions ¢ (zy) and
4 (zy), differential equations of the form (3) fall into two
classes, which differ widely both as to the treatment which
they require, and the results to which they lead. To the
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first class belong the cases, in which the functions X and ¥
fulfil the following condition :

The second class comprises all cases, in which this condition
is not fulfilled.

If the condition (4) is fulfilled, the expression on the
right-hand side of equation (3) or (3a) becomes immediately
integrable ; for it is the complete differential of some func-
tion of « and y, in which these may be treated as indepen-
dent variables, and which is formed from the equations

dF (zy) _ x dF(zy)) _ ¢
dx ’ dy :
Thus we obtain at once an equation of the form
w=F (xy) + const. e..ccvevrrvnenennnns (3).

If condition (4) is not fulfilled, the right-hand side of the
equation is not integrable ; and it follows that W cannot be
expressed as a function of z and y, considered as independent
variables. For, if we could put W= F (zy), we should have

Y_ﬂ‘?_dF(wy) '
A= T de
Y_t_l_VZ_dF(zy_)
Tdy dy

- whence it follows that
| dX _&'F (ay)

dy ~ dxdy ’
dY _ d&'F (xy)
dz = dyde
But since with a function of two independent variables the
order of differentiation is immaterial, we may put

@F (zy) _dF (zy),
dxdy — dydz '
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whence it follows that%‘g= (%, t.e. condition (4) is fulfilled
for the functions X and Y'; which is contrary to the assump-
tion. B

In this case then the integration is impossible, so long as
z and y are considered as independent variables. If however
we assume any fixed relation to hold between these two
quantities, so that one may be expressed as a function of the

other, the integration again becomes possible. For if we
put

in which f expresses any function whatever, then by means
of this equation we can eliminate one of the variables and
its differential from the differential equation. (The general
form in which equation (6) is given of course comprises the
special case in which onme of the.variables is taken as
constant ; its differential then becomes zero, and the variable
itself only appears as part of the counstant coefficient). Sup-
posing y to be the variable eliminated, the equation (3)
takes the form dW = ¢ (x) dx, which is a simple differential
equation, and gives on integration an equation of the form

w=F (z) + const. ....covevevrrenrnn.. .

The two equations (6) and (7) may thus be treated as form-
ing together a solution of the differential equation. As the
form of the function f(zy) may be anything whatever, it is
clear that the number of solutions thus to be obtained is
infinite.

The form of equation (7) may of course be modified.
Thus if we had expressed « in terms of y by means of equa-
tion (6), and then eliminated « and dz from the differential
equation, this latter would then have taken the form

AW =¢,(y)dy,
and on integrating we should have had an equation
W="F,(y) +const............. eenans (7a).

This same equation can be obtained from equation (7) by
substituting y for # in that equation by means of equation (6).
Or, instead of completely eliminating z from (7), we may

F N
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prefer a partial elimination. Forif the function F (z) con-
tains x several times over in different terms, (and if this does
not hold in the original form of the equation, it can be easily
introduced into it b“y+ xwrit,ing instead of « an expression such

as (1—-a)z+az, %—, &c.) then it is possible to substitute

y for 2; in some of these expressions, and to let # remain in
others. The equation then takes the form

W= F,(x,y) + const....... RPN ()R

which is a more general form, embracing the other two as
special cases. It is of course understood that the three equa-
tions (7), (7a), (7b), each of which has no meaning except
when combined with equation (6), are not different solutions,
but different expressions for one and the same solution of
the differential equation.

Instead of equation (6), we may also employ, to integrate
the differential equation (3), another equation of less simple
form, which in addition to the two variables « and y also
contains W, and which may itself be a differential equation;
the simpler form however suffices for our present purpose,
and with this restriction we may sum up the results of this
section as follows.

When the condition of immediate integrability, expressed
by equation (4), is fulfilled, then we can obtain directly an
integral equation of the form:

W=F (2, y)+ const....coeeucerrrnennse. (A).

‘When this condition is not fulfilled, we must first assume
some relation between the variables, in order to make inte-
gration possible; and we shall thereby obtain a system of
two equations of the following form :

f(-’l’,y)=0, _
W=F(w,y)+const.} seeseressnesennennn(B),

in which the form of the function ¥ depends not only on
that of the original differential equation, but also on that of
the function f, which may be assumed at pleasure,
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§ 4. Geometrical interpretation of the foregoing results,
and observations on partial differential coefficients.

The important difference between the results in the two
cases mentioned above is rendered more clear by treating
them geometrically. In so doing we shall for the sake of
simplicity assume that the function ¥ (z,y) in equation (A)
is such that it has only a single value for any one point in
the plane of co-ordinates. We shall also assume that in the
movement of the point p its original and final positions are
known, and given by the co-ordinates #,, 7,, and z,, ¥, respec-
tively. Then in the first case we can find an expression for
the work done by the effective force during the motion,
without needing to know the actual path traversed. For it
is clear, that this work will be expressed, according to con-
dition (A), by the difference F'(z,y,) — F(x,y,). Thus, while
the moving point may pass from one position to the other
by very different paths, the amount of work done by the force
is wholly independent of these, and is completely known as
soon as the original and final positions are given.

In the second case it is otherwise. In the system of
equations (B), which belongs to this case, the first equation
must be treated as the equation to a curve; and (since the
form of the second depends upon it) the relation between
them may be geometrically expressed by saying that the
work done by the effective force during the motion of the
point p» can only be determined, when the whole of the
curve, on which the point moves, is known. If the original
and final positions are given, the first equation must indeed
be so chosen, that the curve which corresponds to it may pass
through those two points; but the number of such possible
curves is infinite, and accordingly, in spite of their coinci-
dence at their extremities, they will give an infinite number
of possible quantities of work done during the motion.

If we assume that the point p describes a closed curve, so
that the final and initial positions coincide, and thus the co-
ordinates @,,y, have the same value as x,, y,, then in the
first case the total work done is equal to zero: in the second
case, on the other hand, it need not equal zero, but may have
any value positive or negative.

The case here examined also illustrates the fact that a
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quantity, which cannot be expressed as a function of z and y
(so long as these are taken as independent variables), may
yet have partial differential coefficients according to z and y,
which are expressed by determinate functions of those van-
ables. For it.is manifest that, in the strict sense of the
words, the components. X and Y must be termed the partial
differential coefficients of the work W according to = and y:
since, when z increases by dx, y remaining constant, the
work increases by Xdz; and when y increases by dy, = re-
maining constant, the work increases by Ydy. Now whether
W be a quantity generally expressible as a function of z and
¥, or one which can only be determined on knowing the path
described by the moving point, we may always employ the
ordinary notation for the partial differential coefficients of W,

and write
d ]
(&2 =x, ;

(%V)=KJ ...............................

Using this notation we may also write the condition (4), the
fulfilment or non-fulfilment of which causes the distinction
between the two modes of treating the differential equation,
in the following form: .

‘% (‘_”dg) - 0% (‘%V) .......................... ©). -

Thus we may say that the distinction which has to be
drawn in reference to the quantity W depends on whether

. d (dw dwy .
the difference & (%—) - (—7@-) is equal to zero, or has
a finite value.

§ 5. Eatension of the above to three dimensions.

If the point p be not restricted in its movement to one
Plane, but left free in space, we then obtain for the element
of work an expression very similar to that given in equation
(3). Let a, b, ¢ be the cosines of the angles which the direc-
tion of the force P, acting on the point, makes with three
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rectangular axes of co-ordinates; then the three components
X, Y, Z of this force will be given by the equations
X=aP, Y=04P, Z=cP.
Again, let a, 8, v be the cosines of the angles, which the
element of space ds makes with the axes; then the three
projections dz, dy, dz of this element on those axes are given
by the equations :
drx=ads, dy=pBds, dz=rds.
Hence we have
Xdx+ Ydy + Zdz = (aa + bB + oy) Pds.
But if ¢ be the angle between the direction of P and ds,
then
az+ b8 + ¢y = cos ¢:

hence Xdz + Ydy + Zdz = cos ¢ x Pds.
Comparing this with equation (2), we obtain
AW =Xdz+ Ydy + Zdz.................. (10).

This is the differential equation for determining the work
done. The quantities X, Y, Z may be any functions what-
ever of the co-ordinates z, y, z; since whatever may be the
values of these three components at different points in space,
a resultant force P may always be derived from them.

In treating this equation, we must first consider the fol-
lowing three conditions: '

dX_dv dY_dZ dZ_dX 1
G @ ddy dmmde (1),

and must enquire whether or not the functions X, Y, Z
satisfy them.

If these three conditions arésatisfied, then the expression
on the right-hand side of (11) is the complete differential of
a function of z, ¥, 2, in which these may all be treated as
independent variables. The integration may therefore be at
once effected, and we obtain an equation of the form

W=TF (zyz) + const......coceeurernnn veeenn(12),
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“If we now conceive the point p to move from a given
initial position (=,, ¥,, 2,) to a given final position (z,, v,, 2,)
the work done by the force during the motion will be repre-
sented by

F (zv Yo zx) - F(zo’ Yoo zo)'

If then we suppose F/(z,v, z) to be such that it has only a
single value for any one point in space, the work will be
completely determined by the original and final positions;
and it follows that the work done by the force is afv(v)ays the
same, whatever path may have been followed by the point
-in passing from one position to the other.

If the three conditions (1) are not satisfied, the integra-
tion cannot be effected in the same general manner. If,
‘however, the path be known in which the motion takes place,
“the integration becomes thereby possible. If in this case
two points are given as the original and final positions, and
various curves are conceived as drawn between these points,
along any of which the point » may move, then for each of
these paths we may obtain a determinate value for the work
done;. but the values corresponding to these different paths
need not be equal, as in the first case, but on the contrary
are in general different.

§ 6. On the Ergal.

In those cases in which equation (12) holds, or the work
done can be simply expressed as a function of the co-ordinates,
this function plays a very important part in our calculations.
Hamilton gave to it the special name of “force function”; a
name applicable also to the more general case where, instead
of a single moving point, any number of such points are
considered, and wheré the condition is fulfilled that the work
done depends only on the position of the points. In the
later and more extended investigations with regard to the
quantities which are expressed by this function, it has become
needful to introduce a special name for the negative value of
the function, or in other words for that quantity, the sub-
traction of which gives the work performed; and Rankine
proposed for this the term ‘potential energy, This name
sets forth very clearly the character of the quantity; but it
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is somewhat long, and the author has ventured fo propose
in its place the term “ Ergal.” '

Among the cases in which the force acting on a point has
an Ergal, the most prominent is that in which the force
originates in attractions or repulsions, exerted on the moving
point from fixed points, and the value of which depends only
on the distance; in other words the case in which the force
- may be classed as a central force. Let us take as centre of
force a fixed point m, with co-ordinates £, %, {, and let p be
its distance from the moving point p, so that

p=NE—+ M =g) F C—2 errerreenns (13).

Let us express the force which 7 exerts on p by ¢’ (p), in
which a positive value of the function exEresses attraction,
and a negative value repulsion; we then have for the com-
ponents of the force the expressions

S T ST IOR A S (O

But by (13) 2 =~ £2%: hence X=— ¢/ ()%, and simi-

l:lzlrly for the other two axes. If ¢(p) be a function such
that

YO CID T P — (14),

we may write the last equation thus: '
__do(p) dp _ _do(p)

X——W e T g (15),

‘i __d¢(p) ,__dép)
and similarly Y———@-, Z= ——a—;-..........(15a)
Hence we have

Xdo+ Ydy + Zdz =— [""{’tg’) do +43$) dy + 38(°) dz] .

dz

But, since in the expression for p given in equation (13) the
quantities @, y, z are the only variables, and ¢ (p) may there-
fore be treated as a function of those three quantities, the
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expression in brackets forms a perfect differential, and we
may write :

Xdz+ Ydy + Zdz == d (p).vveee... (16).

The element of work is thus given by the negative differen-
g‘;l of ¢ (p); whence it follows that ¢ (p) is in this case the

L
gigain, instead of a single fixed point, we may have any
number of fixed points =, m,, 7,, &c., the distances of which
from p are p, p,, p, &c., and which exert on it forces
' (p,), d'(p), ' (p,), &c. Then if, as in equation (14), we as-
sume ¢,(p), $,(p), $4(0), &c. to be the integrals of the above
functions, we obtain, exactly as in equation (15),

e _db(0) _d8.(0) _ (o) _

== 40+ 4(6) + 90D+ -]
or D T 1) P an.

Similarly Y=-d—d§2 $0) Z== 239 (p)nnnnn(17a),

whence Xdo+Ydy+ Zdz=—dZ ¢ (p) ceuvenn.. (18).
Thus the sum = ¢(p) is here the Ergal. )

§ 7. @eneral Extension of the foregoing.

Hitherto we have only considered a single moving point;
we will now extend the method to comprise a system com-
posed of any number of moving points, which are in part
aczed on by external forces, and in part act mutually on each
other.

If this whole system makes an indefinitely small move-
ment, the forces acting on any one point, which forces we
may conceive as combined iuto a single resultant, will per-
form a quantity of work which may be represented by the
expression (Xdz + Ydy + Zdz). Hence the sum of all the
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work done by all the forces acting in the system may be
represented by an expression of the form

'S (Xde + Yy + Zdz),

in which the summation extends to all the moving points.
This complex expression, like the simpler one treated
above, may have under certain circumstances the important
peculiarity that it is the complete differential of some func-
tion of the co-ordinates of all the moving points; in which
case we call this function, taken negatively, the Ergal of the
whole system. It follows from this that in a finite move-
ment of the system the total work dome is simply equal to
the difference between the initial and final values of the
Ergal; and therefore (assuming that the function which
represents the Ergal is such as to have only one value for one
position of the points) the work done is completely deter-
mined by the initial and final positions of the points, without
its being needful to know the paths, by which these have
moved from one position to the other. .

This state of things, which, it is obvious, simplifies greatly
the determination of the work done, occurs when all the
forces acting in the system are central forces, which either
act upon the moving points from fixed points, or are actions
between the moving points themselves.

First, as regards central forces acting from fixed points,
we have already discussed their effect for a single moving
point ; and this discussion will extend- also to the motion of
the whole system of points, since the quantity of work done
in the motion of a number of points is simply equal to the
sum of the quantities of work done in the motion of each
several point. We can therefore express the part of the
Ergal relating to the action of the fixed points, as before, by
2 ¢ (p), if we only give such an extension to the summation,
that it shall comprise not only as many terms as there are
fixed points, but as many terms as there are combinations of
one fixed and one moving point.

Next as regards the forces acting between the moving
points themselves, we will for the present consider only two
points p and p/, with co-ordinates @, y, 2, and &, ¥, 2,
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respectively. If r be the distance between these points, we
have

r=J@—a)+F =y +E =2) s (19).
We may denote the force which the points exert on each
other by f’(r), a positive value being used for attraction, and
a negative for repulsion,
Then the components of the force which the point p
exerts in this mutual action are

L - , ! - 2 -z
ro== roft, ro=2
and the components of the opposite force exerted by p’ are
FO =L, rmsY, rmi=Z.

r r
But by (19), differentiating
dr -z dr _z—-o
dz r ’de r
80 that the components of force in the direction of # may
also be written :

, —FOE ok,
and if f(r) be a function such that
fr)= f F ) e, (20),

the foregoing may also be written
—df(), —df ()
dz ’ da

Similarly the components in the direction of y may be
written
=df(n), =df(r),

dy b Ty
and those in the direction of 2
=df(r), =df(r)
dz ' di °
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That part of the total work done in the indefinitely small
motion of the two points, which is due to the two opposite
forces arising from their mutual action, may therefore be
expressed as follows :

df (r) df (r) df (r) arfir) ,, df(r ,,
-[dw do+ Py + Y0 ae + D+ G0 ay
+‘i’§;(?'-)dz].

But as r depends only on the six quantities z, y, ¢, 2, ¥/, 2/,
and f(r) can therefore be a function of these six quantities
only, the expression in brackets is a perfect differential, and
the work done, as far as concerns the mutual action between
the two points, may be simply expressed by the function

~df ().

In the same way may be expressed the work due to the
mutual action of every other pair of points; and the total
work done by all the forces which the points exert among
themselves is expressed by the algebraical sum

—df @) =df(r)-df (") —...;
or as it may be otherwise written, :

=dlf () +f)+f @) +...] or —dZf(r);
in which the summation must comprise as many terms as
there are combinations of moving points, two and twoe. This
sum X f(r) is then the part of the Ergal relating to the
mutual and opposite actions of all the moving points.
If we now finally add the two kinds of forces together,
we obtain, for the total work done in the indefinitely small
motion of the system of points, the equation

% (Xdo + Ydy + Zdz) = — d5 ¢ (o) —dSf (r)
=—d[2¢(p) + Zf(r)]..neen(21),

whence it follows that the quantity Z¢ (o) +=f(r) is the
Ergal of the whole of the forces acting together in the system.

The assumption lying at the root of the foregoing analy-
sis, viz. that central forces are the only ones acting, is of
course only one among all the assumptions mathematically
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possible as to the forces; but it forms a case of peculiar
importance, inasmuch as all the forces which occur in nature
may apparently be classed as central forces.

§ 8. Relation between Work and Vis Viva.

Hitherto we have only considered the forces which act on
the points, and the change in position of the points them-
selves ; their masses and their velocities have been left out
of account. We will now take these also into consideration.

The equations of motion for a freely moving point of
mass m are well known to be as follows: .

&'z dy d'z _
. mﬁ=X, mF—-I’, md—t,,— ............. (22)
If we multiply these equations respectively by
dac

and thén add, we obtain

ded’z  dyd'y  dzd’z de dy ,dz
R Pl AR A 7 )de...23).

The left-hand side of this equation may be transformed

into 7T d
Z;'aﬁ [(dz) ; .] dt,

or, if » be the velocity of the pomt,

d(m )

m d(v%) _a(m )
3 = —g—di=d (30);
and the equation becomes
m dz dy  ,dz
d(2 ) (th+Ydt+Zdt)dt..... ....... (24).

If, instead of a single freely moving point. a whole system
of £reely moving points is considered, we shall have for every

c. 2
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point a similar equation to the above; and by summation
‘we shall obtain the following:

d2‘, (X dz | Ydy Zf) Bevrevennn, (25).

Now the qua,ntity p 7—;-1;’ is"‘ the vis viva of the whole system

of points. If we take a simple expression for the vis viva,
and put

A A N (26),
tlien the equation becomes
dz dy dz
dT= z(x +Ydt+Zdt)dt ............ @n.

But the right-hand side of this equation is the expression
for the work done during the time dt. Integrate the equa-
tion from an initial time ¢, to a time ¢, and call 7, the vis
viva at time £,: then the resultino equation is

T T—f x% 4 v +z‘f;)dt ............ (28),

the meamng of whlch may be expressed as follows:

The Work done duﬁng any time by the forces acting upon
a system 1s equal to the increase of the Vis Viva of the system
during the same time.

In this expresslon a diminution of Vis Viva is of course
treated as a negative increase.

It was assumed at the commencement that all the points
were moving freely. It may, however, happen that the points
are sub_]ected to certain constraints in reference to their
motion. They may be so connected with each other that
the motion of one point shall in part determine the motion
of others; or there may be external constraints, as for in-
stance, if one of the points is compelled to move in a given
fixed plane, or on a given fixed curve, whence it will natur-

. * Translator’s Note. The vis viva of a particle is here defined as half
the mass multiplied by the square of the velocity, and not the whole mass,
as was formerly the custom.
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ally follow that all those points, which are in any connection
with it, will also be to some extent constrained in their
motion.

If these conditions of constraint can be expressed by
equations which contain only the co-ordinates of the points,
it may be proved, by methods which we will not here con-
sider more closely, that the reactions, which are implicitly
comprised in these conditions, perform no work whatever
during the motion of the points; and therefore the principle
given above, as expressing the relation between Vis Viva and
Work done, is true for constrained, as well as for free motion.
It is called the Principle of the Equivalence of Work and
Vis Viva. : '

§9. On Energy.

In equation (28), the work done in the time from ¢, to ¢
is expressed by :

te [ dz dy dz
ftoz (x5+ 7Y +2%)a,
in which ¢ is considered as the only independent variable,
and the co-ordinates of the points and the components of the
forces are taken as functions of time only. If these functions
are known (for which it is requisite that we should know the
whole course of the motion of all the points), then the inte-
gration is always possible, and the work done'can also be
determined as a function of the time.

Cases however occur, as we have seen above, in which it
is not necessary to express all the quantities as functions of
one variable, but wher® the integration may still be effected,
by writing the differential in the form 2(Xdx + Ydy + Zdz),
and considering the co-ordinates therein as independent vari-
ables. For this it is necessary that this expression should
be a perfect differential of some function of the co-ordinates,
or in other words the forces acting on the system must have
an Ergal. This Ergal, which is the negative value of the
above function, we will denote by a single letter. The letter
U is generally chosen for this purpose in works on Me-
chanics: but in the Mechanical Theory of Heat that letter
is needed to express another quantity, which will enter as

2—2
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largely into the discussion; we will therefore denote the
Ergal by J. Hence we put:

3(Xdx+ Ydy + Zdz) = — dJ...uuuneu...... (29),

whence if J; be the value of the Ergal at time ¢, we have:
t

L,E (Xdo+ Yy + 2ds) =, = T v, (30),

which expresses that the work done in any time is equal to
the decrease in the Ergal.

If we substitute J,—J for the integral in equation (28),
we have:

T—T,=J—Jor T+J=Ty+Jye..... (31);

whence we have the following principle: The sum of the Vis
Viva and of the Ergal remains constant during the motion.
This sum, which we will denote by the letter U, so that

g T (32),

is called the Energy of the system; so that the above prin-
ciple may be more shortly expressed by saying: The Energy
remains constant during the motion. This principle, which in
recent times has received a much more extended application
than formerly, and now forms one of the chief foundations of
the whole structure of physical philosophy, is known by the
name of The Principle of the Conservation of Energy.
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CHAPTER L

FIRST MAIN PRINCIPLE OF THE MECHANICAL THEORY OF
HEAT, OR PRINCIPLE OF THE EQUIVALENCE OF HEAT
AND WORK.

§ 1. Nature of Heat.

Until recently it was the generally accepted view that
Heat was a special substance, which was present in bodies in
greater or less quantity, and which produced thereby their
higher or lower temperature; which was also sent forth
from bodies, and in that case passed with immense speed
through empty space and through such cavities as ponder-
able bodies contain, in the form of what is called radiant
heat. In later days has arisen the other view that Heat is
in reality a mode of motion. According to this view, the
heat found in bodies and determining their temperature is
treated as being a motion of their ponderable atoms, in
which motion the ether existing within the bodies may also
participate ; and radiant heat is looked upon as an undulatory
motion propagated in that ether.

It is not proposed here to set forth the facts, experiments,
and inferences, through which men have been brought to
this altered view on the subject; this would entail a refer-
ence here to much which may be better described in its own
place during the course of the book. The conformity with
experience of the results deduced from this new theory will
probably serve better than anything else to establish the
foundations of the theory itself.

We will therefore start with the assumption that Heat
consists in a motion of the ultimate particles of bodies and
of ether, and that the quantity of heat is a measure of the
Vis Viva of this motion. The nature of this motion we
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shall not attempt to determine, but shall merely apply to
Heat the principle of the equivalence of Vis Viva and Work,
which applies to motion of every kind; and thus establish
a principle which may be called the first main Principle of
the Mechanical Theory of Heat.

§ 2. Positive and negative values of Mechanical Work.

In § 1 of the Introduction the mechanical work done in
the movement of a point under the action of a force was
defined to be The product of the distance moved through and
of the component of the force resolved in the direction of
motion. The work is thus positive if the component of
force in the line of motion lies on the same side of the
initial point as the element of motion, and negative if it falls
on the opposite side. From this definition of the positive
sign of mechanical work follows the - principle of the equiva-
lence of Vis Viva and Work, viz. The increase in the Vis’
Viva is equal to the work done, or equal to the increase in
total work.

The question may also be looked at from another point
of view. If a material point has once been set in motion, it
can continue. this movement, on account of its momentum,
even if the force acting on it tends in a direction opposite to
that of the motion; though its velocity, and therewith its
Vis Viva, will of course be diminishing all the time. A
material point acted on by gravity for example, if it has
received an upward impulse, can continue to move against
the force of gravity, although the latter is continually
diminishing the velocity given by the impulse. In such a
case the work, if considered as work done by the force, is
negative. Conversely however we may reckon work as-
positive in cases where a force is overcome by the momen-
tum of a previously acquired motion, as negative in cases
where the point follows the direction of the force. Applying
the form of expression introduced in § 1 of the Introduction,
in which the distinction between the two opposite directions
of the component of force is indicated by different words, we
may express the foregoing more simply as follows: we may
determine that not the work done, but the work destroyed,
by a force shall be reckoned as positive.

On this method of denoting work done, the principle of
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the equivalence of Vis Viva and Work takes the following
form : The decrease in the Vis Viva us equal to the increase in
the Work done, or The sum of the Vis Viva‘and Work done is
constant. This latter form will be found very convenient in
what follows.

In the case of such forces as have an Ergal, the meaning
of that quantity was defined (in § 6 of the Introduction) in
such a manner that we must say, ‘The Work done is equal
to the decrease in the Ergal” If we use the method of denot-
ing work just described, we must say on the contrary, ‘ The
work done is equal to the increase in the Ergal;’ and if the
constant occurring as one term of the Ergal be determined
in a particular way, we may then regard the Ergal as simply
an expression for the work done. )

§ 3. Expression for the first Fundamental Principle.

Having fixed as above what is to be the positive sign for
work done, we may now state as follows the first main
Principle of the Mechanical Theory of Heat.

In all cases where work is produced by heat, a quantity of
heat is consumed proportional to the work done; and inversely,
by the expenditure of the same amount of work the swme
quantity of heat may be produced. .

This follows, on the mechanical conception of heat, from
the equivalence of Vis Viva and Work, and is named Zhe
Principle of the Equivalence of Heat and Work. _

If heat is consumed, and work thereby produced, we may
say that heat has transformed itself into work; and con-
versely, if work is expended and heat thereby produced, we
may say that work has transformed itself into heat. Using
this mode of expression, the foregoing principle takes the
following form : Work may transform itself into heat, and heat
conversely into work, the quantity of the one bearing always a
fixed proportion to that of the other. '

This principle is established by means of many pheno-
mena which have been long recognized, and of late years
has been confirmed by so many experiments of different

kinds, that we may accept it, apart from the circumstance of |

its forming a special case of the general mechanical principle
of the Conservation of Energy, as being a principle directly
derived from experience and observation.

\
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§ 4. Numerical Relation between Heat and Work.

While the mechanical principle asserts that the changes
in the Vis Viva and in tge corresponding Work done are
actually equal to each other, the principle which expresses
the relation between Heat and Work is one of Proportion
only. The reason is that heat and work are not measured
on the same scale. Work is measured by the mechanical
unit of the kilogrammetre, whilst the unit of heat, chosen
for convenience of measurement, is That amount of heat
which 18 required to raise one kilogram of water from 0° to
1° (Centigrade). Hence the relation existing between heat
and work can be one of proportion only, and the numerical
value must be specially determined.

If this numerical value is so chosen as to give the work
corresponding to an unit of heat, it is called the Mechanical
Equivalent of Heat; if on the contrary it gives the heat
corresponding to an unit of work, it is called the Thermal
Equivalent of Work, We shall denote the former by Z, and

the latter by %,

The determination of this numerical value is effected in
different ways. It has sometimes been deduced from already
existing data, as was first done on correct principles by
Mayer (whose method will be further explained hereafter),
although, from the imperfection of the then existing data, his
result must be admitted not to have been very exact. At
other times it has been sought to determine the number by
experiments specially mafe with that view. To the dis-
tinguished English physicist Joule must be assigned the
credit of having established this value with the greatest cir-
cumspection and care. Some of his experiments, as well as
determinations carried out at a later date by others, will
more properly find their place after the development of the
theory ; and we will here confine ourselves to stating those of
Joule’s experiments which are the most readily understood,
and at the same time the most certain as to their results.

Joule measured, under various circumstances, the heat
generated by friction, and compared it with the work con-
sumed in producing the friction, for which gurpose he
employed descending weights. As accounts of these experi-
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ments are given in many books, they need not here be
described ; and it will suffice to state the results as given in
his paper, published in the Phil. Trans. for 1850.

In the first series of ex%)eriments, a very extensive one,
water was agitated in a vessel by means of a revolving paddle
wheel, which was so arranged that the whole quantity of
water could not be brought into an equal state of rotation
throughout, but the water, after being set in motion, was
continually checked by striking against fixed blades, which'
occasioned numerous eddies, and so produced a large amount
of friction. The result, expressed in English measures, is
that in order to produce an amount of heat which will raise
1 pound of water through 1 degree Fahrenheit, an amount
of work equal to 772:695 foot-pounds must be consumed.
In two other series of experiments quicksilver was agitated
in the same way, and gave a result of 774:083 foot-pounds.
Lastly, in two series of experiments pieces of cast iron were
rubbed against each other under quicksilver, by which the
heat given out was absorbed. The result was 774987 foot-
pounds.

Of all his results Joule considered those given by water
as the most accurate; and as he thought that even this
figure should be slightly reduced, to allow for the sound pro-
duced by the motion, he finally gave 772 foot-pounds as the
most probable value for the number sought.

Transforming this to French measures we obtain the
result that, To produce the quantity of heat required to raise 1
kilogramme of water through 1 degree Centigrade, work must be
consumed, to the amount of 42355 kilogrammetres. This appears
to be the most trustworthy value among those hitherto
determined, and accordingly we shall henceforward use it as
the mechanical equivalent of heat, and write

In most of our calculations it will be sufficiently accurate
to use the even number 424.

§ 5. The Mechanical Unit of Heat.

Having established the principle of the equivalence of
Heat and Work, in consequence of which these two may be

-
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opposed to each other in the same expression, we are often
in the position of having to Sum up quantities, in which
heat and work enter as terms to be added together. As,
however, heat and work are measured in different ways, we
cannot in such a case say simply that the quantity is the
sum of the work and the heat, but either that it is the sum
of the heat and of the heat-equivalent of the work, or the sum
of the work and of the work-equivalent of the heat. On
account of this inconvenience Rankine proposed to employ a
different unit for heat, viz. that amount of heat which is
equivalent to an unit of work. This unit may be called simply
the Mechanical Unit of Heat. There is an obstacle to its
general introduction in the circumstance that the unit of
heat hitherto used is a quantity which is closely connected
with the ordinary -calorimetric methods (which mainly
depend on the heating of water), so that the reductions
required are slight, and rest on measurements of the most
reliable character ; while the mechanical unit, besides need-
ing the same reductions, also requires the mechanical
equivalent of heat to be known, a requirement as yet only
approximately fulfilled. At the same time, in the theoretical
development of the Mechanical Theory of Heat, in which the
relation between heat and work often oceurs, the method of
expressing heat in mechanical units effects such important
simplifications, that the author has felt himself bound to
drop his former objections to this method, on the occasion of
the present more connected exposition of that theory. Thus
. in what follows, unless the contrary is expressly stated, it will
be always understood that heat 1s expressed in mechanical
units.

On this system of measurement the above mentioned
first main Principle of the Mechanical Theory of Heat takes
a yet more precise form, since we may say that heat and its
corresponding work are not merely proportional, but equal to
each other.

If later on it is desired to convert a quantity of heat
expressed in mechanical units back again to ordinary heat
units, all that will be necessary is to divide the number
given in mechanical units by E, the mechanical equivalent of
heat.

;.
5 .
— o S e 1 L.
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§ 6. Development of the first main Principle.

Let any body whatever be given, and let its condition as
to temperature, volume, &ec. be assumed to be known. If an
indefinitely small quantity of heat d@) is imparted to this body,
the question arises what becomes of it, and what effect 1t
produces. It may in part serve to increase the amount of
heat actually existing in the body; in part also, if in conse-
quence of the imparting of this heat the body changes its
condition, and that change includes the overcoming of some
force, it may be absorbed in the work done thereby. If we
denote the total heat existing in the body, or more briefly
the Quantity of Heat of the body, by H, and the indefinitely
small increment of this quantity by dH, and if we put dL
for the indefinitely small quantity of work done, then we can

write : .
dQ=dH +dL ......cuceeuveervveeen (D).

The forces against which the work is done may be
divided into two classes: (1) those which the molecules of
the body exert among- themselves, and which are therefore
dependent on the nature of the body itself, and (2) those
which arise from external influences, to which the body is
subjected. According to these two classes of forces, which
have to be overcome, the work done is divided into internal
and external work. If we denote these two quantities by
dJ and d W, we may put

and then the foregoing equation becomes
dQ=dH+dJ+dW ............... an. -

§ 7. Different conditions of the Quantities J, W, and H.

The internal and external work obey widely different
laws. As regards the internal work it is easy to see that if
a body, starting from any initial condition whatever, goes
through a cycle of changes, and finally returns to its original
condition again, then the internal work done in the whole
process must cancel itself exactly. For if any definite
amount, positive or negative, of internal work remained over
at the end, there must have been produced thereby either an
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equivalent quantity of external work or a change in the
body’s quantity of heat; and as the same process might be
repeated any number of times it would in the positive case
be possible to create work or heat out of nothing, and in the
negative case to get rid of work or heat without obtaining
any equivalent for it; both of which results will be at once
admitted to be impossible. If then at every return of the
body to its original condition the internal work done becomes
zero, it follows further that in any alteration whatever of the
body’s condition the internal work done can be determined
from its initial and final conditions, without needing to know
the way in which it has passed from one to the other. For
if we suppose the body to be brought successively from the
first condition to the second in several different ways, but
always to be brought back to its first condition in exactly
the same way, then the various quantities of internal work
done in different ways in the first set of changes must all be
equivalent to one and the same quantity of internal work done
in the second or return set of changes, which cannot be true
unless they are all equal to each other.

We must therefore assume that the internal forces have an
Ergal, which is a quantity fully determined by the existing
condition of the body at any time, without its being requisite
for us to know how it arrived at that condition. Thus the
internal work done is ascertained by the increment of the
Ergal, which we will call J; and for an indefinitely small
change of the body the differential dJ of the Ergal forms the
expression for the internal work, which agrees with the nota-
tion employed in equations 2 and IL )

If we now turn to the external work, we find the state of
things wholly different. Even when the initial and final
conditions of the body are given, the external work can take
very different forms. To show this by an example, let us
choose for our body a Gas, whose condition is determined by
its temperature ¢ and volume v, and let us denote the initial
values of these by ¢,, v,, and the final values by ¢,, v,; let us
also assume that ¢,>¢,, and »,>v,. Now if the cf)ange is
carried out in the f’ollowing way, viz. that the gas is first ex-
ﬁa.nded, at the temperature ¢,, from v, to v, and then is

eated, at the volume v,, from ¢, to ¢,, then the external
work will consist in overcoming the external pressure which
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corresponds to the temperature £,. On the other hand, if the
change is carried out in the following way, viz. that the gas
is first heated, at the volume v,, from ¢, to ¢,, and is then ex-
panded, at the temperature ¢,, from v, to v,, then the ex-
ternal work will consist in overcoming the external pressure
which corresponds to the temperature #,. Since the latter
pressure is greater than the former, the external work is
greater in the second case than in the first. Lastly, if we
suppose expansion and heating to succeed each other in
stages of any kind, or to take place together according to any
law, we continually obtain fresh pressures, and therewith an
endless variety in the quantities of work done with the same
initial and final conditions. '

Another simple example is as follows. Let us take a
given quantity of a liquid at temperature ¢, and transform it
into saturated vapour of the higher temperature ¢,. This
change can be carried out either by heating the liquid, as a
liquid, to ¢,, and then vaporizing it; or by vaporizing it at {,
and then heating the vapour to ¢,, compressing it at the
same time sufficiently to keep it saturated at temperature &;
or finally by allowing the vaporization to take place at any
intermediate temperature. The external work, which again
shows itself in overcoming the external pressure during the
alteration of volume, has different values in all these different
cases.

The difference in the mode of alteration which, by way
of example, has been thus described for two special classes
of bodies, may be generally expressed by saying that the
bogly can pass by dufferent paths from one condition to the
other,

Another difference, besides this, may come into play. Ifa
body in changing its condition overcomes an external resist-
ance, the latter may either be so great that the full force of
the body is required to overcome it, or it may be less than this
amount. Let us again take as example a given quantity of
a gas, which at a given temperature and volume possesses
a certain expansive force. If this gas expands, the external
resistance which it has to overcome in so doing must clearly
be smaller than the expansive force, or it would not over-
come it ; but the difference between them may be as small as
we please, and a8 a limiting case we may assume them to be

)
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equal. These may also however be cases in which this differ-
ence is a finite quantity more or less considerable. If e.g.
the vessel, in which the gas is at first confined with a given
force of expansion, is suddenly put in communication with
some space in which a smaller pressure exists, or with a
vessel which is entirely empty, then the gas in its expansion
overcomes a less external resistance than it has the power of
overcoming, or in the second case no external resistance at
all; and it performs in so doing a smaller amount of external
work than it might perform, or in the second case no external
work whatsoever. '
. In the original case, where pressure and reaction are at
-each instant equal, the gas may be compressed back again by
. exactly the same force which it has overcome in expanding.
. If however the resistance overcome is less than the force of
expansion, the gas cannot be compressed back again by the
i same amount of force. The distinction may be expressed by
‘saying that the expansion is reversible in the first case, and
not reversible in the second.

This mode of expression may be employed in other cases,
where changes of condition take place in the overcoming of
any kind of resistance, and the distinction just mentioned in
relation to the external work may be generally described as
follows: with a given change of condition the external work
may differ in amount, according as the change takes place in
a reversible or a non-reversible manner.

§ 8. Energy of the Body.

In addition to the two differentials dJ and dW, which
depend on the work done, we have on the right-hand side of
equation (IT) a third, which is the differential of H, the total
heat actually existing in the body, or its quantity of Heat.
This quantity H has clearly the property, also mentioned as
belonging to J, that it is known as soon as the condition of
the body is given, without needing to know the way in which
the body has arrived at that condition.

Since the heat existing in the body and the internal
work are on the same footing as regards the above most
important property, and since further, on account of our
ignorance as to the internal work, we generally do not know

\ibe(several amounts of these two quantities but only their

S
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sum, the author, in his first Paper on Heat, published in
1850, combined the two under one designation. Following
the same system, we will put

IR 2 £ . (3),
which changes equation (II) into
dQ =AU+ BW ......ooocovvnnnnnnn. (IT1).

The function U, first introduced by the author in the above-
mentioned paper, has been since adopted by other writers
on Heat, and as the definition given by him—that starting
from any given initial condition it expresses the sum of the
increment of the heat actually existing and of the heat con-
sumed in internal work—is somewhat long, various attempts
have been made at a shorter designation. Thomson, in his
paper of 1851%, called it the mechanical energy of a body in
a given state: Kirchoff has given it the name ¢ Function of
Activity’ (Wirkungefunction)+: lastly Zeuner, in his ‘Grund-
zlige de¥ mechanischen Wirmetheorie, published 1860, has
called the quantity U, when multiplied by the heat-equi-
valent of work, the ‘ Interior Heat’ of the body. ‘

This last name (as remarked in the author’s former work
of 1864) does not seem quite to correspond with the meaning
of U; since only one part of this quantity stands for heat
actually existing in the body, i.e. for vis viva of its molecular
motion, while the other part consists of heat which has been
consumed in doing internal work, and therefore exists as
heat no longer. In his second edition, published 1866, Zeu-
ner has made the alteration of calling U the Internal Work of
the body. The author however is unable to accept this name
any more than the other, inasmuch as it appears to be just
as objectionably limited on the other side. Of the other
two names, that of Energy, employed by Thomson, appears
very appropriate, since the quantity under consideration cor-
responds exactly with that which is denoted by the same
word in Mechanics. In what follows the quantity U will
therefore be called the Energy of the body.

There still remains one special remark to be made with
reference to the complete determination of the Ergal, and of

* Trans. Royal Soc. of Edinburgh, Vol. xx., p. 475,
+ Pogg. dnn. Vol. cur., p. 177, . . .
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the Energy which comprises the Ergal. Since the Ergal
expresses the work which the internal forces must have per-
formed, while the body was passing from any initial condition,
taken as the starting point, to its condition at the moment
under consideration, we can only determine completely the
value of the Ergal for the present condition of the body,
when we have previously ascertained once for all its initial
condition. If this has not been done, we must conceive
the function which expresses the Ergal as still contain-
ing an indeterminate constant, which depends on the initial
condition. It will be obvious that it is not always necessary
actually to write down this constant, but that we may con-
ceive it as included in the function, so long as this latter is
designated by a general symbol. Similarly we must conceive
another such indeterminate constant as included in the other
symbol which expresses the Energy of the body.

§ 9. Egquations for Finite changes of condition—Cyclical
processes. :

If we conceive the equation (III), which relates to an
indefinitely small change of condition, to be integrated for
any given finite change, or for a series of successive finite
changes, the integral of one term can be determined at once.
For the energy U, as mentioned above, depends only on the
condition of the body at the moment, and not on the way in
which it has arrived at that condition. If then we put U,
and U, for the initial and final values of U, we may write

f dU=U,-T.

Hence the equation obtained by integrating (III) may be
written:

[ae=1,- A 3 —— (4);
or if we denote by @ and W the two integrals f d@Q and f aw

which occur in this equation, and which represent respect-
ively the total heat imparted to the body during the change,
or series of changes, and the external work done, then the
equation will be

Q=U,= Uyt Werrrreerreeeerrererrennns (4a).
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As a special case, we may assume that the body under-
goes a series of changes such that it is finally brought round
to its initial condition. To such a series the author gave the
name of cyclical process. As in this case the initial and
final conditions of the body are the same, U, becomes equal
to U,, and their difference to zero. Hence for a cyclical pro-
cess equations (4) and (4a) become:

Thus in a cyclical process the total heat imparted to the
body (i.e. the algebraical sum of all the several quantities of
heat imparted in the course of the cycle, which quantities
may be partly positive, partly negative) is simply equal to
the total amount of external work performed.

§ 10. Total Heat—Latent and Specific Heat.

In former times, when heat was considered to be a sub-
stance, and when it was assumed that this substance might
exist in two different forms, which were distinguished by the
terms free and latent, a conception was introduced which was
often made use of in calculations, and which was called the
total heat of the body. By this was understood that quantity
of heat which a body must have taken up in order to pass
from a given initial condition into its present condition, and
which 18 now contained in it, partly as free, partly as latent
heat. It was supposed that this quantity of heat, if the
initial condition of the body was known, could be completely
determined from its present condition, without taking into
account the way in which that condition had been reached. -

Since, however, we have obtained in equation (4a) an
expression for the quantity of heat received by the body in
passing from its initial to its final condition, which expression -
contains the external work W, we must conclude that this _
quantity of heat, like the external work, depends not only on "
the initial and final conditions, but also on the way in which
the body has passed from the one to the other. The conception
of the total heat as a quantity depending only on the present

c. 3
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condition of the body is therefore, under the new theory, no
longer allowable.

The disappearance of heat during certain special changes
of condition, e.g. fusion and vaporization, was formerly ex-
plained, as indicated above, by supposing this heat to pass
nto a special form, in which it was no longer sensible to our
touch or to the thermometer, and in which it was therefore
called Latent Heat. This mode of explanation has also been
opposed by the author, who has laid down the principle that
all heat existing in a body is appreciable by the-touch and
by the thermometer; that the heat which disappears under
the above changes of condition exists no longer as heat, but
has been converted into work; and that the heat which
makes its appearance under the opposite changes (e.g. solidi-
fication and condensation) does not come from any concealed
source, but is newly produced by work done on the body.
Accordingly he has proposed the term Work-heat as a sub-
stitute for Latent heat in general cases.

This work, into which the heat is converted, and which
in the opposite class of changes produces heat, may be of two
kinds, internal or external. If e.g. a liquid is vaporized, the
cohesion of its molecules must be overcome, and, since the
vapour occupies a larger space than the liquid, the external
pressure must be overcome also. In accordance with these
two divisions of the work we also may divide the total work-
heat, and call the divisions the internal and external work-
heat respectively.

That quantity of heat which must be imparted to a body
in order to heat it simply, without making any change in its
density, was formerly known under the general name of free
heat, or more properly, of heat actually ezisting in the body ;
a great part of this, however, falls into the same category as
that which was formerly called latent heat, and for which the
term work-heat has been proposed. For the heating of a body
involves as a general rule a change in the arrangement of its
molecules, which change produces in general an externally
perceptible alteration of volume, but still may take place
apart from such alteration. This change of arrangement
requires a certain amount of work, which may be partly
internal, partly external; and in doing this, work-heat is
again consumed. The heat applied to the body thus serves
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in part only to increase the heat actually existing, the other
part serving as work-heat.

On these principles the author attempted to explain (by
way of example) the unusually great specific heat of water,
which is much beyond that either of ice or of steam*: the
assumption being that of the quantity of heat, which each
receives from without in" the process of heating, a larger
portion is consumed in the case of water in diminishing the
cohesion of the particles, and thus serves as work-heat.

From the foregoing it is seen to be necessary that, in
addition to the various specific heats, which shew how much
heat must be imparted to one unit-weight of a body in order
to warm it through one degree under different circumstances
(e.g. the specific heat of a solid or liquid body under ordinary
atmospheric pressure, and the specific heat of a gas at con-
stant volume or at constant pressure), we must also take into
consideration another quantity which shews by how much the
heat actually ewisting in one unit-weight of a substance (i.e.
the vis viva of the motion of its ultimate particles) ¥s increased
when the substance ts heated through one degree of temperature.
This quantity we will name the body’s true heat-capacity.

It would be advantageous to confine this term ‘heat-capa-
city’ (even if the word * true’ be not prefixed) strictly to the
heat actually existing in the body; whereas for the total heat
which must be imparted for the purpose of heating it under

any given circumstances, and of which work-heat forms a

part, the expression ‘specific heat’ might be always em-
ployed. As however the term ‘heat-capacity’ has hitherto
been usually taken to have the same signification as ‘specific
heat’ it is still necessary, in order to affix to it the above
simplified meaning, to add the epithet true.’

§ 11. Ezpression for the External Work in a particular
case.

In equation (ITI) the external work is denoted generally by

W. No special assumption is thereby made as to the nature

of the external forces which act on the body, and on which

the external work depends. It is, however, worth while to

consider one special case which occurs frequently in practice,

* Pogg. Ann. Vol. Lxxix., p. 375, and Collection of Memoirs, Vol. 1., p. 23,
' 3-<2
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and which leads to a very simple determination of the external
work, viz. the case where the only external force acting on the
body, or at least the only force which needs to be referred to
in the determination of the work, is a pressure acting on the
exterior surface of the body; and in which this pressure (as
is always the case with liquid and gaseous bodies, provided
no other forces are acting, and which may be the case even
with solid bodies) is the same at all points of the surface,
and everywhere normal to it. In this case there is no need,
in order to determine the external work, that we should
consider the body’s alterations in form and its expansion in
particular directions, but only its total alteration in volume.
As an illustrative case, let us take a cylinder, as shewn
in Fig. 1, closed by an easily moving piston P, and containing
some expansible substance, e.g. a gas, under a
pressure per unit-area represented by p. The
section of the cylinder, or the area of the piston, l
we may call a. Then the total pressure which &2
acts on the piston, and which must be overcome
in raising it, is pa. Now if the piston stands
originally at a height A above the bottom of
the cylinder, and is then lifted through an
indefinitely small distance dh, the extema%work
performed in the lifting will be expressed by

the equation
dW=padh. : Fig. L.

But if v be the volume of the gas we have
v=ah, and therefore dv=adh; whence the above equation

becomes
AW =pdv ............ ceseernrnnen (6).

This same simple form is assumed by the differential of the
external work for any form
of the body, and any kind
of expansion whatever, as
may be easily shewn as fol-
lows. Let the full line in
Fig. 2 represent the surface
of the body in its original
condition, and the dotted line
its surface after an indefi-

P T S
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nitely small change of form and volume. Let us consider
any element dw of the original surface at the point A.
Let a normal drawn to this element of surface cut the
second surface at a distance du from the first, where du
is taken as positive if the position of the second surface
is outside the space contained within the original surface,
and negative if it is inside. Now let us suppose an inde-
finite number of such normals to be drawn through every
point in the perimeter of the surface-element dw to the
second surface; there will then be marked out an indefi-
nitely small prismatic space, which has dw as its base, and
du as its height, and whose volume is therefore expressed by
dodu. This indefinitely small volume forms the part of the
increase of volume of the body corresponding to the element
of surface dw. If then we integrate the expression dwdu all
over the surface of the body, we shall obtain the whole
increase in volume, dv, of the body, and if we agree to
express integration over the surface by an integral sign with
suffix w, we may write

Now if, as before, we denote the pressure per unit of
surface by p, the pressure on the element dw will be pdo.
Therefore the part of the external work, which corresponds
to the element dw, and is described by saying that the
element under the action of the external force pdw is pushed
outwards at right angles through the distance du, will be
expressed by the product pdwdu. Integrating this over the
whole surface, we obtain for the total external work,

dwW = f.pdudm.

As p is equal over the whole surface, the equation may be
written :

dW =p f dudo,
or, by equation (7), .
’ dW =pdy, */
which is the same as equation (6) given above.
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Adopting this equation, we may give to equation (III),
for the case in which the only external force is a uniform
pressure normal to the surface, the following form :

dQ=dU +pdv....cc.cuvcuuvenn.... .

This last equation, which forms the mathematical expres-
sion most in use for the first main principle of the Mechanical
Theory of Heat, we will in the next place apply to a class of
bodies, which are distinguished for the simplicity of their
laws, and for which the equation takes accordingly a pecu-
liarly simple form, so that the required calculations can be
easily performed.
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CHAPTER IL

ON PERFECT GASES.

§ 1. The Gaseous condition of bodies.

Among the laws which characterize bodies in the gaseous
condition the foremost place must be given to those of
Mariotte and Gay Lussac, which may be expressed together
in a single equation as follows. Given a unit-weight of a
" gas, which at freezing temperature, and under any standard
pressure p, (e.g. that of the atmosphere) has the volume v,;
then if p and v be its pressure and volume at any tempera-
ture ¢ (in Centigrade measure) the. following equation will
hold :

Ppr=pY (L+at).cceeeiiiiiiininnnne. (1),

wherein the quantity a, which is usually termed the coeffi-
cient of expansion, although it really relates to the change
of pressure as well as the change of volume, has one and the
same value for every kind of gas.

Regnault has indeed recently proved by careful experi-
ment that these laws are mnot strictly accurate; but the
deviations are for permanent gases very small, and become of
importance only for gases which are capable of condensation.
It seems to follow that the laws are the more nearly exact,
the further a gas is removed, as to pressure and temperature,
from its point of condensation. Since for permanent gases
under ordinary conditions the exactness of the law is already
so great, that for most purposes of research it may be taken
as perfect, we may imagine for every gas an ultimate condi-
tion, in which the exactness is really perfect; and in what
follows we will assume this ideal condition to be actually
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reached, calling for brevity’s sake all gases, in which this is
assumed to hold, Perfect Gases.

As however the quantity a, according to Regnault’s deter-
minations, is not absolutely the same for all the gases which
have been examined, and has also somewhat different values
for one and the same gas under different conditions, the
question arises, what value we are to assign to a in the case
of perfect gases, in which such differences can no longer
appear. Here we must refer to the values of a which have
been found to be correct for various permanent gases. By
experiments made on the system of increasing the pressure
while keeping the volume constant, Regnault found the fol-
lowing numbers to be correct for various permanent gases :

Atmospheric Air......... 0-003665.
Hydrogen.................. 0-003667.
Nitrogen .........cccuvnns 0-003668.
Carbonic Oxide ......... 0-003667.

The differences here are so small, that it is of little im-
portance what choice we make; but as it was with atmo-
spheric air that Regnault made the greatest number of
experiments, and as Magnus was led in his researches to a
precisely similar result, it appears most fitting to select the
number 0:003665.

Regnault, however, by experiments made on the other
system of keeping the pressure constant and increasing the
volume, has obtained a somewhat different value for « in the
case of atmospheric air, viz. 0:0003670. He has further
observed that rarefied air gives a somewhat smaller, and com-
pressed air a somewhat larger, coefficient of expansion than
air of ordinary density. This latter circumstance has led
some physicists to the conclusion that, as rarefied air is nearer
to the perfect gaseous condition than air of ordinary density,
we ought to assume for perfect gases a smaller value than
0:003665. Against this it may be urged, that Regnault
observed no such dependence of the coefficient of expansion
on the density in the case of hydrogen, but after increasing
the density threefold obtained exuctly the same value as
before; and that he also found that hydrogen, in its devia-
tion from the laws of Mariotte and Gay Lussac, acts altogether
differently, and for the most part in exactly the opposite
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way, from atmospheric air. In these circumstances the
author considers that additional weight is given to the re-
sult taken above from the figure for atmospheric air;
since it will hardly be questioned that hydrogen is at least
as near as atmospheric air to the condition of a perfect gus,
and therefore in drawing conclusions relative to that condi-
tion the behaviour of the one is as much to be noted as that
of the other. :

It appears therefore to be the best course (so long as
fresh observations have not furnished a more satisfactory start-
ing point for wider conclusions) to adhere to the figure which,
under the pressure of one atmosphere, has been found to
agree almost exactly for atmospheric air and for hydrogen ;
and thus to write:

a=0003665=g}y....ccocucrerernnn. (2).
If we denote the reciprocal 5 by a we may also write the

equation thus;

pv=p—;-t—’9(a+t)...... .......... e (3).
And if for brevity we put:
B (4),
T=a+teuinnnniinnnn. (5),
we then obtain the equation in the form
PV=RT...ccccecconvrrninnnn.. (6).

R is here a constant which depends on the nature of the gas
and is inversely proportional to its specific gravity®. 7T
represents the temperature, provided this is measured not
from the freezing point, but from a zero point lying a degrees
lower. The temperature thus measures from —a we shall
term the Absolute Temperature, a name which will be more

® For R is proportional to the volume of a unit of weight of the gas at
sandard pressure and temperature; and is therefore inversely proportional
to the weight of a unit of volume, i.e. o the specific gravity. (Translator.)
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fully explained further on. Taking the value of a given
in equation (2) we obtain

=3am}
Q
T=213+1)

§ 2. Approzimate Principle as to Heat absorbed by Gases.

In an experiment of Gay Lussac’s, a vessel filled with air
was put in communication with an exhausted receiver of
equal size, so that half the air from the one passed over into
the other. On measuring the temperature of each half, and
comparing it with the original temperature, he found that
the air which had passed over had become heated, and the
air which remained behind had become cooled, to exactly the
same degree; so that the mean temperature was the same
after the expansion as before. He thus proved that in this
kind of expansion, in which no external work was done, no
loss of heat took place. Joule, and after him Regnault,
carried out similar experiments with greater care, and both
were led to the same result.

The principle here involved may also be deduced, without
reference to special experiments, from certain properties of
gases otherwise ascertained, and its accuracy may thus be
checked. Gases shew so marked a regularity in their beha-
viour (especially in the relation between volume, pressure,
and temperature, expressed by the law of Mariotte and Gay
Lussac), that we are thereby led to the supposition that
the mutual action between the molecules, which goes on in
the interior of solid and liquid bodies, is absent in the case
of gases ; so that heat, which in the former cases has to over-
come the internal resistances, as well as the external pressure,
in order to produce expansion, in the case of gases has to do
with external pressure alone. If this be so, then, if a gas
expands at constant temperature, only so much heat can
thereby be absorbed as is required for doing the external
work. Again, we cannot suppose that the total amount of
heat actually existing in the body is greater after it has
expanded at constant temperature than before. On these
assumptions we obtain the following principle: a permanent
gas, if it expands at a constant temperature, absorbs only
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80 much heat as s required for the external work which it
performs in so doing.

We cannot of course give to this principle any greater
validity than that of the principles from which it springs,
but must rather suppose that for any given gas it is true to
the same extent onf)y in which the law of Mariotte and Gay
Lussac is true. It is only for perfect gases that its absolute
accuracy may be assumed. It is on this understanding that
the author brought this principle into application, combined
it as an approximate assumption with the two main princi-
ples of the Mechanical Theory of Heat, and used it for
establishing more extended conclusions.

More recently Mr, now Sir William Thomson, who at first
did not agree with one of the conclusions so deduced, under-
took in conjunction with Joule to test experimentally the
accuracy of the principle*; and for this purpose instituted
with great care a series of skilfully conceived experiments,
which, on dccount of their importance, will be more fully and
exactly discussed further on. These have completely con-
firmed the truth not only of the general principle, but also of
the remark added by the author as to its degree of exactness.
In the permanent gases on which they experimented, viz.
atmospheric air and hydrogen, the principle was found so
nearly exact that the deviations might for the purpose of
most calculations be neglected; while in the non-permanent
gas selected for experiment (Carbonic Acid) somewhat greater
deviations were observed, exactly as might have been ex-
pected from the behaviour of that gas in other respects.

After this we may with the less scruple apply the princi-
gle, as being exact for actually existing gases in the same

egree as the law of Mariotte and Gay Lussac, and absolutely
exact in the case of perfect gases. :

§ 3. On the Form which the Equation expressing the
Jirst main Principle assumes, in the case of perfect gases.
We now return to equation (IV), viz. :
dQ =dU + pdv,

in order to apply it to the case of a perfect gas, of which we
assume as before one unit of weight to be given.

* Phil. Trans. 1853, 1854, 1862.
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The condition of the gas is completely determined, when -
its temperature and volume are known ; or it may be deter-
mined by its temperature and pressure, or by its volume and
pressure. We will at present choose the first-named quan-
tities, temperature and volume, to determine the condition,
and accordingly treat T' and v as the independent variables,
on which all other quantities relating to the condition of the
gas depend. If then we regard the energy U of the gas as
being also a function of these two variables, we may write

=" ar 4+ ‘-’tgdv, [ dmewr )

ar d
whence equation (I'V) becomes
aUu aU
dQ=G7dT+ (EF* p)dv ............. (8).

This equation, which in the above form holds not only
for a gas, but for any body whose condition is determined
by its temperature and volume, may be considerably simpli-
fied for gaseous bodies, on account of their peculiar proper-
ties.

The quantity of heat, which a gas must absorb in ex-
panding at constant temperature through a volume dv, is

generally denoted by %% dv. As by the approximate assump-

tion of the last Section this heat is equal to the work done
in the expansion, which is expressed by pdv, we have the

equation : a0 a0
I dv=pdy, or o 2

But from equation (8)

dQ _aU
dyv  dv

hence from the last two equations we obtain

+p:

-d_l-l = 0 ........................... (9).
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Hence we conclude that in a perfect gas the energy U is
independent of the volume, and can only be a function of
the temperature,

If in equ:;.tion (8) we put %g= 0, and substitute for

Z—;f, the symbol C,, it becomes .
dQ=C,dT+ pdy.........cu.ccuuv... (10).

From the form of this equation we see that C, denotes
the Specific Heat of the Gas at constant volume, since CdT
expresses the quantity of heat which must be imparted to
the gas in order to heat it from 7' to 7'+ d7, when dv is

equal to zero. As this Specific Heat =%, ie. is the differ-

ential coefficient with respect to temperature of a function of
the temperature only, it can itself also be only a function of
temperature.

In equation (10) all the three quantities T, v, and p are
found; but since by equation (6) pv=Rf, it is easy to
eliminate one of them ; and by eliminating each in succession
we obtain three different forms of the equation.

Eliminating p we obtain,

Q= car+ . ............ ).

Again, to eliminate v we putv = I%T; whence we have

dwv=Lq7 LT 4,
: p p
If we substitute this value of dv in equation (10), and
then combine the two terms of the equation which contain
dT, we obtain 2
T

dQ=(Co+ BYdT =2 dperesvves o (12).

Lastly, to eliminate 7, we obtain from equation (6), by
differentiation,
dT = vdp + pdv
=—tp—.



406 ON THE MECHANICAL THEORY OF HEAT.

Substituting in equation (10)

C, C,+R
dQ = i vdp + ~R pdvceennnn.. (13).

§ 4. Deductions as to the two Specific Heats, and
transformation of the foregoing equations.

In the same way as we see from equation (10) that the
quantity C,, which appears as factor of d7, denotes the
specific heat at constant temperature, we may see from
equation (12) that the factor of d7 in that equation, viz.
C, + R, expresses the Specific Heat at constant pressure. If
therefore we denote this Specific Heat by C, we may put

Co=C,+R...couuvvvvianinennes (14),

which equation gives the relation between the two Specific
Heats.

Since R is a constant, and C,, as shewn above, is a func-
tion of temperature only, it follows from equation (14) that
C, also can only be a function of temperature.

When the author first drew in this manner from the
Mechanical Theory of Heat the conclusion that the two
Specific Heats of a permanent gas must be independent of
its density, or in other words of the pressure to which it is
subjected, and could depend only on its temperature; and
when he added the further remark that they were thus in all
probability constant; he found himself in opposition to the
then prevailing views on the subject. At that time it was
considered to be established from the experiments of Suer-
mann, and from those of de la Roche and Bérard, that the
specific heat of a gas depended on the pressure; and the
circumstance that the new theory led to an opposite conclu-
sion produced mistrust of the theory itself, and was used by
A. von Holtzmann as a weapon of attack against it.

Some years later, however, followed the first publication
of the splendid ex]})]eriments of Regnault on the specific
heat of gases®, in which the influence of pressure and tem-
perature on the specific heat was made a subject of special

- l. Comptes Rendus, Vol. xxxvr.,, 18568; also Relation des expériences,
ol. 1.
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investigation. Regnault tested atmospheric air at pressures
from 1 to 12 atmospheres, and hydrogen at from 1 to 9 at-
mospheres, but could detect no difference in their specific
heats. He tested them also at different temperatures, viz.
between — 30° and + 10°, between 0° and 100°, and between
(" and 200°; and here also he found the specific heat always
the same®. The result of his experiments may thus be ex-
pressed by saying that, within the limits of pressure and
temperature to which his observations extended, the specific
heat of permanent gases was found to be constant.

It is true that these direct explanatory researches were
confined to the specific heat at constant pressure; but there
will be little scruple raised as to assuming the same to be
correct for the other specific heat, which by equation (14)
differs from the former only by the constant B. Accordingly
in what follows we shall treat the two specific heats, at least
for perfect gases, as being constant quantities.

y help of equation (14) we may transform the three
equations (11), (12) and (13), which express the first main
principle of the Mechanical Theory of Heat as applied to
gases, in such a way that they may contain, insteaf of the
Specific Heat at constant volume, the Specific Heat at con-
stant density ; which may perbaps appear more suitable, since
the latter, as being determined by direct observation, ought
to be used more frequently than the former. The resulting
equations are:

dQ = (C, - R)dT +%1-'dv]

dQ=C,dT- %po RN )
C,-R_, . C,

dQ ="27"vdp + Zpdo [

Lastly, we may introduce both Specific Heats into the
equations, and eliminate R, by which means the resulting

* The numbers obtained for atmospherioe air (Rel. des Exp. Vol. 1r., p.108)
are as follows in ordinary heat units:
between —30°and + 10°  0-23771,
" 0 , 1000 023741,
. " 0 ,, 2080 023751,
which may be taken as practically the same.
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equations become symmetrical as to p and v, as follows:
T
dQ=GgT+(C,-C,) i

dQ=C,dT+ (o,-o,)%' dp b (16).

C, C,
Q= =0, vdp + C,—U,pdv

In the above equations the specitic heats are expressed
in mechanical units. If we wish to express them in ordinary
heat units, we have only to divide these values by the
Mechanical Equivalent of Heat. Thus if we denote the
specific heats, as expressed in ordinary heat units, by ¢, and
¢,, we may put

C, C
C,= F y G, = -EE ................... (17).

Applying these equations to equation (14), and dividing
by E, we have

R
Cp= Oyt Joeesuennsnesnnnneniniiniines (18).

§ 5. Relation between the two Specific Heats, and its
application to calculate the Mechanical Equivalent of Heat.

If a system of Sound-waves spreads itself through any gas,
e.g. atmospheric air, the gas becomes in turn condensed and
rarefied; and the velocity withr which the sound spreads
depends, as was seen by Newton, on the nature of the changes
of pressure produced by these changes of density. For very
small changes of density and pressure the relation between
the two is expressed by the differential coefficient of the
pressure with respect to the density, or (if the density, i.e. the
weight of a unit of volume, is denoted by p) by the differential

coefficient gﬁ Applying this principle we obtain for the

velocity of sound, which we will call u, the following equa-
tion :

in which g represents the accelerating force of gravity.
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Now in order to determine the value of the differential
coefficient gﬂ Newton used the law of Mariotte®, according to
which pressure and density are proportional to each other.

He therefore put P _ constant, whence by differentiation :

p
pdp —pdp _ 0,
pi
and therefore
dp_p
B SN 20);
Pz (20)

whence (19) becomes

u=@... ..................... (21).

The velocity calculated by this formula did not however agree
with experiment, and the reason of this divergence, after it
had been long sought for in vain, was at last discovered by
Laplace.

The law of Mariotte in fact holds only if the change of
density takes place at constant temperature. But 1n sound
vibrations this is not the case, since in every condensation
a heating of the air takes place, and in every rarefaction a
cooling. Accordingly at each condensation the pressure is
increased, and at each rarefaction diminished, to a greater
extent than accords with Mariotte’s law. The question now

arises how, under these circumstances, can the value of j’;
be determined.

Since the condensations and rarefactions follow each other
with great rapidity, the exchange of heat that can take place
during each short period between the condensed and rarefied
parts of the gas must be very small. Neglecting this, we
have to do with a change of density, in which the quantity of
gas under consideration receives no heat and gives forth none;
and we may thus, in applying to this case the differential equa-

. This law is commonly known in England as ¢ Boyle’s law,’ as being
originally due to Boyle. (I'ranslator.)
C : 4
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tions of the last section, put dQ = 0. Hence, e.g. from the last
of equations (16), we obtain:

C, C, _
= C,'vdp + C’,:C_Pdv" 0,
or Cvdp + C,pdv = 0.
Now, since the volume v of one unit of weight is the re-

ciprocal of the density, we may put v=,1—), and therefore

dv =:5‘,i£ ; whence the equation becomes

c i"£-0,,’°j!’=o,

P
dp_GC, P ' 5
or Bp= Gl rrmmemmesemeseenss (22).
This value of the Differential Coefficient dp diﬁ'ers from that

dp
deduced from Mariotte’s law, and given in (20), by containing
as factor the ratio of the two Specific Heats. If for simplicity
we put
C

LT SRR (23),
the last equation becomes
dp _.P
SE=kh 24).
a =k, (24)

Substituting this value of %1; in equation (19), we get instead

of (21)
u——,\/k Do, 25).
‘qp (25)

From this equation the velocity of sound u can be calculated
if k is known; or, on the other hand, if the velocity of sound

is known by experiment, we can apply the equation to calcu-
late k, changing it firs: into the form
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The velocity of sound in air has been several times deter-
mined with great care by various physicists, whose results
agree with each other very closely. According to the experi-
ments of Bravais and Martens®* the velocity at freezing tem-
perature is 332'4 m. per second (10906 feet). We will in-
sert this value in equation (26). We may also give g its
recognized value 9809 m. (322 feet). To determine the

quotient £ we may give the pressure p any value we please,

but we must then assign to the density p the value corre-
sponding to that pressure. We will assume p to be the
pressure of 1 atmosphere. This must be expressed in the
formula by the amount of weight supported per unit of
surface. As this weight is equal to that of a column of
quicksilver, whose base is 1 sq. m. and height 760 mm., and
which therefore has a volume of 760 cubic gecimetres, and as,
according to Regnault, the Specific Weight of quicksilver at
(", as' compared with water at 4° is 13:596, we obtain

p=1 atmosphere =760 x 13:596 = 10333 kg. per sq. metre.

