
AME 50531: Intermediate Thermodynamics
Homework Solutions

Fall 2010

1 Homework 1 Solutions

1.1 Problem 1:

CPIG air enters and isentropic nozzle at 1.30 atm and 25◦C with a velocity of 2.5 m/s. The nozzle entrance diameter
is 120mm. The air exits the nozzle at 1.24atm with a velocity of 90m/s. Determine the temeprature of the exiting air
and the nozzle exit diameter.

At the nozzle entrance (State 1):

P1 = 1.30atm · 101.3 kPa
1 atm

= 131.7 kPa (1)

T1 = 25◦C +273.15= 298.15K (2)

v1 = 2.5 m/s (3)

A1 = π · (0.120m)2 = 0.045m2 (4)

At the nozzle exit (State 2):

P2 = 1.24atm · 01.3 kPa
1 atm

= 125.6 kPa (5)

v2 = 90 m/s (6)

T2 andd2 are unknown.

Because the nozzle is isentropic, we can use the isentropic relation for temperature and pressure to find the exit
temperature. For air,k = 1.4.

T2

T1
=

(

P2

P1

) k−1
k

(7)

T2 = T1

(

P2

P1

)
k−1

k

= 298.15K ·
(

125.6 kPa
131.7 kPa

)
1.4−1

1.4

(8)

T2 = 294.14K = 21◦C (9)

To find the exit diameter, recall that ˙m = ρAv. Then,

ṁ = ρ1A1v1 = ρ2A2v2 (10)

Knowing thatρ1 = ρ2,
A1v1 = A2v2 (11)

A2 = A1

(

v1

v2

)

= 0.045m2 ·
(

2.5 m/s
90 m/s

)

= 0.0012m2 (12)

Therefore, d2 = 0.020m = 20 mm .
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1.2 Problem 2: 9.47

Consider a steam turbine power plant operation near critical pressure, as shown in Figure 1.2. As a first approximation,
it may be assumed that the turbine and pump processes are reversible and adiabatic. Neglecting any changes in kinetic
and potential energies, calculate:

• The specific turbine work output and the turbine exit state.

• The pump work input and enthalpy at the pump exit state.

• The thermal efficiency of the cycle.

We are givenP1 = P4 = 20MPa, T1 = 800◦C, P2 = P3 = 10 kPa, andT3 = 40◦C.

State 1: Using Table B.1.3,h1 = 4069.80kJ/kg, s1 = 7.0544 kJ
kg·K

State 2:

s2 = s1 = 7.0544
kJ

kg ·K (13)

Using Table B.1.2,
s2 = 0.6492+7.5010⇒ x2 = 0.8539 (14)

h2 = 191.81+0.8539·2392.82= 2235.04kJ/kg (15)

The specific work output from the turbine,

wt = h1−h2 = 4069.80kJ/kg−2235.04kJ/kg = 1834.76kJ/kg (16)

The turbine exit state is a saturated mixture.

State 3: Compressed liquid, using Table B.1.1,h3 = 167.54kJ/kg, v3 = 0.001007

State 4: Using the property relation for constantv,

wp = −v3(P4−P3) = −0.001007· (20000−10)= −20.13kJ/kg (17)

h4 = h3−wp = 167.54kJ/kg +20.13kJ/kg = 187.67kJ/kg (18)

The heat transfer in the boiler is

qin = h1−h4 = 4069.80kJ/kg−187.67kJ/kg = 3882.13kJ/kg (19)

wnet = wt + wp = 1834.76kJ/kg−20.13kJ/kg = 1814.63kJ/kg (20)

ηT H =
wnet

qin
=

1814.63
3882.13

= 0.4674 (21)

2



2 Homework 2 Solutions:

2.1 Problem 1: 7.64

Helium has the lowest normal boiling point of any of the elements at 4.2 K. At this temperature the enthalpy of
evaporation is 83.3 kJ/kmol. A Carnot refrigeration cycle is analyzed for the production of 1kmol of liquid helium at
4.2 K from saturated vapor at the same temperature. What is the work input to the refrigerator and the coefficient of
performance for the cycle with an ambient temperature at 280K?

For the Carnot cycle the ratio of the heat transfers is the ratio of temperatures:

QL = nh̄ f g = 1 kmol ·83.3 kJ/kmol = 83.3 kJ (22)

QH = QL ·
TH

TL
= 83.3 · 280

4.2
= 5553.3 kJ (23)

WIN = QH −QL = 5553.33−83.3= 5470kJ (24)

β =
QL

WIN
=

83.3
5470

= 0.0152

[

=
TL

TH −TL

]

(25)
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2.2 Problem 2: 8.97

A piston/cylinder contains air at 1380K, 15 MPa, with V1 = 9 cm3, Acyl = 5 cm2. The piston is released, and just
before the piston exits the end of the cylinder the pressure inside is 200kPa. If the cylinder is insulated, what is its
length? How much work is done by the air inside?

The cylinder is a control volume of air. It is insulated and therfore adiabatic, soQ = 0. By the continuity equation,

m2 = m1 = m (26)

From the energy equation (5.11),
m(u2−u1) = Q1 2− W1 2 = − W1 2 (27)

From the entropy equation (8.37),

m(s2− s1) =

∫

dQ
T

+ S1 2gen = 0+ S1 2gen (28)

Pressure and temperature are known at State 1, but only pressure is known at State 2, soT2 must be obtained. Assume
a reversible process.

S1 2gen = 0⇒ s2− s1 = 0 (29)

State 1: Using Table A.7,u1 = 1095.2 kJ/kg ands◦T1 = 8.5115 kJ
kg·K

m =
P1V1

RT1
=

15000·9 ·10−6

0.287·1380
= 0.000341kg (30)

State 2: From the entropy equation,s2 = s1 so from Eq. 8.19,

s◦T2 = s◦T1 + R ln
P2

P1
= 8.5115+0.287ln

(

200
15000

)

= 7.2724
kJ

kg ·K (31)

Then, use Table A.7 to interpolate and findT2 = 447.2 K andu2 = 320.92kJ/kg.

V2 = V1
T2P1

T1P2
= 9 · 447.2 ·15000

1380·200
= 218.7 cm3 (32)

⇒ L2 =
V2

Acyl
=

218.7
5

= 43.74cm (33)

w1 2 = u1−u2 = 774.3 kJ/kg (34)

W1 2 = m1w2 = 0.264kJ = 264J (35)
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2.3 Problem 3:

CPIG air in a cylinder (V1 = 0.03 m3, P1 = 100kPa, T1 = 10·C) is compressed reversibly at constant temperature to a
pressure of 420kPa. Determine the entropy change, the heat transferred, and the work done. Also accurately plot this
process onT-S andP-V diagrams.

State 1:

T1 = 10·C = 283.15K

P1 = 100kPa

V1 = 0.03m3

State 2:

T2 = T1 = 283.15K

P2 = 420kPa

V2 =?

We know thatm1 = m2, so,

m1 = m2 =
P1V1

RT
=

100·0.03
0.287·283.15

= 0.0369kg (36)

V2 =
mRT

P2
=

0.0369·0.287·283.15
420

= 0.00714m3 (37)

v1 =
V1

m
=

0.03
0.0369

= 0.813m3/kg (38)

v2 =
V2

m
=

0.00714
0.0369

= 0.193m3/kg (39)

S2−S1 = m

(

cp ln
T2

T1
−R ln

P2

P1

)

= 0.0369·
(

1.004ln1−0.287ln
420
100

)

(40)

S2−S1 = −0.0152kJ/K (41)

Now, to find the heat transfer and work done,

Q1 2 = W1 2 = mRT ln
v2

v1
= 0.0369·0.287·283.15ln

0.193
0.813

(42)

Q1 2 = W1 2 = −4.312kJ (43)
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2.4 Problem 4: 12.97

Consider an ideal air-standard Stirling cycle with an idealregenerator. The minimum pressure and tmeperature in the
cycle are 100kPa, 25◦C, the compression ratio is 11, and the maximum temperature inthe cycle is 1000◦C. Analyze
each of the four processes in this cycle for work and heat transfer, and determine the overall perfomance of the engine.

