AME 50531 Homework Solutions!
Fall 2011

Homework 1

1. CPIG air enters an isentropic nozzle at 1.30 atm and 24 °C with a velocity of 2.5 m/s.
The nozzle entrance diameter is 120 mm. The air exits the nozzle at 1.24 atm with a velocity
of 90 m/s. Determine the temperature of the exiting air and the nozzle exit diameter.
Given: CPIG air, O 7T} =24 °C, P, = 1.30 atm, v; = 2.5 m/s, d; = 120 mm @ P, = 1.24
atm, vo = 90 m/s

Assumptions:
Find: TQ, dQ
For T5, use energy conservation:
2 2
Vi Vo
hy + — =hy + —
1+ 5 2+ 5
2 2
Vi V2
hy —h — =
(1 2) + 5 5
2 2
Vi V2
T —T: — =
o(Th —T3) + 5 5

Ty —Th) = 1/2(v22 — v12)

J 2 2
1004.5kg—K(T1 —Ty) = 1/2((90 m/s)? — (2.5 m/s)?)

Ty — Ty = 4.029 °C
— | Ty = 19.97 °C.|

For d,, use mass conservation:
my = My
p1Aivi = paAavo
P =pRT — p= P/RT
Py A, . Py Agvy

Ty Ty
A2 _ T2P1V1 Al
T1 Py
Wd% o T2P1V1 ﬂ'd%
4 TPy, 4

d = (120 mm)?

(293.12 K)(1.30 atm)(2.5 m/s)
(297.15 K)(1.24 atm)(90 m/s)

— |dy = 20.34 mm. |

2. 9.47 Consider a steam turbine power plant operating near critical pressure. As a first
approximation, it may be assumed that the turbine and the pump processes are reversible
and adiabatic. Neglect any changes in kinetic and potential energies.

ISolutions adapted from Borgnakke, Sonntag (2008) “Solutions Manual,” Fundamentals of Thermodynamics, 7th Edition
and previous AME 50581 Homework Solutions documents.



Given: CPIG air, @ T7 = 750 °C,
P1 = 20 MPa@P2: 15 kPa@
T3 = 4OOC,P3 = 15kPa@P4 =
20 MPa
Assumptions: Av = 0, Az = 0, pump water
is incompressible
Find: (a) wy, turbine exit state (b) wp, hy
(¢) nru

(a)

kz]

kJ kJ kJ kJ
= 0.7548 —— 7.2536—— — 0.7548—— | = 6.9269——
> kgK+x2< ke K kgK) ke K

Thus
hy = 53.97 kJ /kg + x4 (2373.14 kJ /kg) = 2307.74 kJ /kg

wp = hy — hy = 3939.45 kJ /kg — 2307.74 kJ /kg = | 1631.71 kJ /kg = wr.

’Turbine exit state: liquid-vapor mixture‘

(b) hs = 167.54 kJ /kg, vs = 0.001018 m?/kg
wp = v3(Py — P)
wp = (0.001018 m?*/kg) (20000 kPa — 15 kPa)
— |wp = 20.14 kJ /kg

_ WNET (h1 - h2) - (h4 - h3) _ Wr —wp
Nreg = = =
qH hy — hy 4dH
1631.71 kJ/kg — 20.14 kJ /kg

~ 3939.45 kJ /kg — 187.68 kJ /kg
— ’nTH = 0.430.‘

NrH

Homework 2

1. 7.65 A thermal storage is made with a rock (granite) bed of 2 m® which is heated to
390 K using solar energy. A heat engine receives a Q5 from the bed and rejects heat to the
ambient at 290 K. The rock bed therefore cools down and as it reaches 290 K the process
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stops. Find the energy the rock bed can give out. What is the heat engine efficiency at the
beginning of the process and what is it at the end of the process?

Given: T; =390 K, Ty =290 K, V = 2 m?

Assumptions: Reversible, heat engine operates in a Carnot cycle

Find: 1Q2, m;, ny

_-. W

(|=>

Qu Qp

1o = us — up = CAT = (0.89 kJ/kg K)(390 K — 290 K) = 89.0 kJ /kg
m = pV = (2750 kg/m*)(2 m*) = 5500 kg
Q = maige = (5500 kg)(89.0 kJ/kg) ={489,500 kJ = 1Q | +

To get the efficiencies, use the Carnot cycle:

m=1—Ty/T; =1—290/390 =[0.256 = 1; | +
g =1-"T/T, =1-290/290 = |0 = 1y |

2. 8.95 An insulated piston/cylinder setup contains carbon dioxide gas at 400 kPa, 300
K which is then compressed to 4 MPa in a reversible adiabatic process. Calculate the final
temperature and the specific work using (a) ideal gas Table A.8 and (b) using constant
specific heats Table A.5.
Given: @O 77 = 300 K, P, = 400 kPa, — u; = 157.70 kJ /kg K (from Table A.8) @ P, =4
MPa
Assumptions: CV CO,, a control mass undergoing a reversible, adiabatic (isentropic) process
Find: 75, 1¢2
(a) From Table A.8 for CO, and Eq. (8.19),

s9—51=0=sp —sp —RInP,/P,

kJ
$9, = 53, + RIn (P,/Py) = 4.8631 + 0.1889 In (4000/400) = 52081

Now interpolate in Table A.8: uy = 291.91 kJ /kg K,

T, = 481.2 K\ —

1We = —(UQ — Ul) = —(29191 — 15770) =|—134.21 kJ/kg =142 | <




(b) Table A.5: k = 1.289, C,, = 0.653 kJ /kg K. From Eq. (8.23):

0.289

k=1

P\ F 4000\ 12

T, =T (FQ) = 300 (W) =[502.72 K = Ty |+
1

1Wo = _C/UO(TQ — Tl) = —0653(50272 — 300) =1-132.38 kJ/kg = 1Q42 | <

3. 8.121 Ammonia is contained in a rigid sealed tank of unknown quality at 0 °C. When
heated in boiling water to 100 °C its pressure reaches 1200 kPa. Find the initial quality, the
heat transfer to the ammonia and the total entropy generation.