Lastly, p is the weight of a cubic metre of air under the
assumedp pressure of 1 atmosphere and at temperature 0°,
which, according to Regnault, is 12932 kg. Substituting
these values in equation (26) we obtain

_(3324)'x 12932 .
o= 9809 x 10333 1410.

_ Having thus determined the quantity % for atmospheric
air, we can now use equation (18) to calculate the quantity £,
Le. the Mechanical Equivalent of Heat, as was first done by
Mayer. For we have from (18)

and, if we again denote by % the quotient %, which is the

* Ann. de Chim. 111,, 18, 5; and Pogg. 4nn. Vol. Lxv1., p. 851,
4—2



52 ON THE MECHANICAL THEORY OF HEAT.

same as %‘-’ , and accordingly substitute c_];, for c,, we have
kR
E — (_k-:—l.j—-c—; ---------------------- (27)

Here we may substitute for % its value 1:410 just found,
and for ¢, its value as given by Regnault, 0:2375. It then
remains to determine R, or pL:". To do this, let us again
take p, as the pressure of 1 atmosphere, which, as seen above,
is equal to 10333, and we then have for v, the volume in
cubic metres of 1 kg. of air under the above pressure of
1 atmosphere and at temperature 0°, which according to
Regnault is 0°7733. Lastly we have already assumed the
value of a to be 273. The value of R for atmospheric air
will therefore be given by the equation

R= 10333 >:_0'7733 — 2997,
273

Substituting these values for %, ¢,, and R in equation (27)
we obtain

1-410 x 29-27
0410 x 0-2375
This figure agrees very closely with that determined by
Joule from the friction of water, viz. 423'55. In fact it
must be admitted that the agreement is more close than,
considering the degree of uncertainty as to the data used in
the calculation, we could have had any right to expect; so
that chance must have assisted in some degree to produce it.

In any case, however, the agreement forms a striking con-
firmation of the equations deduced for permanent gases.

E= =4238.

G § 6. Various Formule relating to the Specific Heats of
ases.

If in equation (18), p. 48, we consider the quantity £ as
known, we may apply that equation to calculate the specific
heat at constant volume from that at constant pressure, which
is known from experiment. This application is of special
importance, because the method of deducing the ratio of the
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two specific heats from the velocity of sound is only prac-
ticable in the case of the very few gases for which that
velocity has been experimentally determined. For all others,
equation (18) offers the only means as yet discovered of
calculating the specific heat at constant volume from that
at constant pressure.

It must here be observed that equation (18) is exactly
true only for perfect gases, although it gives at least approxi-
mate results for other gases. The circumstance has also to
be considered, that the determination of the specific heat of
a gas at constant pressure is the more difficult, and therefore
the value determined the less reliable, in proportion as the
gas is less permanent in its character, and thus diverges
more widely in its behaviour from the laws of a perfect gas;
therefore, as there is no need to seek in our calculations a
greater accuracy than the experimental values themselves
can possibly possess, we may treat the mode of calculation
employed as sufficiently complete for our purpose.

Accordingly we begin by putting equation (18) in the form

c,=c,—% ................ veeeer (28).

Here for E we shall use the value 428'55. R is determined
by equation (4) :
R=P%
a »

where p,v, are the pressure and volume at the temperature of
freezing. Should it be difficult to make observations on the
gas at this temperature (as is the case with many vapours)
we may also, by equation (6), give R the value

where p, v, and T are any three corresponding values of
pressure, volume, and absolute temperature.

This quantity R, as already observed, is only so far depen-
dent on the nature of the gas, that it is inversely proportional
to its specific gravity. For if we denote by v’ the volume
of a unit of weight of air at temperature 7' and pressure p,
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and by R’ the corresponding value of B, we have
_
yid T
Combining this with equation (29),
R=R>.
v

But 3, is the ratio of the volumes of equal weights of the two

gases, and is therefore the reciprocal of the ratio of the
weights of equal volumes, which ratio is called the Specific
Gravity of the gas, as comlﬁa,red with common air. If we
call this specific gravity d, the last equation becomes
/4 :
R= s (30).

Substituting this value of R in (28) we obtain

Oy = Cp = g eeevereesnnenesnesnes (31).

The quantity here denoted by R', i.e. the value of R for
atmospheric air, has been already determined in § 5 to be
equal to 29'27. Hence further,

B _ 2927
E ™ 42355

whence the equation, which serves to determine the Specific
Heat at constant volume, takes this simple form :

= 00691,

If in the next place we apply this equation to the case of air,
for which d=1, and for the sake of distinction denote by
accented letters the two specific heats for air, we get the
following equation :

¢ =c¢,—00691 ........ccunuue.es (33),
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and substituting for ¢, its value according to Regnault,
which is 0-2375, we obtain the result

¢, = 02375 — 00691 =0-1684......... (B34)*.

For the other gases the equation may be given in the
following form : '
c,d —00691 «
c, = ——d—' .................. (30),

which, as will be seen later, is specially convenient for the
application of the values given by Regnault for specific
heats at constant pressure.

The specific heats denoted by ¢, and ¢, relate to a unit
of weight of the gas, and have for unit the ordinary unit of
heat, 1.e. the quantity of heat required to raise a unit of
weight of water from the temperature 0° to 1°.° We may
thus say that the gas, in relation to the heat which it
requires to raise its temperature either at constant pressure
or constant volume, is referred as regards weight to the
standard of waiter.

With gases however it is desirable to refer to the
standard of air as regards volume; i.e. so to determine the

ific heat, as to compare the quantity of heat, which

e gas requires to raise its temperature through 1°, with the
quantity of heat which an equal volume of air, taken at the
same temperature and pressure, requires to raise its tempe-
rature to the same extent. We may use this kind of
comparison in the case of both the specific heats, inasmuch
a8 we assume in the one case that both the gas under con-
sideration and the atmospheric air are heated at constant
pressure, and in the other that they are both heated at
constant volume. The specific heats thus determined may
be denoted by v, and 7y,

As we denote by v the volume which a unit weight of gas
assumes at a given pressure and temperature, the quantity of
heat, which a unit-volume of the gas absorbs at constant

pressure in being heated through 1° will be expressed by %7

* It will be seen that ¢,’ and ¢,’ fulfil the condition found above for
perfect gases; {—’ =1410. (Translator.)
'Y



56 ON THE MECHANICAL THEORY OF HEAT.

’

or in the case of atmospheric air by %’3 The specific heat

v, is found by dividing the former quantity by the latter, or,

{17 ’
V6 Y 6
BT T = F K= D (36)
Similarly oy, = ci AT (37).

In the first of these two equations we may give to ¢/, its
value as found by Regnault, 0:2375; the equation then
becomes

c,d

Ty =gy (38).

In the second we may put for ¢,, according to (341)], the

value 01684, and for ¢, the expression given in (35); whence
we have

_c,d—00691 (36

Vo= EGTERE .

§ 7. Numerical Calculation of the Specific Heat at con-
stant Volume.

The formul® developed in the last section have been
applied by the author to calculate from the values which
Regnault has determined by his researches for the Specific
Heat at constant Pressure of a large number of gases and
vapours, the corresponding values of the Specific Heat at
constant Volume. In so doing he has in some sort recal-
culated one of the two series of numbers given by Regnault
himself; who has expressed the Specific Heat at constant
Pressure in two different ways, and has brought together the
resulting numbers in two series, one of which is superscribed
‘en poids,” and the other ‘en volume.’ The first series con-
tains the values which result, if the gases in question are
compared weight by weight with water, in relation to the
quantity of heat required to warm them through 1°; in other
words, the values of the quantities denoted above byc,. The
numbers in the second series are simply obtained from those
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‘in the first by multiplying them by the corresponding specific
gravity, i. e. they are the values of the product c,d.

These latter numbers were no doubt those most easily
calculated from the observed values of c,; but their signi-
fieation is somewhat complicated. With them the quan-
tity of heat has for its unit the ordinary unit of heat, whilst
the volume to which they refer is that which a unit-weight
of atmospheric air assumes, when under the same tempera-
ture and pressure as the gas under consideration. The tedious-
ness of the verbal description thus required makes the
numbers troublesome to understand and to apply ; moreover
this mode of expressing the Specific Heat of gases has been
used, so far as the author knows, by no previous writer. In
considering gases with reference to volume, it has in all other
cases been customary to compare the quantity of heat, which
a given gas requires to raise 1ts temperature through 1°, with
the quantity of heat which an equal volume of atmospheric
air requires under the same conditions for the same purpose,
or, as briefly expressed above, by comparing the gas, volume
Jor volume, with air. The numbers thus obtained are re-
markable for their simplicity, and allow the laws which
hold as to the specific geats of the gas to be treated with
special clearness.

It will therefore, the author believes, be found an ad-
vantage that he has calculated, from the values given by
Regnault under the heading ‘en volume’ for the product
¢,d, the values of the quantity «,, defined above. All that
was required for this, by (38), was to divide the values of ¢,d
by 0-2375.

He has further calculated the values of ¢, and v, ; calcula-
tions which by equations (35) and (39) could be very simply
performed, by taking from the values of the product ¢,d the
number 0°0691, and dividing the remainder by d, or by
01684, respectively.

The numerical values thus calculated are brought together
in the annexed table, in which the different columns have the
following signification :

Column I. gives the name of the gas.

Column II. gives the Chemical composition, and this
expressed in such a way that the diminution of volume pro-
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duced by the combination can be immediately observed. For
in each case those volumes of the simple gas are given, which
must combine in order to give Two Volumes of the compound
gas. Thus we assume for Carbon, as a gas, such an hypothe-
tical volume as we must assume, in order to say that one
volume of Carbon unites with one volume of Oxygen to make
Carbonic Oxide, or with two volumes to make Carbonic
acid. Again, when, e.g. Alcohol is denoted in the Table by
C,H,O, this means that two volumes of the hypothetical car-
bon gas, six volumes of Hydrogen, and one volume of Oxygen,
make up together two volumes of Alcoholic vapour. For
sulphur-gas the specific gravity used to determine its volume
is that found by Sainte-Claire Deville and Troost for very
high temperatures, viz. 2'23. In the five last combinations
in the Table, which contain Silicon, Phosphorus, Arsenic,
Titanium, and Tin, these simple elements are denoted by
their ordinary chemical signs, without reference to their
volumes in the gaseous condition, because the gaseous
volumes of these elements are partly still unknown, ly
hampered with certain irregularities not yet thoroughly cleared

up.

Column III. gives the Density of the gas, using the values
given by Regnault.

Column IV. gives the Specific Heat at constant Pressure
as compared, weight for weight, with water, or in other words
referred to a unit-weight of the gas and expressed in ordinary
units of heat. These are the numbers given by Regnault
under the heading ‘ en poids.’

Column V. gives the Specific Heat at constant Pressure
compared, volume for volume, with air, calculated by divid-
ing by 02375 the numbers given by Regnault under the
heading ‘en volume.

Column V1. gives the Specific Heat at constant Volume
compared, weight for weight, with water, calculated by equa-
tion (35).

Column VII. gives the Specific Heat at constant Volume
compared, volume for volume, with air, calculated by equation
(39).
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weight ume for| weight volume for
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Water, | With Air. | yrage, | With Air
Atmospherie Air ...... 1 - 02375 | 1 01684 | 1
OXYgen ......covvvennnnnn 0O, 11056 | 0021751 1-013 | 0°1551 1-018
Nitrogen .......cc.c...... N 09713 | 0-24380| 0-997 | 0:1727 0-996
Hydrogen... ... H, 00692 | 3-40900| 0-993 | 2411 | 0990
Chlorine .......e..u...... Clg 2:4502 | 0-12099| 1-248 | 0-0928 1-350
Bromine................. Br, 5-4772 | 0-056552| 1-280 | 0-0429 1-395
Nitrie Oxide .. N 6 1-0384 | 0-2317 1-013 | 0-1652 1-018
Carbonic Ozxide......... co 09673 | 0-2450 0-998 | 0-1736 0-997
Hydrochloric Acid..... HCl 1-2596 | 0-1852 0-982 | 0-1304 0-975
Carbonic Acid.......... CO, 1-5201 | 02169 | 1-89 | 0-172 1-56
Nitrio Acid. ............. 1-5241 | 0-2262 1-45 0-181 1-64
Steam ............ 0-6219 | 0-4805 1-26 0:370 1-36
Bulphuric Acid 22113 | 0-1544 1-44 0-123 162
Hydro-sulphuric Acid.| Hg 8 1-1747 | 0-2432 1-20 0-184 1-29
Carbonic di-sulphide .| C ﬁ 26258 | 0-1569 174 0-131 2:04
Carburetted Hydrogen| C ff‘ 05527 | 0°5929 | 1-38 | 0-468 1-54
Chloroform ............. CHCl, | 4:1244 | 0-1567 2:72 0-140 343
Olefiant Gas............ C,H, 09672 | 04040 175 0-359 2:06
Ammonisa ............... NH; 0-5894 | 0-5084 1-26 0-391 1-37
Benzine........c......... CsH 2:6942 | 0-3754 | 4-26 | 0350 560
Oil of Turpentine...... CioH,, | 46978 | 0-5061 | 1001 | 0-491 | 1371
Wood Spirit ............ CH,8 | 11055 | 04580 | 213 | 0395 | 260
Aleohol......... C,H,0 | 15890 | 0-4534 | 303 | 0410 | 387
Ether..................... C,H,,0 | 2:5573 | 04797 | 516 | 0453 | 687
Ethyl Sulphide......... C,H, S | 31101 | 04008 | 525 |0379 | 699
Ethyl Chloride. ........ C,H,Cl| 22269 | 0-2738 | 2:57 | 0243 | 3-21
Ethyl Bromide......... C,H;Br| 8-7058 | 0-1896 2:96 0171 376
Dutch Liquid........... C,H,Cl,| 3-4174 | 02293 | 3:30 | 0209 | 424
Aceton..........coevn.n. C,H,O | 20036 | 04125 | 348 | 0378 | 450
Butyric Acid............ C’ HgO, | 3:0400 | 0-4008 513 0-378 682
Tri-chloride of Silicon| 81Cly 58833 | 0-1322 | 3-27 .| 0-120 421
T';ﬁf)“r‘;:‘de of Phos-}l poy | 47464 | 01347 | 269 | 0120 | 389
Tri-chlorideof Arsenic| AsCl; | 6:2667 | 0-1122 | 296 | 0:101 377
T°{::;§‘;}f’}"df Ol el | 66402 | 01200 | 861 | 0110 | 467
Tetra-chloride of Tin.| 8nCl, | 89654 | 00939 | 854 | 0-086 4-59
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§ 8. Integration of the Differential Equations which ex-
press the first main Principle in the case of Gases.

The differential equations deduced in sections 3 and 4, which
in various forms express the first main principle of the Mechani-
cal Theory of Heat in the case of gases, are not immediately
integrable, as can be seen by inspection; and must therefore
be treated after the method developed in § 3 of the Introduc-
tion. In other words, the integration becomes possible as
soon as we subject the variables occurring in the equation to
some one condition, thus determining the path of the change
of condition of the body. We shall here give only two very
simple examples of the process, the results of which are
important for our further investigations.

Ezample 1. The gas changes its volume at Constant
Pressure, and the quantity of heat required for such change is .
known.

In this case we select from the above equations one which
contains p and v as independent variables, e.g. the last of
Equations (15), which is '

= Cv_ B Op
dQ = v vdp + & bav.

As the pressure p is to be constant, we put p=p,, and
dp = 0; the equation then becomes

C,
dQ = i v,

which gives on integration (if we call v, the original value
of v)

C
D 7 A AL (40).

Ezample 2. The gas changes its volume at Constant
Temperature, and the quantity of heat required for such
change is known.

In this case we select an equation which contains 7' and v
as independent variables, e.g. Equation (11), which is

aQ=0ar+ 2L .
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As T'is to be constant, we put 7= 7, and dT'=0; whence
we have

iQ=RT,%.
Integrating, '
Q=RTllog§‘.... ................. (41)

Hence is derived the Principle that if a Gas changes its
volume without change of temperature, the quantities of heat
absorbed or given off form an arithmetical series, while the
volumes form a geometrical series.

Again, if we put for R its value %—,’i‘ , we have
1

If we suppose this equation to refer, not directly to a unit
weight of the gas, but to a quantity of it such that at pressure
p it assumes a volume v,, and then suppose that this volume
changes under constant temperature to v, then the equation
contains nothing which depends on the special nature of the
gas. Therefore the quantity of heat absorbed is independent
of the nature of the gas. Further, it does not depend on the
temperature, but only on the pressure, being proportional to
the original pressure.

Another application of the differential equations deduced
in sections 3 and 4 consists in making some assumption as
to the heat to be imparted to the gas during its change
of condition, and then enquiring what course the change of
condition will take under such circumstances. The simplest
and at the same time most important assumption of this kind
is that no heat whatever is tmparted to or taken from the gas
during its change of condition. For this purpose we may
imagine the gas confined in a vessel impermeable to heat, or
that the change is so rapid that no appreciable heat can pass
to or from the gas in the time.
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On this assumption we must put d@ =0. Let us do
{;)l;is for the three Equations (16). Then the first of these
comes

CAT+(C,=C) =0
Dividing by T x C,, and as before denoting %—’ by %, we have

aT dv

Integrating,
log T+ (k — 1) log v = Const.

or v ! = Const.
If T, v, are the original values of 7', v, we may eliminate the
Constant, and obtain

T 0) k-1

7= (;) ........................ (43)

1

If this equation be applied for example to atmospheric air,
then, writing &= 1410, we can easily calculate the change of
temperature which corresponds to any given change of
volume. If e.g. we assume a certain quantity of air to be
taken at freezing temperature and at any pressure whatever,
and to be compressed, either in a vesse{) impermeable to
heat, or with great rapidity, to half its volume, then T, =273

(absolute temperature) and ) ; hence the equation be-
v

comes

T _ oo _1.
§7§—2° = 1329,

whence T =273 x 1'329 = 363,

'or.if ¢ be the temperature measured in degrees above freezing

point,
t=T-273=00

If a similar calculation is made for the compression of the
gas to } and {4 of its original volume, results are obtained,
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which, combined with the former, are presented in the follow-

ing Table,
Value of
v 1 1 L
;,‘1 2 4 10
. 1-329 1-765 2570
273
T 363 482 702
t 90° 209° 429°

Again, if in the second of equations (16) we put dQ =0,
we get :

CdT+(C,— 0,)1'dp= 0.

This equation is of the same form as the last, except that
? 18 in the place of v, and that C, and C, have their places

mterchanged. Hence in exactly the same way we shall
obtain,

whence —-)‘t = .. (44).

Finally the last of Equations (16),if 4@ be put = 0, passes
into the form already treated in § 5:

¢
T-0 ”dl”“c g pd=0;

which may be written
-7—’ +k @ =0,

and gives on integratlon

-gf('_3)",,.,....................(45).
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§ 9. Determination of the External Work done during
the change of volume of a gas. '

There is one quantity connected with the expansion of a
gas which still requires to be specially considered, viz. the
External Work done in the process. The element of this
work, as determined in Equation (6), Ch. I, is

AW =pdv.

This work may be very clearly set forth by a graphic
representation. We will adopt a rectangular system of co-or-
dinates, in which the abscissa represents the volume v, and the
ordinate the pressure p. Ifwe now suppose p to be expressed
as a function of v, say p=F£(v), then this equation is the
equation to a curve, whose ordinates express the values of
corresponding to the different values of v, and which for
brevity we will call the Pressure-curve. In Fig. 3 let 73 be
this curve, so that, if oe repre- '
sent the volume v existing at r
a certain instant, the ordinate ARY
ef drawn at e will represent
the pressure at the same in-
stant. If further eg represent fh
an indefinitely small element d
of volume dv, and the ordinate P
gh is drawn at g, then we shall

ave an indefinitely small para-
lellogram efhg, whose area re- ,\
presents the external work
done in an indefinitely small Fig. 3.
expansion of the body; and
which differs from the product pdv onlﬁ by an indefinitely
small quantity of the second order, which may be neglected.
The same holds for any other indefinitely small expansion;
and hence in the case of a finite expansion (say from the
volume v,, represented by the abscissa oa, to that of v,, repre-
sented by the abscissa oc) the external work, for which we
have the equation
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is represented by the quadrangular figure abde, which is
bounded by the difference of abscissee ac, the ordinates ab
and cd, and the portion of the pressure-curve bd. '

In order actually to perform the integration in equation
(46) we must know the function of v which expresses the
pressure p. On this point we will select as examples the cases
already treated in § 8.

First, let us assume that the Pressure p is constant.
Then the curve of pressure is a straight line parallel to the
axis of z, and abdc is a rectangle (see Fig. 4) whose area is

b
b 1
d
a [ o 2 ¢
Fig. 4. Fig. 5.

equal to the product of ac and ab. In this case then we
obtain from (46), denoting the constant pressure by p,,

W=p, (t,=0,) ceeerrrnirnnrnnnannes 47).

Secondly, let us assume that the Temperature remains
constant during the expansion of the gas. Then the law of
Mariotte holds for the relation between pressure and volume,
and is expressed by the equation

pv = const,

From .the form of this equation we see that the curve of
pressure is an equilateral hyperbola (Fig. 5) having the axes
of co-ordinates as asymptotes. A pressure-curve of this kind,
which involves the special condition that the temperature is
constant, is usually called an Isothermal Curve. '

To effect the integration in this case we may write for p

c. 5
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the value Bg—‘, where p,v, is any value obtained for the con-

stant in the above equation; we then get from (46):

W=pp, f

n

LY/

2 . Y
5 — P log 5 eeens (48).

We observe that this value of W coincides with that given
in equation (42) for @ ; the reason for this being that the gas,
while expanding at constant temperature, absorbs only so
much heat as is required for the external work.

Joule has employed the equation (48) in one of his deter-
minations of the Mechanical Equivalent of Heat. For this
purpose he forced atmospheric air into a strong receiver, up
to ten or twenty times its normal density. The receiver and
pump were meantime kept under water, so that all the heat
which was developed in pumping could be measured in the
water. The apparatus is represented in Fig. 6, in which R is
the receiver, and C the pump. The vessel G, as will be
easily understood, was useg for the drying of the air, and the
vessel with the spiral tube served to give to the air, before its
entrance into the pump, an exactly known temperature.
From the total quantity of heat given in the calorimeter
Joule subtracted the part due to the friction of the pump,
the amount of which he determined by working the pump
for exactly the same length of time, and under the same
mean pressure, but without allowing the entrance of air, and
then observing the heat produced. The remainder, after this
was subtracted, he took as being the quantity of heat de-
veloped by the compression of the air; and this he compared
with the work required for the compression as given by equa-
tion (48). By this means he obtained as the mean of two
series of experiments the value of 444 kilogrammetres as the
Mechanical Equivalent of Heat. :

This value, it must be admitted, does not agree very well
with the value 424 obtained by the friction of water; the
reason of which is probably to be found in the far larger
sources of error attending experiments on air. Nevertheless
at that time, when the fact that the work required fir
developing a given quantity of heat was equal under all cir-

cumstances was not yet placed on a firm basis, the agreement
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of the values found by such wholly different methods was
cose enough to aid considerably in the establishment of the
principle.

As a third case of determination of work done, we may
ssume that the gas changes its volume within an envelope

Fig. 6.

Y

sermeable to heat; or, which ccmes to the same thing.
iat the change of volume takes place too rapidly to allow of

 passing of any appreciable quantity of heat to or from the
during the time.

5 9
D‘gme@%?ﬁmoglc
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In this case the relation between pressure and volume is
given by equation (45), viz.:

2-()
b, \v

The curve of pressure corresponding to this equation
(Fig. 7) falls more steeply than that delineated in Fig. 5.
Rankine has given to this
special class of pressure-
curves, which correspond to
the case of expansion within b
an envelope impermeable to
heat, the name of Adiabatic
curves (from &etaBaiveww, to
pass through). On the
other hand Gibbs (Zrans.
Connecticut Academy, vol.
1L p. 309) has proposed to
name them Isentropiccurves, |
because in this kind of ex- a - c
pansion the Entropy,a quan- Fig. 7.
tity which will be discussed further on, remains constant. This
latter form of nomenclature is the one which the author pro-
poses to adopt, since it is both usual and advantageous to
designate curves of this kind according to that quantity
which remains constant during the action that takes place.

To effect the integration in this case, we may put, accord-
ing to the above equation, .

v 1
p=p0" X 7 )
whence (46) becomes

or W=k£_”_1[1_(%1>ﬂ] (49).
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CHAPTER IIL

SECOND MAIN PRINCIPLE OF THE MECHANICAL THEORY
OF HEAT.

§ 1. Description of a special form of Cyclical Process.

In order to prove and to make intelligible the second
Principle of the Mechanical Theory of Heat, we shall com-
mence by following out in all its parts, and graphically repre-
senting in the manner already described, one special form
of cyclical process. For the latter purpose we will assume
that the condition of the variable body is determined by its
volume v and its pressure p, and will employ, as before, a
rectangular system of co-ordinates, in which the abscisse
represent volumes, and the ordinates pressures. Any point
on the plane of co-ordinates will then correspond to a certain
condition of the hody, in which its volume and pressure have
the same YShmResy abscissa and ordinate of the point.
Further, every variation of the body’s condition will be
represented by a line, whose extreme points determine the
initial and final condition of the body, and whose form shews
the way in which the pressure and volume have simul-
taneously varied.

In Fig. 8 let the initial condition of the body, at which
the cyclical process commences, be given by the point a, so
that the abscissa oe=wv, and the ordinate ez =p, represent
the initial volume and pressure respectively. By means of
these two quantities the initial temperature, which we will
call 7, is also fixed.

==
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Now let the body in the first place expand, while retain-
ing the same temperature 7,. If no heat were imparted to it

¥ig. 8.

during expansion, it would necessarily become cooler: we
will therefore assume that it is put in communication with a
body K, acting as a reservoir of heat, which body has the
same temperature T, and does not appreciably vary from this
during the cyclical process. From this body the variable
body 1s supposed to draw during the expansion just sufficient
heat to keep itself also at the temperature T',.

The curve, which during this expansion expresses the
change of pressure, is part of an isothermal curve. In order
that we may give definite forms to the graphic repre-
sentations of this curve, and of others yet to be described,
we will, without limiting the investigation itself to any
particular bodies, draw the figure as it would appear in the
case of a perfect gas. Then the isothermal curve, as ex-
plained above, will be an equilateral hyperbola; and, if the
expansion take place from the volume oe =, to the volume
of = V,, we shall obtain the part ab of such an equilateral
hyperbola.

When the volume V| has been reached, let us suppose the
body K, to be withdrawn, and let the variable body be left
to continue its expansion by itself, without any heat being
imparted to it. The temperature must then fall, and we
obtain as curve of pressure an ¢sentropic curve, which descends
more steeply than the isothermal curve. Let this expansion
continue till the volume V, is reached, giving us the portion
of an isentropic curve bc. The lower temperature thus
attained we may call 7).



SECOND MAIN PRINCIPLE, 71

From henceforward let the body be compressed, so as to
bring it back to its original volume. Let the compression
first take place at the constant temperature T,, for which
purpose we may suppose that the bos; is connected with a
body K, at temperature T, acting as a reservoir of heat, and
that it gives up to K, just so much heat as suffices to keep
itself also at temperature T,. The pressure-curve correspond-
ing to this compression is again an isothermal curve, and in
the special case of a perfect gas is another equilateral hyper-
bola, of which we obtain the portion cd during the reduction
of volume to ok =1v,. ’ '

Finally, let the last compression, which brings the varia-
ble body back to its initial volume, take place without
the presence of the body K, so that the temperature rises,
and the pressure follows the line of an isentropic curve.
We will assume that the volume ok =wv,, up to which the
compression went on according to the first mode, is so chosen,
that the compression which begins from this volume and
continues to volume oe = v, is just sufficient to raise the
temperature again from T, to T,. If then the initial tem-
perature is thus regained at the same time as the initial
volume, the pressure must also return to its initial value, and
the last curve of pressure must therefore exactly hit the
point @. When the body is thus brought back again to the
original condition, expressed by the pomnt g, the cyclical pro-
cess is complete.

§ 2. Result of the Cyclical Process.

During the two expansions which take place in the course
of the cyclical process the ex-
ternal pressure must be over-
come, and therefore external

b work must be performed ;
whereas conversely during the
compressions external work

¢ is absorbed to perform them.
These quantities of work are

o e uw F g given directly by the figure,

which is here reproduced.

The work performed durin,

the expansion ab is rerresented by the quadrangle eabf, an

a

Fig. 9.
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that performed during the expansion bc by the quadrangle
Jbcg. Again, the work absorbed for the compression c¢d is
represented by the quadrangle gedh, and that absorbed for
the compression da by the quadrangle hdaz. The two latter
3uantities, on account of the lower temperature which obtains

uring the compression, are smaller than the two former;
and, if we subtract them from these, there remains an over-
plus of external work performed, which is represented by the
quadrangle abcd, and which we will call W.

To the external work thus gained must correspond, ac-
cording to equation (5a) of Chapter I., a quantity @, equal to
it in value, which is required for its production. Now the
variable body, during the first expansion, expressed by ab,
which took place in connection with the body K, received
from this latter a certain quantity of heat, which we may call
Q, ; and again during the first compression, expressed by.cd,
which took place in connection with the body K,, it im-
parted to this latter a certain quantity of heat, which may be
called Q,. During the second expansion bc and the second
compression da the body neither 1mparted nor received heat.
Now, since in the course of the whole cyclical process a certain
quantity of heat Q is absorbed in work, it follows that the
quantity of heat Q,, received by the variable body, is larger
than the quantity of heat @, which it gives out, so that the
difference @, — Q, is equal to Q.

We may accordingly put

and can then distinguish in the quantity of heat Q,, which
the variable body has drawn from the body K, two parts, of -
which one @ is converted into work, whilst the other @, is
given back as heat into the body X,. Since in all the other
relations of the body the original condition is restored at the
end of the cyclical process, and accordingly every variation
which takes place at one part of the process is counter-
balanced by an equal and opposite variation which takes
place at some other part of the process, we may finally de-
scribe the result of the cyclical process in the following terms:
The one quantity of heat Q, derwed from the body K, 18 trans-
Jormed into work, and the other quantity Q, has passed over
Jfrom the hotter body K, into the colder K.
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The whole of the cyclical process just described may also
be supposed to take place in the reverse order. If we again.
begin with the conditions represented by the point @, in
which the variable body has the volume v, and the tempera-
ture T',, we may suppose that it first expands, without any
heat being imparted to it, to the volume v,, thus describing
the curve ad, in which its temperature sinks from T, to T;
that it is then connected with the body K, and expands at
constant temperature T, from v, to V,, describing the curve
dc, during which it draws heat from the body K, ; that it
then, without parting with its heat, is compressed from V, to
V., describing the curve cb, during which its temperature rises
from T, to T,; finally that it is connected with the body K,
at the constant temperature T',, and whilst imparting its heat
to K, is again compressed from ¥, to the initial volume v,,
describing the curve ba.

In this reversed process the quantities of work represented
by the quadrangles eadh and Adcg are work performed or
positive, those represented by gebf and fbae are work absorbed
or negative. The latter amount is larger than the former, and
the remainder, as represented by the quadrangle abcd, is in
this case work absorbed.

In addition the variable body has drawn the quantity of
heat @, from the body K,, and has given out to the body K|
the quantity of heat @, =Q,+ Q. Of the two parts of which
@, consists, the one @ corresponds to the work absorbed, and
is generated from it, whilst the other ¢, has passed over as
heat from the body K| to the body K,. Hence the result of
the cyclical process may here be described as follows: the
quantity of heat @ is generated out of work, and is given off
to the body K|, and the quantity of heat @, has passed over
from the colder body K, to the hotter body K.

§ 3. Cyclical process in the case of a body composed
partly of liquid, partly of vapour.

In the foregoing sections, although in describing the
cyclical process we made no assumptions limiting the nature
of the variable body, yet the graphic representation of the
process was made to correspond to the case of a perfect gas.
It is perhaps as well therefore to examine the cyclical process

ry
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aver again in the case of a body of a different kind, in order to
sce how its appearance may vary with the nature of the body
operated on. - We will select for this examination a body
which has not all its molecules in one and the same state in
all its parts, but consists partly of liquid, partly of vapour at
the maximum density.

Let us suppose a liquid contained in an expansible en-
velope, but only filling a part of it, and leaving the remainder
free for vapour having the maximum density corresponding
to the existing temperature 7,. The combined Vvolumes of
- liquid and vapour are represented in Fig. 10 by the abscissa
oe, and the pressure of the
vapour by the ordinate ea. a b
Now suppose the envelope to
yield to the pressure and en-
large, while at the same time d e
the liquid and vapour are
connected with a body K| of
constant temperature T|. As
the volume increases, more ) e h f 8
liquid becomes vaporised, but :
tl(lle heat consum}::l in the ¥ig. 10.
vaporisation is continually replaced from the body K, so that
the temperature, and with it the pressure of the vapour,
remains unaltered. The isothermal curve corresponding to
this expansion is therefore a straight line parallel to the
abscissa. When the combined volume has increased in this
way from oe to of, a quantity of external work has been
thereby performed, which is represented by the rectangle
eabf. Now withdraw the body K, and let the envelope
enlarge still further, without any passage of heat inwards or
outwards. Then there will be partly an expansion of the
vapour already existing, partly a generation of new vapour;
in consequence the temperature will fall, and the pressure
with it. Let this go on until the temperature has changed
from 7, to T,, at which time the volume og has been
attained. The fall of pressure, which has taken place during
this expansion, will be represented by the isentropic curve
be, and the external work performed by fbeg.

Now let the envelope be compressed, so a8 to bring the
liquid and vapour back again to their original combined
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volume oe; and let this compression take place, partly in con-
nection with the body K, of constant temperature 7, to which
all the heat produced by condensation of vapour passes over,
so that the temperature 7, remains unaltered : partly apart
from this body, so that the temperature rises. Let it also be
arranged, that the first compression shall extend only so far
(to oh) as that the decrease of volume ke then remaining may
be just sufficient to raise the temperature again from T to T'.
During this first compression the pressure remains unaltere(i,
at the value gc; the external work thus absorbed is therefore
represented by the rectangle gcdh. During the last compres-
sion the pressure increases, and is represented by the
isentropic curve da, which must end exactly at the point a,
since with the original temperature T, we must also have the
original pressure ea. The external work absorbed in this
last operation is represented by hdae.

At the end of the operation the liquid and vapour are
again in their original condition, and the cyclical process is
complete. The surplus of the positive above the negative
external work, or the external work W which has been gained
on the whole in the course of the process, is represented as
before by the quadrangle abcd. To this work must correspond
the absorption of an equivalent quantity of heat @; and if we
denote by @, the heat imparted during the expansion, and by
Q, the heat given out during the contraction, we may put
Q,=Q+ Q,, and the final result of the cyclical process is
again expressed by saying, that the quantity of heat @ is
converted into work, and the quantity ), has passed over from
the hotter body ‘K, to the colder K.

This cyclical process may also be carried out in the reverse
direction, and then the quantity of heat @ will be generated out
of work, and given off to the body K, while the quantity Q,
will pass over from the colder body K, to the hotter K.

In a similar manner cyclical processes of this kind may
be carried out with other variable bodies, and graphically
represented by two isothermal and two isentropic lines; in
which cases, while the form of the curves depends on the
nature of the body, the result of the process is always of the
same kind, viz. that one quantity of heat is converted into
work, or generated out of work, and that another quantity
passes over from a hotter to a cclder body, or vice versa.
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The question now arises, Whether the quantity of heat
converted into work, or generated out of work, stands in a
generally constant proportion to the quantity which passes over
Jrom the hotter to the colder body, or vice versd; or whether
the proportion existing between them varies according to the
nature of the variable body, which s the medium of the
transfer.

§ 4. Carnot’s view as to the work performed during a
Cyclical Process.

Carnot, who was the first to remark that in the produc-
tion of mechanical work heat passes from a hotter into a
colder body, and that conversely in the consumption of
mechanical work heat can be brought from a colder into a
hotter body, and who also conceived the simple cyclical process
above described (which was first represented graphically by
Clapeyron), took a special view of his own as to the funda-
mental connection of these processes®.

In his time the doctrine was still generally prevalent that
heat was a special kind of matter, which might exist within

~a body in greater or lesser quantity, and thereby occasion

differences of temperature. In accordance with this doctrine
it was supposed that heat might change the character of its

. distribution, in passing from one body into another, and

further that it could exist in different conditions, which were

. denominated respectively ‘free’ and ‘latent’; but that the

whole quantity of heat existing in the universe could neither
be increased nor diminished, inasmuch as matter can neither
be created nor destroyed.

Carnot shared these views, and accordingly treated it as
self-evident that the quantities of heat, which the variable
body in the course of the cyclical process receives from and
gives out to the surrounding space, are equal to each other,
and consequently cancel ea.c%l other. He lays this down very
distinctly in § 27 of his work, where he says: “we shall
assume that the quantities of heat absorbed and emitted in
these different transformations compensate each other exactly.
This fact has never been held in doubt ; admitted at first with-
out reflection, it has since been verified in many instances by

* Reflexions sur la puissance motrice du feu. Pa:is, 1824,
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experiments with the calorimeter. To deny it would be to sub-
vert the whole theory of heat, which rests on it as its basis.”
Now since on this assumption the quantity of heat exist-
ing in the body was the same after the cyclical process as
before it, and yet a certain amount of work had been achieved,
Carnot sought to explain this latter fact from the circum-
stance of the heat falling from a higher to a lower tempera-
ture. He drew a comparison between this descending passage
of heat (which is especially striking in the steam-engine,
where the fire gives off heat to the boiler, and conversely the
cold water of the condenser absorbs heat) and the falling of
water from a higher to a lower level, by means of which a
machine can be set in motion, and work done. Accordingly
in § 28, after making use of the expression ‘fall of water,” he
applies the corresponding expression ‘fall of caloric’ to the
sinking of heat from a higher to a lower temperature.
Starting from these premises, he laid down the principle
that the quantity of work done must bear a certain constant

relation to the ‘passage of heat,’ i.e. the quantity of heat

passing over at the time, and to the temperature of the bodies
between which it passes; and that this relation is indepen-
dent of the nature of the substance which serves as a
medium for the performance of work and passage of heat.
His proof of the necessary existence of this constant relation
rests on the principle ““ That it is impossible to create moving
force out of nothing,” or in other words, “ That perpetual
motion is an impossibility.” s

This mode of dealing with the question does not accord
with our present views, Inasmuch as we rather assume that
imthe “production of work a corresponding quantity of heat
is consumed, and that in consequence the quantity of heat
given out to the surrounding space during the cyclical process
is less than that received from it. Now if for the production
of work heat is consumed, then, whether at the same time
with this consumption of heat there takes place the passage
of another quantity of heat from a hotter to a colder body,
or not, at least there is no ground whatever for saying that
the work is created out of nothing. Accordingly not only
must the principle enunciated by Carnot receive some modifi-
cation, but a different basis of proof from that used by him
must be discovered.

L

{
i
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§ 5. New Fundamental Principle concerning Heat.

Various considerations as to the conditions and nature of
heat had led the author to the conviction that the tendency
of heat to pass from a warmer to a colder body, and thereby
equalize existing differences of temperature (as prominently
shewn in the p%lenomena of conduction and ordinary radia-
tion), was so intimately bound up with its whole constitution
that it must have a predominant influence under all conceiv-
able circumstances. He thereupon propounded the following
as a fundamental principle: ‘“ Heat cannot, of itself, pass from
a colder to a hotter body,”

The words ‘ of itself, here used for the sake of brevity,
require, in order to be completely understood, a further ex-
planation, as given in various parts of the author's papers.
In the first place they express the fact that heat can never,
through conduction or radiation, accumulate itself in the
warmer body at the cost of the colder. This, which was
already known as respects direct radiation, must thus be
further extended to cases in which by refraction or reflection
the course of the ray is diverted and a concentration of rays
thereby produced. In the second place the principle must
be applicable to processes which are a combination of several
different steps, such as e.g. cyclical processes of the kind
described above. It is true that by such a process (as we
have seen by going through the original cycle in the reverse
direction) heat may be carried over from a colder into a
hotter body: our principle however declares that simul-
taneously with this passage of heat from a colder to a hotter
body there must either take place an opposite passage of heat
from a hotter to a colder body, or else some change or other
which has the special property that it is not reversible, except
under the condition that it occasions, whether directly or
indirectly, such an opposite passage of heat. This simul-
taneous passage of heat in the opposite direction, or this
special change entailing an opposite passage of heat, is then
to be treated as a compensation for the passage of heat from
the colder to the warmer body ; and if we apply this concep-
tion we may replace the words “ of itself” by “ without com-
pensation,” and then enunciate the principle as follows :

* ¢ A passage of heat from a colder to a hotter body cannot
take place without compensation.”
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This proposition, laid down as a Fundamental Principle
by the author, has met with much opposition; but, having
repeatedly had occasion to defend it, he has always been able
to shew that the objections raised were due to the fact that
the phenomena, in which it was believed that an uncompen-
sated passage of heat from a colder to a hotter body was to
be found, had not been correctly understood. To state these
objections and their answers at this place would interrupt too
seriously the course of the present treatise. In the discus-
sions which follow, the principle, which, as the author believes,
is acknowledged at present by most physicists as being correct,
will be simply used as a fundamental principle; but the
author proposes to return to it further on, and then to consider
more closely the points of discussion which have been raised
upon it.

§ 6. Proof that the relation between the quantity of heat
carried over, and that converted into work, is independent of
the nature of the matter which forms the medium of the
change. ' _

Assuming the foregoing principle to be correct, it may be
proved that between the quantity of heat @, which in a cyclical
processof the kind described above is transformed into work
(or, where the process is in the reverse order, generated by
work), and the quantity of heat Q,, which is transferred at the
same time from a hotter to a colder body (or vice versa), there
exists a relation independent of the nature of the variable
body which acts as the medium of the transformation and
transfer; and thus that, if several cyclical processes are per-
formed, with the same reservoirs of heat X, and K, but with
different variable bodies, the ratio g will be the same for
all. If we suppose the processes so ’a,rranged, according to
their magnitude, that the quantity of heat @, which is trans-
formed into work, has in all of them a constant value, then
we have only to consider the magnitude of the quantity of
heat @, which is transferred, and the principle which is to be
proved takes the following form: “If where two different
variable bodies are used, the quantity of heat @ transformed
into work is the same, then the quantity of heat @),, which
is transferred, will also be the same.” ’
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Let there, if possible, be two bodies C' and C’ (e.g. the
Serfect gas and the combined mass of liquid and vapour,
escribed above) for which the values of @ are equal, but
those of the transferred quantities of heat are different, and
let these different values be called Q, and @', respectively :
¢, being the greater of the two. Now let us in the first
place subject the body C to a cyclical process, such that the
quantity of heat @ is transformed into work, and the quantity
Q, is transferred from K, to K,. Next let us subject C’ to a
cyclical process of the reverse description, so that the quantity
of heat Q is generated out of work, and the quantiti Q, is
transferred from K, to K,. Then the above two changes,
from heat into work, and work into heat, will cancel each
other ; since we may suppose that when in the first process
the heat @ has been taken from the body K, and transformed
into work, this same work is expended in the second process in
producing the heat @, which is then returned to the same body
K. In all other respects also the bodies will have returned,
at the end of the two operations, to their original condition,
with one exception only. The quantity of heat ¢',, trans-
ferred from K, to K, has been assumed to be greater than
the quantity @), transferred from K, to K,. Hence these two
do not cancel each other, but there remains at the end a
quantity of heat, represented by the difference ', — @,, which
has passed over from K, to K,. Hence a passage of heat will
have taken place from a colder to a warmer body without any
other compensating change. But this contradicts the funda-
mental principle. Hence the assumption that @', is greater
than @, must be false.

A%la.in, if we make the opposite assumption, that @, is
less than @,, we may suppose the bod{ C’ to undergo the
cyclical process in the first, and C in the reverse direction.
We then arrive similarly at the result that a quantity of heat
@, — @', has passed from the colder body K, to the hotter K,
which is again contrary to the principle.

Since then @', can be neither greater nor less than Q, it
must be equal to @,; which was to be proved.

We will now give to the result thus obtained the mathe-
matical form most convenient for our subsequent reasoning.

Since the quotient Q is independent of the nature of the
R -
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variable body, it can only depend on the temperature of the
two bodies K, and K, which act as heat reservoirs. The
same will of course be true of the sum °

Q_Q+re_q '

This last ratio, which is that between the whole heat received
and the heat transferred, we shall select for further considera-
tion; and shall express the result obtained in this section as

follows : ““the ratio 9 can only depend on the temperatures
T, and T,.” This leads to the equation :

g:-_-¢(T“T,)..........; .......... @),

in which ¢ (7,7,) is some function of the two temperatures,
which is independent of the nature of the variable body.

§ 7. Determination of the Function ¢ (T, T,).

The circumstance that the function given in equation (2)
is independent of the nature of the wariable body, offers a
ready means of determining this function, since as soon as we
have found its form for any single body it is known for all
bodies whatsoever.

Of all classes of bodies the perfect gases are best adapted
for such a determination, since their laws are the most accu-
rately known. We will therefore consider the case of a per-
fect gas subjected toa cyclical process, similar to that graphi-
cally expressed in Fig. 8,§ 1; which figure may be here repro-
duced (Fig. 11), inasmuch as a perfect gas was there taken as

_ "an example of the variable

-3 " 'body. In this process the

: as takes up a quantity of

b eat ¢ during its expansion

ab, and gives out a quantity

d of heat @, during its com-

¢ pression cd. These quanti-

ties we shall calculate, and

o h f g then compare with each
Fig. 11. other.

For this purpose we must

first turn our attention to the volumes represented by the

C. 6




82 ON THE MECHANICAL THEORY OF HEAT.

absciss® oe, oh, of, og, and denoted by v,, »,, ¥, V,, in order
that we may ascertain the relation between them. Now the
volumes v, (represented by oe, oh) form the limits of that
change of volume to which the isentropic curve ad refers,
and which may be considered at pleasure as an expansion or
a compression. Such a change of volume, during which the
gas neither takes in nor gives out any heat, has been treated
‘of in § 8 of the last chapter, in which we arrived at the fol-
lowing equation (43), p. 62:

T_ (5)“'
7, \v/ ’
where T and v are the temperature and volume at any point

in the curve. Substituting for these in the present case the
final values T, and v,, we have : '

%"_,:= (1;-)'(3)

In exactly the same way we obtain for the change of volume
represented by the isentropic eurve bc (of which the initial
and final temperatures are also 7',T):

T, _(¥\™
7= (_V:> ....................... (4).
Combining these two equations we obtain :
¥V, _» v, 7V, -
V.= or 'f PRREIERERES &)

We must now turn to the change of volume represented
by the isothermal curve ab, which takes place at the constant
temperature 7|, and between the limits of volume » and V.
The quantity of heat received or given off during such a
change of volume has been determined in § 8 of the last
chapter, and by the equation (41) there given, p. 61, we
may put in the present case:
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. Similarly for the change of volume represented by the iso-
thermal curve dc, which takes place at temperature T, between
the limits of volume v, and V,, we have:

=2 8),
=7 (8)
since by (5) ;V-‘-"—-vl—”.

. The function occurring in equation (2) is now determined,
since to bring this equation into unison with the last equation
(8) we must have:

~We can now use in place of equation (2) the more deter-
mmate equation (8), which may also be written as follows :

Q_0_,
T,

The form of this equation may be yet further changed, by
affixing positive and negative signs to @,, ¢,. Hitherto these
have been treated as absolute quantities, and the distinction
that the one represents heat taken in, the other heat given
out, has been always expressed in words. Let us now for
convenience agree to speak of heat taken in only, and to
ireat heat given out as a negative quantity of heat taken in.
If accordingly we say that the variable body has taken in
during the cyclical process the quantities of heat @, and @Q,,
we must here conceive Q, as a negative quantity, i.e. the same
quantity which has hitherto been expressed by — @,. On
this supposition equation (10) becomes:
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§ 8. Cyclical processes of a more complicated character.

Hitherto we have confined ourselves to cyclical processes
in which the taking in of quantities of heat, positive or
negative, takes place at two temperatures only. Such pro-
cesses we shall in future call for brevity’s sake Simple
Cyclical Processes. But it is now time to treat of cyclical
processes, in which the taking in of positive and negative
quantities of heat takes place at more than two tempera-
tures.

We may first consider a cyclical process with heat taken
in at three temperatures. This is represented graphically by
the figure abcdefa (Fig. 12), which, as in the former cases,
consists of isentropic and isothermal curves only. These
curves are again drawn, by way of example, in the form
which they would take in tge case of a perfect gas, but this

Fig. 12.

is not essential. The curve ab represents an expansion at
constant temperature T,; bc an expansion without taking in
heat, during which the temperature falls from T, to T,; cd
an expansion at constant temperature T,; de an expansion
without taking in heat, during which the temperature falls
from T, to T,; ef a compression at co t temperature 7, ;
and lastly fao a compression w»vithout(’:fﬁﬁéa ti%‘nheat, during
which the temperature rises from T, to T}, and which brings
back the variable body to its exact original volume. In the
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expansions ab and cd the variable body takes in positive
quantities of heat @, and Q,, and in the compression ef the
negative quantity of heat {,. It now remains to, find a rela-
tion between these three quantities.

For this p let us suppose the isentropic curve bc
produced in the dotted linecg. The whole process is thereby
divided into two Simple Processes abgfa and cdegc. In the
first the body starts from the condition ¢ and returns to the
same again. In the second we may suppose a body of the
same nature to start from the condition e, and to return to
the same again. The negative quantity of heat @,, which is
taken in during the compression ef, we may suEpose divided
into two parts ¢, and g,’, of which the first 1s taken in during
the compression gf, and the second during the compression
¢g. We can now form the two equations, corresponding to
equation (11), which will hold for the two simple processes.
These equations are, for the process abgfa,

Ql q e
—l + 3 = 0’
g’ q” p—
-2 + = 0.

‘Adding these equations we obtain

Q .9, ,%+q _,.
AR A A

ar, ﬁnce qs + q,’ = Q,,

9,9, %_
T,+T:+7'f—o .......................

In exactly the same way we may treat a process in which
heat is taken in at four temperatures, as represented by the
annexed figure abcdefgha, Fig. 13, which again consists solely
of isentropic and isothermal lines. The expansions ab and cd,
and the compresSions ef and gh, take place at temperatures
T,T, T, T, and during these times the quantities of heat
0., 9., Q,, Q, are taken inrespectively ; the two former being
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positive, and the two latter negative. Produce the isentropic-
curves bc and Ifg in the dotted lines ci and gk respectively.
Then the whole process is subdivided into three Simple Pro-
cesses akgha, kbifk, and cdeic, which may be supposed to be.

Fig. 18.

carried out with three exactly similar bodies. We may sup-
pose the quantity of heat @,, taken in during the expansion ab,
to be divided into two parts ¢, and ¢,, corresponding to ex-
pansions ak and kb; and the negative quantity @, taken in
during the compression ef, to be likewise divided mnto gz and
qg, corresponding to compressions if and ci. Then we can
form the following equations for the three simple processes :
First, for akgha

%, 9

7 t7T, =0
Secondly, for kbifk

9 . % _

Byd=0

Tl 8
Thirdly, for cdeic ,

'3 + ?’_ 3 O
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Adding, we obtain

9+9,, Q% 0+t Q _
r, tptiy ot =0

9,9,9, 9_
or Tl + T' + T, + T‘ —0 ................... (13).
In exactly the same way any other cyclical process, which
can be represented by a figure consisting solely of isentropic
and isothermal lines, and which has any given number of
temperatures at which heat is taken in, may be made to yiell

an equation of the same form, viz.

Q.9 9. 9
Tt YT, YT

3 4

+eeen =0,
or generally
3

§ 9. Cyclical Processes, in which taking in of Heat and
change of Temperature take place simultaneously.

We have lastly to consider such cyclical processes as are
represented by figures not consisting solely of isentropie and
isothermal lines, but altogether general in form. .

The mode of treatment is as follows. Let point a in

O

Y U (14).

°
Fig. 14,

Fig. 14 represent any given condition of the variable body ;
let pg be an arc of the 1sothermal curve which passes through
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a, rs an arc of the isentropic curve which passes through the
same point. Now let the body underge a variation which is
expressed by a pressure-curve not coinciding with either of
the above, but taking some other course such as bc or de.
Then we may consider such a variation as made up of a very
great number of very small variations, in which we have
alternately change of temperature without taking in of heat,
and taking in of heat without change of temperature. This
series of successive variations will be represented by a dis-
continuous line, made up of alternate elements of isothermal
and isentropic curves, as drawn in Fig. 15, along the course of

()
Fig. 15.

bc and de. The smaller the elements of which the dis-
continuous curve is made up, the more closely will it coincide
with the continuous line, and if these are indefinitely small
the coincidence will be indefinitely close. In this case it can
only make an indefinitely small difference, in relation to the
quantities of heat taken in and their temperatures, if we
substitute for the variation represented by the continuous line
the indefinitely large number of alternating variations, which
are represented by the discontinuous line.

We are now in a position to consider a complete cyclical
process, in which the taking in of heat is simultaneous with
changes of temperature, and which may be represented
graphically by curves of any form whatever, or merely by a
single continuous and closed curve, such as is drawn in
Fig. 16. The area of this closed curve represents the ex-
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ternal work consumed. Let it be divided into indefinitely
thin strips by means of adjacent isentropical curves, as shewn
by the dotted lines in Fig. 16. Let us suppose these curves
Joined at the top and bottom by indefinitely small elements

Fig. 16.

of isothermal lines, which cut the given curve, so that
throughout its length we have a broken line, which is every-
where in indefinitely close coincidence with it. By the above
reasoning we may substitute for the process represented by
the continuous line the other process represented by the
broken line, without producing any perceptible alteration in
the quantities of heat taken in, or in their temperatures. Fur-
ther, we may again substitute for the process represented by
the broken line an indefinitely great number of Simple Pro-
cesses, which will be represented by the indefinitely small
quadrangular strips, made up each of two adjacent isentropic
curves, and two indefinitely small elements of isothermal
curves. If then for each one of these last processes we form
an equation similar to (11), in which the two quantities
of heat are indefinitely small, and can therefore be denoted by
differentials of @; and if all these equations be finally added
together ; we shall then obtain an equation of the same form
as (14), but in which the sign of summation is replaced by the
sign of Integration, thus:
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This equation, which was first published by the author in
1854 (Pogg. Ann. vol. 93, p. 500), forms a very convenient
expression for the second main Principle of the Mechanical
Theory of Heat, as far as it relates to reversible processes.
This Principle may be expressed in words as follows: If in a
reversible Cyclical Process every element of heat taken in
(positive or negative) be divided by the absolute temperature
at which it 18 taken in, and the differential so formed be inte-
grated for the whole course of the process, the integral so ob-
tained 18 equal to zero.

If the integral f ii,FQ, corresponding’ to any given succession

of variations of a body, be always equal to zero provided the
body returns finally to its original condition, whatever the
intervening conditions may be, then it follows that the ex-

pression under the integral sign, viz. %? , must be the pérfect

differential of a quantity, which depends only on the present
condition of the body, and is altogether independent of the
way in which it has been brought into that condition. If we
denote this quantity by S, we may put

or dQ=TdS......co.ccnnuvnu... (VD),

an equation which forms another expression, very convenient
in the case of certain investigations, for the second main
principle of the Mechanical Theory of Heat.
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CHAPTER IV.

THE SECOND MAIN PRINCIPLE UNDER ANOTHER FORM, OR
PRINCIPLE OF THE EQUIVALENCE OF TRANSFORMATIONS.

§ 1. On the two different kinds of Transformations.

In the last chapter it was shewn that in a Simple Cyclical
Process two variations in respect to heat take place, viz. that-
a certain quantity of heat is converted into work (or generated
out of work), and another quantity of heat passes from a
hotter into a colder body (or vice versi). It was found fur-
ther that between the quantity of heat transformed into
work (or generated out of work) and the quantity of heat
transferred, there must be a definite relation, which is
independent of the nature of the variable body, and therefore
can only depend on the temperatures of the two bodies which
serve as reservoirs of heat.

For the former of these two variations we have already
employed the word *transformation,” inasmuch as we said,
when work was expended and heat thereby produced, or
conversely when heat was expended and work thereby pro-
duced, that the one had been ‘transformed” into the other.
We may use the word “ transformation” to express the second
variation also (which consists in the passage of heat from one
body into another, which may be colder or hotter than
the first), inasmuch as we may say that heat of one tem-
perature “ transforms” itself into heat of another tempera-
ture.

On this principle we may describe the result of a simple
cyclical process in the following terms: Two transformations
are produced, a transformation from heat into work (or vice
versd) and a transformation from heat of a higher tempera-
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ture to heat of a lower (or vice versi). The relation between
these two transformations is therefore that which is to be ex-
pressed by the second Main Principle.

Now, in the first place, as concerns the transformation of
heat at one temperature to heat at another, it is evident at
once that the two temperatures, between which the trans-
formation takes place, must come under consideration. But
the further question mow arises, whether in the trans-
formation from work into heat, or from heat into work, the
temperature of the particular quantity of heat concerned
plays an essential part, or whether in this transformation the
particular temperature is matter of indifference.

If we seek to deduce the answer to this question from the
consideration of a Simple Cyclical Process, as described above,
we find that it is too limited for our purpose. For since in
this process there are only two bodies which act as heat
reservoirs, it is tacitly assumed that the heat which is trans-
formed into work is derived from (or conversely the heat
generated out of work is taken in by) one or other of these
same two bodies, between which the transference of heat also
takes place. Hence a definite assumption is made from the
beginning as to the temperature of the heat transformed into
work (or conversely generated out of work), viz. that it|
coincides with one of the two temperatures at which the
transference of heat takes place ; and this limitation prevents
us from learning what influence it would have on the relation
between the two transformations if the first-mentioned tem-
perature were to alter, while the two latter remained un-
altered.

To ascertain this influence, we may revert to those
more complicated cyclical processes, which have also been
described in the last chapter, § 8, and to the equations
derived from them. But in order to give a clearer and simpler
view of the question it is better to consider a single process
specially chosen for this investigation, and by its help to
bring out the second Main Principle anew in an altered
form.

§ 2. On a Cyclical Process of special form.

Let us again take a variable body, whose condition is
completely determined by its volume and pressure, so that
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we can represent its variations graphically in the manner
already described. We will once more by way of example
construct the figure in the form it assumes for a perfect gas,
but without making in the investigation itself any limiting
assumption whatever as to the nature of the body.

Let the body be first taken in the condition defined by
the point @ in Fig. 17, its volume being given by the abscissa

of n  hmi k 1
Fig. 17.

oh, and its pressure by the ordinate ka. Let T be the tem-
perature corresponding to these two quantities, and deter-
mined by them. We will now subject the body to the follow-
ing successive variations : :

(1) The temperature T of the gas is changed to T,
which we will suppose less than 7. This may be done by
enclosing the gas within a non-conducting envelope, so that
it can neither take in nor give out heat, and then allowing it
to expand. The decrease of pressure caused by the simul-
taneous increase of volume and fall of temperature will be
represented by the isentropic curve ab; so that, when the
temperature of the gas has reached 7', its volume and
pressure have become o0t and b respectiveiy.

(2) The variable body is placed in communication with
a body K, of temperature T, and then allowed to expand still
further, but so that all the heat lost in expansion is restored by
K,. Withrespect to the latter it is assumed that, on account of
its magnitude or from some other cause, its temperature is not

o+ —eane —_—
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perceptibly altered by this giving out of heat, and may there-
fore be taken as constant. Hence the variable body will also
gvreserve during its expansion the same constant temperature
T, and its diminution of pressure will be represented by an
isothermal curve be. Let the quantity of heat thus given off
by K, be called @,.

(8) The variable body is disconnected from K, and
allowed to expand still further, without being able either to
take in or give out heat, until its temperature has fallen from
T, to T,. Let this diminution of pressure be represented by
the isentropic curve cd. ;'

4) e variable body is placed in communication with
a body K,, of constant temperature T,, and is then com-
pressed, parting with all the heat generated by the com-
pression to K,. This compression goes on until K, has
received the same quantity of heat @,, hs was formerly
abstracted from K. In this case the' pressure :increases ac-
cording to the isothermal curve de.

(6) The variable body is disconnected from K,, and
compressed, without being able to take in or give out heat,
until its temperature has risen from T to its original value
T, the pressure increasing according to the isentropic curve
ef. The volume on, to which the body is brought by this
process, is léss than the original volume ok, since the pressure
to be overcome, and consequently the external work to be
transformed into heat, is less during the compression de
than during the expansion bc; so that, in order to restore
‘the same quantity of heat Q,, the compression must be con-
tinued further than would have been necessary merely to
annul the expansion.

(6) The variable body is placed in communication with a
body K of constant temperature 7', and allowed to expand to its
original volume ok, the heat lost in expansion being restored
from K. Let @ be the quantity of heat thus required. If
the body attains the original volume ok at the original tem-
perature 7, then the pressure must also revert to its original
value, and the isothermal curve, which represents this last
expansion, will therefore terminate exactly in the potnt a.

The above six variations make up together a Cyclical Pro-
cess, since the variable body is finally restored exactly to its
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original condition. Of the three bodies, K, K,, K, which in
the whole process only come under consideration in so far as
they serve as sotirces or reservoirs of heat, the t®o fifst have
at the end lost the quantities of heat @), @, respectively,
whilst the last has gained the quantity of heat @, ; this may
be expressed by saying that ¢, has passed from K, to K,,
while Q Las disappeared altogether. This last quantity of
heat must, by the first fundamental principle, have been
transformed into external work. This gain of external work
is due to the fact that in this cyclical process the pressure
during expansion is greater than during compression, and
therefore the positive work greater than the negative ; its
amount is represented, as is easily seen, by the area of the
closed curve abodefa. If we call this work W, we have
by equation (5a) of Chapter 1.

Q=W.

It is easily seen that the above Cyclical Process embraces
4 a special case the process treated of at the commencement
of Chapter III., and represented in Fig. 8. For if we make
the special assumption that the temperature T of the bOd{l K
is equal to the temperature T, of the body K,, we may then
do away with K altogether, and use K, instead. The result
of the process will then be that one part of the heat given
out by the body K, has been transformed into work, and the
other part has been transferred to the body K, just as was the
case in the process above mentioned.

The whole of this cyclical process may also be carried
out in the reverse order. The first step will then be to
connect the variable body with K, and to produce, instead
of the final expansion fa of the former case, an initial
compression @f: and similarly the expansions fe and ed,
and the compressions dc, cb, and ba will be produced one
after another, under exactly the same circumstances as the
converse variations in the former case. It is obvious that
the quantities of heat Q and @, will now be taken in
by the bodies K and K, respectively, and the quantity
of heat @, will be given out by the body K,. At the same
time the negative work is now greater tﬁa.n the positive, so
that the area of the closed figure now represents a loss of
work, The result of the reversed process is therefore that
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the quantity of heat Q, has been transferred from K, to K|,
and that the quantity of heat @ has been generate& out of
work and given to the body K.

§ 3. On Equivalent Transformations.

In order to learn the mutual dependence of the two
simultaneous transformations above described, viz. the trans-
ference of Q,, and the conversion into work of @, we shall
first assume that the temperatures of the three reservoirs of
heat remain the same, but that the cyclical processes, through
which the transformations are effected, are different. This
may be either because different variable bodies are subjected
to similar variations, or because the same body is subjected to
any other cyclical process whatever, subject only to the con-
dition that the three bodies K, K, and Ig are the only bodies
which receive or give out heat, and also that of the two
latter the one receives just as much as the other gives out.
These different processes may either be reversible, as in the
case considered, or non-reversible ; and the law which governs
the transformations will vary accordingly. However the
modification which the law undergoes for non-reversible pro-
cesses can be easily applied at a later period, and hence for
the present we will confine ourselves to the consideration of
reversible processes. ’
: For all such it follows from the Principle laid down in the

last chapter (p. 78) that the quantity of heat Q,, transferred

from K, to 1{, must stand in a constant relation to the
quantity @ transformed into work. For let us suppose that
there were two such processes, in which, while ¢ was the
same in both, @, was different: then we might successively
execute that in wi]ich @, was the smaller in the direct order,
and the other in the reverse. In this case the quantity of
heat @, which in the first process would have been trans-
formed into work, would in the second process be transformed
again into heat and given back to the body K ; and in other
respects also everything would at the conclusion be restored
to 1ts original condition, with this single exceition that the
quantity of heat transferred from K, to K, in the second pro-~
cess, would be greater than the quantity transferred from K,
to K, in the first process. Thus on the whole we have a
transfer of heat from the colder body K, to the hotter K,

[
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with nothing to compensate for it. As this contradicts the,
fundamental principle, it follows that the above supposition
cannot be true; in other words @ must always stand in the
same ratio to Q,. .
Of the two transformations in a reversible process such
as the above, either can replace the other, provided this latter.
be taken in the reverse direction: in other words, if a trans-
formation of the one kind has taken place, this can be again
reversed, and a transformation of the other kind substituted in
its place, without the occurrence of any other permanent
change. For example, let a quantity of heat @ be in any way
generated out of work, and taken in by the body K; then by
the cyclical process above described it can be again withdrawn
from the body K, and transformed back into work, but in so
doing a quantity of heat @, will be transferred from the body
K, to the body K,. Again, if the quantity of heat @, has
previously passed from K, to K, it can by performing the
above process in the reverse order be transferred back again
to K, whilst at the same time the quantity of heat @, at the
temperature of the body K, will be generated out of work.
It is thus seen that these two kinds of transformation
may be treated as processes of the same nature; and two
such transformations, which may mutually replace each other
in the way indicated, will be henceforth called “ Equivalent

Transformations.”

§ 4. Eguivalence-Values of the Transformations.

We have now to find the law according to which the
above transformations must be expressed mathematically, so
that the equivalence of the two may appear from the equality
of their values. The mathematical value of a transformation
may be termed, thus determined, its ““Equivalence-Value.”

We must first settle the order in which each transforma-
tion is to be taken as positive: this may be chosen arbi-
trarily for one of the two classes, but it will then be fixed
for the other, since clearly we must regard a. transformation
in the latter class as positive, if it is equivalent to a positive
transformation in the former. In all that follows we shall
consider the transformation of Work into Heat, and therefore
the passage of heat from a higher to a lower temperature, as
being positive quantities. It will be seen later why this
e, . (

g |

<
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choice as to the positive and negative sign is preferable to
the opposite.

With regard to the magnitude of the equivalence-value,
it is at once seen that the value of a change from work into
heat must be proportional to the quantity of heat generated,
and that beyond this it can only depend on its temperature.
We may therefore express generally the equivalence-value of
the generation out of work of the quantity of heat @, of
temperature T, by the formula @ x (7", where f(T) is a
function of temperature which is the same for all cases. If Q
is negative in this formula, what is expressed is that the
quantity of heat @ has been transformed, not out of work
into heat, but out of heat into work.

Similarly the value of the passage of a quantity of heat Q
from the temperature 7, to the temperature 7, must be propor-
tional to the quantity of heat which passes, and beyond this
can only depend on the two temperatures. We may therefore
express it generally by the formula @ x F (T, T)), in which
F(T, T, 18 a function of the two temperatures, also constant
for all cases, and which we cannot at present determine more
closely; but of which it is clear from the commencement
that, if the two temperatures are interchanged, it must change

its sign, without changing its numerical value. We may
therefore write,

F(T,, T)=—=F Ty, T) ecvurerene... ().