P1 = 100kPa, T1 = T2 = 25◦C, v1
v2

= 11,T3 = T4 = 1000◦C

From 1-2 at constant temperature,w1 2 = q1 2 = T1(s2− s1)

w1 2 = −RT1 ln
v1

v2
= −0.287·298.15ln11= −205.2 kJ/kg (44)

From 2-3 at constant volume,w2 3 = 0

q23 = CV0(T3−T2) = 0.717(1000−25)= 699kJ/kg (45)

From 3-4 at constant temperature,w3 4 = q3 4 = T1(s4− s3)

w3 4 = +RT3 ln
v4

v3
= 0.287·1273.15ln11= 876.2 kJ/kg (46)

From 4-1 at constant volume,w4 1 = 0

q41 = CV0(T1−T4) = 0.717(25−1000)= −699kJ/kg (47)

wNET = −205.2+0+876.2+0= 671kJ/kg (48)

Sinceq23 is supplied by−q41 (regenerator),

qH = q34 = 876.2 kJ/kg (49)

ηT H =
wNET

qH
=

671
876.2

= 0.766 (50)

NOTE:

qH = q34 = RT3 ln11 (51)

qL = − q1 2 = RT1 ln11 (52)

ηT H =
qH −qL

qH
=

T3−T1

3
=

975
1273.15

= 0.766= Carnot efficiency (53)
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3 Homework 3 Solutions:

3.1 Problem 1: 11:36

Consider an ideal steam reheat cycle where steam enters the high-pressure turbine at 4.0 MPa, 400◦C, amd then
expands to 0.8 MPa. It is then reheated to 400◦C and expands to 10kPa in the low-pressure turbine. Calculate the
cycle thermal efficiency and the moisture content of the steam leaving the low-pressure turbine.

State 3: High-pressure turbine entrance.

P3 = 4 MPa, T3 = 400◦C ⇒ h3 = 3213.51kJ/kg, s3 = 6.7689
kJ

kg ·K (54)

State 4: High-pressure turbine exit.s4 = s3 ⇒ h4 = 2817.77kJ/kg
State 5: Low-pressure turbine entrance.

P5 = 0.8 MPa, T5 = 400◦C ⇒ h5 = 3267.07kJ/kg, s5 = 7.5715
kJ

kg ·K (55)

State 6: Low-pressure turbine exit. Use entropy to find the moisture contentx6:

s6 = s5 = 7.5715
kJ

kg ·K ⇒ two-phase state (56)

x6 =
s6− s f

s f g
=

7.5715−0.6492
7.501

= 0.92285 (57)

h6 = h f + x6h f g = 191.81+0.92285·2392.82= 2400.02kJ/kg (58)

State 1: Pump entrance.P1 = 10 kPa, v1 = 0.00101m3/kg, h1 = 191.81kJ/kg
State 2: Pump exit. Pump is reversible and adiabatic. Assume incompressible flow.

wP = v1(P2−P1) = 0.00101(4000−10)= 3.94kJ/kg (59)

h2 = h1 + wP = 191.81+3.94= 195.75kJ/kg (60)

wT,tot = h3−h4+ h5−h6 = 3213.51−2817.77+3267.07−2400.02= 1262.79kJ/kg (61)

qH1 = h3−h2 = 3213.51−195.75= 3017.76kJ/kg (62)

qH = qH1 + h5−h4 = 3017.76+3267.07−2817.77= 3467.06kJ/ jg (63)

ηCYCLE =
(wT,tot −wP)

qH
=

1262.79−3.94
3467.06

= 0.3631 (64)
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3.2 Problem 2:

Consider a 600MW reheat-Rankine cycle steam power plant. The boiler pressure is 1000psia, the reheater pressure
is 200psia, and the condenser pressure is 1psia. Both turbine inlet temperatures are 1000◦F. The water leaving the
condenser is saturated liquid. Determine the thermal efficiency of the power plant and the boiler mass flow rate in
lbm/hr.

State 3: HP turbine entrance.P3 = 1000psia, T3 = 1000◦F , h3 = 1505.86Btu/lbm, s3 = 1.6530 Btu
lbm·R

State 4: HP turbine exit.P4 = 200 psia, s4 = s3 = 1.6530 Btu
lbm·R . Interpolating,h4 = 1297.58Btu/lbm

State 5: LP turbine entrance.P5 = 2000psia, T5 = 1000◦F , h5 = 1529.28Btu/lbm, s5 = 1.8425 Btu
lbm·R

State 6: LP turbine exit.P6 = 1 psia, s6 = s5 = 1.8425 Btu
lbm·R

x6 =
s6− s f

s f g
=

1.8425−0.1323
1.8461

= 0.9264 (65)

h6 = h f + x6h f g = 69.57+0.9264·1036.11= 1029.41Btu/lbm (66)

State 1: Pump entrance, saturated liquid.P1 = 1 psia, h1 = 69.57Btu/lbm, v1 = 0.016136f t3/lbm

State 2: Pump exit.P2 = 1000psia

wP = h1−h2 = −v1(P2−P1) ⇒ h2 = h1 + v1(P2−P1) (67)

Converting pressures intolb/ f t2, we getP1 = 144lb/ f t2 andP2 = 144000lb/ f t2.

wP = 0.016136(144000−144) · 1.285·10−3 Btu
1 lb · f t

= 2.983Btu/lbm ⇒ h2 = 72.55Btu/lbm (68)

ηT =
wNET

QIN
=

(h3−h4)+ (h5−h6)+ (h1−h2)

(h3−h2)+ (h5−h−4)
= 0.4235 (69)

Ẇcycle = 600MW · 1 Btu/s
1.055·10−3 MW

= 5.687·106 Btu/s (70)

ṁ =
Ẇcycle

wNET
=

Ẇcycle

(h3−h4)+ (h5−h6)+ (h−1−h2)
· 3600s

1 hr
= 2.9033·107 lbm/hr (71)
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3.3 Problem 3: 11.45

A power plant with one open feedwater heater has a condenser temperature of 45◦C, a maximum pressure of 6MPa,
and a boiler exit temperature of 900◦C. Extraction steam at 1MPa to the feedwater heater is mixed with the feedwater
line so the exit is saturated liquid into the second pump. Find the fraction of extraction steam flow and the two specific
pump work inputs.

State 5: Boiler exit/turbine entrance.h5 = 4375.29kJ/kg, s5 = 7.8727 kJ
kg·K

State 6: Turbine is reversible and adiabatic:s7 = s6 = s5

P6 = 1 MPa, s6 = 7.8727
kJ

kg ·K ⇒ h6 = 3569.39kJ/kg (72)

State 1: Condenser exit/pump 1 entrance.h1 = 188.42kJ/kg, v1 = 0.00101m3/kg, P1 = 9.593kPa
State 2: Pump 1 exit.P2 = P6

wP1 = h2−h1 = v1(P2−P1) = 0.00101(1000−9.593)= 1.0 kJ/kg (73)

⇒ h2 = h1 + wP1 = 188.42+1.0= 189.42kJ/kg (74)

State 3: Feedwater exit.P3 = P2, h3 = 762.79,v3 = 0.001127m3/kg The extraction fraction can be expressed as
y = ṁ6

ṁtot
. From the energy equation,(1− y)h2+ yh6 = h3

y =
h3−h2

h6−h2
=

762.79−189.42
3569.39−189.42

= 0.1696 (75)

State 4: Pump 2 exit.P4 = P5

wP2 = h4−h3 = v3(P4−P3) = 0.001127(6000−1000)= 5.635kJ/kg (76)
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4 Homework 4 Solutions:

4.1 Problem 1: 12.22

A Brayton cycle produces 14MW with an inlet state of 17◦C, 100kPa, and a compression ratio of 17 : 1. The heat
added in the combustion is 960kJ. What are the highest temperature and mass flow rate of air, using properties from
Table A.7.1?

The specific heat varies; therefore it is necessary to go through the processes individually to find the net work and
highest temperatureT3.