Given: O T} =0 °C, @ P, = 1200 kPa, T, = 100 °C

Assumptions: Control volume ammonia, which is a control mass of a control volume
Find: 21, 142, 152

From the tables: sy = 5.5325;;—JK, vo = 0.14347 m? /kg, us = 1485.8 kJ /kg

The volume is constant, v; = vy, so

~0.14347 — 0.001566

— =10.493 =
T 0.28763 <_

Also because the volume is constant, jwy = 0, so

For the entropy generation,

189 = So — 81 —1 @2/ T = 5.5325 — 2.9905 — 744.52/373.15

4. 12.98 The air-standard Carnot cycle was not shown in the text; show the 7T's diagram
for this cycle. In an air-standard Carnot cycle the low temperature is 280 K and the efficiency
is 60 %. If the pressure before compression and after heat rejection is 100 kPa, find the high
temperature and the pressure just before heat addition.

Given: T, = 280 K, n = 0.6, P, = 100 kPa, air-standard Carnot cycle
Assumptions:
Find: the T'— s diagram, Ty, P,

From Eq. (7.5),

State 2 is the state just before heat addition, and we already have the temperature (77) and
pressure (P;) for State 1. As seen in the T' — s diagram, State 1 to State 2 is an isentropic
compression, so using Eq. (8.23),

1.4

Py = Py(Ty/T,)"7 = 100(700/280) 5



3
Tyt 4
T: +
4 L J] 4
W 5
- -

— | Py = 2.47 MPa.

Homework 3

1. 11.21 A supply of geothermal hot water is to be used as the energy source in an ideal
Rankine cycle, with R-134a as the cycle working fluid. Saturated vapor R-134a leaves the
boiler at a temperature of 85 °C, and the condenser temperature is 35 °C. Calculate the
thermal efficiency of this cycle.

Given: R-134a, ideal Rankine Cycle; O h; = 249.10 kJ /kg, P, = 887.6 kJ/kg @ P, = kPa
@ hs = 428.10 kJ/kg @

Assumptions:
Find: Nru
— 3 : A T
(== WT
Qy => .
4 1 4
-
5

2
Wwp = hg — hl = / v dP =~ Ul(Pg — Pl) = 0000857(29262 — 8876)
1

— wp = 1.747 kJ /kg
hy = hy +wp = 249.10 + 1.747 = 250.85 kJ /kg

For the boiler:
quy = hg — hy = 428.10 — 250.85 = 177.25 kJ /kg

For the turbine:
sy = s3 = 1.6782 = 1.1673 + x4(0.5465) — x4 = 0.935
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hy = 249.10 + 24(168.42) = 406.57 kJ /kg
wp = hy — hy = 428.10 — 406.57 = 21.53 kJ /kg
wypr = wr — wp = 21.53 — 1.747 = 19.78 kJ /kg

nTH = wypr/qn = 19.78/177.25 = [0.112 = nry | +

2. 11.37 The reheat pressure affects the operating variables and thus turbine perfor-
mance. Repeat Problem 11.33 twice, using 0.6 MPa and 1.0 MPa for the reheat pressure.
Given: QL = 10,000 kW CDl'l = 0, T1 =45 °C @Pg = 3 MPa @Pg = PQ, Tg = 600 °C —
hy = 3682.34 kJ/kg, s3 = 7.5084 kJ/kg ®z¢ = 1, Ty = T1 — he = 2583.19 kJ/kg,
s¢ = 8.1647 kJ /kg K
Assumptions: Pump: reversible and adiabatic and incompressible flow, 3) — (@ isentropic,
©® — (© isentropic
Find: 75, Wi, Qu

Turbine

For P, =1 MPa = Ps:
s3 = s4 — state 4 is a superheated vapor, hy = 3295.22 kJ/kg
State 5: ’T5 = 655.6 °C y P4 = P5 — h5 = 3823.80 kJ/kg, S5 = Sg = 8.1647 kJ/kg K

For P4:O6 MPa:P5:
S3 = s4 — state 4 is a superheated vapor, hy = 3143.00 kJ/kg
State 5: ’Tg, =561.3 °C|, P, = P5 — hs = 3616.54 kJ /kg, s5 = s¢ = 8.1647 kJ/kg K

Total condenser heat transfer:

qr = he — hy = 2394.77 kJ /kg

Mass flow rate: )
. @ ~ 10,000

_ — 4176 k
T T 239477 &/



Total turbine power:
WT,tot = m(wr o) = 1 (hy — hg + hs — hg)

Total boiler heat rate: .
Qu = m(hs — ha + hs — hy)

See the results for both iterations of the problem in the table below:

(P=5] T | Wree | Qu |
1 MPa || 655.6 °C | 6797 kW | 16770 kW
0.6 MPa || 561.3 °C | 6568 kW | 16540 kW

3. 11.42 A Rankine cycle operating with ammonia is heated by some low temperature
source so the highest temperature is 130 °C at a pressure of 5000 kPa. Its low pressure is
1003 kPa and it operates with one open feedwater heater at 2033 kPa. The total flow rate
is 5 kg/s. Find the extraction flow rate to the feedwater heater assuming its outlet state is
saturated liquid at 2033 kPa. Find the total power to the two pumps.

Given: @) z; = 0, hy = 298.25 kJ/kg, v; = 0.001658 m?/kg @) x3 = 0, hy = 421.48 kJ /kg,
vg = 0.001777 m? /kg © hs = 1621.8, s5 = 4.8187kJ/kg K ® s¢ = s5 — 6 = (S6—5¢)/Sfq =
(4.8187 — 1.5121)/3.2493 = 0.9827, hg = 1453.32 kJ /kg

Assumptions: Incompressible fluid in both pumps

Find: Wp

For the pump:

T /5 MPa
3

2.03 MPa

4
6
2 3 1 MPa
1 7
=]

wpy = hy — hy & v1(Py — P) = 0.001658(2033 — 1003) = 1.708 kJ /kg
5 hy = hy + wpy = 298.25 + 1.708 = 299.97 kJ /kg

For the feedwater heater, call mg /g = y (the extraction fraction)
Energy equation:

(1 =y)he + (y)he = hs
by hy 42148 — 209.97

_ _ — 0.1054
Y he—hy  1453.32 — 299.97
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Meztr = Y(Myer) = 0.1054(5) = 0.527 kg/s
my = (1 —y)mue = (1 —0.1054)5 = 4.473 kg /s
For pump 2:
wpy = hy — hg = v3(Py — P3) = 0.001771(5000 — 2033) = 5.272 kJ/kg
Total pump work:

Wp = thawpy + theewps = (4.473)(1.708) + (5)(5.272) = | 34.0 kW = Wp |«

4. 11.170 From problem 11.30: The power plant in Problem 11.13 is modified to have
a super heater section following the boiler so the steam leaves the super heater at 3.0 MPa,
400 °C. Calculate the thermal efficiency of the cycle and the moisture content of the steam
leaving the turbine for turbine exhaust pressures of 5, 10, 50, and 100 kPa. Plot the thermal
efficiency versus turbine exhaust pressure.
Given: hy = 3230.82 kJ/kg, s3 = 6.9211 kJ/kg K
Assumptions:

Pump:

2

wP:/ UdP%Ul(PQ—Pl)

2

hg = hl +wp
Boiler:

qu = hz — ha
Isentropic turbine (s4 = s3):

83 — Sf
Ty = —"
Sty

ha = hy + (24)hyg
wr,s = hs — hy
Finally, the cycle efficiency:
WNET Wrs — Wp

NcycLE = =
qH qH

8



See the results for all iterations of the problem in the table below:

’P4‘ U1 \wp\ ha a0 ‘ Ly ‘ hy ‘ Wr,s H nCYCLE‘
5 | 0.001015 | 3.01 | 140.80 | 3090.02 | 0.814 | 2110.65 | 1120.17 0.362
10 | 0.001001 | 3.02 | 194.83 | 3035.99 | 0.836 | 2192.21 | 1038.61 || 0.341
50 | 0.001030 | 3.04 | 373.51 | 2857.31 | 0.900 | 2415.33 | 815.49 0.284
100 | 0.001043 | 3.02 | 420.46 | 2810.36 | 0.928 | 2512.86 | 717.96 0.254

0.36)

0.34|

20.32/

O

>

L 0.3

0.28|

0.26}

0 20 40 60 80 100

Homework 4

1. 12.18 Repeat Problem 12.17, but assume variable specific heat for the air, table A.7.
Consider an ideal air-standard Brayton cycle in which the air into the compressor is at 100
kPa, 20 °© C, and the pressure ratio across the compressor is 12:1. The maximum temperature
in the cycle is 1100 °C, and the air flow rate is 10 kg/s. Assume constant specific heat for
the air, value from Table A.5. Determine the compressor work, the turbine work, and the

Turbine exhaust pressure [kPal]

thermal efficiency of the cycle.
Given: hy = 293.6 kJ /kg, s7, = 6.84597 kJ /kg K

Assumptions: Constant c,,,,

m We, Wr, NMTH
The compression is isentropic:

Figure 1: Plot for problem 11.170.

P,
53, = 3, + Rln FQ = 6.84597 + (0.287) In(12) = 7.55914

1

— Ty =590 K, hy = 597.2 kJ /kg



Energy equation with compressor work in:
we = —jwy = hy — hy = 597.2 — 392.6 = 303.6 kJ /kg

Like the compression, the expansion is isentropic:

P. 1
S4 =83 — Sy, = sp, + RIn le = 8.50554 + (0.287) In 7= 7.79237
3

— Ty =734.8 K, hy = 751.1 kJ kg

Energy equation with turbine work out:
wr = hg — hy = 1483.1 — 751.1 = 732 kJ /kg

Find energy rates by multiplying by mass flow rate:

We = rwe = 3036 kW = We |, Wi = mmwr = 7320 kW = Wi

Energy added by the combustion process:
gy = h3 — hy = 1483.1 — 597.2 = 885.9 kJ /kg
WNET — W — WC =732 —303.6 =428.4 kJ/kg

2. 12.31 The gas-turbine cycle shown in Fig. P12.31 is used as an automotive engine.
In the first turbine, the gas expands to pressure Ps, just low enough for this turbine to drive
the compressor. The gas is then expanded through the second turbine connected to the drive
wheels. The data for the engine are shown in the figure and assume that all processes are
ideal. Determine the intermediate pressure Ps, the net specific work output of the engine,
and the mass flow rate through the engine. Find also the air temperature entering the burner
T3, and the thermal efficiency of the engine.
Given:
Assumptions: Ideal generator
Find: P5, wyer, m, T3, nro
Consider the compressor:

k—1

P Tk
so=51 =T =T, (ﬁ) = 300(6)*2* = 500.8 K

1
—Wgo = —1W2 = Cp, (T2 — Tl) = 1004(5008 — 300) = 201.6 kJ/kg

Now consider the turbine:

wry = —we = 201.6 = ¢, (Ty — T5) = 1.004(1600 — T5) — Ty = 1399.2 K

= 3.5
75\ ™ 1399.2
35:54%135:134(—5) :600( ) =375 kPa = P;

Ty 1600
k1 0.286
B\ * 100
= Te=1T5 | — 1399.2 | — = 958.8 K
S6 = S5 — L 5(P5) (375>
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The second turbine gives the net work out:

wry = ¢y (T — Tg) = 1.004(1399.2 — 958.8) = 442.2 kJ /kg

i = Wy pr/wrs = 150/442.2 = [0.339 kg/s =

Ideal generator: Tg = ’Tg = 958.8 K‘

i = ¢y (T5 — Tg) = 1.004(1600 — 958.8) = 643.8 kJ /kg

3. 12.40 Consider an ideal air-standard Ericsson cycle that has an ideal regenerator as
shown in Fig. P12.40. The high pressure is 1 MPa and the cycle efficiency is 70 %. Heat
is rejected in the cycle at a temperature of 350 K, and the cycle pressure at the beginning
of the isothermal compression process is 150 kPa. Determine the high temperature, the
compressor work, and the turbine work per kilogram of air.