In order to compare these two expressions with each other,
we have the condition that in every reversible process of the
kind given above the two transformations that take place
must be equal in magnitude but of opposite sign, so that
their algebraical sum is zero. Thus if we choose for a mo-
ment the tparticula.r process fully described above (§ 2), the
quantity of heat ¢, at temperature T, is then transformed
into work, giving as its equivalence-value — @ x f(T'); and
the quantity of heat ¢, passes from temperature T, to T,,
thus giving as its equivalence-value Q, x #'(T,, T},). There-
fore the following equation must hold :

—Qxf(T)+QxF(T,T)=0.......(2).

Let us now syppose a similar process performed in the
reverse order, and under the conditions that the bodies K,
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and K, and the quantity of heat @, which passes between
them, remain the same, but that for the body K of tempera-
ture 7' is substituted another body K’ of temperature 7":
and let us call the heat generated out of work in this case @'
Then, corresponding to the former equation, we have the
following :

Q xf(T)+ Q xF(T, T)=0......... (3.
Adding (2) and (3) and substituting from (1) we obtain,
- @xf(M)+ @ xf(I)=0............ 4).

Now let us consider, as is clearly allowable, that these two
successive processes make up together a single process; then
-in this latter the two transferences of heat between K| and
K, will cancel each other and disappear from the result; we
have therefore only left the transformation into work of the
quantity of heat ), given off by K, and the generation out
of work of the quantity of heat ¢ taken in by K'. These
two transformations, which are of the same kind, can however
be so broken up and re-arranged as to appear in the light
of transformations of different kinds. For if we simply hold
fast to the main fact, that the one body K has lost the
quantity of heat ¢, and the other K’ gained the quantity ¢,
then the heat equivalent to the smaller of these two quanti-
ties may be considered as having been transferred directly
from K to K, and it is only the difference between the two
which remains to be considered as a transformation of work
into heat or vice versd. For example, let the temperature 7'
be higher than 7”; then the transference of heat on the
above view is from a hotter to a colder body, and is therefore
positive. Accordingly the other transformation must be
negative, i.e. a transformation from heat into work : whence it
follows that the quantity of heat @ given off by K is greater
than the quantity @' taken in by K’. Thus if we divide @
into its two component parts @ and @ — @', then the first of
these will have passed over from K to K’, and the second is

the quantity of heat transformed into work.

On this view the two processes appear as combined into a
single process of the same kind; for the circumstance that
the heat transformed into work is not derived from a third
body, but from one or other of the same two bodies, between

72
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which the transference of heat takes place, makes no
essential difference in the result. The temperature of the
beat transformed into work is optional, and can therefore have
the same value as the temperature of one of the two bodies;
in which case the third body is no longer required. Accord-
ingly for the two quantities of heat Q" and @ — ¢’ there must
be an equation of the same form as (2), namely :

— Q=@ xf(T)+Q xF(T, T')=0.

Eliminating @ by means of equation (4) and then striking
out @', we obtain

F(BT)=f(T) = (D)evvvrrrrvvveriene (5).

As the temperatures T and 7" are any whatever, the function
of two temperatures F (7'7"), which holds for the second kind
" lof transformation, is thus shewn to agree with the function of
one temperature f (7'), which holds for the first kind.

For the latter function we will for brevity use a simpler
symbol. For this it is convenient, for a reason which will be
apparent later on, to express by the new symbol not the
function itself, but its reciprocal. We will therefore put

. =f_(lf) or f(T)=11_..................(6),

so that 7 is now the unknown function of temperature which
enters into the Equivalence-value. If special values of this
function have to be written down, corresponding to tempera-
tures T, T,, etc,, or T", 1", etc., then this can be done by

simply using the indices or accents for 7 itself. Thus equa-
tion (5) will become

1 1
F(T, T’)=7—_,"';_.

Hence the second Main Principle of the Mechanical
Theory of Heat, which in this form may perhaps be called
the principle of the Equivalence of Transformations, can be
expressed in the following terms:

“If we call two transformations which may cancel each other
without requiring any other permanent change to take place,
Equivalent Transformations, then the generation out of worlc
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of the quantity of heat Q of temperature 7 has the equivalence-
value ;-Q; and the transference of the quantity of heat Q from
temperature 7', to temperature 7, has the Equivalence-value

1 1
Q (_‘_,'. - 1‘,; ) s
in which 7 is a function of temperature independent of the
kind of process by which the transformation is accomplished.”

§ 5. Combined value of all the transformations which
take place in a single Cyclical Process.

If we write the last expression of the foregoing section

in the form g - g , we see that the passage of the quantity

of heat Q from tlemperature T, to T, has the same equiva-
lence-value as a double transformation of the first kind,
viz, the transformation of the quantity @ from heat of tem-
perature 7| into work, and again out of work into heat of
temperature 7,. The examination of the question how far
this external agreement has its actual foundation in the
nature of the process would here be out of place; but in any
case we may, in the mathematical determination of the
Equivalence-Value, treat every transference of heat, in what-
ever way it may have taken place, as a combination of two
opposite transformations of the first kind.

By this rule it is easy for any Cyclical Process however
complicated, in which any number of transformations of both
kinds take place, to deduce the mathematical expression
which represents the combined value of all these trans-
formations. For this purpose, when a quantity of heat is
given off by a heat reservoir, we have no need first to
enquire what portion of it is transformed into work, and
what becomes of the remainder; but may instead reckon
every quantity of heat given off by the heat reservoirs which
occur in the cyclical process as being wholly transformed into
work, and every quantity of heat taken in as being generated
out of work. Thus if we assume that the bodies K, K,, K,
ete. of temperatures T}, T, T, etc. occur as heat reservoirs,and
if @, Q,, @,, etc. are the quantities of heat given off during
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the Cyclical Process (in which we will now consider quanti-
ties of heat taken in as negative quantities of heat given
out®), then the combined value of all the transformations,
which we may call N, will be represented as follows :

or using the sign of summation,

Q
N==3% e (7).

It is here supposed that the temperatures of the bodies
K, K,, K,, etc. are constant, or at least so nearly so that
their variations may be neglected. If however the tempera-
ture of any one of the bodies varies so much, either through
the taking in of the quantity of heat @ itself, or through any
other cause, that this variation must be taken into account,
then we must, for every element of heat d@ which is taken
in, use the temperature which the body has at the moment
of its being taken in. This naturally leads to an integration.
If for the sake of generality we assume this to hold for all
the bodies, then the foregoing equation takes the following
form : :

------------------------

in which the integral is to be taken for all the quantities of
heat given off by the different bodies.

§ 6. Proof that in a reversible Cyclical Process the total
value of all the transformations must be equal to nothing.

If the Cyclical Process under consideration is reversible,
then, however complicated it may be, it can be proved
that the transformations which occur in it must cancel each
other, so that their algebraical sum is equal to nothing.

* This choice of positive and negative signs for the quantities of heat
agrees with that which we made in the last chapter, where we considered a
quantity of heat taken in by the variable body as positive, and a quantity
given out by it as negative; for a quantity given out by a heat reservoir is
taken in by the variable body, and vice versa.
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For let us suEpose that this is not the case, i.e. that this
algebraical sum has some other value; then let us imagine
the following process applied. Let all the transformations
which take place be divided into two parts, of which the first
has its algebraical sum equal to nothing, and the second is
madé up of transformations all having the same sign. Let
the transfermations of the first division be separated out into
pairs, each composed of two transformations of equal magnitude
but opposite signs. If all the heat reservoirs are of constant
temperature, so that in the Cyclical Process there is only a
finite number of definite temperatures, then the number of
pairs which have to be formed will be also finite; but should the
temperatures of the heat reservoirs vary continuously, so that
the number of temperatures is indefinitely great, and therefore
the quantities of heat given off and taken in must be dis-
tributed in indefinitely small elements, then the number of
pairs which have to be formed will be indefinitely larlie.
This however, by our principle, makes no difference. The
two transformations of each pair are now capable of being done
backwards by one or two Cyclical Processes of the form
described in § 2.
Thus in the first place let the two given transformations
be of different kinds, e.g. let the quantity of heat @ of tem-
rature T be transformed into work, and the quantity of
eat ¢, be transferred from a body K, of temperature g'l to
a body K, of temperature 7,. The symbols @ and @, are
here supposed to represent the absolute values of the quanti-
ties. Let it be also assumed that the magnitudes of the two
quantities stand in such relation to each other that the follow-
ing equation, corresponding to equation (2), will hold, viz.

Q 1 1\ _
s H@ =y b 0.
Then let us suppose the Cyclical Process to be performed in
the reverse order, whereby the quantity of heat @, of tem-
perature 7, is generated out of work, and another qua.ntit:y
of heat is transferred from the body K, to the body K,. This
latter quantity must then be exactly equal to the quantity @,
given in the above equation, and the given transformations
have thus been performed backwards. .
Again let there be one transformation from work into
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heat and one from heat into work, e.g. let the quantity of
heat @ of temperature 7' be generated out of work, and
the quantity of heat ¢ of temperature 7" be transformed
into work, and let these two stand in such relation to each
other that we may put

Then let us suppose in the first place that the same process as
last described has been performed, whereby the quantity of
heat @ of temperature 7' has been transformed into work, and
another quantity @, has been transferred from a body K, to
another body K,. Next let us suppose a second process per-
formed in the reverse direction, in which the last-named
quantity @, is transferred back again from K, to K}, and a
quantity of heat of temperature 7" is at the same time gene-
rated out of work, ‘This transformation from work into heat
must, independently of sign, be equivalent to the former
transformation from heat into work, since they are both equi-
valent to one and the same transference of heat. The quantity
of heat of temperature 7", generated out of work, must there-
fore be exactly as great as the quantity ¢ found in the above
equation, and the given transformations have thus been made
backwards. '

Finally, let there be two transferences of heat, e.g. the
quantity of heat @ transferred from a body K, of tempera-
ture 7; to a body K, of temperature T,, and the quantity
Q’,, from a body K, of temperature 7", to a body K", of tem-
perature 1"}, and let these be so related that we may put

1 1\, ., /1 1\_
Q;(;’_q__l)'FQl(;T—;T —0.

1

Then let us suppose two Cyclical Processes performed, in one
of which the quantity @, 1s transferred from K, to K, and
the quantity 3 of temperature T thereby generated out of
work, whilst in the second the same quantity ¢ is again
transformed into work, and thereby another quantity of heat
transferred from K, to K’,. This second quantity must then
be exactly equal to the %iven quantity Q’;, and the two
given transferences of heat have thus been done backwards.
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When by operations of this kind all the transformations
of the first division have been done backwards, there then
remain the transformations, all of the like sign, of the second
division, and no others whatever. Now first, if these trans-
formations are negative then they can only be transformations
from heat into work and transferences from a lower to a higher
temperature; and of these the transformations of the first
kind may be replaced by transformations of the second kind.
For if a quantity of heat @ of temperature T is transformed
into work, then we have only to perform in reverse order the
cyclical process described in § %: in which the quantity of
heat @ of temperature 7' is generated out of work, and at the
same time another quantity @, is transferred from a body K,
of temperature T, to another body K, of the higher tempera-
ture 7|. Thereby the given transformation from heat into
work is done backwards, and replaced by the transference of
heat from K, to K,. By the application of this method, we
shall at last have nothing left except transferences of heat
from a lower to a higher temperature which are not com-
pensated in any way. As this contradicts our fundamental
principle, the supposition that the transformations of the
second division are negative must be incorrect.

Secondly, if these transformations were positive, then
since the cyclical process under consideration is reversible,
the whole process might be performed in reverse order;
in which case all the transformations which occur in it
would take the opposite sign, and every transformation of
the second division would become negative. We are thus
brought back to the case already considered, which has been
foung to contradict the fundamental principle.

As then the transformations of the second division can
neither be positive nor negative they cannot exist at all; and
the first division, whose algebraical sum is zero, must em-
brace all the transformations which occur in the cyclical
process. We may therefore write V=0 in equation (8), and
thereby we obtain as the analytical expression of the Second
Main Principle of the Mechanical Theory of Heat for reversi-
ble processes the equation

'J"!Q-_.o. ...... veerseeeenerens(VIL).

T
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§ 7. On the Temperatures of the various gquantities of
Heat, and the Entropy of the Body.

In the development of Equation VIL the temperatures of
the quantities of heat treated of were determined by those of
the heat reservoirs from which they came, or into which they
passed. But let us now consider a cyclical process, which is
such that a body passes through a series of changes of
condition and at last returns to its original state. This
variable body, if placed in connection with the heat reservoir
to receive or give off heat, must have the same temperature
as the reservoir; for it is only in this case that the heat can
pass as readily from the reservoir to the body as in the reverse
direction, and if the process is reversible it is requisite that
this should be the case. This condition cannot indeed be
exactly fulfilled, since between equal temperatures there canin
general be no passage of heat whatever ; but we may at least
assume it to be so nearly fulfilled that the small remaining
differences of temperature may be neglected.

In this case it i8 obviously the same thing whether we
consider the temperature of a quantity of heat which is being
transferred as being equal to that of the reservoir or of the
variable body, since these are practically the same. If how-
ever we choose the latter and suppose that in forming Equa-
tion VI every element of heat @ is taken of that tem-
perature which the variable body possesses at the moment it
1s taken in, then we can now ascribe to the heat reservoirs
any other temperatures we please, without thereby making

any alteration in the expression f 'i:_? With this assumption

as to the temperatures we may consider Equation VII. as
holding, without troubling ourselves as to whence the heat
comes which the variable body takes in, or where that goes
which it gives off, provided the process is on the whole a re-
versible one.

The expression %Q , if it be understood in the sense just
given, is the differential of a quantity which depends on the
condition of the body, and at the same time is fully deter-
mined as soon as the condition of the body at the moment
is known, without our needing to know the path by which



THE EQUIVALENCE OF TRANSFORMATIONS. 107

the body has arrived at that condition ; for it is only in this case
that the integral will always become equal to zero as often as
the body after any given variations returns to its original con-
dition. In another paper*, after introducing a further de-
velopment of the equivalence of transformations, the author
proposed to call this quantity, after the Greek word Tpomy),
Transformation, the Entropy of the body. The complete
explanation of this name and the proof that it correctly
expresses the conditions of the quantity under consideration
can indeed only be given at a later period, after the develop-
ment just mentioned has been treated of; but for the sake
of convenience we shall use the name henceforward.

If we denote the Entropy of the body by S we may put
Q_as, |

or otherwise

§ 8. On the Temperature Function .

To determine the temperature function T we will apply the
same method as in Chapter IIL § 7, p. 81, to determine the
function @ (T}, T,). For, as the function 7 is independent of
the nature of the variable body used in the cyclical process, we
may, in order to determine its form, choose any body we
please to be subjected to the process. We will therefore
again choose a perfect gas, and, as in the above-mentioned
section, suppose a simple process performed, in which the gas
takes in heat only at one temperature 7', and gives it out
only at another T;. The two quantities of heat which are
taken in and given out in this case, and whose absolute
values we may call Q and @, stand by equation (8) of the
last chapter, p. 83, in the following relation to each other:

On the other. hand, if we apply Equation VIIL to this
simple cyclical process, whilst at the same time we treat the

* Pogg. 4ns. Vol. cxxv. p. 390.
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giving out of the quantity of heat @ as equivalent to the -

taking in of the negative quantity — @, we have the follow-
ing equation :

Q_¢ Q_-
S %o o =T, 10),
T T T Q, (10)
From equations (9) and (10) we obtain
T
Tl - Tl ’
or T=m T e (11).

If we now take T' as being any temperature whatever and T,

as some given temperature, we may write the last equation
thus :

=T %xConstee.cereriniininiennnen (12),

?nd the temperature function 7 is thus reduced to a constant
actor.

What value we ascribe to the constant factor is indiffe-
- rent, since it may be struck out of Equation VII. and thus
has no influence on any calculations performed by means of
the equation. We will therefore choose the simplest value,
viz. unity, and write the foregoing equation

T=T i, (13).

The temperature function is now nothing more than the
absolute temperature itself.

Since the foregoing determination of the function T rests
on the equations deduced for the case of gases, one of the
foundations on which this determination rests will be the
approximate assumption made in the treatment of gases,
viz. that a perfect gas, if it expand at constant temperature,
absorbs only just so much heat as is required for the
external work thereby performed. Should anyone on this
account have any hesitation in regarding this determination
as perfectly satisfactory, he may in Equations VIL and VIII.
regard T as the symbol for the temperature function as yet
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undetermined, and use the equations in that form. Anysuch
hesitation would not, in the author’s opinion, be justifiable,
and in what follows 7' will always be used in the place of .
Equations VII. and VIII will then be written in the followitig
forms, which have already been given under Equations V.
and VL. of the last chapter, viz.



CHAPTER V.
FORMATION OF THE TWO FUNDAMENTAL EQUATIONS.

§ 1. Discussion of the Variables which determine the
Condstion of the Body. ‘

In the general treatment of the subject hitherto adopted

we have succeeded in expressing the two main principles of

« the Mechanical Theory of Heat by two very simple equations
numbered III. and VI. (pp. 31 and 90).

We will now throw these equations into altered forms
which make them more convenient for our further calcula-
tions. ,

Both equations relate to an indefinitely small alteration
of condition in the body, and in the latter it is further
assumed that this alteration is affected in such a way as to
be reversible. For the truth of the first equation this assump-
tion is not necessary : we will however make it, and in the
following calculation will assume, as hitherto, that we have
only to do with reversible variations.

We su}?ose the condition of the body under considera-
tion to be determined by the values of certain magnitudes,
and for the present we will assume that two such magnitudes
are sufficient. The cases which occur most frequently are
those in which the condition of the body is detcrmined by its
temperature and volume, or by its temperature and pressure,
or lastly by its volume and pressure. We will not however
tie ourselves to any particular magnitudes, but will at first
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assume that the condition of the body is determined by any

two magnitudes which may be called = and y; and these mag- .
nitudes we shall treat as the independent variables of our ™
calculations. In special cases we are of course always free to
take one or both of these variables as representing either one
or two of the above-named magnitudes, 'gemperature, Volume
and Pressure.

If the magnitudes # and y determine the condition of
the body, we can in the above equations treat the Energy U
and the Entropy S as being functions of the variables. In
the same way the temperature T, whenever it does not itself
form one of these variables, may be considered as a function
of the two variables. The magnitudes W and Q on the con-
trary, as remarked above, cannot be determined so simply,
but must be treated in another fashion.

The differential coefficients of these magnitudes we shall
denote as follows:

a—-—-m, Ti—g'=7¢ .................. (1),
dQ a9 _
T G =N )

These differential coefficients are definite functions of x
and y. For suppose the variable # is changed into z+d-
while y remains constant, and that this alteration of condi-
tion in the body is such as to be reversible, then we are
dealing with a completely determinate process, and the
external work done in that process must therefore be also
determinate, whence it follows that the quotient %—2: must
equally have a determinate value. The same will hold if we
suppose y to change to y + dy while # remains constant. If
then the differential coefficients of the external work W are
determinate functions of # and y it follows from Equation IIL.
that the differential coefficients of the quantity of heat @
ta.l({ien in by the body ‘are also determinate functions of =
and y.

Iy.et us now write for dW and dQ their expressions as
functions of dz and dy, neglecting those terms which are of a
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higher order than dz and dy. We then have,
AW =mdz+ndy ..c.oovvvvennennes (3),
dQ=Mdx+ Ndy .........cccc.n. (4),

and we thus obtain two complete differential equations, which
cannot be integrated so long as the variables # and y are
independent of each other, since the magnitudes m, n and
M, N do not fulfil the conditions of integrability, viz.

dm _dn and dM_dN
dy dx dy dz’

The magnitudes W and @ thus belong to that class which
was described in the mathematical introduction, of which the
peculiarity is that, although their differential coefficients are
determinate functions of the two independent variables, yet
they themselves cannot be expressed as such functions, and
can only be determined when a further relation between the
variables is given, and thereby the way in which the varia-
tions took place is known.

§ 2. Elimination of the quantities U and S from the
two Fundamental Equations.

Let us now return to Equation III., and substitute in it
for dW and dQ expressions (3) and (4); then, collecting to-
gether the terms in dz and dy, the equation becomes,

dal

o7

; aU
Miz+ Ndy= (5 +m)da+ (@+ n) d.
As these equations must hold for all values of d and dy,
we must have,

_av,
SdzT™

aU
—-a;'*'n.
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Differentiating the first equation according to ¥, and the
second according to x, we obtain,

M _ @
dy daxdy ' dy’
N _&U  du
dz  dydz " dx

We may apply to U the principle which holds for every
function of two independent variables, viz. that if they are
differentiated according to both variables, the order of dif-
ferentiation is a matter of indifference. Hence we have

aU _ U

dudy = dyds’

Subtracting one of the two above equations from the
other we obtain,

M _dAN_dn_dn ,.
dy - da:_ dy -El;' .................. (v)).
We may now treat Equation VI{. in the same manner.

Putting for d@ and dS their complete expressions, it be-
comes,

ra _ m(dS ds
Mz + Ndy = T(%dx+gjdy),
M N ds ds
or —,I,-d:c+Td_y—a—5dw+@dy.
‘This equation divides itself, like the last, into two, viz.
a_as
T dx’
N_ds
T dy’

Differentiating the first of these according to y, and the
second according to «, we obtain,

C. 8

=
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aM ., .dT
T Moy _ s
" " drdy’
dN dT
T Ve as
T "~ dydz’

But as before,
¢S d'S |
dzdy ~ dydz’

hence subtracting one of the above equations from the other
we obtain :

dM _, dT pdN _ o dT

T M-~ T

dy T dy dx " dx _ 0
& - e =0,
: dM dN 1 ar . dT
or o ‘EE‘T(M@ - N (Tm) ............ (6).

The two equations (5) and (6) may be also written in a
somewhat different form. To avoid the use of so many
letters in the formula, we will replace M and N, which were

introduced as abbreviations for Z—g and %,by those differen-
tial coefficients themselves. Similarly for m and n we will

write aw and ﬂ Then the right hand side of equation

d.e dy

(5) may be written

4 ‘l‘i’) _d '”l’)

dy ( dz) d=z (Ey )
Thus the magnitude represented by this expression is a func-
tion of # and 7, which may generally be considered as known,
inasmuch as the external forces acting on the body are open
to direct observation, and from these the external work can

be determined. The above difference, which will occur very
frequently from henceforward, we shall call “'The Work
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Difference referred to z and y” and shall use for it a special
symbol, putting

Dum ()L (Y .......0.

Through these changes equations (3) and (6) are trans-
formed into the following :

%(%’)_d%(% =Dy, reeneevesersssenenes(8),

5y ()26 (G L)

These two equations form the analytical expressions of
the two fundamental principles for reversible variations, in
the case in which the condition of the body is determined by
two given variables. From these equations follows a third,
which is so far simpler as it contains only differential coeffi-
cients of @ of the first degree, viz.

AT _dQ dT _dQ _

a‘yx—ax—d—wx;!;—TD“ ............ (10).
§ 3. Case tn which the Temperature is taken as one of the
Independent Variables. .

The above three equations are very much simplified if the
temperature of the body is selected as one of the independent
variables. Let us for this purpose put y = 7, so that the two
independent variables are the temperature 7', and the still
undetermined quantity . Then we have first,

aT

@=l‘

Again, referring to the differential coefficient iig, it is

assumed in its formation that, while « is changed into = + dx,
the other variable, hitherto called ¥, Temains constant. But
a3 T is now itself the other variable, it follows that 7' must
remain constant in the above differential coefficient, or in
other words

dT

d—x'=0.

82
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Again, if we form the Work-difference referred to # and
T, this will run as follows:

d (dw\ d ([dw
D= 30 (G) — 25 (G7) -oeremeee (11).
Hence equations (8), (9), (10) take the following form :
o d A\ _d A\ _ 5 9

d_T (EE) £ (ET) =Dprevriananns 12),

d@\ _1d@Q
dT d&’) dx )“T&? veeees (13),
flg-.. TDop oo (14).

If the product TD,,, given in eyuation (14), be substi-
tuted for ZZQ in equation (12), and then differentiated accord-
ing to T, the following very simple equation will be the

result : 0
d dD,, -
= ( ) TE . (13).

§ 4. Particular Assumptions as to the External Forces.

We have hitherto made no particular assumptions as to
the external forces to which the body is subjected, and to
which the external work done during its alterations of condi-
tion is related. We will now consider more closely a special
case, which occurs frequently in practice, namely that in
which the only external force which exists, or at least the
only one which is of sufficient importance to be taken into
consideration, is a pressure acting on the surface of the body,
everywhere normal to that surface, and of uniform intensity.
In this case external work can only be done during changes
in the volume of the body. Let p be the pressure per unit
of surface, v the volume; then the external work done,
where this volume is increased to v +dv, is given by the
equation
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Let us now suppose the condition of the body to be given
by the values of two given variables  and y. Then the
pressure p and volume v must be considered as functions of
zand y. We may thus write the last equation as follows:

AW =p G—-idz-{—:—%dy),

whence it follows that

dw _ dv
de ~Pdx
AW  dv

dy ~Pay

Putting these values for %—2’ and %Vin equation (7), and

performing the differentiations indicated, taking note also of

d'v d'v .
the fact that m = M, we obtain

e (17).

_dp dv dg*(_l_v

D"—d_l/ X a?l;_dﬁ dy ................ (18).

This value of D,, we have now to apply to equations (9)
and (10). Let « and T be the two independent variables;
then equation (18) becomes

dp dv dp_dv
D”-ded.z:_da:xdT ...............
which value we have to apply to equations (12), (14) and
(15). The expression given in (18) takes its simplest form,
if we choose for one of the independent variables either the
volume or the pressure, or if we choose both for the two
independent variables. For these cases equation (18) takes,
as is easily seen, the following forms,

d
1)"=d§ SRR (1)
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et s 2
D=~ (a1),
Dy=T.coeeeerreremnennnn (22)

Lastly in the cases in which either the volume or pressure
is taken as one of the independent variables, we may choose
the temperature for the other. We must then put 7' for y
in equations (20) and (21), which then become

d
D,= 81;, ....................... (23),
d
D,,= a—;—, .................... (24).

§ 5. Frequently occurring Forms of the Differential
Equaticns.

In the circumstances described above, where the only
external force is a uniform pressure normal to the surface,
it is usual to choose as the independent variables, which
are to determine the condition of the body, the quantities
last mentioned in the foregoing section, viz. volume and
temperature, pressure and temperature, or lastly, volume
and pressure. The systems of differential equations which
hold for these three cases may be easily deduced from the
more general systems given above; but on account of their
frequent use it may be well to collect them together in this
place. The first system is the one which the author has
usually employed in the treatment of special cases.

If v and T are taken as the independent variables,

4(29)_ 48y _dp )

dT\dv) ~ dv\dT) ~ dT’

4 (dQ)_d (dey_1dQ

dT(dv)_dv (dT)"Tdv’ e (23)
‘j—f;?=1’%’7’,, < (23).

%(%)=T§% J

= N
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If p and T are taken:

d dQ\ d (d do 1
ﬁ('&;)“d_p(d_g)“af'
4d0_d @0 1dg
al\ap, dp dfiv Tap® L ..

_§=_Tm,
If v and p are taken:
(@)= a (3)=" 1
T
%(%%%}(%3):%(%%%-% xg-l?) JEc

dT dQ dT dQ _
B ¥d d XL J

§ 6. Equations tn the case of a body which undergoes
a Partial Change in its Condition of Aggregation.

A case which permits a still further simplification peculiar
to itself, and which is of special interest from its frequent
occurrence, is that in which the changes of condition in the
body are connected with a partial change in its Condition of
Aggregation.

Suppose a body to be given, of which one part is in
one particular state of aggregation, and the remainder in
another. As an example we may conceive one part of the
body to be in the condition of liquid and the remainder
in the condition of vapour, and vapour of the particular
density which it assumes when in contact with liquid : the
equations deduced will however hold equally if one part
of the body is in the solid condition and the other in the
liquid, or one part in the solid and the other in the vaporous
condition. We shall, for the sake of generality, not attempt
to define more nearly the two cenditions of aggregation
which we are treating of, but merely call them the first and
the second conditions.
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Let a certain quantity of this substance be inclosed in
a vessel of given volume, and let one part have the first,
and the other the second condition of aggregation. If the
specific volumes (or volumes per unit of weight), which the
substance assumes at a given temperature in the two dif-
ferent conditions of aggregation, are different, then in a
given space the two parts which are in the different con-
ditions of aggregation cannot be any we please, but can
only have determinate values. For if the part which
exists in the condition of greater specific volume increases
in size, then the pressure is thereby increased which the
inclosed substance exerts on the inclosing walls, and con-
sequently the reaction which those walls exert upon it,
and finally a point will be reached, where this pressure is
so great that it prevents any further passage of the substance
into this condition of aggregation. hen this point is
reached, then, so long as the temperature of the mass and
its volume, i.e. the content of the vessel, remain constant,
the magnitude of the parts which are in the two conditions
of aggregation can undergo no further change. If, however,
whilst the temperature remains constant, the content of
the vessel increases, then the part which is in the condition
of aggregation of greater specific volume can again increase
at the cost of the other, but only until the same pressure as
before is attained and any further passage from one condition
to the other thereby prevented.

Hence arises the peculiarity, which distinguishes this
case from all others. For suppose we choose the temperature
and the volume of the mass as the two independent variables
which are to determine its condition; then the pressure
is not a function of both these variables, but of the tempera-
ture alone. The same holds, if instead of the volume we
take as the second independent variable some other quantity
which can vary independently of the temperature, and which
in conjunction with the temperature determines fully the
condition of the body. The pressure must then be inde-
pendent of this latter variable. The two quantities, tem-
perature and pressure, cannot in this case be chosen as
the two variables which are to serve for the determination
of the body’s condition.

We will now take, in addition to the temperature 7, any

-



FORMATION OF THE TWO FUNDAMENTAL EQUATIONS. 121

other magnitude z, as yet left undetermined, for the second
independent variable which is to determine the body’s
condition. Let us then consider the expression given in

equation (19) for the work-difference referred to =7, viz.
_dp _dv dp dv
DIT——d—TXd:—'J:cX d—T.

In this we must, by what has been said, put t(—i.g =0,

and we thus obtain
=T
T ar e

The three equations (12), (13), (14) are thereby changed
into the following: .

D, ceeeneen(28).

d (dQ\ d (dQ\_dp _d»
ar () = a (ar) = o * o 29
d (dQ\ d (d@y_1 _dQ
i (@)~ 22 (a7) =7 < @ 00
aQ ., dp _dv
a‘;—TZZ‘T X "1"” ................... (31).

§7. Clapeyron’s Equation and Carnot's Function.

To conclude the developments of the Fundamental Equa-
tions which have formed the subject of the present chapter,
we may consider the equation which Clapeyron® deduced as
a fundamental equation from the theory of Carnot, in order
to see in what relation it stands to the equations we have
here developed. As however Clapeyron's equation contains
an unknown function of temperature, usually designated as
Carnot’s function, it will be advisable beforehand to throw
our equations, so far as they will come under considera-
tion, into the form which they take, if the temperature
function 7, introduced in the last chapter, is treated as still
indeterminate, and is not, in accordance with the value

* Journal de U'Ecole Polytecknique, Vol. x1v. (1834).
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there determined, put equal to the absolute temperature T.

We shall thereby obtain the advantage of fixing the relation

between our temperature-function 7 and Carnot’s Function.
If instead of equation

dQ=TdS,
we use the less determinate Equation VIIL of the last chapter,
dQ=1dS,

and eliminate S from this equation, in the same manner
as in § 2, we obtain instead of equation (9) the following :

i (1)~ 2 (1)~ (G <&~ B ) e

Combining this with (8) we obtain instead of equa-

tion (16),
dr dQ_dr dQ_ p
dy  dz " dz X dy =T

If we now assume that the only external force is a
uniform and normal pressure on the surface, we may use
for D,, the expression given in equation (18), and the above
equation becomes

dr LdQ_dr dQ__(dp dv_dp do
T T ds X dy " (dy dz " ds dJ) """ (34).

If further we choose as independent variables v and p,
putting z = v, and y = p, we obtain

dr dQ drde_
dp dv dv  dp

...(33).

But as 7 is only a function of 7, we may put

dr _dr dT 4 %r_dr dT
do=aT ™ dv ¢ dpTar™ ap

Introducing these values of % and g—; in the above equation,
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and dividing by %, we obtain, instead of the last of equa-
tions (27), the following :

dT dQ_dT dQ_ 7
dp " dv dv dp dr”
ar
It is here assumed that the heat is measured in mechani-
cal units. To introduce the ordinary measure of heat, we
must divide the expression on the right-hand side by the
mechanical equivalent of heat, which gives:

dT_dQ dT_dQ
@xav—d;xdﬁ—ﬁ ............... (37)-
dar :

Clapeyron’s equation agrees in form with this, since it is

written *

dr d@_dT d9_.

dp dv du dp = &/ evescceserssscoces
where C is an undetermined functiou of temperature, and is
the same as Carnot’s Function already mentioned.

If we equate the right-hand expressions of (37) and (38),
we obtain the relation between C and 7, as follows:

corveenennees(36).

=—— = 39)
_Eﬂ—m --------------------- ( L
ar dT

If, adbering to the determination of T given by the author,
we assume 1t to be nothing more than the absolute tempera-
ture 7, then C takes the simpler form,

_ Asequation (33) is formed by the combination of two equa-
tions, which express the first and second Main Principles, it

* Pogg. 4nn. Vol. Lrx. p. 574.
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follows that Clapeyron’s equation must be considered not as an
expression of the second Main Principle in the form assumed
by the author, but as the expression of a principle, which
may be deduced from the combination of the first and second
principles. As concerns the manner in which Clapeyron has
treated his ditferential equation, this differs widely from the
method adopted by the author. Like Carnot, he started from
the assumption that the quantity of heat which must be
imparted to a body during its passage from one condition to
another, may be fully ascertained trom its initial and final
conditions, without its being necessary to know in what way
and by what path the passage has taken place. Accordingly
he considered @ as a function of p and v, and deduced by
integrating his differential equation the following expression

for @:
Q=F(T)= Cod(p,v)eececrceeruceus... (41),

in which F(T) is any function whatever of the temperature;
and ¢(p,v) is a function of p and v which satisfies the follow-
ing more simple differential equation :

dT d¢ dT

dé _
el Sl rl A (42).

dv

To integrate this last equation we must be able to express the
temperature 7" for the body in question as a function of p
and v. If we assume that the body in question is a perfect
gas, we have

v
= % ............................... (43),
whence aT
dT _p iT v
w-R and Friab
Hence equation (42) becomes
dé dp
Y4 L‘t; - % Y T (4‘4‘)-

Integrating, we have
¢ (p,v)=Rlogp+ P (pv),

N
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where @ (pv) is any function whatever of the product pv. For
this we may by equation (43) substitute any function what-
ever of the temperature, so that the equation becomes,

o(pv)=Rlogp+Y(T)eeeeerennenn.. (45).
If we introduce this expressxon for ¢ (p, v) in (41), and put
F(T)—- Cy (T)=RB,

where B again expresses any function whatever of the tem-
perature, we obtain,

Q=R(B—-Clogp).....eceveuvenn.. (46).

This is the equation which Clapeyron has deduced for the
case of gases.



CHAPTER VL

APPLICATION OF THE MECHANICAL THEORY OF HEAT TO
SATURATED VAPOUR.

§ 1. Fundamental equations for saturated vapour.

Among the equations of the last chapter, those deduced
- in § 6, which refer to a partial change in the body's state of
aggregation, may conveniently be treated first; inasmuch as
the circumstance there mentioned, viz. that the pressure is
only a function of the temperature, greatly facilitates the
treatment of the subject. We will in the first place consider
the passage from the liquid to the vaporous condition.

Let a weight M of any given substance be inclosed in an
expansible envelope: of this let the part m be in the condition
of vapour, and that vapour (as necessarily follows from its
contact with the liquid) at its maximum density; and let the
remainder M —m be liquid. If the temperature T of the
mass is given, the condition of the vaporous part, and at the
same time that of the liquid part, is thereby determined. If
m be also given and thereby the magnitudes of both parts
known, then we know the condition of the whole mass. We
will accordingly choose 7" and m as the independent variables,
and will substitute m for # in equations (29), (30), 31) of
the last chapter. Then these equations become

d(dQ\_d Q) _dp o
d‘:‘l',(d‘ﬁ)“‘dwb (JT>—d.'l'xdm ................ (1),
d (d d (dQ _1_4d¢@
(TT((?)?@) b d}?}, (ET)— T X a‘;‘z ...........-...-‘.(2),
dQ _ndp  dv
am—TaT X am ........................ (3).



SATURATED VAPOUR. : 127

We may now denote the specific volume (i.e. the volume
of a unit of weight) of the saturated vapour by s, and the
specific volume of the liquid by o. Both these magnitudes
bear some relation to the temperature 7' and its correspond-
ing pressure, and are therefore, like the pressure, functions of
the temperature alone. If we further denote by v the total
volume of the mass, we may then put

v=ms+ (M —m)a,

=m (s— o) + Mo.

We will substitute for the difference (s— o), a simpler ex-
pression, by putting

USS=0 tiverreriiniinienniennns (4),
whence it follows that

v=mu+ Mo ..ccccoovveennannnn.. ¢);
whence p
v
T S W (6).

The quantity of heat which must be applied to the mass, if
a unit of weight of the substance, at temperature 7' and
under the corresponding pressure, is to pass from the liquid
into the vaporous condition, and which may be shortly called
the vaporizing heat, may be denoted by p; then we have

We will further introduce into the equations the specific heat
of the substance in the liquid and vaporous condition. The
specific heat here treated of is not however that at constant
volume, nor yet that at constant pressure, but belongs to the
case in which the pressure increases with the temperature in
the same manner as the maximum expansive power of the
saturated vapour. This increase of pressure has very little
influence on the specific heat of the liquid, since liquids are
but slightly compressible by such pressures as are herein con-
sidered. We shall hereafter explain how this influence may
be calculated, in our researches on the different kinds of
specific heat, and a single example will suffice here. For
water at boiling-point the difference between the specific

f N
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heat here considered and the specific heat at constant
pressure, is only 55166 of the latter, a difference which may be

neglected. Accordingly, we may for the purposes of calcula-
tion take the specific heat of the liquid here considered as
being equal to the specific heat at constant pressure, although
their meaning is different. We will call this specific
heat C.

With vapour it is otherwise. The specific heat here con-
sidered refers, as shewn above, to that quantity of heat which
saturated vapour requires to heat it through 1° if it is at the
same time 8o powerfully compressed that even at the higher
temperature it again returns to the saturated condition. As
this compression is very considerable, this kind of specific
heat is very different from all which we have hitherto treated
of. We shall call it the Specific Heat of Saturated Steam,
and shall denote it by H.

Bringing in the two symbols € and H, we may now at once
write down the quantity of heat which is necessary to give
the increase of temperature d7' to the quantity of vapour
m, and the quantity of liquid M—m. The result will be as

follows:
mHAT + (M —m) CdT,

whence
X i + (U -m) €,

or otherwise .

g%=m(y_o)+Mc ................ ®).
From equations (7) and (8) we have
d (dQ\ _dp
JT(%;) = B cernaanos e ),
d (AQy _
a (&’I) SHoC v, (10).

Substituting in equations (1, 2, 3) the values given in equa-
tions (7, 9,10) we have
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dp __dp
t—i_T+ C H—Uﬂ, .................. (11),.
dp - P
ET+0' S RLRCT R (12),
dp
p—T’lI/ﬂ, ...................... (13)0

These are the fundamental equations of the Mechanical
Theory of Heat as relates to the generation of vapour. Equa-
tion (11) is a deduction from the first fundamental principle,
(12) from the second, and (13) from both together.

If it is desired to use the ordinary and not the mechanical
measures for the quantities of heat, we need only divide all
the members of the foregoing equations by the mechanical
equivalent of heat. In this case we will denote the two
specific-heats and the heat of vaporization by new symbols,
putting

c=%; h-—-g; r=i—, ................... (14).
The equations then become
gfﬁ ¢ —h=%((‘li§,’-) ................ (15),
%ﬁ c— h=~;—, ....................... (16),
r= 11;'.‘ x gg, ......................... (17).

§2. Specific Heat of Saturated Steam.

As the foregoing equations (15), (16) and (17), of which
however only two are independent, have thus been obtained by
means of the Mechanical Theory of Heat, we may make use of
them in order to determine more closely two magnitudes, of
which one was previously quite unknown and the other only
known imperfectly; viz. the magnitude & and the magnitude
8 contained in u.

If we first apply ourselves to the magnitude A, or the
Specific Heat of Saturated Steam, it may be worth while in

c. 9
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the first place to give some account of the views formerly
promulgated concerning this magnitude.

The magnitude h 18 of special importance in the theory
of the steam engine, and in fact the first who published any
distinct views upon it was the celebrated improver of the
steam engine, James Watt. In his treatment of the subject
he naturally started from those views which were based on the
older theory of heat. To this class belongs especially the idea
mentioned in Chapter 1., viz. that the so-called total heat, i.e.
the total quantity of heat taken in by a body during its passage
from a given initial condition to its present condition, depends
only on the present condition and not on the way in which
the body bas been brought into it; and that it accordingly
may be expressed as a function of those variables on which
the condition of the body depends. According to this view
we must in our case, in which the condition of the body com-
posed of liquid and vapour is determined by the quantities
T and m, consider this quautity of heat @ as a function of T
and m ; accordingly we%mve the equation

4 (dQ\_d (d_Q) -0

ar (dm dm\dT) _
If we here substitute for the two second differentials their
values given in equations (9) and (10), we have

dp -
grCe-H=0,
or dividing by £
dr
37, +4+c— h= 0, ‘
whence we have, to determine A, the equation,
dr
h= ﬁ F Ciiiiineiniiiiiietniniianas (18).

This was in fact the equation which was formerly used to
determine %, though not quite in the same form. To calculate
h from this equation we must know the differential co-

.o d
efficient d_;" or the change of the vaporizing heat for a given
change of temperature,



SATURATED VAPOUR. 131

‘Watt had made experiments on the vaporizing heat of
water at different temperatures, and was thereby led to a
result, which may be expressed by a very simple law, com-
monly called Watt’s law. This in its shortest form is as
follows: “The sum of the free and latent heat is always
constant.” By this is meant that the sum of the two quan-
tities of heat, which must be imparted to a unit of weight of
water, in order to raise it from freezing point to temperature
T, and then at that temperature convert it into steam, is in-
dependent of the temperature T' itself. The quantity of
heat required for heating the water is expressed by the

integral .
[ e,

in which @ is the absolute temperature of freezing point.
The heat of vaporization is represented by ». Watt’s law
therefore leads to the equation

r +/Tch= Constant .........cecevee..(19).

Differentiating,
dr
d—j,"l' c=0.......... sessessecssies (20),
combining this with equation (18) we have
h=0.icieeriiiiiriniininnianns (21).

This result was long considered as correct, and was expressed
by the following principle : If steam of maximum density
changes its volume within a vessel impermeable to heat, it
always preserves its maximum density.

More recently Regnault made very careful experiments on
the changes in the heat of vaporization with changes in the
temperature*; and thereby discovered that Watt’s law, accord-
ing to which the sum of the free and latent heat is always
constant, does not agree with the facts, but that this sum has
an increasing value as the temperature rises. The result of
his experiments is expressed in the following equation, in

* Relations de Experiences, t. 1.; Mem. de I'Acad., t. xx1., 1847,
9=2
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which instead of the absolute temperature 7' we introduce
the temperature ¢ reckoned from the freezing point :

13 .
-+ f odt = 6065 + 0305 ¢.......... ..(22).
o
Differentiating this equation with regard to ¢, and then sub-
stituting g;, for Z—:, both having the same value, we have
dr «
art c=0305 .....oviiiniiennnn.(23).
Combining this equation with (18) we have
h="305...cccevviinrinninnnnn.. (24)

This was the value of &, which it was supposed, after the
publication of Regnault’s experiments, must be substituted
for the value zero and applied to the theory of the steam
engine. Hence arose the idea that if saturated steam be
compressed, and thereby heated, in such a way that it always
has exactly the temperature for which the density is a maxi-
mum, it must take in heat from without; and conversely in
expanding, in order to cool itself in a manner corresponding
to the expansion, it must give out heat from itself. Hence
we must further conclude that if saturated steam be com-
pressed in a vessel impermeable to heat, a fall of temperature
must take place; whilst in expanding the steam will not re-
main at its maximum density, inasmuch as its temperature
cannot fall so low as this will necessitate.

Having thus explained the conclusions previously drawn
in relation to h, we will now see what may be concluded
from the equations here developed.

The quantity & occurs in the two equations (15) and (16);
but the first of these also contains the quantity u, which cannot
at present be considered as accurately known; it is therefore
less convenient for determining h than the latter, which in
addition to & contains only such quantities as the experi-
ments of Regnault have determined with great accuracy in
the case of water, and of many other fluids. This equation

may be written
dr r

h=a—1—'+c—-j,'. ..................... (25).
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We have thus obtained by the Mechanical Theory of Heat a
new equation for determining h, which differs from the equa-
tion (18), previously assumed to be correct, by the negative
r
71:
importance.

§ 3. Numerical Value of h for Steam. .

If we apply equation (25) to the case of water, we must first,
following Regnault, give to the sum of the first two symbols
on the right-hand side the value 0-305. To determine the
last symbol we must know the value of 7, asa function of the
temperature. Equation (22) gives us

¢
r = 6065+ 0:305¢ — f et aerraren. (26).
0

quantity — 7, the value of which quantity is thus of great

The specific heat of water ¢ is determined according to
Regnault by the following formule :

¢ =1+ 0:00004¢ + 0-0000009¢ .......... 7).
Applying this, equation (26) becomes
* r= 6065 — 0-695¢ — 0:0000¢* — 0°0000003¢"...(28).

Substituting this value for = in (25), and replacing 7 by
273+, we obtain for steam the following equation :

6065 — 0'695¢ — 0:00002¢* — 0-0000003¢*
273 +¢

The expression for # given in (28) is inconvenient from its
length, and the experiments on the heat of vaporization at
different temperatures, valuable as they are, can scarcely
possess such a degree of accuracy as to make so long a
formula necessary to represent them. Accordingly in his
Paper on the theary of the steam engine the author pre-
ferred to use the following formula :

=607 = 0708t eeeeneerneennnn. (30).

The manner in which the two constants in the formula
are determined will be more closely examined further on,

h=0305 —

.+.(29).
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in describing the steam engine. Here we will only give a
comparison of some values determined by both formule, in
order to shew that the difference between them is so small,
that one may be substituted for the other without danger:

¢ 0 l 500 | 1000 | 150° | 2000
r by equation (28)...| 6065 | 5716 | 5365 | 5007 | 4643
7 by equation (30) ...| 6070 | 5716 | 5362 | 5008 | 4654

Substituting in equation (25) the expression for 7 in (30)
we have instead of equation (29) the following :

e 607 —0708¢
h-0305__—273+t ,
or in still simpler form, '
_ 8003
=013 5= s (31)

A glance at equations (29) and (31) shews that for mode-
rate temperatures h is a negative quantity. Equation (29)
gives for certain fixed temperatures the following values,
zghi)ch agree very closely with those calculated by equation

1):

¢ o 500 1000 | 1500 | 2000 '

1) .—1916 | —1'465 | —1°133 | — 0879

-0676 !

The circumstance that the specific heat of saturated steam
has a negative value, and that of so large an amount, gives
it a special character of its own. We may explain in the
following manner the cause of this singular condition. If
steam is compressed, heat is generated by the work thereby
expended, and this heat is more than sufficient to raise the
temperature of the steam to the point at which the new
density is the maximum density. Accordingly if the steam
is to be treated in such a way that it remains saturated, it
must be deprived of a part of the heat thus generated. In
like manner in the expansion of steam more heat is con-
verted into work than is necessary to cool the steam so far
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only that it remains exactly in the condition of saturated
steam. Accordingly if this last condition is to hold heat must
be imparted during the expansion.

Should the original saturated steam be contained in a
vessel impermeable to heat, it will be superheated during
compression and will be in part condensed during expan-
sion.

The conclusion that the specific heat of saturated steam
is negative was drawn by Rankine and by the author inde-
pendently, and about the same time®. ine however
developed only the first of the two equations (15) and (16),
which contain A, and this in a somewhat different form.
The second it was impossible for him to develope, since he was
without the second fundamental principle, which was neces-
sary thereto. Since in the first equation there occurs together
with A& the specific volume of the saturated steam, which is
contained in u, Rankine in order to determine this applied
to saturated steam the law of Mariotte and Gay-Lussac,
which, as we shall see further on, is inaccurate. More exact
determinations of k could only be accomplished by means of
equation (16), which was first established by the author.

§ 4. Numerical Value of h for other Vapours.

When equation (25) was first published, Regnault’s deter-
minations of the specific heat and heat of vaporization as func-
tions of temperature had been performed only for the case
of watert; and therefore the numerical value of A could be
given for water only. Regnault has since extended his
measurements to other fluids}, and it is now possible to apply
the equation to obtain the numerical value of h for these
fluids. We thus obtain the following results.

: Bi-sulphide of Carbon: CS,. According to Regnault we
ave

¢
f edt = 0-23523¢ -+ 0-0000815¢,
(1]

* Rankine’s paper was read before the Royal Society of Edinburgh in
February, 1850, and printed in the Transactions, Vol. xx. p. 147. The author’s
paper was read before the academy of Berlin in February, 1850, and printed
in Poggendorf’s Annalen, Vol. Lxx1x. pp. 368 and 500.

t Relations des Experiences, Vol. 1., Paris, 1847.

1 Relations des Experiences, Vol. 11., Paris, 1862,
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¢
r+ f cdt =90 + 0:14601¢ — 0-0004123¢* :
0

whence we have
¢ = 028523 + 0-0001630¢,
7= 9000 — 0°08922¢ — 0°0004938¢".
Substituting these values, equation (25) becomes
90-00 — 0°08922¢ — 0-0004.938¢"
273+t !
hence we obtain for & the following values amongst others :

% = 014601 — 0:0008246¢ —

t 00 100°
h ~01837 |- 01406

- The specific heat of the saturated vapour of Bi-sulphide
of Carbon is thus negative like that of steam, but its values
are smaller.

Ether: CH, 0. According to Regnault we have
f * odt = 0°52900¢ + 0:000295872,
0

13
r+ f odt = 9400 + 0°45000¢ — 0-00055556¢,
[}

whence we have
¢ =0529 4 0:00059174¢,
r=9400 — 0:07900¢ — 0-0008514¢.

Equation (25) thus becomes
94:00 — 0:07900¢ — 0-0008314¢*
273 +¢ ’

and from this the following values are deduced :

h =045000—-0-0011111 ¢ —

¢ o 100°

h -01057 | -0:1309
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In the case of Ether therefore the specific heat of
saturated steam has, at least at ordinary temperatures, a post-
tive value.

Chloroform: CHCl,. According to Regnault we have

t
f odt= 0232352+ 0:00005072¢,

r +f:cdt = 67 +0'1375¢;

whence we have
¢ = 023235 4+ 0:00010144¢,
r=67 —0-09485¢ — 0:00005072¢.

Equation, (25) thus becomes
67 — 0:09485¢ — 0:00005072¢*

and from this the following values are deduced:
| ¢ | e 100°
| & | -o0107 | —00153

: Bi-Chloride of Carbon: CCl,. According to Regnault we
ave :

¢
f cde = 0"19798¢ + 0-0000906¢*,
]

¢
r+f°cdt= 52 + 0°14625¢ — 0000172¢*;

whence we have
¢= 019798 4+ 0-0001812¢,
r=>52—005173¢ — 0:0002626¢".
Equation (25) thus becomes
52:00 — 005173 — 0-0002626z*
h=0- -0 .
0:14625 — 0:000344¢ 341 ;
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and from this the following values are deduced :

¢ | o | 100
3 |—o-o442 | - 00066

Aceton: CH,O. According to Regnault we have

t
f cdt = 0:50643¢ 4+ 0:0003965¢",

¢
r +f cdt = 1405 + 036644¢ — 0:000516¢" ;
0 , .

whence we have
¢ = 050643 + 0°0007930¢,
r= 1405 — 0:13999¢ — 0:0009125¢.
Equation (25) thus becomes
1405 — 0:13999¢ — 0O 000912ot’
k= 036644 — 01001032t — —— T3

and from this the following values are deduced :

¢ 0°|1oo°

A | —01482 | — 00516

In addition to the above Regnault has investigated
Alcohol, Benzine, and Oil of Turpentine, so far as to deter-

¢
mine the values of r+ f cdt. For Alcohol and Turpentine

0 .
he gives no empirical formule for ascertaining their values,
on account of the irregularities in the experiments; and for

Benzine he has not expressed f cdt as a function of tempera-

ture, but has only investigated a mean value of the Specific
Heat for a narrow interval of temperature. The numerical
value of & is thus much more uncertain for these fluids than
for those given above, and accordingly we shall not treat of
them further. .
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In all the formula for h given above we see that its value
increases as the temperature rises. In the only case, that of
ether, in which it is positive at ordinary temperatures, its
absolute value increases as the temperature rises. In the
other cases, in which it is negative, its absolute value
diminishes; it thus approaches to zero, and it would appear that
at some higher temperature it would attain the value zero,
and at still higher temperatures would become positive. To
determine the temperature at which 2= 0, we have by equa-
tion (25)

In this equation we must, as above, express ¢ and 7 as
functions of ¢, and then solve it with regard to ¢.

The empirical formule of Regnault, by means of which
we have expressed ¢ and r as functions of ¢, should not of
course be applied much beyond the limits of temperature
within which Regnault carried out his experiments. Hence
the determination of the temperature for which A =0
is in many cases impossible, as for instance with water,
where the equations obtained by putting A= 0 in (29)
and (31) would lead to a value for ¢ of about 500°, where-
as the equations are only applicable up to somewhat over
200°. But with other fluids the temperature for which
% =0, and above which A is positive, lies within the limits of
application of the formule. Thus Cazin® calculates this
temperature for Chloroform at 123-48° and for Bi-chloride of
Carbon at 128°9°.

§ 5. Specific Heat of Saturated Steam, as proved by
Ezxperiment.

The result arrived at by theory, that the Specific Heat of
saturated steam is negative, and that therefore saturated
steam, if expanded in a non-conducting envelope, must
partially condense, has since been experimentally proved by
Hirnt. A cylindrical vessel of metal was fitted at the two
ends with parallel plates of glass, so that it could be seen
through. This, when filled with steam at high pressure was

® Annales de Chimie et de Physique, Series 1v. Vol. xv.
+ Bulletin 133 de la Société Industrielle de Mulhouse, p. 137.
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perfectly clear; but when a cock was suddenly opened, so
that part of the steam escaped, and the remainder expanded,
a thick cloud appeared in the interior of the cylinder, proving
a partial condensation of the steam. Subsequently, when
Volume 11. of Regnault’s Relation des Expériences had ap-
peared, containing the data, given above, to determine A for
other fluids, and shewing that for ether k must be positive, Hirn
proceeded to experiment with that vapour also. His description
1s as follows®: “To the neck of a strong crystal flask I
connected a pump, the capacity of which was nearly equal to
that of the flask, and which was provided with a cock at the
bottom. Some ether was poured into the flask, and it was
immersed to the neck in water at about 50°. The cock was
then kept open, until all the air was assumed to be expelled.
Then the cock was closed, and the pump plunged into the hot
water with the flask: whereupon the ether vapour raised
the piston to the top. The apparatus was now suddenly
taken from the water, and the piston forced rapidly down.
At this moment, but for a moment only, the flask became
filled with a distinct cloud.” It was thus shewn that ether
vapour behaves conversely to steam, partially condensing, not
during expansion, but during compression; a fact which
is in accordance with the opposite sign of % in the two
cases.

To check this conclusion Hirn made an exactly similar
experiment with Bi-sulphide of Carbon. The result was
that on forcing down the piston the flask remained per-
fectly transparent. This is again in accordance with the
theory, since with Bi-sulphide of Carbou, as with water,
h is negative, and compression of the vapour produces a rise
of temperature, and not a fall. Some years later Cazint,
aided by the Association scientifique, made with great care
and skill a similar series of experiments, in some respects
more extended. He used as before a cylinder of metal, fitted
with glass at the ends. This was placed in a bath of oil, so
as to give it the exact temperature proper for the experi-
ment. The first series of experiments embraced only the
expansion of steam; the arrangement was such that, when
the cylinder was filled with vapour, a cock could be opened,

* Cosmos, 10 April, 1863.
+ Annales de Chimie et de Physique, Series v. Vol. xiv,
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through which a part of the vapour escaped either into the
atmosphere or into an air vessel, the pressure in which
could be kept at any given point below the pressure of the
vapour. In a second series of experiments a pump was
connected with the cylinder; this was placed in the same
bath of oil, and the piston could be moved rapidly back-
wards or forwards by special mechanism, so as to increase or
diminish the volume of the vapour.

By these experiments the results obtained by Hirn for
steam and ether were confirmed, and with the second ap-
paratus a double proof was given in each case, viz. both by
rarefaction and condensation. Steam formed a cloud during
rarefaction, whilst it remained quite clear during condensa-
tion. KEther, on the contrary, formed a cloud during con-
densation, and remained clear during rarefaction. Some
special experiments were further made with vapour of chloro-
form. As mentioned above, in the case of chloroform A,
which is negative at lower temperatures, becomes zero at a
temperature which Cazin has calculated at 123-48°, and at
still higher temperatures is positive. This vapour must thus
partially condense during expansion at lower temperatures,
and must partially condense during compression at higher
temperatures beyond the point of transition. With the first
apparatus, which only allowed of expansion, clouds were
-observed during expansion at temperatures up to 123°. At
temperatures above 145° there was no formation of cloud.
Between 123°and 145° the conditions were somewhat different
according to the degree of expansion. With a small degree
of expansion there was no cloud ; with a higher degree some
formation of a cloud appeared towards the end of the pro-
cess. The explanation of this is simple. The high expansion
had produced a considerable fall of temperature, and the
vapour had thereby been reduced to the temperature at
which expansion is accompanied by a fall of tempera-
ture. The result is thus completely in accordance with the
theory. With the second apparatus the vapour of chloroform
formed a cloud during expansion up to 130°, whilst it re-
mained perfectly transparent during compression. Above
136° a clg)ud was formed during compression, whilst it re-
mained clear during expansion. The theory is hereby more
fully established than by the first apparatus, The circumstance

.
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that the temperature at which the law of the vapour changes
appeared in these experiments to lie between 130° and 136°,
whilst theory gives it at 123-48°, is not a matter of great im-
portance. On the one hand these experiments are not adapted
for an accurate determination of this temperature, because
they always involve finite changes of volume of considerable
magnitude, whereas the theor{ embraces indefinitely small
changes only. On the other hand, Cazin himself mentions
that his chloroform was not chemically pure, and réquired for
a given vapour-pressure a higher temperature than that
found by Regnault. Having regard to these circumstances,
the theory must be considered as being fully confirmed by
experiment.

§ 6. Specific Volume of Saturated Vapour.

We will now consider the second of the two quantities
mentioned at the beginning of § 2, viz. s, or the specific volume
of the saturated vapour.

It was formerly the custom to use the law of Mariotte and
Gay-Lussac, in order to calculate the volume which a gas as-
sumes under different conditions of temperature and pressure,
and to take no account of whether the vapour was in the satu-
rated or superheated condition. It is true that from many
quarters doubts were expressed, whether vapours really fol-
lowed this law up to the saturation point: but, as the experi-
mental determination of the volumes offered great difficulties,
and a theoretical determination was impossible from the want
of well-established principles, it remained the custom to
apply the abo¥e law in this case, so as at least to arrive
at some sort of determination of the volume of saturated
vapour. But the equations obtained by the author, and
given at the end of § 1, now offer us a means of arriving at
a strict theoretical calculation for the volume of saturated
vapour, which, when the data are given, may be worked out
in practice. For in these equations occurs the quantity v,
which =8 — o, where o is the specific volume of the fluid.
This, as a rule, is very small in comparison with s and
may be neglected in many calculations; but it is still a
known quantity, and may be taken account of without diffi-
culty.
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Substituting (s—c) for u in the last of these equations, (17),
we obtain
,Te=0) dp

X g (33),
or, solving the equation for s,
Er
8= m B TN (34)
aT

By this equation the specific volume of the saturated va-
pour may be calculated for all substances, whose pressure p
and heat of vaporization r are known as functions of the
temperature.

§ 7. Departure from the law of Mariotte and Gay-Lussac
n the case of Saturated Steam.

We will first apply the foregoing equations to ascertain
whether saturated steam follows the law of Mariotte and Gay-
Lussac, or how far or in what way it departs from it.

If it follows the law the following equation must hold:

%’; = const.,

or, substituting a + ¢ for 7, and multiplying by %,,

lps ®_ = const.:
EF e+t 7

but from equation (33), substituting a + ¢ for T, we obtain
‘ ar

1 . )_“_._.
.Ep('s aa+t_

As the difference (s — o) differs little from s, the left-hand
side of these two equations is very nearly the same, and, to

-
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ascertain how saturated steam is related to the law of Mari-
otte and Gay-Lussac, we have only to enquire whether the
right-hand side of the last equation is constant, or varies
with the temperature. To ascertain whether the successive
values of an expression are equal to- each other, or in what
way they depart from each other, is a very simple matter;
and the form of equation (35) is very well adapted for this pur-
pose. The author has calculated the values of this expression
for a series of temperatures from 0° to 200°, applying the
numbers given by Regnault to » and p. For r, the heat of
vaporization, the equation (28) was used, viz.:

r = 6065 — 0-695¢ — 0-00002¢* — 0-0000003*,

The more simple formula (30) might have been used without
any great difference in the results. To.obtain p, the author
first applied the numbers which Regnault has published in
his well-known large Tables, in which the pressure of steam
for every degree from — 32° to + 230° is given. He found how-
ever some peculiar variations from the regular course of the
numbers, which in certain ranges of temperature had quite
a different character from what they hadp in others; and he
soon discovered that the.source of these variations lay in the
fact that Regnault had calculated bhis numbers by empirical
formule, and that for different ranges of temperature he
had employed different formule. It then appeared desirable
to the author to emancipate himself entirely from the in-
fluence of empirical formulz, and to confine himself to those
numbers which express simply the results of the observa-
tions, because these are specially adapted for comparison with
theoretical results. Regnault, in order to obtain from his
numerous observations the most probable values, used the
aid of graphical methods. He constructed curves of which
the abscissz represent the temperature, and the ordinates
the pressure p, and which run from —33° to + 230°. From
100° to 230° he also constructed a curve in which the ordi-
nates represented not p itself, but the logarithm of p. From
this have been obtained the following values, which may be
considered the most direct results of his observations, and
from which were also taken the values which served for the
calculation of his empirical formule,
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t in Centi- gr:n:ln Centi- 2 in Millimetres,

e D :] in e Degrees  © f . =
ot the Sae-” | Milmotres. | of the A | sccording to | according to
, thermometer. thermometer, Numbers. | Logarithms*,

— 200 091 1100 10737 10733

-10 2:08 120 14890 1490°7

0 460 130 20290 20305

10 916 140 27130 27115

20 17-39 150 35720 35785

30 3155 160 46470 46516

40 5401 170 59600 59567

50 9198 180 75450 75370

60 14879 190 94280 94254

70 23309 200 116600 116790

80 35464 210 143080 143250

90 52545 220 173900 173900

100 76000 230 209150 209270

In order to make the required calculation with these data,
the values of })% were determined from the above table for
the temperatures 5°, 15°, 25°, etc., in the following manner.
As 1dp

dt
tbepdecrea.se was taken as uniform for every interval of 10°,
i.e. from 0° to 10° from 10° to 20°, and so on; e.g. the value
for 25° was taken as the mean of the two values for 20° and
30°. Then since

diminishes but slowly as the temperature increases,

ldp_d(logp)
pdt dt

the following formula could be used:

1d_P) _logp,—logp,
(pdt w 10 ’

(}l) %)) 250 = 10

where Log signifies the common system of logarithms, and A/

‘or otherwise
Logpw=Logp, . .. (@36),

* In this column are given, instead of the Logarithms given directly by
the curve and used by Regnault, the numbers which correspond with them,
in order to compare them with the numbers in the previous column,

C. 10
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the modulus of that system. By the help of these values of
1

» gi and of the values of r given by the equation stated
above, and lastly of the value 273 for a, the values were
calculated which the expression on the right-hand side of
equation (35) and therefore likewise the expression

1 a

EPe=oh
agsumes for the temperaturés 5° 15° 25° ete. These values are
given in the second column of the table below. For tempe-
ratures over 100° the two series of numbers found above for p
were both made use of, and the two results thus obtained are
placed side by side. The meaning of the third and fourth
columns will be more fully explained below.

1 a
1L gPE-0)—.
t in Degrees £ Lot 4.
Centigrade of | 2. 3. | Differences.
h the A“ie According to According to
thermometer. Experiment. Equation (38).
50 3093 3046 ~047
15 3060 30-38 -0-22
25 3040 3030 -010
35 3023 30°20 -003
45 3010 30°10 000
55 2998 3000 +0°02
65 29-88 29-88 - 000
75 2976 2976 000
85 2965 2963 -002
95 29-49 2948 -001
105 29-47 2950 29-33 -014 -017
115 2916 29-02 29-17 +001 +015
125 2889 2893 28'99 +010 +006
135 2888 29-01 28-80 -008 -021
145 2865 2840 2860 -005 +020
155 2816 2825 28-38 +022 +013
165 2802 2819 28-14 +012  -005
175 27-84 27:90 2789 +005 -001
185 2776 2767 2762 -014 -005
195 2745 27-20 2733 -012 +013
205 26-89 26'94 2702 +013 +008
215 2656 26°79 26°68 +012 -011
225 2664 2650 26-32 -032 -018
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This table at once shews that % p(s—o) %5 is not constant,

as it must be if the law of Mariotte and Gay-Lussac holds,
but decreases decidedly as the temperature rises. Between
35° and 95° this decrease appears very regular. Below 35°
the decrease is less regular, the simple explanation being that
dp
dt
small, and therefore small errors in their determination, which
are quite within the limits of errors of observation, may yet
become relatively important. Above 100° the values of the
expression are not so regular as between 25° and 95°, but
shew on the whole a similar rate of decrease: and if we
make a graphic representation of these values, it is fcund
that the curve, which below 100° passes exactly through the
points determined by the numbers contained in the table,
can be readily continued up to 230° in such a way that these
points are distributed equally on both sides of it.

The course of this curve can be expressed with sufficient
accuracy for the whole extent of the table by an equation of
the form

here the pressure p and its differential coefficient - are very

1
zP (s—a')a—i%—t=m—ne"‘ ............ (37),

where e is the base of Napierian logarithms, and m, n, k are
constants. If we determine the latter from the values which
the curve gives for 45°, 125°, and 205°, we obtain

m=31-549; n=1-0486 ; k=0007138......(37a),

and if for convenience we use common logarithms, we finally
obtain

a

Log [31'549 - jl_v]P (s—o) " :| =00206 + 0-003100¢...(38).