State 1: T1 = 290.15K, P1 = 100kPa. From A.7.1,h1 = 290.43kJ/kg, s◦T1 = 6.83521 kJ
kg·K

State 2: The compression is reversible and adiabatic, so from Eq. 8.19,

s2 = s1 ⇒ s◦T2 = s◦T 1 + R ln
P2

P1
= 6.83521+0.287ln17= 7.64834

kJ
kg ·K (77)

⇒ T2 = 642.36K, h2 = 652.04kJ/kg (78)

From the energy equation with compressor work in,

wC = w1 2 = h2−h1 = 652.04−290.43= 361.61kJ/kg (79)

State 3: Energy equation for the combustor,

h3 = h2 + qH = 652.04+960= 1612.04kJ/kg (80)

⇒ T3 = 1480.33K, s◦T3 = 8.59596
kJ

kg ·K (81)

State 4: The expansion is reversible and adiabatic so from Eq. 8.19,

s4 = s3 ⇒ s◦T4 = s◦T 3 + R ln
P4

P3
= 8.59596+0.287ln

1
17

= 7.78283
kJ

kg ·K (82)

⇒ T4 = 728.36K, h4 = 744.14kJ/kg (83)

From the energy equation with turbine work out,

wT = h3−h4 = 1612.04−744.14= 867.9 kJ/kg (84)

The net work is
wnet = wT −wC = 867.9−361.61= 506.29kJ/kg (85)

The total power requires a mass flow rate of

ṁ =
Ẇnet

wnet
=

14000
506.29

KW
kJ/kg

= 27.65kg/s (86)
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4.2 Problem 2: 12.36

A large stationary Brayton cycle gas-turbine power plant delivers a power output of 100MW to an electric generator.
The minimum temperature in the cycle is 290K, and the maximum temperature is 1600K. The minimum pressure in
the cycle is 100kPa, and the conmpressor compression ratio is 14 : 1. The compressor has an isentropic efficiency of
85% and the turbine has an isentropic efficiency of 88%. Calculate the power output of the turbine. What fraction of
the turbine output is required to drive the compressor? Whatis the thermal efficiency of the cycle?

Solve using constantCP0. For an ideal compressor,s2 = s1 ⇒ Implemented by Eq. 8.23

T2s = T1

(

P2

P1

)
k−1

k

= 290(14)0.286= 616.4 K (87)

wCs = h2−h1 = CP0(T2−T1) = 1.004(616.4−290)= 327.71kJ/kg (88)

For the actual compressor,

⇒ wC =
wSC

ηSC
=

327.71
0.85

= 385.54kJ/kg = CP0(T2−T1) (89)

⇒ T2 = T1 +
wC

CP0
= 290+

385.54
1.004

= 674K (90)

For an ideal turbine,s4 = s3 ⇒ Implemented by Eq. 8.23

T4s = T3

(

P4

P3

) k−1
k

= 1600

(

1
14

)0.286

= 752.8 K (91)

wT s = h3−h4 = CP0(T3−T4) = 1.004(1600−752.8)= 850.63kJ/kg (92)

For the actual turbine,

⇒ wT = ηST ·wST = 0.88·850.63= 748.56kJ/kg = CP0(T3−T4) (93)

T4 = T3−
wt

CP0
= 1600− 748.56

1.004
= 854.4 K (94)

To calculate the overall net work and the cycle efficiency,

wNET = wT −wC = 748.56−385.54= 363.02kJ/kg (95)

ṁ =
ẆNET

wNET
=

100000
363.02

kW
kJ/kg

= 275.47kg/s (96)

ẆNET = ṁwT = 275.47kg/s ·748.56kJ/kg = 206.203MW (97)

wC

wT
=

385.54
748.56

= 0.515 (98)

Energy input is from the combustor,

qH = CP0(T −3−T2) = 1.004(1600−674)= 929.7 kJ/kg (99)

ηT H =
wNET

qH
=

363.02
929.7

= 0.3905 (100)
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4.3 Problem 3: 12.41

An air-standard Ericsson cycle has an ideal regenerator. Heat is supplied at 950◦C and heat is rejected at 80◦C. Pressure
at the beginning of the isothermal compression process is 70kPa. The heat added is 700kJ/kg. Find the compressor
work, the turbine work, and the cycle efficiency.

Identify the states:

Heat supplied at high temperature:T3 = T4 = 950◦C = 1223.15K
Heat rejected at low temperature:T1 = T2 = 0◦C = 353.15K
Beginning of the compression:P1 = 70kPa
Ideal regenerator:

q2 3 = − q4 1 ⇒ qH = q3 4 = 700kJ/kg (101)

⇒ wT = qH = 700kJ/kg (102)

ηT H = ηCARNOT = 1− 353.15
1223.15

= 0.7113 (103)

wNET = ηT HqH = 0.7113·700= 497.895kJ/kg (104)

wC = qL = qH −wNET = 700−497.895= 202.105kJ/kg (105)
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4.4 Problem 4: 12.53

An afterburner in a jet engine adds fuel after the turbine this raising the pressure and temperature due to the energy of
combustion. Assume a standard condition of 800K, 250kPa after the turbine into the nozzle that exhausts at 95kPa.
Assume the afterburner adds 425kJ/kg to that state with a rise in pressure for the same specific volume, and neglect
any upstream effects on the turbine. Find the nozzle exit velocity before and after the afterburner is turned on.

Without afterburner:T1 = 800K, P1 = 200kPa, P2 = 95 kPa
With afterburner:v3 = v1, P4−95kPa

Assume reversible adiabatic nozzle flow, then constants from Eq. 8.23

T2−T1

(

P2

P1

)

(k−1)
k

= 800K ·
(

95
250

)0.2857

= 606.8 K (106)

Energy Equation:

1
2

V 2
2 = CP(T1−T2) ⇒V2 =

√

2CP(T1−T2) =

√

2 ·1004
J

kg ·K (800−606.8) K = 622.8 m/s (107)

Add theqAB at assumed constant volume then energy equation gives

T3 = T1 +
qAB

Cv
= 800+

425
0.717

= 1392.63K (108)

v3 = v1 ⇒ P3 = P1

(

T3

T1

)

= 25kPa · 1392.63
800

= 435.2 kPa (109)

Reversible adiabatic expansion, again from Eq. 8.23

T4 = T3

(

P4

P3

)

(k−1)
k

= 1392.63·
(

95
435.2

)0.2857

= 901.5 K (110)

V2 =
√

2CP(T3−T4) =

√

2 ·1004
J

kg ·K (1392.63−901.5) K = 993.02m/s (111)

Comment: The real process adds some fuel that burns releasing energy so the temperature goes up and due to the
confined space then pressure goes up. As the pressure goes up the exit velocity increases altering the mass flow rate
through the nozzle. As in most problems the real device is more complicated than we can describe with our simple
analysis.
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5 Homework 5 Solutions:

5.1 Problem 1: 12.70

A gasoline engine takes air in at 300K, 90 kPa and then compresses it. The combustion adds 1000kJ/kg to the air
after which the temperature is 2050K. Use variable heat capacities (Table A.7) and find the compression ratio, the
compression specific work and the highest pressure in the cycle.

Standard Otto cycle, solve using Table A.7.1.
State 3: T3 = 2050K, u3 = 1725.71kJ/kg
State 2: Combustion Process

u2 = u3−qH = 1725.71−1000= 725.71kJ/kg (112)

⇒ T2 = 960.5 K, s◦T 2 = 8.0889
kJ

kg ·K (113)

State 1: Compression from 1 to 2:u1 = 214.36kJ/kg, s1 = 6.86926 kJ
kg·K , s2 = s1 ⇒ From Eq. 8.19

0 = s◦T2− s◦T1−R ln

(

P2

P1

)

= s◦T2− s◦T1−R ln

(

T2v1

T1v2

)

(114)

= 8.0089−6.86926−0.287ln

(

960.5
300

)

−0.287ln

(

v1

v2

)

(115)

Solving⇒ v1

v2
= 21.89 (116)

Comment: This is much too high for an actual Otto cycle.

− w1 2 = u2−u1 = 725.71−214.36= 511.35kJ/kg (117)

Highest pressure is after combustion wherev3 = v2 so we get

P3 = P2
T3

T2
= P1

(

T3

T1

)(

v1

v3

)

= 90·
(

2050
300

)

·21.89= 13.46MPa (118)
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5.2 Problem 2: 12.90

A diesel engine has a state before compression of 95kPa, 300 K, a peak pressure of 6000kPa, and a maximum
temperature of 2400K. Find the volumetric compression ratio and the thermal efficency. Use the properties from
Table A.7.

