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Chapter 5: Differential Equations 

Routines 
5.1. First-Order Ordinary Differential Equations 
5.1.1  Solution of the Initial-Value Problem for ODEs 

Runge-Kutta method............................................................. IVPRK 837 
Runge-Kutta method, various orders....................................IVMRK 844 
Adams or Gear method ........................................................ IVPAG 854 

5.1.2  Solution of the Boundary-Value Problem for ODEs 
Finite-difference method ......................................................BVPFD 870 
Multiple-shooting method.................................................... BVPMS 882 

5.1.3  Solution of Differential-Algebraic Systems 
Petzold-Gear method.......................................................... DASPG 889 

5.2 Partial Differential Equations 
  
5.2.1 Solution of Systems of PDEs in One Dimension 

Method of lines with Variable Griddings ....................PDE_1D_MG 913 
 Method of lines with a Hermite cubic basis ........................MOLCH 946 
5.2.2  Solution of a PDE in Two and Three Dimensions 

Two-dimensional fast Poisson solver .................................. FPS2H 961 
Three-dimensional fast Poisson solver................................ FPS3H 967 

5.3.  Sturm-Liouville Problems 
Eigenvalues, eigenfunctions,  
and spectral density functions .............................................. SLEIG 973 
Indices of eigenvalues ......................................................... SLCNT 986 

Usage Notes 
A differential equation is an equation involving one or more dependent variables (called yi or ui), 
their derivatives, and one or more independent variables (called t, x, and y). Users will typically 
need to relabel their own model variables so that they correspond to the variables used in the 
solvers described here. A differential equation with one independent variable is called an ordinary 
differential equation (ODE). A system of equations involving derivatives in one independent 
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variable and other dependent variables is called a differential-algebraic system. A differential 
equation with more than one independent variable is called a partial differential equation (PDE). 
The order of a differential equation is the highest order of any of the derivatives in the equation. 
Some of the routines in this chapter require the user to reduce higher-order problems to systems of 
first-order differential equations. 

Ordinary Differential Equations 
It is convenient to use the vector notation below. We denote the number of equations as the value 
N. The problem statement is abbreviated by writing it as a system of first-order ODEs 

� � � � � � � � � � � �1 1, , , , , , , ,
T T

N Ny t y t y t f t y f t y f t y� �� � � �� � � �� �  

The problem becomes 

� �
� �,

dy t
y f t y

dt
� � �  

with initial values y (t�). Values of y(t) for t > t� or t < t��are required. The routines IVPRK, page 
837, IVMRK, page 844, and IVPAG, page 854, solve the IVP for systems of ODEs of the form y� = f 
(t, y) with y(t = t�) specified. Here, f is a user supplied function that must be evaluated at any set of 
values (t, y�, �, yN); i = 1, �, N. The routines IVPAG, page 854, and DASPG, page 889, will also 
solve implicit systems of the form Ay� = f (t, y) where A is a user supplied matrix. For IVPAG, the 
matrix A must be nonsingular. 

The system y� = f (t, y) is said to be stiff if some of the eigenvalues of the Jacobian matrix 
{� fi�� yj} have large, negative real parts. This is often the case for differential equations 
representing the behavior of physical systems such as chemical reactions proceeding to 
equilibrium where subspecies effectively complete their reaction in different epochs. An alternate 
model concerns discharging capacitors such that different parts of the system have widely varying 
decay rates (or time constants). This definition of stiffness, based on the eigenvalues of the 
Jacobian matrix, is not satisfactory. Users typically identify stiff systems by the fact that numerical 
differential equation solvers such as IVPRK, page 837, are inefficient, or else they fail. The most 
common inefficiency is that a large number of evaluations of the functions fi are required. In such 
cases, use routine IVPAG, page 854, or DASPG, page 889. For more about stiff systems, see Gear 
(1971, Chapter 11) or Shampine and Gear (1979). 

In the boundary value problem (BVP) for ODEs, constraints on the dependent variables are given 
at the endpoints of the interval of interest, [a, b]. The routines BVPFD, page 889, and BVPMS, page 
882, solve the BVP for systems of the form y�(t) = f (t, y), subject to the conditions 

hi(y�(a), �, yN(a), y�(b), �, yN(b)) = 0   i = 1, �, N 

Here, f and h = [h�, �, hN]T are user-supplied functions. 

Differential-algebraic Equations 
Frequently, it is not possible or not convenient to express the model of a dynamical system as a set 
of ODEs. Rather, an implicit equation is available in the form 
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� �1, , , , , , 0 1, ,i N Ng t y y y y i N� � � �� � �  

The gi are user-supplied functions. The system is abbreviated as 

� � � � � �1, , , , , , , , 0
T

Ng t y y g t y y g t y y� � �� �� �� ��  

With initial value y(t�). Any system of ODEs can be trivially written as a differential-algebraic 
system by defining 

� � � �, , ,g t y y f t y y� �� �  

The routine DASPG, page 889, solves differential-algebraic systems of index 1 or index 0. For a 
definition of index of a differential-algebraic system, see (Brenan et al. 1989). Also, see Gear and 
Petzold (1984) for an outline of the computing methods used. 

Partial Differential Equations 
The routine MOLCH, page 946, solves the IVP problem for systems of the form 

22
1 1

1 2 2, , , , , , , , , ,i N N
i N

u u uu u
f x t u u

t x x x x
� � �� �

� � � � �

� �
� � �

� �
� � �  

subject to the boundary conditions 

� � � � � � � � � �

� � � � � � � � � �

1 1 1

2 2 2

i i i
i

i i i
i

u
u a a t

x
u

u b b t
x

�
� � �

�

�
� � �

�

� �

� �

 

and subject to the initial conditions 

ui(x, t = t�) = gi(x) 

for i = 1, �, N. Here, fi, gi,  

� � � �, andi i
j j� �  

are user-supplied, j = 1, 2. 

The routines FPS2H, page 961, and FPS3H, page 967, solve Laplace’s, Poisson’s, or Helmholtz’s 
equation in two or three dimensions. FPS2H uses a fast Poisson method to solve a PDE of the form  

� �
2 2

2 2 ,u u cu f x y
x y

� �

� �
� � �  

over a rectangle, subject to boundary conditions on each of the four sides. The scalar constant c 
and the function f are user specified. FPS3H solves the three-dimensional analogue of this 
problem. 

Users wishing to solve more general PDE’s, in more general 2-d and 3-d regions are referred to 
Visual Numerics’ partner PDE2D (www.pde2d.com). 
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Summary 
The following table summarizes the types of problems handled by the routines in this chapter. 
With the exception of FPS2H and FPS3H, the routines can handle more than one differential 
equation.  

Problem Consideration Routine 
Ay�= f(t, y) 
y(t�) = y� 

A is a general, symmetric positive 
definite, band or symmetric positive 
definite band matrix. 

IVPAG 
page 854 

 Stiff or expensive to evaluate 
f (t, y), banded Jacobian or finely 
spaced output needed. 

IVPAG 
page 854 

y� = f(t, y), 
y (t�) = y� 

High accuracy needed and not stiff. 
(Uses Adams methods) 

IVPAG 
page 854 

 Moderate accuracy needed and not 
stiff. 

IVPRK 
page 837 

y� = f(t, y) 
h(y(a), y(b)) = 0 

BVP solver using finite differences BVPFD 
page 870 

 BVP solver using multiple shooting BVPMS 
page 882 

g(t, y, y�) = 0 
y(t�), y�(t�) given 

Stiff, differential-algebraic solver 
for systems of index 1 or 0. 
Note: DASPG uses the user-supplied 
y�(t�) only as an initial guess to help 
it find the correct initial y�(t�) to get 
started. 

DASPG 
page 889 

ut = f(x, t, u, ux, uxx) 
��u(a) + ��ux(a) = ��(t) 
��u(b) + ��ux(b) = ��(t) 

Method of lines using cubic splines 
and ODEs. 

MOLCH 
page 946 

uxx + uyy + cu = f(x, y) on a 
rectangle, given u or un on 
each edge. 

Fast Poisson solver FPS2H 
page 961 

uxx + uyy + uzz + cu = f(x, y, z) 
on a box, given u or un on 
each face 

Fast Poisson solver FPS3H 
page 967 

� �

� � � �� �

� � � �� �� �
� � � �� �

,

1 2

1 2
01 2

pu qu ru

u a pu a

u a pu a

u b pu b

�

� �

� � �

� �

�
�� � �

��

� � �� �

�� �

 

Sturm-Liouville problems SLEIG 
page 973 
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IVPRK 
Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner 
fifth-order and sixth-order method. 

Required Arguments 
IDO — Flag indicating the state of the computation.   (Input/Output) 

IDO State 

1 Initial entry 

2 Normal re-entry 

3 Final call to release workspace 

4 Return because of interrupt 1 

5 Return because of interrupt 2 with step accepted 

6 Return because of interrupt 2 with step rejected 

 Normally, the initial call is made with IDO = 1.  The routine then sets IDO = 2, and this 
value is used for all but the last call that is made with IDO = 3. This final call is used to 
release workspace, which was automatically allocated by the initial call with IDO = 1. 
No integration is performed on this final call. See Comment 3 for a description of the 
other interrupts. 

FCN — User-supplied SUBROUTINE to evaluate functions. The usage is CALL FCN(N, T, 
Y, YPRIME), where 
 N – Number of equations.   (Input) 
 T – Independent variable, t.   (Input) 
 Y – Array of size N containing the dependent variable values, y.    
 (Input) 
 YPRIME – Array of size N containing the values of the vector y�  
 evaluated at (t, y).   (Output) 
FCN must be declared EXTERNAL in the calling program. 

T — Independent variable.   (Input/Output) 
On input, T contains the initial value. On output, T is replaced by TEND unless error 
conditions have occurred. See IDO for details. 

TEND — Value of t where the solution is required.   (Input)  
The value TEND may be less than the initial value of t. 
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Y — Array of size NEQ of dependent variables. (Input/Output)  
On input, Y contains the initial values. On output, Y contains the approximate solution. 

Optional Arguments 
NEQ — Number of differential equations.   (Input) 

Default: NEQ = size (Y,1). 

TOL — Tolerance for error control.   (Input)  
An attempt is made to control the norm of the local error such that the global error is 
proportional to TOL. 
Default: TOL = machine precision. 

PARAM — A floating-point array of size 50 containing optional parameters.   (Input/ Output)  
If a parameter is zero, then a default value is used. These default values are given 
below. Parameters that concern values of step size are applied in the direction of 
integration. The following parameters may be set by the user: 

 PARAM Meaning 
1 HINIT Initial value of the step size. Default: 10.0 * MAX (AMACH (1), 

AMACH(4) * MAX(ABS(TEND), ABS(T))) 
2 HMIN Minimum value of the step size. Default: 0.0 
3 HMAX Maximum value of the step size. Default: 2.0 
4 MXSTEP Maximum number of steps allowed. Default: 500 
5 MXFCN Maximum number of function evaluations allowed. Default: 

No enforced limit. 
6  Not used. 
7 INTRP1 If nonzero, then return with IDO = 4 before each step. See 

Comment 3. Default: 0. 
8 INTRP2 If nonzero, then return with IDO = 5 after every successful 

step and with IDO = 6 after every unsuccessful step. See 
Comment 3. Default: 0. 

9 SCALE A measure of the scale of the problem, such as an 
approximation to the average value of a norm of the Jacobian 
matrix along the solution. Default: 1.0 
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 PARAM Meaning 
10 INORM Switch determining error norm. In the following, ei is the 

absolute value of an estimate of the error in yi(t).  
Default: 0.0 � min(absolute error, relative error) = max(ei/wi); 
i = 1, �, NEQ, where wi = max(|yi(t)|, 1.0). 

1 � absolute error = max(ei), i = 1 �, NEQ. 

2� max(ei/wi), i = 1 �, NEQ where wi = max(|yi (t)|, FLOOR), 
and FLOOR is PARAM(11). 

3 � Scaled Euclidean norm defined as  
where wi = max(|yi (t)|, 1.0). Other definitions of YMAX can be 
specified by the user, as explained in Comment 1. 

11 FLOOR Used in the norm computation associated with parameter 
INORM. Default: 1.0. 

12�30  Not used. 

 

The following entries in PARAM are set by the program.  

 PARAM Meaning 
31 HTRIAL Current trial step size. 
32 HMINC Computed minimum step size allowed. 
33 HMAXC Computed maximum step size allowed. 
34 NSTEP  Number of steps taken. 
35 NFCN  Number of function evaluations used. 
36�50  Not used. 

FORTRAN 90 Interface 
Generic: CALL IVPRK (IDO, FCN, T, TEND, Y [,…]) 

Specific:  The specific interface names are S_IVPRK and D_IVPRK. 

FORTRAN 77 Interface 
Single: CALL IVPRK (IDO, NEQ, FCN, T, TEND, TOL, PARAM, Y) 

Double: The double precision name is DIVPRK. 

Example 1 
Consider a predator-prey problem with rabbits and foxes. Let r be the density of rabbits and let  
f be the density of foxes. In the absence of any predator-prey interaction, the rabbits would 
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increase at a rate proportional to their number, and the foxes would die of starvation at a rate 
proportional to their number. Mathematically, 

r � = 2r 

f � = � f 

The rate at which the rabbits are eaten by the foxes is 2r f, and the rate at which the foxes 
increase, because they are eating the rabbits, is r f. So, the model to be solved is 

r � = 2r � 2r f 

f � = � f + r f 

The initial conditions are r(0) = 1 and f(0) = 3 over the interval 0 	 t 	 10. 

In the program Y(1) = r and Y(2) = f. Note that the parameter vector PARAM is first set to zero 
with IMSL routine SSET (Chapter 9, Basic Matrix/Vector Operations). Then, absolute error 
control is selected by setting PARAM(10) = 1.0. 

The last call to IVPRK with IDO = 3 deallocates IMSL workspace allocated on the first call to 
IVPRK. It is not necessary to release the workspace in this example because the program ends 
after solving a single problem. The call to release workspace is made as a model of what would 
be needed if the program included further calls to IMSL routines. 

      USE IVPRK_INT 
      USE UMACH_INT 
      INTEGER    MXPARM, N 
      PARAMETER  (MXPARM=50, N=2) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IDO, ISTEP, NOUT 
      REAL       PARAM(MXPARM), T, TEND, TOL, Y(N) 
!                                 SPECIFICATIONS FOR SUBROUTINES 
      EXTERNAL   FCN 
! 
      CALL UMACH (2, NOUT) 
!                                 Set initial conditions 
      T = 0.0 
      Y(1) = 1.0 
      Y(2) = 3.0 
!                                 Set error tolerance 
      TOL = 0.0005 
!                                 Set PARAM to default 
      PARAM = 0.E0 
!                                 Select absolute error control 
      PARAM(10) = 1.0 
!                                 Print header 
      WRITE (NOUT,99999) 
      IDO = 1 
      ISTEP = 0 
   10 CONTINUE 
      ISTEP = ISTEP + 1 
      TEND = ISTEP 
      CALL IVPRK (IDO, FCN, T, TEND, Y, TOL=TOL, PARAM=PARAM) 
      IF (ISTEP .LE. 10) THEN 
         WRITE (NOUT,’(I6,3F12.3)’) ISTEP, T, Y 
!                                 Final call to release workspace 
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         IF (ISTEP .EQ. 10) IDO = 3 
         GO TO 10 
      END IF 
99999 FORMAT (4X, ’ISTEP’, 5X, ’Time’, 9X, ’Y1’, 11X, ’Y2’) 
      END 
      SUBROUTINE FCN (N, T, Y, YPRIME) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N 
      REAL       T, Y(N), YPRIME(N) 
! 
      YPRIME(1) = 2.0*Y(1) - 2.0*Y(1)*Y(2) 
      YPRIME(2) = -Y(2) + Y(1)*Y(2) 
      RETURN 
      END 

Output 
 ISTEP     Time         Y1          Y2 
 1       1.000       0.078       1.465 
 2       2.000       0.085       0.578 
 3       3.000       0.292       0.250 
 4       4.000       1.449       0.187 
 5       5.000       4.046       1.444 
 6       6.000       0.176       2.256 
 7       7.000       0.066       0.908 
 8       8.000       0.148       0.367 
 9       9.000       0.655       0.188 
10      10.000       3.157       0.352 

Comments 
1. Workspace may be explicitly provided, if desired, by use of I2PRK/DI2PRK. The 

reference is: 

CALL I2PRK (IDO, NEQ, FCN, T, TEND, TOL, PARAM, Y,  
     VNORM, WK) 

The additional arguments are as follows: 2 2
1

/NEQ
i ii

e w
�

� �YMAX  

VNORM — A Fortran SUBROUTINE to compute the norm of the error.   (Input)  
The routine may be provided by the user, or the IMSL routine I3PRK/DI3PRK may be 
used. In either case, the name must be declared in a Fortran EXTERNAL statement. If 
usage of the IMSL routine is intended, then the name I3PRK/DI3PRK should be used. 
The usage of the error norm routine is CALL VNORM (N, V, Y, YMAX, ENORM), 
where  

Arg  Definition 

N  Number of equations.   (Input) 

V  Array of size N containing the vector whose norm is to be computed.   
 (Input) 
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Y  Array of size N containing the values of the dependent variable.   (Input) 

YMAX  Array of size N containing the maximum values of |y(t)|.   (Input) 

ENORM Norm of the vector V.   (Output) 

VNORM must be declared EXTERNAL in the calling program. 

WK — Work array of size 10N using the working precision. The contents of WK must not be 
changed from the first call with IDO = 1 until after the final call with IDO = 3. 

2. Informational errors 

Type Code 
   4    1 Cannot satisfy error condition. The value of TOL may be too small. 
   4    2 Too many function evaluations needed. 
   4    3 Too many steps needed. The problem may be stiff. 

3. If PARAM(7) is nonzero, the subroutine returns with IDO = 4 and will resume 
calculation at the point of interruption if re-entered with IDO = 4. If PARAM(8) is 
nonzero, the subroutine will interrupt the calculations immediately after it decides 
whether or not to accept the result of the most recent trial step. The values used are  
IDO = 5 if the routine plans to accept, or IDO = 6 if it plans to reject the step. The 
values of IDO may be changed by the user (by changing IDO from 6 to 5) in order to 
force acceptance of a step that would otherwise be rejected. Some parameters the user 
might want to examine after return from an interrupt are IDO, HTRIAL, NSTEP, NFCN, 
T, and Y. The array Y contains the newly computed trial value for y(t), accepted or not. 

Description 
Routine IVPRK finds an approximation to the solution of a system of first-order differential 
equations of the form y� = f (t, y) with given initial data. The routine attempts to keep the global 
error proportional to a user-specified tolerance. This routine is efficient for nonstiff systems 
where the derivative evaluations are not expensive. 

The routine IVPRK is based on a code designed by Hull, Enright and Jackson (1976, 1977). It 
uses Runge-Kutta formulas of order five and six developed by J. H. Verner. 

Additional Examples 

Example 2 
This is a mildly stiff problem (F2) from the test set of Enright and Pryce (1987). It is included 
here because it illustrates the inefficiency of requiring more function evaluations with a nonstiff 
solver, for a requested accuracy, than would be required using a stiff solver. Also, see IVPAG, 
page 854, Example 2, where the problem is solved using a BDF method. The number of 
function evaluations may vary, depending on the accuracy and other arithmetic characteristics of 
the computer. The test problem has n = 2 equations: 
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      USE IVPRK_INT 
      USE UMACH_INT 
      INTEGER    MXPARM, N 
      PARAMETER  (MXPARM=50, N=2) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IDO, ISTEP, NOUT 
      REAL       PARAM(MXPARM), T, TEND, TOL, Y(N) 
!                                 SPECIFICATIONS FOR SUBROUTINES 
!                                 SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCN 
! 
      CALL UMACH (2, NOUT) 
!                                 Set initial conditions 
      T = 0.0 
      Y(1) = 1.0 
      Y(2) = 0.0 
!                                 Set error tolerance 
      TOL = 0.001 
!                                 Set PARAM to default 
      PARAM = 0.0E0 
!                                 Select absolute error control 
      PARAM(10) = 1.0 
!                                 Print header 
      WRITE (NOUT,99998) 
      IDO = 1 
      ISTEP = 0 
   10 CONTINUE 
      ISTEP = ISTEP + 24 
      TEND = ISTEP 
      CALL IVPRK (IDO, FCN, T, TEND, Y, TOL=TOL, PARAM=PARAM) 
      IF (ISTEP .LE. 240) THEN 
         WRITE (NOUT,’(I6,3F12.3)’) ISTEP/24, T, Y 
!                                 Final call to release workspace 
         IF (ISTEP .EQ. 240) IDO = 3 
         GO TO 10 
      END IF 
!                                 Show number of function calls. 
      WRITE (NOUT,99999) PARAM(35) 
99998 FORMAT (4X, ’ISTEP’, 5X, ’Time’, 9X, ’Y1’, 11X, ’Y2’) 
99999 FORMAT (4X, ’Number of fcn calls with IVPRK =’, F6.0) 
      END 
      SUBROUTINE FCN (N, T, Y, YPRIME) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
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      INTEGER    N 
      REAL       T, Y(N), YPRIME(N) 
!                                 SPECIFICATIONS FOR DATA VARIABLES 
      REAL       AK1, AK2, AK3 
! 
      DATA AK1, AK2, AK3/294.0E0, 3.0E0, 0.01020408E0/ 
! 
      YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2) 
      YPRIME(2) = -AK2*Y(2) + AK3*(1.0E0-Y(2))*Y(1) 
      RETURN 
      END 

Output 
ISTEP     Time         Y1           Y2 
 1      24.000       0.688       0.002 
 2      48.000       0.634       0.002 
 3      72.000       0.589       0.002 
 4      96.000       0.549       0.002 
 5     120.000       0.514       0.002 
 6     144.000       0.484       0.002 
 7     168.000       0.457       0.002 
 8     192.000       0.433       0.001 
 9     216.000       0.411       0.001 
10     240.000       0.391       0.001 
Number of fcn calls with IVPRK = 2153. 

IVMRK 
Solves an initial-value problem y� = f(t, y) for ordinary differential equations using Runge-Kutta 
pairs of various orders. 

Required Arguments 
IDO — Flag indicating the state of the computation.   (Input/Output) 

 

IDO State 
 1 Initial entry 
 2 Normal re-entry 
 3 Final call to release workspace 
 4 Return after a step 
 5 Return for function evaluation (reverse communication) 

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this 
value is used for all but the last call that is made with IDO = 3. This final call is used to 
release workspace, which was automatically allocated by the initial call with IDO = 1. 

FCN — User-supplied SUBROUTINE to evaluate functions. The usage is  
CALL FCN (N, T, Y, YPRIME), where 



 

 
 

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 845 

 

 

 

N — Number of equations.   (Input) 
T — Independent variable.   (Input) 
Y — Array of size N containing the dependent variable values, y.   (Input) 
YPRIME — Array of size N containing the values of the vector y� evaluated at (t, y).   
(Output) 
FCN must be declared EXTERNAL in the calling program. 

T — Independent variable.   (Input/Output) 
On input, T contains the initial value. On output, T is replaced by TEND unless error 
conditions have occurred. 

TEND — Value of t where the solution is required.   (Input) 
The value of TEND may be less than the initial value of t. 

Y — Array of size N of dependent variables.   (Input/Output) 
On input, Y contains the initial values. On output, Y contains the approximate solution. 

YPRIME — Array of size N containing the values of the vector y' evaluated at (t, y).   
(Output) 

Optional Arguments 
N — Number of differential equations.   (Input) 

Default: N= size (Y,1). 

FORTRAN 90 Interface 
Generic: CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME [,…]) 

Specific:  The specific interface names are S_IVMRK and D_IVMRK. 

FORTRAN 77 Interface 
Single: CALL IVMRK (IDO, N, FCN, T, TEND, Y, YPRIME) 

Double: The double precision name is DIVMRK. 

Example 1 
This example integrates the small system (A.2.B2) from the test set of Enright and Pryce (1987): 



 

 
 

846 � Chapter 5: Differential Equations IMSL MATH/LIBRARY 

 

 

 

� �

� �

� �

1 1 2

2 1 2 3

3 2 3

1

2

3

2

0 2

0 0

0 1

y y y
y y y y
y y y

y

y

y

� � � �

� � � �

� � �

�

�

�

 

      USE IVMRK_INT 
      USE WRRRN_INT 
      INTEGER    N 
 
      PARAMETER  (N=3) 
!                                  Specifications for local variables 
      INTEGER    IDO 
      REAL       T, TEND, Y(N), YPRIME(N) 
      EXTERNAL FCN 
!                                  Set initial conditions 
      T = 0.0 
      TEND = 20.0 
      Y(1) = 2.0 
      Y(2) = 0.0 
      Y(3) = 1.0 
      IDO = 1 
      CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME) 
! 
!                                  Final call to release workspace 
      IDO = 3 
      CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME) 
! 
      CALL WRRRN ('Y', Y) 
      END 
! 
      SUBROUTINE FCN (N, T, Y, YPRIME) 
!                                  Specifications for arguments 
      INTEGER    N 
      REAL       T, Y(*), YPRIME(*) 
! 
      YPRIME(1) = -Y(1) + Y(2) 
      YPRIME(2) = Y(1) - 2.0*Y(2) + Y(3) 
      YPRIME(3) = Y(2) - Y(3) 
      RETURN 
      END 
 

Output 
        Y 
1   1.000 
2   1.000 
3   1.000 
 



 

 
 

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 847 

 

 

 

Comments 
1. Workspace may be explicitly provided, if desired, by use of I2MRK/DI2MRK. The 

reference is: 

CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM, 
YMAX, RMSERR, WORK, IWORK) 

The additional arguments are as follows: 

TOL — Tolerance for error control.   (Input) 

THRES — Array of size N.   (Input) 
THRES(I) is a threshold for solution component Y(I). It is chosen so that the 
value of Y(L) is not important when Y(L) is smaller in magnitude than 
THRES(L). THRES(L) must be greater than or equal to sqrt(amach(4)). 

PARAM — A floating-point array of size 50 containing optional parameters.   
(Input/Output) 
If a parameter is zero, then a default value is used. These default values are 
given below. The following parameters must be set by the user: 

PARAM Meaning 
1  HINIT Initial value of the step size. Must be chosen such that  
  0.01 
 HINIT 
 10.0 amach(4). Default: automatic  
  selection of stepsize. 

2  METHOD Specify which Runge-Kutta pair is to be used. 
  1 - use the (2, 3) pair 
  2 - use the (4, 5) pair 
  3 - use the (7, 8) pair. 
  Default: METHOD = 1 if 10-2 
 tol > 10-4 
  METHOD = 2 if 10-4 
 tol > 10-6 
  METHOD = 3 if 10-6 
 tol 

3  ERREST ERREST = 1 attempts to assess the true error, the  
  difference between the numerical solution and the  
  true solution. The cost of this is roughly twice the cost  
  of the integration itself with METHOD = 2 or  
  METHOD = 3, and three times with METHOD = 1.  
  Default: ERREST = 0. 

4  INTRP If nonzero, then return the IDO = 4 before each step.  
  See Comment 3. Default: 0 

5  RCSTAT If nonzero, then reverse communication is used to get  
  derivative information. See Comment 4. Default: 0. 

6 - 30 Not used 

The following entries are set by the program: 
31  HTRIAL Current trial step size. 
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32  NSTEP Number of steps taken. 
33  NFCN Number of function evaluations. 
34  ERRMAX The maximum approximate weighted true error taken  
  over all solution components and all steps from T  
  through the current integration point. 
35  TERRMX First value of the independent variable where an  
  approximate true error attains the maximum value  
  ERRMAX. 

YMAX Array of size N, where YMAX(L) is the largest value of ABS(Y(L)) 
computed at any step in the integration so far.  

RMSERR — Array of size N where RMSERR(L) approximates the RMS average of the 
true error of the numerical solution for the L-th solution component, 
L = 1,..., N. The average is taken over all steps from T through the current 
integration point. RMSERR is accessed and set only if PARAM(3) = 1. 

WORK — Floating point work array of size 39N using the working precision. The 
contents of WORK must not be changed from the first call with IDO = 1 until after 
the final call with IDO = 3. 

IWORK — Length of array work. (Input)  

2. Informational errors 

Type Code 
   4    1 It does not appear possible to achieve the accuracy specified by TOL 

and THRES(*) using the current precision and METHOD. A larger value 
for METHOD, if possible, will permit greater accuracy with this 
precision. The integration must be restarted. 

   4    2 The global error assessment may not be reliable beyond the current 
integration point T. This may occur because either too little or too 
much accuracy has been requested or because f(t, y) is not smooth 
enough for values of t just past TEND and current values of the 
solution y. This return does not mean that you cannot integrate past 
TEND, rather that you cannot do it with PARAM(3) = 1.  

3 If PARAM(4) is nonzero, the subroutine returns with IDO = 4 and will resume 
calculation at the point of interruption if re-entered with IDO = 4. Some parameters the 
user might want to examine are IDO, HTRIAL, NSTEP, NFCN, T, and Y. The array Y 
contains the newly computed trial value for y(t), accepted or not. 

4 If PARAM(5) is nonzero, the subroutine will return with IDO = 5. At this time, evaluate 
the derivatives at T, place the result in YPRIME, and call IVMRK again. The dummy 
function I40RK/DI40RK may be used in place of FCN. 
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Description 
Routine IVMRK finds an approximation to the solution of a system of first-order differential 
equations of the form y� = f(t, y) with given initial data. Relative local error is controlled 
according to a user-supplied tolerance. For added efficiency, three Runge-Kutta formula pairs, 
of orders 3, 5, and 8, are available.  

Optionally, the values of the vector y� can be passed to IVMRK by reverse communication, 
avoiding the user-supplied subroutine FCN. Reverse communication is especially useful in 
applications that have complicated algorithmic requirement for the evaluations of f(t, y). 
Another option allows assessment of the global error in the integration. 

The routine IVMRK is based on the codes contained in RKSUITE, developed by R. W. Brankin, I. 
Gladwell, and L. F. Shampine (1991). 

Additional Examples 

Example 2 
This problem is the same mildly stiff problem (A.1.F2) from the test set of Enright and Pryce as 
Example 2 for IVPRK, page 837. 
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Although not a stiff solver, one notes the greater efficiency of IVMRK over IVPRK, in terms of 
derivative evaluations. Reverse communication is also used in this example. Users will find this 
feature particularly helpful if their derivative evaluation scheme is difficult to isolate in a 
separate subroutine. 

      USE I2MRK_INT 
      USE UMACH_INT 
      USE AMACH_INT 
      INTEGER    N 
 
      PARAMETER  (N=2) 
!                                  Specifications for local variables 
      INTEGER    IDO, ISTEP, LWORK, NOUT 
      REAL       PARAM(50), PREC, RMSERR(N), T, TEND, THRES(N), TOL, & 
                  WORK(1000), Y(N), YMAX(N), YPRIME(N) 
      REAL       AK1, AK2, AK3 
      SAVE       AK1, AK2, AK3 
!                                  Specifications for intrinsics 
      INTRINSIC  SQRT 
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      REAL       SQRT 
!                                  Specifications for subroutines 
      EXTERNAL   I40RK 
!                                  Specifications for functions 
! 
      DATA AK1, AK2, AK3/294.0, 3.0, 0.01020408/ 
! 
      CALL UMACH (2, NOUT) 
!                                  Set initial conditions 
      T    = 0.0 
      Y(1) = 1.0 
      Y(2) = 0.0 
!                                  Set tolerance for error control, 
!                                  threshold vector and parameter 
!                                  vector 
      TOL = .001 
      PREC = AMACH(4) 
      THRES = SQRT (PREC) 
      PARAM = 0.0E0 
      LWORK = 1000 
!                                  Turn on derivative evaluation by 
!                                  reverse communication 
      PARAM(5) = 1 
      IDO      = 1 
      ISTEP    = 24 
!                                  Print header 
      WRITE (NOUT,99998) 
   10 CONTINUE 
      TEND = ISTEP 
      CALL I2MRK (IDO, N, I40RK, T, TEND, Y, YPRIME, TOL, THRES, PARAM,& 
                 YMAX, RMSERR, WORK, LWORK) 
      IF (IDO .EQ. 5) THEN 
!                                  Evaluate derivatives 
! 
         YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2) 
         YPRIME(2) = -AK2*Y(2) + AK3*(1.0-Y(2))*Y(1) 
         GO TO 10 
      ELSE IF (ISTEP .LE. 240) THEN 
! 
!                                  Integrate to 10 equally spaced points 
! 
         WRITE (NOUT,'(I6,3F12.3)') ISTEP/24, T, Y 
         IF (ISTEP .EQ. 240) IDO = 3 
         ISTEP = ISTEP + 24 
         GO TO 10 
      END IF 
!                                  Show number of derivative evaluations 
! 
      WRITE (NOUT,99999) PARAM(33) 
99998 FORMAT (3X, 'ISTEP', 5X, 'TIME', 9X, 'Y1', 10X, 'Y2') 
99999 FORMAT (/, 4X, 'NUMBER OF DERIVATIVE EVALUATIONS WITH IVMRK =', & 
            F6.0) 
      END 
 
!     DUMMY FUNCTION TO TAKE THE PLACE OF DERIVATIVE EVALUATOR 



 

 
 

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 851 

 

 

 

      SUBROUTINE I40RK (N, T, Y, YPRIME) 
      INTEGER N 
      REAL     T, y(*), YPRIME(*) 
      RETURN 
      END 

Output 
ISTEP     TIME          Y1          Y2 
1       24.000       0.688       0.002 
2       48.000       0.634       0.002 
3       72.000       0.589       0.002 
4       96.000       0.549       0.002 
5      120.000       0.514       0.002 
6      144.000       0.484       0.002 
7      168.000       0.457       0.002 
8      192.000       0.433       0.001 
9      216.000       0.411       0.001 
10     240.000       0.391       0.001 
NUMBER OF DERIVATIVE EVALUATIONS WITH IVMRK = 1375.  

Example 3 
This example demonstrates how exceptions may be handled. The problem is from Enright and 
Pryce (A.2.F1), and has discontinuities. We choose this problem to force a failure in the global 
error estimation scheme, which requires some smoothness in y. We also request an initial 
relative error tolerance which happens to be unsuitably small in this precision. 

If the integration fails because of problems in global error assessment, the assessment option is 
turned off, and the integration is restarted. If the integration fails because the requested accuracy 
is not achievable, the tolerance is increased, and global error assessment is requested. The 
reason error assessment is turned on is that prior assessment failures may have been due more in 
part to an overly stringent tolerance than lack of smoothness in the derivatives. 

When the integration is successful, the example prints the final relative error tolerance, and 
indicates whether or not global error estimation was possible. 
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      USE IMSL_LIBRARIES 
      INTEGER    N 
      PARAMETER  (N=2) 
!                                  Specifications for local variables 
      INTEGER    IDO, LWORK, NOUT 
      REAL       PARAM(50), PREC, RMSERR(N), T, TEND, THRES(N), TOL,& 
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                WORK(100), Y(N), YMAX(N), YPRIME(N) 
! 
                                  Specifications for intrinsics 
      INTRINSIC  SQRT 
      REAL       SQRT 
!                                  Specifications for subroutines 
! 
! 
!                                  Specifications for functions 
      EXTERNAL   FCN 
! 
! 
      CALL UMACH (2, NOUT) 
!                                  Turn off stopping for FATAL errors 
      CALL ERSET (4, -1, 0) 
!                                  Initialize input, turn on global 
!                                  error assessment 
      LWORK = 100 
      PREC = AMACH(4) 
      TOL   = SQRT(PREC) 
      PARAM = 0.0E01 
      THRES = TOL 
      TEND     = 20.0E0 
      PARAM(3) = 1 
! 
   10 CONTINUE 
!                                  Set initial values 
      T    = 0.0E0 
      Y(1) = 0.0E0 
      Y(2) = 0.0E0 
      IDO  = 1 
      CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM,& 
                 YMAX, RMSERR, WORK, LWORK) 
      IF (IERCD() .EQ. 32) THEN 
!                                  Unable to achieve requested 
!                                  accuracy, so increase tolerance. 
!                                  Activate global error assessment 
         TOL      = 10.0*TOL 
         PARAM(3) = 1 
         WRITE (NOUT,99995) TOL 
         GO TO 10 
      ELSE IF (IERCD() .EQ. 34) THEN 
!                                  Global error assessment has failed, 
!                                  cannot continue from this point, 
!                                  so restart integration 
         WRITE (NOUT,99996) 
         PARAM(3) = 0 
         GO TO 10 
      END IF 
! 
!                                  Final call to release workspace 
      IDO = 3 
      CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM,& 
                 YMAX, RMSERR, WORK, LWORK) 
! 
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!                                  Summarize status 
      WRITE (NOUT,99997) TOL 
      IF (PARAM(3) .EQ. 1) THEN 
         WRITE (NOUT,99998) 
      ELSE 
         WRITE (NOUT,99999) 
      END IF 
      CALL WRRRN ('Y', Y) 
! 
99995 FORMAT (/, 'CHANGING TOLERANCE TO ', E9.3, ' AND RESTARTING ...'& 
            , /, 'ALSO (RE)ENABLING GLOBAL ERROR ASSESSMENT', /) 
99996 FORMAT (/, 'DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ...'& 
            , /) 
99997 FORMAT (/, 72('-'), //, 'SOLUTION OBTAINED WITH TOLERANCE = ',& 
            E9.3) 
99998 FORMAT ('GLOBAL ERROR ASSESSMENT IS AVAILABLE') 
99999 FORMAT ('GLOBAL ERROR ASSESSMENT IS NOT AVAILABLE') 
! 
      END 
! 
      SUBROUTINE FCN (N, T, Y, YPRIME) 
      USE CONST_INT  
!                                  Specifications for arguments 
      INTEGER    N 
      REAL       T, Y(*), YPRIME(*) 
!                                  Specifications for local variables 
      REAL       A 
      REAL       PI 
      LOGICAL    FIRST 
      SAVE       FIRST, PI 
!                                  Specifications for intrinsics 
      INTRINSIC  INT, MOD 
      INTEGER    INT, MOD 
!                                  Specifications for functions 
! 
      DATA FIRST/.TRUE./ 
! 
      IF (FIRST) THEN 
         PI    = CONST('PI') 
         FIRST = .FALSE. 
      END IF 
! 
      A         = 0.1E0 
      YPRIME(1) = Y(2) 
      IF (MOD(INT(T),2) .EQ. 0) THEN 
         YPRIME(2) = 2.0E0*A*Y(2) - (PI*PI+A*A)*Y(1) + 1.0E0 
      ELSE 
         YPRIME(2) = 2.0E0*A*Y(2) - (PI*PI+A*A)*Y(1) - 1.0E0 
      END IF 
      RETURN 
      END 
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Output 
 *** FATAL    ERROR 34 from i2mrk.  The global error assessment may not 
 ***          be reliable for T past 9.994749E-01.  The integration is 
 ***          being terminated. 
 
 
DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ... 
 
 
 *** FATAL    ERROR 32 from i2mrk.  In order to satisfy the error  
 ***          requirement I6MRK would have to use a step size of 
 ***          3.647129E- 06 at TNOW = 9.999932E-01.  This is too small 
 ***          for the current precision. 
 
 
CHANGING TOLERANCE TO 0.345E-02 AND RESTARTING ... 
ALSO (RE)ENABLING GLOBAL ERROR ASSESSMENT 
 
 
 *** FATAL    ERROR 34 from i2mrk.  The global error assessment may 
 ***          not be reliable for T past 9.986024E-01.  The integration 
 ***          is being terminated. 
 
DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ... 
 
 
------------------------------------------------------------------------ 
 
SOLUTION OBTAINED WITH TOLERANCE = 0.345E-02 
GLOBAL ERROR ASSESSMENT IS NOT AVAILABLE 
   
     Y 
 1  -12.30 
 2    0.95 

IVPAG 
Solves an initial-value problem for ordinary differential equations using either Adams-Moulton’s 
or Gear’s BDF method. 

Required Arguments 
IDO — Flag indicating the state of the computation.   (Input/Output)  

IDO State 

1 Initial entry 

2 Normal re-entry 

3 Final call to release workspace 
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4 Return because of interrupt 1 

5 Return because of interrupt 2 with step accepted 

6 Return because of interrupt 2 with step rejected 

7 Return for new value of matrix A. 

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this 
value is then used for all but the last call that is made with IDO = 3. This final call is 
only used to release workspace, which was automatically allocated by the initial call 
with IDO = 1. See Comment 5 for a description of the interrupts. 

 When IDO = 7, the matrix A at t must be recomputed and IVPAG/DIVPAG called again. 
No other argument (including IDO) should be changed. This value of IDO is returned 
only if PARAM(19) = 2. 

FCN — User-supplied SUBROUTINE to evaluate functions. The usage is   
 CALL FCN (N, T, Y, YPRIME), where 
 N – Number of equations.   (Input) 
 T – Independent variable, t.   (Input) 
 Y – Array of size N containing the dependent variable values, y.    
 (Input) 
 YPRIME – Array of size N containing the values of the vector y�  
 evaluated at (t, y).   (Output)  
 See Comment 3.       
 FCN must be declared EXTERNAL in the calling program. 

FCNJ — User-supplied SUBROUTINE to compute the Jacobian. The usage is  
CALL FCNJ (N, T, Y, DYPDY) where 
 N – Number of equations.   (Input) 
 T – Independent variable, t.   (Input) 
 Y – Array of size N containing the dependent variable values, y(t).   
 (Input) 

DYPDY – An array, with data structure and type determined by  
PARAM(14) = MTYPE, containing the required partial derivatives �fi��yj.   (Output) 
These derivatives are to be evaluated at the current values of (t, y). When the 
Jacobian is dense, MTYPE = 0 or = 2, the leading dimension of DYPDY has the 
value N. When the Jacobian matrix is banded, MTYPE = 1, and the leading 
dimension of DYPDY has the value 2 * NLC + NUC + 1. If the matrix is banded 
positive definite symmetric, MTYPE = 3, and the leading dimension of DYPDY has 
the value NUC + 1. 

FCNJ must be declared EXTERNAL in the calling program. If PARAM(19) = IATYPE is 
nonzero, then FCNJ should compute the Jacobian of the righthand side of the equation 
Ay� = f(t, y). The subroutine FCNJ is used only if PARAM(13) = MITER = 1. 
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T — Independent variable, t.   (Input/Output)  
On input, T contains the initial independent variable value. On output, T is replaced by 
TEND unless error or other normal conditions arise. See IDO for details. 