+¢

The numbers contained in the third column of the table
are calculated from this equation, and in the fourth column
are given the differences between these and the numbers in
the second column,

10-—2
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§ 8. Differential Coefficients of 5}.
0

The foregoing analysis leads easily to a formula, from
which we can ascertain more exactly the mode in which
steam departs from the law of Mariotte and Gay-Lussac.
Assuming this law to hold, we shall be able to put

ps _att
ps, a’
where ps, represents the value of ps at 0°. The differential

coefficient ad-t ( ZI:—:) would then have a constant value, viz. the

()
well-known coefficient of expainsion ‘-1i=0'003665. Instead
of this, equation (37) gives, if we use s in place of (s —a),
the equation

ps _m,—-'ne"‘>< a+t

ps, m—n RIS (39),
whence
- ; N ekt
g(ﬁ)=1"m nA+ ket 016F  (40).
t\ps,/ @ " —n

Thus the differential coefficient is not a constant, but a
function which decreases as the temperature increases. This
function, if we substitute for m, n, and k& the numbers given
in (87a), has amongst others the following values, for different
temperatures.

¢ i(ﬂ ¢ i(.zzf . | (P
C| dt \ps,) ] | dt\psy)” © | dt\ps,)°

0° | 000342 7 0-00307 | 140°| 000244
10 000338 80 | 0°00300 § 150 | 0°00231
20 0-00334 90 | 000293 | 160 | 000217
30 000329 | 100 | 000285 § 170 | 000203
40 0°00325 | 110 | 000276 | 180 | 000187
50 000319 § 120 | 000266 § 190 | 000168
60 000314 | 130 | 000256 § 200 | 000149
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From the above table we see that it is only at low tem-
peratures that the variations from the law of Mariotte and
Gay-Lussac are small, and that at higher temperatures, e.g.
above 100°, they can by no means be neglected.

A glance at the table is sufficient to shew that the values
found for (% (p_:) are smaller than 0003665 ; whereas it is
known that for the gases which vary considerably from the law
of Mariotte and Gay-Lussac,such as carbonicacid and sulphuric
acid, the coefficient of expansion is not smaller, but greater
than the above number. Hence this differential coefficient
cannot be taken to correspond with the coefficient of expansion
which relates to increase of volume by heating at constant
pressure, nor yet with the figure obtained if we leave the
volume constant during the heating, and then observe the
increase of the expansive force. Thus we have here a third

special case of the general differential coeﬁicient% ( 111’71) , iz,
that in which the pressure increases during the heating
under the same conditions as in the case of steam, when this
retains its maximum density; and this case must be con-
sidered for carbonic acid likewise, if we are to establish a com-
Pparison.

Steam has at about 108°an expansive force equal to 1 metre
of mercury, and at 1294° equal to 2 metres. We will examine
what takes place with carbonic acid, if this is also heated by
214°, and thereby the pressure increased from 1 to 2 metres.
Regnault® gives as the coefficient of expansion of carbonic
acid at constant pressure 0-00371 if the pressure is 760 mm.,
and 0-003846 if the pressure is 2520 mm. For a pressure of
1500 mm., the mean between 1 and 2 metres, the coefficient
of expansion, if assumed to increase in proportion to the
pressure, will have the value 0:003767. If carbonic acid
under this mean pressure is heated from 0° to 214° the

quantity p_%: will increase from 1 to
1+ 0003767 x 21-5 =1-08099.
Again other experiments of Regnault’st+ have shewn that, if

* Relation des Expériences, t. 1. Mem. 1,
+ Relation des Expériences, t. 1. Mem, 6.
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carbonic acid, which had a pressure of about 1 m. at a tem-
perature of about 0°, is loaded with a pressure of 1-98292 m.,
the quantity pv decreases in the ratio of 1:0:99146; or for an
increase of pressure from 1 to 2 ms, it will decrease in the
ratio of 1:099131. Now if both of these take place
together, viz. a rise of temperature from 0° to 213°, and

a rise of pressure from 1 to 2 ms., then the quantity ﬂ?
must increase from 1 to 108099 x 0-99131 =1-071596 very
nearly, whence we obtain as the mean value of the differen-

Zt (ﬁz%) ’

tial coefficient -
0:071596

215

‘We thus see that for the case here considered we have a
value for carbomic acid which is less than 0:003665, and
there is therefore less ground for surprise at obtaining the
same result for steam at its maximum density.

If we seek to determine on the other hand the actual
coefficient of expansion for steam, or the number which
shews how far a quantity of steam expands, if it is taken at
a given temperature and at its maximum density and then
heated, apart from water, at constant pressure, we shall cer-
tainly obtain a value which is larger, and probably much

<Uarger, than 0-003665.
o

§ 9. Formula to determine the Specific Volume of Satu-
rated Steam, and its comparison with experiment.

From equation (37), and equally from equation (34), the
relative values of s — o, and therefore to a close approxima-
tion those of s, may be calculated for different temperatures,
without needing to know the Mechanical Equivalent E. If
however we wish to calculate from the equations the absolute
value of 5, we must either know £, or must attempt to
eliminate it by the help of some other known quantity. At
the time when the author first began these researches, several
values of £ had been given by Joule, taken from various
methods of experiment: these differed widely from each
other, and Joule had not announced which he considered the

= 0-00333.
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most probable. In this uncertainty the author determined
to attempt the determination of the absolute value of s from
another starting point, and he believes that his method still
possesses interest enough to merit description.

The specific weight of gases and vapours is generally ex-
pressed by comparing the weight of a unit of volume of the
gas or vapour with the weight of a unit of volume of at-
mospheric air at the same pressure and temperature. Simi-
larly the specific volume may be expressed by comparing
the volume of a unit of weight of the gas or vapour with the
volume of a unit of weight of atmospheric air at the same
pressure and temperature. If we apply this latter method to
saturated steam, for which we have denoted the volume of
a unit of weight by s, and if we designate by v’ the volume
of a unit of weight of atmospheric air at the same pressure
and temperature, then the quantity under consideration is

given by the fraction 5, .
For s we have the following equation, obtained from (37)
by neglecting o :
_E(a+y)
ap

For v' we have by the law of Mariotte and Gay-Lussac
the equation

X (m —ne¥) ............ (41).

S=R2Ht.
p

These two equations give

@

-,=RE,—(-L(m—ne“‘).. (42)

e

If we form the same equations for any given temperature

t, and denote the corresponding value of - by ( ), we

0
obtain

(3) = jo5 (m=ne.

Y/o
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If by the help of this equation we eliminate the constant
factor —E—— from (42), we obtain

Rua
5 (i) ML e (43),

e om-—ne""'""""

The question is now whether, for any given te@erature
t,, the quantity <%,> or. its reciprocal (%) , which expresses
0 0

the specific weight of the steam at temperature ¢, can be
determined with sufficient certainty.

The ordinary values given for the specific weight of steam
refer not to saturated but to highly superheated steam.
They agree very well, as is known, with the theoretical
values which may be deduced from the well-known law as
to the relation between the volume of a compound gas, and
those of the gases which compose it. Thus e.g. Gay-Lussac
found for the specific weight of steam the experimental value
0-6235; whilst the theoretical value obtained by assuming
two units of hydrogen and one unit of oxygen to form, by
combining, 2 units of steam, is

2 % 006926 x 110563
2

This value of the specific weight we cannot in general
apply to saturated steam, since the table in the last section,
which gives the values of gt-(}—’:-) , indicates too large a
divergence from the law of Mariotte and Gay-Lussac. On
the other hand the table shews that the divergences are
smaller as the temperature is lower; hence, the error will
be insignificant if we assume that at freezing temperature
saturated steam follows exactly the law of Mariotte and Gay-
Lussac, and accordingly take 0622 as the specific heat at
that temperature. In strict accuracy we must go yet further
and put the temperature, at which the specific weight of
saturated steam has its theoretical value, still lower than
freezing point. But, as it would be somewhat questionable
to use equation (37), which is only empirical, at such low
temperatures, we shall content ourselves with the above

= 0622.
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assumption. Thus giving to ¢, the value 0, and at the same
. .Y 8 1
time putting (;)o=0 622 and therefore (;,) =622’ ¢ ob-

0
tain from equation (43)

8 m — nekt

o 5= 0622 (m—n) ceereanemaennen(44).
From this equation, using the values for m, », and k

given in (37a), the quantity 5—,, and therefore the quantity s,

may be calculated for each temperature. The foregoing
equation may be thrown into a more convenient form by
putting

5, T 5 R (43),

and by giving to the constants 3f, N, and a the following
values, calculated from those of m, », and k :

M=1663; N=005527; a=1007164...(45a).
To give some idea of the working of this formula, we give

in the following table certain values of %,, and of its re-

ciprocal % , which for the sake of brevity we shall denote by
the letter d, already used to designate specific weight.

e | oo | s | a0 | 1500 2000
2| veos | 1585 | 1550 | 1502 | 1433
d | o062 | 063l | 0645 | 0666 | 0698

The result that saturated steam diverges, so widely as the
above formul® and tables indicate, from the law of Mariotte
and Gay-Lussac, which had been previously applied to it
without reserve, met at first, as mentioned in another place,
with the strongest opposition, even from very competent
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judges. The author believes however that it is now generally
accepted as correct.

It has also received an experimental verification by the
experiments of Fairbairn and Tate®, published in 1860. The
results of their experiments are compared in the follow-
ing table, on the one hand with the results previously ob-
tained by assuming the specific weight to be 0622 at all
temperatures, and on the other hand with the values cal-

culated by equation (45).

Volume of a Kilogramme of Saturated
Temperature Steam in Cubic metres.
in Dggrees Values ;
Centigrade. previously By Equation | By Experi-
obtained. (45). ment.
58210 838 823 8-27
6452 541 5-29 533 .
7076 494 483 491
7718 384 374 372
77-49 379 369 371
7940 3:562 343 343
8350 3:02 2:94 3:05
8683 263 2:60 262
9266 218 211 215
11717 0991 0947 0-941
11823 0961 0917 0906
11846 0954 0911 0-891
124°17 0809 0769 0758
128-41 0718 0681 0648
13067 0674 0639 0634
13178 0654 0619 0604
13487 0602 0-569 0583
137-46 0562 0530 0514
139-21 0537 0503 0496
141-81 0502 0472 0457
142-36 0495 0465 0448
14474 0466 0437 0432

This table shews that the values given by experiment agree
much better with those calculated by the author’s equation
than with the values previously obtained ; and that the ex-

® Proc. Royal Soc. 1850, and Phil. Mag., Series 1v. Vol. xx1.

.
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perimental values are in general yet further removed from
those previously obtained than are the values derived from
the author’s formula.

§ 10. Determination of the Mechanical Equivalent of
Heat from the behaviour of Saturated Steam.

Since we have determined the absolute values of s, with-
out assuming the mechanical equivalent of heat to be known,
we may now apply these values, by means of equation (17),
to determine the mechanical equivalent itself. For this
purpose we may give that equation the following form:

dp
(@+1t)
E= dt

The coefficient of s — & in this equation may be calculated
for different temperatures by means of Regnault’s tables. For
example, to calculate its values for 100°, we have given for
:%’ the value 27-20, the pressure being reckoned in milli-
metres of mercury. To reduce this to the measure here em-
ployed, viz. kilogrammes per square metre, we must multiply
by the weight of a column of mercury at temperature 0°,
1 square metre in area and 1 millimetre in beight, that is by
the weight of 1 cubic decimetre of mercury at 0°. As Regnault
gives this weight at 13'596 kilogrammes, the multiplication
gives us the number 369'8. The values of (a +¢) and of r
at 100° are 373 and 5365 respectively. Hence we have

dp
(@+9 3 373 x 3608 _
r 5365

and equation (46) becomes

257 ;

‘We have now to determine the quantity (s — o), or, since o is
known, the quantity s for steam at 100°. The method formerly
pursued, i.e. to use for saturated steam the same specific
weight, which for superheated steam had been found by
experiment or deduced theoretically from the condensation of
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water, led to the result, that a kilogram of steam at 100°
should have a volume of 1'696 cubic metres. From the fore-
going however it appears that this value must be consider-
ably too large, and must therefore give too large a value for
the mechanical equivalent of heat. Taking the specific heat
as calculated by equation (45), which for 100° is 0'645, we
obtain for s the value 1'638. Applying this value of s we
get from equation (47)

This method therefore gives for the mechanical equivalent
of heat a value which agrees in a very satisfactory manner
with the value found by Joule from the friction of water, and
with that deduced in Chapter II. from the behaviour of
gases ; both of which are about equal to 424. This agree-
ment may serve as a verification of the author’s theory as to
the density of saturated steam.

§ 11. Complete Differential Equation for Q in the case of
a body composed both of liquid and vapour.

In § 1 of this chapter we expressed the two first differ-
ential coefficients of @, for a body consisting both of liquid
and vapour, by equations (7) and (8), as follows:

iQ_
=P

d

@9 = m(H-0)+ MC.

Hence we may form the complete differential equation of the
first order for @, as follows:

dQ = pdm + [m (H-0) +MC] dT........ (49).
By equation (12) we may put
_de _»p
H-C=gp— 17

whence equation (49) becomes

dQ = pdm + [m (gﬁT- Lz’-,) + MC'] drT......... (50).
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Since p is a function of T only, and therefore

% ar=dp
wehave  dQ=d (mp) + (- 2L+ MC)dT ......... 51),
| T (
or dQ="Td (”I‘P) FMCAT e, (52).

These equations are not integrable if the two quantities, whose
differentials are on the right-hand side, are independent of
each other, and the mode of the variations thus left undeter-
mined. They become integrable as soon as this mode is deter-
mined in any way. We can then perform with them calcu-
lations exactly similar to those given for gases in Chapter II.

We will for the sake of example take a case which on
the one hand has an importance of its own, and on the other
derives an interest from the fact that it plays a prominent
part in the theory of the steam-engine. The assumption is
that the mass consisting both of liquid and vapour changes
its volume, without any heat being imparted to it or taken
from it. In this case the temperature and magnitude of the
gaseous portion also suffers a change, and some external
work, positive or negative, must at the same time be per-
formed. The magnitude m of the gaseous portion, its volume
v, and the external work W, must now be determined as
functions of the temperature.

'§12. Change of the Gaseous Portion of the Mass.

As the mass within the vessel can neither receive nor
give off any heat, we may put d@ =0. Equation (52) then
becomes:

m ~
Td (—T-) +MCOdT=0.............. (33).
If we divide this equation by E, the quantities p and C, which
relate to the mechanical measure of heat, change into » and
¢, which relate to the ordinary measure of heat. If we also
divide the equation by 7, it becomes:

d (2;1') + Mo ‘_iz—l,' = O, (33a).
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The first member of this equation is a simple differential,
and may at once be integrated: the integration of the second
is also always possible, since ¢ varies only with the tempera-
ture 7. If we merely indicate this integration, and denote
the initial values of the various magnitudes by annexing
the figure 1, we obtain the following equation:

Z”’T""'Elﬁ'*‘MfTC‘C‘l—Z":O)
1 T, T

T T
mr_myr, _ 4 (74T 5
or Vil 1,1 M T,c e (04).

Actue;lly to perform the integration thus indicated, we
may employ the empirical formula for ¢ given by Regnault.
For water this formula, already given in (27), is as follows:

¢ =1+ 000004 + 00000009,

Since ¢ is thus seen to vary very slightly with the tempera-
ture, we will in our calculations for water assume ¢ to be
constant, which will not seriously affect the accuracy of the
results. Hence (54) becomes:

=gt Melog g e (35),
whence r
N e 5
m== ( 7] Mclog T) .............. (36).

If we Lere substitute for r the expression given in (28), or in
a simpler form in (30), then m will be determined as a func-
tion of temperature.

To give a general idea of the values of this function,
some values have been calculated for a special case, and col-
lected in the following table. The assumption is that the
vessel contains at first no water in a liquid condition, but
is filled with steam at its maximum density, so that in
equation (56) we may put m,=M. Let there now be an
expansion of the vessel. A compression would not be ad-
missible, because on the assumption of the absence of water
at the commencement, the steam would not remain at its
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maximum density, but would be superheated by the heat
developed in the compression. In expansion on the other
hand the steam not only remains at its maximum density,
but a part of it is precipitated as water; and the diminution
of m thus produced is exhibited in the table. The initial
‘ ;—:} are
given for the moments when the temperature has sunk
through expansion to 125° 100°, etc. As before, the tem-
perature is reckoned from freezing point, and is denoted by
t, to distinguish it from the absolute temperature 7.

temperature is taken at 150°C., and the values of

¢ ‘ 150° | 125° | 1000 1 750 500 ' 250
% 1 0956 | 0911 | 0866 | 0821 | 0776

§ 13. Relation between Volume and Temperature.

To express the relation which exists between the volume
v and the temperature, we may first apply equation (5):

v =mu + Mo.

The quantity o, which expresses the volume of a unit of
weight of the liquid, is a known function of temperature, and
the same is therefore true of Mo. It remains to determine
mu. For this purpose we need only substitute in equation
(55) the expression for r given in equation (17). Thus we
obtain

T B =T Molog . (57).
whence ' '
mu = EE_ (my{‘ Mec log T) ............ (58)
7

The differential coefficient %,
since p is a known function of the temperature ; and there-
fore this equation determines the product mu, and thence, by

the addition of Ma, the required quantity v.

may be considered as known,
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The following table gives a series of values of the quotient
%, calculated by this equation for the same case as was treated
in the last table. Under these are placed for the sake of
comparison the values of %’ which would hold if the two

1
ordinary assumptions in the theory of the steam-engine were
correct : viz. (1) that steam in expansion remains at its maxi-
mum density without any part of it condensing; (2) that
steam follows the law of Marivtte and Gay-Lussac. On these
assumptions we shall have

v_n, T
v, p T,
| e | 10 |1z | 1000 | o7 |50 | 2
vﬁ 1 188 | 390 923 | 257 88'7[
1
n, T 193 | 416 | 1021 | 297 | 1071
r» T |

§ 14. Determination of the Work as a function of Tem-
perature.

It remains to determine the work done during the change
of volume. For this we have the equation

But by equation (3), taking the magnitude & (which is
generally small and very slightly variable) as constant, we

have :
dv=d (mu),
whence
pdv = pd (mu),
which may be also written thus
pdv =d (mup) —mu %—, QT (60).
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In this equation we may substitute for mu %’, the expres-

sion given in equation (57), and may then perform the inte-
gration. The result however is obtained in a more convenient
form as follows. By (13) we have:

dp am ™ T.
mu a‘j‘,dT = —T—' d H
and from (53) we obtain

"-7},’3 dT =d (mp) + MCAT;

hence
mu % AT =d(mp) + MCAT.

Equation (60) now becomes
pdv=d (mup) — d (mp) — MCdT
o =—d[m(p—up)] — MCAT ............ (61).
Integrating this equation we obtain
W=m,(p,—u,p)—m(p—up)+MC(T,-T)...(62).

If in this equation we substitute for p and C, according to
equation (14), the values Er and Ec, and collect together the
terms which contain £ as a factor, we have:

W =mup —mu, p, + E[mr,—mr+ Mc (T,— T)]...(63).

From this equation we may calculate W, since mr and
mu are already known from the equations (56) and (58). This
calculation has been made for the same case as before, and

the values of L-f—’ , i.e. of the work done by a unit of weight

during expansion, are given in the following table; the unit
of weight is here a kilogram and the unit of work a kilo-
grammetre. The value used for £ is 42355, as found by
Joule.

As a comparison with the numbers of this table it may be

c. 11
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again mentioned that the value obtained for the work done
during the actual formation of steam, as this overcomes the
external pressure, is 18700 kilogrammetres per kilogram of
water, evaporated at temperature 150° and at the correspond-
ing pressure.

t

‘ 1500

125°

100°

75°

500

250 ]

W
M

| o

11300

23200

35900

49300

63700 ,




CHAPTER VII.
FUSION AND VAPORIZATION OF SOLID BODIES.

§ 1. Pundamental Equations for the process of Fusion.

Whilst in the case of vaporization the influence of the ex-
ternal pressure was early observed, and was everywhere taken
lnto account, it had hitherto been left out of account in the
case of fusion, where it is much less easily noticed. A little
consideration however shews that, if the volume of a body
changes during fusion, the external pressure must have
an influence on the process. For, if the volume increases, an
Increase of pressure will make the fusion more difficult,
whence it may be concluded that a higher temperature is
hecessary for fusion at a high than at a low pressure. If on
the other hand the volume decreases, an increase of pressure
will facilitate the fusion, and the temperature required will
be less, as the pressure is greater.

To examine more exactly the connection between pressure
and fusion-point, and the peculiar changes which are some-
times connected with a change of pressure, we must form the
équations which are supplied for the process of fusion by the
two fundamental principles of the Mechanical Theory of
Heat. For this purpose we pursue the same course as for
vaporization. We conceive an expansible vessel containing
4 certain quantity M of a substance, which is partly in the
%lid, and partly in the liquid condition, Let the liquid part
bave the magnitude m, and therefore the solid part the mag-
utude M —m. The two together are supposed to fill the
vessel completely, so that the content of the vessel is equal
to v, the volume of the body.

If this volume » and t{e temperature T’ are given, the
magnitude m is thereby determined. To prove this, let us

112
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first suppose that the body expands during fusion. Let it be
also in such a condition that the temperature 7' is exactly the
melting temperature at that particular pressure. Now if in
this condition the magnitude of the liquid part were to
increase at the expense of the solid, the expansion which
must thén result would produce an increase of pressure
against the walls of the vessel, and therefore an increased
reaction of the walls against the body. This increased pres-
sure would produce a rise in the fusion-point, and since the
existing temperature would then be too low for fusion, a
solidification of the liquid part must begin. If on the con-
trary the solid part were to increase at the expense of. the
liquid, the point of fusion would thereupon sink, and since
the existing temperature would then be higher than the
fusion-point, a fusion of the solid part must begin. Next, if
we make the opposite assumption, viz. that the volume
decreases during fusion, then if the solid part increase there
must be a rise of pressure and in consequence a partial
melting, and if the liquid part increase there must be a fall
in pressure and in consequence a partial solidification. Thus
on either assumption we have the same result, viz. that only
the original proportions of the liquid and solid parts (which
proportions correspond to the pressure which gives a tem-
perature of fusion equal to the given temperature) can be
permanently maintained. Since then the magnitude m is
determined by the temperature and volume, this volume will
conversely be determined by the temperature and the mag-
nitude m; and we may choose 7' and m as the variables
which serve to determine the condition of the body. It now
remains to express p as a function of 7. Here we may
again apply equations (1), (2), (3) of the last chapter, viz.:

d@% d@%_@ dv

dT\dm) ~ dm\dT) = dT ™ dm’

d d@Q\ ddQ\_1_dQ

1) = (a2) = 7 %
dQ___T@xdv

dm dT " dm’
If we denote by o, as before, the specific volume (or volum-
of a unit of weight) for the liquid condition of the body,
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and the specific volume for the solid condition by 7, we have
for the total volume v of the body,

v=mo + (M —m)r,

or v=m(oc—7)+Mr cviiiiiiiiiinans 1),
‘ dv
whence G T e (2).

If further we denote the heat of fusion for a unit of weight by
p’, we may put

d ,
(_i_‘)?; = p ........................... (3)
dQ . . :
To express 4T the other differential coefficient of @, we

must employ symbols for the specific heat of the body in the
"liquid and in the solid condition. Here, however, we must
make the same remark as in the case of vaporization, viz.
that it is not the specific heat at constant pressure which is
treated of, but the specific heat for the particular case in
which the pressure alters with the temperature in such a way
that the temperature shall always be the temperature of
fusion for that particular pressure. In the case of vaporiza-
tion, where the changes of pressure are generally small, it
was possible to neglect the influence of the change of pressure
on the specific heat of the liquid body, and to consider the
specific Eeat of a liquid body, as found in the formula, to be
equivalent to the specific heat at constant pressure. In the
present case small changes of temperature produce such
great changes of pressure, that the influence of these on the
specific heat must not be neglected. We will, therefore, under
the present circumstances, denote by C’ the specific heat of
the liquid, which in the formula for vaporization we denoted
by C. The specific heat of the solid body may be de-
noted in this case by K. Applying these symbols we may
write g
E%=m0"+(ﬂ[—m)]&’,

dQ ’ ’ >/
or dT=m(C —K')+ MK’ ..oveeeniii($).
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From equations (3) and (4) we have

a7 (33) G ceeeeeeee e 3),
d% (j—% =C' =K .vrrirrnnn. (6).

aQ

Inserting these values, and the value for s given in (3), in

the above differential equations, we obtain

d 4 ’

d‘}+K —C'=(c— -r)d[ ............... 7,

dp' o v P

dT+K -C _1—,(8)
dp

p —T(a'—--r)dT ........................... (9).

In these equations the heat is supposed to be measured by
mechanical units. If the heat is to be measured in ordinary
units, we may use the following symbols :

, K, 0

=% k’=E; = (10).
The equations then become ,
jrz'”‘ ¢ ”E"((‘f’T’) .............. an,
%& k’—c’=%’, ........................... (12),
- Lo =) (j’}) ........................ (13).

These are the equations required, of which the first corre-
sponds to the first Fundamental Principle, and the second to
the second, whilst the third is a combination of the other
two.
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§ 2. Relation between Pressure and Temperature of

Fugion.

The foregoing equations, only two of which are inde-
pendent, may be applied to determine two quantities hitherto
unknown.

We will first use the last equation to determine the way
in which the temperature of fusion depends on the pressure.
The equation may be written

-(TI)-=——E,7— .....................

This equation in the first place justifies the remark already
made, that if a body expand during fusion the point of fusion
rises as the pressure increases ; whereas if the body contracts
the point of fusion falls. For according as o is greater or
less than + so is the difference o — 7, and therefore also the

differential coefficient %}; , positive or negative. Again, by

this equation we may calculate the numerical value of —j—T.

We will calculate this value for the case of water. The wll)o-
lume in cubic metres, or the value of o, for a kilogramme of
waterat 4° C.is 0'001. At freezing point it is a little greater,
but the difference is so small that it may be neglected. The
volume in cubic metres, or the value of 7, for a kilogram
of ice is 0°001087. The heat of fusion for water, or the
value of #’, is according to Person 79. At freezing point 7'
L equals Y73, and for £ we will take the value 424. Hence

we obtain
aT _ 273 % 0:000087
dp =~ 42 x 79

If the pressure is given not in mechanical units (kilograms
per square metre), but in atmospheres, we must multiply the

above value of %—Z—vby 10333. This gives us

arT .

=" 000733,
ie. an increase of pressure of one atmosphere will lower the
point of fusion by 0-00733 of a degree Cent.
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§ 3. Experimental Verification of the Foregoing Result.
The conclusion that the melting point of ice is lowered

by an increase of pressure, and the first calculation of the
amount, are due to James Thomson, who derived from
Carnot’s theory an equation which differs from our equation
z it contains an un-

(14) only in this, that in the place of 5

known function of temperature, whose particular value for
the freezing point was determined from Regnault’s data on
the heat of vaporization and pressure of steam. Sir William
Thomson afterwards applied to this theoretical result a very
accurate test by experiment®.

In order to measure small differences of temperature, he
prepared a thermometer filled with ether-sulphide, the bulb
of which was 3% in. long and the tube 64in. Of this 5% in.
were divided in 220 equal parts, and 212 of these parts com-
prised an interval of temperature of 3° Fahr, so that each
part was about equal to 4 of a degree Fahr. This thermo-
meter was hermetically enclosed in a larger glass tube, to
protect it from the external pressure, and so enclosed was
placed in an Oersted press, filled with water and lumps of
clear ice, and containing an ordinary air gauge to measure
the pressure. When the thermometer had become stationary
at a point corresponding to the melting point of ice at atmos-
pheric pressure, the pressure was increased by screwing down
the press. The thermometer was at once seen to fall, as the
mass of water and ice assumed the lower melting tempera-
ture corresponding to the higher pressure. On taking off
this pressure the thermometer returned to its original position.
The table below gives the fall of temperature observed for two

Pressure. Fall of Temperature. !
Observed. I Calculated. :

81 Atm. 0059° C. { 0059° C.
168 ,, 0129 ,, ' 0123 ,, i

different pressures, and also the fall of temperature, as cal-
culated for those same pressures by applying to temperatures

* Phil. Mag., Series 111, Vol. xxxvi. p. 128.
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as high as 16'8 atm. the value of c;l_I_" which was found in the

last section, and which primarily relates to the ordinary at-
‘mospheric pressure.

We see that the observed and calculated numbers agree
very closely together, and thus another result of theory
has been verified by experiment.

More recently a very striking experiment was performed
by Mousson®*, who by the application of enormous pressures
melted ice which was kept during the experiment at a
temperature of —18° to —20°. The pressure employed he
calculates approximately at about 13000 atmospheres; on
which it may be remarked that it may be possible to pro-
duce the me{ting with a much smaller pressure, since with
his arrangement all that could be known was that the ice
had somehow melted during the experiment, and not the
exact time at which the melting took place.

§ 4. Eurperiments on Substances which ezpand during
usion.

Bunsent was the first to institute experiments on sub-
stances which expand during fusion, and of which the
fusion point must therefore rise as the temperature in-
creases. The substances he chose were spermaceti and
paraffin. By an ingenious arrangement he obtained in an
extremely simple manner a very high and at the same time
measurable increase of pressure, and was able to observe
portions of the same substance side by side under ordinary
atmospheric, and under the increased pressure. He took a
tube of thick glass about the size of a straw and 1 foot in
length, and drew it at one end into a capillary tube 15 to
20 inches long, and at the other end into a somewhat larger
one only 14 inches long. The latter, which was placed lowest
in the apparatus, was bent round until it stood up parallel
to the lower part of the glass tube. This short curved part
was filled with the substance to be tested, and the larger
glass tube with quicksilver, whilst the long capillary tube
remained filled with air. Both capillary tubes were sealed

* Pogg. Ann., Vol. cv. p. 161.
+ Pogg. Ann., Vol. LxxxI. p. 562,
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at the ends. On heating the apparatus the quicksilver
expanded, rose in the longer capillary tube, and compressed
the air within it. The reaction of this air compressed first
the quicksilver and then the substance in the shorter tube,
and the magnitude of the pressure, which was capable of
rising to above 100 atmospheres, could be measured by the
volume of air left in the upper tube.

This apparatus was fixed on a board close to another
arranged in the same way except that the upper air-tube
was not sealed ; so that no compression of the air, and con-
sequent rise of pressure, could take place. The two tubes
were now plunged in water, the temperature of which was
somewhat higher than the melting point of the substance
to be tested. Thus when the lower tube filled with the
substance was once completely under water, it was only
needed to sink it still deeper in order to heat a larger part
of the quicksilver, and so to obtain a higher pressure
in the closed upper tube. Under these conditions Bunsen
repeatedly melted the substance in both tubes, and then by
cooling the water allowed it again to solidify, observing the
temperature at which this took place. The result was that
this solidification always took place at a higher temperature
in the tube in which the pressure was increased than in
the other. The following were the numerical results.

Spermaceti.
Point of
Pressure. Solidification.
1Atm. | 47:7° C.
29 483 ,,
96 ,, 497
141 ,, 505
156 ,, 509 ,,
Paraffin,
Point of
Pressure. Solidification.
1 Atm. 46-3° C.
85 ,, 489 ,,
100 ,, 499

4
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More recently Hopkins* experimented with spermaceti,
wax, sulphur, and stearine, producing pressures by means of
a weighted lever to 800 atmospheres and upwards. With all
the above substances a rise of the melting point under an
increase of pressure was observed. The particular tempera-
tures observed with different pressures shewed however
considerable irregularities. In the case of wax, with which
the rise of temperature was most regular, an increase of
pressure of 808 atmospheres produced a rise in the melting
point of 154° Cent.

The calculation of the rise in the melting point from
the theoretical formula cannot well be performed for the
substances tested by Bunsen and Hopkins, since the data
required are not known with sufficient accuracy.

§5. Relation between the heat consumed in Fusion and
the temperature of Fusion.

Having applied equation (13), in § 2, to determine the
relation between the temperature of fusion and the pressure,
we will now turn to equation (12), which may be written as
follows :

d’r’ , , 7"
37,= C — ’C -+ "2-, .................. (15).

This equation shews that, if the temperature of fusion is
changed by a change of pressure, the quantity of heat #’
required for fusion also changes. The amount of this change
can be determined from the equation. In this the symbols
¢ and ¥ denote the specific heat of the substance in the
liquid and in the solid condition, not however, as already
observed, the specific heat at constant pressure, but the
specific heat in the case in which the pressure changes with
the temperature in the manner indicated by equation (13).

The mode of determining this kind of specific heat will
be described in the next c%apter. Here we will merely
by way of example give the numerical values in the case
of water. The specific heat at constant pressure, ie. that
specific heat which is simply measured at atmospheric
pressure, has in the neighbourhood of 0° the value 1 for
water, and, according to Person}, the value 048 for ice,

* Report, Brit. Assoc., 1854, p, 57.
+ Comptes Rendus, Vol. xxx. p. 526.
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The specific heat for the case here considered has on the
contrary for water and ice the values ¢'=0'945 and k'=0631.
For ' we may take Person’s value 79. We thus obtain

ar _ 79.

= 0045 — 0631 + o0
= 0314 + 0289
=0603.

It is known that the freezing point of water can also
be lowered by protecting it from every sort of disturbance.
This lowering of temperature however only refers to the
commencement of freezing. As soon as this has begun, a
portion of the water freezes immediately such that the whole
mass of water is thereby warmed again up to 0° and the re-
mainder of the freezing takes place at that temperature.
There is therefore no need to examine more closely the change
in the magnitude 7* which corresponds to a lowering of the
temperature of this kind, and which is simply determined by
the difference of the specific heat of water and ice at constant
pressure.

§ 6. Passage from the solid to the gaseous condition.

Hitherto we have considered the passage from the liquid
to the gaseous and from the solid to the liquid condition.
1t may however happen that a substance passes direct from
the solid to the gaseous condition. In this case three equa-
tions will hold of the same form as equations (15), (16)
and (17) of the last chapter, or (11), (12), (13) of this: we
must only remember to choose the specific heats and specific
volumes relating to the different states of aggregation, and
the quantities of heat consumed in the passage from one con-
dition to the other, in the manner corresponding to the pre-
sent case.

The circumstance that the heat expended is greater in
the passage from the solid condition to the gaseous than
from the liquid, leads to a conclusion which has already been
drawn by Kirchhoff *. For if we consider a substance when
just at its melting point, vapour may be developed af this
temperature both from the liquid and from the solid. At

* Pogg. Ann., Vol. cur. p. 206.
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temperatures above the melting point we have only to do
with vapour developed from a liquid,and at temperatures below
with vapour developed from a solid, leaving out of account
the special case mentioned in the last section, in which a.
liquid kept perfectly still remains fluid in spite of having
reached a lower temperature.

If for these two cases, i.e. for temperatures above and below
the melting point, we express the pressure of vapour p as a
function of temperature, and construct for each case the curve
which has the temperatures for absciss® and the pressures
for ordinates, the question arises how the curves correspond-
ing to the two cases are related to each other at the common
limit, viz. the temperature of fusion. In the first place, so
far as concerns the value of p itself, we may consider it as
known by experience to be equal in the two cases; and
thus the two curves will meet 1n one point at the tempera-
ture of fusion. But with regard to the differential coefficient

gg—, , the last of the above-named three equations shews that it

has different values in the two cases; and thus the tangents
to the two curves at their point of intersection have different
directions. '

Equation (17) of Chapter VI. which relates to the passage
from the liguid to the gaseous condition, may be written as
follows :

dp _ Er

(1—1—,'——1.,-—(8—_:—0-'5 essevsessessss

To form the corresponding equation for the passage from
the solid to the gaseous condition, we should set on the left
hand the pressure of the vapour given off by the solid body,
which for distinction we may call P. On the right hand we
must put, instead of o, which is the specific volume of the
liquid, the specific volume of the solid which we may call 7 ;
the difference thus indicated is however very small, since
these two specific volumes differ very slightly from each
other, and in addition are small in comparison with s, the
specific volume of the substance as a gas. It is of more
importance to substitute for 7, which is the heat required to
cause the passage from the liquid to the gaseous condition,
the quantity of heat required for the passage from the solid

N ()}

|
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to the gaseous condition. This latter equals r+ ', where '
is the heat required for melting. Thus in the present case

the equation is:
dP _E(r+r)
df  T@—-7) "

Combining this equation with (16), and neglecting the small
difference between o and 7, we have

db _dp B
dT dT_T(s—c) dovsensobon
If we apply this equation to water, we must put I'=273,

=179, 8=205, o = 0001, and giving £ the known value 424
we have

............. vereeens(17).

cevreerens(18).

dP _dp _ 424x79
dT~ dT 273 x 205

If we wish to express the pressure in millimetres of mer-
cury, instead of kilogrammes per square metre, we must, as
remarked in Chapter VI, § 10, divide the above result by
13'596; then putting for p and P the Greek letters = and
II, we have

= 0.5990

dil dmw

It may be added for the sake of comparison that the diffe-
rential coefficient g—; has for 0° the value 0'33, according to
the pressures which Regnault has observed at temperatures
Jjust over 0°



CHAPTER VIIL
ON HOMOGENEOUS BODIES.

§ 1. Changes of Condition without Change in the Con-
dition of Aggregation.

We will now return to the general equations of Chapter
V. and will apply them to cases, in which a body undergoes
changes which do not extend so far as to alter its condition
of aggregation, but in which all parts of the body are always
i the same condition. We will suppose these changes to be
produced by changes in the temperature and in the external
pressure. In consequence of these, changes take place in the
arrangement of the molecules of the body, which are indi-
cated by changes in form and volume.

With regard to the external force, the simplest case
is that in which an uniform normal pressure alone acts on
the body ; in this case no account need be taken of changes
in the body’s form, in determining the external work, but only
of its alteration in volume. Here we may take the condition
of the body as known, if of the three magnitudes, tempera-
ture, pressure and volume, which we will denote as before
by T, p and v, any two are given. According as we choose
for this purpose v and T, or p and 7, or v and p, so
we obtain one of the three systems of equations, which in
Chapter V. are numbered (25), (26) and (27) : these equa-
tions we will now use to determine the different specific heats
and other quantities, related to changes in temperature,
Pressure, and volume.
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§ 2. Improved Denotation for the Differential Coeff-
cients.

If the above-named equations of Chapter V. are referred
to a unit of weight of the substance, the differential coeffi-

cient g% will denote in equations (25) the specific heat at
constant volume, and in equations (26) the specific heat at con-

stant pressure. Similarly a0 has different values in (25)

and (27) and ‘2% has different values in (26) and (27). Such

indeterminate cases always occur where the nature of the
question occasions the magnitudes chosen as independent
variables to be sometimes interchanged. If we have chosen
any two magnitudes as independent variables, it follows
that in differentiating according to one we must take the
other as constant. But if, whilst keeping the first of these
as one independent variable throughout, we then choose for
the other different magnitudes in succession, we naturally
arrive at a corresponding number of different significations
for the differential coefficients taken according to the first
variable.

This fact induced the author, in his paper “On various
convenient forms of the fundamental equations of the Me-
chanical Theory of Heat,”* to propose a system of denotation
which so far as he knows had not been in use before. This
was to subjoin to the differential coefficient as an index the
magnitude which was taken as constant in differentiating.
For this purpose the differential coefficient was inclosed in
brackets and the index written close to it, a line being drawn
above the latter, to distinguish it from other indices, which
might appear at the same place. The two differential co-
efficients named above, which represent the specific heat
at constant volume and at constant pressure, would thus be
written respectively (%,)_ and (3;’,)_ This method was

v
soon adopted by various writers, but the line was generally

* Report of the Naturclists’ Society of Zurich, 1865, and Pogg. 4nn., Vol
cxxv. p. 863,

T =
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left out for the sake of convenience. More recently® the
author introduced a simpler form of writing, which yet
retained the essential advantage of the method. This con-
sisted in placing the index next to d, the sign of differentia-
tion. The brackets were thus rendered needless and also the
horizontal line, because no other index is in general placed
in this position. The two above-named differential coeffi-
cients would thus be written c(li—'i,Q— and %TQ; and this method
will be adopted in what follows.

§ 3. Relations between the Differential Coefficients of
Pressure, Volume, and Temperature.

If the condition of the body is determined by any two of
the magnitudes, Temperature, Volume, and Pressure, we
may consider each of these as a function of the two others,
and thus form the following six differential coefficients :

dp d;p dp dp 4T dT

dl'’ dv’ d1”° dp’ dv’ dp’

In these the suffixes, which shew which magnitude is
to be taken as constant, may be omitted, provided we agree
once for all that in any differential coefficient that one of the
three magnitudes, T, p, v, which does not appear, is to be con-
sidered as constant for that occasion. We shall however
retain them for the sake of clearness, and because we shall
meet with other differential coefficients between the same
magnitudes, for which the constant magnitude is not the
same as here. _

The investigations to be made by help of these six dif-
ferential coefficients will be facilitated, if the relations which
exist between them are laid down beforehand. In the first

lace it is clear that amongst the six there are three pairs
which are the reciprocals of each other. If we take v as
constant, T and p will then be so connected that each may
be treated as a simple function of the other. The same holds
with 7' and v where p is constant, and with » and p when T'

* ¢ On the principle of the Mean Ergal and its application to the mole-
cular motions of Gases.” Proceedings of the Niederrhein. Ges. fiir Natur-
und Heilkunde, 1874, p. 188,

C. 12
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is constant. Hence we may put
1 dp 1 dyv 1 dp

a1 ar’ @*TP Tpdp .
dp dv dv

To examine further the relation between these three
pairs, we will by way of example treat p as a function of
T and v. Then the complete differential equation for p is

dp=%,’dT+‘f;f do.

If p is constant, we must put in this equation,
dy .
dp=0, dv=—(?1—,dT,
whence it becomes
0=%P gy 4GP LY g

~dT dv dT
whefice p P
dep G2 &I _
o X aT™ a5 = ) . 2)

By means of this equation combined with equations (1),
we may express each of the six differential coefficients by the
product or the quotient of two other differential coefficients.

§ 4. Complete Differential Equations for Q.

We will now return to the consideration of the heat taken
in and given out by the body. If we denote the specific
heat at constant volume by C,, and at constant pressure by
C,, and take the weight of the body as unity, we have

d0_,. 4,9_
ar =% dr =%
‘We have also the equations (23) and (26) of Chapter V.,
which with our present notation will be written as follows :

d.Q _ dp. _@_,_Q_ dy
W -Tar @ = Tar
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Hence we can write down the following complete differen-
tial equations :

d

dQ=CdT+ Ta—'zi’, Wereerreeinanns. 3),
d

dQ=CdT—-T d’;’,dp .................. (4).

From fgese two we easily obtain a third differential equa-
tion for @, which relates to v and p as independent variables.
For multiplying the first equation by C, and the second by
C,, subtracting, and dividing the result by C, — C,, we have

T d'p d,v -
dQ=m(CpaTd‘v+C,ﬂ,dp) ......... (3).

. These three equations correspond exactly to those obtained
i Chapter II. for perfect gases, except that the latter are
simplified by applying the law of Mariotte and Gay-Lussac.
The equation expressing this law is

pv=RT,
whence we have
dp_R, dpy_R
ar~ v’ dr~p"
Substituting these values in the above equations, and in the

last putting Ij—: for T, we get

dQ=0,dT+¥dv,

dQ=CdT- %T dp,

c, c,
dQ = C;‘_—C—'pd‘l) + L—'—_—p — C' 'Udp.

These equations are the same as (11), (15) and (16) of
Chapter II.

The equations (8), (4) and (5) are not immediately inte-
grable, as has been already shewn with respect to the special
equations holding for gases. For equations (3) and (4) this

12=2
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follows from equations already given. If in the last equa-
tions of the systems (25) and (26) of Chapter V. we use the
symbols C, and C,, and also the method above explained of
writing the differential coefficients, we have

a0, ndp. d,C,_  d%
_dv_—TET‘g, '@TP——TW‘* oooooooooooo (6).
Whereas the conditions which must be fulfilled, if (3) and

(4) are to be integrable, are as follows:
dC, nd'p dp d.C,_ ,dw dv»
o ~Tartar @ = Tamar

.By a similar but longer process we may shew that equa-
tion (5) is not integrable; as may at once be concluded from
the fact that it is derived from equations (3) and (4).

These three equations thus belong to that class of com-
 plete differential equations which are described in the Intro-
duction, and which can only be integrated if a further relation
between the variables is given, and the path of the variation
thereby fixed.

§ 5. Specific Heat at Constant Volume and at Constant
Pressure.
If in equation (4) we substitute for the indeterminate

differential dp the expression 3'1},) dT, we introduce the special

case in which the body changes its temperature by d7,, the
volume remaining constant. If we divide by dT we have on
the left-hand side the differential coefficient leg , which is
the specific heat at constant volume and has been denoted
by C,. Hence we obtain the following relation between
C, and C,: Qe 4
=C — T%Y « %P
C,=C, Tde G (7).
Substituting in equation (5) the value of C,— C, given

by this equation, we obtain the following simpler form :

dQ=C, a,T a,T

7o dv +_C’, dp dp..ceenennnne.. (8).
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If by means of equation (7) we proceed to determine the
specific heat at constant volume from that at constant pres-
sure, it is requisite first to make a slight change in the
equation. The differential coefficient gLTv contained therein
expresses the expansion of the body upon a rise of tempera-
ture, and may generally be taken as known, but the other
differential coefficient d—'£ cannot in general be determined
for solid and liquid bodies by direct experiment. However
from equation (2) we have

v
dp dT
ar " " dp

dp

In this fraction the numerator is the differential coeffi-
cient already discussed, and the denominator expresses, if
taken with a negative sign, the diminution of volume by an
increase of pressure, or the compressibility of the body; and
this for a large number of liquids has been directly measured,
whilst for solids it may be approximately calculated from the
coefficients of elasticity. Equation (7) now becomes

. If the specific heats are expressed not in mechanical but
In ordinary units, we may denote them by ¢,and ¢, ; the equa-
tion then takes the form:

In applying this equation to a numerical calculation we
must remember, that in the differential coefficients the unit
of volume must be the cube of the unit of length which has
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been used for determining £: and that the unit of pressure
must be the pressure which a unit of weight exerts on a unit
of surface. If, as is usually the case, the coefficients of ex-
pansion and compression refer to other units, they must be
reduced to those above mentioned.

Since the differential coefficient Z—f is always negative, the
specific heat at constant volume must always be less than
that at constant pressure. The other differential coefficient

% is generally positive. In the case of water it is zero at

the temperature of maximum density, and accordingly the
two specific heats are equal at that temperature. At all
other temperatures, both above and below, the specific heat
at constant volume is less than that at constant pressure; for

although the differential coefficient gl;, is negative below the

temperature of maximum density, yet, as it is the square of this
which occurs in the formula, it has no influence on its value.
As an example of the application of equation (7), we will

calculate the difference between the two specific heats in
the case of water at certain known temperatures. Accordin,
to the observations of Kopp (see his tables in Lehrlmc%
der Phys. u. theor. Chimie, p. 204), we have the following
coefficients of expansion in the case of water, its volume at
4" being taken as unity: )

at 0° —0000061,

» 25° 4000025,

» 50° + 0°00045.

According to the observations of Grassi®, we have for the
compressibility of water the following numbers, which express
the diminution of volume upon an increase of pressure of one
atmosphere, in the form of a decimal of the volume at the

original pressure:
at 0° 0000050,
» 25° 0000046,
» 50° 0°000044.

* Ann. de Chim. et de Phys. 3rd ser. Vol. xxx1. p. 437, and Krinig's
Journ, fiir Physik des Auslandes, Vol. 11. p. 129,
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We will now, as an example, perform the calculation for
the temperature of 25°. The unit of length may be the
metre, the unit of weight the kilogram. We must then
take the cubic metre as the unit of volume; and, since a
kilogram of water at 4’ contains 0001 cubic metres, we

must, in order to obtain %,13" xﬁultiply the coefficient of ex-

pansion given above by 0°001. Thus we have

dpv__ . _ 5

ar= 0-00000025 = 25 x 107

For compression we must, by what has been said, take as

unit the volume which the water contained at the tem-
perature in question and at the original pressure (which latter
we may assume to be the ordinary pressure of one atmosphere).
This volume at 25°=0001003 cubi¢ metres. Further we
have taken one atmosphere as unit of pressure, whereas we
must take the pressure of 1 kilogramme on 1 square metre ;
in which case a pressure of one atmosphere is expressed by
10,333. Accordingly, we must put

dv 0000046 x 00001003 _ . 18
P 10333 =— 45 x 107™,

Further, we have at 25° T'= 273 + 25 = 298; and for £
we will take Joule’s value 424. Substituting these numbers
in equation (7b), we get

U U
° T 4247 45 T 1078

¢ = 0-0098.

In the same way we obtain from the values given above
for the coefficients of expansion and compression at 0° and
50° the following numbers :

at 0° ¢,—c,=00005,
» 90% ¢, —c, =00358.
If we now give to ¢, or the specific heat at constant pres-

sure, the experimental values found by Regnault, we obtain
for the two specific heats the following pairs of values:
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o (=1
at 0 {o,=0'9995,
+ (e, = 10016
» 25 {c:=0'9918,

(0, = 1:0042
» 50 {c,,=0'9684.

§ 6. Specific Heats under other circumstances.

In the same way as we have determined the specific heat
at constant volume in the last section, we may determine also
the specific heat corresponding to various other circumstances,
since we may by equation (4) fix its relation to the specific
heat at constant pressure.

Thus, if the circumstances are given under which the
heating takes place, the two differentials d7" and dp are no
longer independent, but the one is determined by the other.

We can therefore write for dp the product gg, dT, in which

Z—;’, is a known function of the variables on which the con-
dition of the body depends. Substituting this product for
dp in equation (4), dividing by d7, and denoting by C the

quotient Z—%, which stands on the left-hand side of the equa-

tion, and which expresses the specific heat under the given
circumstances, we obtain
c=c,- Td v_dp

-dZT b s ('i—T .................. (9).

If the specific heat is to be expressed in ordinary units,
we may use the symbol ¢ instead of C'; and the equation

becomes
c=o,— L 40 dp
=G g AT
‘We will employ this equation, by way of example, to de-
termine the specific heats which came under consideration in
the two last chapters, viz. (1) the specific heat of water, when
in contact with steam at maximum pressure; (2) the specific
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heat of water and ice, when the pressure changes with the
temperature in such a way that the temperature of melting
corresponding to the pressure at any moment is always equal
tothe temperature which exists at that moment.

In the first case we have simply to give to g]% the value

corresponding to the intensity of pressure of the steam. For
the temperature 100° this value is 370, taking as unit of
pressure a kilogram per square metre. With regard to

Z’—;,, the researches of Kopp give 0:00080 as the coefficient of

expansion of water at 100°, taking the volume of water at 4°
asunity. This number must be multiplied by 0001, in order to
obtain the value of 3—’1'—’, in the case when a cubic metre is
taken as the unit of volume and a kilogram as the unit of
weight: we thus obtain the number 0-0000008. Lastly we
write for 7' the absolute temperature for 100°, or 373, and
for E, as usual, 424. Then equation (9a) becomes

_ 313
128"

If we take for the specific heat of water at constant pres.
sure, and at 100°, the values derived from the empirical
formula of Regnault, we obtain for the two specific heats
which we wish to compare, the following simultaneous values :

¢, = 1013,
¢ =101274.

It thus appears that these two quantities are so nearly
equal, that it would have been useless to take account of the
difference between them in the calculations as to saturated
steam,

The consideration of the influence of pressure on the
freezing point of liquids shews that a great change in the
pressure only produces a very slight alteration in the freezing

x 0°0000008 x 370 = ¢, —~0-00026.

C=0

point; hence in this case 217), must be very large. If we

assume, according to the calculations in Chapter VIL, that an
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increase of pressure of one atmosphere lowers the freezing
point by 0:00733° C., we have

dp _ 10333
dT =~ ~ 000733’

hence equation (9a) becomes, giving to 7' the value at the
freezing point, viz. 273, and to £ the value 424,

_ 273 10333 _dw d
c=c¢,+ 9% X 000733 X a7 =0 + 908000 ar

Applying this equation first to water, we will take Kopp's
value for the coefficient of expansion of water at 0°, viz
—0000061; then, using the kilogram as unit of weight, and
the cubic metre as unit of volume, we have

Z—’;: ~ 0000000061 ;
whence, from the equation above,
c=c,— 0055.
As ¢, is here = 1, being the ordinary heat unit, we have finally

¢ =0945.

Next, to apply the equation to ice, we will take the linear
coefficient of expansion of ice at 0000051, following the
experiments of Schumacher, Pohrt, and Moritz; whence the
cubic coefficient will be 0:000153. In order to reduce this
number to the required units, we must multiply it by
0001087, the volume of a kilogram of ice in cubic metres:
whence we obtain '

dy

d—LT= 0-000000166.

Substituting this value, the equation becomes
c=c,+ 0'151.
According to Person® ¢, =048 : hence we have finally
c=0631.
* Comptes Rendus, Vol, xxx. p. §26.

—
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These values, 0945 and 0°631, were those employed in Chap-
ter VIL for the calculation by which the relation between
the heat expended in fusion and the temperature of fusion
was determined.

§ 7. Isentropic Variations of a Body.

Instead of determining the kind of variation of condition,
which a body is to undergo, by means of an equation con-
taining one or more of the quantities T, p, v, we will now
lay down as a condition, that no heat is imparted to or with-
drawn from the body during its variation. This is expressed
mathematically by the equation

dQ=0.
If this equation holds, we have further

dQ
S = ar =%
that is, the entropy S of the body remains constant. We
will therefore give to this kind of variation the designation
isentropic, already applied to the curves of pressure which
correspond to it: and will characterize the differential co-
efficients formed in discussing it by the index S.
If in equation (8) we put d@ =0, we have

_ Tdp
0=CdT+ a7 dv.

If we divide this equation by dv, the differential coeffi-
cient Q%" thus obtained, refers to the case of an isentropic

variation, and hence we must write :
aT_ T dp

d?; _—Exﬂ' --------------- '-..(10).
Similarly we obtain from equation (4),

T T dy

-@ == -6; X 3‘7, .................. (11)
Applying either equation (5) or equation (7), we have

0=052d+ 0. dp;
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dv
whence dyp =— G, 4T
dp G, dp’
ar
Applying equations (1) (2), this equation becomes
dp C, dp
dp =0, b dp e (12).

If here we give to C, its value from (7a), we obtain

If we take the reciprocal of (12), we obtain the equation

dep _ G, ,, P
= 6{ X e (14).

_ This equation, if transformed in the same way as (12),
gives

dsp _ d,p _ T (d,p\* =
—(-i;). = m —C. (W) ............... (10).

These differential coefficients between volume and pres-
sure, for the case of the entropy being constant, have been
applied to calculate the velocity of propagation of sound in
gases and liquids, as has been already described in Chap-
ter IL for the case of perfect gases.

§ 8. Special Forms of the Fundamental Equations for
an Expanded Rod.

Hitherto we have always considered the external force to
be a uniform surface pressure. We will now give an ex-
ample of a different kind of force, and will take the case of
an elastic rod or bar, which is extended lengthwise by a
tensional strain, e.g. a hanging weight, whilst no forces act
upon it in a transverse direction. Instead of a tensional we
may take a compressive strain, so long as the rod is not thereby
bent. This we should simply treat in the formulae as a
negative tension. The condition that no transverse force
acts on the rod would be exactly fulfilled only if the rod were
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placed in vacuo and thus freed from the atmospheric pres-
sure. But, since the longitudinal strain, which acts on the
cross section, is very large in comparison with the atmos-
pheric pressure upon an equal area, the latter may be.
neglected.

“Let P be the force, and ! the length of the rod, when
acted on by the force and at temperature 7. The length,
and in general the whole condition, of the rod is under these
conditions determined by the quantities P and 7T'; and we may
therefore choose these as independent variables.

Let us now suppose that by an indefinitely small change
in the force or temperature or both, the length 7 is increased
by dl. The work Pdl will then have been done by the
force P. Since however in our formulae we have taken as
positive not the work done but the work destroyed by a
force, the equation for determining the external work must
be written : -

Taking [ as a function of P and 7, we may write this equa-
tion as follows:

aw=—p(% aps L ar);

dpP ar
aw al . dW _ dl
whence 7P=—PEP’ d_T_—PET'

Differentiating the first of these equations according to 7T
and the second according to P, and observing that, since

P and T are independént variables, a7 = 0, we have

%(%z)“%}%r

If we subtract the second of these from the first, and
substitute for the difference on the left-hand side of the
resulting equation the symbol already employed for the
same purpose, viz. D,,, we have

dl
Dpr==m



190 ON THE MECHANICAL THEORY OF HEAT.

This value of D,, we will apply to equations (12), (13),
(14), (18) of Chapter V., substituting P for & in this partis
cular case throughout. We then obtain the fundamental
equations, in the following form :

d (dQ) d (JQ)J‘ coneverenns(18),

dT\dP) dP\dT/ dT"
%@%_j‘%(%,) - s (10),
L 20),
%‘ (Z_‘*T?) = T%" ................. (21).

§ 9. Alteration of Temperature during the extension of
the Rod. _ ,

The form of equation (20) indicates a special relation
between two processes, viz. the alteration in temperature
produced by an alteration in length, and the alteration
in length produced by an alteration in temperature. Thus
if, as 18 usually the case, the rod lengthens when heated

under a constant strain, and a is therefore positive, the

ar
equation shews that z_QT' is also positive ; whence it follows
that, if the rod is lengthened by an increase in the external
force, it must take in heat from without if it is to keep its
temperature constant, or in other words, if no heat is im-
parted to it, it will cool during extension. On the other

hand if, as may happen in exceptional cases, the rod shortens

when heated at constant pressure, and therefore %’ is nega-

tive, then the equation shews that j—g is also negative. In
this case the rod must give out heat, when lengthened by
an increase of strain, if it is to preserve a constant tempera-
ture; and if no giving out of heat takes place it must grow
warmer in lengthening.



ON HOMOGENEOUS BODIES. 191

‘The magnitude of the alteration of temperature which
takes place if the force is varied, without any heat being
imparted to or taken from the rod, is easily determined if
we form the complete differential equation of the first order
for @, in the same way as we have already done in the case
of bodies under a uniform surface pressure. The differen-

tial coefficient %’FQ is determined by equation (20), in which

we will write for ﬁl—l~ the fuller form d_,{ In order to ex-

arl ar
press the other differential coefficient ‘;Lj? in a convenient

form, we may denote the specific heat of the rod under
constant strain by C,, and the weight of the rod by M. Then
we have :

a.Q _
—d_T '—MGP)

and the complete differential equation is as follows :

d,l
dQ=MOAT+ T Frvvverrrrrrinne, (22).

If we now assume that no heat is imparted to or taken
from the rod, we must put d @ =0, which gives
d.l

0=MC,dT+ T dP.

If we divide this equation by dP, the quotient g—ll—; ex-

presses that differential coefficient of T according to P, in
the formation of which the entropy is taken as constant;

it should therefore be written more fully % . We thus
obtain the following equation: :
ar T _d,il
TP - m—; X ‘771 .................. (23).
This equation was first developed, though in a slightly
different form, by Sir William Thomson, and its correctness
was experimentally verified by Joule*. The agreement of

* Phil, Trans., 1869,

¥
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observation and theory was specially brought out by a phe-
nomenon occurring with India rubber, which had already
been noticed by Gough, but was then observed also by Joule
and verified by accurate measurements. So long as India
rubber is not extended at all, or only by a very small force,
it behaves, with regard to alterations in length produced by
alterations in temperature, in the same way as other bodies;
1.e. it lengthens when heated and shortens when cooled. When
however 1t is extended by a greater force its behaviour is
the opposite; i.e. it shortens when heated and lengthens
when cooled. The differential coefficient %l, is thus positive
in the first case and negative in the second. In accordance
with this it exhibits the peculiarity that it is cooled by an
increase of the strain, so long as the strain remains small,
but is heated by an increase of the strain when the strain
is large. This agrees with equation (23), according to which

8

gp must always have the opposite sign to dl

d1”

§ 10. Further Deductions from the Equations.

The complete differential equation (22) may also be so
formed as to present 7'and [, or / and P, as the independent
variables. For this purpose we must first state the relation
which holds between the differential coefficients of the
quantities 7, !/, and P. This relation will be expressed by
an equation of the same form as (2), viz.:

d,P _dl_ dT
ar Xar* EP——I creennenea. (24).

First, to form the complete differential equation which
contains 7' and [ as indegendent variables, we must consider
P as a function of 7' and /, and accordingly write (22) in the
form

dQ=MC,dT+T 75 (Gp

T
~ - d L d,P 1 d,P
- (Mo,+ g’(ﬁ,ﬂ) dr+ T 55,5

dl (d,P LE

dT+‘i'£dz)
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Transforming the last term by means of equation (24),
we have

aq=(xc, +T% %)dr TeTdl.....(25).

If we denote by C, the specific heat at constant length,
the coefficient of d 7' in this equation must be equal to MC,;

whence r d,,l ip
0 0 + M dT dT ............. LX) (26)0
Transforming this by means of (24), we have
("
r (a7)
C,=C,— I X %3- ...................... 27).
dP
Equation (25) assumes then the following simplified
form:
aQ=MCAT~ r3ar..... . (28).

Secondly, to form the complete differential equation which
contains ! and P as independent variables, we must consider
T as a function of ! and P. Equation (22) then becomes

4,7 dT d,l
dQ= MC'(dt deP) 7% ip

T
e, % le+(MC d; ’) dP.

£ dl *dP dT
Transforming the coefficient of d P, we have
_ d,T dl _dP\dT
dQ=M0, %5 di+ (MC, + T35 x F7) 3

By equation (26) MC, can be substituted for the expression
in brackets. The equatlon then becomes

d T
dQ=MC, - di+ M C, ¥i P
‘We will again apply equatlons (28) and (29) to the case

C. 13

+ T~

dP.

... (29).



194 ON THE MECHANICAL THEORY OF HEAT.

of the rod when it neither receives nor gives out any heat,
and therefore d@ =0. The first equation then becomes

4T T 4P .
-—Jl- = m: X H, .................. (30) H
and the second
4T
41__¢o P
dP~"C,” d,T"
dl
But by equation (24) we may write the latter thus:
dl C, _dJ
&—}—5—- EP X EP ..................... (31).

Giving to C, its value according to (27), we have

dd _dl T d,.l)’ N
G Gr_ L (ﬂ, R ¢ )

The relation between length and stretching force which
is expressed by the differential coefficient 3—‘},, as here de-
termined, is that which has to be é.pplied to calculate the
velocity of sound in an elastic rod, in place of the relation
expressed by the differential coefficient gé, which is commonly
used, and which is determined by the coefficient of elasticity.
In the same way, to calculate the velocity of sound in
gaseous and liquid bodies, we must use the relation between

volume and pressure expressed by %‘g in place of that ex-

pressed by %’ We may however remark that in treating

of the propagation of sound, in cases where the force P is
not large, we may in equation (32), which serves to deter-

mine 7"4 , substitute for the specific heat at constant tension,

denoted by C,, the specific heat at constant pressure, as
measured in the ordinary way under the pressure of the
atmosphere,



CHAPTER IX.
DETERMINATION OF ENERGY AND ENTROPY.

§ 1. General Equations.

In former chapters we have repeatedly spoken of the
Energy and Entropy of a body as being two magnitudes of
. great 1mportance in the Science of Heat, which are determined
by the condition of the body at the moment, without its
being necessary to know the way in which the body has
come into this condition. Knowing these magnitudes, we
can easily make by their &id various calculations relating
to the body’s changes in condition, and the quantity of heat
thereby brought into action. One of these, the Energy, bas
already been made the subject of many valuable researches,
especially by Kirchhoff* and the method of determining it is
therefore more accurately known. We will here treat of
Energy and Entropy simultaneously, and set forth side by
side the equations which serve to determine them.

In Chapters I. and IIIL the two following fundamental
equations, denoted by (III.) and (VI.) were developed :

dQ=AU+AW..cocecerrirnennn, (III),
AQ =TS vevrevrerecrrierenees (VI).

Here U and S denote the Energy and Entropy of the
body, and dU and dS the changes produced in them by an
indefinitely small change in the body’s condition: d@ is the
quantity of heat taken in by the body during its change;

* Pogg. 4nn., Vol. cur, p. 177,
13—2
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dW the external work performed; and 7' the absolute tem-
perature at which the change takes place. The first equa-
tion is applicable to any indefinitely small change of con-
dition, in whatever way it takes place, but the latter can’
be applied only to such changes as are in their nature
reversible. These two equations we will now write in

the form :
AU=dQ —=dW .cceevrrvevevnrnnns . (1),
_429
dS——I—,— ......... Ceereenrrertantiasnas 2).

_Their integration will then determine U and S.

Here we must first notice a point which has already been
mentioned with regard to energy in Chapter I, § 8. It is
not possible to determine the whole energy of a body, but
only the increase which the energy has received, whilst the
‘body was passing into its present condition from some other
which we choose as its initial condition ; and the same is also
true of the Entropy.

Now to apply equation (1). Let us suppose that the body
has been brought into its present condition from the given
initial condition, the energy of which we will denote by U,
by any convenient path, and in any way reversible or not
reversible ; and let us suppose dU to be integrated through
the range of this change in condition. The value of this
integral will be simply U— U,. The integrals of dQ and
dW represent the whole quantity of heat which the body
has taken in, and the whole external work which it has per-
formed, during the change in condition. These we will de-
note by @ and W. Then we have the equation

U=U,+ Q— Weerrrrvrenrvinnnn. (3).

Hence it follows that if for any mode of passing from

a given initial condition to the present condition of the body,

we can determine the heat taken in and the work performed,

we thereby know also the energy of the body, except as
regards one constant depending on the initial condition.

Next to apply equation (2). Let us suppose that the body

has been brought into its present condition from the given

initial condition, the entropy of which we denote by 6%1, by

- 'wth whatever, but by a process which is reversible;
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and let us suppose the equation integrated for this change in
condition. The integral of dS will have the value S—8;:
whence we have

Hence it follows that if for any passage of the body, by
a reversible method but by any path whatever, from a given
initial condition to its present condition, we can determine

f d_TQs we shall thereby know the value of the entropy, ex-

cept as regards one constant depending on the initial con-
dition.
§ 2. Differential Equations for the Case in which only

Reversible Changes take place, and in which the condition of
the Body is determined by two Independent Variables.

If we apply both the equations (IIL) and (VL) to one
and the same indefinitely small and reversible change in the
body's condition, the element dQ will be the same in both
equations, and may thereforc be eliminated. Hence we

have
TdS =AU+ AW weuuvveeenennnnnnnn. (5).