Compression:
State 1: T1 = 300K, u1 = 214.36,s1 = 6.869 kJ

kg·K
State 2: s2 = s1 ⇒ From Eq. 8.19

s◦T 2 = s◦T1 + R ln

(

P2

P1

)

= 6.869+0.287ln

(

6000
95

)

= 8.0588
kJ

kg ·K (119)

A.7.1⇒ T2 = 935.32K,h2 = 972.90kJ/kg (120)

State 3: h3 = 2755.78kJ/kg, s ◦
T3 = 9.19586 kJ

kg·K

qH = h3−h2 = 2755.78−972.90= 1782.88kJ/kg (121)

CR =
v1

v2
=

(

T1

T2

)(

P2

P1

)

=

(

300
935.32

)(

6000
95

)

= 20.26 (122)

Expansion process

s◦T4 = s◦T 3 + R ln

(

P4

P3

)

= s◦T3 + R ln

(

T4

T3

)

+ R ln

(

v3

v4

)

(123)

v3

v4
=

v3

v1
=

(

v2

v1

)

·
(

T3

T2

)

=

(

T3

T2

)(

1
CR

)

=

(

2400
935.32

)(

1
20.26

)

= 0.1267 (124)

s◦T 4−R ln

(

v3

v4

)

= s◦T3 + R ln

(

T4

T3

)

= 9.1958+0.287ln0.1267= 8.6029 (125)

Trial and error onT4 since it appears both ins◦T4 and the ln function

T4 = 1300K, LHS = 8.4405−0.287ln

(

1300
2400

)

= 8.6160 (126)

T4 = 1250K, LHS = 8.3940−0.287ln

(

1250
2400

)

= 8.5812 (127)

Now linearly interpolate⇒ T4 = 1280.7 K, u4 = 1004.81kJ/kg

qL = u4−u1 = 1004.81−214.36= 790.45kJ/kg (128)

η = 1−
(

qL

qH

)

= 1−
(

790.45
1782.88

)

= 0.5566 (129)
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5.3 Problem 3: 11.122

Consider an ideal dual-loop heat-powered refrigeration cycle using R-134a as the working fluid, as shown in Figure
5.3. Saturated vapor at 90◦C leaves the boiler and expands in the turbine to the ocndenserpressure. Saturated vapor at
−15◦C leaves the evaporator and is compressed to the condenser pressure. The ratio of the flows through the two loops
is such that the turbine produces juse enough power to drive the compressor. The two exiting streams mix together
and enter the condenser. Saturated liquid leaving the compressor at 45◦C is then separated into two streams in the
necessary proportions. Determine the ratio of mass flow ratethrough the power loop the the refrigeration loop. Find
also the performance of the cycle, in terms of the ratioQ̇L

Q̇H
.

From Table B.5.1,T6 = 90◦C sat. vapor⇒ P5 = P6 = 3.2445MPa
From Table B.5.1,T3 = 45◦C sat. liquid⇒ P2 = P3 = P7 = 1.1602MPa

T1 = −15◦C, h1 = 389.20kJ/kg, h3 = h4 = 264.11kJ/kg, h6 = 425.70kJ/kg (130)

C.V. Turbine

s7 = s6 = 1.6671
kJ

kg ·K = 1.2145+ x7 ·0.4962, x7 = 0.912 (131)

h7 = 264.11+0.912·157.85= 408.09kJ/kg (132)

C.V. Compressor
s2 = s1 = 0.9258⇒ h2 = 429.89kJ/kg (133)

CV: turbine + compressor
Continuity Eq.:ṁ1 = ṁ2,ṁ6 = ṁ7 (134)

Energy Eq.: ˙m1h1 + ṁ6h6 = ṁ2h2 + ṁ7h7 (135)

ṁ6

ṁ1
=

(h2−h1)

(h6−h7)
=

429.89−389.20
425.20−408.09

= 2.31 (136)

CV: pump
wP = v3(P5−P3) = 0.000890(3244.5−1160.2)= 1.855kJ/kg (137)

h5 = h3 + wP = 265.97kJ/kg (138)

CV: evaporator⇒ Q̇L = ṁ1(h1−h4)
CV: boiler⇒ Q̇L = ṁ6(h6−h5)

β =
Q̇L

Q̇H
=

ṁ1(h1−h4)

ṁ6(h6−h5)
=

389.20−264.11
2.31(425.70−265.97)

= 0.339 (139)
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5.4 Problem 4: 12.112

A small utility gasoline engine of 250cc runs at 1500RPM with a compression ratio of 7 : 1. The inlet state is 75kPa,
17◦C and the combustion adds 1500kJ/kg to the charge. This engine runs a heat pump using R-410a with ahigh
pressure of 4MPa and an evaporator operating at 0◦C. Find the rate of heating the pump can deliver. Overall cycle

efficiency is from Eq. 12.12,rv = v1
v2

= 7

ηT H = 1− r1−k = 1−7−0.4 = 0.5408 (140)

wNET = ηT H ·qH = 0.5408·1500= 811.27kJ/kg (141)

We also need specific volume to evaluate Eqs. 12.9 to 12.11

v1 =
RT1

P1
=

0.287 kJ
kg·K ·290K

75 kPa
= 1.1097m3/kg (142)

v2 =
v1

CR
= 0.15853m3/kg (143)

Pme f f =
wNET

v1− v2
=

811.27
1.097−0.15853

kK/kg
m3/kg

= 852.9 kPa (144)

Now we can find the power from Eq. 12.11 (assume 4-stroke engine)

Ẇ = Pme f f Vdispl
RPM
60

1
2

= 852.9 ·2.5 ·10−4 · 1500
60

· 1
2

= 2.665kW (145)

For the refrigeration cycle we have:
State 1: h1 = 279.12kJ/kg, s1 = 1.0368 kJ

kg·K
State 2: P2 = 4 MPa, s2 = s1, interpolate⇒ h2 = 323.81kJ/kg
State 3: P3 = 4 MPa, interpolate⇒ h3 = 171,62kJ/kg

βHP =
qH

wC
=

h2−h3

h2−h1
=

323.81−171.62
323.81−279.12

= 3.405 (146)

The work out of the heat engine queals the input to the heat pump

Q̇H = β HPẆ = 3.405·2.665kW = 9.07kW (147)
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6 Homework 6 Solutions:

6.1 Problem 1: 13.20

A 100 m3 storage tank with fuel gases is at 300K, 100kPa containing a mixture of acetyleneC2H2, propaneC3H8

and butaneC4H10. A test shows the partial pressure ofC2H2 is 15kPa and that ofC3H8 is 65kPa. How much mass is
there of each component?

Assume ideal gases, then the ratio of partial to total pressure is the mole fraction,y = P
Ptot

yC2H2 =
15
100

= 0.15, yC3H8 =
65
100

= 0.65, yC4H10 =
20
100

= 0.20 (148)

ntot =
PV
R̄T

=
100kPa ·100m3

8.31451 kJ
kmol·K ·300K

= 4.0091kmol (149)

mC2H2 = (nM)C2H2 = yC2H2ntotMC2H2 = 0.15·4.0091kmol ·26.038kg/kmol = 15.659kg (150)

mC3H8 = (nM)C3H8 = yC3H8ntotMC3H8 = 0.65·4.0091kmol ·44.097kg/kmol = 114.905kg (151)

mC4H10 = (nM)C4H10 = yC4H10ntotMC4H10 = 0.20·4.0091kmol ·58.124kg/kmol = 46.604kg (152)
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6.2 Problem 2: 13.29

A flow of 1 kg/s argon at 300K and another flow of 1kg/s CO2 at 1600K both at 200kPa are mixed without any
heat transfer. Find the exitT ,P using variable specific heats.

No work implies no pressure change for a simple flow.