TEND — Value of t = tend where the solution is required.   (Input)  
The value tend may be less than the initial value of t. 

Y — Array of size NEQ of dependent variables, y(t).   (Input/Output)  
On input, Y contains the initial values, y(t�). On output, Y contains the approximate 
solution, y(t). 

Optional Arguments 
NEQ— Number of differential equations.   (Input) 

Default: NEQ = size (Y,1) 

A — Matrix structure used when the system is implicit.   (Input) 
The matrix A is referenced only if PARAM(19) = IATYPE is nonzero. Its data structure is 
determined by PARAM(14) = MTYPE. The matrix A must be nonsingular and MITER 
must be 1 or 2. See Comment 3. 

TOL — Tolerance for error control.   (Input)  
An attempt is made to control the norm of the local error such that the global error is 
proportional to TOL. 
Default: TOL = .001 

PARAM — A floating-point array of size 50 containing optional parameters.   (Input/Output)  
If a parameter is zero, then the default value is used. These default values are given 
below. Parameters that concern values of the step size are applied in the direction of 
integration. The following parameters may be set by the user: 

 PARAM Meaning 
1 HINIT Initial value of the step size H. Always nonnegative.  

Default: 0.001|tend � t�|. 

2 HMIN Minimum value of the step size H. Default: 0.0. 
3 HMAX Maximum value of the step size H. Default: No limit, 

beyond the machine scale, is imposed on the step size. 
4 MXSTEP Maximum number of steps allowed. Default: 500. 
5 MXFCN Maximum number of function evaluations allowed. 

Default: No enforced limit. 
6 MAXORD Maximum order of the method. Default: If Adams-Moulton 

method is used, then 12. If Gear’s or BDF method is used, 
then 5. The defaults are the maximum values allowed. 

7 INTRP1 If this value is set nonzero, the subroutine will return before 
every step with IDO = 4. See Comment 5. Default: 0. 
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8 INTRP2 If this value is nonzero, the subroutine will return after 
every successful step with IDO = 5 and return with IDO = 6 
after every unsuccessful step. See Comment 5. Default: 0 

9 SCALE A measure of the scale of the problem, such as an 
approximation to the average value of a norm of the 
Jacobian along the solution. Default: 1.0 

10 INORM Switch determining error norm. In the following, ei is the 
absolute value of an estimate of the error in yi(t).  
Default: 0. 

0 — min(absolute error, relative error) = max(ei�wi); i = 1, 
�, N, where wi = max(|yi(t)|, 1.0). 

1 — absolute error = max(ei), i = 1 �, NEQ. 

2 — max(ei / wi), i = 1 �, N where wi = max(|yi(t)|, 
FLOOR), and FLOOR is the value PARAM(11). 
3 — Scaled Euclidean norm defined as  

         2 2
1

YMAX /NEQ
i ii

e w
�

� �  

where wi = max(|yi(t)|, 1.0). Other definitions of YMAX can 
be specified by the user, as explained in Comment 1. 

11 FLOOR Used in the norm computation associated the parameter 
INORM. Default: 1.0. 

12 METH Integration method indicator. 
1 = METH selects the Adams-Moulton method. 
2 = METH selects Gear’s BDF method. 
Default: 1. 

13 MITER Nonlinear solver method indicator. 
Note: If the problem is stiff and a chord or modified 
Newton method is most efficient, use MITER = 1 or = 2. 
0 = MITER selects functional iteration. The value IATYPE 
must be set to zero with this option. 
1 = MITER selects a chord method with a user-provided 
Jacobian. 
2 = MITER selects a chord method with a divided-
difference Jacobian. 
3 = MITER selects a chord method with the Jacobian 
replaced by a diagonal matrix based on a directional 
derivative. The value IATYPE must be set to zero with this 
option. 
Default: 0. 
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14 MTYPE Matrix type for A (if used) and the Jacobian (if MITER = 1 
or = 2). When both are used, A and the Jacobian must be of 
the same type. 
0 = MTYPE selects full matrices. 

1 = MTYPE selects banded matrices. 
2 = MTYPE selects symmetric positive definite matrices. 
3 = MTYPE selects banded symmetric positive definite 
matrices. 
Default: 0. 

15 NLC Number of lower codiagonals, used if MTYPE = 1. 
Default: 0. 

16 NUC Number of upper codiagonals, used if MTYPE = 1 or 
MTYPE = 3. 
Default: 0.  

17  Not used.  
18 EPSJ Relative tolerance used in computing divided difference 

Jacobians. 
Default: SQRT(AMACH(4)) . 

19 IATYPE Type of the matrix A. 
0 = IATYPE implies A is not used (the system is explicit). 
1 = IATYPE if A is a constant matrix. 
2 = IATYPE if A depends on t. 
Default: 0. 

20 LDA Leading dimension of array A exactly as specified in the 
dimension statement in the calling program. Used if 
IATYPE is not zero. 
Default: 
N             if MTYPE = 0 or = 2 
NUC + NLC + 1   if MTYPE = 1 
NUC + 1        if MTYPE = 3 

21�30  Not used. 

The following entries in the array PARAM are set by the program: 
 PARAM Meaning 
31 HTRIAL Current trial step size. 
32 HMINC  Computed minimum step size. 
33 HMAXC  Computed maximum step size. 
34 NSTEP  Number of steps taken. 
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35 NFCN  Number of function evaluations used.  
36 NJE  Number of Jacobian evaluations.  
37�50  Not used. 

FORTRAN 90 Interface 
Generic: CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y [,…]) 

Specific:  The specific interface names are S_IVPAG and D_IVPAG. 

FORTRAN 77 Interface 
Single: CALL IVPAG (IDO, NEQ, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y) 

Double: The double precision name is DIVPAG. 

Example 1 
Euler’s equation for the motion of a rigid body not subject to external forces is 

� �

� �

� �

1 2 3 1

2 1 3 2

3 1 2 3

0 0

0 1

0.51 0 1

y y y y

y y y y

y y y y

� � �

� � � �

� � � �

 

Its solution is, in terms of Jacobi elliptic functions, y�(t) = sn(t; k), y�(t) = cn(t; k), y�(t) = dn(t; k) 
where k� = 0.51. The Adams-Moulton method of IVPAG is used to solve this system, since this 
is the default. All parameters are set to defaults. 

The last call to IVPAG with IDO = 3 releases IMSL workspace that was reserved on the first call 
to IVPAG. It is not necessary to release the workspace in this example because the program ends 
after solving a single problem. The call to release workspace is made as a model of what would 
be needed if the program included further calls to IMSL routines. 

Because PARAM(13) = MITER = 0, functional iteration is used and so subroutine FCNJ is never 
called. It is included only because the calling sequence for IVPAG requires it. 

      USE IVPAG_INT 
      USE UMACH_INT 
      INTEGER    N, NPARAM 
      PARAMETER  (N=3, NPARAM=50) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IDO, IEND, NOUT 
      REAL       A(1,1), T, TEND, TOL, Y(N) 
!                                 SPECIFICATIONS FOR SUBROUTINES 
!                                 SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCN, FCNJ 
!                                 Initialize 
! 
      IDO  = 1 
      T    = 0.0 
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      Y(1) = 0.0 
      Y(2) = 1.0 
      Y(3) = 1.0 
      TOL  = 1.0E-6 
!                                 Write title 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99998) 
!                                 Integrate ODE 
      IEND = 0 
   10 CONTINUE 
      IEND = IEND + 1 
      TEND = IEND 
!                                 The array a(*,*) is not used. 
      CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL) 
      IF (IEND .LE. 10) THEN 
         WRITE (NOUT,99999) T, Y 
!                                 Finish up 
         IF (IEND .EQ. 10) IDO = 3 
         GO TO 10 
      END IF 
99998 FORMAT (11X, ’T’, 14X, ’Y(1)’, 11X, ’Y(2)’, 11X, ’Y(3)’) 
99999 FORMAT (4F15.5) 
      END 
! 
      SUBROUTINE FCN (N, X, Y, YPRIME) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N 
      REAL       X, Y(N), YPRIME(N) 
! 
      YPRIME(1) = Y(2)*Y(3) 
      YPRIME(2) = -Y(1)*Y(3) 
      YPRIME(3) = -0.51*Y(1)*Y(2) 
      RETURN 
      END 
! 
      SUBROUTINE FCNJ (N, X, Y, DYPDY) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N 
      REAL       X, Y(N), DYPDY(N,*) 
!                                 This subroutine is never called 
      RETURN 
      END 

Output 
     T              Y(1)           Y(2)           Y(3) 
 1.00000        0.80220        0.59705        0.81963 
 2.00000        0.99537       -0.09615        0.70336 
 3.00000        0.64141       -0.76720        0.88892 
 4.00000       -0.26961       -0.96296        0.98129 
 5.00000       -0.91173       -0.41079        0.75899 
 6.00000       -0.95751        0.28841        0.72967 
 7.00000       -0.42877        0.90342        0.95197 
 8.00000        0.51092        0.85963        0.93106 
 9.00000        0.97567        0.21926        0.71730 
10.00000        0.87790       -0.47884        0.77906 
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Comments 
1. Workspace and a user-supplied error norm subroutine may be explicitly provided, if 

desired, by use of I2PAG/DI2PAG. The reference is: 

CALL I2PAG (IDO, NEQ, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y, 
YTEMP, YMAX, ERROR, SAVE1, SAVE2, PW, IPVT, VNORM) 

None of the additional array arguments should be changed from the first call with  
IDO = 1 until after the final call with IDO = 3. The additional arguments are as follows: 

YTEMP — Array of size NMETH.   (Workspace) 

YMAX — Array of size NEQ containing the maximum Y-values computed so far.   
(Output) 

ERROR — Array of size NEQ containing error estimates for each component of Y.   
(Output) 

SAVE1 — Array of size NEQ.   (Workspace) 

SAVE2 — Array of size NEQ.   (Workspace) 

PW — Array of size NPW. (Workspace) 

IPVT — Array of size NEQ.   (Workspace) 

VNORM — A Fortran SUBROUTINE to compute the norm of the error.   (Input)  
The routine may be provided by the user, or the IMSL routine I3PRK/DI3PRK 
may be used. In either case, the name must be declared in a Fortran ENTERNAL 
statement. If usage of the IMSL routine is intended, then the name 
I3PRK/DI3PRK should be specified. The usage of the error norm routine is  
CALL VNORM (NEQ, V, Y, YMAX, ENORM) where  

Arg.  Definition 

NEQ  Number of equations.   (Input) 

V  Array of size N containing the vector whose norm is to be computed.   
 (Input) 

Y  Array of size N containing the values of the dependent variable.   (Input) 

YMAX  Array of size N containing the maximum values of |y (t)|.   (Input) 

ENORM Norm of the vector V.   (Output) 

VNORM must be declared EXTERNAL in the calling program. 
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2. Informational errors 

Type Code 
   4     1 After some initial success, the integration was halted by repeated 

error-test failures. 
   4     2  The maximum number of function evaluations have been used. 
   4     3  The maximum number of steps allowed have been used. The 

problem may be stiff. 
   4    4 On the next step T + H will equal T. Either TOL is too small, or the 

problem is stiff. 
Note: If the Adams-Moulton method is the one used in the 
integration, then users can switch to the BDF methods. If the BDF 
methods are being used, then these comments are gratuitous and 
indicate that the problem is too stiff for this combination of method 
and value of TOL. 

   4    5 After some initial success, the integration was halted by a test on 
TOL. 

   4    6 Integration was halted after failing to pass the error test even after 
dividing the initial step size by a factor of 1.0E + 10. The value TOL 
may be too small. 

   4    7 Integration was halted after failing to achieve corrector convergence 
even after dividing the initial step size by a factor of 1.0E + 10. The 
value TOL may be too small. 

   4    8 IATYPE is nonzero and the input matrix A multiplying y� is singular. 

3. Both explicit systems, of the form y� = f (t, y), and implicit systems, Ay� = f (t, y), can 
be solved. If the system is explicit, then PARAM(19) = 0; and the matrix A is not 
referenced. If the system is implicit, then PARAM(14) determines the data structure of 
the array A. If PARAM(19) = 1, then A is assumed to be a constant matrix. The value of A 
used on the first call (with IDO = 1) is saved until after a call with IDO = 3. The value 
of A must not be changed between these calls.  
If PARAM(19) = 2, then the matrix is assumed to be a function of t. 

4. If MTYPE is greater than zero, then MITER must equal 1 or 2. 

5. If PARAM(7) is nonzero, the subroutine returns with IDO= 4 and will resume calculation 
at the point of interruption if re-entered with IDO = 4. If PARAM(8) is nonzero, the 
subroutine will interrupt immediately after decides to accept the result of the most 
recent trial step. The value IDO = 5 is returned if the routine plans to accept, or IDO = 6 
if it plans to reject. The value IDO may be changed by the user (by changing IDO from 
6 to 5) to force acceptance of a step that would otherwise be rejected. Relevant 
parameters to observe after return from an interrupt are IDO, HTRIAL, NSTEP, NFCN, 
NJE, T and Y. The array Y contains the newly computed trial value y(t). 

Description 
The routine IVPAG solves a system of first-order ordinary differential equations of the form  
y� = f (t, y) or Ay� = f (t, y) with initial conditions where A is a square nonsingular matrix of order 
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N. Two classes of implicit linear multistep methods are available. The first is the implicit 
Adams-Moulton method (up to order twelve); the second uses the backward differentiation 
formulas BDF (up to order five). The BDF method is often called Gear’s stiff method. In both 
cases, because basic formulas are implicit, a system of nonlinear equations must be solved at 
each step. The deriviative matrix in this system has the form L = A + �J where � is a small 
number computed by IVPAG and J is the Jacobian. When it is used, this matrix is computed in 
the user-supplied routine FCNJ or else it is approximated by divided differences as a default. 
Using defaults, A is the identity matrix. The data structure for the matrix L may be identified to 
be real general, real banded, symmetric positive definite, or banded symmetric positive definite. 
The default structure for L is real general. 

Example 2 
The BDF method of IVPAG is used to solve Example 2 of IVPRK, page 837. We set  
PARAM(12) = 2 to designate the BDF method. A chord or modified Newton method, with the 
Jacobian computed by divided differences, is used to solve the nonlinear equations. Thus, we set 
PARAM(13) = 2. The number of evaluations of y� is printed after the last output point, showing 
the efficiency gained when using a stiff solver compared to using IVPRK on this problem. The 
number of evaluations may vary, depending on the accuracy and other arithmetic characteristics 
of the computer. 

      USE IVPAG_INT 
      USE UMACH_INT 
      INTEGER    MXPARM, N 
      PARAMETER  (MXPARM=50, N=2) 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    MABSE, MBDF, MSOLVE 
      PARAMETER  (MABSE=1, MBDF=2, MSOLVE=2) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IDO, ISTEP, NOUT 
      REAL       A(1,1), PARAM(MXPARM), T, TEND, TOL, Y(N) 
!                                 SPECIFICATIONS FOR SUBROUTINES 
!                                 SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCN, FCNJ 
! 
      CALL UMACH (2, NOUT) 
!                                 Set initial conditions 
      T = 0.0 
      Y(1) = 1.0 
      Y(2) = 0.0 
!                                 Set error tolerance 
      TOL = 0.001 
!                                 Set PARAM to defaults 
      PARAM = 0.0E0 
! 
      PARAM(10) = MABSE 
!                                 Select BDF method 
      PARAM(12) = MBDF 
!                                 Select chord method and 
!                                 a divided difference Jacobian. 
      PARAM(13) = MSOLVE 
!                                 Print header 
      WRITE (NOUT,99998) 
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      IDO = 1 
      ISTEP = 0 
   10 CONTINUE 
      ISTEP = ISTEP + 24 
      TEND = ISTEP 
!                                 The array a(*,*) is not used. 
      CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL, &  
                 PARAM=PARAM) 
      IF (ISTEP .LE. 240) THEN 
         WRITE (NOUT,’(I6,3F12.3)’) ISTEP/24, T, Y 
!                                 Final call to release workspace 
         IF (ISTEP .EQ. 240) IDO = 3 
         GO TO 10 
      END IF 
!                                 Show number of function calls. 
      WRITE (NOUT,99999) PARAM(35) 
99998 FORMAT (4X, ’ISTEP’, 5X, ’Time’, 9X, ’Y1’, 11X, ’Y2’) 
99999 FORMAT (4X, ’Number of fcn calls with IVPAG =’, F6.0) 
      END 
      SUBROUTINE FCN (N, T, Y, YPRIME) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N 
      REAL       T, Y(N), YPRIME(N) 
!                                 SPECIFICATIONS FOR SAVE VARIABLES 
      REAL       AK1, AK2, AK3 
      SAVE       AK1, AK2, AK3 
! 
      DATA AK1, AK2, AK3/294.0E0, 3.0E0, 0.01020408E0/ 
! 
      YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2) 
      YPRIME(2) = -AK2*Y(2) + AK3*(1.0E0-Y(2))*Y(1) 
      RETURN 
      END 
      SUBROUTINE FCNJ (N, T, Y, DYPDY) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N 
      REAL       T, Y(N), DYPDY(N,*) 
! 
      RETURN 
      END 

Output 
ISTEP     Time          Y1          Y2 
 1      24.000       0.689       0.002 
 2      48.000       0.636       0.002 
 3      72.000       0.590       0.002 
 4      96.000       0.550       0.002 
 5     120.000       0.515       0.002 
 6     144.000       0.485       0.002 
 7     168.000       0.458       0.002 
 8     192.000       0.434       0.001 
 9     216.000       0.412       0.001 
10     240.000       0.392       0.001 
Number of fcn calls with IVPAG =   73. 
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Example 3 
The BDF method of IVPAG is used to solve the so-called Robertson problem: 
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Output is obtained after each unit of the independent variable. A user-provided subroutine for 
the Jacobian matrix is used. An absolute error tolerance of 10�� is required. 

      USE IVPAG_INT 
      USE UMACH_INT 
      INTEGER    MXPARM, N 
      PARAMETER  (MXPARM=50, N=3) 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    MABSE, MBDF, MSOLVE 
      PARAMETER  (MABSE=1, MBDF=2, MSOLVE=1) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IDO, ISTEP, NOUT 
      REAL       A(1,1), PARAM(MXPARM), T, TEND, TOL, Y(N) 
!                                 SPECIFICATIONS FOR SUBROUTINES 
!                                 SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCN, FCNJ 
! 
      CALL UMACH (2, NOUT) 
!                                 Set initial conditions 
      T = 0.0 
      Y(1) = 1.0 
      Y(2) = 0.0 
      Y(3) = 0.0 
!                                 Set error tolerance 
      TOL = 1.0E-5 
!                                 Set PARAM to defaults 
      PARAM = 0.0E0 
 
!                                 Select absolute error control 
      PARAM(10) = MABSE 
!                                 Select BDF method 
      PARAM(12) = MBDF 
!                                 Select chord method and 
!                                 a user-provided Jacobian. 
      PARAM(13) = MSOLVE 
!                                 Print header 
      WRITE (NOUT,99998) 
      IDO = 1 
      ISTEP = 0 
   10 CONTINUE 
      ISTEP = ISTEP + 1 
      TEND = ISTEP 
!                                 The array a(*,*) is not used. 
      CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL & 
                 PARAM=PARAM) 
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      IF (ISTEP .LE. 10) THEN 
         WRITE (NOUT,’(I6,F12.2,3F13.5)’) ISTEP, T, Y 
!                                 Final call to release workspace 
         IF (ISTEP .EQ. 10) IDO = 3 
         GO TO 10 
      END IF 
99998 FORMAT (4X, ’ISTEP’, 5X, ’Time’, 9X, ’Y1’, 11X, ’Y2’, 11X, & 
            ’Y3’) 
      END 
      SUBROUTINE FCN (N, T, Y, YPRIME) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N 
      REAL       T, Y(N), YPRIME(N) 
!                                 SPECIFICATIONS FOR SAVE VARIABLES 
      REAL       C1, C2, C3 
      SAVE       C1, C2, C3 
! 
      DATA C1, C2, C3/0.04E0, 1.0E4, 3.0E7/ 
! 
      YPRIME(1) = -C1*Y(1) + C2*Y(2)*Y(3) 
      YPRIME(3) = C3*Y(2)**2 
      YPRIME(2) = -YPRIME(1) - YPRIME(3) 
      RETURN 
      END 
      SUBROUTINE FCNJ (N, T, Y, DYPDY) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N 
      REAL       T, Y(N), DYPDY(N,*) 
!                                 SPECIFICATIONS FOR SAVE VARIABLES 
      REAL       C1, C2, C3 
      SAVE       C1, C2, C3 
!                                 SPECIFICATIONS FOR SUBROUTINES 
      EXTERNAL   SSET 
! 
      DATA C1, C2, C3/0.04E0, 1.0E4, 3.0E7/ 
!                                 Clear array to zero 
      CALL SSET (N**2, 0.0, DYPDY, 1) 
!                                 Compute partials 
      DYPDY(1,1) = -C1 
      DYPDY(1,2) = C2*Y(3) 
      DYPDY(1,3) = C2*Y(2) 
      DYPDY(3,2) = 2.0*C3*Y(2) 
      DYPDY(2,1) = -DYPDY(1,1) 
      DYPDY(2,2) = -DYPDY(1,2) - DYPDY(3,2) 
      DYPDY(2,3) = -DYPDY(1,3) 
      RETURN 
      END 

Output 
 ISTEP     Time         Y1           Y2           Y3 
 1        1.00      0.96647      0.00003      0.03350 
 2        2.00      0.94164      0.00003      0.05834 
 3        3.00      0.92191      0.00002      0.07806 
 4        4.00      0.90555      0.00002      0.09443 
 5        5.00      0.89153      0.00002      0.10845 
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 6        6.00      0.87928      0.00002      0.12070 
 7        7.00      0.86838      0.00002      0.13160 
 8        8.00      0.85855      0.00002      0.14143 
 9        9.00      0.84959      0.00002      0.15039 
10       10.00      0.84136      0.00002      0.15862 

Example 4 
Solve the partial differential equation 
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with the initial condition  

u(t = 0, x) = sin x 

and the boundary conditions 

u(t, x = 0) = u(t, x = �) = 0 

on the square [0, 1] 
 [0, �], using the method of lines with a piecewise-linear Galerkin 
discretization. The exact solution is u(t, x) = exp(1 � et) sin x. The interval [0, �] is divided into 
equal intervals by choosing breakpoints xk = k�/(N + 1) for k = 0, �, N + 1. The unknown 
function u(t, x) is approximated by 
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where �k (x) is the piecewiselinear function that equals 1 at xk and is zero at all of the other 
breakpoints. We approximate the partial differential equation by a system of N ordinary 
differential equations, A dc/dt = Rc where A and R are matrices of order N. The matrix A is 
given by 
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where h = 1/(N + 1) is the mesh spacing. The matrix R is given by 
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The integrals involving 

���i  

are assigned the values of the integrals on the right-hand side, by using the boundary values and 
integration by parts. Because this system may be stiff, Gear’s BDF method is used. 
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In the following program, the array Y(1:N) corresponds to the vector of coefficients, c. Note that 
Y contains N + 2 elements; Y(0) and Y(N + 1) are used to store the boundary values. The matrix A 
depends on t so we set PARAM(19) = 2 and evaluate A when IVPAG returns with IDO = 7. The 
subroutine FCN computes the vector Rc, and the subroutine FCNJ computes R. The matrices A 
and R are stored as band-symmetric positive-definite structures having one upper co-diagonal. 

      USE IVPAG_INT 
      USE CONST_INT 
      USE WRRRN_INT 
      USE SSET_INT 
      INTEGER    LDA, N, NPARAM, NUC 
      PARAMETER  (N=9, NPARAM=50, NUC=1, LDA=NUC+1) 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    NSTEP 
      PARAMETER  (NSTEP=4) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, IATYPE, IDO, IMETH, INORM, ISTEP, MITER, MTYPE 
      REAL       A(LDA,N), C, HINIT, PARAM(NPARAM), PI, T, TEND, TMAX, & 
                TOL, XPOINT(0:N+1), Y(0:N+1) 
      CHARACTER  TITLE*10 
!                                 SPECIFICATIONS FOR COMMON /COMHX/ 
      COMMON     /COMHX/ HX 
      REAL       HX 
!                                 SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  EXP, REAL, SIN 
      REAL       EXP, REAL, SIN 
!                                 SPECIFICATIONS FOR SUBROUTINES 
!                                 SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCN, FCNJ 
!                                 Initialize PARAM 
      HINIT  = 1.0E-3 
      INORM  = 1 
      IMETH  = 2 
      MITER  = 1 
      MTYPE  = 3 
      IATYPE = 2 
      PARAM = 0.0E0 
      PARAM(1)  = HINIT 
      PARAM(10) = INORM 
      PARAM(12) = IMETH 
      PARAM(13) = MITER 
      PARAM(14) = MTYPE 
      PARAM(16) = NUC 
      PARAM(19) = IATYPE 
!                                 Initialize other arguments 
      PI = CONST(’PI’) 
      HX = PI/REAL(N+1) 
      CALL SSET (N-1, HX/6., A(1:,2), LDA) 
      CALL SSET (N, 2.*HX/3., A(2:,1), LDA) 
      DO 10  I=0, N + 1 
         XPOINT(I) = I*HX 
         Y(I)      = SIN(XPOINT(I)) 
   10 CONTINUE 
      TOL  = 1.0E-6 
      T    = 0.0 
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      TMAX = 1.0 
!                                 Integrate ODE 
      IDO   = 1 
      ISTEP = 0 
   20 CONTINUE 
      ISTEP = ISTEP + 1 
      TEND  = TMAX*REAL(ISTEP)/REAL(NSTEP) 
   30 CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y(1:), NEQ=N, A=A, & 
                  TOL=TOL, PARAM=PARAM) 
!                                 Set matrix A 
      IF (IDO .EQ. 7) THEN 
         C = EXP(-T) 
         CALL SSET (N-1, C*HX/6., A(1:,2), LDA) 
         CALL SSET (N, 2.*C*HX/3., A(2:,1), LDA) 
         GO TO 30 
      END IF 
      IF (ISTEP .LE. NSTEP) THEN 
!                                 Print solution 
         WRITE (TITLE,’(A,F5.3,A)’) ’U(T=’, T, ’)’ 
         CALL WRRRN (TITLE, Y, 1, N+2, 1) 
!                                 Final call to release workspace 
         IF (ISTEP .EQ. NSTEP) IDO = 3 
         GO TO 20 
       END IF 
       END 
! 
      SUBROUTINE FCN (N, T, Y, YPRIME) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N 
      REAL       T, Y(*), YPRIME(N) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I 
!                                 SPECIFICATIONS FOR COMMON /COMHX/ 
      COMMON     /COMHX/ HX 
      REAL       HX 
!                                 SPECIFICATIONS FOR SUBROUTINES 
      EXTERNAL   SSCAL 
! 
      YPRIME(1) = -2.0*Y(1) + Y(2) 
      DO 10  I=2, N - 1 
         YPRIME(I) = -2.0*Y(I) + Y(I-1) + Y(I+1) 
   10 CONTINUE 
      YPRIME(N) = -2.0*Y(N) + Y(N-1) 
      CALL SSCAL (N, 1.0/HX, YPRIME, 1) 
      RETURN 
      END 
! 
      SUBROUTINE FCNJ (N, T, Y, DYPDY) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N 
      REAL       T, Y(*), DYPDY(2,*) 
!                                 SPECIFICATIONS FOR COMMON /COMHX/ 
      COMMON     /COMHX/ HX 
      REAL       HX 
!                                 SPECIFICATIONS FOR SUBROUTINES 
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      EXTERNAL   SSET 
! 
      CALL SSET (N-1, 1.0/HX, DYPDY(1,2), 2) 
      CALL SSET (N, -2.0/HX, DYPDY(2,1), 2) 
      RETURN 
      END 

Output 
                            U(T=0.250) 
     1        2        3        4        5        6        7        8 
0.0000   0.2321   0.4414   0.6076   0.7142   0.7510   0.7142   0.6076 
 
 
     9       10       11 
0.4414   0.2321   0.0000 
 
 
                            U(T=0.500) 
     1        2        3        4        5        6        7        8 
0.0000   0.1607   0.3056   0.4206   0.4945   0.5199   0.4945   0.4206 
 
 
     9       10       11 
0.3056   0.1607   0.0000 
 
 
                            U(T=0.750) 
     1        2        3        4        5        6        7        8 
0.0000   0.1002   0.1906   0.2623   0.3084   0.3243   0.3084   0.2623 
 
 
     9       10       11 
0.1906   0.1002   0.0000 
 
 
                            U(T=1.000) 
     1        2        3        4        5        6        7        8 
0.0000   0.0546   0.1039   0.1431   0.1682   0.1768   0.1682   0.1431 
 
 
     9       10       11 
0.1039   0.0546   0.0000 

BVPFD 
Solves a (parameterized) system of differential equations with boundary conditions at two points, 
using a variable order, variable step size finite difference method with deferred corrections. 

Required Arguments 
FCNEQN — User-supplied SUBROUTINE to evaluate derivatives. The usage is CALL 

 FCNEQN (N, T, Y, P, DYDT), where 
 N – Number of differential equations.   (Input) 
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 T – Independent variable, t.   (Input) 
 Y – Array of size N containing the dependent variable values, y(t).    
 (Input) 
 P – Continuation parameter, p.   (Input) 
 See Comment 3. 
 DYDT – Array of size N containing the derivatives y�(t).   (Output)   
           The name FCNEQN must be declared EXTERNAL in the calling program. 

FCNJAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage is CALL 
 FCNJAC (N, T, Y, P, DYPDY), where 
 N – Number of differential equations.   (Input) 
 T – Independent variable, t.   (Input) 
 Y – Array of size N containing the dependent variable values.   (Input) 
 P – Continuation parameter, p.   (Input)  
 See Comments 3. 
 DYPDY – N by N array containing the partial derivatives ai,j = � fi � � yj  
 evaluated at (t, y). The values ai�j are returned in DYPDY(i, j).    
 (Output)        
 The name FCNJAC must be declared EXTERNAL in the calling program. 

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The usage is 
 CALL FCNBC (N, YLEFT, YRIGHT, P, H), where 
 N – Number of differential equations.   (Input) 
 YLEFT – Array of size N containing the values of the dependent  
 variable at the left endpoint.   (Input) 
 YRIGHT – Array of size N containing the values of the dependent  
 variable at the right endpoint.   (Input) 
 P – Continuation parameter, p.   (Input)  
 See Comment 3. 
 H – Array of size N containing the boundary condition residuals.    
 (Output)  

 The boundary conditions are defined by hi = 0; for i = 1, �, N. The left endpoint 
conditions must be defined first, then, the conditions involving both endpoints, 
and finally the right endpoint conditions. 

  The name FCNBC must be declared EXTERNAL in the calling program. 

FCNPEQ — User-supplied SUBROUTINE to evaluate the partial derivative of y� with respect 
 to the parameter p. The usage is   

  CALL FCNPEQ (N, T, Y, P, DYPDP), where 
 N – Number of differential equations.   (Input) 
 T – Dependent variable, t.   (Input) 
 Y – Array of size N containing the dependent variable values.   (Input) 
 P – Continuation parameter, p.   (Input)  
 See Comment 3. 
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 DYPDP – Array of size N containing the partial derivatives ai,j = �fi ��yj  
 evaluated at (t, y). The values ai,j are returned in DYPDY(i, j).    
 (Output) 

  The name FCNPEQ must be declared EXTERNAL in the calling program. 

FCNPBC — User-supplied SUBROUTINE to evaluate the derivative of the boundary 
 conditions with respect to the parameter p. The usage is   
           CALL FCNPBC (N, YLEFT, YRIGHT, P, H), where 
 N – Number of differential equations.   (Input) 
 YLEFT – Array of size N containing the values of the dependent  
 variable at the left endpoint.   (Input) 
 YRIGHT – Array of size N containing the values of the dependent  
 variable at the right endpoint.   (Input) 
 P – Continuation parameter, p.   (Input)  
 See Comment 3. 
 H – Array of size N containing the derivative of fi with respect to p.    
 (Output) 

  The name FCNPBC must be declared EXTERNAL in the calling program. 

NLEFT — Number of initial conditions.   (Input)  
The value NLEFT must be greater than or equal to zero and less than N. 

NCUPBC — Number of coupled boundary conditions.   (Input)  
The value NLEFT + NCUPBC must be greater than zero and less than or equal to N. 

TLEFT — The left endpoint.   (Input) 

TRIGHT — The right endpoint.   (Input) 

PISTEP — Initial increment size for p.   (Input)     
If this value is zero, continuation will not be used in this problem. The routines FCNPEQ 
and FCNPBC will not be called. 

TOL — Relative error control parameter.   (Input)  
The computations stop when ABS(ERROR(J, I))/MAX(ABS(Y(J, I)), 1.0).LT.TOL for all 
J = 1, �, N and I = 1, �, NGRID. Here, ERROR(J, I) is the estimated error in Y(J, I). 

TINIT — Array of size NINIT containing the initial grid points.   (Input) 

YINIT — Array of size N by NINIT containing an initial guess for the values of Y at the 
points in TINIT.   (Input) 

LINEAR — Logical .TRUE. if the differential equations and the boundary conditions are 
linear.   (Input) 
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MXGRID — Maximum number of grid points allowed.   (Input) 

NFINAL — Number of final grid points, including the endpoints.   (Output) 

TFINAL — Array of size MXGRID containing the final grid points.   (Output)  
Only the first NFINAL points are significant. 

YFINAL — Array of size N by MXGRID containing the values of Y at the points in TFINAL.   
(Output) 

ERREST — Array of size N.   (Output)  
ERREST(J) is the estimated error in Y(J). 

Optional Arguments 
N — Number of differential equations.   (Input) 

Default: N = size (YINIT,1). 

NINIT — Number of initial grid points, including the endpoints.   (Input)  
It must be at least 4. 
Default: NINIT = size (TINIT,1). 

LDYINI — Leading dimension of YINIT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDYINI = size (YINIT,1). 

PRINT — Logical .TRUE. if intermediate output is to be printed.   (Input) 
Default: PRINT = .FALSE. 

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDYFIN = size (YFINAL,1). 

FORTRAN 90 Interface 
Generic: CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, NLEFT, 

NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT,           
YINIT, LINEAR, MXGRID, NFINAL, TFINAL, YFINAL,           
ERREST [,…]) 

Specific:  The specific interface names are S_BVPFD and D_BVPFD. 

FORTRAN 77 Interface 
Single: CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, N, 

NLEFT, NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, NINIT, TINIT, 
YINIT, LDYINI, LINEAR, PRINT, MXGRID, NFINAL, TFINAL, 
YFINAL, LDYFIN, ERREST) 



 

 
 

874 � Chapter 5: Differential Equations IMSL MATH/LIBRARY 

 

 

 

Double: The double precision name is DBVPFD. 

Example 1 
This example solves the third-order linear equation 

2 siny y y y t��� �� �� � � �  

subject to the boundary conditions y(0) = y(2�) and y�(0) = y�(2�) = 1. (Its solution is y = sin t.) 
To use BVPFD, the problem is reduced to a system of first-order equations by defining  
y� = y, y� = y� and y� = y�. The resulting system is 

� �

� � � �

� �

1 2 2

2 3 1 1

3 3 2 1 2

0 1 0

0 2 0

2 sin 2 1 0

y y y

y y y y

y y y y t y

�

�

� � � �

� � � �

� � � � � � �

 

Note that there is one boundary condition at the left endpoint t = 0 and one boundary condition 
coupling the left and right endpoints. The final boundary condition is at the right endpoint. The 
total number of boundary conditions must be the same as the number of equations (in this case 
3). 

Note that since the parameter p is not used in the call to BVPFD, the routines FCNPEQ and 
FCNPBC are not needed. Therefore, in the call to BVPFD, FCNEQN and FCNBC were used in place 
of FCNPEQ and FCNPBC. 

      USE BVPFD_INT 
      USE UMACH_INT 
      USE CONST_INT 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    LDYFIN, LDYINI, MXGRID, NEQNS, NINIT 
      PARAMETER  (MXGRID=45, NEQNS=3, NINIT=10, LDYFIN=NEQNS, & 
                LDYINI=NEQNS) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, J, NCUPBC, NFINAL, NLEFT, NOUT 
      REAL       ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TINIT(NINIT), & 
                TLEFT, TOL, TRIGHT, YFINAL(LDYFIN,MXGRID), & 
                YINIT(LDYINI,NINIT) 
      LOGICAL    LINEAR, PRINT 
!                                 SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  FLOAT 
      REAL       FLOAT 
!                                 SPECIFICATIONS FOR SUBROUTINES 
!                                 SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCNBC, FCNEQN, FCNJAC 
!                                 Set parameters 
      NLEFT  = 1 
      NCUPBC = 1 
      TOL    = .001 
      TLEFT  = 0.0 
      TRIGHT = CONST(’PI’) 
      TRIGHT = 2.0*TRIGHT 
      PISTEP = 0.0 
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      PRINT  = .FALSE. 
      LINEAR = .TRUE. 
!                                 Define TINIT 
      DO 10  I=1, NINIT 
         TINIT(I) = TLEFT + (I-1)*(TRIGHT-TLEFT)/FLOAT(NINIT-1) 
   10 CONTINUE 
!                                 Set YINIT to zero 
         YINIT = 0.0E0 
!                                 Solve problem 
      CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNEQN, FCNBC, NLEFT, & 
                 NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT, & 
                 YINIT, LINEAR, MXGRID, NFINAL, & 
                 TFINAL, YFINAL, ERREST) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99997) 
      WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1, & 
                       NFINAL) 
      WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS) 
99997 FORMAT (4X, ’I’, 7X, ’T’, 14X, ’Y1’, 13X, ’Y2’, 13X, ’Y3’) 
99998 FORMAT (I5, 1P4E15.6) 
99999 FORMAT (’ Error estimates’, 4X, 1P3E15.6) 
      END 
      SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDX) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
      REAL       T, P, Y(NEQNS), DYDX(NEQNS) 
!                                 SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  SIN 
      REAL       SIN 
!                                 Define PDE 
      DYDX(1) = Y(2) 
      DYDX(2) = Y(3) 
      DYDX(3) = 2.0*Y(3) - Y(2) + Y(1) + SIN(T) 
      RETURN 
      END 
      SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
      REAL       T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS) 
!                                 Define d(DYDX)/dY 
      DYPDY(1,1) = 0.0 
      DYPDY(1,2) = 1.0 
      DYPDY(1,3) = 0.0 
      DYPDY(2,1) = 0.0 
      DYPDY(2,2) = 0.0 
      DYPDY(2,3) = 1.0 
      DYPDY(3,1) = 1.0 
      DYPDY(3,2) = -1.0 
      DYPDY(3,3) = 2.0 
      RETURN 
      END 
      SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
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      REAL       P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS) 
!                                 Define boundary conditions 
      F(1) = YLEFT(2) - 1.0 
      F(2) = YLEFT(1) - YRIGHT(1) 
      F(3) = YRIGHT(2) - 1.0 
      RETURN 
      END 

Output 
 I       T              Y1             Y2             Y3 
 1   0.000000E+00  -1.123191E-04   1.000000E+00   6.242319E05 
 2   3.490659E-01   3.419107E-01   9.397087E-01  -3.419580E01 
 3   6.981317E-01   6.426908E-01   7.660918E-01  -6.427230E-01 
 4   1.396263E+00   9.847531E-01   1.737333E-01  -9.847453E-01 
 5   2.094395E+00   8.660529E-01  -4.998747E-01  -8.660057E-01 
 6   2.792527E+00   3.421830E-01  -9.395474E-01  -3.420648E-01 
 7   3.490659E+00  -3.417234E-01  -9.396111E-01   3.418948E-01 
 8   4.188790E+00  -8.656880E-01  -5.000588E-01   8.658733E-01 
 9   4.886922E+00  -9.845794E-01   1.734571E-01   9.847518E-01 
10   5.585054E+00  -6.427721E-01   7.658258E-01   6.429526E-01 
11   5.934120E+00  -3.420819E-01   9.395434E-01   3.423986E-01 
12   6.283185E+00  -1.123186E-04   1.000000E+00   6.743190E-04 
Error estimates     2.840430E-04   1.792939E-04   5.588399E-04 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2PFD/DB2PFD. The 

reference is: 

CALL B2PFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, N, NLEFT, 
NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, NINIT, TINIT, YINIT, LDYINI,  
LINEAR, PRINT, MXGRID, NFINAL, TFINAL, YFINAL, LDYFIN, ERREST, 
RWORK, IWORK) 

The additional arguments are as follows: 

RWORK — Floating-point work array of size N(3N * MXGRID + 4N + 1) + 
MXGRID * (7N + 2). 

IWORK — Integer work array of size 2N * MXGRID + N + MXGRID. 

2. Informational errors 

Type Code 
   4    1 More than MXGRID grid points are needed to solve the problem. 
   4    2 Newton’s method diverged. 
   3    3  Newton’s method reached roundoff error level. 

3. If the value of PISTEP is greater than zero, then the routine BVPFD assumes that the 
user has embedded the problem into a one-parameter family of problems: 

y� = y�(t, y, p)  
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h(ytleft, ytright, p) = 0 

such that for p = 0 the problem is simple. For p = 1, the original problem is recovered. 
The routine BVPFD automatically attempts to increment from p = 0 to p = 1. The value 
PISTEP is the beginning increment used in this continuation. The increment will 
usually be changed by routine BVPFD, but an arbitrary minimum of 0.01 is imposed. 

4. The vectors TINIT and TFINAL may be the same. 

5. The arrays YINIT and YFINAL may be the same. 

Description 
The routine BVPFD is based on the subprogram PASVA3 by M. Lentini and V. Pereyra (see 
Pereyra 1978). The basic discretization is the trapezoidal rule over a nonuniform mesh. This 
mesh is chosen adaptively, to make the local error approximately the same size everywhere. 
Higher-order discretizations are obtained by deferred corrections. Global error estimates are 
produced to control the computation. The resulting nonlinear algebraic system is solved by 
Newton’s method with step control. The linearized system of equations is solved by a special 
form of Gauss elimination that preserves the sparseness. 

Example 2 
In this example, the following nonlinear problem is solved: 

y� � y� + (1 + sin��t) sin t = 0 

with y(0) = y(�) = 0. Its solution is y = sin t. As in Example 1, this equation is reduced to a 
system of first-order differential equations by defining y� = y and y� = y�. The resulting system is  

� �

� � � �

1 2 1

3 2
2 1 1

0 0

1 sin sin 0

y y y

y y t t y �

� � �

� � � � �

 

In this problem, there is one boundary condition at the left endpoint and one at the right 
endpoint; there are no coupled boundary conditions.  