We will now assume that the condition of the body is
determined by two variables, which, as in Chapter VI, we
will generally denote by = and y, signifying by these certain
magnitudes to be fixed later on, such as temperature,
volume, pressure. If the condition is determined by « and y,
then all magnitudes, the values of which are fixed by the con-
dition of the body at the moment, without its being neces-
sary to know the way in which the body has come into that
condition, are capable of being represented by functions of
these variables; in which functions the variables must be
considered as independent of each other. Accordingly the
entropy S and the energy U must be looked upon as
functions of z and y. On tge other hand, the external work
W, as we have repeatedly observed, holds a completely dif-
ferent position in this relation. It is true that the differ-
ential coefficients of W, so far as concerns reversible changes,
may be considered as known functions of # and y: W itself
however cannot be represented by such a function, and can
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only be determined, if we have given not only the initial

and final conditions of the body, but also the path by which

it has passed from one to the other.
If in equation (5) we put

s as

daU daU

aw dw
dW——(E-d.‘E-l-—d—y-dy,

that equation becomes

s dS dU d aU  d
T g det T dy=(g+ g ) 2o+ (G +73; ) &
As this equation must hold for any values whatever of dz
and dy, it must hold for the cases amongst others in which
one or other of these differentials is equal to zero. Hence
it divides into the two following equations :

dS dU  dw
et ()
Td_'_g_d__U_i_éE ........................ .
dy dy dy |

. From these equations either S or U may be eliminated by
a second differentiation. We will first take U, as this gives
rise to the simplest equation. For this purpose we must
differentiate the first of equations (6) according to y, and the
second according to #. We shall write the second differential
coefficients of Sand U in the ordinary manner : but the differ-

. . dw . dW
ential coefficients of ) and ay
537 (%) and & (‘%ﬁ'). This is with the same object s in
Chapter V., viz. to shew that they are not second differential
coeflicients of a function of # and y. Finally we may observe
that T, the absolute temperature of the body, which in this

we will write as follows:
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investigation we assume to be uniform throughout the body,
may also be considered as a function of zandy. We thus obtain

aT dS + T s W)
dy dz™ " dady dzdy dy dx
dT dS s _ a&U dW
7&".7,;+Tam-_dydm+d—z(‘@')‘
Subtracting the second of these equations from the first,
and remembering that
S a8 and aU _ &U
dzdy ~ dydz’ dady ~ dydz’

we have

df dS_dT dS_d (dW\_d (dW
dy Xdz " dz \dy dy(dz) Eé(?i?,‘)

The right-hand side of this equation we have named in
Chapter V., “the work difference referred to xy,” and
have denoted it by D,,; hence we may put

D“_‘Z/(‘f::) ‘Z(%) ............ @;

and the previous equation becomes

dr_dS_dT ds
dy o " do X dy”

This is the differential equation, derived from equation (5),
which serves to determine (8).

=D, ceeveererenenn (8).

Secondly, to eliminate S from equations (6), we write them
in the followmg form :

dS_1dU  1dW
dz T dz  Tdz’
dS_1dU  1dW
dy Tdy 'T
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Differentiating the first of these equations according to y,
and the second according to z, we have

a9 1, 8T 14740, & W)
dwdy_Txdxdy T""dy " de "dy\T dz/’

s 1 « U __}_XQZ’XJU+_@_ (}ﬂ)
dyde T " dyde T° " dz ™ dy " dx\T dy)'
Subtracting the second of these equations from the first,
putting all the terms containing U in the resulting equation
on the left-band side, and multiplying the whole equation by

T% we have
47,90 AT, 4U_p[d(1d7)_ 4 (1d7))
dy " dx dx " dy dy(Tda: de\T dy/]"*
We will adopt a special symbol for the right-hand side of
this equation, viz.,

=71 (750)- 2 (IT%V)] ......... OF

and we may point out that between D,, and A,, there is the
following relation:_

dT'dW  dTdWwW
A,'=TD"—'@%"+EE‘&?. ........ (10).
- Using this symbol, the above equation assumes the form
dTdU dTdU
&y & " dz @—A,, .......... ..(11).

This is the differential equation, derived from equation
(5), which serves to determine U.

§ 3. Introduction of the Temperature as one of the
Independent Variables.

The above equations take a specially simple form, if the
temperature T is chosen as one of the independent variables.
If we put T'=y, we have

aT_ . dT

237=1’?15=0‘
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We thus obtain from (10) the following expression of the
relation between A, and D,,:

aw
Aﬂ.-': TD‘,— d—x ................... (12)-
Equations (8) and (11) also become
g"‘j =D,
pa ceererr e (13).
E; = Aﬂ' )

The differential coefficients of the two functions S and U
with regard to z are thus known. For their differential
coefficients Wwith respect to I' we will take the expressions
which follow directly from (2) and (1) on the assumption
that the condition of the body is determined by 7' and @, viz.:

s _1dgQ
dT ~ TdT’

.................. 14).
dU_dQ 4w a4
dT —dT ~ dT

From equations (13) and (14) we can form the following
complete differential equations: :
1dQ

dS=T&_TdT+D"dw’

dU= (‘j—g,-‘%) AT+ A, de

Since S and U must be capable of being expressed as
functions of 7' and «, in which functions these two variables
may be taken as independent of each other, the well-known
condition of integrability must hold for the case of the two
equations just given. For the first equation this condi-

tion is
d (1d9)_dD,
Zz?,(TdT = 4T
d (dQ\ _ ,dD,

or - ((.ﬁ,) =TS e, (16),
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which is equation (15) of Chapter V. For the second equa-
tion the condition is

d dQ\ d (dW\ _ dA,.,
< (ﬁ,) -2 (717) o — an.
This equation can be easily shewn to depend on the last.
For by (12) W

dz*
Differentiating this equation according to T, we have
dA,, TdD’l d (d W)

A:r= TD:?'—

af =T gp D= gy

Now, remembering that

D= ir(a) - & (ar)-

we may write this equation as follows:

dx

dA,, ,,dD., d (AW
T =T g7 d_z<'d—T)'
dA.,,

On substituting this value of a7 in equation (17), we are

brought back to the form of equation (16).

We have now to determine S and U themselves, by
integrating equations (15). Let us supgose that the bod
has been brought into its present condition, by any pa
we glease, from an initial condition for which the quantities
T, 8, @, U have the values T, S, z,, U, respectively: and
let this particular change of condition give the range of the
integration. As an example, let us suppose that the body
is first heated from the temperature 7, to the temperature
T, while the other variable ll)::aeps its initial value z, and
then that this other variable changes its value from z, to z,
while the temperature remains constant. Then we have

s-of,(449)_ors e

(dQ aw

(18).
d—T-W)’_’.dm j’ Arde

o,
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In both these equations the first integral on the right-hand
side is a simple function of 7, whilst the second is a function
of T and .

Let us now make the opposite assumption, viz. that the
change of « first takes place at the initial value of 7, and
then the change of I' at the final value of . Then we
obtain

: 1_d
S=S,+L (D,T)T=,.dc+]:7,x‘-g,dﬂ ‘|

U= U°+f:(Aﬂ')r_n¢lc+]:o (G2-9n)ar

In both these equations the first integral on the right-hand
side is a simple function of z, and the second of 7' and z.

By what has been said above, we may choose any other
path whatever, instead of that which we have taken as our
example, in which path the changes of 7' and # may be
transposed in any way, or may both take place at once
according to any law. We should naturally in each special
case choose that path, for which the data requisite to perform
the calculation are most accurately known.

§ 4. Special case of the Differential equations on the
?sumption that the only external force is a Uniform Surface
ressure.

oee(19).

If we assume as the only External Force a Uniform
Pressure normal to the surface, we must put
dW = pdv.
AW  dv dW  dv
Hence iz =P g 2nd oy =p@.

The expressions for D,, and A,, then assume peculiar forms.
Those for D,, have been already considered in Chapter V.
We have first

P (0 2) - (r5)

b= [ (Bxd)- & ().
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In the last of these equations we will put for the sake of
brevity :

w _%. et (20),
whereby it becomes

a5 B2 05))

Performing the differentiation in these equations, and

remembering that % dd;x’ we have
dp dv dp dv
D= 2o da Xy (21),
dr dv dmr _dv
A, T‘(dy T d) ........ . (22).

If the temperature T’ be selected as one independent
variable, whilst the other remains « as before, the expressions

become
dp dv dp dv

Dop=—hiX = = 5 X e, (23),

dr dv dr dv
— — _—
A.=T (J" dz " dz dT)

or, restoring to = its value P

T’

dp dv dp dv dy .
A,,—T(dT - ><al7)-pal-;c ...... (24a).

The equations (15) then assume the following forms:
1 _dQ dp dv dp dv =
as=1, deT+(dT -2 dT)dz ............ (25),

dQ dv gfdm _dv dm_ dv .
aU= (- PdT)dT +T (dT 25~ dz X df)d” ~(26);
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or written in another form,

aU= (3(12' PdT)dT*"[T(«%" ZZ % j’})

-p g—-:;] dz ...... (26a).

If we further choose for the second variable, as yet unde-
termined, the volume v, and thus put # =v, we have

dv dv
Hence the preceding equations become
' 1dQ dp
dS= T aT dT + dev
Q dp ceneennene(27).
aU=47ar+(T 3 ~p)d

If the pressure p be chosen as the second independent
variable, so that = p, we have

dp _ ap _

and the equations become

as=1®p_b 4,

Tar® " ar® $ ..... (28)
dU= (dQ pdd;,)dT (Tj;+pj”)dpj

§ 5. Application of the foregoing Equations to Homo-
geneous Bodies, and in particular to Perfect Gases.
For Homogeneous Bodies, where the only external force

is a uniform pressure normal to the surface, it is usual, as
at the end of the last section, to choose for mdependent

variables two of the quantities 7, v, p; and g%then takes
the simple significations which we have several times alluded
to, Thus if T and v are the independent variables, and if

. A
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the weight of the body be a unit of weight, idd%
specific heat at constant volume: or, if 7' and p are the
independent variables, the specific heat at constant pressure.

Equations (27) and (28) become in these cases

signifies the

s = % aT+ Z—%dv,
N v (29),
dU= CdT + (TE%,-—p) &
C. dv
d8="rdT - 5 dp, o

dU = (C,—p g%) T - (T%m %) dp

If we wish to apply these equations to a perfect gas, we
may use the following well known equation :

pv=RT.
Hence, if T and v be selected as independent variables,
dp _R
ar v’
and equations (29) then become
A, dT dv
e A S (31).
dU=0dT

As in this case C, must be regarded as a constant, these
equations can at once be integrated, and give

S=8+Clogy +Rlog | (32).
U= Uo + Cc (T_ To)
If we choose T and p as independent variables, we mav

put
d_R_.dv__RT
ar=p T T
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accordingly equations (30) become

_~dT dp
dS‘C’T"R}T .................. (33).
dU=(C,- R)dT
Whence we obtain by integration
_ T o P
8=8+Clogg—Rlog | .. (34).
U="U,+(C,- B (T-T)

The integration of the general equations (29) and (30) can
of course only be accomplished if, in (29), p and C, are
known functions of 7' and v, or if, in (30), v and C, are
known functions of T and p.

§ 6. Application of the Equations to a Body composed
of matter in two Different States of Aggregation.

As another special case we may select the state of things
treated of in Chapters VI. and VIL, viz. the case in which
the body under consideration is partly in one state of aggre-
gation and partly in another, and when the change, which
the body may undergo at constant temperature, is such that
the magnitudes of the parts in the two different states of
aggregation are altered, with a corresponding change in the
volume, but no change in the pressure. In this case the
pressure p depends only on the temperature; and we may
therefore put Z—g=0, by which equations (25) and (26) are
transformed as follows :

dp dv 1

a9=1x% opy dz,

TXdr a7 > dz

dU=(§9 d”)dT+(TdP )@dx @)

ar — P ar ar ~?) 4z

As in Chapters VI. and VIL, let us denote by M the weight
of the whole mass, and by m the weight of the part in the
second state of aggregation; and let us take m in place of x
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for the second independent variable; then equation (6),
Chapter VI., becomes

b _y
dm
for which, by equation (12), Chapter VI, we may substitute
dv _
dm ., dp’
’ T 2‘—,[‘1
Then the above equations become
_1dQ p
_(dQ v (36)-
dU = (ﬁ—pa—j,) dT + p<1 - 1—:%1-)>dm
' aT

To integrate these equations we may take as a starting
point the condition that the whole mass M is in the first
state of aggregation, that its temperature is T, and that its
g‘ressure is the pressure corresponding to that temperature.

he passage from this to its present condition (in which
the temperature is 7} and in which the part m of the whole
mass is 1n the second, and the part M — m in the first state of
aggregation) may be supposed to take place in the following
‘way :—First let the mass, still remaining entirely in the first
state of aggregation, be heated from T, to T, and let the

ressure change at the same time, in such a way thatit
18 always the pressure corresponding to the temperature at
the moment : then let the part m pass at temperature T from
the first to the second state of aggregation. The integration
has to be performed according to these two successive stages.

During the first stage dm = 0, and thusit is only the first
term on the right-hand side which has to be integrated.

Here (jl—g has the value MC, where C signifies the specific

heat of the body in its first state of aggregation, and for the
case in which the pressure changes during the heating in the
way described above. This kind of specific heat has been
already discussed several times, and the conclusions drawn
in Chap. VIIL, § 6, shew that where the first state of aggre-
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gation is the solid or liquid, and the second the gaseous,
it may safely be taken, for purposes of numerical calculation,
as equal to the specific heat at constant pressure. It is only
at very high temperatures, for which the vapour tension
increases very rapidly with the temperature, that the difference
between the specific heat C and the specific heat at constant
pressures is important enough to be taken into account.
Further, during the first change the volume v has the value
Mo, where o is the specific volume of the substance in the
first state of aggregation. During the second stage d7'=0,
and therefore it is only the second term on the rnight-hand
side of equation (3a) which has to be integrated. This inte-
gration can be at once performed for both equations, since
the coefficient of dm is a constant with regard to m. The
resulting equations therefore are '

_ T O mp
s..s,+MfTonT+—T—, :

T -..(37).
U=0+ M| (c-» fli,)dr+mp 12\
T, dl1 7
al
If in these equations we put m =0 or m = M, we obtain
the entropy and energy for the two cases in which the mass
is either entirely in the first or entirely in the second state of
aggregation, under the temperature T, and under the pressure
corresponding to that temperature. For example, if the first
state is the liquid and the second the gaseous, then if we put
m =0, the expressions relate to the case of liquid under tem-
perature 7, and under a pressure equal to the maximum
vapour tension at that temperature ; or if we put m = I, they
relate to saturated vapour at temperature T

§ 7. Relations of the Expressions D,, and A,
In concluding this chapter it is worth while to refer again
to the expressions D, and A,,, which by (7) and (9) have the

following meanings : e
2=, (i) = ao (ay)
or[5GE)-247)
C. ' 14
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These are both functions of z and y: but if to determine
the condition of the body we choose instead of # and y any
two other variables which we may call £ and %, we may form
corresponding: expressions Dy, and A, as follows:

d (dW\ d (dW
D0~ (a) ~ 2 (@)

875, 2 )~ 2 (0 %)

These are of course functions of £ and %, as the former
were of z and y. But if we compare one of them, e.g. that
for Dy,, with the corresponding expresssion for D, , we find
that these are mot simply two expressions for one and the
same magnitude referred to different variables, but are
actually two different magnitudes. For this reason D, has
not been called simply the work difference, but the work
difference referred to zy, so that it may be distinguished
from Dy, the work difference referred to £7. The same holds
true of A,, and A,

The relation which exists between D,, and D, may be
found as follows. The differential coefficients which occur in
the expression for Dy, in (38), may be derived by first forming
the differential coefficients according to z and y, and then
treating each of these as a function of £ and 5. Thus we
have

eena(38).

AW _dW de AW dy
dE ~ dz " dE dy T dE’
aw _dW do dW dy
dy  dx “dyp dy " dp’
Differentiating the first of these equations according to 7

and the second according to £ and again applying the same
artifice, we have

d (AW\dzdz d (dW\dzdy
1 (@) ikt 33 (@) 2 dn
4N _ | aV I aaw)aedy
dn \ d§ dz dfdn "~ dz\dy ) dndE
L (@Y drdy AW 2y
L dy\dy/dEdy " dy dfdn’
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[ d (dW\dzdz  d (dW\dzdy
() T an* g (@) 1 at
Fo) e ()

4 @Wydydy AW 2y

L dy\dy/dEdy " dy didp”

If we subtract the second of these equations from the first,
all the terms on the right-hand side disappear except four,
which may be expressed as the product of two binomial terms
in the following equation :

B4 -G -5

[ (3)
-&(%)]

Here the expression on the left side is Dy,, and the expres-
sion in the square bracket is D,,. Hence we have finally

_(dz dy dz dy
Dfﬂ—(zi—gxd-?’ %XEE)D”...........@Q).
Similarly we may obtain

— (=, dy_de ‘i!/) ¢
Ay = (EE X~ dn X dE s WP (39a).
If we substitute one new variable only, e.g. if we keep the
variable z, but replace y by 7, we must put = £ in the two

. z .
last equations, whence dE 1 and dn =0. The equations
then become )

d dy
D, = Jf/-) D,, and A,,= a% By e, (40).

If we retain the original variables, but change their order
of sequence, the expressions simply take the opposite sign, as
is seen at once on inspection of (7) and (9). Hence

D,=-D, and A, =—A,.ccencn..(41).

14—=2



CHAPTER X.
ON NON-REVERSIBLE PROCESSES.

§1. Completion of the Mathematical Ezpression for the
second main Principle.

In the proof of the second main principle, and in the
investigations connected therewith, it was throughout assumed
that all the variations are such as to be reversible. We must
now consider how far the results are altered, when the
investigations embrace non-reversible processes.

Such processes occur in very different forms, although in
their substance they are nearly related to each other. One
case of this kind has already been mentioned in Chapter I,
viz., that in which the force under which a body changes its
condition, e.g. the force of expansion of a gas, does not
meet with a resistance equal to itself, and therefore does
not perform the whole amount of work which it might
perform during the change in condition. Other cases of the
kind are the generation of heat by friction and by the
resistance of the air, and also the generation of heat by a
galvanic current in overcoming the resistance of the wire.
Lastly the direct passage of heat from a hot to a cold body, by
conduction or radiation, falls into this class.

We will now return to the investigation by which it was
proved in Chapter IV. that in a reversible process the sum of
all the transformations must be equal to zero. For one kind of
transformation, viz. the passage of heat between bodies of
different temperatures, it was taken as a fundamental principle
depending on the nature of heat, that the passage from a
lower to a higher temperature, which represents negative
transformation, cannot take place without compensation. On
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this rested the proof that the sum of all the transformations
in a cyclical process could not be negative, because, if any
negative transformation remained over at the end, it could
always be reduced to the case of a passage from a lower to a
higher temperature. It was finally shewn that the sum of
the transformations could not be positive, because it would
then only be necessary to perform the process in a reverse
order, in order to make the sum a negative quantity.

Of this proof the first part, that which shews that the sum
of the transformations cannot be negative, still holds without
alteration in cases where non-reversible transformations occur
in the process under consideration. But the argument which
shews that the sum cannot be positive is obviously inappli-
cable if the process is a non-reversible one. In fact a direct
consideration of the question shews that there may very
well be a balance left over of positive transformations ; since in
many processes, e.g. the generation of heat by friction, and the
passage of heat by conduction from a hot to a cold body,
a positive transformation alone takes place, unaccompanied by
any other change.

Thus, instead of the former principle, that the sum of all
the transformations must be zero, we must lay down our prin-
ciple as follows, in order to include non-reversible variations :—

The algebraic sum of all the transformations which occur
in a cyclical process must always be positive, or in the limit
equal to zero.

We may give the name of uncompensated transformations
to such as at the end of a cyclical process remain over without
anything to balance them; and we may then express our
principle more briefly as follows : —

Uncompensated transformations must always be positive.

In order to obtain the mathematical expression for this
extended principle we need only remember that the sum
of all the transformations in a cyclical process is given

dQ

by — T - Thus to express the general principle, we must

write in place of equation V. in Chapter IIL,
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Equation (VI.), Chapter IIL, then becomes
dQ L TdS cceevrvininniiiannns (X))

§ 2. Magnitude of the Uncompensated Transformation.

In many cases the magnitude of the Uncompensated
Transformation is obtained directly from the equivalence
value of the transformations, as determined by the method
of Chapter IV. If for example a quantity of heat @ is
generated by any process such as friction, and this is finally
imparted to a body of temperature T, the uncompensated

transformation thus produced has the value 71,9 Again, ifa

quantity of heat @ has passed by conduction from a body
of temperature 7, to another of temperature 7}, then the

uncompensated transformation is @ (%——117) If a body
has passed through a non-reversible cyélical lprocess;, and we

wish to determine the resulting uncompensated transforma-
tion, which we may call N, we have, by the principles
explained in Chapter IV., the equation

As however a cyclical process may be made up of several
individual changes of condition in a given body, some of
which may be reversible, others non-reversible, it is in many
cases interesting to know how much any particular one of
the latter has contributed towards making up the whole
sum of uncompensated transformations. For this purpose
we may suppose that after the change of condition which
we wish to enquire into, the variable body is brought by any
reversible process into its former condition. By this means
we form a smaller cyclical process, in which equation (1)
may be applied just as well as in the whole process. Thus
if we know the quantities of heat which the body has taken
in during this process, and the temperatures which appertain

to them, the negative integral — f %,— gives the uncom-
pensated transformations which have taken place. But as
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the return to the original condition, which has taken place
in a reversible manner, can have contributed nothing to
increase this sum, the expression above gives the uncom-
pensated transformation which was sought, and which was
caused by the given change in condition.

If we examine in this way all the parts of the whole
process which are non-reversible, and thereby find the values
of N, N, etc., which must all be individually positive, then
the sum of these gives the magnitude N relating to the
whole cyclical process, without requiring us to bring under
review those parts of it which are known to be reversible.

W§ 3. Expansion of a Gas unaccompanied by External
ork.

It may be worth while to examine more closely those
changes of condition, mentioned in § 1, which take place
in a non-reversible manner because the resistances to
be overcome are less than the forces at work; our ob-
ject being to determine the amount of heat taken in
during the process. As however there are a great number
of different changes of this kind, which are produced in a
great number of ways, we must confine ourselves to a few
cases, which are either especially noteworthy on account of
their simplicity, or have some special interest on other
grounds.

The general equation for determining the quantity of
heat which a body takes in, whilst it undergoes any given
change of condition, reversible or mnon-reversible, is as
follows :

in which U, and U, are the energy in the initial and final
conditions, and W is the external work done during the
variation.

To determine the energy we can employ the equations of
Chapter IX. If the only external force is a uniform pres-
sure, and if the condition of the body is determined by its
temperature and volume, then we may use equation (29), viz.

AU=C,dT + (ng- P) e 3).
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This must be integrated for a passage in some reversible
manner from the initial to the final condition. If the
temperature is equal in the two conditions, as we shall
assume in the examples which follow, then the integration
may be performed at constant temperature, and the result
will be, if we denote the initial and final volumes by
v, and v, '

U,— U - v:(ng,—p) 0 e (8

whence equation (2) becomes

Q=f:‘(.'z’%— ) ot W ().

As the first and simplest case we may take that in which a
gas expands without doing any external work. We may sup-
pose a quantity of the gas to be contained in a vessel and that
this vessel is put in connection with another in which is a va-
cuum, so that part of the gas can pass from one to the other
without meeting any external resistance. The quantity of
heat which the gas must in this case take in, in order to keep
its temperature unaltered, is determined by putting W =0 in
the last equation ; thus we have

o= (G —— ©).

If we make the special assumption that the gas is a
perfect one, and therefore that p» = RT, we have

dp _R
a7~ v’
whence 2 »
dp _pB_pv E_ .
Tar=T%=Rr*%=P;
whence (6) becomes
Q=0 ciiiiiriiiiiiiininienns 7.

As already mentioned, Gay-Lussac, Joule, and Regnault
have experimented on expansion apart from external work.
Joule annexed to his experiments, described in Chapter II., by
which he determined the heat generated in the compression
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of air, other experiments upon
the expansion of air. The re- (
ceiver R, shewn in Fig. 6, was |
filled with air condensed to 22
atmospheres, and was then con-
nected, in the manner shewn in
Fig. 18, with an empty receiver
R’, so that the communication
between the two was only closed
by the cock. The two receivers .
were placed together in a water Fig. 18.
calorimeter, and the cock was then opened, whereupon the
air passing over to the receiver R’ expanded to about twice
its former volume. The calorimeter shewed no loss of heat,
and thus, so far as could be measured by this apparatus,
no heat seemed to be required for the expansion of the air.

The above result however holds only for the process as a
whole, and not for its individual parts. In the first receiver,
in which the expansion takes place and the motion originates,
heat is required; in the second. on the contrary, in which the
motion ceases, and the air which rushes in first is compressed
by that which follows, heat is generated; and so also in the
places where friction has to be overcome during the passage.
Since however the heat generated and the heat required are
equal, they cancel each other; and we may say, so far as the
general result of the whole process is concerned, that no
expenditure of heat takes place.

@-’ A

K
;

R = o

Fig. 19.

To observe specially the different parts of the process,
Joule varied his experiment by placing the two receivers and

N
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the pipe carrying the cock in three different calorimeters, as
shewn in Fig. 19. Then the calorimeter in which was the
receiver containing the air shewed a loss of heat, and the two
other calorimeters a gain. The whole gain and the whole loss
were so nearly equal that Joule considers the difference to be
within the limits of error of the observation.

§ 4. Ezpansion of a Gas doing Partial Work.

If a gas in expanding has a resistance to overcome, but one
which is less than its expansive force, then an amount of work
will be performed less than the amount which the gas could
perform during the expansion. An example of this is the
case of a gas rushing into the atmosphere out of a vessel
in which it has a pressure higher than atmospheric pressure.

In this case also the process is a complicated one. We
have not only to deal with the work necessary for the
expansion and the corresponding consumption of heat, but in
addition heat is consumed in producing the velocity with
which the gas escapes ; and heat is again generated when this
velocity is subsequently checked. Similarly, heat is con-
sumed in overcoming the resistance of friction, and is
generated by the friction itself. To investigate accurately
all these individual parts of the process would involve us in
great difficulties.

If however we only wish to determine the quantity of
heat, which on the whole must be taken in from without in
order to keep the temperature of the gas constant, the case is
simple. We can then leave out of account those parts of the
process which balance each other, and need only consider the
initial and final volume of the gas, and so much of the work
done as is not transformed back again into heat. Then the
internal work is the same as in any other case of the gas
expanding at the same temperature and between the same
initial and final volumes ; while the external work is simply
represented by the product of the increase of volume and the
atmospheric pressure.

To determine the required quantity of heat, we start
again from equation (5), and there substitute for W the
expression for the external work performed in the present
case, viz. p, (v,— v,), where p, is the atmospheric pressure.
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The equation thus becomes
d;
Q=E(Tg%,—p)dv+p, (CRET) R (8).

If the gas is a perfect one, the integral on the right-hand
side, as shewn in the last section, will =0, and the equation
takes the simpler form

[y N CIE S N 9),

which expresses that in this case the heat taken in is only
that corresponding to the work required for overcoming the
external pressure of the air.

If the heat is to be measured according to the ordinary,
not the mechanical unit, we must divide the right-hand side
of (1?) and (9) by the mechanical equivalent of heat, whence
we have -

Q =%ﬁ:(r%_p) B+P2(0,~1) .....(80),
Q =%§ (Ot 7 P (9a)

This kind of expansion has also been experimented on by
Joule. Having as before compressed air to a high pressure
in a receiver, he allowed it to escape under atmospheric
pressure. In order to bring the escaping air back to- the
original temperature, he caused
it, after leaving the receiver, to
pass through a long coil of pipe,
a3 shewn 1n Fig. 20, which was
placed together with the receiver
n a water calorimeter. There
then remained in the air only a
small reduction of temperature,
which it shared in common
with the whole mass of the calo-
rimeter. The cooling of the
calorimeter gave the quantity of
heat given off to the air during
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its expansion. Applying equation (9a) to this quantity of
heat, Joule was able to use this experiment as a mecans of
calculating the mechanical equivalent of heat. The numbers
obtained from three series of experiments gave a mean value
of 438 (in English measures 798); a value which agrees closely
with the value 444 found by the compression of air, and does
not differ from the value 424, found by the friction of water,
more widely than can be explained by the causes of error
inherent in these experiments.

§ 5. Method of Experiment used by Thomson and Joule.

The above-mentioned experiments of Joule, in which air
contained in a receiver was expanded either by escaping into
another receiver or into the atmosphere, shewed that the
conclusions drawn under the assumption that air is a perfect
gas are in close accordance with experience. If however we
wished to know to what degree of approximation air or any
other gas obeys the laws of perfect gases, and what are the laws
of any variations that may occur from the conditions of a per-
fect gas, then the above mode of experiment is not sufficiently
accurate; since the mass of the gas is too small compared
with that of the vessels and other bodies which take part in
the variation of heat, and therefore the sources of error
derived from these have too great an influence on the result.
A very ingenious method of making more accurate experi-
ments was devised by W. Thomson, and the experiments were
carried out by him and Joule with great care and skill.

Let us 1magine a pipe, through which is forced a
continuous current of gas. At one place in this let a porous
plug be inserted, which so impedes the passage of the gas,
that even when there is a considerable difference between the
pressure before and behind the plug, it is only a moderate
amount of gas, suitable for the experiment, which can pass
through in a unit of time. Thomson and Joule used as plug
a quantity of cotton wool or waste silk, which, as shewn
in Fig. 21, was compressed between two pierced plates, AB
and CD.

Let us now take two sections, EF and G H, one before and
one behind the plug, but at such a distance that the unequal
motions which may occur in the neighbourhood of the plug



ON NON-REVERSIBLE PROCESSES. 221

are not discernible, and there is only a uniform
current of gas to deal with. Then the whole
process of expansion, corresponding to the differ- 4/’
ence of pressure before and behind the plug, takes
place in the small space between these two sec-
tions, If then the current of gas is kept uniform
for a considerable time, a state of steady motion -
is produced, in which all the fixed parts of the
apparatus keep their temperature unaltered,
and neither take in nor give off heat. Then if, E
as was done by Thomson and Joule, we surround
this space with a non-conducting substance, so
that no heat can either pass into it from without
or vice versa, the gas can only give out or take
in the quantity of heat expended or generated in the process;
and thus, even where this quantity is very small, a difference of
temperature may exist sufficient to be easily noticed and
-accurately measured.

ClHE

Fig. 21.

§ 6. Development of the Equations relating to the above
method.

In order to determine theoretically the difference of
temperature in the above case, we will first form the general
equations determining the quantity of heat which the gas
must have taken in; if the temperature at the second section
is to have any required value. From this we can readily
ﬁm%11 the temperature at which the heat imparted will be
nothing.

Thg separate parts of the process in the present case are
connected partly with consumption, partly with generation of
heat. Heat will be consumed in overcoming the frictional
resistance due to the passage through the porous plug ; whilst
by the friction itself the same amount of heat will be
generated. At certain points in the passage heat is consumed
n increasing the velocity; whilst at other points heat is
generated as the velocity decreases. To determine the quantity
of heat which on the whole must be imparted to the gas, we may
leave out of account the parts of the process which balance
each other ; since it is sufficient for our purpose to know what
is the work which remains over as external work done or con-
sumed, and at the same time the actual permanent change in
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the vis viva of the current. For this we need only consider the
work done at the entrance of the gas into the space between
the sections, i.e. at section EF, and also at the exit from that
space, i.e. at section GH; and similarly the velocities of the
current at those two sections.

With regard to the velocities, the difference between their
vis . viva can readily be calculated. If however they are at
each section so small as they were in Thomson and Joule's
experiments, their vis viva may be altogether neglected. It
then remains only to determine the work done at the two
sections. The absolute values of these quantities of work may
be obtained as follows. Let us denote the pressure at section
EF by p,, and suppose the density of the gasat this section to
be such that a unit-weight at this density has the volume v,.
Then the work done during the passage through the section of
a unit-weight of the gas equals p,v,. Similarly the work done
at section GH will be p,v, where p, is the pressure and v,
the specific volume at that section. These two quantities
must however be affected with opposite signs. At section
GH, where the gas is escaping from the given space, the
external pressure has to be overcome, in which case the work
done must be taken as positive; while in section EF, where
the gas is entering the space and thus moving in the same
direction as the external pressure, the work must be con-
sidered as negative. Thus the net external work per-
formed on the whole will be represented by the difference
(Pa v‘z—val)' . .

e have now further to determine the quantity of heat,
which a unit-weight of the gas must take in while it passes
through the distance between the two sections; suppos-
ing the gas to bave at the first section, where the pressure is
P, the temperature 7, and at the second section, where the
pressure is p,, the temperature 7. For this purpese we
must use the equation which applies to the case in which a
unit-weight of the gas passes from a condition determined by
the magnitudes p, and 7, into that determined by the
magnitudes p, and 7, and performs in so doing the work
Pyt — Py, e therefore recur to equation (2), in which the
symbol w, denoting the external work, must be replaced by
P, —p,; hence we have

Q=U,—U,+py,— D, ceourevvennnnn... (10)
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Here we need only to determine U,— U, for which
purpose we can again use one of the differential equations for
U set forth in the last chapter. In this case it is convenient
to choose the differential equation in which 7" and p are the

independent variables, i.e. equation (30) of Chapter IX.:

av=(c,~p &) ar- (T%+p%) dp.

In this equation we may put

d dv
pd—%dT+pd—pdpfpdv=d(pv) — vdp.

It thus takes the following form :

iU = 0,dT-(T‘§—1'i,- ) dp=d (pa).....(11).

This equation must be integrated from the initial values
"» Py, to the final values 7}, p,, The integration of the last
term can be performed at once, and we may write :

v d '
U,- Ul=f[0,dT— (Tfi_;'— v) dp:l — P, + P, ....(12).

Substituting this value of U,— U, in equation (10), we

obtain
Q= f [o, dT- (T% ~0) dp] ......... (13).

Here the expression under the integral sign is the differ-
ential of a function of 7"and p, since C, satisfies equation (6)
of Chapter VIIL:

0, _ T dv
dp ~  ~dT%

And thus the quantity of heat @ is completely determined
by the initial and final values of T and p.

If we now introduce the condition corresponding to
Thomson and Joule’s experiments, viz. that ¢ =0, then the
difference between the initial and final temperatures is no
longer independent of the difference between the initial and
final pressures, but on the contrary the one can be found
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from the other. If we suppose both these differences indefi-
nitely small, we may use instead of (13) the following
differential equation :
dv
dQ=0C,dT- (T - v) dp.

If we here put dQ =0, we obtain the equation which
expresses the relation between dT and dp, and which may be
thus written:

dT 1 (., dv
@—@(Tﬂ,—v) .................. (14')
If the gas were a perfect gas, and therefore pv =RT, we
should have
dv_E_v
dT  p T
hence the above equation would become
aT
F 0.

Thus in this case an indefinitely small difference of
pressure produces no difference of temperature; and the
same must of course hold if the difference of pressure is
finite. Hence one and the same temperature must exist
before and behind the porous plug. If on the contrary some
difference of temperature is observed, it follows that the gas
does not satisfy the law of Mariotte and Gay-Lussac, and by
observing the values of these differences of temperature
under various circumstances, definite conclusions may be
formed as to the mode in which the gas departs from that

law.

§ 7. Results of the Experiments, and Equations of
Elasticity for the gases, as deduced therefrom.

The experiments made by Thomson and Joule in 182+*
shewed that the temperatures before and behind the plu:
were never exactly equal, but exhibited a small differenc:.
which was proportional to the difference of pressure in eac’:

* Phil. Trans., 1854, p. 821.

P
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case. 'With air at an initial temperature of about 15°, losses
of temperature were observed, which, if the pressure were
measured in atmospheres, could be expressed by the equation

Tx - Tn =026 (p, _pa)‘

With carbonic acid, the losses of heat were somewhat
greater; with an initial temperature of about 19° they satis-
fied the equation . :
T,~T,=115(p,~p).

The differential equations corresponding to these two equa-
tions are as follows: o
aT ' dT
dp-—~026 and E—ﬁ—l 15 ciiveieenans (15))
In a later series of experiments, published in 1862%,
Thomson and Joule took special pains to ascertain how the
cooling effect varies when different initial temperatures are
chosen. For this purpose they caused the gas, before reach-
ing the porous plug, to pass through a long pipe surrounded -
by water, the temperature of which could be kept at will to
anything up to boiling point. The result showed that the
cooling was less at high than at low temperatures, and in the
inverse ratio of the squares of the absolute temperatures.
For atmospheric air and carbonic acid they arrived at the
following complete formulae, in which a is the absolute
temperature of freezing point, and the unit of pressure is the
weight of a column of quicksilver 100 English inches high:

%’; 092 (%)' and %%L 464 (%)'

If one atmosphere is taken as unit of pressure, these
formulae become

f‘g’; 028 (%)' and %’ =139 (;,)' ........ (16).

With hydrogen Thomson and Joule observed in their
later researches that a slight heating effect took place instead
of cooling. They have however deduced no exact formula

* Phil. Trans., 1862, p. 579.
C. 15
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for this gas, because the observations were not sufficiently
accurate.

If in the two formulae for ?, given in (16), we substi-

tute for the numerical factor a general symbol 4, they
combine into one general formula, viz

arT a\'
A (7) ..................... (7).
Substituting in equation (14), we obtain
dv AN
T3 —v=AC, (T) .................. (18).

According to Thomson and Joule, this equation should
be employed for gases as actually existing, in place of the
equation referring to perfect gases,

dy
T ﬂ,— V= 0,
if we wish to express the relation which exists between
the change of volume and temperature when the pressure is
kept constant. :

If C, is taken as constant, equation (18) can be integrated
immediately. Now it is only for perfect gases that it has
really been proved that the specific heat C, is independent
of the pressure; and similarly it is only for perfect gases
that the conclusion derived from Regnault’s experiments
is strictly true, viz. that C,is also independent of the
temperature. If however a gas differs very slightly from
the condition of a perfect gas, C, will have values differing
very slightly from a constant, and these differences may be
taken as quantities of the same order. Since in addition
the whole term containing C, is only another small quantity
of the same order, the differences produced in the equa-
tion by the differences of C, will be small quantities of
a higher order, and such may in what follows be neglected ;
thus we may take C, as constant. Then multiplying the

equation by %Z-', and integrating, we have

v a*
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’ L §
or v=PT—} AC, (%) ................ ..(19),
where P is the constant of integration, which in the present
case may be considered as a function of the pressure p.

According to the law of Mariotte and Gay-Lussac
we should have
R

v=="Turitiirrirerrrnren. 20);
E (20

and it is therefore adva;ntageous to give the function P
the form :

P=§+1r,
p

where ar represents another function of p which however
can only be very small. Equation (19) then becomes

T LAY
v—RP+1rT—§AC,(T) ............... (21).

This equation Thomson and Joule further simplified
as follows. The mode in which the pressure and volume of
a gas depend on each other varies less from the law of
Mariotte according as the temperature is higher. Those
terms of the foregoing equation which express this varia-
tion must thus become smaller as the temperature rises,
The last term is the only one which actually fulfils this con-
dition ; the last but one, 7T, does not fulfil it. Accordingly
this term should not appear in the equation, and putting
7=0, we obtain

v=R 1%' ~340, (9[,) ............... 22).

This is the equation which according to Thomson and
Joule must be used for gases actually existing, in place of
equation (20) which holds for perfect gases.

" An exactly similar equation was previously deduced
by Rankine*, in order to represent the variations from
the law of Mariotte and Gay-Lussac, found by Regnault

- * Phil. Trans., 1854, p, 336,
o 15=2
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in the case of carbonic acid. This equation in its simplest
form may be written po a (23)

in which a like R is constant.
If we divide thisequation by p, and in the last term, which
is very small, replace the product pv by the very nearly equal

product R7, and finally write 8 for the constant 1% , We obtain
v=R T_8

P T

which is an equation of the same form as (22).

§ 8. On the Behaviour of Vapour during Expansion under
Various Circumstances.

As a further example of the different results which
may be produced by expansion, we will consider the behaviour
of saturated vapour. We will assume two conditions: (1) that
the vapour expanding has to overcome a resistance equal to
its whole force of expansion; (2) that it escapes into the
atmosphere, and thus has only to overcome the atmospheric
pressure. Under the last condition we may make a distinc-
tion according as the vapour is separate from liquid in the
vessel from which it escapes, or is in contact with liquid,
which continually replaces by fresh evaporation the vapour
which is lost. In all three cases we will determine the
quantity of heat, which must be given to or taken from
the vapour during expansion, in order that it may continue
throughout at maximum density.

First then let us suppose a vessel to contain a unit-
weight of saturated vapour, and let this vapour expand, e.g.
by pushing a piston before it. In so doing let it exert upon
the piston the whole expansive force which it possesses at
each stage of its expansion. For this it is requisite only that
the piston should move so slowly that the vapour which
follows should always be able to equalize its expansive force
to that of the vaﬁour which remains behind in the vessel |
The quantity of heat @, which must be imparted to this
vapour, if it expands so far as that its temperature falls from
a given initial value T} to a valuzg T,, is simply found by the

equation Q= f RAT oot (24).

T,
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Here h is the magnitude introduced in Chapter VI, and
named the Specific Heat of Saturated Vapour. 1If, as is the
case with most vapours, kb has a negative value, the foregoing
integral, in which the upper limit is less than the lower,
represents a positive quantity.

In the case of water, b is given by formula (31) of
Chapter VL, viz., 8003

h=1013 - 7

Applying this formula it is easy to calculate the value of @ for
any two temperatures 7}, and T, For example let us assume
that the steam has an initial pressure of 5 or of 10 atmospheres,
and that it expands until its pressure has fallen to one atmo-
sphere; then by Regnault’s tables we must put 7,=a+152-2,
or =a+ 1803 respectively, and T, =a +100; we thus obtain
the values Q = 521 or = 749 units of heat respectively.

In the second case we suppose that a vessel contains a
unit-weight of saturated vapour apart from liquid, and at a
temperature 7, which is above the boiling point of the
liquid; and that an opening is made in the vessel, so that
the vapour escapes into the atmosphere. Let us proceed to
a distance beyond the opening such that the pressure of
the vapour is there only equal to the atmospheric pressure.
To insure that the current of vapour shall expand in the
proper manner, let the vessel be fitted at the opening with a
trumpet-shaped mouth KPQM (Fig. 22.) This mouth is not
actually needed in order that the L

equations which follow may hold, X A
but merely serves to facilitate the \
o Q D

conception. Let KLM be a surface
within this mouth, such that the
pressure of the vapour is there only
equal to atmospheric pressure, and
its. velocity so small that its vis
viva may be neglected. We will
further assume that the heat gene-
rated by the friction of the vapour
against the edge of the opening
and the surface of the mouth is
not dissipated, but again imparted . -
to the vapour. A B

Now to determine ‘the quantity Fig. 22. :
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of heat which must be imparted to the vapour during ex-
pansion, if it is to remain throughout in the saturated con-
dition, we will again apply the general equation (2); which
gives, if in this case we genote the heat by @,

Q=U—-U,+ Wierereeuunee. (25);
here U, is the energy of the vapour in its initial condition
within the vessel, U; the energy of the vapour in its final
condition at the surface KLM, and W the external work done
in overcoming the pressure of the atmosphere.

The energy of a unit-weight of saturated vapour at
temperature 7' is given by the value of U in equation (37)
of Chapter IX,, if we there put m=M=1. Itis

- da p
U= U.+j:°(0—pa?)dT+p 1—-1—1-25 .
ar
First give to 7 the initial value 7, and let p,, (j_,g) , and p,
3
be the values of p, g%, and p corresponding to this tempera-

ture. Again let 7' have the final value T}, and let p,, (ﬁ '

and p, be the corresponding values. Then subtracting these
two equations from each other we have

U,- 0=, (c-»37)dT+n, 1__%_).

T, (37

-p 1— =B ...
| =@,

The external work which results from the overcoming of
the atmospheric pressure p,, during an expansion from
volume s, to volume s,, is given by the equation

w =P (82 - 8:)'
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We will give another form to this expression. If, as in
Chapter VI., we put s=u+ o, where o is the specific volume
of the liquid, the equation becomes

W=p, (= w,) +p, (0,~ o).
Substituting for = the expression given in equation (13),
Chapter V1., we have

W=p, | ——-—L4 (0, = @ )ennn (27).
p 1;(3—11’,) Tl(g%) +p,(0,— 0,

Now substituting in (25) the value of U,— U, from (26),
and of W from (27) we arrive at the equatlon

¢ f'c, pdT dT+p,—p, + _(Eb;;j(px 7

+p,(0,—0,) ninnns (28).

Here the heat is expressed in mechanical units. To
express it in ordinary heat units the nght.-hand side must

be divided by £. As before we will put %— c; E =r. At

the same time, since o is a small quantity and varies very

slightly, we will neglect the quantities Z—‘,} and (o, — o))
Thus we obtain

Ty
Q,=fr cdT+7r,—r + (P, =p)eeeee- (29).

r
o s
i)
a7
This equation is well adapted for the numerical calcula-

tion of @, since the quantities which it contains have all
been determined expenmenta.lly for a considerable number

of liquids.
For water we have according to Regnault
dr _ 0905,
c+ ET-—- 0:305 H
vwhence

Ty
[ earr,—r,=~ 0305 (7,- 7).



232 ON THE MECHANICAL THEORY OF HEAT.

The quantities in the last term of equation (29) are also
sufficiently known, so that the whole calculation is easy.
For example if we take the initial temperature at five or
ten atmospheres, we have @ =195 or=17'0 units of heat
respectively.

Since ¢ is positive, it follows that in this case also heat
must be imparted to the vapour, not taken from it, if no
part of it is to be allowed to condense; which condensation
might take place not only at the opening, but equally well
inside the vessel. The quantity of vapour so condensed
would however be less than in the first case, because ¢/ is
less than @.

It may easily happen that the above equations give a
larger quantity of heat for an initial pressure of five than
of ten atmospheres. The reason is that at five atmospheres
the volume of the vapour is already very small; and the
diminution of velume, when the pressure is raised to ten
atmospheres, is so small that the corresponding increase of
work during the escape of the vapour is more than balanced
by the excess of the free heat in the vapour at 180-3° over
that in the vapour at 152-2°. »

g L Lastly let us take the third case,
""""" in which the vessel contains liquid

K ‘ as well as vapour. Let the vessel
ABCD (Fig. 23) be filled to the level
c_G v [ EF with liquid, and above this with

vapour. Let PQ be the opening
-~ of escape, fitted, as in the last case,
with the trumpet-shaped mouth
KPQM, to regulate the spreading
out of the current of vapour. Let
there be some source of heat which
keeps the liquid at a constant tem-
perature T, so that it continually
gives off new vapour to replace that
which escapes, and thus the condi-
tions of the escape remain always
the same.
This last circumstance makes an important distinction
between this case and the foregoing. The pressure, which
the vapour newly given off exerts on that already existing,

Fig. 23.
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performs work during the escape of the vapour, which must
be brought into the calculation as negative external work.

Let GHJ be a surface at which the vapour which passes
through has still the same expansive force p,, temperature 7},
and specific volume s, which exist within the vessel, and at
which the new vapour is given off. Again let KLM be a
surface at which the vapour passing through has simply the
expansive force equal to the atmospheric pressure p,. Atboth
surfaces we shall assume the velocity to be so small that
its #is wva may be neglected. In its passage from one
surface to the other, the vapour must continually have just
that measure of heat given to it or taken from 1t, which is
necessary in order to keep it wholly in the gaseous condition,
and completely saturated, and also in order that at the
surface (LM it may have the temperature T, corresponding
to the pressure p, (i.e. the boiling temperature of the liquid),
and the specific volume s, belonging to that temperature.
We have now to enquire how large this quantity of heat @"
must be for each unit-weight of the escaping vapour.

To determine this we may proceed as in the last case,
remembering that we have now a different value for the
external work. This value is the difference between the
work done at the surface GHJ, through which passes a
volume of vapour s, at pressure p,, and that done at the
surface K LM, through which passes a volume s, at pressure
p, It is thus given by the equation

W = Pi8s — P8y

Putting once more

a=u+o-=—%;+a-,
Tar

we have
W=Lsls ——-&f‘— + D0, = PGyeeeenn. (30).
n(@), nGh),

If we now form for Q” an equation of the same form as
(25), and in it substitute for U, — U, the expression given in
(26), and for W the expression given above, the main terms in
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these ‘two expressions cancel each other, and there re-
mains

" Ty d
Q =j1'. (C—pg%) dT+ p,— p, + poys— p,7,....(31).

If we transform this equation so that it refers not to
mechanical but to ordinary units of heat, and neglect the
terms containing o, we arrive at the simple equation

Q = cdT+7,—Tpeeeeereerrannn.. (32).

I
For water the equation takes the form
"= 0305 (1, T,) ;

and if we calculate the numerical values of @” for an initial
pressure of five or of ten atmospheres, we obtain

Q" =—159 or =— 245 units of heat respectively.

Since the values of @ are negative, it follows that in this
case heat must be taken out of the vapour, not imparted to
it. If this withdrawal of heat does not take place to a
sufficient extent-at any place under consideration, then the
steam is there hotter than 100° and therefore superheated.
Here it is of course assumed that nothing but steam passes
through the first surface GHJ, and thus that there are no
particles of liquid mechanically carried off by the steam, as
may happen during violent ebullition.



CHAPTER XI

APPLICATION OF THE MECHANICAL THEORY OF HEAT TO
THE STEAM-ENGINE.

§ 1. Necessity of a new Investigation into the Theory of
the Steam-Engine.

Since the altered views as to the nature and action of
Heat, which are comprised under the name of the Mechanical
Theory of Heat, had their first origin in the known fact
that heat can be applied to produce mechanical work, it
might have been at once expected that the theory so formed
would conversely serve to place this application of heat
in a clearer light. In particular the more general point
of view thus obtained would make it possible to pass a more
certain judgment upon the particular machines used for
this application, as to whether they already completely
fulfilled their purpose, or whether and how far they failed
to do so. :

To these reasons, which apply to all thermo-dynamic
machines, are joined in the case of the most important
of them, the steam-engine, certain special grounds, which
make it desirable to undertake a new investigation into
its working, derived from the mechanical theory of heat.
This theory in fact, in the case of steam of maximum density,
has brought to light certain important departures from the
laws previously assumed as correct, or at least generally used
for purposes of calculation.
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On this head we need only refer to two results given in
Chapter VI. In most of the recent writings on the steam-
engine, amongst others the excellent work of de Pambour,
the foundation of the theory has been taken to be the
law of Watt, viz. that saturated steam when contained in a
non-conducting vessel remains during all changes of volume
steam of maximum density. In some later writings, after the
publication of Regnault’s researches on the heat required to
evaporate water at different temperatures, the assumption is
made that steam partly condenses during compression, and
during expansion cools in a less degree than corresponds
to the reduction of density, and therefore passes into the
superbeated condition. On the other Land it is proved
in Chapter VI, that steam must behave in a way which
is different from the first assumption and the exact oppo-
site of the second assumption, viz. that it is superheated
during compression, and is partly condensed during expan-
“sion, ‘ ' :
Further it is assumed in the above writings, in default of
more accurate means of determining the volume of a unit-
weight of steam at different temperatures, that steam even at
its maximum density still follows the law of Mariotte and
Gay-Lussac. On the other hand it is shewn in Chapter VI.
that it departs widely from that law.

These two points have naturally an important influence
on the quantity of steam which passes from the boiler into the
cylinder at each stroke, and on the behaviour of this steam
during expansion. It is thus obvious that they are them-
selves sufficient to make it necessary that we should calculate
in a different way from that hitherto adopted the amount
of work which a given quantity of steam performs in the
steam-engine, :

§ 2. On the Action of the Steam-Engine.

In order to illustrate more clearly the series of processes
which make up the action of a condensing steam-engine,
and to bring out clearly the fact that they form a cyclical
process, continually repeating itself in the same manner,
the imaginary diagram (Fig. 24) may be employed. A4 is
the boiler, the contents of which are kept uniformly at
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a constant temperature
T, by means of a source of
heat. From this boiler a
part of the steam

into the cylinder B, and
drives the piston a cer-
tain distance upwards.
Then the cylinder is shut
off from the boiler, and
the enclosed steam drives
the piston still higher by
expansion. The cylinder £
is now put in connection |
with the vessel C, which
represents the condenser.
It will be supposed that
this condenser iskept cold,
not by injected water, but by cooling from without : this makes
no great difference in the results, but simplifies the treatment.
The constant temperature of the condenser we may call T,
During the connection of the cylinder with the condenser, the
piston returns through the whole distance it has previously
traversed ; and thereby all the steam which has not of itself
passed into the condenser is driven into it, and there con-
denses into water. It remains, in order to complete the
cycle of operations, that this condensed water should be
brought back again into the boiler. This is effected by the
small pump D, the working of which is so regulated, that
during the upward stroke of its piston it draws out of the
condenser exactly as much water as has been brought into it
by the condensation during the last stroke ; and this water is
then, by the downward stroke of its piston, forced back into
the boiler. When it has here been heated once more to the
temperature T, all is again restored to its initial condition,
and the same series of processes may begin anew. Thus we
have here to deal with a complete cyclical process.

In the common steam-engine the steam passes into the
cylinder not at one end only, but at both ends alternately.
The only difference thereby produced is, however, that during
one up and down stroke of the piston two cyclical processes
take place instead of onme, and it is sufficient in this case to

Fig. 24.
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determine the work done during one process, in order to be
able to deduce the whole work done during any given time.
In the case of an engine without a condenser, we have only
to assume that it is fed with water at 100°, and we may
then suppose it replaced by an engine with a condenser, the
temperature of the condenser being 100°,

§ 3, Assumptions for the purpose of Simplification.

For the purpose of this investigation we will assume, as
bas usually been done, that the cylinder is a non-conducting
vessel, and so neglect the exchange of heat which takes place
during each stroke between the walls of the cylinder and the
steam.

The vapour within the cylinder can never be anything but
steam of maximum density with -a certain admixture of
water. For it is evident from the conclusions of Chapter VL,
that during the expansion which takes place in the cylinder
after it is shut off from the boiler the steam cannot pass into the
superheated condition, because no heat is imparted to it from
without ; but must rather partially condense. It is true that
there are certain other processes, to be mentioned later, which
tend to produce a slight super-heating ; but this is prevented
from taking place by the fact, that the steam always carries
with it into the cylinder a certain amount of water in the
form of spray, with which it remains in contact. The exact
amount of this water is of no importance ; and since for the -
most part it is diffused through the steam in fine drops, and
therefore readily participates in the changes of temperature
which the steam undergoes during expansion, no important
error will be introduced if at each moment under consideration
we assume that the temperature of the whole mass of vapour
in the cylinder is the same.

Further, to avoid too great complexity in the formula, we
will first determine the whole work done by the steam pressure,
without examining how much of this is actually useful work,
and how much is expended on the engine itself in overcoming
friction, and in actuating the pumps required, besides the one
shewn in the figure, for the proper working of the machine,
This latter part of the work may be subsequently determined
and deducted from the whole, in the manner shown later on.
It may further be remarked with regard to the friction between
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the piston and cylinder, that the work expended upon this is
not to be regarded as wholly lost. For since heat is generated
by this friction, the inside of the cylinder is thereby kept
hotter than it otherwise would be, and the power of the steam
increased accordingly. : '

Lastly, since it 18 desirable to understand the working of
the most perfect machine possible, before enquiring into
the influence of the various imperfections which occur in
practice, we will in this preliminary investigation make two
further assumptions, which may afterwards be withdrawn.
The first is that the inlet pipe from the boiler to the cylinder,
and the outlet pipe to the condenser or to the atmosphere,
are so large, or else the speed of the engine so slow, that
the pressure within the end of the cylinder connected with
the boiler is always equal to the pressure in the boiler itself;
and similarly that the pressure within the other end is always
equal to that in the condenser, or to the atmospheric pressure
as the case may be. The second is that there are no clear-
ance or waste spaces sufficient to affect the result.

§ 4. Determination of the Work done during a single
stroke.

Under the conditions just enumerated the amount of
work done during the cyclical process corresponding to a
single stroke may be written down by help of the results
obtained in Chapter VI. without further calculation, and
their sum comprised in a simple expression.

Let M be the whole quantity of vapour which passes from
the boiler to the cylinder during one stroke; of this let the
part m_ be in the form of steam and the remainder M —m
in the form of water. The space which this mass occupies will
be (by Ch. VL., § 1) m,u, + Mo, where u, represents the value
of u corresponding to T, while o is taken as constant and
therefore has no suffix. The piston has therefore been raised
8o far that this amount of space is left under it; and since this
takes place at the pressure p, corresponding to 7, the work
done drx)uing the first process, which we may call W, is given
by the following equation : ’

W=mup +Mop...cccoveeenennnn (1)
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Let the expansion which succeeds to this continue so far
that the temperature of the vapour enclosed in the cylinder
falls from the value T, to a value T, The work done during
this expansion, which we may call W, is given directly by
equation (62) of Chapter VL, if we there take T, for the
final temperature, and corresponding values for the other
quantities involved, Thus

W,=m, (p,~ u,p)—m, (py — u,p) + MC (T, — T)...... 2).

On the return stroke of the piston, which now begins,
the vapour, which at the end of the expansion occupied
the space m,u,+ Mo, is driven out of the cylinder into
the condenser, overcoming the constant resistance p,. The
negative work thus performed is therefore given by the
equation

Wo=—m,u,py— Mopy.....cc0vvunen.n. (3).
Now let the piston of the small pump rise until it leaves

under it the space Ma; the pressure then continues to be
the pressure p, of the condenser, and the work done is

Finally, during the descent of this piston, the pressure p,
of the boiler has to be overcome, and we have theréfore the

negative work
Wy=—Mop,..ooeevvuevennnennnnnn. (5).

Adding these five equations we have for the whole work
done during the cyclical process by the steam pressure, or in
other words by t{e heat, which work we may call W', the
following expression :

W= mpy—MyPy + MC (Tx - T:) + myu, (Pa —po)"‘(G)'

From this equation we must eliminate m, If for u, we
substitute the value given by equation (13) Chapter VI, viz.

-;.(355

aT/,
then m, only occurs in the ‘product m_p,; for which equation
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(55) Chapter VL. gives, if we substitute therein p and C for »
and ¢, the expression
T,

T,
Mmypy = mesz—MCTslog 1_;: .

Substituting this expression we obtain an equation in which
all the quantities on the right-hand side are known, since
the masses M and m,, and the temperatures T\, T, and T are
supposed to be known directly, and the quantities p, p, and

d% are assumed to be known as functions of temperature.

§ 5. Special Forms of the Expression found in the last
section.

If in equation (6) we put T,=T,, we obtain the work
done in the case where the machine works without expan-
sion, viz. :

W =mu, (P, —Dg)eeeevereeeerrnannnnns (7).

If on the other hand we assume that the expansion con-
tinues until the steam has cooled by expanding from the
temperature of the boiler down to that of the condenser (an
assumption which cannot be realized in practice, but forms
the limiting case to which we may approach as near as
is practicable) we have only to put 7,=7,; whence we

have
W =m,p,— m,p,+ MC(T,— Ty)............ (8).

Eliminating m p, from this equation by means of the
same equation (55) Chapter VL, in which we must also put
T,=1T, we have

W=mp 1= Toy uo(1,- T°+Tologg> ...... ).
pLas § T‘ 1 1"1

§ 6. Imperfections in the Construction of the Steam-
Engine.

With all steam-engines as actually constructed the
expansion falls much below the maximum value given at the
end of the last section. If for example we take the tempera-
ture of the boiler at 150° and that of the condenser at 50°,
then if the temperature of the steam in the cylinder is to be
lowered by expansion to the temperature of the condenser,

C. 16
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the steam must be expanded (by the table given in § 13
of Chapter VI.) to twenty-six times its original volume. In
practice, on account of the many evils attending too high an
expansion, steam is not expanded beyond three or four times
its volume in general, or ten times at the very utmost. Such
an expansion, with an initial temperature of 151° is shewn
by the same tables to lower the temperature to 100° or 75°
at the utmost, instead of to 50°

Besides this imperfection, which has already been taken
account of in the above investigation and included in equation
(6), the steam-engine is subject to several others, two of
which have been already expressly excluded from considera-
tion. These are, first the fact that the pressure in one end
of the cylinder is less than that in the boiler, and in the
other greater than that in the condenser, and secondly the
presence of waste spaces. We must now extend our previous
investigations so as to include these further imperfections.

. The influence upon the work done of the difference
between the boiler and cylinder pressures has been investi-
gated most fully by Pambour in his work Théorie des
Machines & Vapeur. The author may therefore be allowed,
before himself entering on the subject, to reproduce the most
important of these investigations, only making some changes
in the notation and omitting the quantities which refer to
friction. It will thus be easier to shew how far Pambour’s
results are no longer in accordance with our present know-
ledge on the subject of heat, and at the same time to connect
with it the new method of investigation, which in the
author’s opinion must take its place.

§ 7. Pambour's Formulae for the relation between
Volume and Pressure.

Pambour’s theory has its foundation in the two laws
already mentioned, which at that time were generally applied
to the case of steam. The first is the law of Watt, viz. that
the sum of free and latent heat is always constant. From
this law, as already mentioned, was drawn the conclusion that
if a certain quantity of steam at maximum density were
inclosed in a non-conducting vessel, and the contents of this
vessel then increased or diminished, the steam would neither
‘be superheated nor partially condensed, but would remain
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During the return stroke of the piston, where the whole
space swept through by the piston equals the whole space
occupied by M + p at pressure p,, less the waste space which
is represented by u,” + uo, we have

W,=— (mgu, + Mo — pu,") p,cevevennene. (24).
During the forcing back of the mass M into the boiler we
have
We==Ma (p,=D) covevrenreennnnn. (25).
Hence for the total work done we have
W =m,p, — myp, + (M +p) C(T,—T)
+mgu, (p, — p,) +my, (ps -2)
- Mo (pl _pxl +po' - po) - ‘/“ouo” (p,' —po') . “(26)°
In this equation the masses m, and m, are given by
equation(21) and by equation (55) of Chapter VI respectively;
substituting in the former p,” for p,, and changing T, r, u,
in the same way, while in the latter M + p is to be sub-
stituted for M, p for r, and C for c. The elimination of m,
and m, is thus rendered possible: here however we shall only
make the substitution in the case of one of them, m,, as it is
more convenient for purposes of calculation to combine the
equation so obtained with the two named above. Thus the
system of equations serving to determine the work done

by the steam-engine will, in its most general form, be as
follows :

W' =m,p,—m,p, + MC (T, - T)) ]
+ pwp,’ — puC T,-1,)+ mytty (P, —Po')
+ ms"'o” (po' - Po") - Mo (po' — Do)
m, [py+ v, (p, = p)] =m,p, ... (27).
+MO(T,—T,)+;l.°p°”—p0(T,—T°") '
+ay' (P —p") + Mo (p,—p))

mep, _m, T
"t =g+ (M + ) Clog J
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The mass M flows from the boiler, in which the pressure
is p,, into the cylinder. Of this mass the part m, is in
the condition of steam, the remainder of water. The mean
pressure in the cylinder during this time we will as before
call p, and the final pressure p,, The steam now expands,
until 1ts pressure has fallen from p, to p,, and its temperature
from T, to 7,, Then the cylinder 1s opened to the condenser,
the pressure in which is p, and the piston moves back
again through the whole length of the stroke. The back
pressure which it has to overcome is on account of its
comparatively rapid motion somewhat larger than p,, and the
mean value of this back pressure we will for the sake of dis-
tinction call p;. The steam which remains in the waste space
at the end of the return stroke, and must be taken into ac-
count for the next stroke, has a pressure which may not be
equal either to p, or to p,, and therefore must be denoted
by p,”. It may be greater or less than p,, according as the
steam is shut off from the condenser a little before or after
the end of the return stroke ; for in the former case the steam
will be compressed still further, while in the latter it will
have time to escape partially into the condenser and so to
expand again. Finally the mass M must be returned from
the condenser into the boiler, during which as before the
g:essure P, assists the operation, and the pressure p, has to

overcome.

The quantities of work done during these processes will
be represented by expressions very similar to those in the
simpler case already considered : a few obvious changes must
be made in the suffixes to the letters, and the quantities
added which refer to the waste space. We thus obtain the
following equations :

During the admission of steam we have, as in § 10,
only writing u,” instead of u,

W, = (mu,+ Mo — mu") p, eooeeenne (22).
During the expansion from pressure p, to p,, we have as

in equation (62) of Chapter VI, writing M + p instead of M,

---------
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the pressure in the cylinder is nearly the same as in
the boiler, and that it is only by the expansion that the
Eressure is finally brought down to the value p,—it may
appen that the value found for m, is less than m + u,
and accordingly that a part of the ongma.l steam must
have condensed. On the other hand if p," is only a little
greater or even a little smaller than p, then the value
of m, will be greater than m, + p,. This latter is in general
true of the steam-engine, and in partlcular holds for the
case assumed by Pambour, in which p/ =p,.

Here as in Chapter VI. we have arrived at a result
widely diverging from the views of Pambour. Whereas
he assumed for the two different kinds of expansion, which
succeed each other in the steam-engine, one and the same
law, according to which the original quantity of steam
can neither grow less nor greater, but must always remain
exactly at maximum density, we have been led to two
separate equations, which indicate an opposite condition

. of things. In the first expansion, during the admission of

steam, there must by equation (21), be a continual genera-
tion of fresh steam ; in the further expansion, after the
steam is cut off, and while it is doing the full work
corresponding to its force of expansion, there must by
equation (56) of Chapter VI. be a condensation of some part
of the existing steam.

Since these two opposite processes of increase and
diminution of steam, which must also exert an opposite
influence on the amount of work done by the engine,
partly go to cancel each other, the final result may in
certain circumstances be nearly the same as under the
simpler assumption of Pambour. We must not however
on this account cease to take into consideration the difference
we have discovered, especially if our object is to determine
what effect a chanve in the arrangement or speed of the
engine will have on the amount of work done.

§ 12.  Determination of the Work done during one stroke,
taking into donsideration the Imperfections already noticed.

We may now return to the complete cyclical process
performed by the steam-engine, and treat its several pa,rts
one after another in the same way as before.
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that the whole space taken up by M+ x at the end of this
time is given by

my py + (M + p) o
From this we must subtract the waste space. Since this
is filled at the commencement by a mass u at temperature 7',
of which the part w, is in the condition of steam, it may
be represented by

Pty + po.

If we subtract this expression from the former, and multiply
the remainder by the mean pressure p’, we obtain for
the first part of the work done

(meus + Mo — /"’ouo) P,’-
(2) The work done in the condensation of the mass
m, is
— My U, Py
(3) The work done in forcing the mass M back into the
boiler is
—Map,.
(4) The work done in vaporizing the part , is

Ho o Por
Adding these four quantities together we obtain the
following expression for the whole work done :

W= LU (p; _pa) - Mo (px '—P,,) = Y%, (p1' —po)' "(20)'

Since @ = W, we may equate the expressions in (19) and
(20); and bringing to one side of the equation the terms
containing m,, we obtain

ms[Pn+u| (.pl, _ps)]= m;P: +MC (T1 - Ts) +/“‘0Po"l"'c( Z;"To)
+ potty (P, — Do) + Mo (p, =P, )eeeennnnnns (21).
By means of this equation the quantity m, is given

in terms of quantities assumed to be already known.

§ 11. Divergence of the above Results from Pambour's
Assumption.
In cases where the mean pressure p,’ is much larger

than the final pressure p,,—e.g. if we suppose that during
the greater part of the time of admission of the steam,

i
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Let the mass p, which is not forced back into the boiler,
be first cooled in the liquid condition from 7, to T,, and then
at this temperature let the part u, be transformed into steam;
the piston receding so far, that this steam can again occupy
its original space.

Thus the mass M + u will have passed through a complete
cyclical process, to which we may now apply the principle
that the sum of all the quantities of heat taken in during
a cyclical process must be equal to the total external
work done. In this case the following quantities of heat
have been taken in:

(1) In the boiler, where the mass M has been heated
from T, to T, and at the latter temperature the part m,
transformed into steam, we have the quantity of heat

mp, +MC(T,— T,).

(2) During the condensation of m, at temperature T, we

have

= My Py
N (3) During the cooling of the part u from T to T, we
ave
—pC(T,-T).