Pe = 200kPa (153)

The energy equation becomes

ṁhi = ṁhe = (ṁhi)Ar +(ṁhi)CO2 = (ṁhe)Ar +(ṁhe)CO2 (154)

⇒ ṁCO2(he −hi)CO2 + ṁArCPAr(Te −Ti)Ar = 0 (155)

⇒ 1 kg/s · (he−1748.12kJ/kg)+ (1 ·0.52) kW/K · (Te −300K) = 0 (156)

heCO2
+0.52Te = 1748.12+0.52·300= 1904.12kJ/kg (157)

Trial and error onTe using Table A.8 forheCO2

Te = 1200K : LHS = 1223.34+0.52·1200= 1847.34 (158)

Te = 1300K : LHS = 1352.28+0.52·1300= 2028.28 (159)

Interpolating,

Te = 1200+100
1904.12−1847.34
2028.28−1847.34

= 1231.4 K (160)
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6.3 Problem 3: 13.46

A mixture of 2kg oxygen and 2kg argon is in an insulated piston cylinder arrangement at 150kPa, 300K. The piston
now compresses the mixture to half its initial volume. Find the final pressure, temperature, and the piston work.

C.V. Mixture. Control mass, boundary work, adiabatic and assume reversible.

Energy Eq. 5.11:u2−u1 = q1 2− w1 2 = − w1 2 (161)

Entropy Eq. 8.37:s2− s1 = 0+0= 0 (162)

Process: cosntants ⇒ Pvk = constant,v2 = v1
2 ,

Assume ideal gases(T1 À Tc) and usekmix andCvmix for properties.

Eq. 13.15:Rmix = ∑ciRi = 0.5 ·0.25983+0.5·0.20813= 0.234
kJ

kg ·K (163)

Eq. 13.23:CPmix = ∑ciCPi = 0.5 ·0.9216+0.5·0.5203= 0.721
kJ

kg ·K (164)

Cvmix = CPmix −Rmix = 0.487
kJ

kg ·K (165)

Ratio of specific heats:kmix = CPmix
Cvmix

= 1.4805 The relations for the polytropic process

Eq. 8.25:P2 = P1

(

v1

v2

)k

= P1(2)k = 150(2)1.4805= 418.5 kPa (166)

Eq. 8.24:T2 = T1

(

v1

v2

)k−1

= T1(2)k−1 = 300(2)0.4805= 418.6 K (167)

Work from the energy equation

W1 2 = mtot(u1−u2) = mtotCv(T1−T2) = 4 kg ·0.487
kJ

kg ·K (300−418.6) K = −231kJ (168)
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6.4 Problem 4: 13.54

Carbon dioxide gas at 320K is mixed with nitrogen at 280K in an insulated mixing chamber. Both flows are at
100kPa and the mass ratio of carbon dioxide ot nitrogen is 2 : 1. Find the exit temprature and total entropy generation
perkg of the exit mixture.

CV mixing chamber. The inlet ratio is so ˙mCO2 = 2ṁN2 and assume no external heat transfer, no work involved.

Continuity Eq. 6.9: ˙mN2 +2ṁN2 = ṁex = 3ṁN2 (169)

Energy Eq. 6.10: ˙mN2(hN2 −2hCO2) = 3ṁN2hmixex (170)

Take 300K as reference and writeh = h300+CPmix(Tmixex −300)

CPN2(TiN2
−300)+2CPCO2(TiCO2

−300) = 3CPmix(Tmixex −300) (171)

CPmix = ∑ciCPi =
2
3
·0.842+

1
3
·1.042= 0.9087

kJ
kg ·K (172)

3CPmixTmixex = CPN2
TiN2

+2CPCO2
TiCO2

= 830.64kJ/kg (173)

Tmixex = 304.7 K (174)

To find the entropies we need the partial pressures, which assuming ideal gas are equal to the mole fractions times
the total pressure:

yi =

[

ci
Mi

]

∑ c j
M j

(175)

yN2 =

[ 0.3333
28.013

]

0.3333
28.013+ 0.6666

44.01

= 0.44 (176)

yCO2 = 1− yN2 = 0.56 (177)

Ṡgen = ṁexsex − (ṁs)iCO2 − (ṁs)iN2 = ṁN2(se − si)N2 +2ṁN2(se − si)CO2 (178)

Ṡgen

3ṁN2

=
1
3

[

CPN2
ln

Tex

TiN2

−RN2 lnyN2

]

+
2
3

[

CPCO2
ln

Tex

TiCO2

−RCO2 lnyCO2

]

(179)

=
1
3

[

1.042ln

(

304.7
280

)

−0.2968ln0.44

]

+
2
3

[

0.842ln

(

304.7
320

)

−0.1889ln0.56

]

(180)

Ṡgen = 0.1561
kJ

kgmix K
(181)
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7 Homework 7 Solutions:

7.1 Problem 1: 13.73

Ambient moist air enters a steady-flow air-conditioning unit at 105kPa, 30◦C, with a 60% relative humidity. The
volume flow rate entering the unit is 100L/s. The moist air leaves the unit at 95kPa, 15◦C, with a relative humidity
of 100%. Liquid condensate also leaves the unit at 15◦C. Determine the rate of heat transfer for this process.

State 1:
PV1 = φ1PG1 = 0.60·4.246kPa = 2.5476kPa (182)

w1 = 0.622· 2.5476
105−2.5476

= 0.0154668 (183)

ṁA =
PA1V̇1

RAT1
=

102.45·0.1
0.287·303.15

= 0.1178kg/s (184)

State 2:
PV2 = PG2 = 1.705kPa (185)

w2 = 0.622· 1.705
95−1.705

= 0.1137 (186)

Energy Eq. 6.10:
Q̇CV + ṁAhA1 + ṁV1hV1 = ṁAhA2 + ṁV2hV2 + ṁ3hL3 (187)

Q̇CV

ṁA
= CP0A(T2−T1)+ w2hV2−w1hV1 +(w1−w2)hL3 (188)

= 1.004(15−30)+0.1137·2528.91−0.0154668·2556.25+0.00456·63.0= −26.732kJ/kg air (189)

Q̇CV = 0.1178(−26.732)= −3.088kW (190)
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7.2 Problem 2: 13.103

Use a psychrometric chart to find the missing property of:φ , ω , Twet , Tdry

a. Tdry = 25◦C, φ = 80%
b. Tdry = 15◦C, φ = 100%

c. Tdry = 20◦C, ω = 0.008
d. Tdry = 25◦C, Twet = 23◦C

a. 25◦C, φ = 80%⇒ ω = 0.016, Twet = 22.3◦C (191)

b. 15◦C, φ = 100%⇒ ω = 0.0106, Twet = 15◦C (192)

c. 20◦C, ω = 0.008⇒ φ = 57%, Twet = 14.4◦C (193)

d. 25◦C, Twet = 23◦C ⇒ ω = 0.017, φ = 86% (194)
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7.3 Problem 3: 14.35

The Joule-Thomson coefficientµJ is a measure of the direction and magnitude of the temperature change with pressure
in a throttling process. For any three propertiesx,y,z use the mathematical relation

(

∂x
∂y

)

z

(

∂y
∂ z

)

x

(

∂ z
∂x

)

y
= −1 (195)

to show the following relations for the Joule-Thomson coefficient:

µJ =

(

∂T
∂P

)

h
=

T
(

∂v
∂T

)

P
− v

CP
=

RT 2

PCp

(

∂Z
∂T

)

P
(196)

Let x = T , y = P andz = h and substitute into the relations as
(

∂T
∂P

)

h

(

∂P
∂h

)

T

(

∂h
∂T

)

P
= −1 (197)

Then we have the definition of specific heat asCP =
(

∂h
∂T

)

P
so solve for the first term

µJ =

(

∂T
∂P

)

h
= −

1
CP

(

∂P
∂h

)

T

= − 1
CP

(

∂h
∂P

)

T
(198)

The last derivative is substituted with Eq. 14.25 so we get

µJ =

(

∂T
∂P

)

h
=

T
(

∂v
∂T

)

P
− v

CP
(199)

If we use the compressibility factor then we get

Pv = ZRT ⇒
(

∂v
∂T

)

P
=

ZR
P

+
RT
P

(

∂Z
∂T

)

P
=

v
T

+
RT
P

(

∂Z
∂T

)

P
(200)

so then

T

(

∂v
∂T

)

P
− v = v +

RT 2

P

(

∂Z
∂T

)

P
− v =

RT 2

P

(

∂Z
∂T

)

P
(201)

and we have shown the last expression also.