Note that since the parameter p is not used, in the call to BVPFD the routines FCNPEQ and 
FCNPBC are not needed. Therefore, in the call to BVPFD, FCNEQN and FCNBC were used in place 
of FCNPEQ and FCNPBC. 

      USE BVPFD_INT 
      USE UMACH_INT 
      USE CONST_INT 
 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    LDYFIN, LDYINI, MXGRID, NEQNS, NINIT 
      PARAMETER  (MXGRID=45, NEQNS=2, NINIT=12, LDYFIN=NEQNS, & 
                LDYINI=NEQNS) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, J, NCUPBC, NFINAL, NLEFT, NOUT 
      REAL       ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TINIT(NINIT), & 
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                TLEFT, TOL, TRIGHT, YFINAL(LDYFIN,MXGRID), & 
                YINIT(LDYINI,NINIT) 
      LOGICAL    LINEAR, PRINT 
!                                 SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  FLOAT 
      REAL       FLOAT 
!                                 SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCNBC, FCNEQN, FCNJAC 
!                                 Set parameters 
      NLEFT  = 1 
      NCUPBC = 0 
      TOL    = .001 
      TLEFT  = 0.0 
      TRIGHT = CONST(’PI’) 
      PISTEP = 0.0 
      PRINT  = .FALSE. 
      LINEAR = .FALSE. 
!                                 Define TINIT and YINIT 
      DO 10  I=1, NINIT 
         TINIT(I)   = TLEFT + (I-1)*(TRIGHT-TLEFT)/FLOAT(NINIT-1) 
         YINIT(1,I) = 0.4*(TINIT(I)-TLEFT)*(TRIGHT-TINIT(I)) 
         YINIT(2,I) = 0.4*(TLEFT-TINIT(I)+TRIGHT-TINIT(I)) 
   10 CONTINUE 
!                                 Solve problem 
      CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNEQN, FCNBC, NLEFT, & 
                 NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT, & 
                 YINIT, LINEAR, MXGRID, NFINAL, & 
                 TFINAL, YFINAL, ERREST) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99997) 
      WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1, & 
                       NFINAL) 
      WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS) 
99997 FORMAT (4X, ’I’, 7X, ’T’, 14X, ’Y1’, 13X, ’Y2’) 
99998 FORMAT (I5, 1P3E15.6) 
99999 FORMAT (’ Error estimates’, 4X, 1P2E15.6) 
      END 
      SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDT) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
      REAL       T, P, Y(NEQNS), DYDT(NEQNS) 
!                                 SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  SIN 
      REAL       SIN 
!                                 Define PDE 
      DYDT(1) = Y(2) 
      DYDT(2) = Y(1)**3 - SIN(T)*(1.0+SIN(T)**2) 
      RETURN 
      END 
      SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
      REAL       T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS) 
!                                 Define d(DYDT)/dY 
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      DYPDY(1,1) = 0.0 
      DYPDY(1,2) = 1.0 
      DYPDY(2,1) = 3.0*Y(1)**2 
      DYPDY(2,2) = 0.0 
      RETURN 
      END 
      SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
      REAL       P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS) 
!                                 Define boundary conditions 
      F(1) = YLEFT(1) 
      F(2) = YRIGHT(1) 
      RETURN 
      END 

Output 
 I       T              Y1             Y2 
 1   0.000000E+00   0.000000E+00   9.999277E-01 
 2   2.855994E-01   2.817682E-01   9.594315E-01 
 3   5.711987E-01   5.406458E-01   8.412407E-01 
 4   8.567980E-01   7.557380E-01   6.548904E-01 
 5   1.142397E+00   9.096186E-01   4.154530E-01 
 6   1.427997E+00   9.898143E-01   1.423307E-01 
 7   1.713596E+00   9.898143E-01  -1.423307E-01 
 8   1.999195E+00   9.096185E-01  -4.154530E-01 
 9   2.284795E+00   7.557380E-01  -6.548903E-01 
10   2.570394E+00   5.406460E-01  -8.412405E-01 
11   2.855994E+00   2.817683E-01  -9.594313E-01 
12   3.141593E+00   0.000000E+00  -9.999274E-01 
Error estimates     3.906105E-05   7.124186E-05 

Example 3 
In this example, the following nonlinear problem is solved: 

2/3 8
3 40 1 1

9 2 2
y y t t� � � ��� � � � � �� � � �

� 	 � 	
 

with y(0) = y(1) = �/2. As in the previous examples, this equation is reduced to a system of first-
order differential equations by defining y� = y and y� = y�. The resulting system is 

� �

� �

1 2 1
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The problem is embedded in a family of problems by introducing the parameter p and by 
changing the second differential equation to 
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At p = 0, the problem is linear; and at p = 1, the original problem is recovered. The derivatives �
y�/�p must now be specified in the subroutine FCNPEQ. The derivatives �f/�p are zero in 
FCNPBC. 

      USE BVPFD_INT 
      USE UMACH_INT 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    LDYFIN, LDYINI, MXGRID, NEQNS, NINIT 
      PARAMETER  (MXGRID=45, NEQNS=2, NINIT=5, LDYFIN=NEQNS, & 
                LDYINI=NEQNS) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    NCUPBC, NFINAL, NLEFT, NOUT 
      REAL       ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TLEFT, TOL, & 
                XRIGHT, YFINAL(LDYFIN,MXGRID) 
      LOGICAL    LINEAR, PRINT 
!                                 SPECIFICATIONS FOR SAVE VARIABLES 
      INTEGER    I, J 
      REAL       TINIT(NINIT), YINIT(LDYINI,NINIT) 
      SAVE       I, J, TINIT, YINIT 
!                                 SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCNBC, FCNEQN, FCNJAC, FCNPBC, FCNPEQ 
! 
      DATA TINIT/0.0, 0.4, 0.5, 0.6, 1.0/ 
      DATA ((YINIT(I,J),J=1,NINIT),I=1,NEQNS)/0.15749, 0.00215, 0.0, & 
          0.00215, 0.15749, -0.83995, -0.05745, 0.0, 0.05745, 0.83995/ 
!                                 Set parameters 
      NLEFT  = 1 
      NCUPBC = 0 
      TOL    = .001 
      TLEFT  = 0.0 
      XRIGHT = 1.0 
      PISTEP = 0.1 
      PRINT  = .FALSE. 
      LINEAR = .FALSE. 
! 
      CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, NLEFT, & 
                  NCUPBC, TLEFT, XRIGHT, PISTEP, TOL, TINIT, & 
                  YINIT, LINEAR, MXGRID, NFINAL,TFINAL, YFINAL, ERREST)  
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99997) 
      WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1, & 
                       NFINAL) 
      WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS) 
99997 FORMAT (4X, ’I’, 7X, ’T’, 14X, ’Y1’, 13X, ’Y2’) 
99998 FORMAT (I5, 1P3E15.6) 
99999 FORMAT (’ Error estimates’, 4X, 1P2E15.6) 
      END 
      SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDT) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
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      REAL       T, P, Y(NEQNS), DYDT(NEQNS) 
!                                 Define PDE 
      DYDT(1) = Y(2) 
      DYDT(2) = P*Y(1)**3 + 40./9.*((T-0.5)**2)**(1./3.) - (T-0.5)**8 
      RETURN 
      END 
      SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
      REAL       T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS) 
!                                 Define d(DYDT)/dY 
      DYPDY(1,1) = 0.0 
      DYPDY(1,2) = 1.0 
      DYPDY(2,1) = P*3.*Y(1)**2 
      DYPDY(2,2) = 0.0 
      RETURN 
      END 
      SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F) 
      USE CONST_INT 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
      REAL       P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      REAL       PI 
!                                 Define boundary conditions 
      PI   = CONST(’PI’) 
      F(1) = YLEFT(1) - PI/2.0 
      F(2) = YRIGHT(1) - PI/2.0 
      RETURN 
      END 
      SUBROUTINE FCNPEQ (NEQNS, T, Y, P, DYPDP) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
      REAL       T, P, Y(NEQNS), DYPDP(NEQNS) 
!                                 Define d(DYDT)/dP 
      DYPDP(1) = 0.0 
      DYPDP(2) = Y(1)**3 
      RETURN 
      END 
      SUBROUTINE FCNPBC (NEQNS, YLEFT, YRIGHT, P, DFDP) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
      REAL       P, YLEFT(NEQNS), YRIGHT(NEQNS), DFDP(NEQNS) 
!                                 SPECIFICATIONS FOR SUBROUTINES 
      EXTERNAL   SSET 
!                                 Define dF/dP 
      CALL SSET (NEQNS, 0.0, DFDP, 1) 
      RETURN 
      END 

Output 
 I       T              Y1             Y2 
 1   0.000000E+00   1.570796E+00  -1.949336E+00 
 2   4.444445E-02   1.490495E+00  -1.669567E+00 
 3   8.888889E-02   1.421951E+00  -1.419465E+00 
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 4   1.333333E-01   1.363953E+00  -1.194307E+00 
 5   2.000000E-01   1.294526E+00  -8.958461E-01 
 6   2.666667E-01   1.243628E+00  -6.373191E-01 
 7   3.333334E-01   1.208785E+00  -4.135206E-01 
 8   4.000000E-01   1.187783E+00  -2.219351E-01 
 9   4.250000E-01   1.183038E+00  -1.584200E-01 
10   4.500000E-01   1.179822E+00  -9.973146E-02 
11   4.625000E-01   1.178748E+00  -7.233893E-02 
12   4.750000E-01   1.178007E+00  -4.638248E-02 
13   4.812500E-01   1.177756E+00  -3.399763E-02 
14   4.875000E-01   1.177582E+00  -2.205547E-02 
15   4.937500E-01   1.177480E+00  -1.061177E-02 
16   5.000000E-01   1.177447E+00  -1.479182E-07 
17   5.062500E-01   1.177480E+00   1.061153E-02 
18   5.125000E-01   1.177582E+00   2.205518E-02 
19   5.187500E-01   1.177756E+00   3.399727E-02 
20   5.250000E-01   1.178007E+00   4.638219E-02 
21   5.375000E-01   1.178748E+00   7.233876E-02 
22   5.500000E-01   1.179822E+00   9.973124E-02 
23   5.750000E-01   1.183038E+00   1.584199E-01 
24   6.000000E-01   1.187783E+00   2.219350E-01 
25   6.666667E-01   1.208786E+00   4.135205E-01 
26   7.333333E-01   1.243628E+00   6.373190E-01 
27   8.000000E-01   1.294526E+00   8.958461E-01 
28   8.666667E-01   1.363953E+00   1.194307E+00 
29   9.111111E-01   1.421951E+00   1.419465E+00 
30   9.555556E-01   1.490495E+00   1.669566E+00 
31   1.000000E+00   1.570796E+00   1.949336E+00 
Error estimates     3.448358E-06   5.549869E-05 

BVPMS 
Solves a (parameterized) system of differential equations with boundary conditions at two points, 
using a multiple-shooting method. 

Required Arguments 
FCNEQN — User-supplied SUBROUTINE to evaluate derivatives. The usage is CALL 

FCNEQN (NEQNS, T, Y, P, DYDT), where 

 NEQNS – Number of equations.   (Input) 
T – Independent variable, t.   (Input) 
Y – Array of length NEQNS containing the dependent variable.   (Input) 
P – Continuation parameter used in solving highly nonlinear problems.   (Input)  
See Comment 4. 
DYDT – Array of length NEQNS containing y� at T.   (Output) 

 The name FCNEQN must be declared EXTERNAL in the calling program. 

FCNJAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage is CALL 
FCNJAC (NEQNS, T, Y, P, DYPDY), where 
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 NEQNS – Number of equations.   (Input) 
T – Independent variable.   (Input) 
Y – Array of length NEQNS containing the dependent variable.   (Input) 
P – Continuation parameter used in solving highly nonlinear problems.   (Input)  
See Comment 4. 
DYPDY – Array of size NEQNS by NEQNS containing the Jacobian.   (Output)  
The entry DYPDY(i, j) contains the partial derivative � fi�� yj evaluated at (t, y). 

 The name FCNJAC must be declared EXTERNAL in the calling program. 

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The usage is 
CALL FCNBC (NEQNS, YLEFT, YRIGHT, P, H), where 

 NEQNS – Number of equations.   (Input) 
YLEFT – Array of length NEQNS containing the values of Y at TLEFT.   (Input) 
YRIGHT – Array of length NEQNS containing the values of Y at  
TRIGHT.   (Input) 
P – Continuation parameter used in solving highly nonlinear problems.   (Input)  
See Comment 4. 
H – Array of length NEQNS containing the boundary function values.   (Output) 
The computed solution satisfies (within BTOL) the conditions hi = 0, i = 1, �, NEQNS. 

 The name FCNBC must be declared EXTERNAL in the calling program. 

TLEFT — The left endpoint.   (Input) 

TRIGHT — The right endpoint.   (Input) 

NMAX — Maximum number of shooting points to be allowed.   (Input)  
If NINIT is nonzero, then NMAX must equal NINIT. It must be at least 2. 

NFINAL — Number of final shooting points, including the endpoints.   (Output) 

TFINAL — Vector of length NMAX containing the final shooting points.   (Output) 
Only the first NFINAL points are significant. 

YFINAL — Array of size NEQNS by NMAX containing the values of Y at the points in TFINAL.   
(Output) 

Optional Arguments 
NEQNS — Number of differential equations.   (Input) 

DTOL — Differential equation error tolerance.   (Input)  
An attempt is made to control the local error in such a way that the global error is 
proportional to DTOL. 
Default: DTOL = 1.0e-4. 
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BTOL — Boundary condition error tolerance.   (Input)  
The computed solution satisfies the boundary conditions, within BTOL tolerance. 
Default: BTOL = 1.0e-4. 

MAXIT — Maximum number of Newton iterations allowed.   (Input)  
Iteration stops if convergence is achieved sooner. Suggested values are MAXIT = 2 for 
linear problems and MAXIT = 9 for nonlinear problems. 
Default: MAXIT = 9. 

NINIT — Number of shooting points supplied by the user.   (Input)  
It may be 0. A suggested value for the number of shooting points is 10. 
Default: NINIT = 0. 

TINIT — Vector of length NINIT containing the shooting points supplied by the user.   
(Input)  
If NINIT = 0, then TINIT is not referenced and the routine chooses all of the shooting 
points. This automatic selection of shooting points may be expensive and should only 
be used for linear problems. If NINIT is nonzero, then the points must be an increasing 
sequence with TINIT(1) = TLEFT and TINIT(NINIT) = TRIGHT. By default, TINIT is 
not used. 

YINIT — Array of size NEQNS by NINIT containing an initial guess for the values of Y at the 
points in TINIT.   (Input)  
YINIT is not referenced if NINIT = 0. By default, YINIT is not used. 

LDYINI — Leading dimension of YINIT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDYINI = size (YINIT ,1). 

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDYFIN = size (YFINAL,1). 

FORTRAN 90 Interface 
Generic: CALL BVPMS (FCNEQN, FCNJAC, FCNBC, TLEFT, TRIGHT,  

     NMAX, NFINAL, TFINAL,YFINAL [,…]) 

Specific:  The specific interface names are S_BVPMS and D_BVPMS. 

FORTRAN 77 Interface 
Single: CALL BVPMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT,  

DTOL, BTOL, MAXIT, NINIT, TINIT, YINIT, LDYINI, NMAX, 
NFINAL, TFINAL, YFINAL, LDYFIN) 

Double: The double precision name is DBVPMS. 
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Example 
The differential equations that model an elastic beam are (see Washizu 1968, pages 142�143): 

� �
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where U is the axial displacement, W is the transverse displacement, N is the axial force, M is 
the bending moment, E is the elastic modulus, I is the moment of inertia, A� is the cross-
sectional area, and L(x) is the transverse load. 

Assume we have a clamped cylindrical beam of radius 0.1in, a length of 10in, and an elastic 
modulus E = 10.6 
 10� lb/in�. Then, I = 0.784 
 10��, and A� = �10�� in�, and the boundary 
conditions are U = W = Wx= 0 at each end. If we let y� = U, y� = N/EA�, y� = W, y� = Wx,  
y� = M/EI , and y� = Mx/EI, then the above nonlinear equations can be written as a system of 
six first-order equations. 
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The boundary conditions are y� = y� = y� = 0 at x = 0 and at x = 10. The loading function is  
L(x) = �2, if 3 	 x 	 7, and is zero elsewhere. 

The material parameters, A� = A0, I = AI, and E, are passed to the evaluation subprograms 
using the common block PARAM. 

      USE BVPMS_INT 
      USE UMACH_INT 
      INTEGER    LDY, NEQNS, NMAX 
      PARAMETER  (NEQNS=6, NMAX=21, LDY=NEQNS) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, MAXIT, NFINAL, NINIT, NOUT 
      REAL       TOL, X(NMAX), XLEFT, XRIGHT, Y(LDY,NMAX) 
!                                 SPECIFICATIONS FOR COMMON /PARAM/ 
      COMMON     /PARAM/ A0, A1, E 
      REAL       A0, A1, E 
!                                 SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  REAL 
      REAL       REAL 
!                                 SPECIFICATIONS FOR SUBROUTINES 
      EXTERNAL   FCNBC, FCNEQN, FCNJAC 
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!                                 Set material parameters 
      A0 = 3.14E-2 
      A1 = 0.784E-4 
      E  = 10.6E6 
!                                 Set parameters for BVPMS 
      XLEFT  = 0.0 
      XRIGHT = 10.0 
      MAXIT  = 19 
      NINIT  = NMAX 
      Y = 0.0E0 
!                                 Define the shooting points 
      DO 10  I=1, NINIT 
         X(I) = XLEFT + REAL(I-1)/REAL(NINIT-1)*(XRIGHT-XLEFT) 
   10 CONTINUE 
!                                 Solve problem 
      CALL BVPMS (FCNEQN, FCNJAC, FCNBC, XLEFT, XRIGHT, NMAX, NFINAL, & 
                  X, Y,  MAXIT=MAXIT, NINIT=NINIT, TINIT=X, YINIT=Y) 
                   
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,’(26X,A/12X,A,10X,A,7X,A)’) ’Displacement’, & 
                                           ’X’, ’Axial’, ’Transvers’// & 
                                           ’e’ 
      WRITE (NOUT,’(F15.1,1P2E15.3)’) (X(I),Y(1,I),Y(3,I),I=1,NFINAL) 
      END 
      SUBROUTINE FCNEQN (NEQNS, X, Y, P, DYDX) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
      REAL       X, P, Y(NEQNS), DYDX(NEQNS) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      REAL       FORCE 
!                                 SPECIFICATIONS FOR COMMON /PARAM/ 
      COMMON     /PARAM/ A0, A1, E 
      REAL       A0, A1, E 
!                                 Define derivatives 
      FORCE = 0.0 
      IF (X.GT.3.0 .AND. X.LT.7.0) FORCE = -2.0 
      DYDX(1) = Y(2) - P*0.5*Y(4)**2 
      DYDX(2) = 0.0 
      DYDX(3) = Y(4) 
      DYDX(4) = -Y(5) 
      DYDX(5) = Y(6) 
      DYDX(6) = P*A0*Y(2)*Y(5)/A1 - FORCE/E/A1 
      RETURN 
      END 
      SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
      REAL       P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS) 
!                                 SPECIFICATIONS FOR COMMON /PARAM/ 
      COMMON     /PARAM/ A0, A1, E 
      REAL       A0, A1, E 
!                                 Define boundary conditions 
      F(1) = YLEFT(1) 
      F(2) = YLEFT(3) 



 

 
 

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 887 

 

 

 

      F(3) = YLEFT(4) 
      F(4) = YRIGHT(1) 
      F(5) = YRIGHT(3) 
      F(6) = YRIGHT(4) 
      RETURN 
      END 
      SUBROUTINE FCNJAC (NEQNS, X, Y, P, DYPDY) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NEQNS 
      REAL       X, P, Y(NEQNS), DYPDY(NEQNS,NEQNS) 
!                                 SPECIFICATIONS FOR COMMON /PARAM/ 
      COMMON     /PARAM/ A0, A1, E 
      REAL       A0, A1, E 
!                                 SPECIFICATIONS FOR SUBROUTINES 
!                                 Define partials, d(DYDX)/dY 
      DYPDY = 0.0E0 
      DYPDY(1,2) = 1.0 
      DYPDY(1,4) = -P*Y(4) 
      DYPDY(3,4) = 1.0 
      DYPDY(4,5) = -1.0 
      DYPDY(5,6) = 1.0 
      DYPDY(6,2) = P*Y(5)*A0/A1 
      DYPDY(6,5) = P*Y(2)*A0/A1 
      RETURN 
      END 

Output 
                 Displacement 
  X          Axial       Transverse 
  0.0      1.631E-11     -8.677E-10 
  5.0      1.914E-05     -1.273E-03 
 10.0      2.839E-05     -4.697E-03 
 15.0      2.461E-05     -9.688E-03 
 20.0      1.008E-05     -1.567E-02 
 25.0     -9.550E-06     -2.206E-02 
 30.0     -2.721E-05     -2.830E-02 
 35.0     -3.644E-05     -3.382E-02 
 40.0     -3.379E-05     -3.811E-02 
 45.0     -2.016E-05     -4.083E-02 
 50.0     -4.414E-08     -4.176E-02 
 55.0      2.006E-05     -4.082E-02 
 60.0      3.366E-05     -3.810E-02 
 65.0      3.627E-05     -3.380E-02 
 70.0      2.702E-05     -2.828E-02 
 75.0      9.378E-06     -2.205E-02 
 80.0     -1.021E-05     -1.565E-02 
 85.0     -2.468E-05     -9.679E-03 
 90.0     -2.842E-05     -4.692E-03 
 95.0     -1.914E-05     -1.271E-03 
100.0      0.000E+00      0.000E+00 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of B2PMS/DB2PMS. The 

reference is: 

CALL B2PMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT, DTOL, 
BTOL, MAXIT, NINIT, TINIT, YINIT, LDYINI, NMAX, NFINAL, TFINAL,  
YFINAL, LDYFIN, WORK, IWK) 

The additional arguments are as follows: 

WORK — Work array of length NEQNS * (NEQNS + 1)(NMAX + 12) +  
NEQNS + 30. 

IWK — Work array of length NEQNS. 

2. Informational errors 

Type Code 
   1    5 Convergence has been achieved; but to get acceptably accurate 

approximations to y(t), it is often necessary to start an initial-value 
solver, for example IVPRK (page 837), at the nearest TFINAL(i) point 
to t with t 
 TFINAL (i). The vectors YFINAL(j, i), j = 1, �, NEQNS 
are used as the initial values. 

   4    1 The initial-value integrator failed. Relax the tolerance DTOL or see 
Comment 3. 

   4    2 More than NMAX shooting points are needed for stability. 
   4    3 Newton’s iteration did not converge in MAXIT iterations. If the 

problem is linear, do an extra iteration. If this error still occurs, check 
that the routine FCNJAC is giving the correct derivatives. If this does 
not fix the problem, see Comment 3. 

   4    4 Linear-equation solver failed. The problem may not have a unique 
solution, or the problem may be highly nonlinear. In the latter case, 
see Comment 3. 

3. Many linear problems will be successfully solved using program-selected shooting 
points. Nonlinear problems may require user effort and input data. If the routine fails, 
then increase NMAX or parameterize the problem. With many shooting points the 
program essentially uses a finite-difference method, which has less trouble with 
nonlinearities than shooting methods. After a certain point, however, increasing the 
number of points will no longer help convergence. To parameterize the problem, see 
Comment 4. 

4. If the problem to be solved is highly nonlinear, then to obtain convergence it may be 
necessary to embed the problem into a one-parameter family of boundary value 
problems, y� = f(t, y, p), h(y(ta, tb, p)) = 0 such that for p = 0, the problem is simple, 
e.g., linear; and for p = 1, the stated problem is solved. The routine BVPMS/DBVPMS 
automatically moves the parameter from p = 0 toward p = 1. 

5. This routine is not recommended for stiff systems of differential equations. 
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Description 
Define N = NEQNS, M = NFINAL, ta = TLEFT and tb = TRIGHT. The routine BVPMS uses a 
multiple-shooting technique to solve the differential equation system y� = f (t, y) with boundary 
conditions of the form 

hk(y�(ta), �, yN (ta), y�(tb), �, yN (tb)) = 0     for k = 1, �, N 

A modified version of IVPRK, page 837, is used to compute the initial-value problem at each 
“shot.” If there are M shooting points (including the endpoints ta and tb), then a system of NM 
simultaneous nonlinear equations must be solved. Newton’s method is used to solve this system, 
which has a Jacobian matrix with a “periodic band” structure. Evaluation of the NM functions 
and the NM 
 NM (almost banded) Jacobian for one iteration of Newton’s method is 
accomplished in one pass from ta to tb of the modified IVPRK, operating on a system of  
N(N + 1) differential equations. For most problems, the total amount of work should not be 
highly dependent on M. Multiple shooting avoids many of the serious ill-conditioning problems 
that plague simple shooting methods. For more details on the algorithm, see Sewell (1982). 

The boundary functions should be scaled so that all components hk are of comparable magnitude 
since the absolute error in each is controlled. 

 

DASPG 
Solves a first order differential-algebraic system of equations, g(t, y, y�) = 0, using the Petzold�
Gear BDF method. 

Required Arguments 
T — Independent variable, t. (Input/Output)  

Set T to the starting value t� at the first step. 

TOUT — Final value of the independent variable.   (Input)  
Update this value when re-entering after output, IDO = 2. 

IDO — Flag indicating the state of the computation. (Input/Output)  

IDO State 

1 Initial entry 

2 Normal re-entry after obtaining output 

3 Release workspace 

4 Return because of an error condition  
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The user sets IDO = 1 or IDO = 3. All other values of IDO are defined as output. The 
initial call is made with IDO = 1 and T = t�. The routine then sets IDO = 2, and this 
value is used for all but the last entry that is made with IDO = 3. This call is used to 
release workspace and other final tasks. Values of IDO larger than 4 occur only when 
calling the second-level routine D2SPG and using the options associated with reverse 
communication. 

Y — Array of size NEQ containing the dependent variable values, y. This array must contain 
initial values. (Input/Output) 

YPR — Array of size NEQ containing derivative values, y�. This array must contain initial 
values. (Input/Output)  
The routine will solve for consistent values of y� to satisfy the equations at the starting 
point. 

GCN — User-supplied SUBROUTINE to evaluate g(t, y, y�). The usage is  
CALL GCN (NEQ, T, Y, YPR, GVAL), where GCN must be declared EXTERNAL in 
the calling program. The routine will solve for values of y�(t�) so that  
g(t�, y, y�) = 0. The user can signal that g is not defined at requested values of (t, y, y�) 
using an option. This causes the routine to reduce the step size or else quit. 

 NEQ – Number of differential equations.  (Input) 
T – Independent variable.  (Input)   
Y – Array of size NEQ containing the dependent variable values y(t) .  (Input) 
YPR – Array of size NEQ containing the derivative values y�(t).  (Input) 
GVAL – Array of size NEQ containing the function values, g(t, y, y�).   (Output) 

Optional  Arguments 
NEQ — Number of differential equations.   (Input) 

Default: NEQ = size(y,1) 

FORTRAN 90 Interface 
Generic: CALL DASPG (T, TOUT, IDO, Y, YPR, GCN[,…]) 

Specific:  The specific interface names are S_DASPG and D_DASPG. 

FORTRAN 77 Interface 
Single: CALL DASPG (NEQ, T, TOUT, IDO, Y, YPR, GCN) 

Double: The double precision name is DDASPG. 
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Example 1 
The Van der Pol equation u� + �(u� � 1) u� + u = 0, � > 0, is a single ordinary differential 
equation with a periodic limit cycle. See Hartman (1964, page 181). For the value � = 5, the 
equations are integrated from t = 0 until the limit has clearly developed at t = 26. The (arbitrary) 
initial conditions used here are u(0) = 2 and u�(0) = � 2/3. Except for these initial conditions and 
the final t value, this is problem (E2) of the Enright and Pryce (1987) test package. This 
equation is solved as a differential-algebraic system by defining the first-order system: 

� � � �

1

1 2 1

2
2 1 2 1 2

1/

0

1 0

y u

g y y

g y y y y

� �

�

�

�

�� � �

�� � � � �

 

Note that the initial condition for  

2y�  

in the sample program is not consistent, g� � 0 at t = 0. The routine DASPG solves for this 
starting value. No options need to be changed for this usage. The set of pairs (u(tj), u�(tj)) are 
accumulated for the 260 values tj = 0.1, 26, (0.1). 

      USE UMACH_INT 
      USE DASPG_INT 
      INTEGER    N, NP 
      PARAMETER  (N=2, NP=260) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    ISTEP, NOUT, NSTEP 
      REAL DELT,  T, TEND, U(NP), UPR(NP), Y(N), YPR(N) 
!                                 SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   GCN 
!                                 Define initial data 
      IDO = 1 
      T = 0.0 
      TEND = 26.0 
      DELT = 0.1 
      NSTEP = TEND/DELT 
!                                 Initial values 
      Y(1) = 2.0 
      Y(2) = -2.0/3.0 
!                                 Initial derivatives 
      YPR(1) = Y(2) 
      YPR(2) = 0. 
!                                 Write title 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99998) 
!                                 Integrate ODE/DAE 
      ISTEP = 0 
   10 CONTINUE 
      ISTEP = ISTEP + 1 
      CALL DASPG (T, T+DELT, IDO, Y, YPR, GCN) 
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!                                 Save solution for plotting 
      IF (ISTEP .LE. NSTEP) THEN 
         U(ISTEP) = Y(1) 
         UPR(ISTEP) = YPR(1) 
!                                 Release work space 
         IF (ISTEP .EQ. NSTEP) IDO = 3 
         GO TO 10 
      END IF 
      WRITE (NOUT,99999) TEND, Y, YPR 
99998 FORMAT (11X, ’T’, 14X, ’Y(1)’, 11X, ’Y(2)’, 10X, ’Y’’(1)’, 10X, & 
            ’Y’’(2)’) 
99999 FORMAT (5F15.5) 
!                                 Start plotting 
!      CALL SCATR (NSTEP, U, UPR) 
!      CALL EFSPLT (0, ’ ’) 
      END 
! 
      SUBROUTINE GCN (N, T, Y, YPR, GVAL) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N 
      REAL T, Y(N), YPR(N), GVAL(N) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      REAL EPS 
! 
      EPS = 0.2 
! 
      GVAL(1) = Y(2) - YPR(1) 
      GVAL(2) = (1.0-Y(1)**2)*Y(2) - EPS*(Y(1)+YPR(2)) 
      RETURN 
      END 

Output 
    T              Y(1)           Y(2)          Y’(1)          Y’(2) 
26.00000        1.45330       -0.24486       -0.24713       -0.09399 



 

 
 

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 893 

 

 

 

 

Figure 5-1   Van der Pol Cycle, (u(t), u�(t)), � = 5. 

Comments 
Users can often get started using the routine DASPG/DDASPG without reading beyond this point 
in the documentation. There is often no reason to use options when getting started. Those 
readers who do not want to use options can turn directly to the first two examples. The 
following tables give numbers and key phrases for the options. A detailed guide to the options is 
given below in Comment 2. 

 
Value 

 
Brief or Key Phrase for INTEGER Option 

6 INTEGER option numbers 

7 Floating-point option numbers 

IN(1) First call to DASPG, D2SPG 

IN(2) Scalar or vector tolerances 

IN(3) Return for output at intermediate steps 

IN(4) Creep up on special point, TSTOP 

IN(5) Provide (analytic) partial derivative formulas 

IN(6) Maximum number of steps 

IN(7) Control maximum step size 

IN(8) Control initial step size 



 

 
 

894 � Chapter 5: Differential Equations IMSL MATH/LIBRARY 

 

 

 

 
Value 

 
Brief or Key Phrase for INTEGER Option 

IN(9) Not Used 

IN(10) Constrain dependent variables 

IN(11) Consistent initial data 

IN(12-15) Not Used 

IN(16) Number of equations 

IN(17) What routine did, if any errors 

IN(18) Maximum BDF order 

IN(19) Order of BDF on next move 

IN(20) Order of BDF on previous move 

IN(21) Number of steps 

IN(22) Number of g evaluations 

IN(23) Number of derivative matrix evaluations 

IN(24) Number of error test failures 

IN(25) Number of convergence test failures 

IN(26) Reverse communiction for g 

IN(27) Where is g stored? 

IN(28) Panic flag 

IN(29) Reverse communication, for partials 

IN(30) Where are partials stored? 

IN(31) Reverse communication, for solving 

IN(32) Not Used 

IN(33) Where are vector tolerances stored? 

IN(34) Is partial derivative array allocated? 

IN(35) User's work arrays sizes are checked 

IN(36-50) Not used 

Table 1. Key Phrases for Floating-Point Options 
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Value Brief or Key Phrase for Floating-Point Option 
INR(1) Value of t 

INR(2) Farthest internal t vaue of integration 

INR(3) Value of TOUT 

INR(4) A stopping point of integration before TOUT 

INR(5) Values of two scalars ATOL, RTOL 

INR(6) Initial step size to use 

INR(7) Maximum step allowed 

INR(8) Condition number reciprocal 

INR(9) Value of cj for partials 

INR(10) Step size on the next move 

INR(11) Step size on the previous move 

INR(12-20) Not Used 

Table 2. Number and Key Phrases for Floating-Point Options 

1. Workspace may be explicitly provided, and many of the options utilized by directly 
calling D2SPG/DD2SPG. The reference is: 

CALL D2SPG (N, T, TOUT, IDO, Y, YPR, GCN, JGCN, IWK, WK) 

The additional arguments are as follows: 

IDO State 

5 Return for evaluation of g(t, y, y�) 

6 Return for evaluation of matrix A = [�g/�y + cj�g/�y�] 

7 Return for factorization of the matrix A = [�g/�y + cj�g/�y�] 

8 Return for solution of A�y = �g 

These values of IDO occur only when calling the second-level routine D2SPG and using 
options associated with reverse communication. The routine D2SPG/DD2SPG is 
reentered. 

GCN — A Fortran SUBROUTINE to compute g(t, y, y�). This routine is normally 
provided by the user. That is the default case. The dummy IMSL routine 
DGSPG/DDGSPG may be used as this argument when g(t, y, y�) is evaluated by 
reverse communication. In either case, a name must be declared in a Fortran 
EXTERNAL statement. If usage of the dummy IMSL routine is intended, then the 
name DGSPG/DDGSPG should be specified. The dummy IMSL routine will never 
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be called under this optional usage of reverse communication. An example of 
reverse communication for evaluation of g is given in Example 4. 

JGCN — A Fortran SUBROUTINE to compute partial derivatives of g(t, y, y�). This 
routine may be provided by the user. The dummy IMSL routine DJSPG/DDJSPG 
may be used as this argument when partial derivatives are computed using 
divided differences. This is the default. The dummy routine is not called under 
default conditions. If partial derivatives are to be explicitly provided, the routine 
JGCN must be written by the user or reverse communication can be used. An 
example of reverse communication for evaluation of the partials is given in 
Example 4. 

 If the user writes a routine with the fixed name DJSPG/DDJSPG, then partial derivatives 
can be provided while calling DASPG. An option is used to signal that formulas for 
partial derivatives are being supplied. This is illustrated in Example 3. The name of the 
partial derivative routine must be declared in a Fortran EXTERNAL statement when 
calling D2SPG. If usage of the dummy IMSL routine is intended, then the name 
DJSPG/DDJSPG should be specified for this EXTERNAL name. Whenever the user 
provides partial derivative evaluation formulas, by whatever means, that must be noted 
with an option. Usage of the derivative evaluation routine is CALL JGCN (N, T, Y, 
YPR, CJ, PDG, LDPDG) where  

Arg  Definition 

N  Number of equations.   (Input) 

T  Independent variable, t.   (Input) 

Y  Array of size N containing the values of the dependent variables, y.   (Input) 

YPR  Array of size N containing the values of the derivatives, y�.   (Input) 

CJ  The value cj used in computing the partial derivatives returned in PDG.   
 (Input) 

PDG  Array of size LDPDG * N containing the partial derivatives A = [�g/�y + cj�g/
 �y�]. Each nonzero derivative entry aij is returned in the array location 
 PDG(i, j). The array contents are zero when the routine is called. Thus, only 
 the nonzero derivatives have to be defined in the routine JGCN.   (Output) 

LDPDG The leading dimension of PDG. Normally, this value is N. It is a value larger 
than N under the conditions explained in option 16 of LSLRG (Chapter 1, 
Linear Systems). 

JGCN must be declared EXTERNAL in the calling program. 
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IWK — Work array of integer values. The size of this array is 35 + N. The contents of 
IWK must not be changed from the first call with IDO = 1 until after the final call 
with  
IDO = 3. 

WK — Work ahrray of floating-point values in the working precision. The size of this 
array is 41 + (MAXORD + 6)N + (N + K)N(1 � L) where K is determined 
from the values IVAL(3) and IVAL(4) of option 16 of LSLRG (Chapter 1, 
Linear Systems). The value of L is 0 unless option IN(34) is used to avoid 
allocation of the array containing the partial derivatives. With the use of this 
option, L can be set to 1. The contents of array WK must not be changed from the 
first call with IDO = 1 until after the final call. 

2. Integer and Floating-Point Options with Chapter 11 Options Manager 

 The routine DASPG allows the user access to many interface parameters and internal 
working variables by the use of options. The options manager subprograms IUMAG, 
SUMAG, and DUMAG (Chapter 11, Utilities), are used to change options from their default 
values or obtain the current values of required parameters. 

Options of type INTEGER: 

6 This is the list of numbers used for INTEGER options. Users will typically call 
this option first to get the numbers, IN(I), I = 1, 50. This option has 50 entries. 
The default values are IN(I) = I + 50, I = 1, 50. 

7 This is the list of numbers used for REAL and DOUBLE PRECISION options. 
Users will typically call this option first to get the numbers, INR(I), I = 1,20. 
This option has 20 entries. The default values are INR(I) = I + 50, I = 1, 20. 

IN(1) This is the first call to the routine DASPG or D2SPG. Value is 0 for the first call, 1 
for further calls. Setting IDO = 1 resets this option to its default. Default value is 
0. 

IN(2) This flag controls the kind of tolerances to be used for the solution. Value is 0 
for scalar values of absolute and relative tolerances applied to all components. 
Value is 1 when arrays for both these quantities are specified. In this case, the 
option IN(33) is used to get the offset into WK where the 2N array values are to 
be placed: all ATOL values followed by all RTOL values. This offset is defined 
after the call to the routine D2SPG so users will have to call the options manager 
at a convenient place in the GCN routine or during reverse communication. 
Default value is 0. 

IN(3) This flag controls when the code returns to the user with output values of y and y
�. If the value is 0, it returns to the user at T = TOUT only. If the value is 1, it 
returns to the user at an internal working step. Default value is 0. 
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IN(4) This flag controls whether the code should integrate past a special point, TSTOP, 
and then interpolate to get y and y�at TOUT. If the value is 0, this is permitted. If 
the value is 1, the code assumes the equations either change on the alternate side 
of TSTOP or they are undefined there. In this case, the code creeps up to TSTOP 
in the direction of integration. The value of TSTOP is set with option INR(4). 
Default value is 0. 

IN(5) This flag controls whether partial derivatives are computed using divided 
onesided differences, or they are to be computed using user-supplied evaluation 
formulas. If the value is 0, use divided differences. If the value is 1, use 
formulas for the partial derivatives. See Example 3 for an illustration of one way 
to do this. Default value is 0. 

IN(6) The maximum number of steps. Default value is 500. 

IN(7) This flag controls a maximum magnitude constraint for the step size. If the value 
is 0, the routine picks its own maximum. If the value is 1, a maximum is 
specified by the user. That value is set with option number INR(7). Default 
value is 0. 

IN(8) This flag controls an initial value for the step size. If the value is 0, the routine 
picks its own initial step size. If the value is 1, a starting step size is specified by 
the user. That value is set with option number INR(6). Default value is 0. 

IN(9) Not used. Default value is 0. 

IN(10) This flag controls attempts to constrain all components to be nonnegative. If 
the value is 0, no constraints are enforced. If value is 1, constraint is enforced. 
Default value is 0. 

IN(11) This flag controls whether the initial values (t, y, y�) are consistent. If the 
value is 0, g(t, y, y�) = 0 at the initial point. If the value is 1, the routine will try 
to solve for y� to make this equation satisfied. Default value is 1. 

IN(12-15)  Not used. Default value is 0 for each option. 

IN(16) The number of equations in the system, n. Default value is 0. 

IN(17) This value reports what the routine did. Default value is 0. 
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Value Explanation 
1 A step was taken in the intermediate output mode. The value 

TOUT has not been reached. 

2 The integration to exactly TSTOP was completed. 

3 The integration to TSTOP was completed by stepping past TSTOP 
and interpolating to evaluate y and y�. 

�1 Too many steps taken. 

�2 Error tolerances are too small. 

�3 A pure relative error tolerance can't be satisfied. 

�6 There were repeated error test failures on the last step. 

�7 The BDF corrector equation solver did not converge. 

�8 The matrix of partial derivatives is singular. 

�10 The BDF corrector equation solver did not converge because the 
evaluation failure flag was raised. 

�11 The evaluation failure flag was raised to quit. 

�12  The iteration for the initial vaule of y� did not converge. 

�33 There is a fatal error, perhaps caused by invalid input. 

Table 3. What the Routine DASPG or D2SPG Did 

IN(18) The maximum order of BDF formula the routine should use. Default value 
is 5. 

IN(19) The order of the BDF method the routine will use on the next step. Default 
value is IMACH(5). 

IN(20) The order of the BDF method used on the last step. Default value is 
IMACH(5). 

IN(21) The number of steps taken so far. Default value is 0. 

IN(22) The number of times that g has been evaluated. Default value is 0. 

IN(23) The number of times that the partial derivative matrix has been evaluated. 
Default value is 0. 

IN(24) The total number of error test failures so far. Default value is 0. 

IN(25) The total number of convergence test failures so far. This includes singular 
iteration matrices. Default value is 0. 

IN(26) Use reverse communication to evaluate g when this value is 0. If the value 
is 1, forward communication is used. Use the routine D2SPG for reverse 
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communication. With reverse communication, a return will be made with  
IDO = 5. Compute the value of g, place it into the array WK at the offset obtained 
with option IN(27), and re-enter the routine. Default value is 1. 