(4) During the vaporization of the part u, at temperature
T,, we have

o P

The whole quantity of heat taken in, which we may
call @, is thus given by

Q@=mp,—mp, + MC (T, - T) + popy — pC (T, — Ty)...(19).
The quantities of work are obtained as follows :

(1) To determine the space swept through by the
piston during the entrance of the steam, we must remember

gaseous condition at the end as at the beginning, we need only assume that
the water forced back into the boiler is not only in quantity, but also in
its actual molecules, the same as that which left the boiler previously; and
that when this water takes up the temperature T,, the quantity m, which was
formerly vapour, is again vaporized, whilst an equal quantity ofmfhm existing
steam is condensed. For this purpose there is no need that the whole mass
in the boiler should take in or give out any heat, because that required for
t.hehvap‘;)rization, and that generated by the condensation, exactly balance
each other.
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before the entrance of the steam ; for the sake of generality we
will assume this to be partly in the liquid, partly in the
gaseous condition, and will call the latter part w,. The
pressure of this steam may for the moment be denoted by p,,
and the corresponding absolute temperature by T,, without
implying thereby that these are exactly the same values as
hold for the same quantities within the condenser. Let p,
and 7] be, as before, the pressure and temperature in the
boiler, M the mass which flows from the boiler into the
cylinder, and m, the part of M which is in the condition of
steam. The pressure exerted on the piston during the
entrance of the steam need not, as already explained, be
constant. We will call p, the mean pressure, by which the
space swept through by the piston during the entrance of the
steam must be multiplied, in order to obtain the same
amount of work as is actually done by the varying pressure.
Let p, be the actual pressure in the cylinder at the moment
when the steam is cut off, 7, the corresponding temperature.
Lastly let m, be the magnitude we have to determine, viz.
the part of the whole mass M + x within the cylinder, which
is in the condition of steam.

To determine this quantity, let us suppose the mass M+
to be brought back to its initial condition in any way
whatever, e.g. the following. Let the gaseous part m, be
condensed in the cylinder by the fall of the piston, it being
assumed that the piston can force itself even into the waste
space; at the same time let the mass have such a quantity of
heat continuously imparted to it, that its temperature 7} re-
mains constant. Then let the part M of the whole liquid mass
be forced back into the boiler, where it again takes up its
original temperature T, We have now within the boiler
the same condition of things as before the flow of the steam,
since every part of the boiler has its original temperature;
and therefore the proportions of liquid and steam must be
the same as at the commencement. Whether the individual
molecules, which are in the gaseous and in the liquid
condition, are exactly the same as at the commencement does
not concern us; we make no distinction between these, and
never enquire what molecules, but simply how many mole-
cules, are in each of the two conditions.*

* If it be wished that exactly the same molecules should be in the
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large, that the pressure in the cylinder is as great as that in
the boiler. This then gives the maximum quantity of work,
If with an equal admission of steam the speed of the engine
is greater, or if with equal speed the admission of steam is
less, then in each case a less quantity of work is obtained
from the same quantity of steam.

§ 10. Changes in the Steam during its passage from the
Boiler into the Cylinder.

Before we pass on to treat the same conmnected series of
processes on the principles of the Mechanical Theory of Heat,
it will be advantageous to consider one of them, which
requires a special investigation of its own, in order to fix
beforehand the results which refer to it. This process is the
flow of the steam into the clearance or waste space and into
the cylinder, in the case when it has a smaller pressure
to overcome than that which forces it out of the boiler.

The steam as it comes from the boiler passes first into
the waste space ; there it compresses the steam of less density
which remains over from the last stroke, fills up the space
thus obtained, and then acts upon the piston ; this, according
to the assumption, on account of its comparatively lighter
load recedes so fast, that the steam cannot follow it quickly
enough to keep the density in the cylinder the same as in the
boiler. Under such circumstances, if nothing but saturated
steam escaped from the boiler, this would become superheated
in the cylinder, inasmuch as the vis vva of the flow would
be transformed into heat ; but since the steam always carries
with it sma'l particles of water, the superabundant heat
goes to vaporize a part of these, and the steam thus remains
in the saturated condition.

We must now consider the following problem : Given the
initial condition of the whole mass under consideration, as
well that already found in the waste space as that which is
newly received from the boiler; given also the amount of
work which is done during the entrance of the steam by the
pressure which acts on the piston; lastly given the pressure
which exists at the moment when the boiler is shut off from
the cylinder; then to determine what proportion of the mass
within the cylinder is at that moment in the condition of steam,

Let p» be the mass which exists in the waste space
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expression is almost too small to be taken into account,
d fortiori we may neglect an error which is small even in
comparison with that value; and we shall therefore retain
the expression in the form given above.

Adding these four several quantities of work together, we
obtain the following expression for the whole work done
during the cyclical process:

W=mB (225 +log ) v (1— ) 6+p) - Mo (3,~ 1)

§9. Pambour's Value for the Work done per Unit-weight
of Steam.

If instead of the work done in one stroke, during which
the quantity of steam used is m, we prefer to find the work
done per unit-weight of steam, all that is needed is to divide
the foregoing value by m. Let us denote by I the fraction

= which gives the ratio of the whole mass which passes into

the cylinder to that part of it which is in the form of steam,
and 18 therefore somewhat greater than 1; by V the frac-

tion 127;’ i.e. the space which on the whole is occupied by the
unit-weight of steam in the cylinder; and by W the fraction
g;’—,i.e. the work done per unit-weight of steam. Then we

have

W=B (T +log3) =V 1-0 (b +p) ~ o (5, —p)

In this equation there is only one term which involves
the volume V, and this contains ¥V as a factor. Since this
term is negative, it follows that the work, which can be
obtained from one unit-weight of steam, is the greatest, other
things being equal, when the volume which that steam occu-
pies in the cylinder is the least possible. The least value of
this volurae, to which we may continually approximate, but can
never exactly obtain, is that which is given by the assumption
that either the engine goes so slowly, or the steam-pipe is so
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space swept through by the piston up to this moment, we
have the following equation for the first part of the work
done:

W,=mee;—e—v'(e-e)b ........... (13).

The law of variation of the pressure during the expansion
is also given by equation (11). If v is the volume and p the
pressure at any moment, then

This expression we must substitute in fpdv, and then
integrate this from v=ev’ to ¥ =+, Thence we obtain for
the second part of the work done

W,=mBlog % —v(1—€)d.uunnnees (14).

Next, to determine the negative work done by the resis-
tance during the return stroke, we must know the value of
that resistance. Without entering at present into the ques-
tion how this resistance is related to the pressure in the
condenser, we will denote the mean pressure by p,; then the
work done will be given by

=t (L= €) Py erererrermenneens(15).

Finally there remains the work which must be expended
in forcing back into the boiler the quantity of liquid M.
Pambour has taken no special account of this work, but
included it with the friction of the engine. Since, however,
for the sake of completing the cycle of gperations, it has been
included in the author’s formulae, it will be investigated here
in order to facilitate the comparison. If p, be the pressure
in the boiler, and p, in the condenser, then equations (4) and
(5) show, as in the example already considered, that this
work is-on the whole given by

W= M (p,—p) cererererererns ..(16).

For the present case, where p, is not the pressure in the
condenser itself, but in the end of the cylinder which is open
to the condenser, this equation is not quite exact; but since
on account of the smallness of o the value of the whle
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ever be fixed in general terms, because it depends not only on
the construction of the engine, but also on how widely the
valve in the steam pipe has been opened by the engineer,
and on the speed with which the engine is moving. By a
change in these circumstances the difference may be made to
vary within wide limits. Again the pressure in the cylinder
may not remain constant during the whole time the steam
is entering, because the speed of the piston, and also the
opening left by the valve, may be made to vary during this
time.

With reference to this latter point Pambour assumes that
the mean pressure, to be used for determining the work done,
may with sufficient accuracy be taken to be the same as the
final pressure which exists in the cylinder at the moment
when it is shut off from the boiler. The author does not
think it desirable to introduce into the general formulae an
assumption of this kind, although in the absence of more
exact data it may fairly be resorted to for the purpose of actual
calculations; but he is bound to follow Pambour’s method, in
order to complete the exposition of his theory.

The actual pressure at the moment when the steam is
shut off, Pambour determines by means of his equation,
as given above, between volume and pressure ; assuming that

ial observations have been made to determine the quantity
of steam which passes from the boiler to the cylinder during
an unit of time, and therefore during each stroke. We
will, as before, denote by M the whole quantity which passes
into the cylinder during one stroke, and by m the portion
which is in the condition of steam. As this quantity M, of
which Pambour only recognizes the part which is in the
condition of steam, fills at the moment when the cylinder is
closed the space ev’, we have by equation (11),

mB
e rrierirrecnriienerees 2
o =g (12,

where p, is the pressure in the cylinder at that moment.
Hence

If we multiply this equation by (¢ —e) ¢/, which is the
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where Band b are constants. These constants he endeavoured
to fix so that the volumes calculated by this formula might
agree as nearly as possible with those calculated by the
formula given above. As however sufficient accuracy cannot
thus be arrived at in the case of all the pressures which are
met with in the steam-engine, he made use of two different
formulae in the cases of engines with and without condensers.
The first, for condensing engines, is as follows :

20000

This agrees best with the formula (10) for pressures between
% and 34 atmospheres, but may be applied within somewhat
wider limits, say 4 and 5 atmospheres. The second, for non-
condensing engines, is as follows:

oo 21282
—3020 +P .....................

This is most accurate between 2 and 5 atmospheres, and may
be applied anywhere between 1} and 10 atmospheres.

§ 8. Pambour’s Determination of the Work done during
a single stroke.

The quantities needed for determining the work done, and
depending on the dimensions of the engine, will be here
denoted in a manner somewhat differing from that of Pambour.

- The whole space within the cylinder, including the waste
space, which is left open for steam during a single stroke,
we shall call v. The waste space we shall call e and the
space swept through by the piston (1 —e)?. That part of
the whole space, which is left open for the steam up to the
moment when the cylinder is shut off from the boiler, again
inclusive of the waste space, we shall call e. Then the
space swept through by the piston during the entrance of
steam will be denoted by (e—e) ¢',and that swept through
during expansion by (1 —¢)v'.

- First to determine the work done during the entrance of
the steam. For this purpose we must know the actual
pressure in the cylinder at this time, which must be less than
that in the boiler, otherwise there would be no flow from one

-into the othet. The amount of this difference cannot how-
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§ 13. Pressure of Steam in the Cylinder during the dif-
Serent Stages of the Process, and corresponding Simplifications
of the Equations.

To obtain numerical values from equations (27), we
must first determine more accurately the quantities p,

» 1’0 * )

P 11110 general law can be laid down as to the mode in which
the pressure within the cylinder varies during the admission
of steam, because the opening and closing of the steam pipe
is performed with different engines in different ways. For
the same reason no fixed general value can be laid down for
the relation between the mean pressure p, and the final
pressure p,, taking the latter in its strictest meaning. This
18 however possible if we make a slight change in the signifi-
cation of p,.

The shutting off of the cylinder from the boiler cannot
of course be instantaneous: the necessary motion of the
valve or cock must consume a certain time, less or greater
according to the arrangement of the gear. During this time
the steam in the cylinder expands somewhat, because as the
opening narrows the quantity of fresh steam which enters is
less than corresponds to the speed of the piston. We may
therefore assume in general that at the end of this time the
pressure is already somewhat less than p/".

Again, if we do not limit ourselves to taking the end of
the time required to close the valve as the moment of cut-off,
but allow ourselves some freedom in fixing this moment,
other values may be obtained for p,, The moment may be
so chosen that, if at this moment the whole mass M had
already been admitted, a pressure would then exist exactly
equal to the mean pressure calculated for all the time up to
this instant. If we substitute for the actual cut-off the
instantaneous cut-off as thus determined, the resulting error
in the calculation of the work will be quite insignificant.
With this modification therefore we can fall in with Pam-
bour's assumption, that p,'=p,, but we must then for each
particular case make a speciaj investigation of the circum-
stances, in order to determine accurately the moment to be
fixed for the cut-off.

' As regards the back-pressure p,, which exists during the
return stroke, the difference p, —p, is obviously smaller,
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other things being equal, as p, is smaller. It is therefore
smaller for a condensing engine than for a high-pressure
engine, where p, equals one atmosphere. In the case of the
most important high-pressure engine, the locomotive, there
is generally a special circumstance which tends to increase
this difference, viz. that the steam is not usually led into the
air by the shortest and widest channel possible, but is led
into the chimney, and there allowed to escape through a
somewhat contracted blast-pipe, in order to increase the
draught. In this case an accurate determination of this
difference is of importance to obtain a trustworthy result.
It must also be remembered that this difference is not con-
stant even with the same engine, but depends upon the
speed, and the law of this dependence must therefore be
investigated. This subject, with the researches made upon
it, will not however be entered on here, since it has nothing
to do with the present application of the Mechanical Theory
of Heat.

In the case of engines where the exhaust steam is not
thus employed, and especially with condensing engines, p,
differs so little from p,, and therefore varies so slightly with
the speed, that it is usually sufficient to assume a mean
value for p;. Moreover, since p, enters into equations (27)
only in terms which are multiplied by o, and therefore have
but small influence on the value of the work done, we may
also substitute for p, the most probable value for p,".

The pressure p,", which exists in the waste space, depends,
as already mentioned, on whether the shutting off from the
condenser takes place before or after the end of the stroke,
and may therefore have very different values. But this
pressure, and the quantities depending on it, occur in equa-
tions (27) only in terms containing the small factors » and
Ko, 80 that an approximate value is sufficient for our purpose.
In cases where there are no special circumstances which
cause p,” to vary widely from p,, we may neglect this differ-
ence, as we did that between p, and p,, and may thus assame
as a general value for all three quantities the most probable
mean value for the back-pressure within the cylinder. This
value we may call p,.

These simplifications change equations (27) into the
following :
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W =mxpx_mapa+MC(Tx_Tn)"'l‘opo-’/‘C(Ta—T(ow
+ mgu, (p,— po)
mp,=mp, + MC (T, —- T)) + mpy—pC (T, - T)
+ mo, (P, — po) + Mo (p,—p,)
T
o= Tt (M + p) Clog

> (28).

J

§ 14. Substitution of the Volume for the corresponding

Temperature in certain cases.

In the above equations it is assumed that, besides the
masses M, m,, pu, and p,, of which the two first must be found
by direct observation, and the two latter can be approxi-
mately determined from the size of the waste space, we have
also given the four pressures p,, p,, p,, and p,, or, which is
the same thing, the four temperatures 7, 7,, T, and 7.
In practice however this condition is only partially fulfilled,
and we must therefore bring in other data to assist us.

Of the four pressures here mentioned, two only, p, and p,,
may be taken as known: of these the first is given directly
by the gauge on the boiler, and the latter can be at least
approximately fixed by the gauge on the condenser. The
two others, p, and p,, are not given directly; but we know
the dimensions of the cylinder and the point of cut-off, and
can thence deduce the volume of the steam at the moment
of cut-off and at the end of the stroke. We may then take
these volumes as our data in place of the pressures p, and p,.
For this purpose we must throw the equations into a form,
which will enable us to use the above data for calculation.

Let us now, as before in the explanation of Pambour’s
theory, denote by v the whole space within the cylinder
which is open to the steain during one stroke, including the
waste space; by ev’ the space opened to the steam up to the
moment of cut-off; and by ev’ the waste space. Then in the
same way as before we have the following equations:

myu, + (M + p) o=ev,
myu, + (M +p) o =1,
Ho Yo + pa = €',
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The quantities 4 and o are both so small that their pro-
duct may be at once neglected ; whence we have

m,u,=ev’—M¢r"
myu,=v — Mo

of e (29).
o= ;o
Further, we have by equation (13) of Chapter VI
p=Tug, '
writing the single letter g for P which will occur very

ar’

frequently in what follows. We can therefore replace p, and
p, In equations (28) by w, and u,. Then the masses m, and
m, occur only in the products m,u, and m,u,, for which we
may substitute the values given in the two first of equa-
tions (29). Again, by the last of these equations we may
eliminate the mass u,; and as regards the other mass g,
though this may be somewhat larger than u,, yet, since the
terms which contain u are generally insignificant, we can
without serious error use the value found for u,: in other
words we may drop for the purposes of calculation the as-
sumption made for the sake of generality, that the original
mass in the waste space is partly liquid and partly gaseous,
and consider the whole of it to be in the gaseous form.

The above substitutions may be effected in the more
general equations (27), as well as in the simplified equations
(23). This substitution presents no difficulty, and we will
here confine ourselves to the latter set, in order to have the
equations in a form adapted for calculation. With these
changes they read as follows :

W'=mlP1+M0(TI—TB) '-'(’v"'ﬂ[a')(Taga"pa"'po)w
+G‘UIP“— C(ra_To)
uo

(ev’ - Mo) Tngn=m1p1 +MC (TI - Tﬁ)
 (po—C (T,— T,
+ev {P————" ( )+p.—po}+Mv (p,—p)

Uy

: (30).

(v'—Ma-)g,=(ev’—Mo-)g,+(M+€7:—o) Clog 2

s r



APPLICATION TO THE STEAM-ENGINE. 259

§ 15. Work per Unit- Weight of Steam.

To adapt the above equations, which give the work per
stroke or per quantity of steam m,, to determine the work
per unit-weight of steam, we must apply the same method
as before in transforming equation (17) into (18): viz. to
divide the three equations by m,, and then put

y—=l, 1=V, and-W—=W; .
ml ml ml

then the equations become

W= Pt ZC(T‘—- Tu) - (V_ lo') (Tsys.—ps +po) )
+ eVPo_ O(Ts_ To)
U,

(eV—lo) T ,g,=p,+1C(T,-T),)

_ _ > (31).
+eV{”L—0$,L—T—°) +P:"‘Po} +lo (p,—p))
- (]
14 T
(V—la)g,= eV ~la) g+ (1+ ) Clog 7 J

§ 16. Treatment of the Equations.

The application of the above equations to calculate the
work done may be effected as follows. Assuming the pres-
sure of steam to be known, and also the speed at which the
engine works, we can thence determine the volume V of one
unit-weight of steam. By help of this value we first calcu-
late the temperature T, from the second equation, then T
from the third, and finally apply these to determine the work
done from the first equation.

Here however we are met by another difficulty. In order
to calculate 7, and 7, from the two latter equations, these
must be solved for those temperatures. But they contain
those temperatures not only explicitly but also implicitly,
since p and g are functions of temperature. If to eliminate
these quantities we use for p one of the ordinary empirical
expressions for the pressure as a function of tempera-
ture, and for g the differential coefficient of the same ex-
Pression, then the equations become too complicated for

172
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further treatment. It would probably be possible to adopt
the same method as Pambour, and to form new empirical
formulz, more convenient for the present purpose, and suffi-
ciently accurate, if not for all temperatures at least within
certain limits, This however will not here be attempted, but
another method will be adopted instead, which makes the
calculation somewhat extended, but easily performed in its
individual parts.

§ 17. Determination of %% or g, and of the Product Tg.

If the range of pressure of the vapour at different tempera-
tures is known with sufficient accuracy for any liquid, then
the values of ¢ and Tg can also be calculated for the same
temperatures, and collected in tables, as usually done with
the values of p. For steam, which has hitherto been the

“only vapour used for the steam-engine, the author has per-
formed such a calculation, by help of Regnault’s tables, for
temperatures from 0° to 200°. For this purpose he differen-
tiated according to ¢ the formula used by Regnault to calcu-
late the values of p under and above 100°; and then calcu-
lated g by means of the new formule thus obtained. But
since these formule did not seem to answer the purpose so
well as to repay the great labour involved, and since the
forming and calculating of other more suitable formule
proved still more tedious, the author was contented to use
the numbers already calculated-for the pressure to determine
approximately the differential coefficient of that pressure:
" e.g, if the pressure for the temperatures 146° and 148° were

denoted by p,,, and p,,, it was assumed that &‘—;ﬂ‘ would

represent with sufficient accuracy the value of the differen-
tial coefficient for the mean temperature 147°,

Above 100° the same numbers were employed as were
used by Regnault®. With regard to values under 100° it has
been recently pointed out by Moritz 4 that the formula used
by Regnault is somewhat inaccurate, especially in the neigh-

* Mém. de VAcad. des Sciences, Vol. xx1. p. 635.

+ Bulletin de la Classe physico-mathématique de ' Acad. de St Pétersboury.
YVol. xuz p, 41,
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bourhood of 100°, owing to his having employed for the
calculation of the constants logarithms to seven places of
decimals only. Moritz has therefore recalculated these con-
stants from the same observed values, but using ten places
of logarithms, and has published the values of p derived from
this improved formula, so far as they differ from Regnault’s
values, which first takes place at 40°. These are the values
used by the author*.

When g has been calculated for the various temperatures,
the product Ty can be calculated without further difficulty,
since 7'is given by the simple equation

T=273+t

The values of g and Tg thus found are given in a table
at the end of this Chapter. To complete this the corre-
sponding values of p are added, those from 0° to 40° and above
100° being Regnault’s numbers, and those from 40° to 100°
being Moritz’s. By the side of each of these three columns are
given the differences between each two successive numbers,
80 that this table enables the values of these three quantities
to be found for any given temperature, and conversely the
temperature corresponding to any given value of one of these
three quantities.

0 § 18. Introduction of other Measures of Pressure and
eat.

One other remark is to_be made as to the mode of using
this table. Inequations (31) it is assumed that the iressure P
and its differential coefficient g are expressed in kilograms
per square metre, whereas in the table the same umit of
pressure is employed as in Regnault’s tables, viz. a milli-
metre of mercury. Hence, if in the formuls which follow
we are to consider p and g as expressed in these latter units,
we must alter equations (31) by multiplying p and g by the
number 13'596 which expresses the specific weight of mercury;
inasmuch as this, by Chapter VI, § 10, is the ratio between °
the units. If we denote this number by k, we must sub-
stitute kp and kg for p and g, whenever these occur in the
above equations, Similarly for the quantities C and p, which
express the specific heat and the heat of vaporization in

* See note at end of chapter.
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mechanical units, we will use ¢ and » which refer to the ordi-
nary unit of heat. For this purpose we must write Ee and

Er for C and p.
If we now divide the equations by %, so as to bring the con-
stants & and k together as much as poss1ble, these equations

take the following form, from which to calculate —ku-r, and
thereby obtain W, the work done :—

W E 7
% =7 [+l (T,— I)] = (V-lo) (1,9, —p, + 1)

E_r,—c(T,—T)

te Vk u,

E
(V1) T,g,= " [r, +1e (T, ~ T,)] (3.

—c(T,-T
r"—-c(u:—°)+p,—po} +lo (p,-p)

eV> ic 100'% _J

The quantity —E]‘;has the following value :

é’ 42355 _
k 13596

§19. Determination of the Temperatures T, and T,
The second of equations (32) may be written as follows:
T9,=CH+a(t,—t)=b(p,—py)-...... e (34),
where C, a and b are indepeudent of 7, and have the values

1 [Er E r~c(T-T, 1
ooty [ ot )

+eV{%-'x

(V—l0) g, = (eV = o) g, + (z+

V—lo| &
I (H'GD - (34a).
“k eV-la

eV-lo

b=

eV=lo" o ]
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"Of the three terms on the right-hand side of (34) the first
is by far the most important; and it is thus possible to
determine T,g,, and thereby also the temperature ¢, by
successive approximations. To obtain the first approximation
to Ty, which we may call T"¢', we may write ¢, for ¢, and
p for p. Then we have

Tg=Cuirrnvrrncinnnnnnnnn, (35).

The temperature ¢ corresponding to this value of Tg
must be found from the table. Then to obtain the second
approximation to T'g we may write the value ¢’ thus found
for ¢, in equation (34), and the corresponding value p' of the
pressure for p,. Thus, remembering equation-(35), we have
for the second approximation
Tg'=Tqg+a(t,—t)—b(p,—p).coere..(35a).
The temperature ¢’ corresponding to this value of Tg
must be found as before from the table. If a second ap-
proximation be not sufficient, the process must be repeated.
Writing in equation (34) ¢t”and p” in the place of ¢, and p,,
and remembering equations (35) and (35a), we have
g’ =T¢"+a({t' —t") - b(p —p")....... (35b).

The new temperature ¢’ can again be found from the table.

In this way we may proceed to any degree of approxima-
tion; but the third approximation only differs by about }7 of a
degree, and the fourth by less than i of a degree, from the
true value of ¢,

The treatment of the third of equations (32) is very-
similar. If we divide by V — lo, and for convenience of calcu-
lation replace the natural by common logarithms (for which
purpose we have to divide by the modulus M) the equation
takes the form

9,=C +a Loo'g SN i) 8

(=1 ‘,l,s
where C and @ have the following values independent of 7,:
' eV—ls
C= V=l 9
€V v, (36a).
E c (l + T‘o—)

A a7 1} /g )
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In equation (36) the first term is again the most im-
portant, and we can therefore proceed by successive approxi-
mations. First write T, for 7}; we then have as the first
approximation for g,,

The corresponding temperature ¢ can be found from the
table, and from this we can easily obtain the absolute tem-
perature I". Write 1" for 7, in equation (36); then we have

9"=g +alog %’ .................. (37a).
This gives T”. Similarly we can obtain the equation

9" =g"+alog 71:_, .................. (370),

which again gives 7"; and so on. Here again a very few
approximations will give a value which very closely agrees
with the actual value of T,

§ 20. Determination of c and r.

_It now only remains to determine the quantities ¢ and r,
'E)efgre proceeding to the numerical application of equations
32).

The quantity ¢, or the specific heat of the liquid, has
hitherto been treated as constant. This is not perfectly correct,
since it increases slightly as the temperature increases. If
- however we take as its general value the correct value for
the mean of the temperatures which occur in the investigation,
the divergencies may be neglected. This mean temperature
in the case of engines driven by steam may be taken at 100°,
which for an ordinary high-pressure condensing engine is
about a mean between the temperature of the boiler and that
of the condenser. Taking therefore the value of the specific
heat which Regnault gives for water at 100°, we may put

¢=1013.....cc0erue..n ceeeens(38).

To determine 7 we start from the equation which Regnault
gives for the whole quantity of heat required to heat a
unit-weight. of water from 0° to the temperature ¢, and to
transform it at that temperature into steam. This equation is

A=606'5 + 0-305¢.
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If here we substitute for A the expression corresponding
t

to the foregoing definition, viz. j cdt + r, we have
0

r = 606'5 + 0-305¢ — f ‘ edt.
0

In the integral we must use for ¢ the function of tem-
perature exactly determined by Regnault*, if we are to
obtain for r the precise values which Regnault gives. For
the present purpose it is perhaps sufficient here also to use
for ¢ the constant above-mentioned. This gives

f:cdt= 1-013¢;

and the two terms involving ¢ in the last equation can now
be combined into one, viz. — 0708, We must at the same
time make some change in the constant term of the equa-
tion. This we will so determine, that the same value of
which is probably the most accurate of all given by observa-
tion, shalf also be correct as given by the formula. Now
at 100° Regnault found for A, as the mean of 38 observations,
the value 636:67. If from this we subtract the quantity of
heat required to heat the unit-weight of water from 0° to
100°, which according to Regnault is 1005 heat-units, there
remains to one place of decimals only

7 = 5362+
Applying this value we obtain for + the formula
=607 —0708¢....ccc0erneeennns (39).
This formula is already laid down in Chapter VIL, § 3;
and a short table is there given, which exhibits the close

accordance between the values of r as calculated by this
formula, and as given by Regnault in his tables.

§ 21. Special Form of Eguation (32) for an Engine
working without expansion.

In order to distinguish the effects of the two different
kinds of expansive action, to which the two latter of equa-

* Relation des expériences, Vol. 1. p. 748,

+ Regnault himself used in his tables the number 536-5 instead of the

above; this simply arises from the fact that he has used the round number
637 for A at 1009, instead of 636°67 as given above.
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tions (32) refer, it seems desirable first to consider an engine
in which only one of the two occurs. We will therefore
begin with an engine that works without expansion. In this
case we may substitute for e, or the ratio of the volumes
before and after expansion, the value 1; and may also put
T,=T,. The equations (32) are thus greatly simplified.
The last becomes an identity, and is therefore useless. In
the second the right-hand side remains unaltered, whilst the
left-hand side becomes (V —1lo) T,g,. Finally the first
equation takes the form

W E.
k = —k—{r' +1l (Tx - Ta)} = (V- la') (ngs'—ps +Po)
yevErze(L=T)
k u,
If we here replace (V-1o) T,g, by the expression on the
right-hand side of the second equation, all the terms con-

taining 7 88 factor cancel each other, as do two terms con-

taining lo as factor, and the terms which remain can be
collected together as two products. Then the two equations
are

Y va-9@-p) -t (p-p)

(V-10) Tg,=Z tr, 410 (1, - 1)) (40).
+ GV{% X u(uj};z)l'*'pa_po} + la'(p,—p,)

The first of these equations is exactly the same as is
given by Pambour’s theory, if in equation (18) we put e=1,
and tl,xen by means of equation (12) (having first put e=1

and :7‘= V in that equation) replace B by the volume V.,

The only difference therefore is in the second equation, which
replaces the simple relation between volume and pressure
assumed by Pambour,
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§ 22. Numerical Values of the Constants.

The quantity e which occurs in these equations, and re-
presents the ratio of the waste space to the whole space left
open to the steam, may be taken as 0'05. The quantity of
water which the steam carries over with it into the cylinder
is different in different engines. Pambour considers that it
averages 025 of the whole mass entering the cylinder in the
case of locomotives, but much less, 005, in the case of station-
ary engines. We will here take the latter value, which gives
1 : 095 as the ratio of the whole mass entering the cylinder
to -that part of it which is in the form of steam. Further,
let the pressure in the boiler, or p,, be five atmospheres, to
which corresponds the temperature 152:22°; and let it be
supposed that the engine has no condenser, or, which is the
same thing, a condenser at the pressure of one atmosphere.
The mean back-pressure in the cylinder is then greater than
one atmosphere. With locomotives this excess of back-
pressure may be considerable, for the special reasons already
mentioned ; with stationary engines it 18 insignificant. Pam-
bour, in his tables for stationary non-condensing engines, has
altogether neglected this excess; and since our present object
is to compare the new formula with his, we will follow his
example and put p, = one atmosphere.

We have then in this case the following values to insert
in equations (40): ' :

e =005
1=1 _ 1-053 ]
005 " % b e (41).
p, = 3800
P, =760
‘We may also fix once for all the following values:
k = 13596,
o= 0001.

There now remain only the quantities ¥ and p, undeter-
mined in equations (40), in addition to the quantity W, of
which we are seeking the value. Of these V¥ is the volume
of steam in the cylinder per unit-weight, and p, is the final
pressure within the cylinder.

A,
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§ 23. The least possible Value of V, and the correspond-
tng amount of Work.

We must first enquire what is the least possible value
of V. This value corresponds to the case 1n which the
pressure in the cylinder is the same as in the boiler, and we
have therefore only to substitute p, for p, in the last of
equations (40). Thus we obtain

, B tlox T, "
= T v -~ eee .
. Txgl—e{]—c x%—%ol_‘))"'pn—po}

In order to give an example of the influence of the waste
space, two values have been calculated from this expression;
the first that which would exist if there were no waste space,
and therefore ¢ =0; the second that which exists upon our
assumption that e=005. These two values expressed in
cubic metres per kilogram of steam passing out of the boiler
are 0-3637 and 0-3690.

The reason why the second value is greater than the first
is that the steam rushes at first into the waste space with

reat velocity; the vis viva of this motion is then transformed
into heat, and this heat again evaporates some part of the
priming water. A second reason is that the steam already
existing in the waste space before the admission goes to
increase the whole quantity of steam during the rest of the
process.

If we substitute these two values of V in the first of
equations (40), at the same time putting e=0 in the one
case, and e =005 in the other, the corresponding quantities
of work, expressed in kilogrammetres, are respectively 14990
and 14450.

According to Pambour’s theory it makes no difference
with regard to the volume, whether part of it is waste space
or not; in both cases it is given by the same equation (113),
if for p is substituted the special value p,. The value thus
obtained for the volume is 0-3883. The fact that this value
is greater than the value 0-3637 found above for the same
quantity of steam, is explained by the circumstance that it
has been until now usual to assume for steam at its maxi-
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mum density a volume greater than is allowed by the
mechanical theory of heat; this view finds its expression in
equation (112). r{f by means of this latter volume we deter-
mine the work from Pambour’s equation ,upon the two
assumptions that e =0 and that ¢ = 003, the values obtained
are 16000 and 15200. These quantities, as follows immedi-
ately from the greater volume, are both greater than those
found abeve, but not in the same ratio, because the loss of
steam due to the waste space is smaller according to our
equations than according to Pambour’s theory.

§ 24.  Calculation of the Work for other Values of V.

With an engine of the kind here considered, the effi-
ciency of which was investigated by Pambour, the speed
which the engine actually assumed bore a proportion in one
case of 1'275 : 1, and in another, with a lighter load, of
170 : 1, to the minimum speed as calculated by his theory
for the same intensity of evaporation, and for the same
boiler-pressure. To these speeds correspond in our case the
volumes 0'495 and 0660 respectively. We will now, as an
example of the mode of determining the work done, choose a
speed which lies between these two, say in round numbers

V=06.

Our first business is now to find the value of 7, corre-
sponding to this value of V. For this purpose we use equa-
tion (34), which takes the following special form :

T,g,=26-577 + 5642 (t, — t,) — 00483 (p, — p,) ...(43).

If by means of this equation we obtain successive approxi-
mations to £,, as described in section (19), the series of values
18 as follows :

¢ =13301,
U’ =134-43,
t" =13432,

t"" =13433.

Further approximations would differ only in higher places of '
decimals, and if we confine ourselves to two places we may
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take the last number as the true value of ¢, The corre-
sponding pressure is
P, = 230830,

~ If we substitute in the first of equations (40) these values
of V and p,, together with the approximate values of con-
stants as fixed in § 22, we obtain ,

W=11960.
By Pambour’s equation (18) we have for the same volume 0-6

W=12520,

In order to exhibit more clearly the dependence of the
work upon the volume, and at the same time the divergence
between Pambour’s theory and the author’s on this point,
calculations similar to that for volume 0'6 have been made
for a series of other volumes increasing by equal intervals.’
The results are given in the following table. The first hori-
zontal row of numbers, which is separated from the rest,
contains the values for an engine without waste space. The
further arrangement of the table is easily understood.

Pambour’s Values
14 tg W —

v w

03637 | 152:22° | 14990 | 03883 | 16 000

03690 | 152-22° | 14450 | 0-3883 | 15200

04 14912 | 14100 | 04 15 050
05 14083 | 13020 | 05 13780
06 134:33 | 11960 | 0'6 12 520
07 12903 | 10910 | 07 11 250
08 12465 9880 | 08 9 980
09 120°72 8860 | 09 8710
1 117-36 7840 |1 7440

It will be seen that the quantities of work, when calculated
by Pambour’s theory, decrease more rapidly as the volume
increases than when calculated by the author’s; so that whilst
at first they are considerably the larger they get nearer and
nearer to the latter and finally become smaller. The ex-
planation is that by Pambour’s theory, whilst the expansion
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is going on during the admission, the amount of steam re-
mains always the same as it was at the commencement;
while, according to the author’s theory, a part of the priming
water is afterwards evaporated, and this quantity is greater
the greater the expansion.

§ 25. Work done for a given Value of V by an Engine
working with Expansion.

‘We will now treat in the same way an engine working
with expansion, and will choose as our example a condensing
engine. To fix the degree of expansion, we will assume that
the steam is cut off at one third of the stroke. We then
have, to determine e, the equation

e—e=}(1-¢);
whence, giving to e the value 005, we have

e="1 = 03666.
3
‘Let the boiler-pressure be as before five atmospheres. The

condenser-pressure can with good arrangements be kept
below {; atmosphere. But since it is not always so small,
and in addition the back-pressure in the cylinder somewhat
exceeds the pressure in the condenser, we will assume the
mean back-pressure p, to be in round numbers } atmosphere,
or 152 millimetres. To this corresponds the temperature
t,= 6046°. If lastly we give to [ the same value as before,
the constants to be used in our example will be as follows:

6= 036667
e=005
l< = 1.053 ..................... (44)0
p,=3800
P,=152
To be able to calculate the work done, we only now need
to know the value of V. To assist us in choosing this,
we must first know the least possible yalue of V. Thisis

found exactly as in the case of the engine without expansion,
by putting p, for p, in.the second of equations (32), and

AR
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altering the other magnitudes, which ‘are in'combination
with p,, in the same way. We thus obtain in the present:
case the value 1'010. Starting from this, we will first
suppose that the actual speed of the engine exceeds the least
possible in the ratio 3 : 2. We may then put in round
num(}laers V=15, and we will calculate the work done at this
speed. . :
d We first determine the two temperatures ¢, and ¢,, by
substituting this value of V'in the two last of equations (32).
- Of these ¢, has already been approximately found for the
non-condensing engine; and since the present case only.
differs from the former inasmuch as the quantity e, which
was there taken equal to 1, has here a different value, we
need not go through the process again, but will merely give
the final result, which is T
t,=137'43".

To determine ¢, we have equation (36), which takes in

this case the form :

9y =26'604 + 51:515 Log -;"—f ................ (45).
8

From this we obtain the following successive approxima-
tions:

t =9924°)
¢ =10193
t" =10174

" =10176

The last of these, from. which further approximations would
only diverge in higher places of decimals, we will consider
to be the correct value of £, and will apply it, together with
the known values of ¢, and t, to the first of equations (32).
Thus we obtain

W =31080.

If, taking the same value for V, we calculate the work
done by Pambour’s equation (18), remembering to determine
B and b not from equation (115) as with the non-condensing
engine, but from equation (11e) which refers to condensing
engines, we find

W = 32640.
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§26. Summary of Various Cases relating to the Work-

ng of the Engine.
" The work done for the volumes 12, 1'8 and 21 has
been calculated in the same way as'described above for the
volume 1:5. Further, in order to make clear by an example
the influence, which the different imperfections of an engine
have upon the amount of the work done, the following cases
are subjoined. ‘ . _

(1) The case of an engine which has no waste space,
and in which the cylinder pressure is equal to the boiler
pressure, and the expansion carried so far that the pressure
has fallen from its original value p, to p,. If we only assume
further that p, is exactly equal to the condenser pressure,
this case is that to which equation (9) relates, and which gives
the greatest possible amount of work for a given quantity
of heat, when the temperatures at which the heat 1s taken
in and given off are also given. ‘

(2) The case of an engine, where there is again no waste
space, and the cylinder and boiler-pressures are equal, but
where the expansion is not as before complete, but is only in
the proportion of e : 1. This is the case to which equation (6)
refers ; except that there, in order to determine the magnitude
of the expansion, the change of temperature in the steam
caused thereby was assumed to be known, whereas here the
expansion is fixed by the volume, and the change of tem-
perature must be calculated therefrom.

(8) The case of an engine having waste space and in-
complete expansion, in which the only one of the above
favourable conditions which remains is the fact that the
steam in the cylinder has during admission the same pres-
sure as in the boiler, so that the volume has its least possible
value. To this are appended the cases already mentioned,
in which this last favourable condition is also absent, and
the volume has some other given value instead of the least
possible.

For purposes of comparison Pambour’s theory has also
been applied to all these cases except the first, for which
equations (11a) and (115) do not hold, inasmuch as even
the equation which he has determined for low pressures can;

C. 18
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only be applied to % or at the lowest § of an atmosphere,
whereas here the pressure has to descend to } of an atmo-
sphere. For this first case the numerical values given by our
equations are as follows :

Volume before expansion = 0'3637,
’ after " = 6345,
Work done.....e...ennenree.=50460.

The result for all the other cases are contained in the
following table ; in which a line is drawn between the values
for an engine without waste gface and the remaining values.
For the volume are given only the values after expansion,
because those before expansion can be at once derived from
these by diminishing them in the ratio 1 : e or 1 : 0°-36667.

Pambour’s Values
v | w

0992 | 1562:22° | 113-71° | 34300 1032 | 36650

1010 | 152-22°1.113'68° | 32430 14032 | 34090
1-2 14563 | 108:38 | 31870 12 33570
.15 | 13743 | 101°76 | 31080 15 32640
‘ 18 | 13102 96:55 | 30280 18 31710

: 21 12579 9230 | 29490 | 2°1 30780

§ 27. Work done per Unit of Heat delivered from the
source of heat.

The quantities of work done, as given in the above table,
and in the previous table for non-condensing engines, are
calculated per kilogram of steam received from the boiler.
It is easy to deduce from this the quantity of work done
per unit of heat delivered from the source of heat, if we
remember that for each kilogram of steam so much heat
must be delivered, as is necessary to raise the mass [, which
is somewhat greater than one kilogram, from the initial
temperature, at which it enters the boiler, to the boiler
temperature itself, and transform it at this latter temperature
into steam. This quantity of heat can be calculated from
the data already given.
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§28. Friction.

Something must be said in conclusion on the subject of
friction. This will be confined to a justification of the course
adopted in leaving friction altogether out of account in the
equations hitherto developed. For this purpose we will shew
that instead of introducing friction at once into the first
general expressions for the work, as Pambour has done, the
same principles will allow us to take it into account sub-
sequently, according to the method already adopted by other
authors.

The forces-which the engine has to overcome during its
stroke may be distinguished as follows: (1) The resistance
which it meets with from without, and in overcoming which
consists its useful work. Pambour has named this the load
(charge) of the engine. (2) The resistances which originate
within the machine itself, so that the work expended in
overcoming them produces no useful effect. These latter
resistances we combine under the name of Friction, although
in strictness they comprise other forces than those of friction,
especially the resistances of the various pumps driven by the
engine, with the exception of the feed-pump, the effect of
which has already been considered.

Both these kinds of resistances Pambour takes into ac-
count as forces which oppose the motion of the piston; and
in order to be able to combine them readily with the pres-
sures of the steam on both sides of the piston, he made his
method of denotation agree with that used in the case of the
steam pressures, so that the symbol denotes not the whole
force, but the force referred to one unit of surface of the
giston. On this understanding let the load be represented
y R.

A yet further distinction must be made with regard to
the friction. This has not the same constant value for any
one engine, but increases with the load. Pambour divides
1t therefore into two parts, that which exists when the engine -
runs unloaded and that which is brought into action by
the load. The latter he takes to be proportional to the load
itself He accordingly expresses the friction per unit of
surface by f+O8R, where f and 8 are quantities which
depend on the construction and dimensions of the engine,

18+2
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but for any one engine may according to Pambour be con-
sidered as constant. :

We may now refer the work done by the engine to these
resisting forces, instead, as hitherto, to the moving force
of the steam. The negative work done by the former must
equal the positive work done by the latter, because otherwise
an acceleration or retardation of the speed would take place,
and this is against our original assumption that the speed is
uniform. Whilst one unit-weight of steam enters the cylin-
der, the piston passes through the space (1—e¢) V, and we
thus obtain the following expression for the work W:

W=Q1-¢ V[1+8 R+Sf]

The useful part of this work, which for distinction we may

call (W), is expressed as follows :
(W)y=(1-¢ VxR

If we eliminate R from this equation by means of the one
above, we obtain ‘

(W) = W .................

By help of this equation, since V is assumed to be known,

we can deduce the useful work (W) from the whole work
W, as soon as f and 8 are given us. The manner in which

these are determined by Pambour will not be entered upon
here, since that determination rests upon insecure grounds,
and friction is not the special subject of this chapter.

§ 29. General Imvestigation of the Action of Thermo-
dynamic Engines and of its Relation to a Cyclical Process.

We have now so far completed our treatment of the
steam-engine, that we have followed out all the processes
which take place, determined the several positive or nega-

tive quantities of work performed therein, and combined

these into one algebraic expression. We will proceed to
consider thermo-dynamic engines from a more general point
of view. The expression that an engine is driven by heat

must not of course be understood of the direct action of the |

heat, but only that some substance within the engine sets

the working parts in motion through the changes which it
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undergoes by means of heat. This substance we will call the
transmitter of the heat’s action. ;

If a continuously working engine is at uniform speed,
all the changes which occur must be periodic, so that the
same condition in which the engine and all its parts may be
found at any given time, will recur at regular intervals.
Therefore the substance transmitting the heat’s action must
also at such recurring moments exist within the engine in the
same quantity and under the same conditions. This may be
accomplished in two different ways. (1) The same original
quantity of this substance may always remain within the
engine; in which case the changes which it undergoes during
the motion must be such, that at the end of each period it
returns to its original condition, and the same cycle of
changes then begins anew. (2) The engine may get rid at
the end of each period of the substance which during that
period has served to produce its action, and may then take
in the same quantity of the same substance from without.

This latter method is the more usual in practice. It ex-
ists, e.g. in the hot-air engine, as hitherto constructed, since
after every stroke the air which has driven the piston in the
working cylinder passes out into the atmosphere, and is
replaced by an equal quantity of air drawn from the atmo-
sphere by the feeding cylinder. The same is the case with
the non-condensing steam-engine, in which the steam passes
from the cylinder into the atmosphere, and is replaced by
fresh water, pumped from a reservoir into the boiler. It
also applies, partially at least, to the ordinary condensing
steam-engine. In this the condensed water is indeed in part
pumped back into the boiler, but not as a whole, because
1t mixes with the cold water, a part of which also enters
the boiler. The part of the condensed water which is not
used again, together with the remainder of the cold water,
must go to waste.

The first method has hitherto been applied in a few
engines only, amongst others in engines driven by two dif-
ferent vapours, e.g. steam and ether*. In these the steam
is condensed by contact with metal pipes filled inside with
liquid ether, and is then wholly  pumped back into the

® Annales des Mines, 1853, pp. 203, 281.
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boiler. Similarly the ether vapour is condensed in metal
pipes surrounded by cold water, and is then pumped back
into the vessel used for evaporating the ether. To keep up
a uniform working, it is therefore necessary merely to add
so much water and ether as is lost by leaka%e.

In an engine of this kind, in which the same mass of
vapour is continually used anew, the different changes which
this mass undergoes during each period must, as shewn above,
form a complete circuit, or in the terms of this treatise a
cyclical process. On the contrary the engines in which a
periodical admission and emission of vapour takes place are
not necessarily subject to this condition. Nevertheless they
may fulfil it, provided that they emit the vapour in the same
condition in which they received it. This is the case with a
condensing steam-engine, in which the steam passes away
from the condenser as water and at the same temperature at
which it passed from the condenser into the boiler. The
waste water, which enters the condenser cold and leaves it hot,
need not be taken into account, because it does not appertain
to the substance transmitting the heat’s action, but merely
serves as a negative source of heat.

With other engines the conditions at the emission and
admission are different. For example, hot-air engines, even
if fitted with a regenerator, send the air back: to the atmo-
sphere at a higher temperature than that at which it enters;
and non-condensing engines take in water and emit steam.
In these cases no complete cyclical process takes place; but
it is always possible to conceive that the actual engine has
another attached to it, which receives the vapour from the
first, restores it in some way to its original condition, and
then lets it escape. The two can then be considered as one
engine satisfying the above condition. In many cases the
process can be completed in this way, without making the
investigation too complicated; e.g. we may suppose that a
non-condensing steam-engine, assuming that the feed water
i at 100°, is replaced by an engine having a condenser, the
temperature of which is 100°.

We may thus apply to all thermo-dynamic engines the
principles which hold for a cyclical process, if we only su
pose those engines which do not of themselves fulfil the con-
dition, to be completed in the manner described : and we can
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thereby arrive at certain conclusions which are independent
of the special nature of the process in each particular engine.

§ 30. Equations for the Work done during any Cyclical
Process.

For any cyclical process the two equations hold which
have been previously developed (Chs. IT. and IV.) as analytical
expressions of the two fundamental principles, provided the
second is further extended so as to embrace non-reversible
changes. These equations are

where N denotes the uncompensated transformation occurring
during the process, which is always positive, and has for
reversible processes the limiting value zero. .

If we apply these equations to the cyclical process which
takes place during a period of the thermo-dynamic engine,
we see at once that if the whole quantity of heat taken in by
the substance transmitting the heat’s action is given, then
the work also is immediately given by the first equation,
without our needing to know the nature of the process itself.
By combining the two equations we may also determine the
work from other data in an equally general manner.

‘We will suppose that the quantities of heat, which the
variable body receives successively, and its temperature at
the moment of receiving each, are given, with the exception
of one temperature T, at which the body receives a certain
quantity of heat (or if it is negative generates it) the magni-
tude of which is not at present known. Let @, be the sum
of all the known quantities, and let ¢, be the unknown
quantity of heat. Now let us divide the integral in the
second of equations (47) into two parts, one of which relates
to the known quantity of heat Q,, and the other to the un-
known quantity @,. In the latter 7' has the constant value
T,; it 1s therefore immediately integrable, and gives the
expression

LA

T,
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The second equation thus becomes

@dQ Q
[, +g=-%

whence

: Qd
. Qo == Tofo —ZQ—J;NZ

Again, since @ = Q,+ @Q,, the first equation gives
W=0,+Q

or, subsfituting for Q, its value just found,
Qd
W=Q,-T, fo 1IN oo (48)

If we make the special assumption that the whole process
is reversible, then N= 0, and the above equation becomes

¢ dQ
A

This equation differs from the former only in the term
~T,N. Since N is always positive, this term must be nega-
tive; whence we see, as is easily proved directly, that under
the conditions fixed above with respect to the imparting of
the heat, the greatest possible amount of work is obtained
when the whole cyclical process is reversible ; and that every
circumstance, which causes the changes in a cyclical process
not to be reversible, diminishes the amount of work done.
Equation (48) therefore leads to the required value of
the work done in a way which is the exact opposite to the
ordinary ; for we do not, as in other cases, determine the
several quantities of work done during the several changes,
and then add them together, but we start from the maxi-
mum of work, and then subtract from this the losses of work
due to the various imperfections of the process. This me-
thod may therefore be called the method of subtraction. If
we limit the conditions under which the heat is imparted, by
supposing that the whole quantity Q, is imparted at a given
temperature T, then the other part of the integral also

W=, -T,
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becomes immediately integrable, and gives % Equation

(47) then takes the following form for the maximum work :

T -T
W= Ql 'T‘ 0 e, e
§ 31. Application of the above Equations to the Limiting
-(;’ﬁe i which the Cyclical Process in a Steam-Engine 1s
erstble.

Among the cases considered above with regard to the
action of the steam-engine, there is one which cannot indeed
be attained in practice, but which it is desirable to approach
as nearly as possible, viz. the case in which there is no waste
space, in which the cylinder-pressure is the same as in the
boiler or condenser respectively, and in which the expansion
extends so far, that the steam is thereby cooled from the
temperature of the boiler to that of the condenser. In this
case the cyclical process is reversible in all its parts. Let us
suppose that evaporation takes place in the condenser at the
temperature 7, ; that a mass M, of which the part m,is in the
gaseous, and the part M —m, in the liquid form, passes into
the cylinder and drives the piston upwards; that by the fall
of the piston the steam is first compressed until its tempera-
ture rises to T, and then at that temperature forced into the
boiler; and that lastly the mass M is again brought out of
the boiler in the liquid form into the condenser, by means of
the small pump, and there cools to the initial temperature T',.
Here the steam passes through the same series of conditions
as before, but in the reverse order. The various quantities-
of heat are imparted or withdrawn in the opposite sense, but
to the same amount and at the same temperature of the
mass; and all the quantities of work have the opposite signs
and the same numerical values. Hence it follows that in
this case there is no uncompensated transformation in the
process. We may therefore put N=0 .in equation (48),
thereby obtaining an equation similar to (49), but in which,
for the sake of distinction, we will write W’ instead of W,
viz,

, ed
w fo-Tofo —TQ'
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Here Q, is in our case the heat imparted within the boiler to
the mass Jf, whereby M is heated as liquid from T, to T,
* and then the part m, transformed into steam. Hence

Q=mp,+MCO(T,-T)........ eeeenn(51)

Q.
To determine / ‘%’, we must consider separately the
0

two quantities contained in @,, viz. MO (T,— T,) and m,p,.
To integrate for the first of these, let us write the element
dQ in the form MCdT: then this part of the integral
becomes
T dT T,
MC| —=MClog 1.
_ n T 8T,
Whilst the latter quantity of heat is being imparted, the
temperature remains constant at 7}, and the integral in this
case is simply
’ m, py
T, -

Substituting these values, the expression for W' becomes

W= mp, + MO (T,— Ty T, (2 + MC'log %)
1

r,-T, 7
=mp, lTl +M0(Tx_7;+Tol°g'ji)°'

This is the exact expression given in equation (9), and found
in sections 4 and 5 by the successive determination of the
several quantities of work done during the cyclical process.

§ 32. Another Form of the Last Expression.

It was observed in the last section with reference to
equation (51) that the two quantities of heat which make up
., viz. mp, and MC (T,—T,), must be treated differently
in the calculation of the work done; inasmuch as the one is
imparted to the substance which transmits the heat’s action
at a fixed temperature T, and the other at temperatures
rising continuously from T, to 7,. ‘Similarly these two
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quantities of heat occur also in different forms in the expres-
sion for the work, as is more clearly shewn if we write our

last equation as follows :
W= m,p, L1 TT°+MC'(T 1) (14 TT 7,108 ,_,,o) (52).
Here m,p, is multiplied by the factor
T, -
17 ’

which occurs in equatiord (50), while MC (T,— T,) is multi-
plied by the factor

T, T,
1 + —T;—:To lOg —1—,; .
In order to compare these factors better with each other,
we will throw the latter into another form. If for brevity
We write

T -T,
=TI s (53),
T, _1-z T,_
then /e 7_;_1_2,
and we thus obtain
T, 'T
1 1-2 2
=1-=— (1"’2*3*“")
z z 2
=Txataxstaxat ot
Equation (52) or (9) thus becomes
" 1 2 ’
W_mlplxz.+M0(T‘—Toxz(lx2 St 3x4+etc)

......... (54).

The value of the infinite series in the bracket, which
makes the ditference between the factor of MC (T, — T,,) and
the factor of m, p,» varies, as is easily shewn, between % and 1,
whilst z increases from 0 to 1.
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§ 33. Influence of the Temperature of the Source of
eat.

Since, under the assumptions we have made, the cyclical
process passed through periodically by the engine during its
motion 18 reversible 1n all its parts, as shewn in § 31, and
since a reversible process gives the maximum work attain-
able, we are able to lay down the following principle :—

If the temperatures at which the substance transmitting
the heat’s action takes in the heat from the source, or gives
it out externally, are taken as given beforehand, then the
steam-engine, under the assumptions made in the develop-
ment of equations (9) or (52), is a perfect engine, inas-
much as with a given quantity of heat imparted to it, it
performs the greatest quantity of work, which according to
the Mechanical Theory of Heat it is possible to perform at
those temperatures.

It is otherwise, if we consider these temperatures not as
given beforehand, but as a variable element which must be
taken into account in our estimate of the engine.

The fact that the water, whilst being heated and evapo-
rated, has a much lower temperature than the fire,and there-
fore the heat imparted to it passes from a higher temperature
to a lower, produces an uncompensated transformation which
is not included in N of equation (47), but which greatly
diminishes the useful effect of the heat. We see by equa-
tion (54) that the work obtained by the steam-engine from
the quantity of heat mp, + MC (T, - T;) = Q,, is somewhat
less than @, T‘; . But if we assume that the substance
transmitting the heat’s action could have, throughout the time
when it is taking in heat, the same temperature as those parts
of the fire which furnish that heat; and if we denote the
mean value of this temperature by 7", and the temperature at
which the heat is given off, as before, by 7,; then under these
circumstances the work which it is possible to obtain from
the qual,ltity of heat @, will by equation (50) be expressed

by @, T;—,T" To compare the values of this expression in

various cases, let ?,, the condenser temperature, be fixed at
50°, and let us take for the boiler temperatures 110°, 150°, and
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180°; the two first of which about correspond to those of the
low-pressure and ordinary high-pressure engines, while the
last may be considered the limit of temperature, which bas
as yet been practically attempted for the steam-engine. In

these cases —‘—;,—" has the following values (adding.in each
(_:a.sé the number 273 to give absolute temperatures): -

When 7,=110° Zi;—Tu 0157,
4 ,

On the other hand if for example we assume ¢ at 1000°,

the corresponding value of TTO is 0'746.

Hence it is easy to see, as already observed by Carnot
and subsequent authors, that in order to get the greatest
advantage from engines driven by heat, the most im?ort.ant
point is to increase the temperature interval -T,.
For example the hot-air engine can only be expected to
shew a decided advantage over the steam-engine, when
the possibility is established of its being worked at de-
cidedly higher temperatures, such as are forbidden to the
steam-engine for fear of explosion. The same advantage
may however be obtained by the use of superheated steam,
since, a8 soon as the steam is separated from the water, it
may be heated with no more risk than a permanent gas.
Engines which use the steam in the superheated condition
ought to unite many advantages of the steam-engine with
those of the air-engine, and may therefore be expected to
achieve a practical success much sooner than the latter.

In the class of engines mentioned above, in which besides
the water another more volatile substance is used, the inter-
val T, — T, is widened, inasmuch as 7} is lowered. It has
been already suggested that the interval might be widened
at the higher limit in the same manner, by adding yet a
third liquid less volatile than water. The fire would then
directly evaporate the first of the three only; this in con-
densing would evaporate the second, and this in like manner
the third. As far as principle goes this combination would

i
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undoubtedly be advantageous ; the practical difficulties, which
might hinder its being carried out, cannot be conjectured
beforehand.

§ 34. Ezample of the application of the Method of Sub-
traction. :

The . ordinary steam-engine, besides the imperfection
described above, which is inherent in its nature, possesses
many other imperfections, which are rather due to its con-
struction in practice : some of these have already been taken
into account in our investigations to determine. the work done.
We will now in conclusion exhibit the method in which, with
engines possessing such imperfections, the work done may
be determined by the method of subtraction given in § 30.
In order that .we may not extend this investigation, which
is merely an example of the mode of applying this method, to
too great a length, we will only take into account two of
these imperfections, viz. the existence of the waste space and
the difference of the pressures in the cylinder and boiler
during the admission of steam. On the other hand we will
suppose the expansion to be complete, so that the final tem-
perature T, equals the condenser temperature T,; and we
will also take 7, and 7,” as equal to 7).

The process is founded on equation (48), which, calling
the work W, is as follows:

@
W Ql._Tofo dT?- TN

Q
Here Q,—T, f @,(TQ represents the maximum work, cor-
0

responding to the case when the cyclical process is reversible;
and T, N represents the loss of work due to the imperfections
which arise from the process not being reversible. For this
maximum work we have in the case of the steam-engine the
expression already given at the end of § 31, viz.

mpy+ MO (T,~ T) T, (%2 + MClog 2)-
1 L)

It only remains to determine X, the uncompensated
transformation which occurs in the cyclical process. This
transformation arises when the steam is ing into the
waste space and into the cylinder, and the data for its deter-
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mination are already given in § 10. There, by assuming
that the mass of steam admitted was at once forced back
again into the boiler, and also that everything was brought
back by a reversible path to its initial condition, we arrived
at a special cyclical process, for which we determined all the
quantities of heat imparted to the variable mass, and to
which we can now apply the equation

r=-[%2.

These quantities of heat, some positive some negative, are as
follows :

MPrs = MyPss FoPos MO(Tx— Tz) and — uC (T,- To)'

The three first of these are imparted at the constant
temperatures 7}, T, and T, respectively: and the correspond-
ing parts of the integral are mz‘,p !, —-"Bj‘?—’ and -’%,‘&’ The
two last are imparted at tempers.tures which varyocontinu-
ously between T, and T, and between T, and T, respectively;
and the corresponding parts of the integral are

T T
MC’logT{, and —p.ClogT:.

If we substitute the sum of these quantities for the integral,
the last equation becomes

=T TP L _ee, g Ly
N= T + Vil MClog =T +uClog T (55).

Multiplying this expression for N' by T, and subtracting
the product from the expression given above for the maxi-
mum work, we obtain finally for W’ the equation

, T T
w =mlpl—-17‘;maP.+MC'(T1—To)— (M+p) CTologT:+,,,op

......... (56).

To compare this expression for W’ with that given in the
first of equations (28), we have only to substitute in the
latter the value of m,p, given in the last of those equations,
and then put T, =7,. The expression thus obtained agrees
exactly with that in equation (56).
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~ In the same way we may also deduct the loss of work
due to incomplete expansion. For this purpose we must cal-
culate the uncompensated transformation which arises during
the passageof steam from the cylinder to the condenser, and
then include this in the expression for N. By this calcula-
tion, which we shall not here perform at length, we arrive
at the same expression for the work as is given in equation
(28).

,,  'NUTE ON THE VALUES OF %’

Since the differential coefficient ?g occurs frequently in researches

upon steam, it is imlportant to know how far the convenient method of
determination employed by the author is allowable; and for this
purpose a few values are here placed side by side for comparison.

he . formula employed by Regnault to calculate the pressures of
steam in his tables, for temperatures above 100, is the following:

Log p=a- ba* - cf3’,
where Log denotes the common system of logarithms, & denotes the
temperature from —20° to the value under consideration, so that
x=t+20, and the five constants have the following values:

a=62640348,
Log b=01397743,
Log ¢=06924351,
Log a=9"994049292 — 10,
Log 8=9'998343862 - 10.

From this formula we obtain the following equation for %:

1d
'ﬁ £ =Ada'+ BB‘ f
where a and B have the same values as before, and 4 and B have the

following values:

Log A=85197602 - 10,

Log B=8-6028403 - 10.
Suppose that from this equation we calculate the value of z’;’ for the
temperature 147° then we obtain

dp .
(E)WBQO 115. -
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Next for the approximate method of determination, we obtain from
Regnault’s tables the pressures
Pue=3392'98,
Dre=321474,
.
whence p%ﬁ“ = E%3-4{=90'12.

This approximate value agrees so closely with the exact value deduced
above, that it may be sagly used for it in all investigations upon the
steam-engine.

With regard to temperatures between 0° and 100 ihe formula used
by Regnault to calculate the pressures of steam between these ! nits is
the following :

log p=a + ba* - cg".

Here the constants, by Moritz’s improved tables, have the following
values:

a=4"7393707,

Log b=81319907112 - 10,
Log c=06117407675,

Log a=0006864937152,

Log 8=9996725536856 — 1.

From this formula we can again obtain for %}t} an equation of the form

1d ,
» £=Au'+BB,

where the values of a and B are the same as given above, and those of
A and B are as follows : :

Log 4 =66930586 - 10,
Log B=88513123 - 10.

If we calculate from this equation the value of %’ corresponding to a
temperature of 707 we obtain

(d_”) =101112.
i)

By the approximate method of determination we obtain

Pn—Pe_ 243380 - 223154
2 2

This result again agrees sufficiently closely with that obtained from
the more exact equation.

c. ' 19

=10113.
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TABLE guning the values for steam of the pressure p, iis
EI—I—’=g. and the product Tg, for

ON. THE MECHANICAL THEORY OF HEAT.

differential coefficient

dt
different temperatures: all expressell in millimetres of
mercury.
a tin .
egrees
Ny P Dift. g Dift, 7y | Dit.
grade.
‘1’° Sory | o030 | 332 | o099 90 | g
. 031 | O 96
2 5302 | 9362 | g7z | 0022 | 405 7
3 5687 | 0385 | g9y | 0024 | gy 7
. 0
. , 0-410 ; 0026 7
4 6097 : 0423 117
| 0437 _ 0027 8
5 6534 : 0450 125
6 6098 | 0464 1 79 | 0020 | 45 | 9
7 7492 | 9494 | o509 | 0030 |44 9
; ) 3
: Tao | obes | 0909 | gz 9
, , ) 152
8 ore | 057 | 2% | o0a3 10
: : 162
2 5512 | oso1 " 0035 10
) 0609 172
10 oy | oear | 969 | o0g7 1
. , 183
. 0665 0039 12
12 10457 6 0685 : 195
. 07705 0040 12
13 11162 o725 | O 207
: 0746 0043 13
14 11908 . o768 | O 220
; 0791 0046 14
15 12:699 i 0814 234
) 0837 0047 15
16 13536 | 05T | oser | 9047 | 94 | 1B
17 14-421 ; 0910 264
, 0936 0052 16
18 15357 0962 280
19 16346 | 9989 | 1017 | 0055 17
: 207
346 | 1045 0057 18
20 17391 ! 1074 | © 315
: 1104 0060 18
21 18495 ) 1134 333
22 19650 | 1164 1 .96 | 0062 %
) ) 353
: 1-229 0066 2
23 20888 : 1-262 374
: 1206 0069 9
24 29-184 ; 1-331 395
25 23550 | 1366 | 1.409 | 0071 b
; 418
: 1-438 0075 9
26 24988 1-477 ( 442
: 1517 : 0079 9
27 26505 ; 1556 | O 467
98 | es101 | 1996 | g3 | 0082 i
493
A , 1681 0085 97
20 20782 : 1723 520
: 1766 0089 29
30 31548 : 1812 | O 549
: 1858 0093 30
31 33-406 1905 | @ 579
: 1953 : 0097 38
32 35359 | geos | ooz | S%T | en | 3
33 37-411 2103 644
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t in
degrees . . 5
centi- r Diff. g Diff. T 9 Diff.
grade.
33 37'411 2154 2'103 0105 644 34
34 39565 . 2-208 R 678
. 2:262 . 0-110 36
35 41827 2318 " 714
2:374 X 0114 37
3 44-201 3 2432 R 751
) 2:490 . 0118 40
3 46691 . 2550 . 791
" 2:611 . 0124 41
38 49-302 R 2:674 R 832
2737 . 0128 42
39 52039 . 2:802 , 874
. 2867 0133 45
40 54-906 2935 To0 919
3003 . 0139 46
41 57909 R 3:074 " 965
3:145 . 0144 49
42 61-054 . 3218 | 1014
. 3291 . 0-149 50
43 64:345 . 3:367 . 1064
R 3444 . 0155 52
67-789 . 3:522 R 1116
. 3:601 . 0-161 55
45 1-390 - 3:683 R 1171
B 3766 . 0167 57
4 5156 3-850 R 1228
. 3935 . 0173 59
4 9:091 A 4023 . 128 -
. 4112 . 0-180 62
48 83-203 . 4-203 | 1349
. 4294 . 0-185 64
49 87497 A 4-388 . 1413
. 4-483 . 0193 67
5 91-980 . 4581 . 1480
4679 . 0-199 69
51 96-659 . 4780 . 1549
. 4-882 0207 72
52 101-541 4-987 . 1621 "
g 5-092 . 0213 74
5 06633 . 5200 1695
5309 . 0-221 78
54 11942 . 5421 ) 1773
. 5533 . 0-228 80
55 117475 : 5649 1853
. 5766 . 0237 83
56 123-241 . 5-886 . 1936
. 6-006 8 0-244 87
5 129-247 . 6130 § 2023
. 6-254 . 0252 89 .
58 135501 i 6-382 ; 2112
6510 . 0-260 93
59 142011 R 6642 . 2205
. 6775 . 0269 96
60 148786 6911 . 2301
. 7048 B 0278 100
61 155-834 . 7-189 . 2401
. 7330 . 0286 103
62 163-164 . 7-475 » 2504
r 7°621 . 0296 107
63 170-785 7771 . 2611
K 7°922 N 0305 111
64 178707 8:076 . 2722
8-231 . 0314 114
65 186938 8 8:390 . 2836
. 8550 . 0325 118
66 195-488 . 8715 . 2954
. 8:880 0-334 123
67 204368 » 9049 . 3077
. 9218 . 0344 126
68 | 213586 9-393 . 3203
R 9568 R 0-355 131
69 223-154 . 9748 . 3334
9928 R 0365 135
70 233082 ) 10-113 . 3469
. 10298 . 0376 139
1 243380 | 10-489 : 3608
10°680 . 0387 144
2 254-060 10'876 : 3752
R 11-072 0-398 149
3 265132 11274 | 3901
11-476 . 0410 153
74 276°608 11892 11684 0422 4054 159
75 288500 12-106 4213
1902
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tin
degr:es
centi- i
enti ) Diff. g Diff
8 Tg Diff.
5 288500
76 30082 12 193
0 320 06
77 313579 | 12759 12539 | 098 ame |1
78 . | 326789 | 13210 12984 | 0445 P s
79 340464 | 13675 13-442 | 0438 s |5y
79 sioaet | 13000 13913 | 0471 4718 114
81 369958 | 14642 14397 | 0484 Soas 1‘9
82 384404 | 157146 14894 | 0497 e 3
62 ssaos | 1046 | 15400 o511 | 9272 .
84 416262 | 167194 15929 | 0524 S 0
85 433002 | 16740 16-467 | 0938 w7 | o0
86 450301 | 17299 17019 | 028 o |
87 468175 | 17874 17586 | 9877 093 | 5o
87 468175 18463 18-168 05682 6313 23')
89 486632 | 19067 | 1876 owor | 46 |
92 S | 20975 | 20649 06as | 7l
93 588333 | 21643 91-309 | 0660 16 | Se3
94 610661 | 22328 91985 | 0676 w8 | e
95 ooy | 23031 | 22679 06es | Eoas o
% 633692 aooal 23-391 0712 8323 276
97 O os, | 24488 | 24119 0728 | gato =
1 81931 P 24-865 0747 8900 3013)
99 ool | geor7 | 2639 0768 | g500
100 76000 26809 | 57.900 orsr | 9826 317
103 84528 oy 29700 0855 10817
o4 87541 31-00 30-565 0°865 11167 g
106 93831 3190 | 311450 0855 | 11668
106 93831 3190 | se:365 o915 | 11888 367
108 100491 3474 34255 0955 12654 o
100 103965 e 35-230 0975 13051 397
110 107537 ST 36220 0990 13458 407
11 111209 3672 | 37550 1010 | 13872 414
112 114983 3774 | 38360 1030 | 14296 ﬁ
114 122847 3986 | 30220 150 |15
114 123847 3986 | 10400 1080 | 18178 48
113 126941 4206 41500 1100 15635 457
117 4319 | 42625 135 | 16501 i
43775 | 1180 el | o1
17072 | !