Given: P2:P3:1MPa,T1:T2:35OK, P1:150kPa,rp:P2/P1:10
Assumptions: Ideal regenerator
Find: Ty, we, wr
Ideal regenerator:
293 = —4q1 — qH = 34, WrT =(H

NrH = MCARNOT = 1 —TL/TH 207—>T3 :T4 :’TH = 1167 K‘

P 1000
1

wr = qg = — /v dP = —RT31n <%) =1635.2 kJ/kg = wr
3
4. 12.53 An afterburner in a jet engine adds fuel after the turbine thus raising the
pressure and temperature due to the energy of combustion. Assume a standard condition
of 800 K, 250 kPa after the turbine into the nozzle that exhausts at 95 kPa. Assume the
afterburner adds 475 kJ/kg to that state with a rise in pressure for same specific volume,
and neglect any upstream effects on the turbine. Find the nozzle exit velocity before and
after the afterburner is turned on.
Given: @ T} = 800 K, P, = 250 kPa @ P, = 95 kPa; After afterburner is turned on: @)
V3 = Vg, @P4:95kPa
Assumptions: Isentropic nozzle flow
For the nozzle:

k-1
k

Ty = Ty(Py/P))
Energy equation: (1/2)v3 = ¢,(Ty — Tb)

Vo = 1/2¢,(T) — Ts) = 1/(2)(1004)(800 — 606.8) = |622.8 m/s = vy | =

Now with the g4p at assumed constant volume gives the energy equation as

= (800)(95/250)%*7 = 606.8 K

Ty =Ty + qap/co = 800 + 475/0.717 = 1462.5 K

11



/

v3 = v, — Py = Py(T3/T) = 250(1462.5/800) = 457.0 kPa

The expansion is isentropic, so from Eq. 8.23:

Vo = 1/2¢,(Ty — Tp) = +/(2)(1004)(1462.5 — 933.7) =

Ty = Ts(Py/ Ps) = D/% = 1462.5(95/457)%2%7 = 933.7 K

12

1030.5 m/s = v




Homework 5

12.45

The turbine section in a jet engine receives gas (assume air) at 1200 K, 800 kPa
with an ambient atmosphere at 80 kPa. The turbine is followed by a nozzle open
to the atmosphere and all the turbine work drives a compressor. Find the turbine
exit pressure so the nozzle has an exit velocity of 800 m/s. Hint: take the CV
around both turbine and nozzle.

Solution:

C.V. Reversible and adiabatic turbine and nozzle. This gives constant s, from
Eq.8.23 we can relate the T's and P’s

State 3: 1200 K, 800 kPa State 5: 80 kPa, s5=s5,4
Eq.8.23: Ts =T, (Py/P,)* 'k = 1200 K (80/800) ©-2857 = 621.56 K
Energy: hy + 0=hs + (1/2)V: + wp =hy + Wy

wyp = hy — hs — (1/2)V2 = Cp(T; — Ts) — (1/2)V2

= 1.004 kJ/kg-K (1200 — 621.56) K — (1/2) x 800%(J/kg) / 1000 J/kJ
= 580.75 — 320 = 260.75 kl/kg
C.V. Nozzle alone to establish state 4 (same s as state 5 and 3).

h, =h,+ (12)VE=hy - wy
Ty =Ts + (1/2)V3/Cp = 621.56 + 320/1.004 = 940.29 K
P4 = P5 (T4/T2)“®D = 800 kPa x (940.29/1200)*° = 340.7 kPa

T

3
e 3
W

13



12.74
Repeat Problem 12.67, but assume variable specific heat. The ideal gas air tables,
Table A.7, are recommended for this calculation (or the specific heat from Fig.
3.10 at high temperature).

Solution:
Table A.7 15 used with interpolation.

T, =2832K, u =2023kIkg, s, =6.8113kIkgK

Compression 1 to 2: s, =5, = FromEq.8.19
o o Q Q
0=5p5-5p) -RIn(Po/Py) =515 - 57 - RIn(Tov/Tyvy)

51, - RI(To/T}) =57, + R In(v;/v) = 6.8113 + 0.287 In 7 = 7.3698

This becomes trial and error so estimate first at 600 K and use A.7.1.
LHS gy = 7.5764 - 0.287 In(600/283.2) = 7.3609 (too low)

LHSg2p = 7.6109 - 0.287 In(620/283.2) = 7.3860 (too high)
Interpolate to get: T, =607.1K, u,=4405kl'’kg
=> - W, =1, -1u; =238.2 kl’kg,
u; = 440.5 + 1800 =2240.5 == T;=125758K, #3 =9.2859 kl/kgK
Py =P, (v/vy) TyT, =90 kPax 7= 2575.8 / 283.2 = 5730 kPa
Expansion 3 to 4: s4=8; —> FromEq.#8.19 as before
s%,f -RIn(T4Ty) = 5.?.3 + R In{vy/vy) = 9.2859 + 0.287 In(1/7) = 8.7274
This becomes trial and error so estimate first at 1400 K and use A.7.1.
LHS 40p = 8.5289 - 0.287 In(1400/2575.8) = B.7039 (too low)
LHS 450 = 85711 - 0.287 In(1450/2575.8) = 8.7360 (too high)
Interpolation = T,=14366K, uy=1146.9 kl'kp
W4 = Uy - uy = 2240.5 - 1146.9 = 1093.6 kl’kg
Net work, efficiency and mep
> Wpet = aWg T wa = 1093.6 - 238.2 = 855.4 kl'kg

Ny = Weer ! Qu = 855.4 / 1800 = 0.475
v, = RT,/P, = (0.287 x 283.2)/90 = 0.9029 m’/kg
v, = (1/7) v, = 0.1290 m'/kg

W
Proett =y, f“:,z = §55.4/(0.9029 - 0.129) = 1105 kPa
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12.111

A simple Rankine cycle with R-410a as the working fluid is to be used as a
bottoming cycle for an electrical generating facility driven by the exhaust gas
from a Diesel engine as the high temperature energy source in the R-410a boiler.
Diesel inlet conditions are 100 kPa, 20°C, the compression ratio 1s 20, and the
maximum temperature in the cycle i1s 2800°C. The R-410a leaves the bottoming
cycle boiler at 80°C, 4 MPa and the condenser pressure is 1800 kPa. The power
output of the Diesel engine 1s | MW. Assuming ideal cycles throughout,
determine

a. The flow rate required in the diesel engine.