IN(27) The user is to store the evaluated function g during reverse communication 
in  the work array WK using this value as an offset. Default value is IMACH(5). 

IN(28) This value is a “panic flag.” After an evaluation of g, this value is checked. 
The value of g is used if the flag is 0. If it has the value �1, the routine reduces 
the  step size and possibly the order of the BDF. If the value is �2, the routine 
returns control to the user immediately. This option is also used to signal a 
singular or poorly conditioned partial derivative matrix encountered during the 
factor phase in reverse communication. Use a nonzero value when the matrix is 
singular. Default value is 0. 

IN(29) Use reverse communication to evaluate the partial derivative matrix when 
this  value is 0. If the value is 1, forward communication is used. Use the routine 
D2SPG for reverse communication. With reverse communication, a return will 
be made with IDO = 6. Compute the partial derivative matrix A and re-enter the 
routine. If forward communication is used for the linear solver, return the 
partials using the offset into the array WK. This offset value is obtained with 
option IN(30). Default value is 1. 

IN(30) The user is to store the values of the partial derivative matrix A by columns 
in the work array WK using this value as an offset. The option 16 for LSLRG is 
used here to compute the row dimension of the internal working array that 
contains A.  Users can also choose to store this matrix in some convenient form 
in their calling program if they are providing linear system solving using reverse 
communication. See options IN(31) and IN(34). Default value is IMACH(5).  

IN(31) Use reverse communication to solve the linear system A�y = �g if this 
value is 0. If the value is 1, use forward communication into the routines L2CRG  
and LFSRG (Chapter 1, Linear Systems) for the linear system solving. Return the 
solution using the offset into the array WK where g is stored. This offset value is 
obtained with option IN(27). With reverse communication, a return will be 
made with IDO = 7 for factorization of A and with IDO = 8 for solving the 
system. Re-enter the routine in both cases. If the matrix A is singular or poorly 
conditioned, raise the “panic flag,” option IN(28), during the factorization.  
Default value is 1. 

IN(32) Not used. Default value is 0. 

IN(33) The user is to store the vector of values for ATOL and RTOL in the array WK 
using this value as an offset. The routine D2SPG must be called before this value 
is  defined. 

IN(34) This flag is used if the user has not allocated storage for the matrix A in the 
array WK. If the value is 0, storage is allocated. If the value is 1, storage was not 
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allocated. In this case, the user must be using reverse communication to evaluate 
the partial derivative matrix and to solve the linear systems A�y  = �g. Default 
value is 0. 

IN(35) These two values are the sizes of the arrays IWK and WK allocated in the 
users program. The values are checked against the program requirements. These 
checks are made only if the values are positive. Users will normally set this 
option when directly calling D2SPG. Default values are (0, 0). 

Options of type REAL or DOUBLE PRECISION: 

INR(1) The value of the independent variable, t. Default value is AMACH(6). 

INR(2) The farthest working t point the integration has reached. Default value is 
AMACH(6) . 

INR(3)  The current value of TOUT. Default value is AMACH(6). 

INR(4) The next special point, TSTOP, before reaching TOUT. Default value is 
AMACH(6). Used with option IN(4). 

INR(5) The pair of scalar values ATOL and RTOL that apply to the error estimates of 
all  components of y. Default values for both are SQRT(AMACH(4)). 

INR(6) The initial step size if DASPG is not to compute it internally. Default value is 
 AMACH(6). 

INR(7) The maximum step size allowed. Default value is AMACH(2). 

INR(8) This value is the reciprocal of the condition number of the matrix A. It is 
defined when forward communication is used to solve for the linear updates to 
the BDF corrector equation. No further program action, such as declaring a 
singular system, based on the condition number. Users can declare the system to 
be singular by raising the “panic flag” using option IN(28). Default value is 
AMACH(6). 

INR(9) The value of cj used in the partial derivative matrix for reverse 
communication evaluation. Default value is AMACH(6). 

INR(10) The step size to be attempted on the next move. Default value is AMACH(6). 

INR(11)  The step size taken on the previous move. Default value is AMACH(6). 

4. Norm Function Subprogram 

The routine DASPG uses a weighted Euclidean-RMS norm to measure the size of the 
estimated error in each step. This is done using a FUNCTION subprogram: REAL 
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FUNCTION D10PG (N, V, WT). This routine returns the value of the RMS weighted 
norm given by: 

� �
21

1
D10PG /N

i ii
N v wt�

�

� �  

Users can replace this function with one of their own choice. This should be done only 
for problem-related reasons. 

Description 
Routine DASPG finds an approximation to the solution of a system of differential-algebraic 
equations g(t, y, y�) = 0, with given initial data for y and y�. The routine uses BDF formulas, 
appropriate for systems of stiff ODEs, and attempts to keep the global error proportional to a 
user-specified tolerance. See Brenan et al. (1989). This routine is efficient for stiff systems of 
index 1 or index 0. See Brenan et al. (1989) for a definition of index. Users are encouraged to 
use DOUBLE PRECISION accuracy on machines with a short REAL precision accuracy. The 
examples given below are in REAL accuracy because of the desire for consistency with the rest 
of IMSL MATH/LIBRARY examples. The routine DASPG is based on the code DASSL designed 
by L. Petzold (1982-1990). 

Example 2 

The first-order equations of motion of a point-mass m suspended on a massless wire of length �  
under the influence of gravity force, mg and tension value �, in Cartesian coordinates, (p, q), are 

2 2 2 0

p u
q v

mu p
mv q mg

p q

�

�

� �

� �

� � �

� � � �

� � ��

 

This is a genuine differential-algebraic system. The problem, as stated, has an index number 
equal to the value 3. Thus, it cannot be solved with DASPG directly. Unfortunately, the fact that 
the index is greater than 1 must be deduced indirectly. Typically there will be an error processed 
which states that the (BDF) corrector equation did not converge. The user then differentiates and 
replaces the constraint equation. This example is transformed to a problem of index number of 
value 1 by differentiating the last equation twice. This resulting equation, which replaces the 
given equation, is the total energy balance: 

2 2 2( ) 0m u v mgq �� � � ��  

With initial conditions and systematic definitions of the dependent variables, the system 
becomes: 
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The problem is given in English measurement units of feet, pounds, and seconds. The wire has 
length 6.5 ft, and the mass at the end is 98 lb. Usage of the software does not require it, but 
standard or “SI” units are used in the numerical model. This conversion of units is done as a first 
step in the user-supplied evaluation routine, GCN. A set of initial conditions, corresponding to 
the pendulum starting in a horizontal position, are provided as output for the input signal of n = 
0. The maximum magnitude of the tension parameter, �(t) = y�(t), is computed at the output 
points, t = 0.1, �, (0.1). This extreme value is converted to English units and printed. 

      USE DASPG_INT 
      USE CUNIT_INT 
      USE UMACH_INT 
      USE CONST_INT 
      INTEGER    N 
      PARAMETER  (N=5) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IDO, ISTEP, NOUT, NSTEP 
      REAL       DELT, GVAL(N), MAXLB, MAXTEN, T, TEND, TMAX, Y(N), & 
                YPR(N) 
!                                 SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  ABS 
      REAL       ABS 
!                                 SPECIFICATIONS FOR SUBROUTINES 
      EXTERNAL   GCN 
!                                 SPECIFICATIONS FOR FUNCTIONS 
!                                 Define initial data 
      IDO   = 1 
      T     = 0.0 
      TEND  = CONST(’pi’) 
      DELT  = 0.1 
      NSTEP = TEND/DELT 
      CALL UMACH (2, NOUT) 
!                                 Get initial conditions 
      CALL GCN (0, T, Y, YPR, GVAL) 
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      ISTEP  = 0 
      MAXTEN = 0. 
   10 CONTINUE 
      ISTEP = ISTEP + 1 
      CALL DASPG (T, T+DELT, IDO, Y, YPR, GCN) 
      IF (ISTEP .LE. NSTEP) THEN 
!                                 Note max tension value 
         IF (ABS(Y(5)) .GT. ABS(MAXTEN)) THEN 
            TMAX   = T 
            MAXTEN = Y(5) 
         END IF 
         IF (ISTEP .EQ. NSTEP) IDO = 3 
         GO TO 10 
      END IF 
!                                  Convert to English units 
      CALL CUNIT (MAXTEN, ’kg/s**2’, MAXLB, ’lb/s**2’) 
!                                  Print maximum tension 
      WRITE (NOUT,99999) MAXLB, TMAX 
99999 FORMAT (’ Extreme string tension of’, F10.2, ’ (lb/s**2)’, & 
            ’ occurred at ’, ’time ’, F10.2) 
      END 
! 
      SUBROUTINE GCN (N, T, Y, YPR, GVAL) 
      USE CUNIT_INT 
      USE CONST_INT 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N 
      REAL       T, Y(*), YPR(*), GVAL(*) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      REAL       FEETL, GRAV, LENSQ, MASSKG, MASSLB, METERL, MG 
!                                 SPECIFICATIONS FOR SAVE VARIABLES 
      LOGICAL    FIRST 
      SAVE       FIRST 
!                                 SPECIFICATIONS FOR SUBROUTINES 
!                                 SPECIFICATIONS FOR FUNCTIONS 
! 
      DATA FIRST/.TRUE./ 
! 
      IF (FIRST) GO TO 20 
   10 CONTINUE 
!                                Define initial conditions 
      IF (N .EQ. 0) THEN 
!                                The pendulum is horizontal 
!                                with these initial y values 
         Y(1)   = METERL 
         Y(2)   = 0. 
         Y(3)   = 0. 
         Y(4)   = 0. 
         Y(5)   = 0. 
         YPR(1) = 0. 
         YPR(2) = 0. 
         YPR(3) = 0. 
         YPR(4) = 0. 
         YPR(5) = 0. 
         RETURN 
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      END IF 
!                                Compute residuals 
      GVAL(1) = Y(3) - YPR(1) 
      GVAL(2) = Y(4) - YPR(2) 
      GVAL(3) = -Y(1)*Y(5) - MASSKG*YPR(3) 
      GVAL(4) = -Y(2)*Y(5) - MASSKG*YPR(4) - MG 
      GVAL(5) = MASSKG*(Y(3)**2+Y(4)**2) - MG*Y(2) - LENSQ*Y(5) 
      RETURN 
!                                Convert from English to 
!                                Metric units: 
   20 CONTINUE 
      FEETL  = 6.5 
      MASSLB = 98.0 
!                                Change to meters 
      CALL CUNIT (FEETL, ’ft’, METERL, ’meter’) 
!                                Change to kilograms 
      CALL CUNIT (MASSLB, ’lb’, MASSKG, ’kg’) 
!                                Get standard gravity 
      GRAV  = CONST(’StandardGravity’) 
      MG    = MASSKG*GRAV 
      LENSQ = METERL**2 
      FIRST = .FALSE. 
      GO TO 10 
      END 

Output 
Extreme string tension of   1457.24 (lb/s**2) occurred at time       2.50 

Example 3 
In this example, we solve a stiff ordinary differential equation (E5) from the test package of 
Enright and Pryce (1987). The problem is nonlinear with nonreal eigenvalues. It is included as 
an example because it is a stiff problem, and its partial derivatives are provided in the 
usersupplied routine with the fixed name DJSPG. Users who require a variable routine name for 
partial derivatives can use the routine D2SPG. Providing explicit formulas for partial derivatives 
is an important consideration for problems where evaluations of the function g(t, y, y�) are 
expensive. Signaling that a derivative matrix is provided requires a call to the Chapter 10 
options manager utility, IUMAG. In addition, an initial integration step-size is given for this test 
problem. A signal for this is passed using the options manager routine IUMAG. The error 
tolerance is changed from the defaults to a pure absolute tolerance of 0.1 * SQRT(AMACH(4)). 
Also see IUMAG, SUMAG and DUMAG in Chapter 11, Utilities, for further details about the options 
manager routines. 

      USE IMSL_LIBRARIES 
      INTEGER    N 
      PARAMETER  (N=4) 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    ICHAP, IGET, INUM, IPUT, IRNUM 
      PARAMETER  (ICHAP=5, IGET=1, INUM=6, IPUT=2, IRNUM=7) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IDO, IN(50), INR(20), IOPT(2), IVAL(2), NOUT 
      REAL       C0, PREC, SVAL(3), T, TEND, Y(N), YPR(N) 
!                                 SPECIFICATIONS FOR FUNCTIONS 
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      EXTERNAL   GCN 
!                                 Define initial data 
      IDO = 1 
      T = 0.0 
      TEND = 1000.0 
!                                 Initial values 
      C0 = 1.76E-3 
      Y(1) = C0 
      Y(2) = 0. 
      Y(3) = 0. 
      Y(4) = 0. 
!                                 Initial derivatives 
      YPR(1) = 0. 
      YPR(2) = 0. 
      YPR(3) = 0. 
      YPR(4) = 0. 
!                                 Get option numbers 
      IOPT(1) = INUM 
      CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, IN) 
      IOPT(1) = IRNUM 
      CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, INR) 
!                                 Provide initial step 
      IOPT(1) = INR(6) 
      SVAL(1) = 5.0E-5 
!                                 Provide absolute tolerance 
      IOPT(2) = INR(5) 
      PREC = AMACH(4) 
      SVAL(2) = 0.1*SQRT(PREC) 
      SVAL(3) = 0.0 
 
      CALL UMAG (’math’, ICHAP, IPUT, IOPT, SVAL) 
!                                 Using derivatives and 
      IOPT(1) = IN(5) 
      IVAL(1) = 1 
!                                 providing initial step 
      IOPT(2) = IN(8) 
      IVAL(2) = 1 
 
      CALL IUMAG (’math’, ICHAP, IPUT, 2, IOPT, IVAL) 
!                                 Write title 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99998) 
!                                 Integrate ODE/DAE 
      CALL DASPG (T, TEND, IDO, Y, YPR, GCN) 
      WRITE (NOUT,99999) T, Y, YPR 
!                                 Reset floating options 
!                                 to defaults 
      IOPT(1) = -INR(5) 
      IOPT(2) = -INR(6) 
! 
      CALL UMAG (’math’, ICHAP, IPUT, IOPT, SVAL) 
!                                 Reset integer options 
!                                 to defaults 
      IOPT(1) = -IN(5) 
      IOPT(2) = -IN(8) 



 

 
 

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 907 

 

 

 

! 
      CALL IUMAG (’math’, ICHAP, IPUT, 2, IOPT, IVAL) 
 
99998 FORMAT (11X, ’T’, 14X, ’Y followed by Y’’’) 
99999 FORMAT (F15.5/(4F15.5)) 
      END 
! 
      SUBROUTINE GCN (N, T, Y, YPR, GVAL) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N 
      REAL       T, Y(N), YPR(N), GVAL(N) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      REAL       C1, C2, C3, C4 
! 
      C1 = 7.89E-10 
      C2 = 1.1E7 
      C3 = 1.13E9 
      C4 = 1.13E3 
! 
      GVAL(1) = -C1*Y(1) - C2*Y(1)*Y(3) - YPR(1) 
      GVAL(2) = C1*Y(1) - C3*Y(2)*Y(3) - YPR(2) 
      GVAL(3) = C1*Y(1) - C2*Y(1)*Y(3) + C4*Y(4) - C3*Y(2)*Y(3) - & 
               YPR(3) 
      GVAL(4) = C2*Y(1)*Y(3) - C4*Y(4) - YPR(4) 
      RETURN 
      END 
      SUBROUTINE DJSPG (N, T, Y, YPR, CJ, PDG, LDPDG) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    N, LDPDG 
      REAL       T, CJ, Y(N), YPR(N), PDG(LDPDG,N) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      REAL       C1, C2, C3, C4 
! 
      C1 = 7.89E-10 
      C2 = 1.1E7 
      C3 = 1.13E9 
      C4 = 1.13E3 
! 
      PDG(1,1) = -C1 - C2*Y(3) - CJ 
      PDG(1,3) = -C2*Y(1) 
      PDG(2,1) = C1 
      PDG(2,2) = -C3*Y(3) - CJ 
      PDG(2,3) = -C3*Y(2) 
      PDG(3,1) = C1 - C2*Y(3) 
      PDG(3,2) = -C3*Y(3) 
      PDG(3,3) = -C2*Y(1) - C3*Y(2) - CJ 
      PDG(3,4) = C4 
      PDG(4,1) = C2*Y(3) 
      PDG(4,3) = C2*Y(1) 
      PDG(4,4) = -C4 - CJ 
      RETURN 
      END 
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Output 
      T              Y followed by Y’ 
1000.00000 
   0.00162        0.00000        0.00000        0.00000 
   0.00000        0.00000        0.00000        0.00000 

Example 4 
In this final example, we compute the solution of n = 10 ordinary differential equations,  
g = Hy � y�, where y(0) = y� = (1, 1, �, 1)T. The value 

� �1
n
i iy t
��  

is evaluated at t = 1. The constant matrix H has entries hi,j = min(j � i, 0) so it is lower 
Hessenberg. We use reverse communication for the evaluation of the following intermediate 
quantities: 

1. The function g, 

2. The partial derivative matrix A = �g/�y + cj�g/�y� = H � cj I, 

3. The solution of the linear system A�y = �g. 

In addition to the use of reverse communication, we evaluate the partial derivatives using 
formulas. No storage is allocated in the floating-point work array for the matrix. Instead, the 
matrix A is stored in an array A within the main program unit. Signals for this organization are 
passed using the routine IUMAG (Chapter 11, Utilities). 

An algorithm appropriate for this matrix, Givens transformations applied from the right side, is 
used to factor the matrix A. The rotations are reconstructed during the solve step. See SROTG 
(Chapter 9, Basic Matrix/Vector Operations) for the formulas.  

The routine D2SPG stores the value of cj. We get it with a call to the options manager routine 
SUMAG (Chapter 11, Utilities). A pointer, or offset into the work array, is obtained as an integer 
option. This gives the location of g and �g. The solution vector �y replaces �g at that location. 
Caution: If a user writes code wherein g is computed with reverse communication and partials 
are evaluated with divided differences, then there will be two distinct places where g is to be 
stored. This example shows a correct place to get this offset.  

This example also serves as a prototype for large, structured (possibly nonlinear) DAE problems 
where the user must use special methods to store and factor the matrix A and solve the linear 
system A�y = �g. The word “factor” is used literally here. A user could, for instance, solve the 
system using an iterative method. Generally, the factor step can be any preparatory phase 
required for a later solve step. 

      USE IMSL_LIBRARIES 
      INTEGER    N 
      PARAMETER  (N=10) 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    ICHAP, IGET, INUM, IPUT, IRNUM 
      PARAMETER  (ICHAP=5, IGET=1, INUM=6, IPUT=2, IRNUM=7) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
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      INTEGER    I, IDO, IN(50), INR(20), IOPT(6), IVAL(7), IWK(35+N), & 
                J, NOUT 
      REAL       A(N,N), GVAL(N), H(N,N), SC, SS, SUMY, SVAL(1), T, & 
                TEND, WK(41+11*N), Y(N), YPR(N), Z 
!                                 SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  ABS, SQRT 
      REAL       ABS, SQRT 
!                                 SPECIFICATIONS FOR SUBROUTINES 
!                                 SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   DGSPG, DJSPG 
!                                 Define initial data 
      IDO = 1 
      T = 0.0E0 
      TEND = 1.0E0 
!                                 Initial values 
      CALL SSET (N, 1.0E0, Y, 1) 
      CALL SSET (N, 0.0, YPR, 1) 
!                                 Initial lower Hessenberg matrix 
      CALL SSET (N*N, 0.0E0, H, 1) 
      DO 20  I=1, N - 1 
         DO 10  J=1, I + 1 
            H(I,J) = J - I 
   10    CONTINUE 
   20 CONTINUE 
      DO 30  J=1, N 
         H(N,J) = J - N 
   30 CONTINUE 
!                                 Get integer option numbers 
      IOPT(1) = INUM 
      CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, IN) 
!                                 Get floating point option numbers 
      IOPT(1) = IRNUM 
      CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, INR) 
!                                 Set for reverse communication 
!                                 evaluation of g. 
      IOPT(1) = IN(26) 
      IVAL(1) = 0 
!                                 Set for evaluation of partial 
!                                 derivatives. 
      IOPT(2) = IN(5) 
      IVAL(2) = 1 
!                                 Set for reverse communication 
!                                 evaluation of partials. 
      IOPT(3) = IN(29) 
      IVAL(3) = 0 
!                                 Set for reverse communication 
!                                 solution of linear equations. 
      IOPT(4) = IN(31) 
      IVAL(4) = 0 
!                                 Storage for the partial 
!                                 derivative array not allocated. 
      IOPT(5) = IN(34) 
      IVAL(5) = 1 
!                                 Set the sizes of IWK, WK 
!                                 for internal checking. 
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      IOPT(6) = IN(35) 
      IVAL(6) = 35 + N 
      IVAL(7) = 41 + 11*N 
!                                 ’Put’ integer options. 
      CALL IUMAG (’math’, ICHAP, IPUT, 6, IOPT, IVAL) 
!                                 Write problem title. 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99998) 
!                                 Integrate ODE/DAE.  Use 
!                                 dummy IMSL external names. 
   40 CONTINUE 
      CALL D2SPG (N, T, TEND, IDO, Y, YPR, DGSPG, DJSPG, IWK, WK) 
!                                 Find where g goes. 
!                                 (It only goes in one place 
!                                 here, but can vary if 
!                                 divided differences are used 
!                                 for partial derivatives.) 
      IOPT(1) = IN(27) 
      CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, IVAL) 
!                                 Direct user response. 
      GO TO (50, 180, 60, 50, 90, 100, 130, 150), IDO 
   50 CONTINUE 
!                                 This should not occur. 
      WRITE (NOUT,*) ’ Unexpected return with IDO = ’, IDO 
   60 CONTINUE 
!                                 Reset options to defaults 
      DO 70  I=1, 50 
         IN(I) = -IN(I) 
   70 CONTINUE 
      CALL IUMAG (’math’, ICHAP, IPUT, 50, IN, IVAL) 
      DO 80  I=1, 20 
         INR(I) = -INR(I) 
   80 CONTINUE 
      CALL UMAG (’math’, ICHAP, IPUT, INR, SVAL, numopts=1) 
      STOP 
   90 CONTINUE 
!                                 Return came for g evaluation. 
      CALL SCOPY (N, YPR, 1, GVAL, 1) 
      CALL SGEMV (’NO’, N, N, 1.0E0, H, N, Y, 1, -1.0E0, GVAL, 1) 
!                                 Put g into place. 
      CALL SCOPY (N, GVAL, 1, WK(IVAL(1:)), 1) 
      GO TO 40 
  100 CONTINUE 
!                                 Return came for partial 
!                                 derivative evaluation. 
  110 CALL SCOPY (N*N, H, 1, A, 1) 
!                                 Get value of c_j for partials. 
      IOPT(1) = INR(9) 
      CALL UMAG (’math’, ICHAP, IGET, IOPT, SVAL, numopts=1) 
!                                 Subtract c_j from diagonals 
!                                 to compute (partials for y’)*c_j. 
      DO 120  I=1, N 
         A(I,I) = A(I,I) - SVAL(1) 
  120 CONTINUE 
      GO TO 40 
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  130 CONTINUE 
!                                 Return came for factorization 
      DO 140  J=1, N - 1 
!                                 Construct and apply Givens 
!                                 transformations. 
         CALL SROTG (A(J,J), A(J,J+1), SC, SS) 
         CALL SROT (N-J, A((J+1):,1), 1, A((J+1):,J+1), 1, SC, SS) 
  140 CONTINUE 
      GO TO 40 
  150 CONTINUE 
!                                 Return came to solve the system 
      CALL SCOPY (N, WK(IVAL(1)), 1, GVAL, 1) 
      DO 160  J=1, N - 1 
         GVAL(J) = GVAL(J)/A(J,J) 
         CALL SAXPY (N-J, -GVAL(J), A((J+1):,J), 1, GVAL((J+1):, 1) 
  160 CONTINUE 
      GVAL(N) = GVAL(N)/A(N,N) 
!                                 Reconstruct Givens rotations 
      DO 170  J=N - 1, 1, -1 
         Z = A(J,J+1) 
         IF (ABS(Z) .LT. 1.0E0) THEN 
            SC = SQRT(1.0E0-Z**2) 
            SS = Z 
         ELSE IF (ABS(Z) .GT. 1.0E0) THEN 
            SC = 1.0E0/Z 
            SS = SQRT(1.0E0-SC**2) 
         ELSE 
            SC = 0.0E0 
            SS = 1.0E0 
         END IF 
         CALL SROT (1, GVAL(J:), 1, GVAL((J+1):), 1, SC, SS) 
  170 CONTINUE 
      CALL SCOPY (N, GVAL, 1, WK(IVAL(1)), 1) 
      GO TO 40 
! 
  180 CONTINUE 
      SUMY = 0.E0 
      DO 190  I=1, N 
         SUMY = SUMY + Y(I) 
  190 CONTINUE 
      WRITE (NOUT,99999) TEND, SUMY 
!                                 Finish up internally 
      IDO = 3 
      GO TO 40 
99998 FORMAT (11X, ’T’, 6X, ’Sum of Y(i), i=1,n’) 
99999 FORMAT (2F15.5) 
      END 

Output 
   T      Sum of Y(i), i=1,n 
1.00000       65.17058 
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Introduction to Subroutine PDE_1D_MG 
The section describes an algorithm and a corresponding integrator subroutine PDE_1D_MG for 
solving a system of partial differential equations 
This software is a one-dimensional solver.  It requires initial and boundary conditions in addition 
to values of tu .  The integration method is noteworthy due to the maintenance of grid lines in the 
space variable, x .  Details for choosing new grid lines are given in Blom and Zegeling, (1994).  
The class of problems solved with PDE_1D_MG is expressed by equations: 
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Equation 1 

The vector  

,
TNPDEu u u�� �� � ��  

is the solution.  The integer value NPDE �1 is the number of differential equations.  The 
functions Rj and Qj  can be regarded, in special cases, as flux and source terms.  The functions  

u C R Qj k j j, ,,  and   
are expected to be continuous.  Allowed values  

m m m� � �0 1 2, , and   
are for problems in Cartesian, cylindrical or polar, and spherical coordinates.  In the two cases  

m > 0 , the interval 

x xL R,   
must not contain x = 0 as an interior point. 

The boundary conditions have the master equation form 
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at  and ,  1,...,
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Equation 2 

In the boundary conditions the  

� �j j and  
are continuous functions of their arguments.  In the two cases m � 0 and an endpoint occurs at 0,  
the finite value of the solution at x = 0 must be ensured.  This requires the specification of the 
solution at x = 0, or implies that  

0
L

j x x
R

�

�  



 

 
 

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 913 

 

 

 

 or  

Rj x xR�

� 0
.   

The initial values satisfy 

 u x t u x x x xL R, , ,0 0b g b g� � ,  

where u0 is a piece-wise continuous vector function of x with NPDE  components.  

The user must pose the problem so that mathematical definitions are known for the functions  

C R Q uk j j j j j, , , , ,� � and 0 .   

These functions are provided to the routine PDE_1D_MG in the form of  three subroutines.  
Optionally, this information can be provided by reverse communication.  These forms of the 
interface are explained below and illustrated with examples.  Users may turn directly to the 
examples if they are comfortable with the description of the algorithm. 

PDE_1D_MG 
Invokes a module, with the statement USE PDE_1D_MG, near the second line of the program unit.  
The integrator is provided with single or double precision arithmetic, and a generic named 
interface is provided.  We do not recommend using 32-bit floating point arithmetic here.  The 
routine is called within the following loop, and is entered with each value of IDO.  The loop 
continues until a value of IDO results in an exit. 

IDO=1 

DO 

 CASE(IDO == 1) {Do required initialization steps} 

 CASE(IDO == 2) {Save solution, update T0 and TOUT } 

  IF{Finished with integration} IDO=3 

 CASE(IDO == 3) EXIT {Normal} 

 CASE(IDO == 4) EXIT {Due to errors} 

 CASE(IDO == 5) {Evaluate initial data} 

 CASE(IDO == 6) {Evaluate differential equations} 

 CASE(IDO == 7) {Evaluate boundary conditions} 

 CASE(IDO == 8) {Prepare to solve banded system} 

 CASE(IDO == 9) {Solve banded system} 

 CALL PDE_1D_MG (T0, TOUT, IDO, U,& 
 initial_conditions,& 
 pde_system_definition,& 
 boundary_conditions, IOPT) 

END DO 
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The arguments to PDE_1D_MG are required or optional. 

Required Arguments 
T0—(Input/Output) 

This is the value of the independent variable t where the integration of ut begins.  It is 
set to the value TOUT on return. 

TOUT—(Input) 
This is the value of the independent variable t where the integration of ut ends.  Note:  
Values of T0 < TOUT imply integration in the forward direction, while values of  
T0 > TOUT imply integration in the backward direction.  Either direction is permitted. 

IDO—(Input/Output) 
This in an integer flag that directs program control and user action.  Its value is used 
for initialization, termination, and for directing user response during reverse 
communication: 

IDO=1  This value is assigned by the user for the start of a new problem.  Internally it 
causes allocated storage to be reallocated, conforming to the problem size.  
Various initialization steps are performed. 

IDO=2  This value is assigned by the routine when the integrator has successfully 
reached the end point, TOUT. 

IDO=3  This value is assigned by the user at the end of a problem. The routine is called 
by the user with this value.  Internally it causes termination steps to be 
performed.  

IDO=4  This value is assigned by the integrator when a type FATAL or TERMINAL error 
condition has occurred, and error processing is set NOT to STOP for these 
types of errors.  It is not necessary to make a final call to the integrator with 
IDO=3 in this case. 

Values of IDO = 5,6,7,8,9 are reserved for applications that provide problem 
information or linear algebra computations using reverse communication.  When 
problem information is provided using reverse communication, the differential 
equations, boundary conditions and initial data must all be given.  The absence 
of optional subroutine names in the calling sequence directs the routine to use 
reverse communication.  In the module PDE_1D_MG_INT, scalars and arrays for 
evaluating results are named below.  The names are preceded by the prefix 
“s_pde_1d_mg_” or “d_pde_1d_mg_”, depending on the precision.  We use 
the prefix “?_pde_1d_mg_”, for the appropriate choice. 

IDO=5  This value is assigned by the integrator, requesting data for the initial 
conditions.  Following this evaluation the integrator is re-entered. 
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(Optional) Update the grid of values in array locations U(NPDE +1, j) j = 2, �, N.  
This grid is returned to the user equally spaced, but can be updated as desired, 
provided the values are increasing. 

(Required) Provide initial values for all components of the system at the grid of values 
U(NPDE +1, j) j = 1, �, N. If the optional step of updating the initial grid is 
performed, then the initial values are evaluated at the updated grid. 

 IDO=6  This value is assigned by the integrator, requesting data for the differential 
equations.  Following this evaluation the integrator is re-entered.  Evaluate the terms of 
the system of Equation 2.  A default value of m � 0  is assumed, but this can be changed 
to one of the other choices m � 1 2or .  Use the optional argument IOPT(:) for that 
purpose.  Put the values in the arrays as indicated1. 

� �

� �

� � � �

� � � �

,

?_ _1 _ _
?_ _1 _ _

?_ _1 _ _ ( )

?_ _1 _ _

?_ _1 _ _ ( , ) : , , ,

?_ _1 _ _ : , , ,

?_ _1 _ _ : , , ,
, 1,...,

j

j
j
x

j k x

j x

j x

x pde d mg x
t pde d mg t
u pde d mg u j

u u pde d mg dudx j
x
pde d mg c j k C x t u u

pde d mg r j r x t u u

pde d mg q j q x t u u

j k NPDE

�

�

�

�

�

� �

�

�

�

�

 

If any of the functions cannot be evaluated, set pde_1d_mg_ires=3.  Otherwise do not change its 
value. 

IDO=7  This value is assigned by the integrator, requesting data for the boundary conditions, 
as expressed in Equation 3.  Following the evaluation the integrator is re-entered. 

� �

� � � �

� � � �

?_ _1 _ _
?_ _1 _ _

?_ _1 _ _ ( )

?_ _1 _ _

?_ _1 _ _ : , , ,

?_ _1 _ _ : , , ,

1,...,

j

j
j
x

j x

j x

x pde d mg x
t pde d mg t
u pde d mg u j

u u pde d mg dudx j
x
pde d mg beta j x t u u

pde d mg gamma j x t u u

j NPDE

�

�

�

�

�

�

�

� �

�

�

�

 

                                                           
1 The assign-to equality, a b:� , used here and below, is read “the expressionb  is evaluated and then 
assigned to the location a .” 
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The value x�{xL, xR}, and the logical flag pde_1d_mg_LEFT=.TRUE. for x = xL.  It has the value 
pde_1d_mg_LEFT=.FALSE. for x = xR. If any of the functions cannot be evaluated, set 
pde_1d_mg_ires=3.  Otherwise do not change its value. 

IDO=8  This value is assigned by the integrator, requesting the calling program to prepare for 
solving a banded linear system of algebraic equations.  This value will occur only when 
the option for “reverse communication solving” is set in the array IOPT(:), with 
option PDE_1D_MG_REV_COMM_FACTOR_SOLVE.  The matrix data for this system is in 
Band Storage Mode, described in the section: Reference Material for the IMSL Fortran 
Numerical Libraries. 

 

PDE_1D_MG_IBAND Half band-width of linear system 

PDE_1D_MG_LDA The value 3*PDE_1D_MG_IBAND+1, with 
NEQ NPDE N� �1b g  

?_PDE_1D_MG_A Array of size PDE_1D_MG_LDA by NEQ 
holding the problem matrix in Band Storage 
Mode 

PDE_1D_MG_PANIC_FLAG Integer set to a non-zero value only if the linear 
system is detected as singular 

IDO=9  This value is assigned by the integrator , requesting the calling program to solve a 
linear system with the matrix defined as noted with IDO=8. 

?_PDE_1D_MG_RHS Array of size NEQ holding the linear 
system problem right-hand side 

PDE_1D_MG_PANIC_FLAG Integer set to a non-zero value only if the 
linear system is singular 

?_PDE_1D_MG_SOL Array of size NEQ to receive the solution, 
after the solving step 

U(1:NPDE+1,1:N)—(Input/Output) 
This assumed-shape array specifies Input information about the problem size and 
boundaries.  The dimension of the problem is obtained from NPDE +1 = size(U,1). The 
number of grid points is obtained by N = size(U,2). Limits for the variable x are 
assigned as input in array locations, U(NPDE +1, 1) = xL, U(NPDE +1, N) =xR.  It is 
not required to define U(NPDE +1, j), j=2, �, N-1.  At completion, the array 
U(1:NPDE,1:N)contains the approximate solution value Ui(xj(TOUT),TOUT) in 
location U(I,J).  The grid value xj(TOUT) is in location U(NPDE+1,J).  Normally the 
grid values are equally spaced as the integration starts.  Variable spaced grid values can 
be provided by defining them as Output from the subroutine initial_conditions 
or during reverse communication, IDO=5. 
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Optional Arguments 
initial_conditions—(Input) 

The name of an external subroutine, written by the user, when using forward 
communication.  If this argument is not used, then reverse communication is used to 
provide the problem information.  The routine gives the initial values for the system at 
the starting independent variable value T0.  This routine can also provide a non-
uniform grid at the initial value. 

SUBROUTINE initial_conditions NPDE,N,U

  Integer NPDE, N

  REAL(kind(T0)) U(:,:)

END SUBROUTINE  

a f

 
(Optional) Update the grid of values in array locations 

U NPDE j j N( , ), ,...,� � �1 2 1.  This grid is input equally spaced, but can be 
updated as desired, provided the values are increasing. 

(Required) Provide initial values U j j N(:, ), ,...,� 1  for all components of the system 
at the grid of values U NPDE j j N( , ), ,...,� �1 1 .  If the optional step of 
updating the initial grid is performed, then the initial values are evaluated at 
the updated grid. 

pde_system_definition—(Input) 
The name of an external subroutine, written by the user, when using  
forward communication.  It gives the differential equation, as expressed in Equation 2. 

SUBROUTINE pde_system_definition&

 (t, x, NPDE, u, dudx, c, q, r, IRES)

 

  Integer NPDE, IRES

  REAL(kind(T0)) t, x, u(:), dudx(:)

  REAL(kind(T0)) c(:,:), q(:), r(:)

END SUBROUTINE  
Evaluate the terms of the system of . A default value of m � 0  is assumed, but this can be changed 
to one of the other choices m � 1 2or .  Use the optional argument IOPT(:) for that purpose.  Put 
the values in the arrays as indicated. 
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u u j

u
x

u dudx j

c j k C x t u u

r j r x t u u

q j q x t u u

j k NPDE

j

j

x
j

j k x

j x

j x

�

� �

�

�

�

�

( )

( , ): , , ,

: , , ,

: , , ,

, ,...,

,

�

�
b g
b g

b g b g
b g b g

1  
If any of the functions cannot be evaluated, set IRES=3.  Otherwise do not change its value. 

boundary_conditions—(Input) 
The name of an external subroutine, written by the user when using forward communication.  It 
gives the boundary conditions, as expressed in Equation 2. 

u u j

u
x

u dudx j

beta j x t u u

gamma j x t u u

j NPDE

j

j

x
j

j x

j x

�

� �

�

�

�

( )

: , , ,

: , , ,

,...,

�

�

�

�

b g
b g b g
b g b g

1  

The value x x xL R� ,l q , and the logical flag LEFT=.TRUE. for x xL� .  The flag has the value 
LEFT=.FALSE. for x xR� . 

IOPT—(Input) 
Derived type array s_options or d_options, used for passing optional data to 
PDE_1D_MG.  See the section Optional Data in the Introduction for an explanation of 
the derived type and its use.  It is necessary to invoke a module, with the statement USE 
ERROR_OPTION_PACKET, near the second line of the program unit.  Examples 2-8 use 
this optional argument. The choices are as follows: 

Packaged Options for PDE_1D_MG 

Option Prefix = ? Option Name Option Value 

S_, d_ PDE_1D_MG_CART_COORDINATES 1 

S_, d_ PDE_1D_MG_CYL_COORDINATES 2 

S_, d_ PDE_1D_MG_SPH_COORDINATES 3 

S_, d_ PDE_1D_MG_TIME_SMOOTHING 4 

S_, d_ PDE_1D_MG_SPATIAL_SMOOTHING 5 

S_, d_ PDE_1D_MG_MONITOR_REGULARIZING 6 

S_, d_ PDE_1D_MG_RELATIVE_TOLERANCE 7 

S_, d_ PDE_1D_MG_ABSOLUTE_TOLERANCE 8 
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Packaged Options for PDE_1D_MG 

S_, d_ PDE_1D_MG_MAX_BDF_ORDER 9 

S_, d_ PDE_1D_MG_REV_COMM_FACTOR_SOLVE 10 

s_, d_ PDE_1D_MG_NO_NULLIFY_STACK 11 

IOPT(IO) = PDE_1D_MG_CART_COORDINATES 
Use the value m � 0  in Equation 2.  This is the default. 

IOPT(IO) = PDE_1D_MG_CYL_COORDINATES 
Use the value m � 1 in Equation 2.  The default value is m � 0 . 

IOPT(IO) = PDE_1D_MG_SPH_COORDINATES 
Use the value m � 2  in Equation 2.  The default value is m � 0 . 

IOPT(IO) =  
?_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,TAU) 
This option resets the value of the parameter � � 0, described above.   
The default value is � � 0. 

IOPT(IO) =  
?_OPTIONS(PDE_1D_MG_SPATIAL_SMOOTHING,KAP) 
This option resets the value of the parameter � � 0, described above.   
The default value is � � 2 . 

IOPT(IO) =  
?_OPTIONS(PDE_1D_MG_MONITOR_REGULARIZING,ALPH) 
This option resets the value of the parameter � � 0, described above.   
The default value is � � 0 01. . 

IOPT(IO) = ?_OPTIONS 
(PDE_1D_MG_RELATIVE_TOLERANCE,RTOL) 
This option resets the value of the relative accuracy parameter used in DASPG.  The 
default value is RTOL=1E-2 for single precision and  
RTOL=1D-4 for double precision. 

IOPT(IO) = ?_OPTIONS 
(PDE_1D_MG_ABSOLUTE_TOLERANCE,ATOL) 
This option resets the value of the absolute accuracy parameter used in DASPG.  The 
default value is ATOL=1E-2 for single precision and 
ATOL=1D-4 for double precision. 

IOPT(IO) = PDE_1D_MG_MAX_BDF_ORDER 
IOPT(IO+1) = MAXBDF 
Reset the maximum order for the BDF formulas used in DASPG.  The default value is 
MAXBDF=2.  The new value can be any integer between 1 and 5.  Some problems will 
benefit by making this change.  We used the default value due to the fact that DASPG 
may cycle on its selection of order and step-size with orders higher than value 2. 
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IOPT(IO) = PDE_1D_MG_REV_COMM_FACTOR_SOLVE 
The calling program unit will solve the banded linear systems required in the stiff 
differential-algebraic equation integrator.  Values of IDO=8, 9 will occur only when 
this optional value is used. 

IOPT(IO) = PDE_1D_MG_NO_NULLIFY_STACK 
To maintain an efficient interface, the routine PDE_1D_MG collapses the subroutine call 
stack with CALL_E1PSH(“NULLIFY_STACK”).  This implies that the overhead of 
maintaining the stack will be eliminated, which may be important with reverse 
communication.  It does not eliminate error processing.  However, precise information 
of which routines have errors will not be displayed.  To see the full call chain, this 
option should be used.  Following completion of the integration, stacking is turned 
back on with CALL_E1POP(“NULLIFY_STACK”). 

FORTRAN 90 Interface 
Generic: CALL PDE_1D_MG (T0, TOUT, IDO, [,…]) 

Specific: The specific interface names are S_PDE_1D_MG and D_PDE_1D_MG. 

Remarks on the Examples 
Due to its importance and the complexity of its interface, this subroutine is presented with several 
examples.  Many of the program features are exercised.  The problems complete without any 
change to the optional arguments, except where these changes are required to describe or to solve 
the problem. 