µJ =

(

∂T
∂P

)

h
=

T
(

∂v
∂T

)

P
− v

CP
=

RT 2

PCp

(

∂Z
∂T

)

P
(202)
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7.4 Problem 4: 14.77

Developgeneral expressions for changes in internal energy, enthalpy, and entropy for a gas obeying the Redlich-
Kwong equation of state.

Redlich-Kwong equation of state:P =
RT

v−b
− a

v(v + b)T1/2
(203)

(

∂P
∂T

)

v
=

R
v−b

+
a

2v(v + b)T3/2
(204)

From Eq. 14.30

u2−u1 =

∫ 2

1
Cv(T,v)dT +

∫ 2

1

3a

2v(v + b)T1/2
=

∫ 2

1
Cv(T̂ ,v)dT̂ − 3a

2bT 1/2
ln

[(

v2 + b
v2

)(

v1

v1 + b

)]

(205)

We find the change inh from change inu, so we do not do the derivative in Eq. 14.27. This is due to the form of the
EOS.

h2−h1 =

∫ 2

1
CP(T̂ ,v)dT̂ + P2v2−P1v1−

3a

2bT 1/2
ln

[(

v2 + b
v2

)(

v1

v1 + b

)]

(206)

Entropy follows from Eq. 14.35

s2− s1 =

∫ 2

1
Cv(T,v)

dT
T

+

∫ 2

1

[

R
v−b

+
a/2

v(v + b)T3/2

]

dv (207)

s2− s1 =

∫ 2

1
Cv(T̂ ,v)

dT̂

T̂
+ R ln

(

v2−b
v1−b

)

− a

2bT3/2
ln

[(

v2 + b
v2

)(

v1

v1 + b

)]

(208)
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7.5 Problem 5: 14.81

A flow of oxygen at 235K, 5 MPa is throttled to 100kPa in a steady flow process. Find the exit temperature and
the specific entropy generation using the Redlich-Kwong equation of state and ideal gas heat capacity. Notice this
becomes iterative due to the non-linearity couplingh, P¡ v andT .

C.V. Throttle. Steady single flow, no heat transfer and no work.

Energy Eq.:h1 +0 = h2 +2 so constanth (209)

Entropy Eq.:s1 + sgen = s2 so entropy generation (210)

Find the change inh from Eq. 14.26 assumingCP is constant.

Redlich-Kwong equation of state:P =
RT

v−b
− a

v(v + b)T1/2
(211)

(

∂P
∂T

)

v
=

R
v−b

+
a

2v(v + b)T3/2
(212)

From Eq. 14.31

(u2−u1)T =

∫ 2

1

3a

2v(v + b)T1/2
=

−3a

2bT 1/2
ln

[(

v2 + b
v2

)(

v1

v1 + b

)]

(213)

We find change inh from change inu, so we do not do the derivative in Eq. 14.27. This is due to the form of the EOS.

(h2−h1)T = P2v2−P1v1−
3a

2bT 1/2
ln

[(

v2 + b
v2

)(

v1

v1 + b

)]

(214)

Entropy follows from Eq. 14.35

(s2− s1)T =

∫ 2

1

[

R
v−b

+
a/2

v(v + b)T3/2

]

dv = R ln

(

v2−b
v1−b

)

− a

2bT 3/2
ln

[(

v2 + b
v2

)(

v1

v1 + b

)]

(215)

Pc = 5040kPa, Tc = 154.6 K, R = 0.2598
kJ

kg ·K (216)

b = 0.08664
RTc

Pc
= 0.08664· 0.2598·154.6

5040
= 0.0006905m3/kg (217)

a = 0.42748
R2T 5/2

c

Pc
= 0.42748· (0.2598)2 · (154.6)5/2

5040
= 1.7013 (218)

We need to findT2 so the energy equation is satisfied

h2−h1 = h2−hx + hx −h1 = Cp(T2−T1)+ (h2−h1)T = 0 (219)

and we will evaluate it similar to figure 13.4, where the first term is done from state x to 2 and the second term is done
from state 1 to state x (atT1 = 235K). We do this as we assume state 2 is close to ideal gas, but we donot knowT2.

We first need to findv1 from the EOS, so guessv and findP

v1 = 0.011m3/kg ⇒ P = 5059 too high (220)

v1 = 0.01114m3/kg ⇒ P = 5000.6 OK (221)

Now evaluate the change inh along the 235K from state 1 to state x, that requires a value forvx. Guess ideal gas at
Tx = 235K,

vx =
RTx

P2
= 0.2598· 235

100
= 0.6105m3/kg (222)
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From the EOS:P2 = 99.821kPa (close) A few more guesses and adjustments gives

vx = 0.6094m3/kg, P2 = 100.0006kPa OK (223)

(hx −h1)T = Pxvx −P1v1−
3a

2bT 1/2
ln

[(

vx + b
vx

)(

v1

v1 + b

)]

= 19.466kJ/kg (224)

From energy eq.:T2 = T1 =
(hx −h1)T

Cp
= 235− 19.466

0.9055
= 213.51K (225)

Now the change ins is done in a similar fashion,

sgen = s2− s1 = (sx − s1)T + s2− sx = R ln

(

vx −b
v1−b

)

− a

2bT 3/2
ln

[(

vx + b
vx

)(

v1

v1 + b

)]

+Cp ln
T2

Tx
(226)

= 1.0576+0.0202−0.0868= 0.9910
kJ

kg ·K (227)
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7.6 Problem 6:

Consider a thermodynamic system in which there aretwo reversible work modes: compression and electrical. So take
the version of the text’s Eq. 4.16 givingdW to be

δW = PdV −E dZ, (228)

whereE is the electrical potential difference anddZ is the amount of charge that flows into the system.

• Extend the Gibbs equation to account for electrical work.

• Find the Legendre transformation which renders the independent variables to beP, E andT and show how the
other variables can be determined as functions of these independent variables.

• Find all Maxwell equations associated with this Legendre transformation.

Gibbs equation:
dU = δQ−δW, δQ = Tds (229)

dU = TdS−PdV +E dZ (230)

Legendre transformation:

ψ1 = T, ψ2 = −P, ψ3 = E , x1 = S, x2 = V, x3 = Z (231)

F1 = U −ψ1x1 = U −TS (232)

F1 = U −ψ2x2 = U −PV (233)

F1 = U −ψ3x3 = U −E Z (234)

F1,2,3 = U −TS + PV −E Z (235)

F(P,E ,T ) = −SdT +VdP−ZdE (236)

Maxwell equations:

−S =

(

∂U
∂T

)

P,E
, −V =

(

∂U
∂P

)

T,E

, −Z =

(

∂U
∂E

)

T,P
(237)

(

∂S
∂P

)

T,E

= −
(

∂V
∂T

)

P,E
(238)

(

∂S
∂PE

)

T,P
=

(

∂Z
∂T

)

P,E
(239)

(

∂V
∂E

)

T,P
= −

(

∂Z
∂P

)

T,E

(240)
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7.7 Problem 7: 14.113

A 2 kg mixture of 50% argon and 50% nitrogen by mass is in a tank at 2MPa, 180K. How large is the volume using
a model of (a) ideal gas and (b) Redlich-Kwong equation of state with a, b for a mixture.

a) Ideal gas mixture:

Eq. 13.15:Rmix = ∑ciRi = 0.5 ·0.2081+0.5·0.2968= 0.25245
kJ

kg ·K (241)

V =
mRmixT

P
=

2 ·0.25245·180
2000

= 0.0454m3 (242)

b) Redlich-Kwong equation of state:
Before we can do the parameters a, b for the mixture we need theindividual component parameters, Eq. 14.54, 13.55.

aAr = 0.42748
R2T 5/2

C

Pc
= 0.42748

(0.2081)2 · (150.8)2.5

4870
= 1.06154 (243)

aN2 = 0.42748
R2T 5/2

C

Pc
= 0.42748

(0.2081)2· (126.2)2.5

3390
= 1.98743 (244)

bAr = 0.08664
RTC

Pc
= 0.08664

0.2081·150.8
4870

= 0.000558 (245)

bN2 = 0.08664
RTC

Pc
= 0.08664

0.2081·126.2
3390

= 0.000957 (246)

Now the mixture parameters are from Eq. 14.84

amix =
(

∑cia
1/2
i

)2
=

(

0.5 ·
√

1.06154+0.5 ·
√

1.98743
)2

= 1.4885 (247)

bmix = ∑cibi = 0.5 ·0.000558+0.5·0.000957= 0.000758 (248)

Using now Eq. 14.53:

P =
RT

v−b
− a

v(v + b)T1/2
(249)

2000=
0.25245·180
v = 0.000758

− 1.4885

v(v +0.000758)1801/2
(250)

By trial and error we find the specific volume,v = 0.02102m3/kg

V = mv = 0.04204m3 (251)
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8 Homewrok 8 Solutions:

8.1 Problem 1: 15.20

Calculate the theoretical air-fuel ratio on a mass and mole basis for the combustion of ethanol,C2H5OH.