b. The power output of the bottoming cycle, assuming that the diesel exhaust is
cooled to 200°C in the R-410a boiler.

bt AIR-STD DIESEL T,
CYCLE
3 7
p
2
6
1 N g
- 3/

L

Diesel cycle information given means: Wyypep = 1 MW
P, =100kPa, T, =20°C, CR = v /v, =20, T, =2800°C
Consider the Diesel cycle
T, =T (v/vo)* =293.2 K 20)°#=971.8K
P, = Py(vy/v2)" = 100 kPa (20)* = 6629 kPa
qQyy = Cpgl(T3 - Ty) = 1.004 kJ/kg-K(3073.2 - 971.8) K = 2109.8 kl/kg
 0.287x 293.2 0.8415

Vi=T oo =08415m kg, vy="", =0.04208 m’/kg

vy = va(To/Ty) = 0.04208 m°/kg (3073.2/971.8) = 0.13307 m’/kg
vy el 0.133 07'p4

g = 0.717(293.2 - 1469.6) = -843.5 kl/kg

wipr = 2109.8 - 843.5 = 1266.3 kl/kg

ﬁlA[R = WEEJJWHM- = 1000 kW/1266.3 k]u'lkg =0.79 kgﬂ's
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Homework 6

1. 13.21 A 2 kg mixture of 25 % N, 50 % O and 25 % CO, by mass is at 150 kPa and

300 K. Find the mixture gas constant and the total volume.
Given: m = 2 kg, cy, = 0.25, co, = 0.5, cco, = 0.25
Assumptions:

From Eq. 13.15:

Rz = > ¢iR; = (0.25)(0.2968) + (0.5)(0.2598) + (0.25)(0.1889) =

Ideal gas law: PV = mR,,;, T

0.2513 kJ /kg K = Rz

T (2 kg)(0.2513 kJ /kg K K
Ly mE _ (2kg)(0.2513 kJ/kg K)(300

) _[1.005 m* = V|

P 150 kPa

13.28

A flow of 1 kg/s argon at 300 K and another flow of 1 kg/s CO, at 1600 K both at
150 kPa are muxed without anyl heat transfer. What 1= the exit T, P?

No work implies no pressure change for a sumple flow.
P, =150 kPa
The energy equation becomes

mh; = mh = (mhy) s, + (mhy)con = (mhe)ar + (mhe)co?
=  mceCpco2(Te — Tcor + marCp adTe—Ta, =0
= my G a T+ mepaCp conTi = [ma,Cp ar + me02Cp coal Te
(1x0.520x300 + 1x0.842x1600) kW = (1x0.520 + 1x0.842) KW/K = T,

Te = 1I03.TK

16




13.44
Two insulated tanks A and B are connected by a valve. Tank A has a volume of 1

m° and initially contains argon at 300 kPa, 10°C. Tank B has a volume of 2 m>
and imitially contains ethane at 200 kPa, 50°C. The valve 1s opened and remains
open until the resulting gas mixture comes to a uniform state. Determine the final
pressure and temperature.

Solution:

C.V. Tanks A + B. Control mass no W, no Q.

Energy Eq.5.11:  Up-Uy = 0=mpCyo(To-Ta1) + me,H,Cvo(T2 - Te1)
mp,=PaVaRTa1=(300x1)/(0.2081 =« 283.13)=5.0913 kg
mC,He = PgiVR/RTR1 = (200 = 2) / (0.2765 = 323.15) =4 4767 kg

Continuity Eq.::  mpy=mjp + me,Hg = 0568 kg

Energy Eq.:  5.0913 = 0312 (T, - 283.2)

+4.4767 x 1490 (T, -323.2)=0
Solving, T =3155 K

5.0913 44767 ) ,
Rpix = Z cRj =75 sgg % 0.2081 + 550 x 0.2765 = 0.2401 kl/kg K

Py = myRT/(V 4+Vg) = 9.568 kg x 0.2401 kI/kg K x 315.5K /3 m’

=242 kPa
|| -
=)
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Carbon dioxide gas at 320 K 15 mixed with mtrogen at 280 K 1n an insulated
mixing chamber. Both flows are coming in at 100 kPa and the mole ratio of
carbon dioxide to nitrogen 1s 2:1. Find the exit temperature and the total entropy
generation per kmole of the exit mixture.

CV muxing chamber, steady flow. The mlet ratio 1s g, =2 fy, and
assume no external heat transfer. no work mvolved.
Continuity:  fico, + 2y, =, = 30y,
Energy Eq.: iy (b, + 2heo,) = 3y B, o
Take 300 K as reference and write h = hypy + Cp (T - 300).

Co105(Ti v, - 300) + 2Cp c0,(Ti co, = 300) = 3Cp g (Trni o ~ 300)
Find the specific heats 1n Table A 5 to get

Cooin =Y v:Cp; = (1.042 x 28.013 + 2 x 0.842 x 44.01)/3

= 3443 kI/kmol K
3C mix Tmix ex = Co 3, Tiy, + 2Cp 00, Ti co, = 31889 kJ/kmol

T =308.7TK

i e
Partial pressures are total pressure times molefraction

Pex Ny~ Piy/3. Py Coy = 2P;o/3
Seen = HexSex - (B8)ico, - (B8)av, = My, (5 - Sy, + 20, (e - S)co,

. - A A =
S geu 31y, = [Cppg I T, Rln yyg, + 2Cpco,In

=[2.8485 + 9.1343 - 2.6607+6.742)/3 = 5.35 k¥/kmol mix K

Tico,

18



Homework 7

1. 13.68 A new high-efficiency home heating system includes an air-to-air heat exchanger
which uses energy from outgoing stale air to heat the fresh incoming air. If the outside
ambient temperature is -10 °C and the relative humidity is 40 %, how much water will have
to be added to the incoming air, if it flows in at the rate of 1 m®/s and must eventually be
conditioned to 20 °C and 40 % relative humidity?