In many applications the solution to a PDE is used as an auxiliary variable, perhaps as part of a 
larger design or simulation process.  The truncation error of the approximate solution is 
commensurate with piece-wise linear interpolation on the grid of values, at each output point.  To 
show that the solution is reasonable, a graphical display is revealing and helpful.  We have not 
provided graphical output as part of our documentation, but users may already have the Visual 
Numerics, Inc. product, PV-WAVE, not included with Fortran 90 MP Library.  Examples 1-8 
write results in files “PDE_ex0?.out” that can be visualized with PV-WAVE.  We provide a 
script of commands, “pde_1d_mg_plot.pro”, for viewing the solutions (see example below).  
The grid of values and each consecutive solution component is displayed in separate plotting 
windows.  The script and data files written by examples 1-8 on a SUN-SPARC system are in the 
directory for Fortran 90 MP Library examples.  When inside PV_WAVE, execute the command 
line “pde_1d_mg_plot,filename=’PDE_ex0?.out’” to view the output of a particular 
example. 

Code for PV-WAVE  Plotting (Examples Directory) 
PRO PDE_1d_mg_plot, FILENAME = filename, PAUSE = pause 
; 
   if keyword_set(FILENAME) then file = filename else file = "res.dat" 
   if keyword_set(PAUSE) then twait = pause else twait = .1 
; 
;      Define floating point variables that will be read  
;      from the first line of the data file. 



 

 
 

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 921 

 

 

 

   xl = 0D0 
   xr = 0D0 
   t0 = 0D0 
   tlast = 0D0 
; 
;      Open the data file and read in the problem parameters. 
   openr, lun, filename, /get_lun 
   readf, lun, npde, np, nt, xl, xr, t0, tlast 
 
;      Define the arrays for the solutions and grid. 
   u = dblarr(nt, npde, np) 
   g = dblarr(nt, np) 
   times = dblarr(nt) 
; 
;      Define a temporary array for reading in the data. 
   tmp = dblarr(np) 
   t_tmp = 0D0 
; 
;      Read in the data. 
   for i = 0, nt-1 do begin     ; For each step in time 
    readf, lun, t_tmp 
    times(i) = t_tmp 
 
    for k = 0, npde-1 do begin  ;    For each PDE: 
       rmf, lun, tmp 
       u(i,k,*) = tmp           ;    Read in the components. 
    end 
 
    rmf, lun, tmp 
    g(i,*) = tmp                ;    Read in the grid. 
   end 
; 
;      Close the data file and free the unit. 
   close, lun 
   free_lun, lun 
;  
;      We now have all of the solutions and grids. 
; 
;      Delete any window that is currently open. 
   while (!d.window NE -1) do WDELETE 
; 
;      Open two windows for plotting the solutions 
;      and grid. 
   window, 0, xsize = 550, ysize = 420 
   window, 1, xsize = 550, ysize = 420 
; 
;       Plot the grid. 
   wset, 0 
   plot, [xl, xr], [t0, tlast], /nodata, ystyle = 1, $ 
         title = "Grid Points", xtitle = "X", ytitle = "Time" 
   for i = 0, np-1 do begin 
      oplot, g(*, i), times, psym = -1 
   end 
; 
;      Plot the solution(s): 
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   wset, 1 
   for k = 0, npde-1 do begin 
      umin = min(u(*,k,*)) 
      umax = max(u(*,k,*)) 
      for i = 0, nt-1 do begin 
         title = strcompress("U_"+string(k+1), /remove_all)+ $ 
                 " at time "+string(times(i)) 
         plot, g(i, *), u(i,k,*), ystyle = 1, $ 
               title = title, xtitle = "X", $ 
               ytitle = strcompress("U_"+string(k+1), /remove_all), $ 
               xr = [xl, xr], yr = [umin, umax], $ 
               psym = -4 
         wait, twait 
      end 
   end 
 
end 
 
 

Example 1 - Electrodynamics Model 
This example is from Blom and Zegeling (1994).  The system is 

 
( )

( ),
where ( ) ( / 3) ( 2 / 3)
0 1,0 4

1 and 0at 0
0and 0at 0

1and 0at 1
0.143, 0.1743, 17.19

t xx

t xx

x

x

u pu g u v
v pv g u v

g z exp z exp z
x t

u v t
u v x
u v x

p

�

� �

� �

� �

� �

� � �

� � � �

� � �

� � �

� � �

� � �

 

We make the connection between the model problem statement and the example: 

2

1 2

1 2 1

0, ,
( ),

x x

C I
m R pu R pv
Q g u v Q Q

�

�

� � �

� � � �

 

The boundary conditions are 

1 2 1 2

1 2 1 2

1, 0, 0, , at 0
0, 1, 1, 0, at 1

L

R

v x x
u x x

� � � �

� � � �

� � � � � �

� � � � � � �

 

Rationale: Example 1 
This is a non-linear problem with sharply changing conditions near t � 0.  The default settings of 
integration parameters allow the problem to be solved.  The use of PDE_1D_MG with forward 
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communication requires three subroutines provided by the user to describe the initial conditions, 
differential equations, and boundary conditions. 

 
     program PDE_EX1 
! Electrodynamics Model:  
        USE PDE_1d_mg 
        IMPLICIT NONE 
 

        INTEGER, PARAMETER :: NPDE=2, N=51, NFRAMES=5 
        INTEGER I, IDO 
 

! Define array space for the solution. 
        real(kind(1d0)) U(NPDE+1,N), T0, TOUT 
        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, & 
          DELTA_T=10D0, TEND=4D0 
        EXTERNAL IC_01, PDE_01, BC_01 
 

! Start loop to integrate and write solution values. 
        IDO=1 
        DO 
           SELECT CASE (IDO) 
 

! Define values that determine limits. 
           CASE (1) 
              T0=ZERO 
              TOUT=1D-3 
              U(NPDE+1,1)=ZERO;U(NPDE+1,N)=ONE 
              OPEN(FILE='PDE_ex01.out',UNIT=7) 
              WRITE(7, "(3I5, 4F10.5)") NPDE, N, NFRAMES,& 
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 
! Update to the next output point. 
! Write solution and check for final point. 
           CASE (2) 
 

              WRITE(7,"(F10.5)")TOUT 
              DO I=1,NPDE+1 
                WRITE(7,"(4E15.5)")U(I,:) 
              END DO 
              T0=TOUT;TOUT=TOUT*DELTA_T 
              IF(T0 >= TEND) IDO=3 
              TOUT=MIN(TOUT, TEND) 
 

! All completed.  Solver is shut down. 
           CASE (3) 
              CLOSE(UNIT=7) 
              EXIT 
 

           END SELECT 
 

! Forward communication is used for the problem data. 
           CALL PDE_1D_MG (T0, TOUT, IDO, U,& 
             initial_conditions= IC_01,& 
             PDE_system_definition= PDE_01,& 
             boundary_conditions= BC_01) 
 

        END DO 
     END 
 

     SUBROUTINE IC_01(NPDE, NPTS, U) 
! This is the initial data for Example 1. 
        IMPLICIT NONE 
        INTEGER NPDE, NPTS 
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        REAL(KIND(1D0)) U(NPDE+1,NPTS) 
        U(1,:)=1D0;U(2,:)=0D0 
     END SUBROUTINE 
 

     SUBROUTINE PDE_01(T, X, NPDE, U, DUDX, C, Q, R, IRES) 
! This is the differential equation for Example 1. 
        IMPLICIT NONE 
        INTEGER NPDE, IRES 
        REAL(KIND(1D0)) T, X, U(NPDE), DUDX(NPDE),& 
          C(NPDE,NPDE), Q(NPDE), R(NPDE) 
        REAL(KIND(1D0)) :: EPS=0.143D0, P=0.1743D0,& 
          ETA=17.19D0, Z, TWO=2D0, THREE=3D0 
 

        C=0D0;C(1,1)=1D0;C(2,2)=1D0 
        R=P*DUDX;R(1)=R(1)*EPS 
        Z=ETA*(U(1)-U(2))/THREE 
        Q(1)=EXP(Z)-EXP(-TWO*Z) 
        Q(2)=-Q(1) 
 

     END SUBROUTINE 
 

     SUBROUTINE BC_01(T, BTA, GAMA, U, DUDX, NPDE, LEFT, IRES) 
! These are the boundary conditions for Example 1. 
        IMPLICIT NONE 
        INTEGER NPDE, IRES 
        LOGICAL LEFT 
        REAL(KIND(1D0)) T, BTA(NPDE), GAMA(NPDE),& 
          U(NPDE), DUDX(NPDE) 
 

        IF(LEFT) THEN 
           BTA(1)=1D0;BTA(2)=0D0 
           GAMA(1)=0D0;GAMA(2)=U(2) 
        ELSE 
           BTA(1)=0D0;BTA(2)=1D0 
           GAMA(1)=U(1)-1D0;GAMA(2)=0D0 
        END IF 
     END SUBROUTINE 

 

Description 
The equation  

u f u x t x x x t tt L R� � � �( , , ), , 0,  

is approximated at N  time-dependent grid values  

x x x t x t x xL i i N R� � � � � � �
�0 1... ...b g b g .   

Using the total differential 

du
dt

u u dx
dtt x� �

 
 transforms the differential equation to 

 
du
dt

u dx
dt

u f u x tx t� � � , ,b g
.   
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Using central divided differences for the factor ux leads to the system of ordinary differential 
equations in implicit form 

dU
dt

U U
x x

dx
dt

F t t i Ni i i

i i

i
i�

�

�

� � �
� �

� �

1 1

1 1
0 1

b g
b g , , ,...,

. 

The terms Ui, Fi respectively represent the approximate solution to the partial differential equation 
and the value of f(u,x,t) at the point (x,t) = (xi,(t),t). The truncation error is second-order in the 
space variable, x.  The above ordinary differential equations are underdetermined, so additional 
equations are added for the variation of the time-dependent grid points.  It is necessary to discuss 
these equations, since they contain parameters that can be adjusted by the user.  Often it will be 
necessary to modify these parameters to solve a difficult problem.  For this purpose the following 
quantities are defined2: 

� �

� � � �

1
1

1 1

1 0 1

,

1 2 , 0
,

i i i i i

i i i i i

N N

x x x n x

n n n n i N
n n n n
� � �

�

�

� �

� �

� � � � �

� � � � � � �

� �

 

The values ni are the so-called point concentration of the grid, and � � 0 denotes a spatial 
smoothing parameter.  Now the grid points are defined implicitly so that 

1 1
1

1

, 1
i

i i

i i

d d
dt dt i N

M M

� �
� � � �

�

�

�

� �

� � � , 

where � � 1 is a time-smoothing parameter.  Choosing � very large results in a fixed grid. 
Increasing the value of � from its default avoids the error condition where grid lines cross.  The 
divisors are  

M NPDE
U U

x
i

i
j

i
j

ij

NPDE
2 1 1

2

2
1

� �

�
� �

�

�� b g e j
b g� . 

The value � determines the level of clustering or spatial smoothing of the grid points.  Decreasing 
� from its default decrease the amount of spatial smoothing.  The parameters Mi approximate arc 
length and help determine the shape of the grid or xi-distribution.  The parameter �prevents the 
grid movement from adjusting immediately to new values of the Mi, thereby avoiding oscillations 
in the grid that cause large relative errors.  This is important when applied to solutions with steep 
gradients. 

The discrete form of the differential equation and the smoothing equations are combined to yield 
the implicit system of differential equations 

                                                           
2 The three-tiered equal sign, used here and below, is read “a � b or a and b are exactly the same object 
or value.” 
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This is frequently a stiff differential-algebraic system.  It is solved using the integrator DASPG and 
its subroutines, including D2SPG.  These are documented in this chapter.  Note that DASPG is 
restricted to use within PDE_1D_MG until the routine exits with the flag IDO = 3.  If DASPG is 
needed during the evaluations of the differential equations or boundary conditions, use of a second 
processor and inter-process communication is required.  The only options for DASPG set by 
PDE_1D_MG are the Maximum BDF Order, and the absolute and relative error values, ATOL and 
RTOL.  Users may set other options using the Options Manager.  This is described in routine 
DASPG, see page 889, and generally in Chapter 11 of this manual. 

Additional Examples 

Example 2 - Inviscid Flow on a Plate 
This example is a first order system from Pennington and Berzins, (1994).  The equations are 

u v
uu vu w
w u uu vu u
u t v t u t u x t t

u x v x x

t x

t x x

x t x xx

R

� �

� � �

� � � �

� � � � � �

� � �

,  implying that 
0 0 0 1 0

0 1 0 0 0

, , , , , ,

, , , ,
b g b g b g b g
b g b g  

Following elimination of w, there remain NPDE � 2  differential equations. The variable t is not 
time, but a second space variable. The integration goes from t � 0 to t � 5.  It is necessary to 
truncate the variable x at a finite value, say x xRmax � � 25.  In terms of the integrator, the system 
is defined by letting m � 0  and  

C C
u

R
v

u
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vujk
x x
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L
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O
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O
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O
QPn s 1 0
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The boundary conditions are satisfied by 
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,
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We use N � � �10 51 61 grid points and output the solution at steps of �t � 01. . 

Rationale: Example 2 
This is a non-linear boundary layer problem with sharply changing conditions near t � 0.   The 
problem statement was modified so that boundary conditions are continuous near t � 0.  Without 
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this change the underlying integration software, DASPG,  cannot solve the problem.  The 

continuous blending function u t� �exp 20b g is arbitrary and artfully chosen.  This is a 
mathematical change to the problem, required because of the stated discontinuity at t � 0.  Reverse 
communication is used for the problem data.  No additional user-written subroutines are required 
when using reverse communication.  We also have chosen 10 of the initial grid points to be 
concentrated near xL � 0 , anticipating rapid change in the solution near that point.  Optional 
changes are made to use a pure absolute error tolerance and non-zero time-smoothing. 

 
        program PDE_1D_MG_EX02 
! Inviscid Flow Over a Plate 
        USE PDE_1d_mg 
        USE ERROR_OPTION_PACKET 
        IMPLICIT NONE 
 
        INTEGER, PARAMETER :: NPDE=2, N1=10, N2=51, N=N1+N2 
        INTEGER I, IDO, NFRAMES 
! Define array space for the solution. 
        real(kind(1d0)) U(NPDE+1,N), T0, TOUT, DX1, DX2, DIF 
        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-1,& 
          TEND=5D0, XMAX=25D0 
        real(kind(1d0)) :: U0=1D0, U1=0D0, TDELTA=1D-1, TOL=1D-2 
        TYPE(D_OPTIONS) IOPT(3) 
! Start loop to integrate and record solution values. 
        IDO=1 
        DO 
           SELECT CASE (IDO) 
! Define values that determine limits and options. 
           CASE (1) 
              T0=ZERO 
              TOUT=DELTA_T 
              U(NPDE+1,1)=ZERO;U(NPDE+1,N)=XMAX 
              OPEN(FILE='PDE_ex02.out',UNIT=7) 
              NFRAMES=NINT((TEND+DELTA_T)/DELTA_T) 
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 
              DX1=XMAX/N2;DX2=DX1/N1 
              IOPT(1)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO) 
              IOPT(2)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,TOL) 
              IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D-3) 
 
! Update to the next output point. 
! Write solution and check for final point. 
           CASE (2) 
              T0=TOUT 
              IF(T0 <= TEND) THEN 
                 WRITE(7,"(F10.5)")TOUT 
                 DO I=1,NPDE+1 
                    WRITE(7,"(4E15.5)")U(I,:) 
                 END DO 
                 TOUT=MIN(TOUT+DELTA_T,TEND) 
                 IF(T0 == TEND)IDO=3 
              END IF 
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! All completed.  Solver is shut down. 
           CASE (3) 
 
              CLOSE(UNIT=7) 
              EXIT 
 
! Define initial data values. 
           CASE (5) 
              U(:NPDE,:)=ZERO;U(1,:)=ONE 
              DO I=1,N1 
                 U(NPDE+1,I)=(I-1)*DX2 
              END DO 
              DO I=N1+1,N 
                 U(NPDE+1,I)=(I-N1)*DX1 
              END DO 
              WRITE(7,"(F10.5)")T0 
              DO I=1,NPDE+1 
                 WRITE(7,"(4E15.5)")U(I,:) 
              END DO 
 
! Define differential equations. 
           CASE (6) 
              D_PDE_1D_MG_C=ZERO 
              D_PDE_1D_MG_C(1,1)=ONE 
              D_PDE_1D_MG_C(2,1)=D_PDE_1D_MG_U(1) 
 
              D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_U(2) 
              D_PDE_1D_MG_R(2)= D_PDE_1D_MG_DUDX(1) 
 
              D_PDE_1D_MG_Q(1)= ZERO 
              D_PDE_1D_MG_Q(2)= & 
                D_PDE_1D_MG_U(2)*D_PDE_1D_MG_DUDX(1) 
! Define boundary conditions. 
           CASE (7) 
              D_PDE_1D_MG_BETA=ZERO 
              IF(PDE_1D_MG_LEFT) THEN 
                 DIF=EXP(-20D0*D_PDE_1D_MG_T) 
! Blend the left boundary value down to zero. 
                 D_PDE_1D_MG_GAMMA=(/D_PDE_1D_MG_U(1)-DIF,D_PDE_1D_MG_U(2)/) 
              ELSE 
                 D_PDE_1D_MG_GAMMA=(/D_PDE_1D_MG_U(1)-
ONE,D_PDE_1D_MG_DUDX(2)/) 
              END IF 
           END SELECT 
 
! Reverse communication is used for the problem data. 
           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT) 
        END DO 
     end program 

Example 3 - Population Dynamics 
This example is from Pennington and Berzins (1994).  The system is  
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This is a notable problem because it involves the unknown 
u x t

x
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exp
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� � � �1  across 
the entire domain.  The software can solve the problem by introducing two dependent algebraic 
equations: 
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This leads to the modified system  
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In the interface to the evaluation of the differential equation  and boundary conditions, it is 

necessary to evaluate the integrals, which are computed with the values of u x t,b g on the grid.  The 
integrals are approximated using the trapezoid rule, commensurate with the truncation error in the 
integrator. 

Rationale: Example 3 
This is a non-linear integro-differential problem involving non-local conditions for the differential 
equation and boundary conditions.  Access to evaluation of these conditions is provided using 
reverse communication.  It is not possible to solve this problem with forward communication, 
given the current subroutine interface.  Optional changes are made to use an absolute error 
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tolerance and non-zero time-smoothing.  The time-smoothing value� � 1 prevents grid lines from 
crossing. 

 
     program PDE_1D_MG_EX03 
! Population Dynamics Model. 
        USE PDE_1d_mg 
        USE ERROR_OPTION_PACKET 
        IMPLICIT NONE 
        INTEGER, PARAMETER :: NPDE=1, N=101 
        INTEGER IDO, I, NFRAMES 
! Define array space for the solution. 
        real(kind(1d0)) U(NPDE+1,N), MID(N-1), T0, TOUT, V_1, V_2 
        real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, ONE=1D0,& 
          TWO=2D0, FOUR=4D0, DELTA_T=1D-1,TEND=5D0, A=5D0 
        TYPE(D_OPTIONS) IOPT(3) 
! Start loop to integrate and record solution values. 
        IDO=1 
        DO 
           SELECT CASE (IDO) 
! Define values that determine limits. 
           CASE (1) 
              T0=ZERO 
              TOUT=DELTA_T 
              U(NPDE+1,1)=ZERO;U(NPDE+1,N)=A 
              OPEN(FILE='PDE_ex03.out',UNIT=7) 
              NFRAMES=NINT((TEND+DELTA_T)/DELTA_T) 
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 
              IOPT(1)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO) 
              IOPT(2)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2) 
              IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D0) 
! Update to the next output point. 
! Write solution and check for final point. 
           CASE (2) 
              T0=TOUT 
              IF(T0 <= TEND) THEN 
                WRITE(7,"(F10.5)")TOUT 
                DO I=1,NPDE+1 
                  WRITE(7,"(4E15.5)")U(I,:) 
                END DO 
                TOUT=MIN(TOUT+DELTA_T,TEND) 
                IF(T0 == TEND)IDO=3 
              END IF 
! All completed.  Solver is shut down. 
           CASE (3) 
              CLOSE(UNIT=7) 
              EXIT 
! Define initial data values. 
           CASE (5) 
              U(1,:)=EXP(-U(2,:))/(TWO-EXP(-A)) 
              WRITE(7,"(F10.5)")T0 
              DO I=1,NPDE+1 
                WRITE(7,"(4E15.5)")U(I,:) 
              END DO 
! Define differential equations. 
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           CASE (6) 
              D_PDE_1D_MG_C(1,1)=ONE 
              D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_U(1) 
! Evaluate the approximate integral, for this t. 
              V_1=HALF*SUM((U(1,1:N-1)+U(1,2:N))*& 
                          (U(2,2:N) - U(2,1:N-1))) 
              D_PDE_1D_MG_Q(1)=V_1*D_PDE_1D_MG_U(1) 
! Define boundary conditions. 
           CASE (7) 
              IF(PDE_1D_MG_LEFT) THEN 
! Evaluate the approximate integral, for this t. 
! A second integral is needed at the edge. 
              V_1=HALF*SUM((U(1,1:N-1)+U(1,2:N))*& 
                          (U(2,2:N) - U(2,1:N-1))) 
              MID=HALF*(U(2,2:N)+U(2,1:N-1)) 
              V_2=HALF*SUM(MID*EXP(-MID)*& 
              (U(1,1:N-1)+U(1,2:N))*(U(2,2:N)-U(2,1:N-1))) 
                 D_PDE_1D_MG_BETA=ZERO 
                 
D_PDE_1D_MG_GAMMA=G(ONE,D_PDE_1D_MG_T)*V_1*V_2/(V_1+ONE)**2-& 
                   D_PDE_1D_MG_U 
              ELSE 
                 D_PDE_1D_MG_BETA=ZERO 
                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX(1) 
              END IF 
            END SELECT 
! Reverse communication is used for the problem data. 
           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT) 
        END DO 
CONTAINS 
        FUNCTION G(z,t) 
        IMPLICIT NONE 
          REAL(KIND(1d0)) Z, T, G 
          G=FOUR*Z*(TWO-TWO*EXP(-A)+EXP(-T))**2 
          G=G/((ONE-EXP(-A))*(ONE-(ONE+TWO*A)*& 
            EXP(-TWO*A))*(1-EXP(-A)+EXP(-T))) 
        END FUNCTION 
     end program 
 

Example 4 - A Model in Cylindrical Coordinates 
This example is from Blom and Zegeling (1994).  The system models a reactor-diffusion problem: 
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The axial direction z  is treated as a time coordinate.  The radius r  is treated as the single space 
variable.   
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Rationale: Example 4 
This is a non-linear problem in cylindrical coordinates. Our example illustrates assigning m � 1 in 
Equation 2.  We provide an optional argument that resets this value from its default, m � 0 .  
Reverse communication is used to interface with the problem data. 

 
     program PDE_1D_MG_EX04 
! Reactor-Diffusion problem in cylindrical coordinates. 
        USE pde_1d_mg 
        USE error_option_packet 
        IMPLICIT NONE 
        INTEGER, PARAMETER :: NPDE=1, N=41 
        INTEGER IDO, I, NFRAMES 
! Define array space for the solution. 
        real(kind(1d0)) T(NPDE+1,N), Z0, ZOUT 
        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_Z=1D-1,& 
          ZEND=1D0, ZMAX=1D0, BTA=1D-4, GAMA=1D0, EPS=1D-1 
        TYPE(D_OPTIONS) IOPT(1) 
! Start loop to integrate and record solution values. 
        IDO=1 
        DO 
           SELECT CASE (IDO) 
! Define values that determine limits. 
           CASE (1) 
              Z0=ZERO 
              ZOUT=DELTA_Z 
              T(NPDE+1,1)=ZERO;T(NPDE+1,N)=ZMAX 
              OPEN(FILE='PDE_ex04.out',UNIT=7) 
              NFRAMES=NINT((ZEND+DELTA_Z)/DELTA_Z) 
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 
                T(NPDE+1,1), T(NPDE+1,N), Z0, ZEND 
              IOPT(1)=PDE_1D_MG_CYL_COORDINATES 
! Update to the next output point. 
! Write solution and check for final point. 
           CASE (2) 
              IF(Z0 <= ZEND) THEN 
                WRITE(7,"(F10.5)")ZOUT 
                DO I=1,NPDE+1 
                  WRITE(7,"(4E15.5)")T(I,:) 
                END DO 
                ZOUT=MIN(ZOUT+DELTA_Z,ZEND) 
                IF(Z0 == ZEND)IDO=3 
              END IF 
! All completed.  Solver is shut down. 
           CASE (3) 
              CLOSE(UNIT=7) 
              EXIT 
! Define initial data values. 
           CASE (5) 
              T(1,:)=ZERO 
              WRITE(7,"(F10.5)")Z0 
              DO I=1,NPDE+1 
                WRITE(7,"(4E15.5)")T(I,:) 
              END DO 
! Define differential equations. 
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           CASE (6) 
              D_PDE_1D_MG_C(1,1)=ONE 
              D_PDE_1D_MG_R(1)=BTA*D_PDE_1D_MG_DUDX(1) 
              D_PDE_1D_MG_Q(1)= -GAMA*EXP(D_PDE_1D_MG_U(1)/& 
                (ONE+EPS*D_PDE_1D_MG_U(1))) 
! Define boundary conditions. 
           CASE (7) 
              IF(PDE_1D_MG_LEFT) THEN 
                 D_PDE_1D_MG_BETA=ONE; D_PDE_1D_MG_GAMMA=ZERO 
              ELSE 
                 D_PDE_1D_MG_BETA=ZERO; D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U(1) 
              END IF 
           END SELECT 
! Reverse communication is used for the problem data. 
! The optional derived type changes the internal model 
! to use cylindrical coordinates. 
           CALL PDE_1D_MG (Z0, ZOUT, IDO, T, IOPT=IOPT) 
        END DO 
     end program 

Example 5 - A Flame Propagation Model 
This example is presented more fully in Verwer, et al., (1989).  The system is a normalized 

problem relating mass density u x t,b g and temperature v x t,b g : 
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Rationale: Example 5 
This is a non-linear problem.  The example shows the model steps for replacing the banded solver 
in the software with one of the user’s choice.  Reverse communication is used for the interface to 
the problem data and the linear solver.  Following the computation of the matrix factorization in 
DL2CRB, we declare the system to be singular when the reciprocal of the condition number is 
smaller than the working precision.  This choice is not suitable for all problems.  Attention must 
be given to detecting a singularity when this option is used. 

 
     program PDE_1D_MG_EX05 
! Flame propagation model 
        USE pde_1d_mg 
        USE ERROR_OPTION_PACKET 
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        USE Numerical_Libraries, ONLY :& 
         dl2crb, dlfsrb 
        IMPLICIT NONE 
 
        INTEGER, PARAMETER :: NPDE=2, N=40, NEQ=(NPDE+1)*N 
        INTEGER I, IDO, NFRAMES, IPVT(NEQ) 
 
! Define array space for the solution. 
        real(kind(1d0)) U(NPDE+1,N), T0, TOUT 
! Define work space for the banded solver. 
        real(kind(1d0)) WORK(NEQ), RCOND 
        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-4,& 
          TEND=6D-3, XMAX=1D0, BTA=4D0, GAMA=3.52D6 
        TYPE(D_OPTIONS) IOPT(1) 
! Start loop to integrate and record solution values. 
        IDO=1 
        DO 
           SELECT CASE (IDO) 
 
! Define values that determine limits. 
           CASE (1) 
              T0=ZERO 
              TOUT=DELTA_T 
              U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX 
              OPEN(FILE='PDE_ex05.out',UNIT=7) 
              NFRAMES=NINT((TEND+DELTA_T)/DELTA_T) 
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 
              IOPT(1)=PDE_1D_MG_REV_COMM_FACTOR_SOLVE 
! Update to the next output point. 
! Write solution and check for final point. 
           CASE (2) 
             T0=TOUT 
              IF(T0 <= TEND) THEN 
                WRITE(7,"(F10.5)")TOUT 
                DO I=1,NPDE+1 
                  WRITE(7,"(4E15.5)")U(I,:) 
                END DO 
                TOUT=MIN(TOUT+DELTA_T,TEND) 
                IF(T0 == TEND)IDO=3 
              END IF 
 
! All completed.  Solver is shut down. 
           CASE (3) 
              CLOSE(UNIT=7) 
              EXIT 
 
! Define initial data values. 
           CASE (5) 
              U(1,:)=ONE; U(2,:)=2D-1 
              WRITE(7,"(F10.5)")T0 
              DO I=1,NPDE+1 
                WRITE(7,"(4E15.5)")U(I,:) 
              END DO 
! Define differential equations. 
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           CASE (6) 
              D_PDE_1D_MG_C=ZERO 
              D_PDE_1D_MG_C(1,1)=ONE; D_PDE_1D_MG_C(2,2)=ONE 
 
              D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX 
 
              D_PDE_1D_MG_Q(1)=  D_PDE_1D_MG_U(1)*F(D_PDE_1D_MG_U(2)) 
              D_PDE_1D_MG_Q(2)= -D_PDE_1D_MG_Q(1) 
! Define boundary conditions. 
           CASE (7) 
              IF(PDE_1D_MG_LEFT) THEN 
                 D_PDE_1D_MG_BETA=ZERO;D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX 
              ELSE 
                 D_PDE_1D_MG_BETA(1)=ONE 
                 D_PDE_1D_MG_GAMMA(1)=ZERO 
                 D_PDE_1D_MG_BETA(2)=ZERO 
                 IF(D_PDE_1D_MG_T >= 2D-4) THEN 
                   D_PDE_1D_MG_GAMMA(2)=12D-1 
                 ELSE 
                   D_PDE_1D_MG_GAMMA(2)=2D-1+5D3*D_PDE_1D_MG_T 
                 END IF 
                 D_PDE_1D_MG_GAMMA(2)=D_PDE_1D_MG_GAMMA(2)-& 
                  D_PDE_1D_MG_U(2) 
              END IF 
           CASE(8) 
! Factor the banded matrix.  This is the same solver used 
! internally but that is not required.  A user can substitute 
! one of their own. 
             call dl2crb (neq, d_pde_1d_mg_a, pde_1d_mg_lda, 
pde_1d_mg_iband,& 
               pde_1d_mg_iband, d_pde_1d_mg_a, pde_1d_mg_lda, ipvt, rcond, 
work) 
             IF(rcond <= EPSILON(ONE)) pde_1d_mg_panic_flag = 1 
           CASE(9) 
! Solve using the factored banded matrix. 
             call dlfsrb(neq, d_pde_1d_mg_a, pde_1d_mg_lda, 
pde_1d_mg_iband,& 
               pde_1d_mg_iband, ipvt, d_pde_1d_mg_rhs, 1, d_pde_1d_mg_sol) 
           END SELECT 
 
! Reverse communication is used for the problem data. 
           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT) 
        END DO 
CONTAINS 
        FUNCTION F(Z) 
        IMPLICIT NONE 
        REAL(KIND(1D0)) Z, F 
          F=GAMA*EXP(-BTA/Z) 
        END FUNCTION 
     end program 
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Example 6 - A ‘Hot Spot’ Model 
This example is presented more fully in Verwer, et al., (1989).  The system is a normalized 

problem relating the temperature u x t,b g, of a reactant in a chemical system.  The formula for 
h zb g is equivalent to their example. 

u u h u
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u x
u x
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Rationale: Example 6 
This is a non-linear problem.  The output shows a case where a rapidly changing front, or hot-spot, 
develops after a considerable way into the integration.  This causes rapid change to the grid.  An 
option sets the maximum order BDF formula from its default value of 2 to the theoretical stable 
maximum value of 5. 

 
        USE pde_1d_mg 
        USE error_option_packet 
        IMPLICIT NONE 
 
        INTEGER, PARAMETER :: NPDE=1, N=80 
        INTEGER I, IDO, NFRAMES 
 
! Define array space for the solution. 
        real(kind(1d0)) U(NPDE+1,N), T0, TOUT 
        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-2,& 
          TEND=29D-2, XMAX=1D0, A=1D0, DELTA=2D1, R=5D0 
        TYPE(D_OPTIONS) IOPT(2) 
! Start loop to integrate and record solution values. 
        IDO=1 
        DO 
           SELECT CASE (IDO) 
 
! Define values that determine limits. 
           CASE (1) 
              T0=ZERO 
              TOUT=DELTA_T 
              U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX 
              OPEN(FILE='PDE_ex06.out',UNIT=7) 
              NFRAMES=(TEND+DELTA_T)/DELTA_T 
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 
! Illustrate allowing the BDF order to increase 
! to its maximum allowed value. 
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              IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER 
                IOPT(2)=5 
! Update to the next output point. 
! Write solution and check for final point. 
           CASE (2) 
              T0=TOUT 
              IF(T0 <= TEND) THEN 
                WRITE(7,"(F10.5)")TOUT 
                DO I=1,NPDE+1 
                  WRITE(7,"(4E15.5)")U(I,:) 
                END DO 
                TOUT=MIN(TOUT+DELTA_T,TEND) 
                IF(T0 == TEND)IDO=3 
              END IF 
! All completed.  Solver is shut down. 
           CASE (3) 
              CLOSE(UNIT=7) 
              EXIT 
 
! Define initial data values. 
           CASE (5) 
              U(1,:)=ONE 
              WRITE(7,"(F10.5)")T0 
              DO I=1,NPDE+1 
                WRITE(7,"(4E15.5)")U(I,:) 
              END DO 
! Define differential equations. 
           CASE (6) 
              D_PDE_1D_MG_C=ONE 
              D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX 
              D_PDE_1D_MG_Q= - H(D_PDE_1D_MG_U(1)) 
 
! Define boundary conditions. 
           CASE (7) 
              IF(PDE_1D_MG_LEFT) THEN 
                 D_PDE_1D_MG_BETA=ZERO 
                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX 
              ELSE 
 
                 D_PDE_1D_MG_BETA=ZERO 
                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U(1)-ONE 
              END IF 
           END SELECT 
 
! Reverse communication is used for the problem data. 
           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT) 
        END DO 
CONTAINS 
        FUNCTION H(Z) 
        real(kind(1d0)) Z, H 
          H=(R/(A*DELTA))*(ONE+A-Z)*EXP(-DELTA*(ONE/Z-ONE)) 
        END FUNCTION 
     end program 
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Example 7 - Traveling Waves 
This example is presented more fully in Verwer, et al., (1989).  The system is a normalized 

problem relating the interaction of two waves, u x t,b g and v x t,b g  moving in opposite directions.  
The waves meet and reduce in amplitude, due to the non-linear terms in the equation.  Then they 
separate and travel onward, with reduced amplitude. 
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          otherwise

 and

          otherwise
 at both ends,   

Rationale: Example 7 
This is a non-linear system of first order equations. 

 
     program PDE_1D_MG_EX07 
! Traveling Waves 
        USE pde_1d_mg 
        USE error_option_packet 
        IMPLICIT NONE 
 
        INTEGER, PARAMETER :: NPDE=2, N=50 
        INTEGER I, IDO, NFRAMES 
 
! Define array space for the solution. 
        real(kind(1d0)) U(NPDE+1,N), TEMP(N), T0, TOUT 
        real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, & 
          ONE=1D0, DELTA_T=5D-2,TEND=5D-1, PI 
        TYPE(D_OPTIONS) IOPT(5) 
! Start loop to integrate and record solution values. 
        IDO=1 
        DO 
           SELECT CASE (IDO) 
 
! Define values that determine limits. 
           CASE (1) 
              T0=ZERO 
              TOUT=DELTA_T 
              U(NPDE+1,1)=-HALF; U(NPDE+1,N)=HALF 
              OPEN(FILE='PDE_ex07.out',UNIT=7) 
              NFRAMES=(TEND+DELTA_T)/DELTA_T 
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 
              IOPT(1)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D-3) 
              IOPT(2)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO) 
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              IOPT(3)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-3) 
              IOPT(4)=PDE_1D_MG_MAX_BDF_ORDER 
                IOPT(5)=3 
! Update to the next output point. 
! Write solution and check for final point. 
           CASE (2) 
              T0=TOUT 
              IF(T0 <= TEND) THEN 
                WRITE(7,"(F10.5)")TOUT 
                DO I=1,NPDE+1 
                  WRITE(7,"(4E15.5)")U(I,:) 
                END DO 
                TOUT=MIN(TOUT+DELTA_T,TEND) 
                IF(T0 == TEND)IDO=3 
              END IF 
 
! All completed.  Solver is shut down. 
           CASE (3) 
              CLOSE(UNIT=7) 
              EXIT 
 
! Define initial data values. 
           CASE (5) 
              TEMP=U(3,:) 
              U(1,:)=PULSE(TEMP); U(2,:)=U(1,:) 
              WHERE (TEMP < -3D-1 .or. TEMP > -1D-1) U(1,:)=ZERO 
              WHERE (TEMP <  1D-1 .or. TEMP >  3D-1) U(2,:)=ZERO 
              WRITE(7,"(F10.5)")T0 
              DO I=1,NPDE+1 
                WRITE(7,"(4E15.5)")U(I,:) 
              END DO 
 
! Define differential equations. 
           CASE (6) 
              D_PDE_1D_MG_C=ZERO 
              D_PDE_1D_MG_C(1,1)=ONE; D_PDE_1D_MG_C(2,2)=ONE 
 
              D_PDE_1D_MG_R=D_PDE_1D_MG_U 
              D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_R(1) 
 
              D_PDE_1D_MG_Q(1)= 100D0*D_PDE_1D_MG_U(1)*D_PDE_1D_MG_U(2) 
              D_PDE_1D_MG_Q(2)= D_PDE_1D_MG_Q(1) 
 
! Define boundary conditions. 
           CASE (7) 
              D_PDE_1D_MG_BETA=ZERO;D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U 
 
           END SELECT 
 
! Reverse communication is used for the problem data. 
           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT) 
        END DO 
CONTAINS 
        FUNCTION PULSE(Z) 
        real(kind(1d0)) Z(:), PULSE(SIZE(Z)) 
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          PI=ACOS(-ONE) 
          PULSE=HALF*(ONE+COS(10D0*PI*Z)) 
        END FUNCTION 
     end program 

Example 8 - Black-Scholes  

The value of a European “call option,” c s t,b g , with exercise price e and expiration date T , 

satisfies the “asset-or-nothing payoff ” c s T s s e s e, , ; ,b g � � � �0 .  Prior to expiration c s t,b g  is 
estimated by the Black-Scholes differential equation 

c s c rsc rc c s c r sc rct ss s t s s s� � � � � � � � �
� �

�

2
2

2
2 2

2 2
0e j e j

.  The parameters in the model are 

the risk-free interest rate, r , and the stock volatility,� .  The boundary conditions are c t0 0,b g �  

and c s t ss , ,b g � � �1 .  This development is described in Wilmott, et al. (1995), pages 41-57.  
There are explicit solutions for this equation based on the Normal Curve of Probability.  The 
normal curve, and the solution itself, can be efficiently computed with the IMSL function ANORDF, 
IMSL (1994), page 186.  With numerical integration the equation itself or the payoff can be 

readily changed to include other formulas, c s T,b g, and corresponding boundary conditions.  We 

use e r T t s sL R� � � � � � �100 0 08 0 25 0 04 0 1502, . , . , . , ,�  and . 

Rationale: Example 8 
This is a linear problem but with initial conditions that are discontinuous.  It is necessary to use a 
positive time-smoothing value to prevent grid lines from crossing.  We have used an absolute 
tolerance of 10 3� .  In $US, this is one-tenth of a cent. 

 
     program PDE_1D_MG_EX08 
! Black-Scholes call price 
        USE pde_1d_mg 
        USE error_option_packet 
        IMPLICIT NONE 
 
        INTEGER, PARAMETER :: NPDE=1, N=100 
        INTEGER I, IDO, NFRAMES 
 
! Define array space for the solution. 
        real(kind(1d0)) U(NPDE+1,N), T0, TOUT, SIGSQ, XVAL 
        real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, ONE=1D0, & 
          DELTA_T=25D-3, TEND=25D-2, XMAX=150, SIGMA=2D-1, & 
          R=8D-2, E=100D0 
        TYPE(D_OPTIONS) IOPT(5) 
! Start loop to integrate and record solution values. 
        IDO=1 
        DO 
           SELECT CASE (IDO) 
 
! Define values that determine limits. 
           CASE (1) 
              T0=ZERO 
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              TOUT=DELTA_T 
              U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX 
              OPEN(FILE='PDE_ex08.out',UNIT=7) 
              NFRAMES=NINT((TEND+DELTA_T)/DELTA_T) 
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 
                SIGSQ=SIGMA**2 
! Illustrate allowing the BDF order to increase 
! to its maximum allowed value. 
              IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER 
                IOPT(2)=5 
              IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,5D-3) 
              IOPT(4)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO) 
              IOPT(5)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2) 
! Update to the next output point. 
! Write solution and check for final point. 
           CASE (2) 
              T0=TOUT 
              IF(T0 <= TEND) THEN 
                WRITE(7,"(F10.5)")TOUT 
                DO I=1,NPDE+1 
                  WRITE(7,"(4E15.5)")U(I,:) 
                END DO 
                TOUT=MIN(TOUT+DELTA_T,TEND) 
                IF(T0 == TEND)IDO=3 
              END IF 
! All completed.  Solver is shut down. 
           CASE (3) 
              CLOSE(UNIT=7) 
              EXIT 
 
! Define initial data values. 
           CASE (5) 
              U(1,:)=MAX(U(NPDE+1,:)-E,ZERO)  ! Vanilla European Call 
              U(1,:)=U(NPDE+1,:)              ! Asset-or-nothing Call 
              WHERE(U(1,:) <= E) U(1,:)=ZERO  ! on these two lines 
              WRITE(7,"(F10.5)")T0 
              DO I=1,NPDE+1 
                WRITE(7,"(4E15.5)")U(I,:) 
              END DO 
! Define differential equations. 
           CASE (6) 
              XVAL=D_PDE_1D_MG_X 
              D_PDE_1D_MG_C=ONE 
              D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX*XVAL**2*SIGSQ*HALF 
              D_PDE_1D_MG_Q=-(R-SIGSQ)*XVAL*D_PDE_1D_MG_DUDX+R*D_PDE_1D_MG_U 
! Define boundary conditions. 
           CASE (7) 
              IF(PDE_1D_MG_LEFT) THEN 
                 D_PDE_1D_MG_BETA=ZERO 
                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U 
              ELSE 
 
                 D_PDE_1D_MG_BETA=ZERO 
                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX(1)-ONE 
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              END IF 
           END SELECT 
 
! Reverse communication is used for the problem data. 
           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT) 
        END DO 
 
     end program 

Example 9 - Electrodynamics, Parameters Studied with MPI 
This example, described above in Example 1, is from Blom and Zegeling (1994).  The system 

parameters � �, ,p  and , are varied, using uniform random numbers.  The intervals studied are 
01 0 2 01 0 2 10 20. . , . . ,� � � � � �� �p  and .  Using N � 21 grid values and other program options, 

the elapsed time, parameter values, and the value 
v x t

x t
,

,b g
� �1 4 are sent to the root node.  This 

information is written on a file.  The final summary includes the minimum value of  

v x t
x t

,
,b g

� �1 4,  

and the maximum and average time per integration, per node. 