1356466
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t1in
degrees
Pl P Difl. g Dift, 19 | Dift
grade.

117 135466 | .0 43775 10 | 17072 | o0

118 139902 - 44945 ) 17574
) 4553 ; 1185 509

119 144455 : 46130 ) 18083
) 4673 . 1-220 526

120 149128 | 52 47350 . 18609
. 4797 ) 1-245 537

121 1539-25 ) 48595 : 19146
. 49-22 ) 1-260 547
122 158847 | 00 | 49855 1290 | 19693 | oo
123 163896 | vy | 51145 | (o0 | 20253 | L)

124 169076 ; 52460 ) 20827
) 5312 ) 1335 583

125 174388 . 53795 ) 21410
> . 5447 . 1-365 599

126 179835 ) 55160 ) 22009
) 5585 . 1°400 615

127 1854:20 ) 56560 ) 22624
) 57-27 1415 . 624

128 191147 : 57975 ) 23248
. 5868 ; 1430 633
129 197015 | o0 | 59405 1470 | 23881l | oo

130 2030-28 = | 60875 o 24533
. 6162 ) 1500 666

131 209190 . 62375 : 25199
) 6313 : 1'520 678
132 215503 | oo | 63895 1550 | 2877 | goa

133 221969 ) 65'445 : 26571 | 2

) 6623 ; 1'575 706
134 228592 | o2 67020 | o0 | 27277 | o0

135 235373 e | 68620 ) 27997
. 69-43 ) 1630 735
136 242316 | 10 | 70250 | jeno | 28732 55
137 2494923 | oonn | 71920 | (et | 29487 765
138 256700 | a4 | 73605 1710 | 20252 | oo

139 264144 . 75315 ) 31030
) 76:19 ) 1750 798

140 271763 77065 . 31828
: (54 77-94 ) 1770 810
141 279557 7973 | 78835 | 1g10 | 32638 | oo

142 287530 : 80645 ) 33468
) 8156 ) 1835 844
143 205686 | oo | 82480 | ol | 34312 | O

144 304026 2 84345 ) 35172
. 8529 ) 1895 876
145 812585 | oo | 86240 | 400 | 36048 | O
146 321274 | go1a | 88160 | o0 | 36939 o1l

147 330187 . 90-120 . 37850
) 9111 ) 1'990 oo | 928

148 339298 : 92:110 -] 38778
) 9311 . 2:015 943

149 348609 . 94-125 ) 39721
, 95'14 ; 2:045 959
150 358123 | olon | 96170 | ooes | 40680 | oEF

151 367843 ! 98'255 ) 41660
- 99-31 : 2120 999

152 377774 ; 100-375 . 42659
. 10144 - 2140 oY 1 1012

153 3879°18 ) 102515 ; 43671
) 103-59 ) 2175 1032

154 398277 : 104690 : 44703
) 10579 . 2:220 1054

155 408856 106910 ; 45757
. 10803 . 2950 1073

156 419659 . 109-160 : 46830
. 11029 : 2270 1085

157 430688 . 111430 - 47915
. 11257 ) 2:310 1107
158 441945 | 1 hgy 13740 | B o | 4ovee |07

159 453436 116085 50149
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tin i T D
degrees Diff. 9 Dift ’
centi- 4
grade.
50149 | ..
) , 116-085 -375
i | o |19 s | 3T | s L
160 ) 120870 | 9445 642
161 477128 | 19908 123315 | 5,490 | 53 1599
: 1
162 489336 12455 125805 2510 26073 | 1222
: 3
163 501791 | jou e 128315 2'545 soay | 1244
: 17
164 514497 | 10q.5- 130860 585 o 1263
165 g%g:gg 132';2 133-445 3-220 ggggg 13?3
166 134 136065 | 5.670 82
167 554143 | §37.39 138735 | 2685 | E1182 | 1396
168 567882 | 14008 141:420 725 P 1318
169 5818:%3 14276 | 144145 2-765 323‘;’3 139
170 5961 9 | 14553 | ;46910 2795 | ggg1g | 1390
7 6107_18 14829 | 149705 2830 68030 | 1412
173 | 6d0660 15395 | 10293 | 5850 69470 | 1432
173 155-415 | 9999 0934 | | 4o
174 6560°55 15688 158335 2935 4 1416
i 10
175 671743 | 15qmg 161270 2'980 T 1502
) 12
176 687722 | eomp 164350 | 305 | 73912 | 1529
1
177 703997 | jerme 167:275 3-060 TeooL | 1950
) 91 -
178 720572 | g5.80 170335 | 3000 | 78991155
. 61
179 737452 171-87 173:425 3:140 78 1599
o " m
180 754639 17498 176°565 3170 s 1619
) 79 2
181 | TS | 7g1s | 176060 3205 | gii7Y | 1642
: al -
182 789952 | 1gi.39 182940 255 o 1670
164 | sonsdo | 1838 |ig5is | 3300 g7 | 1658
184 1g | 189425 | 3500 8493 | 2
185 845323 | 19).19 192795 3-370 3 13
: 236 | -
186 864435 19447 196°165 400 o 1-‘-63
o | | | | 8 |
188 : : 203-010 3-480 605 7
189 923795 | 50475 206°490 3515 o 1837
) { 2
190 944270 | 55000 210005 3550 S303 | 1861
- 3
191 965093 | 511.wg 213555 3595 01300 | 1689
i 2
199 | (%8271 | 21533 | 213555 3645 | 10511y | 1919
s | i | [ | Sl
) - 29244 3715 07018
195 10519'63 226°32 228185 3750 log’ 009 1991
196 | J0rsoes | 23005 | 228183 3795 | {73099 | 2020
197 10976-82 23382 235730 3840 113077 o
198 11209 23764 239570 3885 15154 207
199 11447:46 | o41.50 243455 !
200 1168896




CHAPTER XII.

ON THE CONCENTRATION OF RAYS OF LIGHT AND HEAT
AND ON THE LIMITS OF ITS ACTION.

§ 1. Object of the Investigation.

The principle assumed by the author as the ground of
the second main principle, viz. that heat cannot of itself, or
without compensation, pass from a colder to a hotter body,
corresponds to everyday experience in certain very simple
cases of the exchange of heat. To this class belongs the
conduction of heat, which always takes place in such a way
that heat passes from hotter bodies or parts of bodies to
colder bodies or parts of bodies. Again as regards the ordi-
nary radiation of heat, it is of course well known that not only
do hot bodies radiate to cold, but also cold bodies conversely
to hot ; nevertheless the general result of this simultaneous
double exchange of heat always consists, as is established by
experience, in an increase of the heat in the colder body
at the expense of the hotter.

Special circumstances may however occur during radia-
tion, which cause the rays, instead of continuing in the same
straight line, to change their direction; and this change of di-
rection may be such, that all the rays from a complete pencil
of finite section meet together in one point, and there combine
their action. This can be accomplished, as is well known, by
the use of a burning-mirror or burning-glass; and several
mirrors or glasses may even be so arranged, that several

pencils of rays from different sources of heat meet together in
one point.
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For cases of this kind there is no experimental proof that
it is impossible for a higher temperature to exist at the point
of concentration tham is possessed by the bodies from which
the rays emanate. Ramnkine®* accordingly, on a special occasion,
of which we shall speak in another place, has drawn a parti-
cular conclusion, which rests entirely on the assumption that
rays of heat can be concentrated by reflection in such a way,
that at the focus thus produced a body may be raised to a
higher temperature than is possessed by the bodies which
emit the rays. If this assumption be correct, the principle
enunciated above must be false, and the proof, deduced by
means of that principle, of the second fundamental principle
of the Mechanical Theory of Heat would thus be overthrown.

As the author was anxious to secure the principle against
any doubt of this kind, and as the concentration of rays of
heat, with which is immediately connected that of rays of
light, is a subject which, apart from this special question, is
of much interest from many points of view, he has attempted
a closer mathematical investigation of the laws which govern
the concentration of rays, and of the influence which this con-
centration can have on the exchange of heat between bodies.
The results are contained in the following sections.

I. REASONS WHY THE ORDINARY METHOD OF DETER-
MINING THE MUTUAL RADIATION OF TWO SURFACES
DOES NOT EXTEND TO THE PRESENT CASE.

§ 2. Limaitation of the treatment to perfectly black bodies,
and to homogeneous and unpolarized rays of heat.

When two bodies are placed in a medium permeable to
heat rays, they communicate heat to each other by radiation.
Of the rays which fall on one of these bodies, part is in gene-
ral absorbed, part reflected, part transmitted; and it is known
that the power of absorption stands in a simple relation to
the power of emission. As it is not here our object to inves-
tigate the differences between these relations and the laws
to which they conform, we will take one simple case, viz.
that in which the bodies are such that they completely ab-
sorb all the rays which fall upon them, either actually on the

* On the Re-concentration of the Mechanical Energy of the Universe,
Plil. Mag., Series 1v., Vol 1v, p. 358,
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surface; or in a layer so thin that its thickness may be neg-
lected. Such bod};es have been named by Kirchhoff, in his
well-known and excellent paper on the relation between
emission and absorption,  perfectly black bodies*.”

Bodies of this kind have also the maximum power of
emission, It was formerly assumed to be beyond question
that their intensity of emission depended only on their tem-
perature; so that all perfectly black bodies, at the same
temperature and with the same extent of surface, would
radiate exactly the same quantity of heat. But as the rays
emitted by the body are not homogeneous, but differ accord-
ing to the scale of colours, the question of emission must be
studied with special reference to this scale; and Kirchhoff has
extended the foregoing principle, by laying down that per-
fectly black bodies at equal temperatures send out not only
the same total quantity of heat, but also the same quantity
of each class of ray. As the distinctions between the rays
according to colour have no place in our investigation, we
will assume throughout that we have to do with only one
known class of ray, or, to speak more accurately, with rays
whose wave-length only varies within indefinitely small
limits, Whatever is true of this class of rays must similarly
be true of any other class; and thus the results obtained
from homogeneous heat may easily be extended to heat
which contains a mixture of different classes of rays.

With the same object of avoiding unnecessary complica-
tions, we will abstain from discussing polarization, and assume
that we have only to do with unpolarized rays. The mode
of taking polarization into account in such cases has already
been explained by Helmholtz and Kirchhoff.

§ 3. Kiréhhoﬁ"s Jormula for the mutual Radiation of
two Elements of Surface.

Let s, and s, be the surfaces of two perfectly black
bodies of the same given temperature; and let us consider
two elements of these surfaces ds, and ds, in order to
determine and to compare the quantities of heat which they
mutually send to each other by radiation. If the medium,
which surrounds the bodies and fills the intervening space,

* Pogg. 4nn., Vol. crx, p. 275.
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is homogeneous, so that the rays simply pass in straight lines
from one surface to the other, it is easy to see that the quan-
tity of heat which ds, sends to ds, must be the same as that
which ds, sends to ds,; if on the contrary this medium is
not homogeneous, but there are variations in it which cause
the rays to be broken up and reflected, the process is less
simple, and a closer investigation is needed to prove whether
the same perfect reciprocity holds in this case also. This
investigation has been performed in a very elegant manner
by Kirchhoff; and his results will be briefly stated here, so
far as they relate to the case in which the rays on their
way from one element to the other suffer no diminution of
strength ; in other words in which the breakings up and re-
flections of the ray take place without loss of power, and
there is no absorption during its passage. A few variations
will alone be made in the denotation and in the system of co-
ordinates, to produce a better accordance with what follows.
If two points are given, only one of the infinitely large
number of rays sent out by one point can in general attain
the other *; or if the rays are so broken up and reflected,
that several of them meet in the other point, yet they form in
general only a limited number of separate rays, each of which
can be treated by itself. The path of such a ray from one
point to the other is determined by the condition that the
time expended in traversing this path is a minimum, com-
pared with the times which would be expended in traversing
all other neighbouring paths between the same points. This
minimum time is determined, if where several separate rays
meet we investigate only one at a time, by the position of
the two points between which it passes; and we will denote
it, as Kirchhoff has done, by T
* The form of expression that a point sends out an infinitely large num-
ber of rays is perhaps, in the strict mathematical sense, inagcurate, since heat
and light can only be sent forth from a surface, and not from a mathematical
point. It would be more accurate to refer the sending out of the heat or light
not to the point itself, but to the element of area at the point. As, however, the
conception of a ray is itself only a mathematical abstraction, we may, without
fear of misconception, retain the statement that an infinitely large number of
rays proceed from each point of the surface. If it were our object to determine
quantitatively the heat or light radiated by a surface, it is evident that the
size of the surface must be taken into account, and that its elements must be
considered, not as points, but as indefinitely small surfaces; the area of

which must appear as a factor in the formula expressing the quantity of heat
or light radiated from an element of surface.
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Returning now to the elements of surface ds, and ds,, we
will suppose a plane tangential to the surface to be drawn
through one point of each element; and we will treat ds, and
ds, as elements of these planes. In each of these planes let us
take any system of rectangular co-ordinates, which we will
call z,, ¥, in the one case, and z,, y, in the other*. If we
now take a point on each plane, the time 7, expended by
the ray in passing from one point to the other, is determined,
as stated above, by the position of the two points; and this
time may therefore be treated as a function of the four co-
ordinates of the two points.

On these assumptions Kirchhoff’s expression for the
quantity of heat, which the element ds, sends to the element
ds, per unit of time, is as follows +:

e, d’Txd'T_d’Txd’T ds.ds
™ (dw.dw, dy,dy, dz,dy," dy,dz,/ Y

where o is the well-known ratio between the circumference
and diameter of a circle, and e, is the intensity of emission
of the surface s,, in the locality of the element ds,, so that e, ds,
represents the whole quantity of heat radiated by ds, per unit
of time. :

Conversely to express the quantity of heat which ds,
sends to ds,, we need only substitute for ¢, in the above
expression the quantity e,, which is the intensity of emission
of the surface s,. Everything else remains unaltered, as
being symmetricaj with regard to the two elements; for the
time 7', which a ray expends in traversing the path between
two points of the two elements, is the same in whichever
direction it is moving. If we now assume that the surfaces,
which are supposed to%e at the same temperature, radiate equal
quantities of heat in the same time, then ¢, =¢,; and there-
fore the quantity of heat sent by ds, to ds, is exactly the same
as that sent by ds, to ds,.

* Kirchhoff has chosen two planes at right angles to the directions of the
rays in the neighbourhood of the two elements; he has taken axes of co-
ordinates in these planes, and has projected the elements of surface upon
them. .

+ Pogg. Ann., Vol. e1x. p. 286.
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§ 4. Indeterminateness of the Formula in the case of the
Concentration of Rays.

We have already observed that in general only one ray, or
alimited number of separate rays, can pass between two given
points. In special cases, however, it may happen, that an in-
definitely large number of rays, forming a pencil in either two
or three dimensions (i.e. in the latter case forming a cone),
and starting from the first point, may again unite in the
second. This of course holds with rays of light as well as
of heat, and it is usual in Optics to call such a point, in
which all the rays of a certain conical pencil sent out from
a given point unite again, the image of the given point; or,
since conversely the first point may become the image of the
second, the two points are called conjugate foci. When what
is here described in the case of two particular points holds
of all the points of two surfaces, so that every point of
the one surface is the conjugate focus of some point on the
other surface, then the one surface is called the optical image
of the other. A

We may now ask how the exchange of rays takes place
between the elements of two such surfaces; whether the
above-mentioned reciprocity holds, so that at equal tempera-
tures any element of the one surface sends to any element
of the other exactly the same amount of heat as 1t received
from it, and therefore one body cannot heat the other to a
higher temperature than its own; or whether in such cases
the concentration of the rays makes it possible for one body
to lllea,t another to a higher temperature than it possesses
itself.

To this case Kirchhoff’s expression does not directly apply.
For let the surface s, be an optical image of the surface s,.
Then all the rays, which a point p,, lying upon s,, sends out
within a certain cone, unite on some point p, of the surface s,,
and all the surrounding points of g, receive no rays whatever
from p,. Hence if the co-ordinates #,, 3, of the point p, are
given, then the co-ordinates «,, y, of the point p, are no
longer to be taken at pleasure, but are also fixed; and
similarly, if z,, y, are given, then #,, , are also determined.

A differential coefficient of the form —T, where z, is con-
dz,dz,
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sidered as variable when differentiating according to =,
whilst the second co-ordinate y, of the same point, and the
co-ordinates x,, y, of the other, are assumed to be constant,—
and where similarly in differentiating according to z,, this is
taken as the only variable—can thus represent no real quan-
tity of finite value. Therefore in this case we must find an
expression of somewhat different form from Kirchhoff’s ; and
for this purpose we must first consider some questions similar
to those considered by Kirchhoff in arriving at his expres-
gion.

II. DETERMINATION OF CORRESPONDING POINTS AND COR-
RESPONDING ELEMENTS OF SURFACE IN THREE PLANES
CUT BY THE RAYS.

§ 5. Equations between the co-ordinates of the points in
which a ray cuts three given planes.

Let there be three given planes a, b, ¢ (Fig. 25), and in
each of them let there be a system
of rectangular co-ordinates, which
we may call respectively z.y., .9,
and zy,. Let us take a point p,
in plane @, and a point p, in plane b,
and consider a ray as ing from
one of these to the other ; then to
determine its path we have the con-
dition that the time, which the ray
expends in traversing it, must be
less than it would expend in travers-
ing any other neighbouring path.
Call this minimum time 7,,. It is
a function of the co-ordinates of p,
and p,, ie. of the four quantities z,y,, 2,y,. Similarly let
T.. be the time of the ray’s passage between two points p,
and p,, in planes a and ¢; and let 7} be the time of its pas-
sage between two points p,and p,, in planes b and ¢. 7 isa
function of the co-ordinates =z,y,, #.y,; and 7}, is a function
of the co-ordinates =,y,, .y,

Now as a ray, which passes between two of these planes,
will in general cut the third plane also, we have for each ray
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three points of section, which are so related to each other
that any one of them is in general determined by the other
two. The equations which serve for this determination may
be easily deduced from the above-mentioned condition. Let
us first suppose that points p, and p,are given beforehand, and
that the point is still unknown in which the ray cuts the
intermediate plane b. This point, to distinguish it from
other points in the plane, we will call p,, Take any point
whatever p, in this plane, and consider two rays, which we
may call auxiliary rays, passing the one from p, to p,, and
the other from p, to p,. In Fig. 25 these rays are shewn by
dotted lines, and the primary ray, which goes direct from p,
to p,, by a full line*. If, as before, we call the times ex-
pended by these two rays T, and 7,, the value. of the sum
of these times 7,, + T, will (fépend on the position of p,, and
therefore, since the points p, and p, are assumed to be given,
it may be considered as a function of the co-ordinates z,y,
of point p,. Among all the values, which this sum may
assume if we give to point p, various positions in the neigh-
bourhood of p',, the minimum value must be that which is
obtained by making p, coincide with p’,, in which case the
auxiliary rays merely become parts of the direct ray. We
therefore have the following two equations to determine the
co-ordinates of this point p’, :

d(Tw+T) _,. (Tut+T)_
i mal Tl vt T RS Q).

As T, and T,,, in addition to the co-ordinates of the un-
known point p,, contain also the co-ordinates of the known
points p, and p,, we may consider the two equations thus
established as being simply two equations between the six
co-ordinates of the three points in question. These equations,
therefore, can be applied, not merely to determine the co-
ordinates of the point in the intermediate plane from those

* These lines are shewn curved in the figure, to indicate that the path
taken bgea ray between two given points need not be simply the straight line
drawn between the two points, but a different line determined by the re-
fractions or reflections which the ray may undergo: it may thus be either a
broken line, made up of several straight lines, or (if the medium through

which it passes changes its character continuously instead of suddenly) a
continuous curve,
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of the two other points, but generally to determine any two
of the six co-ordinates from the other four. ‘
Next let us assume that the points p, and p, (Fig. 26), in
which the ray cuts planes a and b, are
iven, and that the point is yet un-
nown in which it cuts plane ¢. This
point let us call p’,, to distinguish it
from other points in the same plane.
Take any point p, in plane ¢, and con-
sider two auxiliary rays, one of which
goes from p, to p,, and the other from
P, to p,. In Fig. 26 these are again
shewn dotted, while the primary ray
is shewn full. Let T, and T, be the
times of passage of these auxilia
rays. Then the value of the differ- Pa
ence T, — T, depends on the position Fig. 26.
of p, in plane ¢. Among the various
values obtained by giving to p, various positions in the neigh-
bourhood of p',, the maximum must be that obtained by
making p, coincide with p’,. For in that case the ray passing
from p, to p, cuts the plane b in the given point p,, and is there-
fore made up of the ray which passes from p, to p, and of
that which passes from p, to p,. Accordingly we may put

T.=7,+T,.

Id
e Pe

.

Hence the required difference is given in this special case by
To—T="1,

If on the other hand p, does not coincide with p’,, then
the ray which passes from p, to p, does not coincide with
the two which pass from p, to p, and from p, to p.; and
since the direct ray between p, and p, travels in the shortest
time, we must have

T“< Tal+ Tm

and therefore we have in general for the required difference
the inequality
T.-7T.<T,.
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"This difference is thus generally smaller than in the
special case where p, lies in the continuation of the ray
which passes from p, to p,, and this special value of the
difference thus forms a maximum® Hence we have the
two following conditions:

d(T.—T) _o. ¢(Te—T.) _
dz, =0; dy. =0.......(2).
If we lastly assume that the points p, and p, in the
" planes b and ¢ are given beforehand, while the point in which
the ray cuts the plane a is still unknown, we obtain by an
exactly similar procedure the two following cenditions:

AT=Tw) _o. 8(T0—Tu) _
= =0 (3).

In this way we arrive at three pairs of equations, each
of which serves to express the corresponding relation between
the three points in which a ray cuts the three planesa, 3, c;
so that if two of the points are given the third can be
found, or, more generally, if of the six co-ordinates of
the three points four are given the other two may be deter-
mined.

0;

P § 6. Relation between Corresponding Elements of Sur-
ace.

We will now take the following case. Given on one
of the planes, say a, a point p,, and on another, say 4, an
element of surface ds,; then if rays pass from p, to the
different points of ds,, and if we suppose these rays produced
till they cut the third plane ¢, they will all cut that plane
in general within another indefinitely small element of
surface, which we will call ds, (Fig. 27). Let us now deter-
mine the relation between ds, and ds..

* In Kirchhoff’s paper (p. 285) it is stated of the quantity there con-
sidered, which is essentially the same as the difference here treated of, except
that it refers to four planes instead of three, that it must be a minimum.
This may possibly be a printer’s error, and in any case an interchange of max-
imum and minimum in this place would have no further influence, because
the principle used in the calculations which follow, viz., that the differential
coefticient =0, holds equally for a maximum or a minimum.
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- In this case, of the six co-ordinates which relate to each
ray (viz. those of the three points
in which the ray cuts the three
planes) two, viz. #, and y,, are
given beforehand. If we now
take any values we please for
z, and y,, the co-ordinates x, and
Y, are in general thereby deter-
mined. Thus in this case we
may consider x, and y, as two
functions of z, and y,. As the
form of the element ds, may be
any whatever, let it be a rect-
angle dz,, dy,, and let us find the Fig. 27.

point in plane ¢ corresponding

to every point in the outline of this rectangle. We shall
then have on plane ¢ an indefinitely small parallelogram
which forms the corresponding element of surface.

The magnitude of this parallelogram is determined as
follows. Let A be the length of the side which corresponds
to the side du, of the rectangle in plane 4, and let (Az,) and
(Ay,) be the angles which this side makes with the axes
of co-ordinates. Then

dz \_d,
).cos(?\zc)=——l"da:,; xcos(xyc)=j;/7:dw,.
b

Pa a

Again, let u be the other side of the parallelogram, and let
(px,) and (uy,) be the angles it makes with the axes. Then
we have

dz, , dy, ,
pcos (;w.)=d—y: dy,; pcos (uyc) = d.'i dy,.

Let (Au) be the angle between the sides A and p. Then we
have

cos (Ap) = cos (Ax,) cos (u,) + cos (Ay,) cos (uy.)

_ (@ dz, ‘iwl%) dz,dy,
de, dy, * dz,dy,) Az C
c. 20
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Now to determine the area ds, of the parallelogram, we
may write

ds, =M sin ()
=xu /I —cos® (Ag)
=, /N’ — cos® (Aw) At

Here we may substitute for cos (Au) the expression just
given, and for A" and u* the following expressions derived
from the above equations :—

C () (e
o= {0+ @}

Then several terms under the root cancel each other, and
the remainder form a square as follows :

— dlt_: di__ d‘zc dyc y 2 2
ds° - /\/(dw» dyb dyb d“b) d-’l?, dyb

= (dw., dy, _ dz, dy.,)* ds,h,

dz, dy, dy,dz,

This quadratic equation can therefore be solved at once.
But it must be observed that the difference within the
brackets may be either positive or negative, and, as we
have only to do with the positive root, we will denote this
by putting the letters v.n. (valor numericus) before this
difference. We can then write
v (4% Y, _dz, dy,
dso =Vv.n. ( d-’la'b dyb dyb dw,) dsp
To ascertain how z, and y, depend upon z, and y, we
must apply one of the three pairs of equations in § 5. We
will first choose equations (1). If we differentiate those
equations according to «, and y,, remembering that each of
the quantities denoted by T' contains two of the three pairs
of co-ordinates z,, ¥,, %,, ¥,, ., ¥,, 88 denoted by the indices;
and if in differentiating we treat #, and gy, as functions of
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7, and y,, whilst we take #, and y, as constant; then we
obtain the following four equations :

NI, +T) | &T, dr, TT.  dy_,?
(da,)? dz,dz, ~ dz, " dr,dy, ~ dex,
d‘(T¢+T,,,) T, de T, dy
ey Ll MWe_p
d'(‘;f’bdbe + d.'/ada’o X dy»-l_ dz,dy, X dy,
wt+Ty) a'T,  dx, a7, d.’;_/_a=
dudy, T dyda, <z, dy,dy, * dz, 0
&(T,+T,) , &T, dx, dT, _dy,

+ X+ —i—y— X 2=
(dy,)" dy,dz, = dy, = dy,dy, ~ dy,

If by help of these equations we determine the four
. . . dwg dwo dya d’.’/ﬂ 1
differential coefficients ——, ——*, =2¢, =%* and substjtute
dr,’ dy,’ dr,’ dy,
the values thus found in equation (4), we obtain the required
relation between ds, and ds,. To be able to write the result
more briefly, we will use the following symbols :

_ &1,  &T.  &T, &7,
4=va. (dw,dwo * dy,dy,  da,dy, d.l/.dw)

E=vn. [d’(Tw T, & (T,+T,) {d’(7zb+ mn

(CZN N N dz,dy,
...... (7).
Then the required relation may be written as follows:
ds, E
B A e (8).

Again, if we suppose in like manner that a point p, is
given on plane ¢ (Fig. 28), and find on plane a the element
ds,, which corresponds to the given element ds, on plane b,
then the result can be derived from that last given by simply
Interchanging the indices @ and c. If for brevity we write

&,  d&T, _ &1, 4T,
d_xﬂ—a-:, X dyad 1] dxadyb % dyada:b) B '(9),
20—=2

C=vn. (
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then we have

Fig. 28,

Lastly, suppose a point p, to be given on plane b (Fig. 29)

B
plv b . ‘
|
|
dsg 2
Fig. 29

\
\
and choose any element of surface ds, on plane a. Let |
us SU£pose that rays from different points of this element
pass through p,, and that they are produced to the plane ¢
Then the magnitude of the element of surface ds,, in which
all these rays meet plane ¢, is found, using the same symbol
as before, to be as follows:

_ From this we see that the two corresponding elements in
this case bear exactly the same relation to each other, as the

N
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two elements which are obtained when we have an element
ds, given in plane b, and then, having assumed as the
origin of the rays a point first in plane @, and secondly
in .plane ¢, determine in each case the element of surface
in the third plane corresponding to the element ds,.

§ 7. Fractions formed out of siz quantities to express
the Relations between Corresponding Elements.

In the last section we bave only employed the first of the
three pairs of equations in § 5. We can however employ the
two other pairs (2) and (3) in the same manner. Kach pair
leads us to three quantities of the same kind as those already
denoted by 4, C, and E. These quantities serve to express
the relations between the elements of surface. Of the nine
quantities thus obtained, however, there are four which are
equal to each other, whereby the actual number is reduced to
six. 'The expressions for these six are here placed together
for the sake of convenience, although three of them have been
already given.

Ao &1, &1, _ T,
=v.n (dwdz dy,,d . dzdy, dy,,dw,)

&T,  &T,
dwdz dy,d . dody,” dy.da

C=va. (dwda: dﬂy, d%y,, dﬂlx) _
D=v.n. { (dw )*T < (fdy.rT“) - Lda ol
S

By help of these six quantities every relation between
two elements of surface can be expressed by three different
fractions, as may be shewn in tabular form as follows:
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ds, _E_A_O
s, A"F " B
ds, _C_B_DI ...
kR (IL.)
. A_F_B
&.~C=B" D)

It is easily seen that the three horizontal rows relate to the
three cases, in which the given point through which the
rays must pass is taken either in plane a, plane ¢, or plane b.
Of the three vertical rows of fractions, which express the
relations between the elements of surface, the first is deduced
from equation (1) of § 5, the second from (2) and the third
from (3).

Since the three fractions, which express a given relation
between two elements of surface, must be equal to each
other, we have the following equations between the six
quantities :

BC cA AB
=j~; E=—E—; F=—C- ......... (12),
A'=EF; B'=FD; C*=DE ......... (13).

Our further investigations will be performed by means of
these six quantities; and since every relation between two
elements of surface is expressed by three different fractions,
we can always choose amongst these the fraction most suit-
able for each special case.

III. DETERMINATION OF THE MUTUAL RADIATION, WHEN
THERE IS NO CONCENTRATION OF RAYS.

§ 8. Magnitude of the Element of Surface corresponding
to ds, on a plane in a particular position.

We will first consider the case to which Kirchhoff’s ex-
pression refers, and seek to determine how much heat two
elements send out to each other, on the assumption that
every point of one element receives from every point of the
other one ray and only one ; or at most a limited number of
particular rays, which may be considered separately.

-
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Given two elements ds, and ds, in planes ¢ and ¢ (Fig.
380), we will first determine the heat
which ds, sends to ds,. For this pur-
pose let us suppose the intermediate
plane b to lie parallel to plane a at a
distance p, which is so small, that
the part which lies between these
two planes of any ray passing from
ds, to ds, may be considered as a
straight line, and the medium through
which it passes as homogeneous. Let
us now take any point in element
ds,, and consider the pencil of rays ~——
which passes from this point to the
element ds,. This pencil will cut
plane b in an element ds, whose magnitude is given by one
of the three fractions in the uppermost horizontal row of
equations (IL). Choosing the last of these we have the
equation

dse c

dsg

Tig. 30.

The quantity C may in this case be brought into a
specially simple form, on account of the special position of
plane b. For this purpose let us follow Kirchhoff in choos-
ing the system of co-ordinates in' b so as to correspond
exactly with that in the parallel plane a; i.e. let the origins
of both lie in a common perpendicular to the two planes
and let each axis of one system be parallel to the correspond-
ing axis of the other. Let r be the distance between two
points lying on the two planes, and having co-ordinates a,,
Y, and x,, y, respectively. Then

r=Jp'+ (@— ) + Y= Yo) e eeerereennn (15).

Let us now suppose a single ray to pass from one of these
points to the other; then, since its motion between the two
planes is supposed to be rectilinear, the length of its path
will be simply represented by »; and if we denote by v, its
velocity in the neighbourhood of plane a, which by the
assumption will remain nearly constant between @ and b,
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then the time which the ray expends in the passage will be
given by the equation , :

,
T,=".
Iva

The expression for ' may therefore be written

C’-—vn—l—( d'r N d'r -_ d'r y d’r)
T \de,d,” dy,dy,  dw,dy,” dy.dx,)’

Substituting for r its value as given by (15), we obtain

If we denote by @ the angle which the indefinitely small
pencil of rays, which starts from a point on ds,, makes with

the normal at that point, then cos 8 =§'; and the last equa-

tion also takes the form
v r?
ds, = povy Bds,..cocvvuiinennnns (18).

§ 9. Expressions for the quantities of Heat which ds, and
ds, radiate to each other.

When the magnitude of the element of surface ds, is
determined, the quantity of heat which ds, sends to ds, can
be easily expressed.

From every point of ds, an indefinitely small pencil of
rays goes to ds,; and the solid angle of the cone made by the
Pencil from each of these points may be taken as the same.
The magnitude of this angle is determined by the magnitude
and position of that element ds, in which the cone cuts
plane 5. To express this angle geometrically, let us suppose
that a sphere of radius p i1s drawn round the point from

_which the rays start, and that within this sphere we may
Vnsider the path of the rays as being rectilinear. If do 18
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the element of surface in which this sphere is cut by the
pencil of rays, then di: represents the angle of the cone. But

since the element ds, is at the distance r from the vertex of
the cone, and since the normal to the surface at ds,, which
is parallel to the already mentioned normal to the surface at
ds,, forms with the indefinitely small cone of rays the
angle 6, we have the equation

d_¢_-=0030xds.

R Y (19).
If we substitute for ds, its value from (18), we obtain

do v}

= o p BB e (20).

We have now to determine the magnitude of that part of
the heat sent from ds, which corresponds to this indefinitely
small cone; or in other words, how much heat ds, sends
through the given element do upon the spherical area. This
quantity of heat is proportional (1) to the magnitude of the
ndiating element ds,, (2) to the angle of the cone, or to

d%, and (3), according to the well-known law of radiation, to

the cosine of the angle 6, which the indefinitely small cone
makes with the normal. It may therefore be expressed by

ecos @ d—f ds,,
P

where e is a factor depending on the temperature of the
surface. To determine this factor we have the condition
that the whole quantity of heat which ds, radiates, or which
it sends to the whole surface of any hemisphere above plane
@, must equal e,ds, where e, is the intensity of emission from
plane @ at the position of ds,. Hence we have

i, cosOda =e,.
P
The integration extends over the whole of the hemisphere,

and gives
ewr=e¢,.
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Substituting this value of ¢ in the above expression, we
obtain for the quantity of heat which ds, sends through do
the formula

do

-ei‘cosO—, ds,.
TP

We have only to substitute in this formula the value for
tﬁ:-' given in equation (20), and we obtain the required expres-
sion for the quantity of heat which ds, sends to ds,, viz.:

ey B ds,ds,.
T

If conversely we require the quantity of heat which ds,
sends to ds,, and if we denote by e, the intensity of emission
from plane cat the position of ds,, and by v, the velocity of the
rays in the neighbourhood of ds,, we obtain the expression :

ey} B ds,ds,.
™

§ 10. Radiation as dependent on the surrounding Medium.

The expressions obtained in the last section are in general
the same as Kirchhoff’s expression given in § 3, and differ
only inasmuch as they contain as factor the square of the
velocity, which does not occur in Kirchhoff’s expression,
because he considers nothing but the velocity in vacuo, and
takes this as unity. Since however the bodies, whose mutual
radiation we are considering, may often be in different media,
where the velocity of the rays is different, this factor is not
without importance; and 1ts introduction leads also to a
special conclusion of some theoretical interest.

As mentioned in § 2, it has been hitherto assumed that
with perfectly black bodies the intensity of emission depends
only on the temperature, so that two such bodies of equal
temperature would radiate equal quantities of heat from
equal areas of surface. As far as the author knows, the ques-
tion whether the surrounding medium has also an influence
on the intensity of emission has never been considered.
Since however the two expressions given above for the
mutual radiation of two elements contain a factor which
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depends on the nature of the medium, it becomes necessary
to consider this medium, and the method of determining its

influence.
If from the above two expressions we omit the factor

which is common to both, viz. g ds,ds,, we have the result

that the quantity of heat, which the element ds, sends to the
element ds,, bears to that which ds, sends to ds, the ratio
ey, : ey’ If we now assume that at equal temperatures
the radiation is always equal, even when the media in contact
with the two elements are different, then for equal tempera-
tures we must put ¢, =¢,; and the quantities of heat, which
the two elements radiate to each other, would then not be
equal, but would be in the ratio »*: > It would follow
that -two bodies which are in different media, e.g. one in
water and the other in air, would not tend to equalize
their temperatures by mutual radiation, but that one would
be able by radiation to raise the other toa higher temperature
than that which itself possesses.

If on the other hand we maintain the universal correct-
ness of the fundamental principle laid down by the author,
viz. that heat cannot of itself pass from a colder to a hotter
body, then we must consider the mutual radiations of two
perfectly black elements of equal temperature as being
themselves equal, and must therefore put

eV =ep’...... e ceeens (21)
Hence
€ e v Y e, ... (22).

Since the ratio of the velocities is the reciprocal of that
of the coefficients of refraction, which we may call », and =,
this proportion may be written

€ e i mtint (23).

Hence the radiation of perfectly black bodies at equal
temperatures is different in different media, and varies in-
versely as the squares of the velocities in those media, or
directly as the squares of the coefficients of refraction. Thus
the radiation in water must bear to that in air the ratio
()" : 1, nearly.
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We have also to remember that in the heat radiated from
perfectly black bodies there are rays of very different wave-
lengths; and if we assume that the equality of mutual
radiation holds, not merely for the heat as a whole, but also
for each wave-length in particular, we must have for each
of these a proportion similar to (22) and (23) but in which
the quantities in the right-hand ratio have somewhat dif-
ferent values.

Lastly, instead of perfectly black bodies, let us censider
bodies in which the absorption of the rays received is partial
only. We must then introduce in the formula, in place of
the emission, a fraction having the emission as numerator and
the coefficient of absorption as denominator. For this fraction
we can obtain relations similar to those obtained for the
emission alone. This generalization, in which the influence
of the direction of the rays upon the emission and absorption
must also be taken into account, need not here be entered

upon.

IV. DETERMINATION OF THE MUTUAL RADIATION OF
TWO ELEMENTS OF SURFACE, IN THE CASKE WHEN ONE
IS THE OPTICAL IMAGE OF THE OTHER.

§11. Relations between B, D, F and E.

We have hitherto assumed that the planes a and ¢, s0
far as we are concerned with them, give out their rays in
such a way, that one ray and one only, or at most a limited
quantity of individual rays, pass from any point in the one
to any point in the other. We will now pass on to the case in
which this does not hold. The rays which diverge from points
in the one plane may be made to converge by reflections
or refractions, and to meet again on the other plane ; so that
for any point p, on plane a there may be one or more points
or lines on plane ¢, in which an indefinitely large number
of the rays coming from p, cut that plane, whilst other parts
of the same plane receive no rays whatever from p,. The
same of course holds of the rays which start from plane ¢
and arrive at plane a, since the rays passing to and fro be-
tween the same points describe the same paths.

Among the innumerable cases of this description we will,

—
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for the sake of clearness, consider

first the extreme case illustrated %

in Fig. 31. In this case all the

rays sent out by p, within a cer-

tain definite cone meet again in a

single point p, of plane ¢. This .

case occurs for example, when the b
deflection of the rays is effected

by a lens, or by a spHerical mirror,

or by any system of concentri¢

lenses or mirrors. We are here

supposed to neglecs the spherical kL D

and chromatic aberration, which Fig. 81.

we have a right to do with regard

to the latter, inasmuch as we have confined ourselves to
homogeneous rays. Two points thus corresponding to each
other, as the points of starting and of re-unipn of the rays,
are called, as already mentioned, conjugate foci. For each
ray in such a case the co-ordinates z,, y, of the point p, in
which it strikes plane ¢, are determined by the co-ordinates
z,, y, of the starting point p,. The other points on plane ¢
in the neighbourhoojm of p, receive no rays from p,; for
there is no path to them which has the property tﬁ}at the
time in which the ray would traverse it is a minimum, as
compared with the time in which it would traverse any other
adjacent path. Hence the quantity T,, which expresses
this minimum time, can have a real value only for p,, and
not for any of the points round it. The differential coeffi-
cients of 7, in which the co-ordinates ,, y, are assumed to
be constant and one of the co-ordinates z, y, to be variable,
(or conversely «,, y, to be constant and one of the co-ordinates
z, Y, to be variable) can thus have no real finite values.
It follows that of the six quantities 4, B, C, D, E, F, which
have been determined by equations (I.), the three B, D, F'
are not applicable to the present case, inasmuch as they
contain differential coefficients of 7 ; whilst the three
others 4, C, E contain only differential coefficients of
T, and T,,. Let us now assume that plane b is so chosen
that between it and the planes a and ¢, so far as we are
concerned with them, the radiation takes place on.the
former system, so that one ray and one only, or at most a
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limited number of rays, pass from any point on plane b
to any point on plane a or ¢. Then for all the points with
which we are concerned, the quantities 7, and T,, and their
differential coefficients have real values not indefinitely large.
The quantities 4, C and £ are then as applicable in tgis case
as in the former.

One of these quantities, E, takes in this case a special
value, which may at once be found. For the three points
in which the ray cuts the three planes a, b, ¢, the two equa-
tions given in (1) must hold, viz. :

) d<T°°+T°°)—'0' d(T,+7T,)
dz, B dy, -

In the present case the position of the point in which the
ray cuts plane b is not determined by the position of the two
points p, and p,, but plane b may be cut in all points of
a certain finite area. Hence the two equations above must
hold for all these points, and therefore the equations obtained
by differentiating these according to «, and g, must also hold,
viz.:

d*(T,,,,-}-T,,c):O_ & (T,+1T,) —0- d'(T“-i-T,”)_
dz,’ ’ dz,dy, ’ dy,’ B

If we apply this to the equation determining £ in equa-
- tions (I.), we obtain

0.

0...(24).

E=0. coovrrevmrcrrnnnn. (25).

The two other quantities 4 and C have in general finite
values, which differ in different circumstances, and which we
must now use in our further investigation.

§ 12. Application of A and C to determine the Relation
stween the Elements of Surface.

- Let us suppose that the element ds, on plane a has an
optical image ds, on plane ¢, so that every point of ds, has
a point on ds, as its conjugate focus, and vice versi. We
have now to enquire whether the quantities of heat, which
these elements send to each other, when taken as elements
of the surfaces of two perfectly black bodies of equal tem-
peratures, are equal or not.
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First to determine the position and magnitude of the
image ds, corresponding to the given element ds,. Take
any point p, on the intermediate plane b, and consider all
- the rays starting from points on ds,, which pass through
P»» Each of these rays strikes plane ¢ in the conjugate focus
to that from which it starts; and therefore the element of
surface in which this pencil of rays cuts plane ¢ is pre-
cisely the optical image ds, of the element ds,. Therefore,
to express the ratio between the areas of ds, and ds,, we
may use one of the three fractions in the lowest row of

equations (IL.), which express the relation between the two

elements of surface, in which an indefinitely small pencil,
passing through a single point p, of plane b, cuts the two
planes a and ¢. Of these three fractions the first is alone
applicable in this case, since the other two are undetermined.
We have thus the equation

This equation is interesting also from an optical point
of view, as being the most general equation which can be
given to determine the ratio between the area of an object
and that of its optical image. It should be remarked that

the intermediate plane b, to which the quantities 4 and C

are related, may be any whatever, and can therefore in any
particular case be chosen as is most convenient for calcula-
tion.

§ 13. Relation between the Quantities of Heat which
ds, and ds, radiate to each other.

Having thus determined the element of surface ds, which
forms the image of ds,, let us take on plane b, instead of a
single point, an element of surface ds,, and let us con-
sider the rays which the two elements ds, and ds, send
through this element ds, All the rays, which start from
one point of ds, and pass through ds,, unite again in one
point of ds,; and thus all the rays which ds, sends through
ds, exactly strike the element ds, and vice versi. The
two quantities of heat which ds, and ds, send to ds, are thus
the same as the quantities of heat which ds, and ds, send

v
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to each other through the intermediate element ds,. These
- quantities of heat are therefore given at once by what has
gone before. Thus for the quantity of heat which ds,
sends to ds,, the same expression will hold, as held in
§ 9 for the quantity of heat which ds, sends to ds,, provided
we substitute C for B and ds, for ds,, The expression thus
becomes 0

e, P ds, ds,.

Similarly for the quantity of heat which ds, sends to ds,,
the expression will be the same as that for the quantity of
heat which ds, sends to ds,, provided we substitute 4 for B
and ds, for ds,, or will be ‘

oev;,’;A ds ds,,

Remembering that by equation (26)
' Cds,= Ads,,

we see that these two expressions stand to each other in the
- ratio e,v, : evl.

We obtain precisely the same result, if we take any other
element ds, on plaue b, and consider the quantities of heat
which the two elements ds, and ds, send to each other
through this new element. These will always be found to
stand to each other in the ratio e,v,? : ep 2 gisnce the quan-
tities of heat, which ds, and ds, send to each other on the
whole, are made up of those which they send to each other
through all the different elements of the intermediate plane,
the same ratio must hold for the whole; and we thus obtain
the final result, that the total quantities of heat which ds, and
ds, radiate to each other, stand in the ratio e,v,' : e

This is the same relation as was found in sections 8 and 9
for the case where there is no concentration of rays; it thus
follows that the concentration of rays, however much it alters
the absolute magnitudes of the quantities of heat which two
elements radiate to each other, leaves the ratio between them
exactly the same.

It was shewn in § 10, that if in the case of ordinary un-
concentrated radiation the principle holds that heat cannot
pass from a colder to a hotter body, then the radiation must



CONCENTRATION OF RAYS OF LIGHT AND HEAT. 321

differ in different media, and must be such that for perfectly
black bodies of equal temperatures

e . 3
€V, =€N, -

If this equation is satisfied, then in the present case also,
where the elements ds, and ds, are images one of the other,
the quantities of heat which they mutually radiate must be
equal; and therefore, in spite of the concentration of the rays,
one element.cannot raise the other to a higher temperature
than its own.

V. RELATION BETWEEN THE INCREMENT OF AREA AND THE
RATIO OF THE TWO SOLID ANGLES OF AN ELEMENTARY
PENCIL OF RAYS.

§ 14. Statement of the Proportions for this Case.

As an immediate result of the foregoing we may here
develope a proportion, which appears to have some general
interest, inasmuch as 1t illustrates a peculiar difference in the
behaviour of a pencil of rays in the case of an object and of
its image. This difference must always exist and have a de-
terminate value, when the object and the image have differ-
ent areas.

Cousider an indefinitely small pencil of rays, which starts
from a point on ds,, passes through the element ds, on the
intermediate plane, and then unites again in a point on ds..
We may compare the divergence of the rays at their starting
point with the convergence of the same at their point of re-
union. This divergence and comnvergence (or, to use the
ordinary phrase, the solid angles of the indefinitely small cones,
which the pencil forms at its points of starting and re-union)
are given directly by the same method which we have used
in § 9, as follows :— - ‘

Suppose that round each of the points there is described
a sphere of so small a radius, that we may consider the rays
as going in straight lines as far as the surface of this sphere;
a.ng then consider the element of surface in which the pencil
of rays cuts the sphere. Let do be this element and let p be
the radius of the sphere; then the angle of the indefinitely
small cone, which contains the rays so far as they are recti-

C. 21
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linear, will be expressed by -d—f . This fraction we have de-

termined for a similar case in § 9 by equation (20), and in
the expression there given we have only to alter the letters
in order to transform it into the expression for the present
case. In order to express the angle of the cone for that
starting point of the rays which lies in plane a, we have only
to substitute in that expression ds, for ds, and C for B. In
addition, the symbol 6, which .expresses the angle between
the pencil of rays and the normal to the surface of ds,, may
be changed to 6,, so as to express more clearly that it relates
to plane a; and for the same reason the suffix ¢ may be

added to %—: . Thus we obtain

(«i_c;)¢= c_;_:ig; Cds, vvrvvecrenen. @7).

To obtain the other equation, which gives the angle of the
cone at the point of re-union on plane ¢, we have only to
change the suffix a into ¢ throughout, and also to substitute
A for C. Thus we have

dd’ v 2
— = [ ‘) ]
(Pz )c cos ocAdsc ..... scecsesens oee (..8)
From these two equations we obtain the proportion

cos :9,, ¢_lg;>¢ ) cosaf9 (%g ),:: C:A:ds,:ds,...... (29),

v \p'/a" v

°

since by equation (26) Cds, = Ads,.

If we substitute for the velocity the coefficient of refraction,
this proportion becomes ‘

n,’cos 6, (i—:’)“ :nlcos, (%f)c wds, : ds,...... (30).

Here the ratio on the right-hand side is the ratio between
the area of an element of surface of the image, and the areaof
the corresponding element of the object, orin short the propor-
tionate increment of area; and we thus obtain a simple rela-
tion between this increment and the ratio of the angles of the
cones made by an elementary pencil of rays. It is easily seen
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that it is not necessary for the truth of this proportion that the
rays should finally converge, and meet at one point, but they
may also be divergent, in which case their directions meet in
one point when produced backwards, and form what is called
in optics a virtual image.

If we take the special case in which the medium at the
point of starting and of re-union is the same (eg. where
the rays issue from an object which is in air, and, after cer-
tain refractions or reflections, form an image which really
or virtually is also in air), then v, =v, and n, =n_; whence
‘we have

cos @, (‘z—f)“ : cosd, (P—T)‘ uods, : ds,

If we add the further condition, that the pencil of rays
makes equal angles with the two elements of surface (e.g.
that both are right angles), then we have :

()80

In this case the angles of the cones formed by the pencil
of rays at the object and at the image stand simply in the
inverse ratio of the areas of the corresponding elements of
object and image.

In the valuable demonstration which Helmholtz has given
in his “Physiological Optics”* of the laws of refraction in
the case of spherical surfaces, he seeks to connect with these
the case of the refractions which take place in the eye; and
he finds in page 50, and extends further in page 54, an equa-
tion which expresses ‘the- relation between the size of the
image and the convergence of the rays, for the case in which
the change of direction of the rays takes place by refraction
or by reflection at the surface of co-axial spheres, and in which
the rays are approximately perpendicular to the planes which
contain the object and the image. The author however be-
lieves that the relation has not before been given in its
general form, as in proportions (29) and (30).

* Karsten’s Universal Encyclopedia of Physics.
212
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VI. GENERAL DETERMINATION OF THE MUTUAL RADIATION
BETWEEN TWO SURFACES, IN THE CASE WHERE ANY
CONCENTRATION WHATEVER MAY TAKE PLACE.

§ 15. General View of the Concentration of Rays.

We must now extend our investigation se as to embrace
not only the extreme case, in which all the rays which issue
from a point on plane a within a certain finite cone unite
again in one point forming a conjugate focus on plane ¢, but
also every conceivable case of the concentration of rays.

To obtain a closer view of the phenomena of concentration,
we may use the following definition. If rays issue from any
point p, and fall on plane ¢, and if these rays when close to
that plane have such directions that on one part of the plane
the density of the impinging rays is indefinitely great com-
pared to the mean density, then at this part there 1s concen-
tration of the rays which issue from p,. With this definition
we may easily treat mathematically the case of concentration.
Between point p, and plane ¢ take any intermediate plane b,

which is so placed that there is no concentration in it of the |

rays issuing from p,; and also that its relation to plane cis
such, so far as we are concerned, that the pencils of rays issu-
ing from points on one of those planes suffer no concentration
on the other. Now consider an indefinitely small pencil,
which starts from p, and cuts the planes b and c¢. Let us
compare the areas of the elements ds, and ds, in which these
planes are cut, If ds, vanishes in comparison to ds,, so that

we may put \

this is a sign that there is a concentration of rays, in the
sense defined above, at plane c.

Let us now return to equations (IL.) of § 7. The equations
in the first horizontal row are those that refer to the present
case: and of the three fractions, which there represent the
ratio of the elements of surface, the first applies to our case,
because under the assumption made as to the position of the
intermediate plane we may determine 4 and E in the ordi-




CONCENTRATION OF RAYS OF LIGHT AND HEAT. 325

nary manner. We have thus the equation
ds, E
ds,~ 4’

This fraction can only equal zero if the numerator £ is
zero, since under the assumption made as to the position of
the intermediate planes the denominator A cannot be indefi-
nitely large. We have then as a mathematical criterion,

whether the rays issuing from p, suffer concentration at plane
¢ or not, the condition

which must be fulfilled where there is concentration.

Now assume conversely that on plane ¢ a point p, is given,
and that we have to decide whether the rays issuing from
this point suffer concentration at any part of planea. Then

we have in the same way the condition le—:“ = 0; and since by
°d
(IL) % = 15', we arrive at the same final condition
(]

E=0.

1t is in fact easy to see that when the rays issuing from a
point on plane a suffer concentration at plane ¢, then con-
versely the rays issuing from the latter point must suffer con-
centration on plane a.

Since equations (13) express the relations which hold be-
tween the six quantities 4, B, C, D, E, ¥, we may apply
those equations to ascertain what becomes of B, D and F,
in the case where £ = 0,.whilst 4 and C have finite values.
By those equations

AC, _c. A
B=T, D——E—,, F——“ ............ (33).

Hence it follows that all three quantities must in the present
case be indefinitely great.

§ 16. Mutual Radiation of an Element of Surfuce and
of a Finite Surfuce, through an Element of an Intermediate
Plane..

We will now attempt so to determine the ratio between
the quantities of heat which two surfaces radiate to each
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other, that the result must hold in all cases, independently
of the question whether there is any concentration of heat
or no. : .

For greater generality we will substitute for the planes a
and c, as hitherto considered, two surfaces of any kind, which
we may call s, and s, Between them let us take any third
surface s,, which need only fulfil the condition that the rays
which pass from s, to s,, or vice vers, suffer no concentration
in s,. Now choose in s, any element ds,, and in s, an ele-
ment ds,, so situated that the rays which pass through it
from ds, will when produced strike the surface s,. Then we
will first determine how much heat ds, sends through ds, to
the surface s,, and how much heat it receives back from s,
through the same element of the intermediate plane. To
ascertain the first mentioned quantity of heat, we have only
to determine how much heat ds, sends to ds,, since, by our
assumption as to the position of ds,, all this heat after pass-
ing ds, must strike the surface s, This quantity of heat may
be expressed at once by means of our previous formulae.
Suppose a tangent plane to be drawn to s, at a point of the

- element ds,, and similarly a tangent plane s, at a point of ds, ;
and consider the given elements of surface as elements of
these planes. If in-these tangent planes we take two sys-
tems of co-ordinates «,, y,, and #,, ¥,, and if we form the
quantity C by means of the third of equations (1.), then the
required quantity of heat, which ds, sends through ds, to the
surface s,, is given by the expressions

e S da,ds,.

Next with regard to the quantity of heat which ds, re-
ceives through ds, from the surface s, the relations of the
points in s, from which these rays issue, are not in general
so simple as that which holds in the special case, where ds_
has an optical image ds, lying on s, and therefore is also
itself the optical image of ds. If we choose a known point
P, on the intermediate element ds, and consider the rays
which pass through this point from all points of ds,, we have
an indefinitely small pencil of rays, cutting s, in a certain
element of surface. It is this element which sends rays to
ds, through the selected point p,, But if we now choose
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another point of ds, as the vertex of the pencil, we arrive
at a somewhat different element on the surface s, Thus
the rays, which ds, receives from s, through different points
on ds, do not all issue from one and the same element
of s, ' ‘

Since however the area of ds, may be any whatever,
nothing hinders us from supposing it so small, that it is an
indefinitely small quantity of a higher order than ds,, In
this case, if the vertex of the pencil changes its position
within ds,, then the element of s, which corresponds to ds,
will change its position through a distance so small that
in comparison with the dimensions of the element it is
indefinitely small and may be neglected. Hence in this
case the element ds, which we obtain when we choose any
point whatever p, on element ds,, and make it the vertex of
the pencil of rays issuing from ds,, may be considered as the
part of ds, whicz exchanges rays with ds, through ds,, The
area of this element ds, 1s easily found from what precedes.
Let us suppose as before that a tangent plane to the surface s,
is drawn at p,, and that tangent planes to the surfaces s, and
8, are drawn at points on the elements ds, and ds, respectively;
and let us consider the two latter elements as elements of
the tangent planes. Take systems of co-ordinates on these
three tangent planes, and form the quantities 4 and C, as
given by the first and third of equations (I.). Then by
equation (IL) we have '

ds, = f_; ds,

The quantity of heat which ds, sends to ds,, and which,
as mentioned above, may be considered as the quantity which
ds, receives from the surface s, through ds,, is expressed by

ecve’ é dsc dsb ;
™
or, substituting for ds, its value given above,

eyt f—ids, ds,.
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I¥' we compare this expression with that found above,
which expresses the quantity of heat sent by ds, through ds,
to s, we see that the two stand to each other in the ratio
ey, : epl If we now suppose that s, and s, are the sur-
faces of two perfectly black bodies of equal temperature, and
make for such surfaces the assumption (which we have al-
ready seen to be necessary in the case of radiation without
concentration), that the two products e,v,” and e} are equal,
then the quantities of heat given by the two expressions above
are also equal.

§ 17. Mutual Radiation of Entire Surfaces.

If on the intermediate surface s, we take, instead of the _
element hitherto considered, another element which is also
supposed to be an indefinitely small quantity of a higher
order, then the element of s, which exchanges rays with ds,
through this element of s,, has a different position from that
in the last case; but the two quantities of heat thus ex-
changed are again equal to each other; and the same holds
of all other elements of the intermediate surface.

To obtain the quantity of heat which ds, sends to s, not
through a single element of the intermediate surface, but as
a whole, and similarly the quantity of heat which as a whole
it receives from s, we must integrate the two expressions
found above over the surface s, so far as this surface is cut
by the rays which pass from ds, to s, and vice versi. It is
evident that if for each element of surface ds, the two
differentials are equal, then the whole integrals must also
be equal. '

_ Lastly, to find the quantities of heat, which the whole
surface 8, exchanges with s, we must integrate both these
expressions over the-surface s,, This process again will not
disturb the equality, which exists for each of the separate
elements ds,.

Thus the principle previously discovered in a special case,
viz. that two perfectly black bodies of equal temperatures ex-
change equal quantities of heat with each other, so far as the
equation e,v,” =ey," holds for them, appears also as the result
of an investigation, which in no way depends upon whether
the rays issuing from s, suffer a concentration at s,, and vice
versi, or not; since the only condition was, that the rays
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issuing from 8, and s, suffer no concentration at the inter-
mediate surface s,, a condition which may be always fulfilled,
since this surface may be chosen at pleasure.

It follows further from. this result that, if a given black
body exchanges heat not only with one but with any number
of black bodies, it receives from. all of them exactly the same
quantity of heat as it sends to them.

§ 18. Consideration of Karious Collateral Circumstances.

The previous investigation has been made throughout
under the assumption that any reflections and refractions
take place without loss, or that there is no absorption of
heat. We can, however, ensily go on to shew that the results
are not altered, if this condition is dropped. For consider
any one of the different processes, by which a ray may be
weakened on its way from one body to another; say that at
a place where the-ray cuts the boundary of two media, one
part passes into the- further medium by refraction, and the
other is reflected. Then whether we consider the one part
or the other as the continuation. of the original ray, we have
in both cases a weakened ray to deal withc The same holds
if a ray be partially absorbed by entering a medium. But
in each of these cases we have the law that two rays which
traverse the same path in opposite directions are weakened
in equal proportion. The quantities of heat, which two
bodies mutually send to each other, are therefore weakened
by such processes to the same extent ; so that, if they would
be equal without such weakening, they will also be equal
when thus weakened. Another circumstance may be con-
sidered in connection with the processes above mentioned,
viz. that a body may receive from the same direction rays
which proceed from different bodies. For example, a body A
may receive from a point, which lies on the bounding surface
of two media, two rays coinciding in direction, but issuing
from two different bodies B and C. One of these may come
from the bounding medium and be refracted at the point,
whilst the other is already in the bounded medium, and is
reflected at the point. In this case, however, the two rays are
weakened by refraction and reflection in such a way, that, if
both were before of equal intensity, their sum afterwards is

P
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of the same intensity as either one of them had beforehand.
Now suppose a ray of the same intensity to issue from the
body A in the opposite direction, this will be divided, at the
same point, into two parts, of which one enters the bounding
medium, and passes forward to the body B, while the other
- is reflected and passes to the body C. The two parts which
thus reach Band C from 4 are exactly as great as those which
A receives from B and C. The body A thus stands to each
of the bodies B and C in such a relation, that, assuming
equal temperatures, it exchanges with them equal quantities
of heat. The equality of the modifications which two rays
undergo, when passing in opposite directions in any path
whatever, must produce the same result in all other cases
however complicated. : :

Again if, instead of perfectly black bodies, we consider
such as only partially absorb the rays falling on them; or if
instead of homogeneous heat we consider heat which con-
tains systems of -waves of different lengths; or lastly, if
instead of taking all the rays as unpolarized we include the
phenomena of polarization; still in all these cases we have to
do only with facts, which hold equally for the heat sent out
by any one body, and for that which it receives from other
bodies. It is not necessary to consider these facts more
closely, since they also take place with ordinary radiation
without concentration, and the object of the present investi-
gation was only to consider the special actions which might
possibly be produced by concentration of the rays.

§ 19. Summary of Results.

The main results of this investigation may be briefly
stated as follows:

(1) In order to bring the action of ordinary radiation,
without concentration, into accordance with the fundamental
principle, that heat cannot of itself pass from a colder to a
hotter body, it is necessary to assume that the intensity of
emission from a body depends not only on its own composi-
tion and temperature, but also on the nature of the sur-
rounding medium; the relation being such, that the in-
tensities of emission in different media stand in the inverse
ratio of the squares of the velocities of radiation in the
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media, or in the direct ratio of the squares of the coefficients
of refraction,

(2) If this assumption as to the influence of the sur-
rounding media is correct, the above fundamental principle
is not only fulfilled in the case of radiation without concen-
tration, but must also hold good when the rays are concen-
trated in any way whatever by reflections or refractions ;
since this concentration may indeed change the absolute
magnitudes of the quantities of heat, which two bodies
radiate to each other, but not the ratio between these
quantities.



———

CHAPTER XIIL

DISCUSSIONS ON THE MECHANICAL THEORY OF HEAT
AS HERE DEVELOPED, AND- ON. ITS FOUNDATIONS,

W §k1. Different Views as.to the Relation between Heat and
ork.

The papers of the author on the Mechanical Theory of
Heat, as repreduced in all essential particulars in this volume,
have frequently met with opposition; and it may be desirable
to give here some of the discussions which have taken place
on the question, since many points are raised in them, on
which the reader may even yet be in doubt. The removal
of these doubts may be facilitated by his learning what has
been already written upon these points.

As already mentioned in Chapter I1I., the first important
attempt to reduce to general principles the action of heat in
doing work was made by Carnot. He started from the
assum{)tion that the total quantity of heat existing was in-
variable, and then supposed that the falling of heat from a
higher to a lower temperature brought about mechanical work,
in the same way as the falling of water from a higher to a
lower level. But simultaneously with this conception the
view gained ground that heat is a mode of motion, and that in
producing work heat is expended. This view was set forth
at intervals from the end of the last century by individual
writers, such as Rumford, Davy, and Seguin®*; but it was not
till 1840 that the law corresponding to this view, viz. that of

* In a paper by Mohr, published 1837, heat is in some places called &
motion, in others a force.
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the equivalence of heat and work, was definitely laid down
by Mayer and Joule, and proved by the latter to be correct
by means of numerous and brilliant experiments. Soon
afterwards the general principle of the conservation of energy
was laid down by Mayer* and Helmholtz+ (by the latter in a
specially clear and convincing manner), and was applied to
various natural forces.

A fresh starting point was thus given to researches on
the science of heat; but in carrying these out great difficul-
ties presented themselves, as was natural with so widely
extended a theory, which was intertwined with all branches
of natural science, and influenced the whole range of physi-
cal thought. In addition, the wide acceptation which Car-
not’s treatment of the mechanical action of heat had won for
itself, especially after being brought by Clapeyron into an
elegant analytical form, was unfavourable for the reception
of the new theory. It was believed that there was no alter-
native but either to hold to the theory of Carnot, and reject
the new view according to which heat must be expended to
produce work, or conversely to accept the new view and
reject Carnot’s theory.

§ 2. Papers on the Subject by Thomson and the Author.

A very definite utterance on the then position of the
question was given by the celebrated English physicist, now
Sir William Thomson, in an interesting paper which he pub-
lished in 1849 (when most of the above-mentioned researches
of Joule had already appeared and were known to him),
under the title, “An Account of Carnot’s Theory of the
Motive-Power of Heat, with numerical results deduced from
Regnault’s experiments on steam }.” He still maintains the
position of Carnot, that heat may do work without any change
in the quantity of heat taking place. He however points
out a difficulty in this view, and goes on to say, p. 545: “It
might appear that this difficulty might be wholly removed, if
we gave up Carnot’s fundamental axiom, a view which has
been strongly urged by Mr Joule.,” He adds, “but if we do

* Die organische Bewegung in ihrem Zusammenhange mit dem Stof-
wechsel. Heilbronn, 1845, '

+ Ueber die Erhaltung der Kraft, 1837,

T Trans. Royal Soc. of Edin., Vol. xv1. p. 541.
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this we stumble over innumerable other difficulties, which
are insuperable without the aid of further experimental
researches, and without a complete reconstruction of the
Theory of Heat. It is in fact experiment to which we
‘must look, either for a confirmation of Carnot’s axiom, and a
clearing up of the difficulty which we have noticed, or for a
completely new foundation for the Theery of Heat.”