Given: ¢; = 0.4, Ty = —10 °C, Ty = 20 °C, P,; = 0.2602 kPa (from Table B.1.5)
Assumptions: P, = P, = 100 kPa

m mliq,in

Outside ambient air:

P, = (¢1)(P,1) = (0.40)(0.2602) = 0.1041 kPa
P, = P, = 100 kPa, so P, = 100 — 0.1041 = 99.896 kPa.

oo Pave _ (99.896)(1)
“ Ry (0.287)(263.2)

= 1.3225 kg/s

0.1041
99.896

From Eq. 13.28: w; = 0.622 ( ) = 0.000648. On the outside:

Py = (¢2)(Py2) = (0.4)(2.339) = 0.9356 kPa

0.9356
99.064

Eq. 13.28: wy = 0.622 = 0.0587 Now applying the continuity equation to the water:

Titigin = Ma(wy — wy) = 1.3228(0.00587 — 0.000648) = |0.00691 kg/s = 24.9 kg/h = 1iuq.in
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B Use the psychrometric chart to find the nissing property of: ¢, @, T o Ty,
a. Ty, = 25°C, § =80% b. Ty, =15°C. § =100%
¢.Tg, =20°C, and «=0.008 d. Ty =25°C. Ty = 23°C

SrL)lutinn:
a. 25°C, ¢=280% == w=0.016; T . =223°C
b. 15°C. $=100% == @=0.0106; T,.=15°C
c. 20°C, o=0.008 == ©=57%. T,a=144°C
d 25°C. T,.,=23"C == w&=0017; $=286%
W
A & = 100%

20



13.167

An indoor pool evaporates 3 lbm'h of water, which 1s removed by a dehumidifier

to maintaimn 70 F, @ = 70% 1n the room. The dehumidifier 1s a refrigeration cycle
in which air flowing over the evaporator cools such that liquid water drops out,
and the air continues flowing over the condenser, as shown in Fig. P12.71. For an
air flow rate of 0.2 lbm/s the unit requires 1.2 Btu/s input to a motor driving a fan
and the compressor and 1t has a coefficient of performance, f =Qp /W =2.0.

Find the state of the air after the evaporator, T2 @27, @9 and the heat rejected. Find
the state of the air as it returns to the room and the compressor work input.

The unit must remove 3 lbm/'h liquid to keep steady state 1n the room. As
water condenses out state 2 1s saturated.

1: 70F, 70% == Pg; =0.363 psia, hg) = 1092.0 Btw/lbm,
Py1 =01 Pg1 = 0.2541 psia, wj = 0.622 Py1/(Pyot-Py1) = 0.01094

CVilto2: ril]iq =ma(w1l - W2) == W2=W] - rilliq.“’ﬁla
qL =hy - hy - (w1 -w2) hpp
w2 =0.01094 - 3/(3600 = 0.2) =0.006774

14.7x 0.006774
0.628774

Table F.7.1: T;=46.8F hp =14.88 btu/lbm, hgy = 1081.905 Btw/lbm
ql.=024(70 - 46.8) + 0.01094 x1092 — 0.006774 x1081.905
—0.00417 x14.88 = 10.12 Btu/lbm dry air

Py2=Pgy = Pior w2 /(0.622 + w) = =0.1584 p=1a

T.i".; =m;y ql/ B =1 Btu's
CV Total system :
h3 - b1 = Wet/mg - (wi-w2) hf = 1.2/0.2 - 0.062 = 5.938 Btw/Ibm dry air
= Cpa (T3 —T1) + wohy3s - wihy
Trial and error on T3
3: w3=w2, hy == T3=112F, Pg3=136psia. Py3=Py=0.1584
$3=Py3Pg3 =012 or 3=12%
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14.35

The Joule-Thomson coefficient py 1s a measure of the direction and magnitude of

the temperature change with pressure 1n a throttling process. For any three
properties x.v.z use the mathematical relation

-

Bl

L 0z/x \OxJy
to show the following relations for the Joule-Thomson coefficient:
o
aTy _\dL)p” ~ RT(&Z
Hr= [@P}h Cp - PCp\éT/p

Let x =T, y =P and z = h and substitute into the relations as:

b e or

Then we have the definition of specific heatas Cp= [%]P s0 solve for the first

o aT)| 1 (&P 1 [&h)
Hr = [ap)h“ [ ] Cp[ﬁP)T

The last denvative 1s substituted with Eq.14.25 so we get

H3= [ap lh ETJP

If we use the compressibility factor then we get

‘&v) ZR  RT({8Z\ v RT(8Z
wr + B8 FE) -+ FE)
50 then
T[EJ ey +R_T2[e_z‘ ) __R_Tf*[a_zw
&T/p P \&Tlp éT)p
and we have shown the last expression also.
vy
= 'ﬂ“]lf 'uiT]P_‘ RT—[az]
cP Cp  PCpleT
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Homework 8

1. 14.77 Develop general expressions for u(T,v), h(T,v), s(T,v). That is, do not restrict
your analysis to isothermal changes. In this problem, you may have to admit that ¢, =
(T, ).

Given:

Assumptions:

m U(Tv U)7 h(T? U)a 8(T7 U)
Redlich-Kwong equation of state:

RT _ a
v—>b v(v+b)T?

oP\ _ RT a
or), v—>b v(v+0b)T3?2

3a
uy —uy = [ C, TvdT+f1—QUU+b>T1/2

— / Cy( 3a In ve 10 e =Us— U
B 20T vy w+b))

We find the change in h from the change in u (dh = du + Pdv):

2 A a 3a vy + b v
hg—hlz/l Cp(T)dT—Wln{< s )(Ul+b):|+P2UZ_P1U1

Entropy follows from Eq. (14.35):

2 dT *I' R a/2
82—81:/1 CU(T,U)?-i-/l L)—b—'—v(v—{—b)T?’/?} dv

2 . dT b a 'U2+b (%1
82—81—/1 CU<T7U>T Rlnvl_b obt3/2 1I1|:< V2 )(U1+b>:|

P =

From Eq. (14.30):

23



14.80

Oxygen in a rigid tank with 1 kg is at 160 K, 4 MPa. Find the volume of the tank
by iterations using the Redlich-Kwong EOS. Compare the result with the ideal
gas law.