Rationale: Example 9 
This is a non-linear simulation problem.  Using at least two integrating processors and MPI allows 
more values of the parameters to be studied in a given time than with a single processor.  This 
code is valuable as a study guide when an application needs to estimate timing and other output 
parameters.  The simulation time is controlled at the root node.  An integration is started, after 
receiving results, within the first SIM_TIME seconds.  The elapsed time will be longer than 
SIM_TIME by the slowest processor’s time for its last integration. 
 

     program PDE_1D_MG_EX09 
! Electrodynamics Model, parameter study. 
        USE PDE_1d_mg 
        USE MPI_SETUP_INT 
        USE RAND_INT 
        USE SHOW_INT 
        IMPLICIT NONE 
        INCLUDE "mpif.h" 
        INTEGER, PARAMETER :: NPDE=2, N=21 
        INTEGER I, IDO, IERROR, CONTINUE, STATUS(MPI_STATUS_SIZE) 
        INTEGER, ALLOCATABLE :: COUNTS(:) 
! Define array space for the solution. 
        real(kind(1d0)) :: U(NPDE+1,N), T0, TOUT 
        real(kind(1d0)) :: ZERO=0D0, ONE=1D0,DELTA_T=10D0, TEND=4D0 
! SIM_TIME is the number of seconds to run the simulation. 
        real(kind(1d0)) :: EPS, P, ETA, Z, TWO=2D0, THREE=3D0, 
SIM_TIME=60D0 
        real(kind(1d0)) :: TIMES, TIMEE, TIMEL, TIME, TIME_SIM, 
V_MIN, DATA(5) 
        real(kind(1d0)), ALLOCATABLE :: AV_TIME(:), MAX_TIME(:) 
        TYPE(D_OPTIONS) IOPT(4), SHOW_IOPT(2) 
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        TYPE(S_OPTIONS) SHOW_INTOPT(2) 
        MP_NPROCS=MP_SETUP(1) 
        MPI_NODE_PRIORITY=(/(I-1,I=1,MP_NPROCS)/) 
! If NP_NPROCS=1, the program stops.  Change 
! MPI_ROOT_WORKS=.TRUE. if MP_NPROCS=1. 
        MPI_ROOT_WORKS=.FALSE. 
        IF(.NOT. MPI_ROOT_WORKS .and. MP_NPROCS == 1) STOP 
        ALLOCATE(AV_TIME(MP_NPROCS), MAX_TIME(MP_NPROCS), 
COUNTS(MP_NPROCS)) 
! Get time start for simulation timing. 
        TIME=MPI_WTIME() 
        IF(MP_RANK == 0) OPEN(FILE='PDE_ex09.out',UNIT=7) 
 SIMULATE: DO 
! Pick random parameter values. 
           EPS=1D-1*(ONE+rand(EPS)) 
           P=1D-1*(ONE+rand(P)) 
           ETA=10D0*(ONE+rand(ETA)) 
! Start loop to integrate and communicate solution times. 
           IDO=1 
! Get time start for each new problem. 
           DO 
              IF(.NOT. MPI_ROOT_WORKS .and. MP_RANK == 0) EXIT 
              SELECT CASE (IDO) 
! Define values that determine limits. 
              CASE (1) 
                 T0=ZERO 
                 TOUT=1D-3 
                 U(NPDE+1,1)=ZERO;U(NPDE+1,N)=ONE 
                 IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER 
                 IOPT(2)=5 
                 IOPT(3)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,1D-2) 
                 IOPT(4)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2) 
 
                 TIMES=MPI_WTIME() 
! Update to the next output point. 
! Write solution and check for final point. 
              CASE (2) 
                 T0=TOUT;TOUT=TOUT*DELTA_T 
                 IF(T0 >= TEND) IDO=3 
                 TOUT=MIN(TOUT, TEND) 
! All completed.  Solver is shut down. 
              CASE (3) 
                 TIMEE=MPI_WTIME() 
                 EXIT 
! Define initial data values. 
              CASE (5) 
                 U(1,:)=1D0;U(2,:)=0D0 
! Define differential equations. 
              CASE (6) 
                 
D_PDE_1D_MG_C=0D0;D_PDE_1D_MG_C(1,1)=1D0;D_PDE_1D_MG_C(2,2)=1D0 
                 D_PDE_1D_MG_R=P*D_PDE_1D_MG_DUDX 
D_PDE_1D_MG_R(1)=D_PDE_1D_MG_R(1)*EPS 
                 Z=ETA*(D_PDE_1D_MG_U(1)-D_PDE_1D_MG_U(2))/THREE 
                 D_PDE_1D_MG_Q(1)=EXP(Z)-EXP(-TWO*Z) 
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                 D_PDE_1D_MG_Q(2)=-D_PDE_1D_MG_Q(1) 
! Define boundary conditions. 
              CASE (7) 
                 IF(PDE_1D_MG_LEFT) THEN 
                    D_PDE_1D_MG_BETA(1)=1D0;D_PDE_1D_MG_BETA(2)=0D0 
                    
D_PDE_1D_MG_GAMMA(1)=0D0;D_PDE_1D_MG_GAMMA(2)=D_PDE_1D_MG_U(2) 
                 ELSE 
                    D_PDE_1D_MG_BETA(1)=0D0;D_PDE_1D_MG_BETA(2)=1D0 
                    D_PDE_1D_MG_GAMMA(1)=D_PDE_1D_MG_U(1)-
1D0;D_PDE_1D_MG_GAMMA(2)=0D0 
                 END IF 
              END SELECT 
! Reverse communication is used for the problem data. 
              CALL PDE_1D_MG (T0, TOUT, IDO, U) 
           END DO 
           TIMEL=TIMEE-TIMES 
           DATA=(/EPS, P, ETA, U(2,N), TIMEL/) 
           IF(MP_RANK > 0) THEN 
! Send parameters and time to the root. 
              CALL MPI_SEND(DATA, 5, MPI_DOUBLE_PRECISION,0, MP_RANK, 
MP_LIBRARY_WORLD, IERROR) 
! Receive back a "go/stop" flag. 
              CALL MPI_RECV(CONTINUE, 1, MPI_INTEGER, 0, MPI_ANY_TAG, 
MP_LIBRARY_WORLD, STATUS, IERROR) 
! If root notes that time is up, it sends node a quit flag. 
              IF(CONTINUE == 0) EXIT SIMULATE 
           ELSE 
! If root is working, record its result and then stand ready 
! for other nodes to send. 
              IF(MPI_ROOT_WORKS) WRITE(7,*) MP_RANK, DATA 
! If all nodes have reported, then quit. 
              IF(COUNT(MPI_NODE_PRIORITY >= 0) == 0) EXIT SIMULATE 
! See if time is up. Some nodes still must report. 
              IF(MPI_WTIME()-TIME >= SIM_TIME) THEN 
                 CONTINUE=0 
              ELSE 
                 CONTINUE=1 
              END IF 
! Root receives simulation data and finds which node sent it. 
              IF(MP_NPROCS > 1) THEN 
                 CALL MPI_RECV(DATA, 5, 
MPI_DOUBLE_PRECISION,MPI_ANY_SOURCE, MPI_ANY_TAG, MP_LIBRARY_WORLD, 
STATUS, IERROR) 
                 WRITE(7,*) STATUS(MPI_SOURCE), DATA 
! If time at the root has elapsed, nodes receive signal to stop. 
! Send the reporting node the "go/stop" flag. 
! Mark if a node has been stopped. 
                 CALL MPI_SEND(CONTINUE, 1, MPI_INTEGER, 
STATUS(MPI_SOURCE), 0, MP_LIBRARY_WORLD, IERROR) 
                 IF (CONTINUE == 0) 
MPI_NODE_PRIORITY(STATUS(MPI_SOURCE)+1) =- 
MPI_NODE_PRIORITY(STATUS(MPI_SOURCE)+1)-1 
              END IF 
              IF (CONTINUE == 0) MPI_NODE_PRIORITY(1)=-1 
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           END IF 
        END DO SIMULATE 
        IF(MP_RANK == 0) THEN 
           ENDFILE(UNIT=7);REWIND(UNIT=7) 
! Read the data. Find extremes and averages. 
           MAX_TIME=ZERO;AV_TIME=ZERO;COUNTS=0;V_MIN=HUGE(ONE) 
           DO 
              READ(7,*, END=10) I, DATA 
              COUNTS(I+1)=COUNTS(I+1)+1 
              AV_TIME(I+1)=AV_TIME(I+1)+DATA(5) 
              IF(MAX_TIME(I+1) < DATA(5)) MAX_TIME(I+1)=DATA(5) 
              V_MIN=MIN(V_MIN, DATA(4)) 
           END DO 
10         CONTINUE 
           CLOSE(UNIT=7) 
! Set printing Index to match node numbering. 
           SHOW_IOPT(1)= SHOW_STARTING_INDEX_IS 
           SHOW_IOPT(2)=0 
           SHOW_INTOPT(1)=SHOW_STARTING_INDEX_IS 
           SHOW_INTOPT(2)=0 
           CALL SHOW(MAX_TIME,"Maximum Integration Time, per 
process:",IOPT=SHOW_IOPT) 
           AV_TIME=AV_TIME/MAX(1,COUNTS) 
           CALL SHOW(AV_TIME,"Average Integration Time, per 
process:",IOPT=SHOW_IOPT) 
           CALL SHOW(COUNTS,"Number of 
Integrations",IOPT=SHOW_INTOPT) 
           WRITE(*,"(1x,A,F6.3)") "Minimum value for v(x,t),at 
x=1,t=4:  ",V_MIN 
        END IF 
        MP_NPROCS=MP_SETUP("Final") 
     end program 
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MOLCH 
Solves a system of partial differential equations of the form ut = f(x, t, u, ux, uxx) using the method 
of lines. The solution is represented with cubic Hermite polynomials. 

Required Arguments 
IDO — Flag indicating the state of the computation.   (Input/Output)  

IDO State 

1 Initial entry 

2 Normal reentry 

3 Final call, release workspace 

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this 
value is then used for all but the last call that is made with IDO = 3. 

FCNUT — User-supplied SUBROUTINE to evaluate the function ut. The usage is  
CALL FCNUT (NPDES, X, T, U, UX, UXX, UT), where 
 NPDES – Number of equations.   (Input) 
 X – Space variable, x.   (Input) 
 T – Time variable, t.   (Input) 
 U – Array of length NPDES containing the dependent variable values,  
 u.   (Input) 
 UX – Array of length NPDES containing the first derivatives ux.    
 (Input) 
 UXX – Array of length NPDES containing the second derivative uxx.    
 (Input) 
 UT – Array of length NPDES containing the computed derivatives, ut.    
 (Output) 

The name FCNUT must be declared EXTERNAL in the calling program. 

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The boundary 
conditions accepted by MOLCH are �k uk + �k ux � �k. Note: Users must supply the 
values �k and �k, which determine the values �k. Since the �k can depend on t, values of 
��k are also required. Users must supply these values. The usage is CALL FCNBC 
(NPDES, X, T, ALPHA, BTA, GAMMAP), where 

 NPDES – Number of equations.   (Input) 
X – Space variable, x. This value directs which boundary condition to compute.   
(Input) 
T – Time variable, t.   (Input) 
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ALPHA – Array of length NPDES containing the �k values.   (Output) 
BTA – Array of length NPDES containing the �k values.   (Output) 

GAMMAP – Array of length NPDES containing the values of the derivatives, k
k

d
dt

��
�

�  

(Output) 

 The name FCNBC must be declared EXTERNAL in the calling program. 

T — Independent variable, t. (Input/Output)  
On input, T supplies the initial time, t�. On output, T is set to the value to which the 
integration has been updated. Normally, this new value is TEND. 

TEND — Value of t = tend at which the solution is desired.   (Input) 

XBREAK — Array of length NX containing the break points for the cubic Hermite splines 
used in the x discretization.   (Input)  
The points in the array XBREAK must be strictly increasing. The values XBREAK(1) and 
XBREAK(NX) are the endpoints of the interval. 

Y — Array of size NPDES by NX containing the solution. (Input/Output)  
The array Y contains the solution as Y(k, i) = uk(x, tend) at x = XBREAK(i). On input, Y 
contains the initial values. It MUST satisfy the boundary conditions. On output, Y 
contains the computed solution.  
There is an optional application of MOLCH that uses derivative values, ux(x, t�). The user 
allocates twice the space for Y to pass this information. The optional derivative 
information is input as  

� � � �0Y k,i NX ,ku x t
x

�

�
� �  

 at x = X(i). The array Y contains the optional derivative values as output:  

 � � � �Y k,i NX ,ku x tend
x

�

�
� �  

 at x = X(i). To signal that this information is provided, use an options manager call as 
outlined in Comment 3 and illustrated in Examples 3 and 4. 

Optional Arguments 
NPDES — Number of differential equations.   (Input) 

Default: NPDES = size (Y,1). 

NX — Number of mesh points or lines.   (Input) 
Default: NX = size (Y,2). 
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TOL — Differential equation error tolerance.   (Input)  
An attempt is made to control the local error in such a way that the global relative error 
is proportional to TOL. 
Default: TOL = 100. * machine precision. 

HINIT — Initial step size in the t integration.   (Input)  
This value must be nonnegative. If HINIT is zero, an initial step size of 0.001|tend � t�| 
will be arbitrarily used. The step will be applied in the direction of integration. 
Default: HINIT = 0.0. 

LDY — Leading dimension of Y exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDY = size (Y,1). 

FORTRAN 90 Interface 
Generic: CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y [,…]) 

Specific: The specific interface names are S_MOLCH and D_MOLCH. 

FORTRAN 77 Interface 
Single: CALL MOLCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK,  

                 TOL, HINIT, Y, LDY) 

Double: The double precision name is DMOLCH. 

Example 1 
The normalized linear diffusion PDE, ut = uxx, 0 � x � 1, t > t�, is solved. The initial values are  
t� = 0, u(x, t�) = u� = 1. There is a “zero-flux” boundary condition at x = 1, namely ux(1, t) = 0,  
(t > t�). The boundary value of u(0, t) is abruptly changed from u� to the value u� = 0.1. This 
transition is completed by t = t� = 0.09. 

Due to restrictions in the type of boundary conditions sucessfully processed by MOLCH, it is 
necessary to provide the derivative boundary value function �� at x = 0 and at x = 1. The function 
� at x = 0 makes a smooth transition from the value u� at t = t��to the value u� at t = t�. We 
compute the transition phase for �� by evaluating a cubic interpolating polynomial. For this 
purpose, the function subprogram CSDER, see Chapter 3, Interpolation and Approximation, is 
used. The interpolation is performed as a first step in the user-supplied routine FCNBC. The 
function and derivative values �(t�) = u�, ��(t�) = 0, �(t�) = u�, and ��(t�) = 0, are used as input to 
routine C2HER, to obtain the coefficients evaluated by CSDER. Notice that ��(t) = 0, t > t�. The 
evaluation routine CSDER will not yield this value so logic in the routine FCNBC assigns ��(t) = 0, 
t > t�. 

      USE MOLCH_INT 
      USE UMACH_INT 
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      USE AMACH_INT 
      USE WRRRN_INT 
!                                SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    LDY, NPDES, NX 
      PARAMETER  (NPDES=1, NX=8, LDY=NPDES) 
!                                SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, IDO, J, NOUT, NSTEP 
      REAL       HINIT, PREC, T, TEND, TOL, XBREAK(NX), Y(LDY,NX) 
      CHARACTER  TITLE*19 
!                                SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  FLOAT 
      REAL       FLOAT 
!                                SPECIFICATIONS FOR SUBROUTINES 
!                                SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCNBC, FCNUT 
!                                Set breakpoints and initial 
!                                conditions 
      U0 = 1.0 
      DO 10  I=1, NX 
         XBREAK(I) = FLOAT(I-1)/(NX-1) 
         Y(1,I)    = U0 
   10 CONTINUE 
!                                Set parameters for MOLCH 
      PREC = AMACH(4) 
      TOL   = SQRT(PREC) 
      HINIT = 0.01*TOL 
      T     = 0.0 
      IDO   = 1 
      NSTEP = 10 
      CALL UMACH (2, NOUT) 
      J = 0 
   20 CONTINUE 
      J    = J + 1 
      TEND = FLOAT(J)/FLOAT(NSTEP) 
!                                This puts more output for small 
!                                t values where action is fastest. 
      TEND = TEND**2 
!                                Solve the problem 
      CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, TOL=TOL, HINIT=HINIT) 
      IF (J .LE. NSTEP) THEN 
!                                Print results 
         WRITE (TITLE,’(A,F4.2)’) ’Solution at T =’, T 
         CALL WRRRN (TITLE, Y) 
!                                Final call to release workspace 
         IF (J .EQ. NSTEP) IDO = 3 
         GO TO 20 
      END IF 
      END 
      SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT) 
!                                SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NPDES 
      REAL       X, T, U(*), UX(*), UXX(*), UT(*) 
! 
!                                Define the PDE 
      UT(1) = UXX(1) 
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      RETURN 
      END 
 
      SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAMP) 
      USE CSDER_INT 
      USE C2HER_INT 
      USE WRRRN_INT 
!                                SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NPDES 
      REAL       X, T, ALPHA(*), BTA(*), GAMP(*) 
!                                SPECIFICATIONS FOR PARAMETERS 
      REAL       TDELTA, U0, U1 
      PARAMETER  (TDELTA=0.09, U0=1.0, U1=0.1) 
!                                SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IWK(2), NDATA 
      REAL       DFDATA(2), FDATA(2), XDATA(2) 
!                                SPECIFICATIONS FOR SAVE VARIABLES 
      REAL       BREAK(2), CSCOEF(4,2) 
      LOGICAL    FIRST 
      SAVE       BREAK, CSCOEF, FIRST 
!                                SPECIFICATIONS FOR SUBROUTINES 
      DATA FIRST/.TRUE./ 
! 
      IF (FIRST) GO TO 20 
   10 CONTINUE 
! 
! 
!                                Define the boundary conditions 
      IF (X .EQ. 0.0) THEN 
!                                These are for x=0. 
         ALPHA(1) = 1.0 
         BTA(1)  = 0.0 
         GAMP(1)  = 0. 
!                                If in the boundary layer, 
!                                compute nonzero gamma prime. 
         IF (T .LE. TDELTA) GAMP(1) = CSDER(1,T,BREAK,CSCOEF) 
      ELSE 
!                                These are for x=1. 
         ALPHA(1) = 0.0 
         BTA(1)  = 1.0 
         GAMP(1)  = 0.0 
      END IF 
      RETURN 
   20 CONTINUE 
!                                Compute the boundary layer data. 
      NDATA     = 2 
      XDATA(1)  = 0.0 
      XDATA(2)  = TDELTA 
      FDATA(1)  = U0 
      FDATA(2)  = U1 
      DFDATA(1) = 0.0 
      DFDATA(2) = 0.0 
!                                Do Hermite cubic interpolation. 
      CALL C2HER (NDATA, XDATA, FDATA, DFDATA, BREAK, CSCOEF, IWK) 
      FIRST = .FALSE. 
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      GO TO 10 
      END 

Output 
                    Solution at T =0.01 
    1       2       3       4       5       6       7       8 
0.969   0.997   1.000   1.000   1.000   1.000   1.000   1.000 
 
                    Solution at T =0.04 
    1       2       3       4       5       6       7       8 
0.625   0.871   0.963   0.991   0.998   1.000   1.000   1.000 
 
                    Solution at T =0.09 
     1        2        3        4        5        6        7        8 
0.0998   0.4603   0.7171   0.8673   0.9437   0.9781   0.9917   0.9951 
 
                    Solution at T =0.16 
     1        2        3        4        5        6        7        8 
0.0994   0.3127   0.5069   0.6680   0.7893   0.8708   0.9168   0.9316 
 
                    Solution at T =0.25 
     1        2        3        4        5        6        7        8 
0.0994   0.2564   0.4043   0.5352   0.6428   0.7223   0.7709   0.7873 
 
                    Solution at T =0.36 
     1        2        3        4        5        6        7        8 
0.0994   0.2172   0.3289   0.4289   0.5123   0.5749   0.6137   0.6268 
 
                    Solution at T =0.49 
     1        2        3        4        5        6        7        8 
0.0994   0.1847   0.2657   0.3383   0.3989   0.4445   0.4728   0.4824 
 
                    Solution at T =0.64 
     1        2        3        4        5        6        7        8 
0.0994   0.1583   0.2143   0.2644   0.3063   0.3379   0.3574   0.3641 
 
                    Solution at T =0.81 
     1        2        3        4        5        6        7        8 
0.0994   0.1382   0.1750   0.2080   0.2356   0.2563   0.2692   0.2736 
 
                    Solution at T =1.00 
     1        2        3        4        5        6        7        8 
0.0994   0.1237   0.1468   0.1674   0.1847   0.1977   0.2058   0.2085 

Comments 
1. Workspace may be explicitly provided, if desired, by use of M2LCH/DM2LCH. The 

reference is: 

CALL M2LCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK, TOL, 
HINIT, Y, LDY, WK, IWK) 

The additional arguments are as follows: 
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WK — Work array of length 2NX * NPDES(12 * NPDES� + 21 * NPDES + 9). 
WK should not be changed between calls to M2LCH. 

IWK — Work array of length 2NX * NPDES. IWK should not be changed between 
calls to M2LCH. 

2. Informational errors 

Type Code 
   4    1 After some initial success, the integration was halted by repeated 

error test failures. 
   4    2 On the next step, X + H will equal X. Either TOL is too small or the 

problem is stiff. 
   4    3 After some initial success, the integration was halted by a test on 

TOL. 
   4    4 Integration was halted after failing to pass the error test even after 

reducing the step size by a factor of 1.0E + 10. TOL may be too 
small. 

   4    5 Integration was halted after failing to achieve corrector convergence 
even after reducing the step size by a factor of 1.0E + 10. TOL may 
be too small. 

3. Optional usage with Chapter 10 Option Manager 

11 This option consists of the parameter PARAM, an array with 50 components. See 
IVPAG (page 854) for a more complete documentation of the contents of this 
array. To reset this option, use the subprogram SUMAG for single precision, and 
DUMAG (see Chapter 11, Utilities) for double precision. The entry PARAM(1) is 
assigned the initial step, HINIT. The entries PARAM(15) and PARAM(16) are 
assigned the values equal to the number of lower and upper diagonals that will 
occur in the Newton method for solving the BDF corrector equations. The value 
PARAM(17) = 1 is used to signal that the x derivatives of the initial data are 
provided in the the array Y. The output values PARAM(31)-PARAM(36) , showing 
technical data about the ODE integration, are available with another option 
manager subroutine call. This call is made after the storage for MOLCH is 
released. The default values for the first 20 entries of PARAM are (0, 0, amach(2), 
500., 0., 5., 0, 0, 1., 3., 1., 2., 2., 1., amach(6), amach(6), 0, sqrt(amach(4)), 1., 
0.). Entries 21�50 are defaulted to amach(6). 

Description 
Let M = NPDES, N = NX and xi = XBREAK(I). The routine MOLCH uses the method of lines to 
solve the partial differential equation system 

2 2
1 1

1 2 2, , , , , , ,k M M
k M

u u u u u
f x t u u

t x x x x
� � � � �

� � � � �

� �
� � �

� �
� � �  

with the initial conditions  
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uk = uk(x, t)  at t = t� 

and the boundary conditions 

1( ) at  and at  k
k k k k N

u
u t x x x x

x
�

� � �
�

� � � �  

for k = 1, �, M. 

Cubic Hermite polynomials are used in the x variable approximation so that the trial solution is 
expanded in the series 

� � � � � � � � � �� �, ,
1

ˆ ,
N

k i k i i k i
i

bu x t a t x t x� �
�

���  

where 	i(x) and 
i(x) are the standard basis functions for the cubic Hermite polynomials with 
the knots x� < x� < � < xN. These are piecewise cubic polynomials with continuous first 
derivatives. At the breakpoints, they satisfy 

� � � �

� � � �

0

0

i l il i l

i i
l l il

x x
d d

x x
dx dx

� � �

� �
�

� �

� �

 

According to the collocation method, the coefficients of the approximation are obtained so that 
the trial solution satisfies the differential equation at the two Gaussian points in each 
subinterval, 

� �

� �

2 1 1

2 1

3 3
6

3 3
6

j j j j

j j j j

p x x x

p x x x

� �

�

�

� � �

�

� � �

 

for j = 1, �, N. The collocation approximation to the differential equation is 

� � � �

� � � � � � � � � � � �� �

, ,

1

1 1ˆ ˆ ˆ ˆ, , , , , , , ,

N
i k i k

i j i j
i

k j j M j j M jxx xx

da db
p p

dt dt

f p t u p u p u p u p

� �
�

� ��

� � �

 

for k = 1, �, M and j = 1, �, 2(N � 1). 

This is a system of 2M(N � 1) ordinary differential equations in 2M N unknown coefficient 
functions, ai,k and bi,k. This system can be written in the matrix�vector form as A dc/dt = F (t, y) 
with c(t�) = c� where c is a vector of coefficients of length 2M N and c� holds the initial values 
of the coefficients. The last 2M equations are obtained by differentiating the boundary 
conditions 

k k k
k k

da db d
dt dt dt

�
� �� �  

for k = 1, �, M. 
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The initial conditions uk(x, t�) must satisfy the boundary conditions. Also, the �k(t) must be 
continuous and have a smooth derivative, or the boundary conditions will not be properly 
imposed for t > t�. 

If �k = �k = 0, it is assumed that no boundary condition is desired for the k-th unknown at the 
left endpoint. A similar comment holds for the right endpoint. Thus, collocation is done at the 
endpoint. This is generally a useful feature for systems of first-order partial differential 
equations. 

If the number of partial differential equations is M = 1 and the number of breakpoints is N = 4, 
then 

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

1 1

1 1 1 1 2 1 2 1

1 2 1 2 2 2 2 2

3 3 3 3 4 3 4 3

3 4 3 4 4 4 4 4

5 5 5 5 6 5 6 5

5 6 5 6 6 6 6 6

4 4

p p p p
p p p p

p p p p
A

p p p p
p p p p
p p p p

� �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� �

� �
� �
� �
� �
� �
� ��
� �
� �
� �
� �
� �
� �� �

The vector c is 

c = [a�, b�, a�, b�, a�, b�, a�, b�]T 

and the right-side F is 

� � � � � � � � � � � � � � � �1 1 2 3 4 5 6 4, , , , , , ,
T

F x f p f p f p f p f p f p x� �� �� � �� �  

If M > 1, then each entry in the above matrix is replaced by an M � M diagonal matrix. The 
element �� is replaced by diag(����, �, ���	). The elements �N, �� and �N are handled in the 
same manner. The 	i(pj) and 
i(pj) elements are replaced by 	i(pj)IM and 
i(pj)IM where IM is 
the identity matrix of order M. See Madsen and Sincovec (1979) for further details about 
discretization errors and Jacobian matrix structure. 

The input/output array Y contains the values of the ak,i. The initial values of the bk,i are obtained 
by using the IMSL cubic spline routine CSINT (see Chapter 3, Interpolation and Approximation) 
to construct functions  

� �0ˆ ,ku x t  

such that  

� �0ˆ ,k i kiu x t a�  

The IMSL routine CSDER, see Chapter 3, Interpolation and Approximation, is used to 
approximate the values  
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� �0 ,

ˆ
,k

i k i
dU x t b
dx

�  

There is an optional usage of MOLCH that allows the user to provide the initial values of bk,i. 

The order of matrix A is 2M N and its maximum bandwidth is 6M � 1. The band structure of the 
Jacobian of F with respect to c is the same as the band structure of A. This system is solved 
using a modified version of IVPAG, page 854. Some of the linear solvers were removed. 
Numerical Jacobians are used exclusively. The algorithm is unchanged. Gear’s BDF method is 
used as the default because the system is typically stiff. 

We now present four examples of PDEs that illustrate how users can interface their problems 
with IMSL PDE solving software. The examples are small and not indicative of the 
complexities that most practitioners will face in their applications. A set of seven sample 
application problems, some of them with more than one equation, is given in Sincovec and 
Madsen (1975). Two further examples are given in Madsen and Sincovec (1979). 

Additonal Examples 

Example 2 
In this example, using MOLCH, we solve the linear normalized diffusion PDE ut = uxx but with an 
optional usage that provides values of the derivatives, ux, of the initial data. Due to errors in the 
numerical derivatives computed by spline interpolation, more precise derivative values are 
required when the initial data is u(x, 0) = 1 + cos[(2n � 1)�x], n > 1. The boundary conditions 
are “zero flux” conditions ux(0, t) = ux(1, t) = 0 for t > 0. Note that the initial data is compatible 
with these end conditions since the derivative function  

� �
� �

� � � �
,0

,0 2 1 sin 2 1x

du x
u x n n x

dx
� �� � � � �� �� �  

vanishes at x = 0 and x = 1. 

The example illustrates the use of the IMSL options manager subprograms SUMAG or, for double 
precision, DUMAG, see Chapter 11, Utilities, to reset the array PARAM used for control of the 
specialized version of IVPAG that integrates the system of ODEs. This optional usage signals 
that the derivative of the initial data is passed by the user. The values u(x, tend) and ux(x, tend) 
are output at the breakpoints with the optional usage. 

      USE IMSL_LIBRARIES 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    LDY, NPDES, NX 
      PARAMETER  (NPDES=1, NX=10, LDY=NPDES) 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    ICHAP, IGET, IPUT, KPARAM 
      PARAMETER  (ICHAP=5, IGET=1, IPUT=2, KPARAM=11) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, IACT, IDO, IOPT(1), J, JGO, N, NOUT, NSTEP 
      REAL       ARG1, HINIT, PREC, PARAM(50), PI, T, TEND, TOL, & 
                 XBREAK(NX), Y(LDY,2*NX) 
      CHARACTER  TITLE*36 
!                                 SPECIFICATIONS FOR INTRINSICS 
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      INTRINSIC  COS, FLOAT, SIN, SQRT 
      REAL       COS, FLOAT, SIN, SQRT 
!                                 SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCNBC, FCNUT 
!                                 Set breakpoints and initial 
!                                 conditions. 
      N       = 5 
      PI      = CONST(’pi’) 
      IOPT(1) = KPARAM 
      DO 10  I=1, NX 
         XBREAK(I) = FLOAT(I-1)/(NX-1) 
         ARG1       = (2.*N-1)*PI 
!                                 Set function values. 
         Y(1,I) = 1. + COS(ARG1*XBREAK(I)) 
!                                 Set first derivative values. 
         Y(1,I+NX) = -ARG1*SIN(ARG1*XBREAK(I)) 
   10 CONTINUE 
!                                 Set parameters for MOLCH 
      PREC = AMACH(4) 
      TOL   = SQRT(PREC) 
      HINIT = 0.01*TOL 
      T     = 0.0 
      IDO   = 1 
      NSTEP = 10 
      CALL UMACH (2, NOUT) 
      J = 0 
!                                  Get and reset the PARAM array 
!                                  so that user-provided derivatives 
!                                  of the initial data are used. 
      JGO  = 1 
      IACT = IGET 
      GO TO 70 
   20 CONTINUE 
!                                  This flag signals that 
!                                  derivatives are passed. 
      PARAM(17) = 1. 
      JGO       = 2 
      IACT      = IPUT 
      GO TO 70 
   30 CONTINUE 
!                                  Look at output at steps 
!                                  of 0.001. 
      TEND = 0. 
   40 CONTINUE 
      J    = J + 1 
      TEND = TEND + 0.001 
!                                 Solve the problem 
      CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND,  XBREAK, Y, NPDES=NPDES, &   
                  NX=NX, HINIT=HINIT, TOL=TOL) 
      IF (J .LE. NSTEP) THEN 
!                                 Print results 
         WRITE (TITLE,’(A,F5.3)’) ’Solution and derivatives at T =’, T 
         CALL WRRRN (TITLE, Y) 
!                                 Final call to release workspace 
         IF (J .EQ. NSTEP) IDO = 3 
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         GO TO 40 
      END IF 
!                                 Show, for example, the maximum 
!                                 step size used. 
      JGO  = 3 
      IACT = IGET 
      GO TO 70 
   50 CONTINUE 
      WRITE (NOUT,*) ’ Maximum step size used is:  ’, PARAM(33) 
!                                 Reset option to defaults 
      JGO     = 4 
      IAC     = IPUT 
      IOPT(1) = -IOPT(1) 
      GO TO 70 
   60 CONTINUE 
      RETURN 
!                                 Internal routine to work options 
   70 CONTINUE 
      CALL SUMAG (’math’, ICHAP, IACT, IOPT, PARAM, numopt=1) 
      GO TO (20, 30, 50, 60), JGO 
      END 
      SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NPDES 
      REAL       X, T, U(*), UX(*), UXX(*), UT(*) 
! 
!                                 Define the PDE 
      UT(1) = UXX(1) 
      RETURN 
      END 
      SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAMP) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NPDES 
      REAL       X, T, ALPHA(*), BTA(*), GAMP(*) 
! 
      ALPHA(1) = 0.0 
      BTA(1)  = 1.0 
      GAMP(1)  = 0.0 
      RETURN 
      END 
 

Output 
                Solution and derivatives at T =0.001 
     1      2       3      4       5      6       7      8       9     10 
 1.483  0.517   1.483  0.517   1.483  0.517   1.483  0.517   1.483  0.517 
 
    11     12      13     14      15     16      17     18      19     20 
 0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000 
 
                Solution and derivatives at T =0.002 
     1      2       3      4       5      6       7      8       9     10 
 1.233  0.767   1.233  0.767   1.233  0.767   1.233  0.767   1.233  0.767 
 
    11     12      13     14      15     16      17     18      19     20 
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 0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000 
 
                Solution and derivatives at T =0.003 
     1      2       3      4       5      6       7      8       9     10 
 1.113  0.887   1.113  0.887   1.113  0.887   1.113  0.887   1.113  0.887 
 
    11     12      13     14      15     16      17     18      19     20 
 0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000 
 
                Solution and derivatives at T =0.004 
     1      2       3      4       5      6       7      8       9     10 
 1.054  0.946   1.054  0.946   1.054  0.946   1.054  0.946   1.054  0.946 
 
    11     12      13     14      15     16      17     18      19     20 
 0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000 
 
                Solution and derivatives at T =0.005 
     1      2       3      4       5      6       7      8       9     10 
 1.026  0.974   1.026  0.974   1.026  0.974   1.026  0.974   1.026  0.974 
 
    11     12      13     14      15     16      17     18      19     20 
 0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000 
 
                Solution and derivatives at T =0.006 
     1      2       3      4       5      6       7      8       9     10 
 1.012  0.988   1.012  0.988   1.012  0.988   1.012  0.988   1.012  0.988 
 
    11     12      13     14      15     16      17     18      19     20 
 0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000 
 
                Solution and derivatives at T =0.007 
     1      2       3      4       5      6       7      8       9     10 
 1.006  0.994   1.006  0.994   1.006  0.994   1.006  0.994   1.006  0.994 
 
    11     12      13     14      15     16      17     18      19     20 
 0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000 
 
                Solution and derivatives at T =0.008 
     1      2       3      4       5      6       7      8       9     10 
 1.003  0.997   1.003  0.997   1.003  0.997   1.003  0.997   1.003  0.997 
 
    11     12      13     14      15     16      17     18      19     20 
 0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000 
 
 
                Solution and derivatives at T =0.009 
     1      2       3      4       5      6       7      8       9     10 
 1.001  0.999   1.001  0.999   1.001  0.999   1.001  0.999   1.001  0.999 
 
    11     12      13     14      15     16      17     18      19     20 
 0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000 
 
                Solution and derivatives at T =0.010 
     1      2       3      4       5      6       7      8       9     10 
 1.001  0.999   1.001  0.999   1.001  0.999   1.001  0.999   1.001  0.999 
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    11     12      13     14      15     16      17     18      19     20 
 0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000   0.000  0.000 
Maximum step size used is:      1.00000E-02 

Example 3 
In this example, we consider the linear normalized hyperbolic PDE, utt = uxx, the “vibrating 
string” equation. This naturally leads to a system of first order PDEs. Define a new dependent 
variable ut = v. Then, vt = uxx is the second equation in the system. We take as initial data u(x, 0) 
= sin(�x) and ut(x, 0) = v(x, 0) = 0. The ends of the string are fixed so u(0, t) = u(1, t) = v(0, t) = 
v(1, t) = 0. The exact solution to this problem is u(x, t) = sin(�x) cos(�t). Residuals are 
computed at the output values of t for 0 < t � 2. Output is obtained at 200 steps in increments of 
0.01. 

Even though the sample code MOLCH gives satisfactory results for this PDE, users should be 
aware that for nonlinear problems, “shocks” can develop in the solution. The appearance of 
shocks may cause the code to fail in unpredictable ways. See Courant and Hilbert (1962), pages 
488-490, for an introductory discussion of shocks in hyperbolic systems. 

      USE IMSL_LIBRARIES 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    LDY, NPDES, NX 
      PARAMETER  (NPDES=2, NX=10, LDY=NPDES) 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    ICHAP, IGET, IPUT, KPARAM 
      PARAMETER  (ICHAP=5, IGET=1, IPUT=2, KPARAM=11) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, IACT, IDO, IOPT(1), J, JGO, NOUT, NSTEP 
      REAL       HINIT, PREC, PARAM(50), PI, T, TEND, TOL, XBREAK(NX), & 
                Y(LDY,2*NX), ERROR(NX) 
!                                 SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  COS, FLOAT, SIN, SQRT 
      REAL       COS, FLOAT, SIN, SQRT 
!                                 SPECIFICATIONS FOR SUBROUTINES 
!                                 SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCNBC, FCNUT 
!                                 Set breakpoints and initial 
!                                 conditions. 
      PI      = CONST(’pi’) 
      IOPT(1) = KPARAM 
      DO 10  I=1, NX 
         XBREAK(I) = FLOAT(I-1)/(NX-1) 
!                                 Set function values. 
         Y(1,I) = SIN(PI*XBREAK(I)) 
         Y(2,I) = 0. 
!                                 Set first derivative values. 
         Y(1,I+NX) = PI*COS(PI*XBREAK(I)) 
         Y(2,I+NX) = 0.0 
   10 CONTINUE 
!                                 Set parameters for MOLCH 
      PREC = AMACH(4) 
      TOL   = 0.1*SQRT(PREC) 
      HINIT = 0.01*TOL 
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      T     = 0.0 
      IDO   = 1 
      NSTEP = 200 
      CALL UMACH (2, NOUT) 
      J = 0 
!                                  Get and reset the PARAM array 
!                                  so that user-provided derivatives 
!                                  of the initial data are used. 
      JGO  = 1 
      IACT = IGET 
      GO TO 90 
   20 CONTINUE 
!                                  This flag signals that 
!                                  derivatives are passed. 
      PARAM(17) = 1. 
      JGO       = 2 
      IACT      = IPUT 
      GO TO 90 
   30 CONTINUE 
!                                  Look at output at steps 
!                                  of 0.01 and compute errors. 
      ERRU = 0. 
      TEND = 0. 
   40 CONTINUE 
      J    = J + 1 
      TEND = TEND + 0.01 
!                                 Solve the problem 
      CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, NX=NX, & 
                  HINIT=HINIT, TOL=TOL) 
      DO 50  I=1, NX 
         ERROR(I) = Y(1,I) - SIN(PI*XBREAK(I))*COS(PI*TEND) 
   50 CONTINUE 
      IF (J .LE. NSTEP) THEN 
         DO 60  I=1, NX 
            ERRU = AMAX1(ERRU,ABS(ERROR(I))) 
   60    CONTINUE 
!                                 Final call to release workspace 
         IF (J .EQ. NSTEP) IDO = 3 
         GO TO 40 
      END IF 
!                                 Show, for example, the maximum 
!                                 step size used. 
      JGO  = 3 
      IACT = IGET 
      GO TO 90 
   70 CONTINUE 
      WRITE (NOUT,*) ’ Maximum error in u(x,t) divided by TOL: ’, & 
                   ERRU/TOL 
      WRITE (NOUT,*) ’ Maximum step size used is:  ’, PARAM(33) 
!                                 Reset option to defaults 
      JGO     = 4 
      IACT    = IPUT 
      IOPT(1) = -IOPT(1) 
      GO TO 90 
   80 CONTINUE 
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      RETURN 
!                                 Internal routine to work options 
   90 CONTINUE 
      CALL SUMAG (’math’, ICHAP, IACT, IOPT, PARAM) 
      GO TO (20, 30, 70, 80), JGO 
      END 
      SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NPDES 
      REAL       X, T, U(*), UX(*), UXX(*), UT(*) 
! 
!                                 Define the PDE 
      UT(1) = U(2) 
      UT(2) = UXX(1) 
      RETURN 
      END 
      SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAMP) 
!                                 SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    NPDES 
      REAL       X, T, ALPHA(*), BTA(*), GAMP(*) 
! 
      ALPHA(1) = 1.0 
      BTA(1)  = 0.0 
      GAMP(1)  = 0.0 
      ALPHA(2) = 1.0 
      BTA(2)  = 0.0 
      GAMP(2)  = 0.0 
      RETURN 
      END 

Output 
Maximum error in u(x,t) divided by TOL:     1.28094 
Maximum step size used is:      9.99999E-02 

FPS2H  
Solves Poisson’s or Helmholtz’s equation on a two-dimensional rectangle using a fast Poisson 
solver based on the HODIE finite-difference scheme on a uniform mesh. 

Required Arguments 
PRHS — User-supplied FUNCTION to evaluate the right side of the partial differential 

equation. The form is PRHS(X, Y), where 

 X – X-coordinate value.    (Input) 
Y – Y-coordinate value.    (Input) 
PRHS – Value of the right side at (X, Y).    (Output) 

 PRHS must be declared EXTERNAL in the calling program. 
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BRHS — User-supplied FUNCTION to evaluate the right side of the boundary conditions. The 
form is BRHS(ISIDE, X, Y), where 

ISIDE – Side number.    (Input)  
See IBCTY below for the definition of the side numbers. 
X – X-coordinate value.    (Input) 
Y – Y-coordinate value.    (Input) 
BRHS – Value of the right side of the boundary condition at (X, Y).    (Output) 
BRHS must be declared EXTERNAL in the calling program. 