At the time when this paper appeared the author was
‘writing his first paper “ On the Mechanical Theory of Heat,”
which was brought before the Berlin Academy in 1850, and
printed in the March and April numbers of Poggendorft’s
Annalen. In this paper he attempted to begin the recon-
struction of the theory, without waiting for further experi-
‘ments; and he succeeded, he believes, in overcoming the
difficulties mentioned by Thomson, so far at least as to leave
the way plain for any further researches of this character.
‘He there pointed out the way in which the fundamental
conception, and the whole mathematical treatment of heat,
. must be altered, if we accepted the principle of the equiva-
lence of heat and work ; and he further shewed that it was
not needful wholly to reject the theory of Carnot, but that
we might adopt a principle, based on a different foundation
from Carnot’s, but differing only slightly in form, which
might be combined with the principle of the equivalence of
heat and work, to form with 1t the ground-work of the new
theory. This theory he then developed for the special cases
of perfect gases and saturated vapour, and thereby obtained
a series of equations, which have been universally employed
in the form there given, and which will be found in Chap-
ters II. and VL. of this volume.

§ 3. On Rankine's Paper and Thomson’s Second Paper.

In the same month (February, 1850) in which the
author’s paper was read before the Berlin Academy, a valu-
able paper by Rankine was read before the Royal Society of
Edinburgh, and was afterwards published in their Trans-
actions (Vol. 20, p. 147)%. .

Rankine there proposes the hypothesis, that heat consists
in a rotary motion of the molecules ; and thence deduces with

* In 1854 it was reprinted with some alterations, in the Pkil, Mag.,
Series 4, Vol. vir. pp. 1, 111, 172, :
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much skill a series of principles on the action of heat, which
agree with those deduced by the author from the first main
principle of the mechanical theory*. The second main prin-
ciple was net touched by Rankine in this paper, but was
treated in a second paper, which was brought before the
Royal Society of Edinburgh a year afterwards (April, 1851).
In this he remarks¥ that he had at first felt doubtful of the
correctness of the mode of reasoning by which the author
had arrived at this second principle; but that having com-
municated his doubts to Sir W. Thomson, he was induced
by him to investigate the subject more closely. He then
found that it ought not to be treated as an independent
principle in the theory of heat, but might be deduced from
the equations, which he had given in the first section of his
former paper. He proceeds to give this new proof of the
principle, which however, as will be shewn further on, is in
opposition, for certain very important cases, with his own
views, as elsewhere expressed.

This paper of 1851 Rankine added as a fifth section to
his former paper on account of the connection between them.
Thence has arisen with some authors the mistaken idea that
this new paper was actually part of the former one, and that
Rankine had therefore given .a proof of the second main
principle at the same time as the author. From the fore-
going it will be seen that his proof (waiving the question
how far it is satisfactory) appeared a year later than the
author’s, '

In March of the same year, 1851, a second paper by Sir
‘W. Thomson on the Theory of Heat was laid before the
Royal Society of Edinburghf. In this paper he abandons his
former position with regard to Carnot’s theory and assents to
the author’s exposition of the second main principle. He
then extends the treatment of the subject. For whilst the
author had confined himself in the mathematical treatnent
of the question to the case of gases, of vapours, and of the
process of evaporation, and had only added that it was easy
to see how to make similar applications of the theory to other

* Edind. Trans., Vol. xx. p. 205; Phil. Mag., Series 4, Vol. vir. p. 249.
+ Pril. Mag., Vol. vir. p. 250. .

168: Edin. Trans., Vol. xx. p, 261; Phil, Mag., Series 4, Vol. 1v. pp. 8, 105,
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cases, Thomson developes a series of general equations, which
are independent of the body’s condition of aggregation, and
only then passes on to more special applications.

On one point this second paper still falls short of the
author’s. For here also Thomson holds fast by the law of
Mariotte and Gay-Lussac in the -case of saturated vapour,
and hesitates to accept an hypothesis with respect to perma-
nent gases, which the auther had made use of in his investi-
gation (see Chapter IL, § 2, of this work). ‘On this he
remarks*: “I cannot see that any hypothesis, such as that
adopted by Clausius fundamentally in his investigations on
this subject, and leading, as he shews, to determinations of
the densities of saturated steam at different semperatures,
which indicate enormous deviations from the gaseous laws of
variation with temperature and pressure, is more probable,

- or is probably nearer the truth, than that the density of sa-
turated steam does follow these laws, as it is usually assumed
to do. In the present state of science it would perhaps be
wrong to say that either hypothesis is more probable than
the other.” Some years later, after he had proved by his
joint experiments with Joule 'that this hypothesis is correct
within the limits assigned by the author, he used the same
method as the author to determine the density of saturated
vapour+.

Rankine and Thomson, so far as the author knows, have
always recognized most frankly the position here assigned to
the first labours of themselves and the author on the me-
chanical theory of heat. Thomson remarks in his paper?}:
“The whole theory of the moving force of heat rests on the
two following principles, which are respectively due to Joule
and to Carnot and Clausius.” Similarly he introduces the
second main principle as follows: “Prop. II. (Carnot and
Clausius).” He then proceeds to give a proof discovered by
himself, and goes on§: “It is with no wish to claim priority
that I make these statements, as the merit of first establish-
ing the proposition on correct principles is entirely due to
Clausius, who published 'his demonstration of it in the month

* Edin. Trans., Vol. xx. p. 277; Phil. Mag., Vol. 1v. p. 111,

+ Phil. Trans., 1854, p. 321.

% Edin. Trans., Vol. xx. p. 264 ; Phil. Mag., Vol. 1v. p. 11.

§ Edin. Trans., Vol. xx. p. 266 ; Phil. Mag., Vol. 1v. pp. 14, 242,
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of May last year, in the second part of his paper on the
Motive Power of Heat.”

§ 4 Holtzmann’s objections.

From other quarters repeated and in some cases violent
objections were raised to the author’s first paper, to which, in
the same and following years, a series of other papers, serving
to complete the theory, were added. The earliest of these
objections came from Holtzmann, who had published in 1845
a short pamphlet* on the subject. In this it would at first
appear as if he wished to treat the question from the point
of view, that for the generation of work there was necessary
not merely a change in the distribution of heat, but also an
actual destruction of it, and that conversely by destroying
work heat could be again generated. He remarks (p. 7):
“The action of the heat which has passed to the gas is thus
either a raising of temperature, combined with an increase of
the elastic force, or a certain quantity of mechanical work, or
a mixture of the two; and a certain quantity of mechanical
work is equivalent to the rise in temperature. Heat can only
be measured by its effects; of the two above-named effects
mechanical work is especially adapted for measurement, and it
will be chosen accordingly for the purpose. I call a unit of
heat that amount of heat, which by its entrance into a gas
can perform the mechanical work a, or, using definite mea-
sures, which can raise @ kilograms to a height of 1 metre.”
Further on (p. 12) he determines the numerical value of the
constant a by the method previously used by Mayer, and
explained in Chapter II1,§ 5; the number thus obtained cor-
responds perfectly with the mechanical equivalent of heat, as
determined by Joule by various other methods. In extend-
ing his theory however, i.e. in developing the equations by
which his conclusions are arrived at, he follows the same
method as Clapeyron; so that he tacitly retains the assump-
tion that the total quantity of heat which exists is invariable;
and therefore that the quantity of heat which a body takes
in, while it passes from a given initial condition to its
present condition, must be expressible as a function of the
variables, which determine that condition.

* Ueber die Wirme und Elasticitit der Gase und Ddmpfe; von C.
Holtzmann, Mannheim, 1845 ; also Pogg. Ann., Vol. Lxx1a,

C. . (522
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In the author’s first paper the inconsequence of this
method was pointed out, and the question treated in another
way ; on which Holtzmann wrote an article*, in which he
endeavoured to shew that this method of treatment, and
specially the assumption that heat was expended in pro-
ducing work, was inadmissible. The first objection which
he raised was of a mathematical character. He carried out
an investigation similar to that in the author’s paper, in
order first to determine the excess of the heat which a body
takes in over that which it gives out, during a simple cyclical
process consisting of indefinitely small variations, and secondly
to compare this excess with the work done. But in such a
_process both the work done and the excess of heat must be
indefinitely small quantities of the second order; and there-
fore in the whole investigation, care must be taken that all
quantities of the second order, which do not cancel each
other, shall be taken into account. This Holtzmann neg-
lected to do; and he was thus led to a final equation, which
contained a self-contradiction, and in which he therefore
imagined that he had found .a proof of the inadmissibility of
the whole method. This objection was easily disposed of
by the author in his reply.

He further brought forward as an obstacle to the theory,
that, according to the formulee given, the specific heat of a
perfect gas must be independent of its pressure, whereas the
experiments of Suermann, and also those of De la Roche
and Bérard, shewed that the specific heat of gases increased
as the pressure diminished. On this conflict between his
own theory and the experiments which were then known
and supposed to be correct, the author remarked in his reply
ag follows : “On this point I must first point out that, even
if these observations are perfectly correct, they yet say nothing
against the fundamental principle of the equivalence of heat
and work, but only against the approximate assumption
which I have made, viz. that a permanent gas, if it expand
at constant temperature, absorbs only so much heat, as is
required for the external work which it thus performs. But
besides it is sufficiently known how unreliable are in general
the determinations of the specific heats of gases; and all the

* Pogg. Ann., Vol. Lxxxi. p. 445,
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more in those few observations which have been hitherto
made at varying pressures. I did not therefore conceive
myself bound to abandon the above assumption on account
of these observations, although they were well known to me
at the time when I wrote my former work; because the
other grounds, which may be alleged for the correctness of
the assumption within the limits which I bad there laid
down, are not wholly destroyed by the grounds which may
be alleged against it.”

This remark found its full confirmation in Regnault’s
Researches, published some years afterwards, on the specific
heats of gases, which actually led to the result that these
earlier observations were inaccurate, and that the specific
heat of permanent gases is not visibly dependent on the
pressure.

§ 5. Decher’s Objections.

Another most energetic attack on the author’s theory
was made in 1858, by Professor G. Decher, in a paper “On
the Nature of Heat,” published in Dingler’s Polytechnischer
Journal, Vol. 148, pp. 1, 81, 161, 241. He characterizes the
author's mathematics, in the first half of his paper of 1850,
and in another paper of 1854, as an abuse of analysis, and
bungling nonsense; he quotes the equations and principles
there cited with single or double notes of admiration, and
finally, after proving completely to his own satisfaction that
the results are untenable, concludes thus: “These then are the
data on which the fundamental principles of the new theory
of Heat should rest, and by which its agreement with ex-
perience should be proved ; they shew in the clearest light
that the celebrated work of Herr Clausius, on which he him-
self and other physicists have built as on a secure foundation,
i3 nothing more than a rotten nut, which looks well from the
outside, but in reality contains nothing whatever.”

Of the second half of the paper of 1850, which relates to
the second main principle of the theory, Herr Decher ob-
serves (p. 163), that having mastered the first half, he saw
1o inducement to consider the second any further.

On examining more closely the objections raised by Herr
Decher against the author’s mathematical investigation, it is
seen that they are due to the fact that he has not understood

222
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the differential equations there formed, which, though not
generally integrable, become so as soon as one further rela-
tion is assumed to exist among the variables. In spite of all
which the author has said, he has throughout treated the
quantities to which these equations refer, viz. the quantities
of heat taken in by a body in passing from a given initial
condition to its present condition, as mere functions of the
variables which determine the condition of the body. After
quoting the author’s equation for gases, viz.

(%(%g)—%(‘%)=11% .................. ),

where A is the heat-equivalent of the unit of work, i.e. the
reciprocal of E, he remarks, page 243: “In equation (1)

(%) and (‘%) are fully determined as the differential co-

efficients of a known function of » and ¢, viz. Q, taken ac-
cording to v and ¢ respectively as sole variables; and in
whatever way this function may be formed, and whatever
relation may be supposed to exist between v and ¢, the right
side of the equation must always equal zero.”

This incorrect conception, thus formed by a professed
mathematician, convinced the author that the meaning and
treatment of this kind of differential equation, although long
before established by Monge, was not so generally known as
he had supposed; accordingly in his reply*, after a brief
notice of some other points raised by Decher, he treated the
subject more fully, giving a mathematical explanation, which
seemed to him sufficient to obviate any such misunderstand-
ings in future. This was afterwards prefixed to the collection
of the author’s papers as a mathematical introduction; and
the essential part of it has been imported into the mathe-
matical introduction to the present work.

§ 6. Fundamental Principle on which the Author's Proof
of the Second Main Principle rests.

The more recent objections to the author’s theory, and
the departure from his views in more recent treatises, chiefly

* Dingler's Polytechniscker Journal, Vol. cL. p. 29,
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refer to his method of proving the second main principle of
the theory. This proof rests, as shewn in Chapter III.,on the
following fundamental principle :—Heat cannot of itself (or
without compensation) pass from a colder to a hotter body.
This fungamental principle has been very variously re-
ceived by the scientific public. Some appear to consider it
so self-evident that it is needless to state it as a specific
principle, whilst others on the contrary doubt its correctness.

§ 7. Zeunmer’s first Treatment of the Subject.

The first of the two modes of viewing the question men-
tioned in the last section appears in Zeuner’s valuable paper
of 1860 “On the Foundations of the Mechanical Theory of
Heat.” Here Zeuner gives the author’s proof of the second
main principle essentially in the same form as it has also
been given by Reech®. The two differ only in one point.
Reech gives the principle, that heat cannot of itself pass
from a colder to a hotter body, expressly as a fundamental
principle laid down by the author, and bases his proof
upon it. Zeuner on the contrary does not mention this
principle at all: he shews that if for any two bodies the
second main principle of the theory did not hold, then by
means of two cyclical processes performed with these two
bodies in opposite directions, heat could be made to pass
from a colder to a hotter body without any other special
change, and he then goes on “as we may repeat both pro-
cesses as often as we please, using the two bodies alternately
in the way described, it would follow that we might, with
the aid of nothing and without using either work or heat,
continually transfer heat from a body of lower to one of
higher temperature, which is an absurdity.”

Few readers would probably assent to the opinion that
the impossibility of transferring heat from a colder to a
hotter body is so self-evident, as is here indicated by the
short remark “which is an absurdity.” Taking the facts of
conduction, and of radiation under ordinary circumstances,
we may undoubtedly say that this impossibility is established
by daily experience. But even with radiation the question

* Récapitulation trés-succincte des recherches algébriques faites sur la

théorie des effects mécaniques de la chaleur par différénts autcurs: Journ. de
Liouville, Ser, 1I. Yol. 1. p. §8.
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arises, whether it is not possible to concentrate the rays of
heat artificially by means of mirrors or burning-glasses, so as
to produce a higher temperature than that of the radiating
bodies, and thus to effect the passage of the heat into a
hotter body. The author has, therefore, thought it necessary
to treat this question in a special paper, the contents of
- which are given in Chapter XII. Matters are still more
complicated in cases when heat is transformed into work, and
vice versi, whether this be by effects such as those of
friction, resistance of the air, and electrical resistances, or
whether by the fact that one or more bodies suffer such
changes of condition, as are connected partly with positive
and partly with negative work, both internal and external
For by such changes heat, to use the common expression,
becomes latent or free, as the case may be ; and this heat the
variable bodies may draw from or impart to other bodies of
different temperatures.

If for all such cases, however complicated the processes
may be, it is maintained that without some other permanent
change, which may be looked upon as a compensation, heat
can never pass from a colder to a hotter body, it would seem
that this principle ought not to be treated as one altogether
self-evident, but rather as a newly-propounded fundamental
principle, on whose acceptance or non-acceptance the validity
of the proof depends.

§ 8. Zeuner's later Treatment of the Subject.

The mode of expression employed by Zeuner was criticized
by the author on the grounds stated in the last section, in a
paper published in 1863. In the second edition of his
book, published in .1866, Zeuner has therefore struck out
another way of proving the second main principle. Assum-
ing the condition of the body to be (Eatermined by the
pressure p and volume v, he forms for the quantity of heat
d @, taken in by the body during an indefinitely small varia-
tion, the differential equation

dQ=A(Xdp+ Ydv)...ocovevvnnn.... @,

where X and Y are functions of p and v, and 4 is the heat-
equivalent of work. This equation, as is well known, cannot
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be integrated so long as p and v are independent variables.
He then proceeds (p. 41):

“But let S be a new function of p and v, the form of
-which may be taken for the present to be known as little as
that of X and Y, but to which we will give a signification,
which will appear immediately from what follows. Multiply-
ing and dividing the right-hand side of the equation by S,
we have

X, Y
dQ =48 [3- dp+ 5 dv] .................. @).

‘We may now choose S, so that the expression in brackets is
" a perfect differential ; in other words, so that é may be the

integrating factor, or S the integrating divisor, of the expres-
sion within brackets of equation (2).”
From this it follows that in the following equation derived

from (3), 29 X -
2e_4 [g B+ dv] .................. @),

the whole right-hand side is a perfect differential, and there-
fore for a cyclical process we must have

In this way Zeuner arrives at an equation similar to equation
(7) of Chapter IV., viz.

fun

The resemblance, however, is merely external. The essence
of this latter equation consists in this, that 7 is a function of
temperature only, and further a function which is inde-
pendent of the nature of the body, and is therefore the same
for all bodies. Zeuner's quantity S, on the contrary,is a
function of both the variables, p and v, on which the bodies’
condition depends; and further, since the functions X and Y,
in equation (2), are different for different bodies, it must be
true of S also that it may be different for different bodies.
So long as this holds with regard to S, equation (5) has
done nothing for the proof of the second main principle ;
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since it is self-evident that there must in general be an
integrating factor, which may be denoted by %, and by

which the expression within brackets in equation (2) may
be converted into a complete differential. Accordingly, in
Zeuner'’s proof, as he himself concludes, everything depends
-on the fact that S is a function of temperature only, and a
function which is the same for all bodies, so that it may be
taken as the true measure of the temperature.

For this purpose he supposes a body to undergo different
variations, which are such that the body takes in heat whilst
S bas one constant value, and gives out heat whilst S has
another constant value ; and which together make up a cycli-
cal process, shewing a gain or loss of heat. This procedure
he compares with the lifting or dropping of a weight from
one level to another, and with the corresponding mechanical
work ; and he proceeds (p. 68): “A further comparison leads
to the interesting result that we may considerothe function S
A8
in what follows therefore I shall call the above value the
Weight of the Heat.” Since a name has here been introduced
for a magnitude containing S, in which name there is nothing
which relates to the body under consideration, it appears
that an assumption has here been tacitly made, viz. that Sis
independent of the nature of the body, which is by no means
borne out by the earlier definition.

Zeuner then carries still further the comparison between
the processes relating to gravity and those relating to heat, and
transfers to the case of heat some of the principles which hold

as a length or a height, and the expression as a weight;

for gravity ; in so doing he treats S as a height, and Y  hak

weight, just as before. Then, having finally observed that
the principles thus obtained are true if we take S to mean
the temperature itself, he proceeds (p. 74): “ We are there-
fore justified in taking as the basis of our further researches
the hypothesis that S is the true measure of temperature.”
It appears from this that the only real foundation of the
reasonings, which in his second edition Zeuner puts forward
as the basis of the second main principle, is the analogy



DISCUSSIONS ON THE THEORY. 345

‘between the performance of work by gravity and by heat;
and moreover that the point which has to be proved is in
part tacitly assumed, in part expressly laid down as a mere
-hypothesis.

§9. Rankine’s Treatment of the Subject.

We may now turn to those authors who have considered
that the fundamental principle is not sufficiently trustworthy,
or even that it is incorrect.

Here we must first examine somewhat more closely the
mode of treatment which, as already mentioned, Rankine
considered must be substituted for that of the author.

Rankine, like the author, divides the heat which must be
imparted to the body, in order to raise its temperature, into
two distinct parts. One of these serves to increase the heat
actually existing in the body, and the other is absorbed in
work. For the latter, which comprises the heat absorbed in
the internal and in the external work, Rankine uses an
expression, which in his first section he derives from the
hypothesis that matter consists of vortices. Into this method
of reasoning we need not enter further, since the circum-
stance that it rests on a particular hypothesis as to the
nature of molecules and their mode of motion, makes it
sufficiently clear that it must lead to the consideration of com-
plicated questions, and thus leaves much room for doubt as
to its trustworthiness. In the author’s treatises he has based
the development of his equations, not on any special views
as to the molecular constitution of bodies, but only on fixed
and universal principles; and thus, even if the above fact
were the only one which could be alleged against Rankine’s
proof, the author would still expect his own mode of treating
the subject to be finally established as the most correct.
But yet more uncertain is Rankine's mode of determining
the second part of the heat to be imparted, viz. that which
serves to increase the heat actually existing in the body.

Rankine expresses the increase of the heat within the
body, when its temperature ¢ changes by d¢, simply by the
product Kdt, whether the volume of the body changes at the
same time or not. This quantity K, which he calls the real
specific heat, he treats in his proof as a quantity inde-
pendent of the specific volume. Any sufficient ground for this
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procedure will be sought in vain in his paper ; on the contrary,
data are found which stand in direct opposition to it. In the
introduction to his paper he gives, under equation (13), an
expression for the real specific heat K, which contains a
factor k£, and of which he speaks as follows*: ‘“The co-
efficient & (which enters into the value of the specific heat)
being the ratio of the s viva of the entire motion impressed
on the atomic atmospheres by the action of their nuclei, to
the vis viva of a peculiar kind of motion, may be conjectured
to have a specific value for each kind of substance, depending
in a manner yet unknown on some circumstance in the con-
stitution of its atoms. Although it varies in some cases for
the same substance in the solid, liquid, and gaseous states,
there is no experimental evidence that it varies for the same
substance in the same condition.” Hence it appears to be
Rankine’s view that the real specific heat of the same sub-
stance may be different in different states of aggregation;
and even for the assumption that it may be taken as in-
variable for the same state of aggregation he produces no
other ground than that there is no experimental proof to the
contrary.

In a later work, A Manual of the Steam Engine and other
Prime Movers, 1859, Rankine speaks yet more distinctly on
this point as follows (p. 807): “A change of real specific
heat, sometimes considerable, often accompanies the change
between any two of those conditions” (i.e. the three con-
ditions of aggregation). How great a difference Rankine
conceives to be possible between the real specific heats of one
and the same substance in different states of aggregation, is
shewn by his remark at the same place, that in the case of
water the specific heat as determined by observation, which
he calls the apparent specific heat, is nearly equal to the real
specific heat. Now Rankine well knew that the observed
specific heat for water is twice as great as that for ice, and
more than twice as great as that for steam. Since then the
real specific heat for ice and steam can never be greater than
the observed, but only smaller, Rankine must assume that
the real specific heat of water exceeds that of ice and steam
by 100 per cent. or more.

If we now ask the question how on this supposition the

* Phil. Mag., Ser. 4, Vol. v p. 10,
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increase of heat actually present in a body, which occurs
when its temperature ¢ increases by dt, and its volume v by
dv, is to be expressed, the answer will be as follows: When
the body, during its change of volume, suffers no change in
its state of aggregation, we shall be able to express the
increase of heat, as Rankine has done, by a simple product
of the form Kdt; but the factor K must have different values
for different states of aggregation. In cases, however, where
the body during its change of volume also changes its state
of aggregation (e.g. the case we have treated so often, where
we have a certain quantity of matter partly in the liquid and
partly in the gaseous condition, and where the magnitude of
these two parts changes with the change in volume, either by
the evaporation of part of the liquid, or by the condensation
of part of the vapour), we can then no longer express the
increase of heat connected with a simultaneous change in
temperature and volume by a simple product Kdt; but must
use an expression of the form

Kdt + K dv.

For if the real specific heat of a substance were different in
different states of aggregation, it would be necessary to con-
clude that the quantity of heat existing in it must also
depend on its state of aggregation; so that equal quantities
of the substance in the solid, liquid, and gaseous condition
would contain different amounts of heat. Accordingly, if
part of the substance change its state of aggregation without
any change of temperature, there must also be a change in the
quantity of heat contained in the substance as a whole.
Hence it follows that Rankine by his own admission can
only treat the mode in which he expresses the increase of heat,
and the mode in which he uses that expression in his proof, as
being allowable for the cases in which there are no changes
in the state of aggregation ; and, therefore, his proof holds
for those cases only. For all cases where such changes occur
the principle remains unproved ; and yet these cases are of
special importance, inasmuch as it is chiefly to these that the
principle has hitherto been applied. '
In fact we must go further, and say that the proof thus
loses all strength even for cases where there is no change in
the state of aggregation. If Rankine gssumes that the real

Al
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specific heat may be different in different states of aggrega-
tion, there seems no ground whatever left for supposing
that it is invariable in the same state of aggregation. It is
known that with solid and liquid bodies changes may occur
in the conditions of cohesion, apart from any change in the
state of aggregation. With gaseous bodies also, in addition
to their great variations in volume, we have the distinction,
that the more or less widely they are removed from their
condensation-point the more or less closely do they follow the
law of Mariotte and Gay-Lussac. How then, if changes in
the state of aggregation may have an influence on the real
specific heat, can we refuse to ascribe a similar, even if
a smaller, influence to changes like the above? Thus the
proposition, that the real specific heat is invariable in the
same state of aggregation, is not only left unproved by
Rankine, but, if we accept his special assumption, becomes in
a high degree improbable.

To this criticism on his proof, which appeared in a
paper of the author’s, published in 1863*, Rankine made no
reply; but in a later article on the subjectt he expressl
maintained the truth of his view, frequently before stated,
that the real specific heat of a body may be different in
different states of aggregation; whereby the force of his
proof is limited to the cases in which no change in the state
of aggregation takes place.

§ 10. Hirn's Objection.

A yet more definite attack upon the author’s funda-
mental principle, that heat cannot of itself pass from a
colder to a hotter body, was made by Hirn in his work, pub-
lished in 1862, Exposition Analytique et Experimentale de la
théorie mécanique de la chaleur, ang in two subsequent articles
in Cosmos}. He has there described a particular operation
which gives at first sight an altogether startling result. After
a reply from the author §, he explained|| his attack ashaving
for its object only to mark an apparent objection to the
Erinciple, whilst in reality he agreed with the author; and

e has expressed himself to the same effect in the second
and third editions of his valuable work.

* Pogg. Ann., Vol. cxx. p. 426.
+ Phil. Mag., Ser. 4, Vol. xxx. p. 410.
! Vol. xxu. pp. 283, 412, § Vol. xxu1. p. 560. I VoL xxm. p. 784.
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In spite of this it seems worth while to state here the .
attack and the reply, because the conception of the subject
there expressed is one very near the truth, and which might
easily hold under other circumstances. An objection thus
raised has a real scientific value of its own; and when it is
put in so clear and precise a light, as Hirn has done in this
case by means of his skilfully-conceived operation, it can
only be advantageous for science: since the fact that the
apparent objection is defined and placed clearly in view will
greatly facilitate the clearing up of the point. In this way
we shall attain the advantage that a difficulty, which other-
wise might probably lead to many misunderstandings, and
necessitate repeated and long discussions, will be disposed of
once and for ever. In thus referring once more to this
question, the author is far from wishing to make the objec-
tion a ground of complaint against Hirn, but rather believes
that this objection has increased the debt which the Mechani-
cal Theory of Heat owes to him on other accounts.

The operation alluded to, on which Hirn has based his
observations, is as follows: Let there be two cylinders 4 and
B (Fig. 32) of equal area, which are
connected at the bottom by a compara-
tively narrow pipe. In each of these let
there be an air-tight piston; and let
the piston-rods be fitted with teeth
‘engaging on each side with the teeth
of a spur wheel, so that if one piston
descends the other must rise through
the same distance. The whole space
below the cylinders, including the
connecting pipe, must thus remain
invariable during the motion, because
as the space diminishes in one cylinder
it increases in the other by an equal
amount.

First, let us suppose the piston in
B to be at the bottom, and therefore
that in 4 at the top; and let cylinder
A be filled with a perfect gas of any
%ven density and of temperature ¢,

-
ow let the piston descend in 4, and Fig. 82,
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rise in B, so that the gas is gradually driven out of 4 into
B. The connecting pipe through which it must pass is
kept at a constant temperature ¢,, which is higher than #,, so
that the gas in passing is heated to temperature ¢,, and at
that temperature enters cylinder B. The walls of both
cylinders, on the other hand, are non-conducting, so that
within them the gas can neither receive nor give off heat,
but can only receive heat from without as it passes through
the pipe. To fix our ideas let the initial temperature of the
gas be that of freezing, or 0°, and that of the connecting pipe
100°, the pipe being surrounded by the steam of boiling water.
It is easy to see what will be the result of this operation.
The first small quantity of gas which passes through the pipe
will be heated from 0° to 100° and will expand by the cor-
responding amount, i.e. 9§ of its original volume. By this
means the gas which remains in 4 will be somewhat com-
pressed, and the pressure in both the cylinders somewhat
raised. The next small quantity of gas which passes through
the pipe will expand in the same way, and will thereby com-
press the gas in both cylinders. Similarly each successive
portion of gas will act to compress still further not only the
gas left in 4, but also the gas which has previously expanded
in B, so that the latter will continually tend to approach its
initial density. This compression causes a heating of the gas
in both cylinders; and as all the gas which enters B enters
at a temperature of 100°, the subsequent temperature must
rise above 100° and this rise must be the greater, the more
the gas within B is subsequently compressed.
Let us now consider the state of things at the end of the
operation, when all the gas has passed from 4 into B. In
the topmost layer, just under the piston, will be the gas
which entered first, and which, as it has suffered the greatest
subsequent compression, will be the hottest. The layers
below will be successively less hot down to the lowest, which
will have the same temperature, 100°, which it attained in
passing the pipe. For our present purpose there is no need
to know the temperature of each separate layer, but only the
mean temperature of the whole, which is equal to the tem-
})erature that would exist if the temperatures in the different
ayers were equalized by a mixing up of the gas. This mean
temperature will be about 120°
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In a later article published in Cosmos, Hirn has com-
pleted this operation, by supposing that the gas in B is finally
brought into contact with mercury at 0°, and thereby cooled
back again to 0°; that it is then driven back from B to 4
under the same conditions as from A4 to B, and is therefore
heated in the same manner; that it is then again cooled by
mercury, again driven from 4 to B, and so on. Thus we have
a periodical operation, in which the gas is continually brought
back to its original condition, and all the heat given off by
the source of heat passes over to the mercury employed for
cooling. Here we will not enter into this extension of the
process, but confine ourselves to the first simple operation,
in which the gas is heated from 0° to a mean temperature of
120°; for this operation comprises the essence of Hirn’s ob-
Jjection.

In this operation it is clear that no heat is gained or lost;
for the pressure in both cylinders is always equal, and there-
fore both pistons are always pressed upwards with equal
force. These forces are communicated to the wheel which

ears with the piston-rods; and thus, neglecting friction, an
1ndefinitely small force will be sufficient to turn the wheel in
one or the other direction, and thereby move one piston up
and the other down. The excess of heat in the gas cannot
therefore be created by external work.

The process, as is easily seen, is asfollows. Whilst a quan-
tity of gas, which is a very small fraction of the whole, is heated
and expanded in passing through the pipe, it must take in
from the source sufficient heat to heat it at constant pressure.
Of this, one part goes to increase the heat actually existing
in the gas, and another part to do the work of expansion.
But since the expansion of the gas within the pipe is followed
by a compression of the gas within the cylinders, the same
quantity of heat will be generated in the one place as is
absorbed in the other. Thus that part of the heat derived
from the source, which is turned into work within the pipe,
appears again as heat within the cylinders; and serves to
heat the gas left in 4 above (', its initial temperature, and
the gas wiich has passed into B above 100°, the temperature
at which it entered; in other words to produce the rise in
temperature already mentioned. Accordingly, without con-
_sidering the intermediate process, we may say that all the
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heat, which the gas contains at the end of the operation
more than at the beginning, comes from the source of heat
attached to the connecting-pipe. Hence we have the sin-
gular result, that by means of a body whose temperature is
100° i.e. the steam surrounding the pipe, the gas within the
cylinders is heated above 100° or, looking only to the mean
temperature, to 120°. _Here then, is a contradiction of the
fundamental principle that heat cannot of itself pass from a
colder to a hotter body, inasmuch as the heat imparted by
the steam to the gas has passed from a body at 100° to a
body at 120°.

One circumstance however has been forgotten. If the
gas had had an initial temperature of 100° or more, and
had then been raised to a still higher temperature by steam,
whose temperature was only 100° this would no doubt be a
contradiction of the fundamental principle. But this is not
the real state of things. In order that the gas may be above
100° at the end of the operation, it must necessarily be below
100° at the beginning. In our example, in which the final
temperature is 120° the initial is 0°. The heat, which the
steam has imparted to the gas, has therefore served in part
to heat it from 0° to 100° and in part to raise it from 100° to
120°. But the fundamental principle refers only to the
temperatures of the bodies between which heat passes, as
they are at the exact moment of the passage, and not as they
are at any subsequent time. Accordingly we must conceive
the passage of heat in this operation to take place as follows.
The one part of the heat given off by the steam has
into the gas, whilst its temperature was still below 100°, and
has therefore passed into a colder body; and only the other
part, which has served to heat the gas beyond 100°, has
into a hotter body. If then we compare this with the funda-
mental principle, which says that, when heat passes from a
colder to a hotter body, without any transformation of work
into heat or any change in molecular arrangement, then of
necessity there must be in the same operation a passage of
heat from a hotter to a colder body, we easily see that
there is complete agreement between them. The peculiarity
in Hirn’s operation is only this, that there are not two differ-
ent bodies concerned, of which one is colder and the other
hotter than the source of heat; but one and the same body,
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the gas, takes in one part of the operation the place of the
colder, and in another part that of the hotter body. This in-
volves no departure from the principle, but is only one special
case out of the many which may occur. Dupré has raised
similar objections against the fundamental principle ; but as
there is nothing in them essentially new, they will not here be
entered upon.

§ 11. Wand’s Objections, :

Some years later Th. Wand treated of the same principle
in a paper entitled “Kritische Darstellung des zweiten Satzes
der Mechanische Wiarmetheorie®.” He gives his conclusions
in the three propositions following: (1) “The second prin-
ciple of the mechanical theory of heat, i.e. the impossibility
of a passage of heat to a higher temperature without a conver-
sion 1nto work or a corresponding passage of heat to a lower
temperature, is false.” (2) “The deductions from this prin-
ciple are only approximate empirical truths, which hold only
so far as they are established by experiment.” (8)- “For
technical calculations the principle may be taken as correct,
since experiments on the substances used for the generation
of work and of cold shew a very close agreement with it.”

The placing of such propositions side by side seems in
itself a doubtful measure. If a principle has been found to
agree with fact in so many cases, as to compel us to say that
for technical calculations it may be taken as correct, it seems
dangerous to conclude nevertheless that it is false, in the
face of the probable supposition that the apparent objections
which yet remain would be cleared up by closer examination.

The following appear to be the chief grounds on which
Wand bases his rejection of the principle; excluding those
which relate to internal work and electrical phenomena, be-
cause these subjects are not here treated of.

“If we suppose,” he says on p. 314, “that in the bring-
ing of a certain quantity of heat from a lower to a higher
temperature a certain quantity of work must of necessity be
destroyed, it follows that, if the same quantity of heat falls
from a higher to a lower temperature, the same quantity of
work must re-appear. Now suppose that this fall takes

* Karl’s Repertorium der Experimental-Physik, Vol. 1v. pp. 281, 369,
C. 23
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place by simple conduction or by a non-reversible cyclical
process. Then the above is not true, because the falling of
heat by conduction goes on without any other change what-
- ever. Therefore for equalizations of temperature by simple
conduction there is nothing equivalent to the second prin-
ciple; and this from the logical point of view is one of the
weakest points in that principle, and leads to much subse-
quent inconvenience.” The circumstance here mentioned,
that compensation is required only in the passage of heat to
a higher temperature, and not to a lower, has been frequently
stated above; and in Chapter X. is expressed in the general
" form, that negative transformations cannot take place with-
out positive, but that positive transformations can take place
without negative. From this circumstance the second main
principle becomes doubtless less simple in form than the
first, but it would be hard to shew that it is logically im-
perfect.
- The inconveniences mentioned by Wand in the above
paragraph he arrives at by the following considerations. He
supposes a simple cyclical process to be carried out, during
which the two bodies between which the heat passes, and
which he calls the heating and cooling body, have tempera-
tures which are close to 0°, and differ from each other by
an indefinitely small quantity, which he calls d¢. For this
symbol, which will appear with another signification in the
analysis which follows, we will substitute &, and will call the
temperatures of the two bodies, reckoned from freezing-point,
0 and & respectively. Further, Wand supposes the cyclical
process to be so arranged, that one unit of heat passes over
from the hotter to the colder body, and therefore that the

quantity of heat 533 is transformed into work. He then pro-

ceeds: “The process being ended, I will heat the whole ap-
paratus, comprising both the heating and the cooling body,
by 100°. The difference of temperature between the two
bodies will remain unaltered. If we now wish to destroy the
heat thus obtained by means of the reverse cyclical process,
we must take from the colder body the heat 3. The colder
body thus loses the heat 344, and gives it up to the hotter
body; and if by the reverse process all is cooled back again
to the initial temperature (°, the initial condition of things
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is restored. There is no work performed or consumed, and
yet a passage of heat has taken place from the second body,
which has remained the colder, to the first which has remained
the hotter throughout the process. This however is no refu-
tation of the second principle. For to obtain this result there
must be a continuous succession of alternate heatings and
coolings of the apparatus, i.e. heat must pass from a hotter
to a colder body; but this passage takes place by conduction,
for which there is no equivalent. Hence it follows from the
process here described, that with regard to the distribution
of the heat it is by no means the same thing, whether we
do nothing at all, or carry out a compound cyclical process as
here described.”

‘We have here the case of two opposite cyclical processes
carried out at different temperatures, in which the work
done and the work consumed cancel each other, but more
heat passes from the hotter to the colder body than vice
versi; and Wand holds that the passage of the surplus heat
from the colder to the hotter body has taken place without
compensation. He has however neglected certain differences
of temperature, which occur in this somewhat complicated
operation. For after the first process, in which the hotter
body has given off and the colder body taken in heat, he
heats the whole apparatus and the two bodies by 100°; and
he cools them by 100° after the second process, in which
the colder body has given off heat and the hotter taken
it in. But in giving off and taking in heat the two bodies
alter their temperature somewhat, and the reservoirs of heat,
which perform the heating and cooling, do. not therefore
take back the heat during the cooling at the same tempera-
ture as they gave it out during the heating. Hence arise
passages of heat of which Wand has taken no account.

These differences of temperature are of course very small,
since the two bodies must be assumed so large, that the varia-
tions of temperature produced in them by the cyclical
process may remain small compared to the difference of
the original temperatures. But then the quantities of heat,
which the bodies take from and give back to the reservoirs
during their heating and cooling, are also very large ; and
since to determine the heat which has passed we must
multiply the differences of temperature by the actual

23—2
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quantities of heat, we arrive at magnitudes which are quite:
large enough to compensate for the surplus heat which has
passed between the bodies.

To prove this point we will make the calculation itself.
First, with regard to the actual surplus heat which has passed
between the bodies, since the temperatures are 0 and-6, and

the quantity of heat equals %’, this has the equivalence
100

273 (?7?3!]-—5—%73) or, neglecting terms of a higher

order than the first with regard to 8, — ;,(7)-—3, 8. We have now

to determine the equivalence value of the passages of heat,
which take place during the heating and cooling of the body
by 100°. By Chapter IV., § 5, we must divide the element
of heat taken in by one of the two bodies from a reservoir of
heat (reckoning heat given off as negative heat taken in)
by the absolute temperature which the body has at the
moment, and we must then form the negative integral for
the heating and cooling.

Let M be the mass of each body, and C its specific heat,
which we suppose constant; then the quantity of heat,
which it takes in during a rise of temperature dt, equals
M(Cdt, and this we shall take as expressing the element of
heat. If for convenience we put

1
€= g ereeees e ),

value

the element will be expressed by %dt. We must consider

MC as very large, and therefore e as very small, so much
80 as to be small even in comparison with the small difference
of temperature 8.

If we now take the first cyclical process, the colder body
has, to begin with, the temperature 0, and the hotter the
temperature 8. During the process the former takes in the

quantity of heat 1, and the latter loses the quantity 1+ 2—% .
These must be divided by MC, or multiplied by e, to obtain
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the changes of temperature which they produce in the
bodies; thus at the end of the process the colder body has
the tempera.ture ¢, and the hotter the temperature

S
o— (l + ‘2—75) €.
From these temperatures both bodies are now to be heated

by 100°.
The negative integral relating to the heating of the colder

body is :
100 +¢ 1
f ;dt
4= 273+t "

If we put 7=t —¢, then

100
f ;d‘r
4= o 218 Ft+e”

Neglecting higher terms in the expansion of ¢, we have

1 _ 1 €
3 +7+e 278+1 (273 +7)*°
110 dr 0 dr
Whence .A = — f 273 g fo m ...... (7).

The negative integral relating to the heating of the

hotter body is
100+8- (1 +2%‘) e 1 dt
B=— <
a—(1+2%). 273+t °

Whence we obtain in the same way as before

1 f100+8  Jdr o 100+8  dr
B=~f amsre(ram)l, @i ®

During the second cyclical process the colder body gives

off a quantity of heat= 873 and the hotter body receives a

273’
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quantity 233 +g73- The temperatures of the two bodies,

after the second cyclical process, become respectively

373 100
100+€—'§73€= ].00—'2T3 €,
é 373§ 100
10043 (1 + 57—3) (273 + 273) =100 +8 + e

From these temperatures both bodies are cooled down by
100°. The negative integral relating to this cooling is for
the colder body

00
| f-sz —dt f‘”'ﬁs 1
C: —_ € .
S 1°°‘z'7§' 27 3 ¢ e 2i3+¢’
whence as before we have

lfmo dr lOQ 100 dr 9
w31+ ters), @O

For the cooling of the hotter body we have similarly

_1 f100+8 dr 100 [100+8 g

w3+ 23)y @By 10

By adding together 4, B, C, D, we obtain the equivalence
value of all the transferences of heat during the heating and
cooling. In this addition the integrals which have the factor

% cancel each other, and two of the others may be combined

together. Whence we have

37 3 0 dr
o (273 +7)

373 8 100+3 d-r
- (273 + 2—73) fa m, ......... (ll).

A+B+C+D=
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Performing the integration, the right-hand side becomes

my 1Ly @ aye L 1

273( 373 © 213 (273 273 ( 373+6  273+8/°

If we expand the second product in terms of & to the
first order, most of the resulting terms cancel each other, and

the expression for the equivalence value of the transferences
of heat during the heating and cooling becomes finally

100
(273)°

This expression fulfils the condition of being equal and
opposite to the equivalence value of the surplus heat
actually transferred between the two bodies. This transfer
therefore is not uncompensated, but fully compensated as the
second principle requires. We thus see that the operation
suggested by Wand does not give the smallest ground for
objecting to the principle.

Another objection is drawn by Wand from the follow-
ing considerations. He proposes the question whether the
principle can be derived by mechanical reasoning from the
ideas which we can form of the nature and action of heat.
With this object he first applies the hypothesis main-
tained by the author and others as to the molecular motion
of gaseous bodies, and finds that this does actually lead
to the principle in question. He then says that it is
not sufficient to prove that one particular hypothesis leads
to the principle, but that all possible mechanical hypo-
theses on the nature of heat must Be shewn to lead to it.
Accordingly as a second example he takes another hypo-
thesis, which he conceives specially adapted to represent the
phenomena of expansion, and of the increase of pressure by
heat. On this hypothesis a row of elastic balls, any two of
which are connected by an elastic spring, vibrate in such a
way that all of them are in similar phases. From this
hypothesis he arrives at an equation different from that which
he has chosen as the criterion of the second principle, and
then draws the conclusion, “the second principle cannot
therefore be universally derived. from the principles of
mechanics.” But upon such a conclusion the question may

3.
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be asked, whether in reality the hypothetical motion, which
he supposes, agrees with the actual motion, which we call
heat, in such a way that the same equations must hold for
both. So long as this is not proved the conclusion cannot be
considered to be made out.

Finally, Wand considers the process which occurs in
nature, when in the growth of plants, under the influence of
the sun’s rays of light and heat, carbonic acid and water are
absorbed, and oxygen liberated ; whilst the organic substances
thus formed, if afterwards burnt or serving as nourishment
to animals, unite themselves again with oxygen to form car-
bonic acid and water, and thereby generate heat. This
transformation of the sun’s heat he considers to be in flat
contradiction to the second principle. To the analysis which
he gives many objections might be taken; but the author
considers that a process in which so much is still unknown,
as that of the growth of plants under the influence of the
sun, is altogether unfit to be used as a proof either for or
against the principle in question.

§ 12. Tait's Objections.

Finally the author has to mention certain objections re-
cently raised against his theory by Tait ; objections which have
surprised him equally by their substance and by their form.
In an article which appeared in 1872 on the History of the
Mechanical Theory of Heat*, the author had observed, that
Tait’s work, 4 sketch of Thermodynamics, no doubt owed its
existence chiefly to the wish of claiming the Mechanical
Theory of Heat as far as possible for the English nation ;—a
supposition for which the clearest grounds can be adduced.
Further on in the article he had observed that Tait had
ascribed to Sir William Thomson a formula due to the
author, and had quoted it as given by Thomson in a
paper which contained neither the formula itself nor any-
thing equivalent to it. The author expected that Mr Tait,
in answering this article, would specially address himself to
these two points, of which the latter particularly required
clearing up. A reply appeared indeed?, and one written in

* Pogg. Ann., Vol. cxLv. p. 132.
+ Phil. Mag., Series 4, Vol. xLuz.
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.a very acrimonious tone; but to the author’s surprise these
two points were nowhere touched upon, a different turn
being given to the whole matter. For whilst in the work
previously alluded to the author’s researches on the Mechani-
cal Theory of Heat, even if in his own view they were not
put in their right relation to those of English writers, were
yet described at great length and with a general recognition
of their merit, their correctness was here at once assailed, by
the declaration that the fundamental principle, that heat
cannot of itself pass from a colder to a hotter body, is
untrue.

To prove this two phenomena relating to electric currents
are adduced. Butin a rejoinder published shortly afterwards*
the author was easily able to prove that these phenomena
in no way contradict the principle, and that one of them is
even so evidently in accordance with it, that it may serve as
an example specially adapted to illustrate and establish it.
As electrical phenomena are not here treated of, this is not
the place to enter further into this subject.

Tait further observed in his reply, that by the author’s
introduction of what he named Internal Work and Disgrega-
tion, he had done a serious injury to science, offering however
nothing to support this, beyond the brief remark: “In our
present ignorance of the nature of matter such ideas can do
only harm.” What Tait has to object to the conception of
internal work, it is difficult to understand. In his first
paper on the Mechanical Theory of Heat the author divided
the work during the body’s change of condition into External
and Internal Work, and shewed that those two quantities of
work differed essentially in their mode of action. Since
that time this distinction has been similarly made by all
writers, so far as he is aware, who have treated of the Mecha-
nical Theory of Heat. _

As regards the method (which will be deseribed on a
future occasion) of calculating the combined internal and
external work, and the conception of disgregation introduced
by the author with this object, purely mechanical investiga-
tions have recently led to an equation, exactly corresponding
with that which the author proposed in the science of heat,
and in which the disgregation makes its appearance. If

* Phil. Mag., Series 4, Vol. xLuI.
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these investigations cannot yet be considered as complete,
they nevertheless shew, at least in the author’s opinion, that
the nature of things requires the introduction of this con-
ception.

He therefore leaves the objections of Tait, with as much
confidence as those of Holtzmann, Decher, and others, to the
good judgment of the reader*.

* For a rejoinder by Prof. Tait to these observations, see Sketch of
Thermodynamics, 2nd edition, 1877, p. xv.

Finis.



APPENDIX L

ON THE THERMO-ELASTIC PROPERTIES OF SOLIDS.

Sir William Thomson was the first who examined the thermo-
elastic properties of elastic solids. Instead of abstracting his
investigation (Quarterly Mathematical Journal, 1855) it may be
well to present the subject as an illustration of the method of
treatment by the Adiabatic Function.

Consider any homogeneously-strained elastic solid. To define
the state of the body as to strain six quantities must be specified,
say u, v, w, ¥, ¥, 2 : these are generally the extensions along three
rectangular axes, and the shearing strains about them, each
relative to a defined standard temperature and a state when the
body is free from stress. The work done by external forces when
the strains change by small variations may always be expressed in
the form

(U8u+V8v+ ...)x volume of the solid,

because the conditions of strain are homogeneous. U, V ...... are
the stresses in the solid : each is a function of uw ...... and of the
temperature, and is determined when these are known. Let
denote the temperature (where 0 is to be regarded merely as the
name of a temperature, and the question of how temperatures are
to be measured is not prejudged).

Amongst other conditions under which the strains of the
body may be varied, there are two which we must consider.
First, suppose that the temperature is maintained constant; or
that the change is effected isothermally. Then 6 is constant.
Secondly, suppose that the variation is effected under such con-
ditions that no heat is allowed to pass into or to leave the
body ; or that the change is effected adiabatically. In the latter
case 0, u, v, ...... are connected by a relation involving a para-
meter which is always constant when heat does not pass into
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or out of the solid: this parameter is called the adiabatic func-
tion.

‘We have now fourteen quantities relating to the body, viz.
six elements of strain, six of stress, the quantity 6 which defines
the temperature, and the parameter ¢ the constancy of which
imposes the adiabatic condition. Any seven of these may be
chosen as independent variables.

Let the body now undergo Carnot’s four operations as fol-
lows :—

1°. Let the stresses and strains vary slightly under the sole
condition that the temperature does not change. Let the conse-
quent increase of ¢ be 8. Heat will be absorbed or given out,
and, since the variations are small, the quantity will be propor-

tional to 8¢, say
S0, u, v, w, ...... ) 8¢.

2°. Let the stresses and strains further vary adiabatically,
and let 80 be the consequent increase of temperature.

3°. Let the stresses and strains receive any isothermal varia-
tion, such that the parameter ¢ returns to its first value. Heat
will be given out or absorbed, equal to

(f+¥) 8.
4°, Let the body return to its first state.

Here we have a complete and reversible cycle. The quantity
of heat given off 8fx 8¢ is equal to the work done by external
forces. Now Carnot’s theorem (or the Second Principle of
Thermodynamics) asserts that the work done, or 8f x 8¢, divided
by the heat transferred from the lower to the higher tempers-
ture, f x 8¢, is equal to a function of @ only (which function is
the same for all bodies) multiplied by 80. Thus

¥ _
L= @)%,

log (f)= [F0d0 + a function of ¢ ;

the function of ¢ being added because the variation was per-
formed under the condition that ¢ was constant. By properly
choosing the parameter ¢ this function may be included in 3,
and we have, as the quantity of heat absorbed in the first
operation,

‘/Fodo

x 8¢,
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The mode of measuring temperature being arbitrary, we shall
find it convement to define that temperature is so measured that

F (0)-0, then we have :—

Heat absorbed in first operation = 3¢............... 1);
Work done by external forces =86 x 8¢ ........... (2).

We must now examine more particularly the variations in the
stresses and strains. Denote the valuesof U, 7, ...... y Uy Uy eenns by
different suffixes for the four operations.

The work done by the external forces in these operations is
respectively

2 ; v, (u,—u,) + V‘—;E(v,— v,) + &e.,

U+,

_L2__l(u._ ua)"' V

+V'(v -v,) + &e.,
U,+U, V.+7,
2

* (u, = u,) + —’—(v —-v,) + &,

U+, V.+7V.
_%(u, —u)+ —‘--2—‘ (v —v)+ &e.;

and the sum of these is equal to 3¢4386.
Hence a variety of important relations may be obtained.
Let all the strains but one be constant: then we have

U, = U, +--- do,

d¢
w, =, +%d0
du
u4="'a_2$ $

u =u‘—j—zd0,

with similar equations for. ', &c. Hence the Work done in the
successive operations is, .
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U, +U, du
l2 xgad‘#’
U+U, du
2 ’xd—ode,
aU aUu
_U'+Wd0+ Uﬁfiédoxdud
p a3 “®
au au
2 Xd'—0 0

Adding these, the total Work done becomes

du dU  dud
dp a5+ a6 dg) X P
the differentiations being performed when » and U are expressed
as functions of 6, ¢ and the five other strains.
The same is true if five stresses are constant, that is if » and
U are expressed as functions of 6, ¢ and the five other stresses.
But from (2) the Work done=df x d¢. Hence it follows
generally (using the well-known theorem as to Jacobians) that

b do_dp b _ o
dUdu du dU— .................... ),

¢ and 0 being expressed as functions of %, U; and either the five
other stresses or the five other strains being constant.

These equations are still true if the independent variables are
partly stresses and partly strains, so long a8 no two are of the
same name : e.g. if they are vwXYZ.

From equation (3) all the thermo-elastic properties of bodies
may be deduced. 'We have generally

do do
d@:dvdU+%du ....................... (4),

=T By 5).
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Putting d¢p = 0, we have

au 2
) . du
au (when ¢ is constant) = —E .
daU
Putting d6 =0, we have
de
d—~ (when 6 is constant) =— Z—: .
av
ds6 de - .
Let F denote Tu under the condition that ¢ is constant,

that is, where 0 is expressed as a function of ¢u instead of Uw.
Then by (4)
dé

d¢0 dh dU do 1‘9_,( i_—zi+ g@
du " dU du du av @‘S du
av

- ¢ » by (3).

dav

This is the fourth thermodynamic relation (see Maxwell on
Heat, 1877, p. 169).
The others are obtained in a similar way thus :—
d
ds0 dé do dU 1 dpu
W~ IV & TG A

du du

dé
dop_d¢ _dp du 1  dU
du " du dU 4G d6 _db’
- ' dU dU
df
dod _d¢p _dp dU

1
AU~ aU du dd  d§~ do °
du

du
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These relations are true provided each of the other strains, or
else its corresponding stress, is constant.

Take the last of these for interpretation. 'When 6 is con-
stant we have by (1),

Heat absorbed in any change (or dg)=6d¢.

d9¢ 1 dg
Hence aw-dav

or, by the fourth relation,

Here dé’; is the coefficient of dilatation. This, under the condi-
tions assumed, will, of course, be different according as the
other stresses or other strains are maintained constant. In the
case of a bar of india-rubber stretched by a variable weight,
all the elements of stress but one vanish or are constant. If the

stress be somewhat considerable it is found that :il—: is nega-

tive. It follows that increase of weight will liberate heat in
the india-rubber. But the same will not be true if the stretching
weight be nil or very small, nor again if the periphery of the
bar is held so that it cannot contract transversely as the weight
extends it longitudinally, unless (which is improbable) it should
be found that in these cases the coefficient of dilatation is
negative.



APPENDIX II.
ON CAPILLARITY.

The equations obtained in Appendix I. may also be applied to
the equilibrium of the surface film of a liquid in contact with its
own vapour. This subject is generully known under the name of
Capillarity, from its having first been studied in connection with
Capillary tubes (Maxwell, On Heat, 1871, p. 263). Thus let the
body considered be the film of fluid at the surface of a fluid, and
let 1t be 80 small in volume that its capacity of heat in virtue of

| its volume may be neglected. Let 7' be the surface tension, and

S the surface. Then 7' is a function of 6 only: hence, from an
equation analogous to Equation (3), Appendix L., we obtain

ar ds_
do*dg= "
dT d¢ ldg

or — T ——— = - —
(by Equation (1), Appendix I.), where g is heat absorbed.

If then g is negative, as is usually the case, extension of

surface means absorption of heat.
The question of the equilibrium of vapour at a curved sur-

| face of liquid has been treated by Sir Wm. Thomson. The

following is maiuly taken from his paper (Proc. Royal Society of

| Edinburgh, 1870, Vol. viL, p. 63).

In a closed vessel containing only liquid and its vapour, all
at one temperature, the liquid rests, with its free surface raised or
depressed in capillary tubes and in the neighbourhood of the solid
boundary, in permanent equilibrium according to the same law of
relation between curvature and pressure as in vessels open to the
air. The permanence of this equilibrium implies physical equi-
librium between the liquid and the vapour in contact with it at
all parts of its swiface. But the pressure of the vapour at
different levels differs according to hydrostatic law. Hence the
pressure of saturated vapour in contact with a liquid differs

¢, 24
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according to the curvature of the bounding surface, being lems
when the liquid is concave, and greater when it is convex. And
detached portions of the liquid in separate vessels, all enclosed in
one containing vessel, cannot remain permanently with their
free surfaces in any other relative positions than those they would
occupy if there were hydrostatic communication of pressure
between the portions of liquid in the several vessels. There must
be evaporation from those surfaces which are too high, and con-
densation into the liquid at those surfaces which are too low—s
process which goes on until hydrostratic equilibrium, as if with
free communication of pressure from vessel to vessel, is attained.
Thus, for example, if there are two large open vessels of water,
one considerably above the other in level, and if the temperature
of the surrounding matter is kept rigorously constant, the liquid
in the higher vessel will gradually evaporate until it is all gone
and condensed into the lower- vessel. Or we may suppose a
capillary tube, with a small quantity of liquid occupying it from its
bottom up to a certain level, to be placed upright in the middle of s
quantity of the same liquid with a wide free surface, and con-
tained in a hermetically sealed exhausted receiver. The vapour
will graduallybecome condensed into the liquid in the capillary tube,
until the level of the liquid in it is the same as it would be were the
lower end of the tube in hydrostatic communication with the
large mass of liquid. The effect would be that in a very short
time liquid would visibly rise in the capillary tube, and that, pro-
vided care were taken to maintain the equality of temperature all
over the surface of the hermetically sealed vessel, the liquid in the
capillary tube would soon take very nearly the same level as it
would have were its lower end open ; sinking to this level if the
capillary tube were in the beginning filled too full, or rising to it
if there is not enough of the liquid in it at first to fulfil the con-
dition of equilibrium.

The following shews precisely the relations between curva-
tures, differences of level, and differences of pressure with which
we are concerned.

Let p be the pressure of equilibrium above the curved surface
in the tube, 7' the principal radii of curvature of that surface,
and 7' the surface tension: then by the principles of Capillarity

the upward drag on the surface, due to the tension, is 7’ G + %)

Hence the pressure within the liquid, immediately below the

surface is
p-7 (1 + 1) .
ror
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Let = be the equilibrium pressure of the vapour at the plane sur-
face of the liquid, p the density of the liquid, o the density of the
vapour, % the height at which the liquid stands in the tube above
the plane surface: then clearly

x= [p—T(;+;—, ]+hp ................. ).
But also
T=P+RC e, (2)
Therefore
1 1
wp-o)=p(p- a)+T(r+;,)a,
: To /1 1 '
or p=w_n(r+r) ................... (3),

which gives the relation between the pressure of equilibrium above
the curved surface and that above the plane surface.

In strictness the value of o to be used ought to be the mean
density of a vertical column of vapour extending through the
given height. But in all cases in which we can practically
apply the formule, according to our present knowledge of the pro-
perties of matter, the difference of densities in this column is very
small, and may be neglected. Hence, if A denote the height
above the plane surface of the liquid of an imaginary homogeneous
fluid which, if of the same density as the vapour at that plane,
would produce by its weight the actual pressure , we have

=T
=5
But by Equations (1) and (2)
1 1
(- k=7 (5 +3);
‘hence by Equation (3)
v-ch=m (1 - =
For vapour at ordinary atmospheric temperatures, H is about
1,300,000 centimetres. Hence in the capillary tube which would
keep water up to a height of 13 metres above the plane lewvel, the
curved surface of the water is in equilibrium with the vapour in
contact with it, when the pressure of the vapour is less by about

1opo't of its own amount than the pressure of vapour in equilibrium
at a plane surface of water at the same temperature.

24—2



APPENDIX IIIL

ON THE CONTINUITY OF THE LIQUID AND
GASEOUS STATES OF MATTER.

The chapters on Fusion and Vaporization will be rendered more
complete by a brief account of Dr Andrews’ important researches
on the continuity between the liquid and gaseous states of matter.
This account is mainly taken, by permission of Messrs Lo:
from the late Prof. Maxwell’'s work on The Theory of Heat, 1877,
Ch. vi.

In Fig. 1 the full lines represent certain Isothermal lines
for Carbonic Acid Gas (CO,), i.e. curves produced by making it
vary in pressure and volume, while the temperature is kept con-
stant at the value written (in degrees Cent.) along each line. The
ordinates represent pressures in atmospheres, and the abscisse
represent volumes. The variation is supposed to be produced by
diminishing the volume, d.g. the gas may be supposed to be
contained in a cylinder, the piston of which is gradually lowered.

Take one of these isothermals, e.g. that at 21°5. Beginning
from the right hand, we have first a curved line 4B. During
this part of the compression, the substance is entirely in the state
of a gas. As the volume diminishes the pressure increases, and
the result is a regular curve, which if the gas were perfect, or po
constant, would be an equilateral hyperbola. At the point B,
corresponding to about 60 atm., the gas commences to liquefy.
From this point the decrease of volume produces no increase of
pressure, but simply liquefies more and more of the gas. The
curve becomes therefore a horizontal straight line BC. At the
point C the whole of the gas is liquefied. From this point any
further reduction of volume is resisted by the elastic force of the
liquid, which is very great; and the isothermal line therefore rises
in the-almost vertical curve C'D.

Now the length of the horizontal part BC, during which the
gas is partly in the liquid, partly in the gaseous state, is not the
same for different temperatures. For 131 its length is seen to be
E F, which is much greater than BC ; while for temperatures above
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215 it is found to be shorter than BC. The dotted line DBECF
is the boundary of all these horizontal lines, up to a certain point @,

. +100

+65

+50 ATM.
F 1321 \\ E

Fig. 1.

corresponding to 30°92, at which their length vanishes. In other
words, at temperatures above 30°:92 the “gas line” AB, and the
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“liquid line” CD meet each other, without any intervening
portion. '

In the case of steam, for which such isothermal lines were first
drawn, similar phenomena occur ; and when it was seen that the
gas line and the liquid line thus continually approached each other
as the temperature was raised, the question naturally arose, Do
they ever meet? If they do meet, then at that temperature the
substance cannot exist partly as a liquid and partly as a vapour,
but must be entirely converted, at the corresponding pressure,
from the state of liquid to that of vapour; or else, since in this
case the vapour and liquid have the same density, it may be
suspected that the distinction between liquid and vapour has here
lost its meaning. :

The answer to this question has been to a great extent sup-
plied by a series of very interesting researches,

In 1822 M. Cagniard de la Tour® observed the effect of a high
temperature upon liquids enclosed in glass tubes of a capacity not
much greater than that of the liquid itself. He found that when
the temperature was raised to a certain point, the substance,
which till then was partly liquid and partly gaseous, suddenly
became uniform in appearance throughout, without any visible
surface of separation, or any evidence that the substance in the
tube was partly in one state and partly in another.

He concluded that at this temperature the whole became
gaseous. The true conclusjop, as Dr Andrews has shewn, is that
the properties of the liquid and those of the vapour continually
approach to similarity, and that, above a certain temperature, the
properties of the liquid are not separated from those of the vapour
by any apparent distinction between them.

In 1823, the year following the researches of Cagniard de la
Tour, Faraday succeeded in liquefying several bodies hitherto
known only in the gaseous form, by pressure alone, and in 1826
he greatly extended our knowledge of the effects of temperature
and pressure on gases, He considers that above a certain tempe-
rgtyre, which, in the language of Dr Andrews, we may call the
eritical temperature for the substance, no amount of pressure will
produce the phenomenon which we call condensation, and he
supposes that the temperature of 166° F. below zero is probably
above the critical temperature for oxygen, hydrogen, and nitrogen.

Dr Andrews has examined carbonic acid under varied con-
ditions of temperature and pressure, in order to ascertain the
relations of the liquid and gaseous states, and has arrived at the
conclusion that the gaseous and liquid states are only widely

1 Annales de Chimie, 2nd Series, Vols. xxi. and xxii,
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separated forms of the same condition of matter, and may be
made to pass one into the other without any interruption or
breach of continuity *.

The diagram, Fig. 1, for carbonic acid is taken from Dr
Andrews’ paper, with the exception of the dotted line shewing
the region within which the substance can exist as a liquid in
presence of its vapour. The base line of the diagram corresponds,
not to zero pressure, but to a pressure of 47 atmospheres.

oThe lowest of the isothermal lines is that of 13™1 C. or
55°6 F.

This line shews that at a pressure of about 47 atmospheres
condensation occurs. The substance is seen to become separated
into two distinct portions, the upper portion being in the state of
vapour or gas, and the lower in the state of liquid. The upper
surface of the liquid can be distinctly seen, and where this surface
is close to the sides of the glass containing the substance it is seen
to be curved, as the surface of water is in small tubes.

As the volume is diminished, more of the substance is liquefied,
till at last the whole is compressed into the liquid form.

Liquid carbonic acid, as was first observed by Thilorier, dilates
as the temperature rises to a greater degree than even a gas, and,
as Dr Andrews has shewn, it yields to pressure much more than
any ordinary liquid. From Dr Andrews’ experiments it also
appears that its compressibility diminishes as the pressure in-
creases. These results are apparent even in the diagram. It is,
therefore, far more compressible than any ordinary liquid, and it
appears from the experiments of Andrews that its compressibility
diminishes as the volume is reduced.

It appears, therefore, that the behaviour of liquid carbonic
acid under the action of heat and pressure is very different from
that of ordinary liquids, and in some respects approaches to that
of a gas.

I%a:ve examine the next of the isothermals of the diagram,
that for 215 C. or 70°7 F., the approximation between the
liquid and the gaseous states is still more apparent. Here con-
densation takes place at about 60 atmospheres of pressure, and
" the liquid occupies nearly a third of the volume of the gas. The
exceedingly dense gas is approaching in its properties to the
exceedingly light liquid. Still there is a distinct separation
between the gaseous and liquid states, though we are approaching
the critical temperature. This critical temperature has been
determined by Dr Andrews to be 30°92 C. or 87°7 F. At this
temperatute, and at a pressure of from 73 to 75 atmospheres,

1 Phil. Trans. 1869, p. 675.
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carbonic acid appears to be in the critical condition. No sepa-
ration into liquid and vapour can be detected, but at the same
time very small variations of pressure or of temperature produce
such great variations of density that flickering movements are
observed in the tube ‘“resembling in an exaggerated form the
appearances exhibited during the: mixture of liquids of different
densities, or when columns' of heated air ascend through colder
strata.”

The isothermal line for- 31°1 C. or 88° F. passes above this
critical point. During the whole compression the substance is
never in two distinct conditions in different parts of the tube.
‘When the pressure is less than 73 atmospheres the isothermal
line, though greatly flatter than that of a perfect gas, resembles
it in general features. From 73 to 75 atmuspheres the volume
diminishes very rapidly, but by no means suddenly, and above
this pressure the volume diminishes more gradually than in the
case of a perfect gas, but still more rapidly than in most liquids.

In the isothermals for 32°5 C. or 90°5 F. and for 35°5 C. or
95°9 F. we can still observe a slight increase of compressibility
near the same part of the diagram, but in the isothermal line for
48°1 C. or 118°:6 F. the curve is concave upwards throughout its
whole course, and differs from' the corresponding isothermal line
for a perfect gas only by being ssmewhat flatter, shewing that for
all ordinary pressures the volume is somewhat less than that
assigned by Boyle’s law.

Still at the temperature of 118°6 F. carbonic acid has all the
properties of a gas, and the effects of heat and pressure on it differ
from their effects on a perfect gas only by quantities requiring
careful experiments to detect them.

‘We have no reason to believe that any phenomenon similar to
condensation would occur, however great a pressure were applied
to carbonic acid at this temperature.
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