For the ideal gas law: Pv=RT so v=RT/P
v=0.2598 x 160 /4000 = 0.0104 m*/kg: V=mv=0.0104m"

For Redlich-Kwong. Eq.14.53 and oxygen
P. = 5040 kPa; T.=154.0 K: R=0.2598 kl/kg K

RT, 0.2598 x 154.6

_ _ 3
P, 0.08664 <040 0.000 690 5 m°/kg

b=0.08664

R 042748 0.2598% x 154.6% | 7013
p, * 5040 -

C

a=0427 48

_RT a
v—b yv+b)T"?

trial and error to get v due to nonlinearity

v=0.01 m3fkg = P=4465.1-1279.9=3185.2kPa too low
v =0.008 1113f'kg = P=5686.85-1968.1=3718.8 kPa too low
v =0.0075 mgfkg = P=6104.41 -2227.43 =3876.98 kPa
v =0.007 1113a"kg = P=6588.16—-2541.70 = 4046.46 kPa

Now we interpolate between the last two entries and check
v=0.00714 m3fkg = P=6445.15 - 24473 =3997.8 kPa OK

V =mv = 0.00714 m* (69% of the ideal gas value)
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3. Consider a thermodynamic system in which there are two reversible work modes:
compression and electrical. So take the version of the texts Eq. (4.16) giving dW to be

dW = PdV — EdZ,

where F is the electrical potential difference and dZ is the amount of charge that flows into
the system.

e Extend the Gibbs equation to account for electrical work.

e Find the Legendre transformation which renders the independent variables to be P,
E, and T and show how the other variables can be determined as functions of these
independent variables.

e Find all Maxwell relations associated with this Legendre transformation.

Gibbs equation:
dU = 6Q — oW

Knowing 6Q) = T'ds,

|dU =TdS — PdV + EdZ| (1)

Legendre transformation:
P1r=To=—-Pis=Exi=Sx2=V,xa=2
Fi=U-{1x;=U-TS
E=U—Yyxo=U—-PV
Fs=U—1sxs=U—-EZ
Fios=U-TS+PV -EZ
dFi 23 =dU —TdS — SdT' + PdV +VdP — EdZ — ZdE
Re-arranging this equation and recalling Eq. (1),

dFy 55+ TdS + SdT — PdV — VAP + EdZ + ZdE = dU
— TdS — PdV + EdZ

Canceling like terms and solving for dFj 3 shows that

dF1,273 == —SdT + VdP - ZdE ; (2)

and that Fy 53 = Fy53(T, P, E). From Eq. (2):




Taking mixed partials of the right-hand sides of the three equations above results in the
Maxwell relations:

PFias (0S8 Plios  (OV ININEL) _(oV
oT oP  \OP)p, 0P OT  \OT ), OP)pp \OT )14
Plios (08 OFps (02 (95 _(90Z
OT OE — \OE)pp 0EOT — \OT)py OF ) pp  \OT ) py

82F1,2,3 _ 8_V 82F172,3 - _ 8_Z N a_v = —
OPOE  \OE),, 0BT  \9P),, OE ) 15 P

V|
SIS
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14.113
A 2 kg maxture of 50% argon and 50% nitrogen by mass 1s 1n a tank at 2 MPa,
180 K. How large 1s the volume using a model of (a) ideal gas and (b) Redlich
Ewong equation of state with a, b for a mixture.

a) Ideal gas mixture
Eq.13.15: Rpyjx= 3 ¢jRj=0.5x0.2081+0.5x0.2968 = 0.25245 kI’kg K
Vo mRyixT 2 x 0.25245 x 180
p 2000
b) Redlich Kwong equation of state. Before we can do the parameters a. b for the
mixture we need the individual component parameters. Eq.14.54, 13.55.

=0.0454 m°

3 52 n n
R°T, 020812 % 150 827
=0.42748 = 042748 = = — 1.06154
anr X 4870
R2T, 0.29682 x 126.22
c 2 w 126. A
- —_ —_ J} —_
any = 042748 : 0.42748 T390 1.98743
RT. 0.2081 x 150.8 i
bar=0.08664 5~ =0.08664 2870 = 0.000 558
RT, 0.2968 x 126.2
= 0.08664 — = 0.08664 = 0.000 957
N2 P, 3390

Now the mixture parameters are from Eq.14 84

' 1122
A = {Z ¢ a; ] = (0.5 x\[1.06154 + 0.5 x \[1.98743)” = 1.4885

bmix= > ¢ bj=0.3x0.000 558 + 0.5 x 0.000 957 =0.000 758

. o __RT a
Using now Eq.14 .53: P= v—b  v(v+b)T12
0.25245 = 180 1 4885
2000 = . :

v—0.000 758  v(v+ 0.000 758) 18012
By trial and error we find the specific volume, v=0.02102 mix'kg
V = mv = 0.04204 m*
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Homework 9

15.21

A certain fuel oil has the composition C;gH,,. If this fuel is burned with 150%
theoretical air, what is the composition of the products of combustion?

’CmszJr (1/) v, (0, +3.76 N,) > aH,0 +bCO, +c N, +d O,

Stoichiometric combustion: ¢ =1, d=0,
C balance: b=10
H balance: a=22/2=11.

O balance: 2v02=a+2b=11+20=31 == v02=15.5

Actual case: 1/¢=15 == v_,=15%x155=23.25

0
H balance: a=11. C balance: b=10,

N balance: ¢=23.25x3.76=287.42
O, balance: d=23.25-10-11/2=7.75 (excess oxygen)

The combustion process is

C o H,, +23.25(0,+3.76 N,)

— 11H,0+10CO, + 8742 N, +7.75 0,
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15.25

A Pennsylvania coal contamns 74.2% C, 5.1% H, 6.7% O, (dry basis, mass
percent) plus ash and small percentages of N and S. This coal 1s fed into a gasifier
along with oxygen and steam, as shown i Fig. P14 26. The exiting product gas
composition 1s measured on a mole basis to: 39.9% CO, 30.8% H,, 11.4% CO,,

16.4% H>0 plus small percentages of CHy. N>, and H»S. How many kilograms of

coal are required to produce 100 kmol of product gas? How much oxygen and
steam are required?