Reaction Eq.:C2H5OH + νO2(O2 +3.76N2) ⇒ aCO2 + bH2O+ cN2 (252)

Do the atom balance
BalanceC: 2 = a (253)

BalanceH: 6 = 2b ⇒ b = 3 (254)

BalanceO: 1+2νO22a + b = 4+3= 7→ νO2 = 3 (255)

(

A
F

)

mol
=

νO2(1+3.76)
1

= 3 ·4.76= 14.28 (256)

(

A
F

)

mass
=

νO2MO2 + νN2MN2

MFuel
=

3 ·31.999+11.28·28.013
46.069

= 8.943 (257)
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8.2 Problem 2: 16.20

A container has liquid water at 15◦C, 100kPa in equilibrium with a mixture of water vapor and dry air also at 15◦C,
100kPa. How much is the vater vapor pressure and what is the saturated water vapor pressure?

From the steam tables we have for a saturated liquid:

Pg = 1.705kPa , v f = 0.001001m3/kg (258)

The liquid is at 100kPa so it is compressed liquid still at 15◦Cso from Eq. 14.15 at constantT

gliq −g f =

∫

vdP = v f (P−Pg) (259)

The vapor in the moist air is at the partial pressurePv also at 20◦C so we assume ideal gas for the vapor

gvap −gg =

∫

vdP = RT ln
Pv

Pg
(260)

We have two saturated phases sog f −gg (q = h f g = T s f g) and now for equilibrium the two Gibbs functions must
be the same as

gvap = gliq = RT ln
Pv

P+ g
+ gg = v f (P−Pg)+ g f (261)

leaving us with

ln
Pv

Pg
=

v f (P−Pg)

RT
=

0.001001(100−1.705)
0.4615·288.15

= 0.0007466 (262)

Pv = Pge0.0007466= 1.7063kPa (263)

This is only a minute amount above the saturation pressure. For moist air applications such differences were
neglected and assumed the partial water vapor pressure at equilibrium (100% relative humidity) isPg. The pressure
has to be much higher for this to be asignificant difference.
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8.3 Problem 3: 16.24:

Calculate the equilibrium constant for the reactionH2 ⇒ 2H at a temperature of 2000K, using properties from Table
A.9. Compare the result with the value listed in Table A.11.

From Table A.9 at 2000K we find:

∆h̄H2 = 52942kJ/kmol, s̄H2 = 188.419
kJ

kmol ·K , h̄◦f = 0 (264)

∆h̄H2 = 35375kJ/kmol, s̄H2 = 154.279
kJ

kmol ·K , h̄◦f = 217999 (265)

∆G◦ = ∆H −T∆S = HRHS −HLHS −T(S◦RHS −S◦LHS) (266)

= 2 · (35375−217999)−52943−2000(2·154.279−182.419)= 213528kJ/kmol (267)

lnK =
−∆G◦

R̄T
=

−213528
8.3145·2000

= −12.8407 (268)

K = 2.6507·10−6 (269)

Table A.11: lnK = −12.841 OK
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8.4 Problem 4: 16.34

Pure oxygen is heated from 25◦C to 3200K in a steady flow process at a constant pressure of 300kPa. Find the exit
composition and the heat transfer.

The only reaction will be the dissociation of oxygen

O2 ⇔ 2O, From A.11:K(3200) = e−3.069= 0.046467 (270)

Look at initially 1 mol Oxygen and shift reaction withx

nO2 = 1− x, nO = 2x, ntot = 1+ x, yi =
ni

ntot
(271)

K =
y2

O

y2
O2

(

P
P0

)2−1

=
4x2

(1+ x)2

1+ x
1− x

·3 =
12x2

1− x2 (272)

x2 =
K/12

1+ K/12
⇒ x = 0.06211 (273)

yO2 =
1− x
1+ x

= 0.883 , yO = 1− yO2 = 0.117 (274)

q̄ = nO2exh̄O2ex + nOexh̄Oex − h̄O2in = (1+ x)(yO2h̄O2 + yOh̄O)−0 (275)

h̄O2 = 106022kJ/kmol, h̄O = 249170+60767= 309937kJ/kmol ⇒ q̄ = 137947kJ/kmol O2 (276)

q =
q̄
32

= 4311kJ/kg (277)
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9 Homework 9 Solutions:

9.1 Problem 1: 15:70

An isobaric combustion process receives gaseous benzeneC6H6 and air in a stoichiometric ratio atP0, T0. To limit the
product temperature to 2200k, liquid water is sprayed in after the combustion. Find thekmol of liquid water adder per
kmol of fuel and the dew point of the combined products.

The reaction for stoichiometric mixture withC andH balance done is:

C6H6 + νO2(O2 +3.76N2) → 3H2O+6CO2+ cN2 (278)

O balance: 2νO2 = 3+6 ·2= 15⇒ vO2 = 7.5 (279)

N balance:c = 3.76νO2 = 3.76·7.5= 28.2 (280)

With x kmol of water added perkmol fuel the products are

Products:(3+ x)H2O+6CO2+28.2N2 (281)

Energy Eq.:HR = H◦
R + xh̄ f

◦
H2O liq = H◦

P + ∆HP = H◦
P + xh̄ f

◦
H2O vap +(3+ x)∆h̄H2O +6h̄CO2 +28.2h̄N2 (282)

Where the extra water is shown explicitly. Rearrange to get

H◦
R −H◦

P −6∆h̄CO2 −28.2∆h̄N2 −3∆h̄H2O = x(h̄ f
◦
H2O vap − h̄ f

◦
H2O liq + ∆h̄H2O) (283)

40756·78.114−6 ·103562−28.2·63362−3·83153= x[−241826− (−285830)+83153] (284)

525975= x(127157)⇒ x = 4.1364kmol/kmol f uel (285)

Dew point:yV =
3+ x

6+28.2+ x
= 0.1862 (286)

⇒ PV = yV P = 0.1862·101.325= 18.86kPa (287)

B.1.2 : Tdew = 58.7◦C (288)
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9.2 Problem 2: 15.81

A stoichimetric mixture of benzeneC6H6 and air is mixed from the reactants flowing at 25◦C, 100 kPa. Find the
adiabatic flame temperature. What is the error if constant specific heat atT0 for the products from Table A.5 are used?

C6H6 + νO2O2 +3.76νO2N2 → 3H2O+6CO2+3.76νO2N2 (289)

νO2 = 6+
3
2

= 7.5⇒ νN2 = 28.2 (290)

HP = H◦
P + ∆HP = HR = H◦

R ⇒ (291)

∆HP = −H◦
RP = 40576·78.114= 3169554kJ/kmol (292)

∆HP = 6h̄CO2 +3h̄H2O +28.2h̄N2 (293)

∆HP 2600K = 6(128074)+3(104520)+28.2(77963)= 3280600 (294)

∆HP 2400K = 6(115779)+3(93741)+28.2(70640)= 2968000 (295)

Linear interpolation⇒ TAD = 2529K

∑νiC̄Pi = 6 ·0.842·44.01+3·1.872·18.015+28.2·1.042·28.013= 1146.66
kJ

kmol ·K (296)

∆T =
∆HP

∑νiC̄Pi
=

3169554
1146.66

= 2764 (297)

⇒ TAD = 3062K, 21% high (298)
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9.3 Problem 3: 16.49

Water from the combustion of hydrogen and pure oxygen is at 3800 K and 50kPa. Assuming we only haveH2O, O2

andH2 as gases, find the equilibrium composition.

