TO: Joseph M. Powers
FROM: Brian P.Rigney
DATE: 3 April 1997

RE: AE 360 Project: Partl

This memorandum describes the process used to model shock and rarefaction waves
propagating in a duct. First, a brief problem description will be given, followed by an
overview of the governing equations. The results of the output will then be discussed and
finally a copy of the computer code will be given.

A duct, 10 m in length with a cross-sectional area of .01 m?, is filled with air, modeled
as a calorically perfect ideal gas. At time t=0 s, the air is at rest with 7= 300 K. A thin
diaphragm, located in the center of the duct, separates two different pressure regions. On one
side the pressure is 2000 kPa while the other side is at 100 kPa. At t=0+, this diaphragm
breaks and, because of this drastic pressure difference, shock and rarefaction waves form and
propagate through the duct. The objective of this code will be to model this process up
until the time that the waves reach the ends of the duct. At this point the waves reflect, a
phenomenon not considered in this code.

The equations which were solved to model this process are the conservation of mass,
momentum and energy. In order to solve for the correct wave speed, it was necessary to cast
these equations in their conservative form; the resulting equations are presented here. The
conservative form of the mass equation is

%—l—%(pu) =0, (0.1)
where p is the density, u is the velocity,  is the position variable, and ¢ is the time variable.
In the same manner, the conservative for of the momentum equation can be formed:

0

a(pu) + 3(pu2 +P)=0, (0.2)
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where P represents the pressure. Finally, the conservative form of the energy equation is

2 1 £+u_2 _|_2 L£+u_2+£ =0 (()3)
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where v is a constant. These equations were solved using the Lax-Wendhoff numerical
solution technique. This method involves iterating these equations by first finding values at
half time steps and then using these values to predict values at the full time step. This code
is provided in Appendix A. The results obtained from this numerical solution are presented
in the following paragraph.

Figure 0.1 shows the pressure distribution at .4 ms. By this time, a shock wave can
be seen propagating to the right as a rarefaction, or expansion, wave moves to the left. As
the name suggests, the expansion wave converts high pressure air to a lower pressure. Also,
pressure is seen to increases behind the shock wave. Figure 0.2 is a plot of the velocity
distribution at .4 ms. At this time, the entire duct has not yet been excited. Only the air
located inside the expansion wave-shock wave boundary is moving. Finally, Figure 0.3 shows



the density distribution in the duct. This plot also supports the conclusion that the wave
propagating to the left is an expansion wave and the wave moving to the right is a shock
wave; the density decreases as it moves through the rarefaction and increases discontinuously
as it moves through the shock.
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Figure 0.1: Pressure distribution in the shock tube at .4 ms.

Velocity versus x-locatin at t=.4 ms
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Figure 0.2: Velocity distribution in the shock tube at .4 ms.



Density versus x-location at t=.4 ms
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Figure 0.3: Density distribution in the shock tube at .4 ms.