COEFU — Value of the coefficient of U in the differential equation.    (Input) 

NX — Number of grid lines in the X-direction.    (Input)  
NX must be at least 4. See Comment 2 for further restrictions on NX. 

NY — Number of grid lines in the Y-direction.    (Input)  
NY must be at least 4. See Comment 2 for further restrictions on NY. 

AX — The value of X along the left side of the domain.    (Input) 

BX — The value of X along the right side of the domain.    (Input) 

AY — The value of Y along the bottom of the domain.    (Input) 

BY — The value of Y along the top of the domain.    (Input) 

IBCTY — Array of size 4 indicating the type of boundary condition on each side of the 
domain or that the solution is periodic.    (Input)  
The sides are numbered 1 to 4 as follows:  

Side          Location 

1 - Right       (X = BX) 

2 - Bottom     (Y = AY) 

3 - Left        (X = AX) 

4 - Top        (Y = BY) 

There are three boundary condition types.  

IBCTY Boundary Condition 

1  Value of U is given. (Dirichlet) 
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    2  Value of dU/dX is given (sides 1 and/or 3). (Neumann) Value of dU/dY is 
given (sides 2 and/or 4). 

3  Periodic. 

U — Array of size NX by NY containing the solution at the grid points.    (Output) 

Optional Arguments 
IORDER — Order of accuracy of the finite-difference approximation.    (Input)  

It can be either 2 or 4. Usually, IORDER = 4 is used. 
Default: IORDER = 4. 

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling 
program.    (Input) 
Default: LDU = size (U,1). 

FORTRAN 90 Interface 
Generic: CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY,  

     IBCTY, U [,…]) 

Specific:  The specific interface names are S_FPS2H and D_FPS2H. 

FORTRAN 77 Interface 
Single: CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY,  

     IBCTY, IORDER, U, LDU) 

Double: The double precision name is DFPS2H. 

Example 
In this example, the equation 

� �
2 2

2 3
2 2 3 2sin 2 16 x yu u u x y e

x y
� �

� �

�

� � � � � �  

with the boundary conditions 
u/
y = 2 cos(x + 2y) + 3 exp(2x + 3y) on the bottom side and  
u = sin(x + 2y) + exp(2x + 3y) on the other three sides. The domain is the rectangle[0, 1/4] � [0, 
1/2]. The output of FPS2H is a 17 � 33 table of U values. The quadratic interpolation routine 
QD2VL is used to print a table of values. 

      USE FPS2H_INT 
      USE QD2VL_INT 
      USE UMACH_INT 
      INTEGER    NCVAL, NX, NXTABL, NY, NYTABL 
      PARAMETER  (NCVAL=11, NX=17, NXTABL=5, NY=33, NYTABL=5) 
! 
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      INTEGER    I, IBCTY(4), IORDER, J, NOUT 
      REAL       AX, AY, BRHS, BX, BY, COEFU, ERROR, FLOAT, PRHS, & 
                TRUE, U(NX,NY), UTABL, X, XDATA(NX), Y, YDATA(NY) 
      INTRINSIC  FLOAT 
      EXTERNAL   BRHS, PRHS 
!                                 Set rectangle size 
      AX = 0.0 
      BX = 0.25 
      AY = 0.0 
      BY = 0.50 
!                                 Set boundary condition types 
      IBCTY(1) = 1 
      IBCTY(2) = 2 
      IBCTY(3) = 1 
      IBCTY(4) = 1 
!                                 Coefficient of U 
      COEFU = 3.0 
!                                 Order of the method 
      IORDER = 4 
!                                 Solve the PDE 
      CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY, U) 
!                                 Setup for quadratic interpolation 
      DO 10  I=1, NX 
         XDATA(I) = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NX-1) 
   10 CONTINUE 
      DO 20  J=1, NY 
         YDATA(J) = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NY-1) 
   20 CONTINUE 
!                                 Print the solution 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,’(8X,A,11X,A,11X,A,8X,A)’) ’X’, ’Y’, ’U’, ’Error’ 
      DO 40  J=1, NYTABL 
         DO 30  I=1, NXTABL 
            X     = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NXTABL-1) 
            Y     = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NYTABL-1) 
            UTABL = QD2VL(X,Y,XDATA,YDATA,U) 
            TRUE  = SIN(X+2.*Y) + EXP(2.*X+3.*Y) 
            ERROR = TRUE - UTABL 
            WRITE (NOUT,’(4F12.4)’) X, Y, UTABL, ERROR 
   30 CONTINUE 
   40 CONTINUE 
      END 
! 
      REAL FUNCTION PRHS (X, Y) 
      REAL       X, Y 
! 
      REAL       EXP, SIN 
      INTRINSIC  EXP, SIN 
!                                 Define right side of the PDE 
      PRHS = -2.*SIN(X+2.*Y) + 16.*EXP(2.*X+3.*Y) 
      RETURN 
      END 
! 
      REAL FUNCTION BRHS (ISIDE, X, Y) 
      INTEGER    ISIDE 



 

 
 

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 965 

 

 

 

      REAL       X, Y 
! 
      REAL       COS, EXP, SIN 
      INTRINSIC  COS, EXP, SIN 
!                                 Define the boundary conditions 
      IF (ISIDE .EQ. 2) THEN 
         BRHS = 2.*COS(X+2.*Y) + 3.*EXP(2.*X+3.*Y) 
      ELSE 
         BRHS = SIN(X+2.*Y) + EXP(2.*X+3.*Y) 
      END IF 
      RETURN 
      END 

Output 
    X           Y           U        Error 
 0.0000      0.0000      1.0000      0.0000 
 0.0625      0.0000      1.1956      0.0000 
 0.1250      0.0000      1.4087      0.0000 
 0.1875      0.0000      1.6414      0.0000 
 0.2500      0.0000      1.8961      0.0000 
 0.0000      0.1250      1.7024      0.0000 
 0.0625      0.1250      1.9562      0.0000 
 0.1250      0.1250      2.2345      0.0000 
 0.1875      0.1250      2.5407      0.0000 
 0.2500      0.1250      2.8783      0.0000 
 0.0000      0.2500      2.5964      0.0000 
 0.0625      0.2500      2.9322      0.0000 
 0.1250      0.2500      3.3034      0.0000 
 0.1875      0.2500      3.7148      0.0000 
 0.2500      0.2500      4.1720      0.0000 
 0.0000      0.3750      3.7619      0.0000 
 0.0625      0.3750      4.2163      0.0000 
 0.1250      0.3750      4.7226      0.0000 
 0.1875      0.3750      5.2878      0.0000 
 0.2500      0.3750      5.9199      0.0000 
 0.0000      0.5000      5.3232      0.0000 
 0.0625      0.5000      5.9520      0.0000 
 0.1250      0.5000      6.6569      0.0000 
 0.1875      0.5000      7.4483      0.0000 
 0.2500      0.5000      8.3380      0.0000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2S2H/DF2S2H. The 

reference is: 
CALL F2S2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY, 
IORDER, U, LDU, UWORK, WORK) 

The additional arguments are as follows: 

UWORK — Work array of size NX + 2 by NY + 2. If the actual dimensions of U are 
large enough, then U and UWORK can be the same array. 
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WORK — Work array of length (NX + 1)(NY + 1)(IORDER � 2)/2 + 6(NX + 
NY) + NX/2 + 16. 

2. The grid spacing is the distance between the (uniformly spaced) grid lines. It is given 
by the formulas HX = (BX � AX)/(NX � 1) and HY = (BY � AY)/(NY � 1). The grid 
spacings in the X and Y directions must be the same, i.e., NX and NY must be such that 
HX equals HY. Also, as noted above, NX and NY must both be at least 4. To increase the 
speed of the fast Fourier transform, NX � 1 should be the product of small primes. Good 
choices are 17, 33, and 65. 

3. If �COEFU is nearly equal to an eigenvalue of the Laplacian with homogeneous 
boundary conditions, then the computed solution might have large errors. 

Description 
Let c = COEFU, ax = AX, bx = BX, ay = AY, by = BY, nx = NX and ny = NY. 

FPS2H is based on the code HFFT2D by Boisvert (1984). It solves the equation 
2 2

2 2

u u cu p
x y

� �

� �
� � �  

on the rectangular domain (ax, bx) � (ay, by) with a user-specified combination of Dirichlet 
(solution prescribed), Neumann (first-derivative prescribed), or periodic boundary conditions. 
The sides are numbered clockwise, starting with the right side. 

by

y

Side 4

Side 2

Side 3 Side 1

a y
xa bx

x
 

When c = 0 and only Neumann or periodic boundary conditions are prescribed, then any 
constant may be added to the solution to obtain another solution to the problem. In this case, the 
solution of minimum �-norm is returned. 
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The solution is computed using either a second-or fourth-order accurate finite-difference 
approximation of the continuous equation. The resulting system of linear algebraic equations is 
solved using fast Fourier transform techniques. The algorithm relies upon the fact that nx � 1 is 
highly composite (the product of small primes). For details of the algorithm, see Boisvert 
(1984). If nx � 1 is highly composite then the execution time of FPS2H is proportional to nxny 
log��nx. If evaluations of p(x, y) are inexpensive, then the difference in running time between 
IORDER = 2 and IORDER = 4 is small. 

FPS3H 
Solves Poisson’s or Helmholtz’s equation on a three-dimensional box using a fast Poisson solver 
based on the HODIE finite-difference scheme on a uniform mesh. 

Required Arguments 
PRHS — User-supplied FUNCTION to evaluate the right side of the partial differential 

equation. The form is PRHS(X, Y, Z), where 

 X – The x-coordinate value.    (Input) 
Y – The y-coordinate value.    (Input) 
Z – The z-coordinate value.    (Input) 
PRHS – Value of the right side at (X, Y, Z).    (Output) 

 PRHS must be declared EXTERNAL in the calling program. 

BRHS — User-supplied FUNCTION to evaluate the right side of the boundary conditions. The 
form is BRHS(ISIDE, X, Y, Z), where 

 ISIDE – Side number.    (Input)  
See IBCTY for the definition of the side numbers. 
X – The x-coordinate value.    (Input) 
Y – The y-coordinate value.    (Input) 
Z – The z-coordinate value.    (Input) 
BRHS – Value of the right side of the boundary condition at (X, Y, Z).    (Output) 

 BRHS must be declared EXTERNAL in the calling program. 

COEFU — Value of the coefficient of U in the differential equation.    (Input) 

NX — Number of grid lines in the x-direction.    (Input)  
NX must be at least 4. See Comment 2 for further restrictions on NX. 

NY — Number of grid lines in the y-direction.    (Input)  
NY must be at least 4. See Comment 2 for further restrictions on NY. 

NZ — Number of grid lines in the y-direction.    (Input)  
NZ must be at least 4. See Comment 2 for further restrictions on NZ. 
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AX — Value of X along the left side of the domain.    (Input) 

BX — Value of X along the right side of the domain.    (Input) 

AY — Value of Y along the bottom of the domain.    (Input) 

BY — Value of Y along the top of the domain.    (Input) 

AZ — Value of Z along the front of the domain.    (Input) 

BZ — Value of Z along the back of the domain.    (Input) 

IBCTY — Array of size 6 indicating the type of boundary condition on each face of the 
domain or that the solution is periodic.    (Input)  
The sides are numbers 1 to 6 as follows:  

Side          Location 

1 - Right       (X = BX) 

2 - Bottom     (Y = AY) 

3 - Left        (X = AX) 

4 - Top        (Y = BY) 

5 - Front       (Z = BZ) 

6 - Back       (Z = AZ) 

There are three boundary condition types.  

IBCTY Boundary Condition 

1  Value of U is given. (Dirichlet) 

2  Value of dU/dX is given (sides 1 and/or 3). (Neumann) Value of dU/dY is 
 given (sides 2 and/or 4). Value of dU/dZ is given (sides 5 and/or 6). 

3  Periodic. 

U — Array of size NX by NY by NZ containing the solution at the grid points.   (Output) 
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Optional Arguments 
IORDER — Order of accuracy of the finite-difference approximation.   (Input)  

It can be either 2 or 4. Usually, IORDER = 4 is used. 
Default: IORDER = 4. 

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDU = size (U,1). 

MDU — Middle dimension of U exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: MDU = size (U,2). 

FORTRAN 90 Interface 
Generic: CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY,  

     AZ, BZ, IBCTY, U [,…]) 

Specific:  The specific interface names are S_FPS3H and D_FPS3H. 

FORTRAN 77 Interface 
Single: CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY,  

     AZ, BZ, IBCTY, IORDER, U, LDU, MDU) 

Double: The double precision name is DFPS3H. 

Example 
This example solves the equation 

� �
2 2 2

2 2 2 10 4 cos 3 2 12 10x zu u u u x y z e
x y z

� � �

� � �

�

� � � � � � � � �  

with the boundary conditions 
u/
z = �2 sin(3x + y �2z) � exp(x � z) on the front side and  
u = cos(3x + y � 2z) + exp(x � z) + 1 on the other five sides. The domain is the box [0, 1/4] × [0, 
1/2] × [0, 1/2]. The output of FPS3H is a 9 � 17 � 17 table of U values. The quadratic 
interpolation routine QD3VL is used to print a table of values. 

      USE FPS3H_INT 
      USE UMACH_INT 
      USE QD3VL_INT 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    LDU, MDU, NX, NXTABL, NY, NYTABL, NZ, NZTABL 
      PARAMETER  (NX=5, NXTABL=4, NY=9, NYTABL=3, NZ=9, & 
                NZTABL=3, LDU=NX, MDU=NY) 
! 
      INTEGER    I, IBCTY(6), IORDER, J, K, NOUT 
      REAL       AX, AY, AZ, BRHS, BX, BY, BZ, COEFU, FLOAT, PRHS, & 
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                 U(LDU,MDU,NZ), UTABL, X, ERROR, TRUE, & 
                 XDATA(NX), Y, YDATA(NY), Z, ZDATA(NZ) 
      INTRINSIC  COS, EXP, FLOAT 
      EXTERNAL   BRHS, PRHS 
!                                 Define domain 
      AX = 0.0 
      BX = 0.125 
      AY = 0.0 
      BY = 0.25 
      AZ = 0.0 
      BZ = 0.25 
!                                 Set boundary condition types 
      IBCTY(1) = 1 
      IBCTY(2) = 1 
      IBCTY(3) = 1 
      IBCTY(4) = 1 
      IBCTY(5) = 2 
      IBCTY(6) = 1 
!                                 Coefficient of U 
      COEFU = 10.0 
!                                 Order of the method 
      IORDER = 4 
!                                 Solve the PDE 
      CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, & 
                 BZ, IBCTY, U) 
!                                 Set up for quadratic interpolation 
      DO 10  I=1, NX 
         XDATA(I) = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NX-1) 
   10 CONTINUE 
      DO 20  J=1, NY 
         YDATA(J) = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NY-1) 
   20 CONTINUE 
      DO 30  K=1, NZ 
         ZDATA(K) = AZ + (BZ-AZ)*FLOAT(K-1)/FLOAT(NZ-1) 
   30 CONTINUE 
!                                 Print the solution 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,’(8X,5(A,11X))’) ’X’, ’Y’, ’Z’, ’U’, ’Error’ 
      DO 60  K=1, NZTABL 
         DO 50  J=1, NYTABL 
            DO 40  I=1, NXTABL 
               X     = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NXTABL-1) 
               Y     = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NYTABL-1) 
               Z     = AZ + (BZ-AZ)*FLOAT(K-1)/FLOAT(NZTABL-1) 
               UTABL = QD3VL(X,Y,Z,XDATA,YDATA,ZDATA,U, CHECK=.false.) 
               TRUE = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0 
               ERROR = UTABL - TRUE 
               WRITE (NOUT,’(5F12.4)’) X, Y, Z, UTABL, ERROR 
   40       CONTINUE 
   50    CONTINUE 
   60 CONTINUE 
      END 
! 
      REAL FUNCTION PRHS (X, Y, Z) 
      REAL       X, Y, Z 
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! 
      REAL       COS, EXP 
      INTRINSIC  COS, EXP 
!                                 Right side of the PDE 
      PRHS = -4.0*COS(3.0*X+Y-2.0*Z) + 12*EXP(X-Z) + 10.0 
      RETURN 
      END 
! 
      REAL FUNCTION BRHS (ISIDE, X, Y, Z) 
      INTEGER    ISIDE 
      REAL       X, Y, Z 
! 
      REAL       COS, EXP, SIN 
      INTRINSIC  COS, EXP, SIN 
!                                 Boundary conditions 
      IF (ISIDE .EQ. 5) THEN 
         BRHS = -2.0*SIN(3.0*X+Y-2.0*Z) - EXP(X-Z) 
      ELSE 
         BRHS = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0 
      END IF 
      RETURN 
      END 

 

Output 
   X           Y           Z           U           Error 
 0.0000      0.0000      0.0000      3.0000      0.0000 
 0.0417      0.0000      0.0000      3.0348      0.0000 
 0.0833      0.0000      0.0000      3.0558      0.0001 
 0.1250      0.0000      0.0000      3.0637      0.0001 
 0.0000      0.1250      0.0000      2.9922      0.0000 
 0.0417      0.1250      0.0000      3.0115      0.0000 
 0.0833      0.1250      0.0000      3.0175      0.0000 
 0.1250      0.1250      0.0000      3.0107      0.0000 
 0.0000      0.2500      0.0000      2.9690      0.0001 
 0.0417      0.2500      0.0000      2.9731      0.0000 
 0.0833      0.2500      0.0000      2.9645      0.0000 
 0.1250      0.2500      0.0000      2.9440     -0.0001 
 0.0000      0.0000      0.1250      2.8514      0.0000 
 0.0417      0.0000      0.1250      2.9123      0.0000 
 0.0833      0.0000      0.1250      2.9592      0.0000 
 0.1250      0.0000      0.1250      2.9922      0.0000 
 0.0000      0.1250      0.1250      2.8747      0.0000 
 0.0417      0.1250      0.1250      2.9211      0.0010 
 0.0833      0.1250      0.1250      2.9524      0.0010 
 0.1250      0.1250      0.1250      2.9689      0.0000 
 0.0000      0.2500      0.1250      2.8825      0.0000 
 0.0417      0.2500      0.1250      2.9123      0.0000 
 0.0833      0.2500      0.1250      2.9281      0.0000 
 0.1250      0.2500      0.1250      2.9305      0.0000 
 0.0000      0.0000      0.2500      2.6314     -0.0249 
 0.0417      0.0000      0.2500      2.7420     -0.0004 
 0.0833      0.0000      0.2500      2.8112     -0.0042 
 0.1250      0.0000      0.2500      2.8609     -0.0138 
 0.0000      0.1250      0.2500      2.7093      0.0000 
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 0.0417      0.1250      0.2500      2.8153      0.0344 
 0.0833      0.1250      0.2500      2.8628      0.0237 
 0.1250      0.1250      0.2500      2.8825      0.0000 
 0.0000      0.2500      0.2500      2.7351     -0.0127 
 0.0417      0.2500      0.2500      2.8030     -0.0011 
 0.0833      0.2500      0.2500      2.8424     -0.0040 
 0.1250      0.2500      0.2500      2.8735     -0.0012 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2S3H/DF2S3H. The 

reference is: 

CALL F2S3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX,  
     AY, BY, AZ, BZ, IBCTY, IORDER, U, LDU,  
     MDU, UWORK, WORK) 

The additional arguments are as follows: 

UWORK — Work array of size NX + 2 by NY + 2 by NZ + 2. If the actual 
dimensions of U are large enough, then U and UWORK can be the same array. 

WORK — Work array of length (NX + 1)(NY + 1)(NZ + 1)(IORDER � 2)/2 + 
2(NX * NY + NX * NZ + NY * NZ) + 2(NX + NY + 1) + MAX(2 * 
NX * NY, 2 * NX + NY + 4 * NZ + (NX + NZ)/2 + 29) 

2. The grid spacing is the distance between the (uniformly spaced) grid lines. It is given 
by the formulas 
HX = (BX � AX)/(NX � 1), 
HY = (BY � AY)/(NY � 1), and 
HZ = (BZ � AZ)/(NZ � 1). 
The grid spacings in the X, Y and Z directions must be the same, i.e., NX, NY and NZ 
must be such that HX = HY = HZ. Also, as noted above, NX, NY and NZ must all be at 
least 4. To increase the speed of the Fast Fourier transform, NX � 1 and NZ � 1 should 
be the product of small primes. Good choices for NX and NZ are 17, 33 and 65. 

3. If �COEFU is nearly equal to an eigenvalue of the Laplacian with homogeneous 
boundary conditions, then the computed solution might have large errors. 

Description 
Let c = COEFU, ax = AX, bx = BX, nx = NX, ay = AY, by = BY, ny = NY, az = AZ, bz = BZ, and  
nz = NZ. 

FPS3H is based on the code HFFT3D by Boisvert (1984). It solves the equation 
2 2 2

2 2 2

u u u cu p
x y z

� � �

� � �
� � � �  
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on the domain (ax, bx) � (ay, by) � (az, bz) (a box) with a user-specified combination of Dirichlet 
(solution prescribed), Neumann (first derivative prescribed), or periodic boundary conditions. 
The six sides are numbered as shown in the following diagram. 

z

b

a

y

z

x

b

b
x

Front - 5

Top - 4

Right - 1

Bottom - 2

Left - 3

Back - 6

y

 
When c = 0 and only Neumann or periodic boundary conditions are prescribed, then any 
constant may be added to the solution to obtain another solution to the problem. In this case, the 
solution of minimum �-norm is returned.  

The solution is computed using either a second-or fourth-order accurate finite-difference 
approximation of the continuous equation. The resulting system of linear algebraic equations is 
solved using fast Fourier transform techniques. The algorithm relies upon the fact that nx � 1 
and nz � 1 are highly composite (the product of small primes). For details of the algorithm, see 
Boisvert (1984). Ifnx � 1 and nz � 1 are highly composite, then the execution time of FPS3H is 
proportional to 

� �2 2
2 2log logx y z x zn n n n n�  

If evaluations of p(x, y, z) are inexpensive, then the difference in running time between  
IORDER = 2 and IORDER = 4 is small. 

SLEIG 
Determines eigenvalues, eigenfunctions and/or spectral density functions for Sturm-Liouville 
problems in the form 

� � � � � � � �( )  for  in ,d dup x q x u r x u x a b
dx dx

�� � �  

with boundary conditions (at regular points) 
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� � � �� �

� �

1 2 1 2

1 2

at 

0 at 

a u a pu a u a pu a

b u b pu b

�� � � �� � �

�� �

 

Required Arguments 
CONS — Array of size eight containing 

1 1 2 2 1 2, , , , , ,  and a a a a b b a b� �  

in locations CONS(1) through CONS(8), respectively.   (Input) 

COEFFN — User-supplied SUBROUTINE to evaluate the coefficient functions. The usage is  
CALL COEFFN (X, PX, QX, RX) 
X — Independent variable.   (Input) 
PX — The value of p(x) at X.   (Output) 
QX — The value of q(x) at X.   (Output) 
RX — The value of r(x) at X.   (Output)  
COEFFN must be declared EXTERNAL in the calling program. 

ENDFIN — Logical array of size two. ENDFIN(1) = .true. if the endpoint a is finite. 
ENDFIN(2) = .true. if endpoint b is finite.   (Input) 

INDEX — Vector of size NUMEIG containing the indices of the desired eigenvalues.   (Input) 

EVAL — Array of length NUMEIG containing the computed approximations to the 
eigenvalues whose indices are specified in INDEX.   (Output) 

Optional Arguments 
NUMEIG — The number of eigenvalues desired.   (Input) 

Default: NUMEIG = size (INDEX,1). 

TEVLAB — Absolute error tolerance for eigenvalues.   (Input) 
Default: TEVLAB = 10.* machine precision. 

TEVLRL — Relative error tolerance for eigenvalues.   (Input) 
Default: TEVLRL = SQRT(machine precision). 

FORTRAN 90 Interface 
Generic: CALL SLEIG (CONS, COEFFN, ENDFIN, INDEX, EVAL  [,…]) 

Specific:  The specific interface names are S_SLEIG and D_SLEIG. 
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FORTRAN 77 Interface 
Single: CALL SLEIG (CONS, COEFFN, ENDFIN, NUMEIG, INDEX, TEVLAB, 

     TEVLRL, EVAL) 

Double: The double precision name is DSLEIG. 

Example 1 
This example computes the first ten eigenvalues of the problem from Titchmarsh (1962) given 
by 

p(x) = r(x) = 1 

q(x) = x 

[a, b] = [0, �] 

u(a) = u(b) = 0 

The eigenvalues are known to be the zeros of  

� � 3 / 2 3 / 2
1/ 3 1/ 3

2 2
3 3

f J J� � �
�

� � � �
� �� � � �

� � � �
 

For each eigenvalue �k, the program prints k, �k and f(�k). 
      USE SLEIG_INT 
      USE CBJS_INT 
!                                  SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, INDEX(10), NUMEIG 
      REAL       CONS(8), EVAL(10), LAMBDA, TEVLAB,& 
                 TEVLRL, XNU 

      COMPLEX    CBS1(1), CBS2(1), Z 
      LOGICAL    ENDFIN(2) 
!                                  SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  CMPLX, SQRT 
      REAL       SQRT 
      COMPLEX    CMPLX 
!                                  SPECIFICATIONS FOR SUBROUTINES 
!                                  SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   COEFF 
! 
      CALL UMACH (2, NOUT) 
!                                  Define boundary conditions 
      CONS(1) = 1.0 
      CONS(2) = 0.0 
      CONS(3) = 0.0 
      CONS(4) = 0.0 
      CONS(5) = 1.0 
      CONS(6) = 0.0 
      CONS(7) = 0.0 
      CONS(8) = 0.0 
! 
      ENDFIN(1) = .TRUE. 
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      ENDFIN(2) = .FALSE. 
!                                  Compute the first 10 eigenvalues 
      NUMEIG = 10 
      DO 10  I=1, NUMEIG 
         INDEX(I) = I - 1 
   10 CONTINUE 
!                                  Set absolute and relative tolerance 
! 
      CALL SLEIG (CONS, COEFF, ENDFIN, INDEX, EVAL) 
! 
      XNU = -1.0/3.0 
      WRITE(NOUT,99998) 
      DO 20  I=1, NUMEIG 
         LAMBDA = EVAL(I) 
         Z      = CMPLX(2.0/3.0*LAMBDA*SQRT(LAMBDA),0.0) 
         CALL CBJS (XNU, Z, 1, CBS1) 
         CALL CBJS (-XNU, Z, 1, CBS2) 
         WRITE (NOUT,99999) I-1, LAMBDA, REAL(CBS1(1) + CBS2(1)) 
   20 CONTINUE 
! 
99998 FORMAT(/, 2X, 'index', 5X, 'lambda', 5X, 'f(lambda)',/) 
99999 FORMAT(I5, F13.4, E15.4) 
      END 
! 
      SUBROUTINE COEFF (X, PX, QX, RX) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      REAL       X, PX, QX, RX 
! 
      PX = 1.0 
      QX = X 
      RX = 1.0 
      RETURN 
      END 
 

Output 
  index     lambda     f(lambda) 
  
    0       2.3381    -0.8285E-05 
    1       4.0879    -0.1651E-04 
    2       5.5205     0.6843E-04 
    3       6.7867    -0.4523E-05 
    4       7.9440     0.8952E-04 
    5       9.0227     0.1123E-04 
    6      10.0401     0.1031E-03 
    7      11.0084    -0.7913E-04 
    8      11.9361    -0.5095E-04 
    9      12.8293     0.4645E-03 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of S2EIG/DS2EIG. The 

reference is: 
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CALL S2EIG (CONS, COEFFN, ENDFIN, NUMEIG, INDEX, TEVLAB, TEVLRL, 
EVAL, JOB, IPRINT, TOLS, NUMX, XEF, NRHO, T, TYPE, EF, PDEF, 
RHO, IFLAG, WORK, IWORK) 

The additional arguments are as follows: 

 JOB — Logical array of length five.   (Input) 

JOB(1) = .true. if a set of eigenvalues are to be computed but not their eigenfunctions. 

JOB(2) = .true. if a set of eigenvalue and eigenfunction pairs are to be computed. 

JOB(3) = .true. if the spectral function is to be computed  
over some subinterval of the essential spectrum. 

JOB(4) = .true. if the normal automatic classification is overridden. If JOB(4) = .true. 
then TYPE(*,*) must be entered correctly. Most users will not want to override 
the classification process, but it might be appropriate for users experimenting 
with problems for which the coefficient functions do not have power-like 
behavior near the singular endpoints. The classification is considered 
sufficiently important for spectral density function calculations that JOB(4) is 
ignored with JOB(3) = .true.. 

JOB(5) = .true. if mesh distribution is chosen by SLEIG. If JOB(5) = .true. and NUMX 
is zero, the number of mesh points are also chosen by SLEIG. If NUMX > 0 then 
NUMX mesh points will be used. If JOB(5) = .false., the number NUMX and 
distribution XEF(*) must be input by the user. 

IPRINT — Control levels of internal printing.   (Input) 
No printing is performed if IPRINT = 0. If either JOB(1) or JOB(2) is true: 
IPRINT Printed Output 
1  initial mesh (the first 51 or fewer points), eigenvalue estimate  at each level 
4  the above and at each level matching point for  
  eigenfunction shooting, X(*), EF(*) and PDEF(*) values 
5  the above and at each level the brackets for the eigenvalue  
  search, intermediate shooting information for the eigenfunction and  
         eigenfunction norm. 

 If JOB(3) = .true. 
IPRINT Printed Output 
1  the actual (a, b) used at each iteration and the total number   
  of eigenvalues computed 
2  the above and switchover points to the asymptotic  
  formulas, and some intermediate �(t) approximations 
4  the above and initial meshes for each iteration, the index  
  of the largest eigenvalue which may be computed, and various  
  eigenvalue and RN values 
4  the above and 



 

 
 

978 � Chapter 5: Differential Equations IMSL MATH/LIBRARY 

 

 

 

  �̂  

   values at each level 
5  the above and RN add eigenvalues below the switchover point 
If JOB(4)=.false.  
IPRINT Printed Output 
2  output a description of the spectrum 
3  the above and the constants for the Friedrichs' boundary condition(s) 
5  the above and intermediate details of the classification  
  calculation 

TOLS — Array of length 4 containing tolerances.   (Input) 
TOLS(1) — absolute error tolerance for eigenfunctions 
TOLS(2) — relative error tolerance for eigenfunctions 
TOLS(3) — absolute error tolerance for eigenfunction derivatives 
TOLS(4) — relative error tolerance for eigenfunction derivatives 

 The absolute tolerances must be positive. 
The relative tolerances must be at least 100 *amach(4) 

NUMX — Integer whose value is the number of output points where each eigenfunction is to 
be evaluated (the number of entries in XEF(*)) when JOB(2) = .true.. If JOB(5)= .false. 
and NUMX is greater than zero, then NUMX is the number of points in the initial mesh 
used. If JOB(5) = .false., the points in XEF(*) should be chosen with a reasonable 
distribution. Since the endpoints a and b must be part of any mesh, NUMX cannot be one 
in this case. If JOB(5) = .false. and JOB(3) = .true., then NUMX must be positive. On 
output, NUMX is set to the number of points for eigenfunctions when input NUMX = 0, 
and JOB(2) or JOB(5) = .true..   (Input/Output) 

XEF — Array of points on input where eigenfunction estimates are desired, if JOB(2) = 
.true.. Otherwise, if JOB(5) = .false. and NUMX is greater than zero, the user’s initial 
mesh is entered. The entries must be ordered so that a = XEF(1) < XEF(2) < � < 
XEF(NUMX) = b. If either endpoint is infinite, the corresponding XEF(1) or XEF(NUMX) is 
ignored. However, it is required that XEF(2) be negative when ENDFIN(1) = .false., and 
that XEF(NUMX-1) be positive when ENDFIN(2) = .false.. On output, XEF(*) is changed 
only if JOB(2) and JOB(5) are true. If JOB(2) = .false., this vector is not referenced. If 
JOB(2) = .true. and NUMX is greater than zero on input, XEF(*) should be dimensioned 
at least NUMX + 16. If JOB(2) is true and NUMX is zero on input, XEF(*) should be 
dimensioned at least 31. 

NRHO — The number of output values desired for the array RHO(*). NRHO is not used if 
JOB(3) = .false..   (Input) 

T — Real vector of size NRHO containing values where the spectral function RHO(*) is desired. 
The entries must be sorted in increasing order. The existence and location of a 
continuous spectrum can be determined by calling SLEIG with the first four entries of 
JOB set to false and IPRINT set to 1. T(*) is not used if JOB(3) = .false..   (Input) 
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TYPE — 4 by 2 logical matrix. Column 1 contains information about endpoint a and column 
2 refers to endpoint b.  
TYPE(1,*) = .true. if and only if the endpoint is regular 
TYPE(2,*) = .true. if and only if the endpoint is limit circle 
TYPE(3,*) = .true. if and only if the endpoint is nonoscillatory for all eigenvalues 
TYPE(4,*) = .true. if and only if the endpoint is oscillatory for all eigenvalues 
Note: all of these values must be correctly input if JOB(4) = .true..  
Otherwise, TYPE(*,*) is output.   (Input/Output) 

EF — Array of eigenfunction values. EF((k � 1)*NUMX + i) is the estimate of u(XEF(i)) 
corresponding to the eigenvalue in EV(k). If JOB(2) = .false. then this vector is not 
referenced. If JOB(2) = .true. and NUMX is greater than zero on entry, then EF(*) should 
be dimensioned at least NUMX * NUMEIG. If JOB(2) = .true. and NUMX is zero on input, 
then EF(*) should be dimensioned 31 * NUMEIG.   (Output) 

PDEF — Array of eigenfunction derivative values. PDEF((k-1)*NUMX + i) is the estimate of 
(pu�) (XEF(i)) corresponding to the eigenvalue in EV(k). If JOB(2) = .false. this vector is 
not referenced. If JOB(2) = .true., it must be dimensioned the same as EF(*).   (Output) 

RHO — Array of size NRHO containing values for the spectral density function �(t), RHO(I) = 
�(T(I)). This vector is not referenced if JOB(3) is false.   (Output) 

IFLAG — Array of size max(1, numeig) containing information about the output. IFLAG(K) 
refers to the K-th eigenvalue, when JOB(1) or JOB(2) = .true.. Otherwise, only 
IFLAG(1) is used. Negative values are associated with fatal errors, and the calculations 
are ceased. Positive values indicate a warning.   (Output) 
IFLAG(K) 

IFLAG(K) Description 
�1 too many levels needed for the eigenvalue calculation; 

problem seems too difficult at this tolerance. Are the 
coefficient functions nonsmooth? 

�2 too many levels needed for the eigenfunction 
calculation; problem seems too difficult at this 
tolerance. Are the eigenfunctions ill-conditioned? 

�3 too many levels needed for the spectral density 
calculation; problem seems too difficult at this 
tolerance. 

�4 the user has requested the spectral density function for 
a problem which has no continuous spectrum. 

�5 the user has requested the spectral density function for 
a problem with both endpoints generating essential 
spectrum, i.e. both endpoints either OSC or O-NO. 
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�6 the user has requested the spectral density function for 
a problem in spectral category 2 for which a proper 
normalization of the solution at the NONOSC 
endpoint is not known; for example, problems with an 
irregular singular point or infinite endpoint at one end 
and continuous spectrum generated at the other.  

�7 problems were encountered in obtaining a bracket. 

�8 too small a step was used in the integration. The 
TOLS(*) values may be too small for this problem. 

�9 too small a step was used in the spectral density 
function calculation for which the continuous 
spectrum is generated by a finite endpoint. 

�10 an argument to the circular trig functions is too large. 
Try running the problem again with a finer initial mesh 
or, for singular problems, use interval truncation. 

�15 p(x) and r(x) are not positive in the interval (a, b). 

�20 eigenvalues and/or eigenfunctions were requested for a 
problem with an OSC singular endpoint. Interval 
truncation must be used on such problems. 

1 Failure in the bracketing procedure probably due to a 
cluster of eigenvalues which the code cannot separate. 
Calculations have continued but any eigenfunction 
results are suspect. Try running the problem again with 
tighter input tolerances to separate the cluster. 

2 there is uncertainty in the classification for this 
problem. Because of the limitations of floating point 
arithmetic, and the nature of the finite sampling, the 
routine cannot be certain about the classification 
information at the requested tolerance. 

3 there may be some eigenvalues embedded in the 
essential spectrum. Use of IPRINT greater than zero 
will provide additional output giving the location of 
the approximating eigenvalues for the step function 
problem. These could be extrapolated to estimate the 
actual eigenvalue embedded in the essential spectrum. 

4 a change of variables was made to avoid potentially 
slow convergence. However, the global error estimates 
may not be as reliable. Some experimentation using 
different tolerances is recommended. 

6 there were problems with eigenfunction convergence 
in a spectral density calculation. The output �(t) may 
not be accurate. 
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WORK — Array of size MAX(1000, NUMEIG + 22) used for workspace. 

IWORK — Integer array of size NUMEIG + 3 used for workspace. 

Description 
This subroutine is designed for the calculation of eigenvalues, eigenfunctions and/or spectral 
density functions for Sturm-Liouville problems in the form 

  � � � � � � � �( )  for  in ,d dup x q x u r x u x a b
dx dx

�� � �  (1) 

with boundary conditions (at regular points) 

� � � �� �

� �

1 2 1 2

1 2

at 

0 at 

a u a pu a u a pu a

b u b pu b

�� � � �� � �

�� �

 

We assume that 

1 2 1 2 0a a a a� �� �  

when a�1 � 0 and a�2 � 0. The problem is considered regular if and only if 

� a and b are finite, 

� p(x) and r(x) are positive in (a, b), 

� 1/p(x), q(x) and r(x) are locally integrable near the endpoints. 

Otherwise the problem is called singular. The theory assumes that p, p�, q, and r are at least 
continuous on (a, b), though a finite number of jump discontinuities can be handled by suitably 
defining an input mesh. 

For regular problems, there are an infinite number of eigenvalues 

�0 < �1 < � < �k, k � � 

Each eigenvalue has an associated eigenfunction which is unique up to a constant. For singular 
problems, there is a wide range in the behavior of the eigenvalues. 

As presented in Pruess and Fulton (1993) the approach is to replace (1) by a new problem 

  � � ˆˆ ˆ ˆ ˆ ˆ ˆpu qu ru�
�

�� � �    (2) 

with analogous boundary conditions 

� � � � � � � � � �� �

� � � � � �

1 2 1 2

1 2

ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ 0

a u a a pu a a u a a pu a

b u b b pu b

�
�� �� � �� � �

� �� 	

�
 �

 

where 
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ˆ ˆ ˆ,  and p q r  

are step function approximations to p, q, and r, respectively. Given the mesh  
a = x1 < x2 < � < xN+1 = b, the usual choice for the step functions uses midpoint interpolation,  
i. e., 

� � 1ˆ ( )
2

n n
n

x xp x p p �
�

� �  

for x in (xn, xn+1) and similarly for the other coefficient functions. This choice works well for 
regular problems. Some singular problems require a more sophisticated technique to capture the 
asymptotic behavior. For the midpoint interpolants, the differential equation (2) has the known 
closed form solution in  

(xn, xn+1) 

� � � � � � � �� � � �ˆ ˆ ˆ ˆ /n n n n n n nu x u x x x pu x x x p� �� �� � � �  

with 

� �

sin / , 0
sinh / , 0
, 0

n n n

n n n n

t
t t

t

� � �

� � � �

�

��
�

� ��
� ��

 

where 

� �ˆ /n n n nr q p� �� �  

and 

n n� ��  

Starting with, 

� � � � � �ˆ ˆ ˆ and u a pu a�  

consistent with the boundary condition, 

� �

� �� �

2 2

1 1

ˆˆ
ˆˆ ˆ

u a a a

pu a a a

�

�

�� �

� �� �

 

an algorithm is to compute for n = 1, 2, ..., N, 

� � � � � � � �� � � �

� �� � � � � � � �� � � �

1

1

ˆ ˆ ˆ ˆ /

ˆ ˆ ˆ ˆ ˆ
n n n n n n n n

n n n n n n n n n

u x u x h pu x h p

pu x p u x h pu x h

� �

� � �

�

�

� �� �

� � �� � �
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which is a shooting method. For a fixed mesh we can iterate on the approximate eigenvalue until 
the boundary condition at b is satisfied. This will yield an O(h2) approximation 

ˆ
k�  

to some �k. 

The problem (2) has a step spectral function given by 

� �
� � � �2

1ˆ
ˆ ˆk

t
r x u x dx

�

�

�

�

�
�

 

where the sum is taken over k such that  

ˆ
k t� �  

and  

1 2 1 2a a a a� � �� �  

Additional Examples 

Example 2 
In this problem from Scott, Shampine and Wing (1969), 

p(x) = r(x) = 1 

q(x) = x2 + x4 

[a, b] = [��, �] 

u(a) = u(b) = 0 

the first eigenvalue and associated eigenfunction, evaluated at selected points, are computed. As 
a rough check of the correctness of the results, the magnitude of the residual 

� � � � � �( )d dup x q x u r x u
dx dx

�� � �  

is printed. We compute a spline interpolant to u� and use the function CSDER to estimate the 
quantity �(p(x)u�)�. 