With only the given components we have the reaction

2H2O ⇔ 2H2 + O2 (299)

which at 3800K has an equilibrium constant from A.11 of lnK = −1.906.
Assume we start with 2kmol water and let it dissociatex to the left then

Species H2O H2 O2

Initial 2 0 0
Change −2x 2x x
Final 2−2x 2x x

Total: 2+ x

Then we have

K = e−1.906=
y2

H2
yO2

y2
H2O

(

P
P0

)2+1−2

=

( 2x
2+x

)2 x
2+x

(2−2x
2+x

)2

50
100

(300)

which reduces to

0.148674=
1

(1− x)2

4x3

2+ x
1
4

1
2

or x3 = 0.297348(1− x)2(2+ x) (301)

Trial and error to solve forx = 0.54, then the concentrations are

yH2O =
2−2x
2+ x

= 0.362, yO2 =
x

2+ x
= 0.213, yH2 =

2x
2+ x

= 0.425 (302)
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9.4 Problem 4: 16.54

A tank contains 0.1 kmol hydrogen and 0.1 kmol of argon gas at 25◦C, 200kPa and the tank keeps constant volume.
To whatT should it be heated to have a mole fraction of atomic hydrogen, H, of 8%?

For the reactionH2 ⇔ 2H, K =
y2

H

yH2

(

P
P0

)2−1

(303)

Assume the dissociation shifts right with an amountx, then we get
Assume we start with 2kmol water and let it dissociatex to the left then

Reaction H2 ⇔ 2H also, Ar
Initial 0.1 0 0.1

Change −x 2x 0
Equilibrium 0.1− x 2x 0.1

Total: 0.2+ x

yH =
2x

0.2+ x
= 0.08⇒ x = 0.008333 (304)

We need to findT soK will take on the proper value; sinceK depends onP we need to evaluateP first.

P1V = n1R̄T1, P2V = n2R̄T2 ⇒ P2 = P1
n2T2

n1T1
(305)

where we haven1 = 0.2 andn2 = 0.2+ x = 0.2083

K =
y2

H

yH2

(

P
P0

)2−1

=
(2x)2

(0.1− x)n2

200
100

n2T2

0.2 ·298.15
= 0.0001016T2 (306)

Now it is trial and error to getT2 so the above equation is satisfied withK from A.11 atT2.

3400K : lnK = −1.519, K = 0.2189, RHS = 0.34544, error = −0.1266 (307)

3600K : lnK = −0.611, K = 0.5428, RHS = 0.36576, error = 0.1769 (308)

Linear interpolation between the two to make zero error

T = 3400+200· 0.1769
0.1769+0.1266

= 3483.43K (309)
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9.5 Problem 5:

Consider the reaction of heptane and air:

ν ′
1C7H16+ ν ′

2(O2 +3.76N2) ⇀↽ ν ′′
3CO2 + ν ′′

4 H2O+ ν ′′
5CO+ ν ′′

6 NO+ ν ′′
7 NO2 + ν ′′

8 N2 (310)

Find the most general set of stoichiometric coefficients forthe reaction.

C
H
O
N









7 0 1 0 1 0 0 0
16 0 0 2 0 0 0 0
0 2 2 1 1 1 2 0
0 7.52 0 0 0 1 1 2























































ν1

ν2

ν3

ν4

ν5

ν6

ν7

ν8















































= /0 (311)

Row echelon form:








1 0 0 0 1/22 −34/1019 −16/203 14/579
0 1 0 0 0 25/188 25/188 25/94
0 0 1 0 15/22 103/441 1141/2068 −175/1034
0 0 0 1 −4/11 67/251 326/517 −53/274









{

ν
}

= /0 (312)









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1























ν1

ν2

ν3

ν4















=









− 1
22ν5

34
1019ν6

16
203ν7 − 14

579ν8

0 − 25
188ν6 − 25

188ν7 − 25
94ν8

− 15
22ν5 − 103

441ν6 − 1141
2068ν7

175
1034ν8

4
11ν5 − 67

251ν6 − 326
517ν7

53
274ν8









(313)

From there the four stoichiometric equations can be writtenout

ν1 = − 1
22

ν5 +
34

1019
ν6 +

16
203

ν7−
14
579

ν8 (314)

ν2 = − 25
188

ν6−
25
188

ν7−
25
94

ν8 (315)

ν3 = −15
22

ν5−
103
441

ν6−
1141
2068

ν7 +
175
1034

ν8 (316)

ν4 =
4
11

ν5−
67
251

ν6−
326
517

ν7 +
53
274

ν8 (317)

38



10 Homework 10 Solutions:

10.1 Problem 1:

Plot ū
R̄ versusT ∈ [300K,5000K] for He, Ar, H, O, H2, O2, H2O, andH2O2. Use thechemkin software package to

generate values of ¯u(T ).
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10.2 Problem 2:

Consider a Hydrogen dissociation reaction,
H2 + H2 ⇀↽ 2H + H2 (318)

For this reaction

a = 2.23·1012 cm3 ·K− 1
2

mole · s (319)

β = 0.5 (320)

Ē = 92600
cal

mole
(321)

Consider an isochoric, isothermal reaction in whichnH2 = 1 kmole, nH = 0 kmole at t = 0, and for whichT =
5200K andP = 1500kPa.

a) Formulate the reaction kinetics in the form
dρ̄H2

dt
= f (ρ̄H2) (322)

b) Find all equilibria.

c) Ascertain the stability of each equilibrium point.

d) Use any appropriate numerical method such as Mathematica’s NDSolve, MATLAB, or a straightforward Euler
method to integrate the governing differential equation from the initial state to the equilibrium state.

e) Repeat this usingchemkin to generate the reaction rates anddlsode to integrate the differential equations.

f) Plot the Gibbs free energy,G = nH2 ḡH2 + nH ḡH , as a function of time.

Formulation of the reaction kinetics:

dρ̄H2

dt
= v1aT β e

−Ē
R̄T

(

N

∏
k=1

ρ̄v′k
k

)(

1− 1
kc

N

∏
k=1

ρ̄vk
k

)

(323)

a = 2.23·109 m3 ·K− 1
2

kmol · s , Ē = 387,623.6 kJ/kmol (324)

(ρ̄H2)t=0 =
P0

R̄T
=

1500kPa

8.314 kJ
kmol·K ·5200K

= 0.034696kmol/m3 (325)

V =
(nH2)t=0

(

¯rhoH2

)

t=0

= 28.82m3 (326)

−dnH2 =
1
2

nH →−
(

nH2 − (nH2)t=0

)

=
1
2

(

nH2 − (nH2)t=0

)

(327)

nH = 2(1 kmol −nH2) , ¯rhoH = 2

(

1 kmol
28.82m3 − ¯rhoH2

)

(328)

dρ̄H2

dt
= vH2aT β e

−Ē
R̄T (ρ̄H2)

v′H2 (ρ̄H)v′H

(

1− 1
kc

(ρ̄H2)
vH2 (ρ̄H)vH

)

(329)

v′H2
= 2, v′H = 0, vH2 = −1, vH = 2 (330)

dρ̄H2

dt
= −aT β e

−Ē
R̄T (ρ̄H2)

2
(

1− 1
kc

ρ̄2
H

ρ̄H2

)

(331)
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k(T ) = aT β e
−Ē
R̄T = −2.0532·107 (332)

kc =

(

P0

R̄T

)∑N
i=1 vi

e(
−∆G
R̄T ), ∆G = 179564.2 kJ/kmol ⇒ kc = 0.14723 (333)

dρ̄H2

dt
= −2.0532·107· ρ̄2

H2

(

1− 1
0.14723

· [2(0.034696− ρ̄H2)]
2

ρ̄H2

)

(334)

Find all equilibria:

Equilibria are located at the points where
dρ̄H2

dt = 0.

dρ̄H2

dt
= 0 when ρ̄H2 = {0,0.0129,0.0933} (335)

Ascertain stability:

For stability,
d2 ρ

H2
dt2

must be negative. Therefore,

• ρ̄ = 0 is unstable

• ρ̄ = 0.0129 is stable

• ρ̄ = 0.0933 is unstable and non-physical
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