Convert the mass concentrations to number of kmol per 100 kg coal:
C: n=742/1201=6.178 Hy: n=51/2.016=2.530
0O,: n=6.7/31.999 =0.209

Now the combustion equation reads
x(6.178C+2.53H, +0.2090,) +yH,0+2z 0, mand

399CO+308H,+114C0,+164H,0 out
im 100 kmol of mux out

Now we can do the atom balance to find (x, v, 2)
C balance: 6.178x=399+114 — x=8304
H, balance: 2.53x8304+y=308+164 — y=26191

26.191 39.9 16.4
S tz="5 114+ —>z=24719

05 balance: 0.209 = 8.304 +

Therefore, for 100 kmol of mixture out

Tequire: 830.4 kg ofcoal
26.191 kmol of steam

24.719 kmol of oxygen

29



16.20
A container has liquid water at 20°C . 100 kPa in equilibrium with a mixture of

water vapor and dry air also at 20°C, 100 kPa. How much is the water vapor
pressure and what 1s the saturated water vapor pressure?

me the steam tables we have for saturated liguid:
P'g =2.339kPa, v;=0.001002 m/kg

The liquid is at 100 kPa so it is compressed liquid still at 20°C so from
Eq.14.15 at constant T

g~ 8= J vdP=v; (P -Pp)
The vapor m the moist air 1s at the partial pressure P, also at 20°C so we
assume 1deal gas for the vapor
PV

P

Zuap—2g=J vdP=RTIn .

We have the two saturated phases so gg= 2 (gq=hg= Tsfg) and now

for equilibrium the two Gibbs function must be the same as

PV
Evap = 8lig = RT In ITEJF ge=vi(P—Py) +gs

leaving us with

Py . 0.001002 (100 - 2.339)
p,~ Vi (PP R =" 615 x 29315

P, =P, exp(0.000723) = 2.3407 kPa.

In =0.000723

This 15 only a minute amount above the saturation pressure. For the moist
air applications in Chapter 13 we neglected such differences and assumed the
partial water vapor pressure at equilibrium (100% relative humidity) 1s Pg_
The pressure has to be much higher for this to be a sigmificant difference.
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16.25
For the dissociation of oxygen, O, < 20, around 2000 K we want a
mathematical expression for the equalibrium constant K(T). Assume constant heat

capacity, at 2000 K, for O, and O from Table A.9 and develop the expression
from Eqs. 16.12 and 16.15.

From Eq.16.15 the equalibnium constant 1s
AG° 0 .0
K=exp(-Z7): AG = AH” - T AS
and the shift 1s
— _ - (s ]
AG® =2 hg - g - T(255 — S0,)

Substitute the first order approximation to the functions h and s° as
_ — o - — T
h=hypgoc + Cp (T—2000) : 5°=353p00x + Cp In5a05

The properties are from Table A 9 and R = 83145 kJ/kmol K

ﬂx}'gen DEI EE':":'UK: 39176 kJJ"kI]]Dl._, EEC]!]':'K =268.748 kl/kmol K

G = Ezzanx—ﬁzznnrc:_ﬁﬁ 770-51674
P 2200-1800 400

=37.74 kl/kmol K

Oxygen O:  Ryggpg = 35 713 + 249 170 = 284 883 kJ/kmol,
53000 = 201.247 kJ/kmol K

= hyyox — b0k 39 878 — 31 547
P~ 722001800 400

Substitute and collect terms

=20.8275 kl/kmol K

0 = 0
,;G‘}_@ﬁ_a_sﬂ_ﬂlfmmﬁcp_zum [ T-2000 T ] _ ASyn
RT " RT R~ RT R T 2000 R

Now we have
AHpg/R = (2 x 284 883 — 50 176)/8.3145 = 61 409.6 K
AC, 290p/R = (2 x 20.8275 - 37.74)/8 3145 = 0470864

ASygeo/R = (2 x 201.247 — 268.748)/8 3145 = 16.08587
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50 we get

AG" 614096
RT T

604679 _ T
== T - 15.615-0470864 ]11—2{:“]":I

Now the equilibrium constant K(T) 1s approximated as

+0470864 [~ —1n = | ~ 16.08587

- .. 6046709 T
K(T)=exp [ 15615 - T + 0470864 lnm
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Homework 10

2. Consider an isochoric, isothermal reaction in which ngs = 1 kmole, ny = 0 kmole at
t = 0, and for which 7" = 5200 K and P = 1500 kPa.
Consider a Hydrogen dissociation reaction,

Hy,+ Hy,=2H + H,

SK—l/Q B
For this reaction a = 2.23 x 1012cm—l, B =05 and E = 92600— (a) Formulate the
mole s mole
reaction kinetics in the form .
Dhs o
dﬁ}m 8 —v 1 o 1/
“d = al’ e RT Hpk —k—CIH
P, 1500 kP k l
(Prz)ico = =7 = 2 — 0.034696 2
V= % — 28.82 m®
(PHz)t=0
—dng, = 1/2ng — —(ng, — (na,)i=0) = 1/2(nm, — (na, )=o)
Therefore: . .
Ph ZE Vi (= \V — v Y
e — e ) o) (1= ) o)
Vi, = 2,v, = 0,vp, = =1, vy =2
dﬁhg B8 £, _ 2( 1 (ﬁH2)2)
= —al”e®T (py, 1 — ——
k(T) = aTPer = —2.0532 x 107
P\
ke = (R_;’) e B, AG = 179564.2 — k, = 0.14723
mo
dpn, _ 1 [2(0.034696 — pg, )2
— | =2 = —-2.0532 x 107 1-— .
di X 107(pw,)° ( 0.14723 P
15
(b) Find all equilibria. Equilibria are located at the points where 27};2 = 0.
1, = {0,0.0129,0.0933}
d*p
(c) Ascertain the stability of each equilibrium point. For stability, dff); 2 must be negative.
Therefore,
p=10 unstable
ﬁ = O 0129 stable

= (0.0933 unstable and non-physical
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