      USE S2EIG_INT 
      USE CSDER_INT 
      USE UMACH_INT 
      USE CSAKM_INT 
!                                  SPECIFICATIONS FOR LOCAL VARIABLES 
 
      INTEGER    I, IFLAG(1), INDEX(1), IWORK(100), NINTV, NOUT, NRHO, & 
                NUMEIG, NUMX 
      REAL       BRKUP(61), CONS(8), CSCFUP(4,61), EF(61), EVAL(1), & 
                LAMBDA, PDEF(61), PX, QX, RESIDUAL, RHO(1), RX, T(1), & 
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                TEVLAB, TEVLRL, TOLS(4), WORK(3000), X, XEF(61) 
      LOGICAL    ENDFIN(2), JOB(5), TYPE(4,2) 
!                                  SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  ABS, REAL 
      REAL       ABS, REAL 
!                                  SPECIFICATIONS FOR SUBROUTINES 
      EXTERNAL   COEFF 
!                                  Define boundary conditions 
      CONS(1) = 1.0 
      CONS(2) = 0.0 
      CONS(3) = 0.0 
      CONS(4) = 0.0 
      CONS(5) = 1.0 
      CONS(6) = 0.0 
      CONS(7) = 0.0 
      CONS(8) = 0.0 
!                                  Compute eigenvalue and eigenfunctions 
      JOB(1) = .FALSE. 
      JOB(2) = .TRUE. 
      JOB(3) = .FALSE. 
      JOB(4) = .FALSE. 
      JOB(5) = .FALSE. 
! 
      ENDFIN(1) = .FALSE. 
      ENDFIN(2) = .FALSE. 
!                                  Compute eigenvalue with index 0 
      NUMEIG   = 1 
      INDEX(1) = 0 
! 
      TEVLAB  = 1.0E-3 
      TEVLRL  = 1.0E-3 
      TOLS(1) = TEVLAB 
      TOLS(2) = TEVLRL 
      TOLS(3) = TEVLAB 
      TOLS(4) = TEVLRL 
      NRHO    = 0 
!                                  Set up mesh, points at which u and 
!                                  u' will be computed 
      NUMX = 61 
      DO 10  I=1, NUMX 
         XEF(I) = 0.05*REAL(I-31) 
   10 CONTINUE 
! 
      CALL S2EIG (CONS, COEFF, ENDFIN, NUMEIG, INDEX, TEVLAB, TEVLRL, & 
                 EVAL, JOB, 0, TOLS, NUMX, XEF, NRHO, T, TYPE, EF, & 
                 PDEF, RHO, IFLAG, WORK, IWORK) 
! 
      LAMBDA = EVAL(1) 
   20 CONTINUE 
!                                  Compute spline interpolant to u' 
! 
      CALL CSAKM (XEF, PDEF, BRKUP, CSCFUP) 
      NINTV = NUMX - 1 
! 
      CALL UMACH (2, NOUT) 
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      WRITE (NOUT,99997) '     lambda = ', LAMBDA 
      WRITE (NOUT,99999) 
!                                  At a subset of points from the 
!                                  input mesh, compute residual = 
!                                  abs( -(u')' + q(x)u - lambda*u ). 
!                                  We know p(x) = 1 and r(x) = 1. 
      DO 30  I=1, 41, 2 
         X = XEF(I+10) 
         CALL COEFF (X, PX, QX, RX) 
! 
!                                  Use the spline fit to u' to 
!                                  estimate u'' with CSDER 
! 
         RESIDUAL = ABS(-CSDER(1,X,BRKUP,CSCFUP)+QX*EF(I+10)- & 
                   LAMBDA*EF(I+10)) 
         WRITE (NOUT,99998) X, EF(I+10), PDEF(I+10), RESIDUAL 
   30 CONTINUE 
! 
99997 FORMAT (/, A14, F10.5, /) 
99998 FORMAT (5X, F4.1, 3F15.5) 
99999 FORMAT (7X, 'x', 11X, 'u(x)', 10X, 'u''(x)', 9X, 'residual', /) 
      END 
! 
      SUBROUTINE COEFF (X, PX, QX, RX) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      REAL       X, PX, QX, RX 
! 
      PX = 1.0 
      QX = X*X + X*X*X*X 
      RX = 1.0 
      RETURN 
      END 
 

Output 
     lambda =    1.39247  
         x           u(x)          u'(x)         residual  
      -1.0        0.38632        0.65019        0.00189 
      -0.9        0.45218        0.66372        0.00081 
      -0.8        0.51837        0.65653        0.00023 
      -0.7        0.58278        0.62827        0.00113 
      -0.6        0.64334        0.57977        0.00183 
      -0.5        0.69812        0.51283        0.00230 
      -0.4        0.74537        0.42990        0.00273 
      -0.3        0.78366        0.33393        0.00265 
      -0.2        0.81183        0.22811        0.00273 
      -0.1        0.82906        0.11570        0.00278 
       0.0        0.83473        0.00000        0.00136 
       0.1        0.82893       -0.11568        0.00273 
       0.2        0.81170       -0.22807        0.00273 
       0.3        0.78353       -0.33388        0.00267 
       0.4        0.74525       -0.42983        0.00265 
       0.5        0.69800       -0.51274        0.00230 
       0.6        0.64324       -0.57967        0.00182 
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       0.7        0.58269       -0.62816        0.00113 
       0.8        0.51828       -0.65641        0.00023 
       0.9        0.45211       -0.66361        0.00081 
       1.0        0.38626       -0.65008        0.00189 

SLCNT 
Calculates the indices of eigenvalues of a Sturm-Liouville problem of the form for 

� � � � � � � �( )  for  in ,d dup x q x u r x u x a b
dx dx

�� � �  

with boundary conditions (at regular points) 

� � � �� �

� �

1 2 1 2

1 2

at 

0 at 

a u a pu a u a pu a

b u b pu b

�� � � �� � �

�� �

 

in a specified subinterval of the real line, [�, �]. 

Required Arguments 
ALPHA — Value of the left end point of the search interval.   (Input) 

BETAR — Value of the right end point of the search interval.   (Input) 

CONS — Array of size eight containing 

1 1 2 2 1 2, , , , , ,  and a a a a b b a b� �  

in locations CONS(1) � CONS(8), respectively.   (Input) 

COEFFN — User-supplied SUBROUTINE to evaluate the coefficient functions. The usage is  
CALL COEFFN (X, PX, QX, RX) 
X — Independent variable.   (Input) 
PX — The value of p(x) at X.   (Output) 
QX — The value of q(x) at X.   (Output) 
RX — The value of r(x) at X.   (Output)  
COEFFN must be declared EXTERNAL in the calling program. 

ENDFIN — Logical array of size two. ENDFIN = .true. if and only if the endpoint a is 
finite. ENDFIN(2) = .true. if and only if endpoint b is finite.   (Input) 

IFIRST — The index of the first eigenvalue greater than �.   (Output) 

NTOTAL — Total number of eigenvalues in the interval [�, �].   (Output) 
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FORTRAN 90 Interface 
Generic: CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST, 

                 NTOTAL) 

Specific:  The specific interface names are S_SLCNT and D_SLCNT. 

FORTRAN 77 Interface 
Single: CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST, 

                 NTOTAL) 

Double: The double precision name is DSLCNT. 

Example 
Consider the harmonic oscillator (Titchmarsh) defined by 

 p(x) = 1 

 q(x) = x2 

 r(x) = 1 

 [a, b] = [��, �] 

 u(a) = 0 

 u(b) = 0 

The eigenvalues of this problem are known to be 

 �k = 2k + 1, k = 0, 1, � 

Therefore in the interval [10, 16] we expect SLCNT to note three eigenvalues, with the first of 
these having index five. 

      USE SLCNT_INT 
      USE UMACH_INT 
!                                  SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IFIRST, NOUT, NTOTAL 
      REAL       ALPHA, BETAR, CONS(8) 
      LOGICAL    ENDFIN(2) 
!                                  SPECIFICATIONS FOR SUBROUTINES 
!                                  SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   COEFFN 
! 
      CALL UMACH (2, NOUT) 
!                                  set u(a) = 0, u(b) = 0 
      CONS(1) = 1.0E0 
      CONS(2) = 0.0E0 
      CONS(3) = 0.0E0 
      CONS(4) = 0.0E0 
      CONS(5) = 1.0E0 
      CONS(6) = 0.0E0 
      CONS(7) = 0.0E0 
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      CONS(8) = 0.0E0 
! 
      ENDFIN(1) = .FALSE. 
      ENDFIN(2) = .FALSE. 
! 
      ALPHA = 10.0 
      BETAR  = 16.0 
! 
      CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST, NTOTAL) 
! 
      WRITE (NOUT,99998) ALPHA, BETAR, IFIRST 
      WRITE (NOUT,99999) NTOTAL 
! 
99998 FORMAT (/, 'Index of first eigenvalue in [', F5.2, ',', F5.2, & 
            '] IS ', I2) 
99999 FORMAT ('Total number of eigenvalues in this interval: ', I2) 
! 
      END 
! 
      SUBROUTINE COEFFN (X, PX, QX, RX) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      REAL       X, PX, QX, RX 
! 
      PX = 1.0E0 
      QX = X*X 
      RX = 1.0E0 
      RETURN 
      END 
 

Output 

Index of first eigenvalue in [10.00,16.00] is 5 
Total number of eigenvalues in this interval: 3 

Description 
This subroutine computes the indices of eigenvalues, if any, in a subinterval of the real line for 
Sturm-Liouville problems in the form 

� � � � � � � �( )  for  in ,d dup x q x u r x u x a b
dx dx

�� � �  

with boundary conditions (at regular points) 

� � � �� �

� �

1 2 1 2

1 2

at 

0 at 

a u a pu a u a pu a

b u b pu b

�� � � �� � �

�� �

 

It is intended to be used in conjunction with SLEIG, page 973. SLCNT is based on the routine 
INTERV from the package SLEDGE. 
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Chapter 6: Transforms 

Routines 
6.1.  Real Trigonometric FFT 

Computes the Discrete Fourier Transform  
of a rank-1 complex array, x. .........................................FAST_DFT 992 
Computes the Discrete Fourier Transform (2DFT)  
of a rank-2 complex array, x ........................................FAST_2DFT 1000 
Computes the Discrete Fourier Transform (2DFT)  
of a rank-3 complex array, x ........................................FAST_3DFT 1006  
 
Forward transform ................................................................FFTRF 1009 
Backward or inverse transform............................................ FFTRB 1012 
Initialization routine for FFTR* ...............................................FFTRI 1015 

6.2.  Complex Exponential FFT 
Forward transform ................................................................FFTCF 1017 
Backward or inverse transform............................................ FFTCB 1019 
Initialization routine for FFTC* ...............................................FFTCI 1022 

6.3.  Real Sine and Cosine FFTs 
Forward and inverse sine transform ......................................FSINT 1024 
Initialization routine for FSINT ................................................FSINI 1026 
Forward and inverse cosine transform ................................FCOST 1028 
Initialization routine for FCOST.............................................FCOSI 1030 

6.4.  Real Quarter Sine and Quarter Cosine FFTs 
Forward quarter sine transform ............................................QSINF 1032 
Backward or inverse transform.............................................QSINB 1034 
Initialization routine for QSIN*................................................ QSINI 1037 
Forward quarter cosine transform....................................... QCOSF 1039 
Backward or inverse transform...........................................QCOSB 1041 
Initialization routine for QCOS*............................................ QCOSI 1043 

6.5.  Two- and Three-Dimensional Complex FFTs 
Forward transform ................................................................FFT2D 1045 
Backward or inverse transform.............................................FFT2B 1048 
Forward transform ................................................................ FFT3F 1051 
Backward or inverse transform.............................................FFT3B 1055 
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6.6.  Convolutions and Correlations 
Real convolution................................................................. RCONV 1059 
Complex convolution .......................................................... CCONV 1064 
Real correlation ...................................................................RCORL 1068 
Complex correlation ............................................................CCORL 1073 

6.7.  Laplace Transform 
Inverse Laplace transform..................................................... INLAP 1078 
Inverse Laplace transform for smooth functions ...................SINLP 1081 

Usage Notes 
Fast Fourier Transforms 
A Fast Fourier Transform (FFT) is simply a discrete Fourier transform that can be computed 
efficiently. Basically, the straightforward method for computing the Fourier transform takes 
approximately N� operations where N is the number of points in the transform, while the FFT 
(which computes the same values) takes approximately N log N operations. The algorithms in this 
chapter are modeled on the Cooley-Tukey (1965) algorithm; hence, the computational savings 
occur, not for all integers N, but for N which are highly composite. That is, N (or in certain cases  
N + 1 or N � 1) should be a product of small primes. 

All of the FFT routines compute a discrete Fourier transform. The routines accept a vector x of 
length N and return a vector 

x̂  

defined by 

1

ˆ :
N

m n nm
n

x x �

�

��  

The various transforms are determined by the selection of �. In the following table, we indicate 
the selection of � for the various transforms. This table should not be mistaken for a definition 
since the precise transform definitions (at times) depend on whether N or m is even or odd. 
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� �� �

� � � �

� �� �

� �� �

� �� �

� �

� �

� �� �

-2 -1 1 /

2 -1 1 /

Routine
1 1 2

FFTRF cos or sin 

1 1 2
FFTRB cos or sin

FFTCF exp

FFTCB exp

FSINT sin 
1

1 1
FCOST cos 

1
2 1

QSINF 2 sin 
2

2 1
QSINB 4 sin 

2
2 1 1

QCOSF 2 cos 
2

QCOSB 4 co

nm

i n m N

i n m N

m n
N

m n
N

nm
N

n m
N
m n

N
n m

N
m n

N

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

�

� �

�

�

�

� �

� �� �2n-1 1
s 

2
m
N

��

 

For many of the routines listed above, there is a corresponding “I” (for initialization) routine. Use 
these routines only when repeatedly transforming sequences of the same length. In this situation, 
the “I” routine will compute the initial setup once, and then the user will call the corresponding 
“2” routine. This can result in substantial computational savings. For more information on the 
usage of these routines, the user should consult the documentation under the appropriate routine 
name. 

In addition to the one-dimensional transformations described above, we also provide complex two 
and three-dimensional FFTs and their inverses based on calls to either FFTCF (page 1017) or 
FFTCB (page 1019). If you need a higher dimensional transform, then you should consult the 
example program for FFTCI (page 1022) which suggests a basic strategy one could employ. 

Continuous versus Discrete Fourier Transform 
There is, of course, a close connection between the discrete Fourier transform and the continuous 
Fourier transform. Recall that the continuous Fourier transform is defined (Brigham, 1974) as  

� � � �� � � � 2ˆ i tf F f f t e dt� �

� �

�
�

��

� � �  

We begin by making the following approximation: 
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� � � �

� � � �

� �

/ 2 2

/ 2

2 / 2

0

2

0

ˆ

/ 2

/ 2

T i t

T

T i t T

Ti T i t

f f t e dt

f t T e dt

e f t T e dt

� �

� �

� � � �

�
�

�

� �

�

�

� �

� �

�

�

�

 

If we approximate the last integral using the rectangle rule with spacing h = T/N, we have 

� � � �
1

2

0

ˆ / 2
N

i T i kh

k

f e h e f kh T� � � �

�

�

�

�

� ��  

Finally, setting � = j/T for j = 0, �, N � 1 yields 

� � � � � �
1 1

2 / 2 /

0 0

ˆ / / 2 1
N N

jij ijk N ijk N h
k

k k

f j T e h e f kh T h e f� � �

� �

� �

� �

� � � �� �  

where the vector f h = (f( � T/2), �, f((N � 1)h � T/2)). Thus, after scaling the components by  
(�1)jh, the discrete Fourier transform as computed in FFTCF (with input fh) is related to an 
approximation of the continuous Fourier transform by the above formula. This is seen more 
clearly by making a change of variables in the last sum. Set 

1, 1, and h
k nn k m j f x� � � � �  

then, for m = 1, �, N we have 

� �� � � � � � � �� �2 1 1 /

1

ˆ ˆ1 / 1 1
N

m m i m n N
m n

n

f m T hx h e x�� � �

�

� � � � � � � �  

If the function f is expressed as a FORTRAN function routine, then the continuous Fourier 
transform  

f̂  

can be approximated using the IMSL routine QDAWF (see Chapter 4, Integration and 
Differentiation). 

Inverse Laplace Transform 
The last two routines described in this chapter, INLAP (page 1078) and SINLP (page 1081), 
compute the inverse Laplace transforms. 

FAST_DFT 
Computes the Discrete Fourier Transform (DFT) of a rank-1 complex array, x. 

Required Arguments 
No required arguments; pairs of optional arguments are required. These pairs are forward_in 
and forward_out or inverse_in and inverse_out. 
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Optional Arguments 
forward_in = x   (Input) 

Stores the input complex array of rank-1 to be transformed. 

forward_out = y   (Output) 
Stores the output complex array of rank-1 resulting from the transform.   

inverse_in = y   (Input) 
Stores the input complex array of rank-1 to be inverted.   

inverse_out = x   (Output) 
Stores the output complex array of rank-1 resulting from the inverse transform.   

ndata = n   (Input) 
Uses the sub-array of size n for the numbers. 
Default value: n = size(x). 

ido = ido   (Input/Output) 
Integer flag that directs user action. Normally, this argument is used only when the 
working variables required for the transform and its inverse are saved in the calling 
program unit. Computing the working variables and saving them in internal arrays 
within fast_dft is the default. This initialization step is expensive.  

There is a two-step process to compute the working variables just once. Example 3 
illustrates this usage. The general algorithm for this usage is to enter fast_dft 
with ido = 0. A return occurs thereafter with ido < 0. The optional rank-1 
complex array w(:) with size(w) >= �ido must be re-allocated. Then, re-enter 
fast_dft. The next return from fast_dft has the output value ido = 1. The variables 
required for the transform and its inverse are saved in w(:). Thereafter, when the 
routine is entered with ido = 1 and for the same value of n, the contents of w(:) 

will be used for the working variables. The expensive initialization step is 
avoided. The optional arguments “ido=” and “work_array=” must be used 
together. 

work_array = w(:)   (Output/Input) 
Complex array of rank-1 used to store working variables and values between calls to 
fast_dft. The value for size(w) must be at least as large as the value � ido for the 
value of ido < 0.  

iopt = iopt(:)   (Input/Output) 
Derived type array with the same precision as the input array; used for passing optional 
data to fast_dft. The options are as follows: 

Packaged Options for FAST_DFT 

Option Prefix = ? Option Name Option Value 

c_, z_ fast_dft_scan_for_NaN 1 
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Packaged Options for FAST_DFT 

c_, z_ fast_dft_near_power_of_2 2 

c_, z_ fast_dft_scale_forward 3 

c_, z_ Fast_dft_scale_inverse 4 

iopt(IO) = ?_options(?_fast_dft_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that  

isNaN(x(i)) ==.true.  

See the isNaN() function, Chapter 10. 
Default: Does not scan for NaNs. 

iopt(IO) = ?_options(?_fast_dft_near_power_of_2, ?_dummy) 
Nearest power of 2 � n is returned as an output in iopt(IO + 1)%idummy. 

iopt(IO) = ?_options(?_fast_dft_scale_forward, real_part_of_scale)  

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale) 
Complex number defined by the factor  
cmplx(real_part_of_scale, imaginary_part_of_scale) is 
multiplied by the forward transformed array. 
Default value is 1. 

iopt(IO) = ?_options(?_fast_dft_scale_inverse, real_part_of_scale)  

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale) 
Complex number defined by the factor 
cmplx(real_part_of_scale, imaginary_part_of_scale) is 
multiplied by the inverse transformed array. 
Default value is 1. 

FORTRAN 90 Interface 
Generic: None 

Specific: The specific interface names are S_FAST_DFT,  D_FAST_DFT, C_FAST_DFT, 
and Z_FAST_DFT. 

Example 1: Transforming an Array of Random Complex Numbers 
An array of random complex numbers is obtained. The transform of the numbers is inverted and 
the final results are compared with the input array. 

 
      use fast_dft_int  
      use rand_gen_int  
  
      implicit none  
  



 

 
 

IMSL MATH/LIBRARY Chapter 6: Transforms � 995 

 

 

 

! This is Example 1 for FAST_DFT.  
  
      integer, parameter :: n=1024  
      real(kind(1e0)), parameter :: one=1e0  
      real(kind(1e0)) err, y(2*n)  
      complex(kind(1e0)), dimension(n) :: a, b, c  
  
  
! Generate a random complex sequence.  
      call rand_gen(y)  
      a = cmplx(y(1:n),y(n+1:2*n),kind(one))  
      c = a  
  
! Transform and then invert the sequence back.  
      call c_fast_dft(forward_in=a, &  
           forward_out=b)  
      call c_fast_dft(inverse_in=b, &  
           inverse_out=a)  
  
! Check that inverse(transform(sequence)) = sequence.  
      err = maxval(abs(c-a))/maxval(abs(c))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for FAST_DFT is correct.'  
      end if  
  
      end  

Output 
 

Example 1 for FAST_DFT is correct. 

Description 
The fast_dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776). The 
maximum computing efficiency occurs when the size of the array can be factored in the form 

31 2 42 3 4 5ii i in �  

using non-negative integer values {i1, i2, i3, i4}. There is no further restriction on n � 1. 

Additional Examples 

Example 2: Cyclical Data with a Linear Trend 
This set of data is sampled from a function x(t) = at + b + y(t), where y(t) is a harmonic series. The 
independent variable is normalized as �1 � t � 1. Thus, the data is said to have cyclical 
components plus a linear trend. As a first step, the linear terms are effectively removed from the 
data using the least-squares system solver lin_sol_lsq, Chapter 1. Then, the residuals are 
transformed and the resulting frequencies are analyzed. 

 
      use fast_dft_int  
      use lin_sol_lsq_int  
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      use rand_gen_int  
      use sort_real_int  
  
      implicit none  
  
! This is Example 2 for FAST_DFT.  
  
      integer i  
      integer, parameter :: n=64, k=4  
      integer ip(n)  
      real(kind(1e0)), parameter :: one=1e0, two=2e0, zero=0e0  
      real(kind(1e0)) delta_t, pi  
      real(kind(1e0)) y(k), z(2), indx(k), t(n), temp(n)  
      complex(kind(1e0)) a_trend(n,2), a, b_trend(n,1), b, c(k), f(n),&  
               r(n), x(n), x_trend(2,1)  
  
! Generate random data for linear trend and harmonic series.  
      call rand_gen(z)  
      a = z(1); b = z(2)  
      call rand_gen(y)  
! This emphasizes harmonics 2 through k+1.  
      c = y + one  
  
! Determine sampling interval.  
      delta_t = two/n  
      t=(/(-one+i*delta_t, i=0,n-1)/)        
  
! Compute pi.  
      pi = atan(one)*4E0  
      indx=(/(i*pi,i=1,k)/)  
  
! Make up data set as a linear trend plus harmonics.  
      x = a + b*t + &  
         matmul(exp(cmplx(zero,spread(t,2,k)*spread(indx,1,n),kind(one))),c)  
  
! Define least-squares matrix data for a linear trend.  
      a_trend(1:,1) = one  
      a_trend(1:,2) = t  
      b_trend(1:,1) = x  
  
! Solve for a linear trend.  
      call lin_sol_lsq(a_trend, b_trend, x_trend)  
  
! Compute harmonic residuals.  
      r = x -  reshape(matmul(a_trend,x_trend),(/n/))  
  
! Transform harmonic residuals.  
      call c_fast_dft(forward_in=r, forward_out=f)  
      ip=(/(i,i=1,n)/)  
  
! The dominant frequencies should be 2 through k+1.  
! Sort the magnitude of the transform first.  
      call s_sort_real(-(abs(f)), temp, iperm=ip)  
  
! The dominant frequencies are output in ip(1:k).  
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! Sort these values to compare with 2 through k+1.  
      call s_sort_real(real(ip(1:k)), temp)  
      ip(1:k)=(/(i,i=2,k+1)/)  
  
! Check the results.  
      if (count(int(temp(1:k)) /= ip(1:k)) == 0) then   
         write (*,*) 'Example 2 for FAST_DFT is correct.'  
      end if  
  
      end  

Output 
 
Example 2 for FAST_DFT is correct. 
 

Example 3: Several Transforms with Initialization 
In this example, the optional arguments ido and work_array are used to save working 
variables in the calling program unit. This results in maximum efficiency of the transform and its 
inverse since the working variables do not have to be precomputed following each entry to routine 
fast_dft. 

 
 
      use fast_dft_int  
      use rand_gen_int 
 
      implicit none 
 
! This is Example 3 for FAST_DFT. 
 
! The value of the array size for work(:) is computed in the  
! routine fast_dft as a first step. 
      integer, parameter :: n=64 
      integer ido_value 
      real(kind(1e0)) :: one=1e0 
      real(kind(1e0)) err, y(2*n) 
      complex(kind(1e0)), dimension(n) :: a, b, save_a 
      complex(kind(1e0)), allocatable :: work(:) 
 
 
! Generate a random complex array. 
      call rand_gen(y) 
      a = cmplx(y(1:n),y(n+1:2*n),kind(one)) 
      save_a = a 
 
! Transform and then invert the sequence using the pre-computed 
! working values. 
      ido_value = 0 
      do  
         if(allocated(work)) deallocate(work) 
 
! Allocate the space required for work(:). 
         if (ido_value <= 0) allocate(work(-ido_value)) 
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         call c_fast_dft(forward_in=a, forward_out=b, & 
          ido=ido_value, work_array=work) 
 
         if (ido_value == 1) exit 
      end do 
 
! Re-enter routine with working values available in work(:). 
      call c_fast_dft(inverse_in=b, inverse_out=a, & 
            ido=ido_value, work_array=work) 
 
! Deallocate the space used for work(:). 
      if (allocated(work)) deallocate(work) 
 
! Check the results. 
      err = maxval(abs(save_a-a))/maxval(abs(save_a)) 
      if (err <= sqrt(epsilon(one))) then 
         write (*,*) 'Example 3 for FAST_DFT is correct.' 
      end if 
 
      end 

Output 
 
Example 3 for FAST_DFT is correct. 
 

Example 4: Convolutions using Fourier Transforms 
In this example we compute sums  

1

0
, 0, , 1

n

k j k j
j

c a b k n
�

�

�

� � �� �  

The definition implies a matrix-vector product.  A direct approach requires about 2n  operations 
consisisting of an add and multiply.  An efficient method consisting of computing the products of 
the transforms of the  

        � �ja and � �jb  

then inverting this product, is preferable to the matrix-vector approach for large problems.  The 
example is also illustrated in operator_ex37, Chapter 10 using the generic function interface 
FFT and IFFT.  

 
      use fast_dft_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 4 for FAST_DFT.  
  
      integer j  
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      integer, parameter :: n=40  
      real(kind(1e0)) :: one=1e0  
      real(kind(1e0)) err     
      real(kind(1e0)), dimension(n) :: x, y, yy(n,n)  
      complex(kind(1e0)), dimension(n) :: a, b, c, d, e, f  
   
! Generate two random complex sequence 'a' and 'b'.  
   
      call rand_gen(x)  
      call rand_gen(y)  
      a=x; b=y  
   
! Compute the convolution 'c' of 'a' and 'b'.   
! Use matrix times vector for test results.  
      yy(1:,1)=y  
      do j=2,n  
        yy(2:,j)=yy(1:n-1,j-1)  
        yy(1,j)=yy(n,j-1)  
      end do  
  
      c=matmul(yy,x)  
  
! Transform the 'a' and 'b' sequences into 'd' and 'e'.  
   
      call c_fast_dft(forward_in=a, &  
           forward_out=d)  
      call c_fast_dft(forward_in=b, &  
           forward_out=e)  
  
! Invert the product d*e.  
  
      call c_fast_dft(inverse_in=d*e, &  
           inverse_out=f)  
   
! Check the Convolution Theorem:  
! inverse(transform(a)*transform(b)) = convolution(a,b).  
   
      err = maxval(abs(c-f))/maxval(abs(c))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 4 for FAST_DFT is correct.'  
      end if  
  
      end  

Output 
 
Example 4 for FAST_DFT is correct. 

Fatal and Terminal Messages 
See the messages.gls file for error messages for fast_dft. These error messages are numbered 
651�661; 701�711. 
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FAST_2DFT 
Computes the Discrete Fourier Transform (2DFT) of a rank-2 complex array, x. 

Required Arguments 
No required arguments; pairs of optional arguments are required. These pairs are forward_in 
and forward_out or inverse_in and inverse_out. 

Optional Arguments 
forward_in = x   (Input) 

Stores the input complex array of rank-2 to be transformed. 

forward_out = y   (Output) 
Stores the output complex array of rank-2 resulting from the transform. 

inverse_in = y   (Input) 
Stores the input complex array of rank-2 to be inverted.   

inverse_out = x   (Output) 
Stores the output complex array of rank-2 resulting from the inverse transform.   

mdata = m   (Input) 
Uses the sub-array in first dimension of size m for the numbers. 
Default value: m = size(x,1). 

ndata = n   (Input) 
Uses the sub-array in the second dimension of size n for the numbers. 
Default value: n = size(x,2). 

ido = ido   (Input/Output) 
Integer flag that directs user action. Normally, this argument is used only when the 
working variables required for the transform and its inverse are saved in the calling 
program unit. Computing the working variables and saving them in internal arrays 
within fast_2dft is the default. This initialization step is expensive.  

There is a two-step process to compute the working variables just once. Example 3 
illustrates this usage. The general algorithm for this usage is to enter fast_2dft 
with ido = 0. A return occurs thereafter with ido < 0. The optional rank-1 
complex array w(:) with size(w) >= �ido must be re-allocated. Then, re-enter 
fast_2dft. The next return from fast_2dft has the output value ido = 1. The 
variables required for the transform and its inverse are saved in w(:). Thereafter, 
when the routine is entered with ido = 1 and for the same values of m and n, the 
contents of w(:) will be used for the working variables. The expensive 
initialization step is avoided. The optional arguments “ido=” and “work_array=” 
must be used together. 
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work_array = w(:)   (Output/Input) 
Complex array of rank-1 used to store working variables and values between calls to 
fast_2dft. The value for size(w) must be at least as large as the value � ido for the 
value of ido < 0.  

iopt = iopt(:)   (Input/Output) 
Derived type array with the same precision as the input array; used for passing optional 
data to fast_2dft. The options are as follows: 

Packaged Options for FAST_2DFT 

Option Prefix = ? Option Name Option Value 

c_, z_ fast_2dft_scan_for_NaN 1 

c_, z_ fast_2dft_near_power_of_2 2 

c_, z_ fast_2dft_scale_forward 3 

c_, z_ fast_2dft_scale_inverse 4 

iopt(IO) = ?_options(?_fast_2dft_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that  

isNaN(x(i,j)) ==.true.  

See the isNaN() function, Chapter 10. 
Default: Does not scan for NaNs. 

iopt(IO) = ?_options(?_fast_2dft_near_power_of_2, ?_dummy) 
Nearest powers of 2 � m and  � n are returned as an outputs in iopt(IO + 
1)%idummy and iopt(IO + 2)%idummy. 

iopt(IO) = ?_options(?_fast_2dft_scale_forward, real_part_of_scale)  

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale) 
Complex number defined by the factor  
cmplx(real_part_of_scale, imaginary_part_of_scale) is 
multiplied by the forward transformed array. 
Default value is 1. 

iopt(IO) = ?_options(?_fast_2dft_scale_inverse, real_part_of_scale)  

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale) 
Complex number defined by the factor 
cmplx(real_part_of_scale, imaginary_part_of_scale) is 
multiplied by the inverse transformed array. 
Default value is 1. 

FORTRAN 90 Interface 
Generic: None 
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Specific: The specific interface names are S_FAST_2DFT,  D_FAST_2DFT, 
C_FAST_2DFT, and Z_FAST_2DFT. 

Example 1: Transforming an Array of Random Complex Numbers 
An array of random complex numbers is obtained. The transform of the numbers is inverted and 
the final results are compared with the input array. 

 
      use fast_2dft_int  
      use rand_int  
  
      implicit none  
  
! This is Example 1 for FAST_2DFT.  
  
      integer, parameter :: n=24  
      integer, parameter :: m=40  
      real(kind(1e0)) :: err, one=1e0  
      complex(kind(1e0)), dimension(n,m) :: a, b, c  
  
  
! Generate a random complex sequence.  
      a=rand(a); c=a  
  
! Transform and then invert the transform.  
      call c_fast_2dft(forward_in=a, &  
           forward_out=b)  
      call c_fast_2dft(inverse_in=b, &  
           inverse_out=a)  
  
! Check that inverse(transform(sequence)) = sequence.  
      err = maxval(abs(c-a))/maxval(abs(c))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for FAST_2DFT is correct.'  
      end if  
  
     end  

Output 
 
Example 1 for FAST_2DFT is correct. 

Description 
The fast_2dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776). 

Additional Examples 

Example 2: Cyclical 2D Data with a Linear Trend 
This set of data is sampled from a function x(s, t) = a + bs + ct + y(s, t) , where y(s, t)  is an 
harmonic series. The independent variables are normalized as 
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 �1 � s � 1 and �1 � t � 1. Thus, the data is said to have cyclical components plus a linear trend. 
As a first step, the linear terms are effectively removed from the data using the least-squares 
system solver . Then, the residuals are transformed and the resulting frequencies are analyzed. 

 
      use fast_2dft_int  
      use lin_sol_lsq_int  
      use sort_real_int  
      use rand_int  
      implicit none  
  
! This is Example 2 for FAST_2DFT.  
  
      integer i  
      integer, parameter :: n=8, k=15  
      integer ip(n*n), order(k)  
      real(kind(1e0)), parameter :: one=1e0, two=2e0, zero=0e0  
      real(kind(1e0)) delta_t  
      real(kind(1e0)) rn(3), s(n), t(n), temp(n*n), new_order(k)  
      complex(kind(1e0)) a, b, c, a_trend(n*n,3), b_trend(n*n,1),  &  
               f(n,n), r(n,n), x(n,n), x_trend(3,1)  
      complex(kind(1e0)), dimension(n,n) :: g=zero, h=zero  
  
! Generate random data for planar trend.  
      rn = rand(rn)  
      a = rn(1)  
      b = rn(2)  
      c = rn(3)  
  
! Generate the frequency components of the harmonic series.  
! Non-zero random amplitudes given on two edges of the square domain.  
      g(1:,1)=rand(g(1:,1))  
      g(1,1:)=rand(g(1,1:))   
  
! Invert 'g' into the harmonic series 'h' in time domain.  
      call c_fast_2dft(inverse_in=g, inverse_out=h)  
  
  
! Compute sampling interval.  
      delta_t = two/n  
      s = (/(-one + (i-1)*delta_t, i=1,n)/)  
      t = (/(-one + (i-1)*delta_t, i=1,n)/)  
  
! Make up data set as a linear trend plus harmonics.  
      x = a + b*spread(s,dim=2,ncopies=n) +   &  
              c*spread(t,dim=1,ncopies=n) + h  
  
! Define least-squares matrix data for a planar trend.  
      a_trend(1:,1) = one  
      a_trend(1:,2) = reshape(spread(s,dim=2,ncopies=n),(/n*n/))  
      a_trend(1:,3) = reshape(spread(t,dim=1,ncopies=n),(/n*n/))  
      b_trend(1:,1) = reshape(x,(/n*n/))  
  
! Solve for a linear trend.  
      call lin_sol_lsq(a_trend, b_trend, x_trend)  
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! Compute harmonic residuals.  
      r = x -  reshape(matmul(a_trend,x_trend),(/n,n/))  
  
! Transform harmonic residuals.  
      call c_fast_2dft(forward_in=r, forward_out=f)  
  
      ip = (/(i,i=1,n**2)/)  
  
! Sort the magnitude of the transform.  
      call s_sort_real(-(abs(reshape(f,(/n*n/)))), &  
                                      temp, iperm=ip)  
  
! The dominant frequencies are output in ip(1:k).  
! Sort these values to compare with the original frequency order.   
      call s_sort_real(real(ip(1:k)), new_order)  
  
      order(1:n) = (/(i,i=1,n)/)   
      order(n+1:k) = (/((i-n)*n+1,i=n+1,k)/)   
  
! Check the results.  
      if (count(order /= int(new_order)) == 0) then   
         write (*,*) 'Example 2 for FAST_2DFT is correct.'  
      end if  
  
      end  

Output 
 
Example 2 for FAST_2DFT is correct. 

Example 3: Several 2D Transforms with Initialization 
In this example, the optional arguments ido and work_array are used to save working 
variables in the calling program unit. This results in maximum efficiency of the transform and its 
inverse since the working variables do not have to be precomputed following each entry to routine 
fast_2dft. 

  
      use fast_2dft_int  
  
      implicit none  
  
! This is Example 3 for FAST_2DFT.  
  
      integer i, j  
      integer, parameter :: n=256  
      real(kind(1e0)), parameter :: one=1e0, zero=0e0  
      real(kind(1e0)) r(n,n), err  
      complex(kind(1e0)) a(n,n), b(n,n), c(n,n)  
  
! The value of the array size for work(:) is computed in the   
! routine fast_dft as a first step.  
  
      integer ido_value  
      complex(kind(1e0)), allocatable :: work(:)  
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! Fill in value one for points inside the circle with r=64.  
      a = zero  
      r = reshape((/(((i-n/2)**2 + (j-n/2)**2, i=1,n), &  
                  j=1,n)/),(/n,n/))  
      where (r <= (n/4)**2) a = one  
      c = a  
  
! Transform and then invert the sequence using the pre-computed  
! working values.  
      ido_value = 0  
      do   
         if(allocated(work)) deallocate(work)  
  
! Allocate the space required for work(:).  
         if (ido_value <= 0) allocate(work(-ido_value))  
  
! Transform the image and then invert it back.  
      call c_fast_2dft(forward_in=a, &  
           forward_out=b, IDO=ido_value, work_array=work)  
         if (ido_value == 1) exit  
      end do  
      call c_fast_2dft(inverse_in=b, &  
           inverse_out=a, IDO=ido_value, work_array=work)  
  
! Deallocate the space used for work(:).  
      if (allocated(work)) deallocate(work)  
  
! Check that inverse(transform(image)) = image.  
      err = maxval(abs(c-a))/maxval(abs(c))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 3 for FAST_2DFT is correct.'  
      end if  
  
      end  

Output 
 
Example 3 for FAST_2DFT is correct. 
 

Fatal and Terminal Messages 

See the messages.gls file for error messages for fast_2dft. These error messages are numbered 
670�680; 720�730. 
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FAST_3DFT 
Required Arguments 
No required arguments; pairs of optional arguments are required. These pairs are forward_in 
and forward_out or inverse_in and inverse_out. 

Optional Arguments 
forward_in = x   (Input) 

Stores the input complex array of rank-3 to be transformed. 

forward_out = y   (Output) 
Stores the output complex array of rank-3 resulting from the transform. 

inverse_in = y   (Input) 
Stores the input complex array of rank-3 to be inverted.   

inverse_out = x   (Output) 
Stores the output complex array of rank-3 resulting from the inverse transform.   

mdata = m   (Input) 
Uses the sub-array in first dimension of size m for the numbers. 
Default value: m = size(x,1). 

ndata = n   (Input) 
Uses the sub-array in the second dimension of size n for the numbers. 
Default value: n = size(x,2). 

kdata = k   (Input) 
Uses the sub-array in the third dimension of size k for the numbers. 
Default value: k = size(x,3). 

ido = ido   (Input/Output) 
Integer flag that directs user action. Normally, this argument is used only when the 
working variables required for the transform and its inverse are saved in the calling 
program unit. Computing the working variables and saving them in internal arrays 
within fast_3dft is the default. This initialization step is expensive.  

There is a two-step process to compute the working variables just once. The general 
algorithm for this usage is to enter fast_3dft with  
ido = 0. A return occurs thereafter with ido < 0. The optional rank-1 complex 
array w(:) with size(w) >= �ido must be re-allocated. Then, re-enter fast_3dft. 
The next return from fast_3dft has the output value ido = 1. The variables 
required for the transform and its inverse are saved in w(:). Thereafter, when the 
routine is entered with ido = 1 and for the same values of m and n, the contents 
of w(:) will be used for the working variables. The expensive initialization step 
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is avoided. The optional arguments “ido=” and “work_array=” must be used 
together. 

work_array = w(:)   (Output/Input) 
Complex array of rank-1 used to store working variables and values between calls to 
fast_3dft. The value for size(w) must be at least as large as the value � ido for the 
value of ido < 0.  

iopt = iopt(:)   (Input/Output) 
Derived type array with the same precision as the input array; used for passing optional 
data to fast_3dft. The options are as follows: 

Packaged Options for FAST_3DFT 
Option Prefix = ? Option Name Option Value 

C_, z_ fast_3dft_scan_for_NaN 1 

C_, z_ fast_3dft_near_power_of_2 2 

C_, z_ fast_3dft_scale_forward 3 

C_, z_ fast_3dft_scale_inverse 4 

iopt(IO) = ?_options(?_fast_3dft_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that  

isNaN(x(i,j,k)) ==.true.  

See the isNaN() function, Chapter 10. 
Default: Does not scan for NaNs. 

iopt(IO) = ?_options(?_fast_3dft_near_power_of_2, ?_dummy) 
Nearest powers of 2 � m, � n, and  � k are returned as an outputs in 
iopt(IO+1)%idummy , iopt(IO+2)%idummy and iopt(IO+3)%idummy  

iopt(IO) = ?_options(?_fast_3dft_scale_forward, real_part_of_scale)  

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale) 
Complex number defined by the factor  
cmplx(real_part_of_scale, imaginary_part_of_scale) is 
multiplied by the forward transformed array. 
Default value is 1. 

iopt(IO) = ?_options(?_fast_3dft_scale_inverse, real_part_of_scale)  

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale) 
Complex number defined by the factor 
cmplx(real_part_of_scale, imaginary_part_of_scale) is 
multiplied by the inverse transformed array. 
Default value is 1. 
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FORTRAN 90 Interface 
Generic: None 

Specific: The specific interface names are S_FAST_3DFT,  D_FAST_3DFT, 
C_FAST_3DFT, and Z_FAST_3DFT. 

Example 1: Transforming an Array of Random Complex Numbers 
An array of random complex numbers is obtained. The transform of the numbers is inverted and 
the final results are compared with the input array. 

 
      use fast_3dft_int  
  
      implicit none  
  
! This is Example 1 for FAST_3DFT.  
  
      integer i, j, k  
      integer, parameter :: n=64  
      real(kind(1e0)), parameter :: one=1e0, zero=0e0  
      real(kind(1e0)) r(n,n,n), err  
      complex(kind(1e0)) a(n,n,n), b(n,n,n), c(n,n,n)  
  
! Fill in value one for points inside the sphere  
! with radius=16.  
      a = zero  
      do i=1,n  
        do j=1,n  
          do k=1,n  
            r(i,j,k) = (i-n/2)**2+(j-n/2)**2+(k-n/2)**2  
          end do  
        end do  
      end do  
      where (r <= (n/4)**2) a = one  
      c = a  
  
! Transform the image and then invert it back.  
       call c_fast_3dft(forward_in=a, &  
           forward_out=b)  
       call c_fast_3dft(inverse_in=b, &  
           inverse_out=a)  
  
! Check that inverse(transform(image)) = image.  
      err = maxval(abs(c-a))/maxval(abs(c))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for FAST_3DFT is correct.'  
      end if  
  
      end  

Output 
 



 

 
 

IMSL MATH/LIBRARY Chapter 6: Transforms � 1009 

 

 

 

Example 1 for FAST_3DFT is correct. 

Description 
The fast_3dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776). 

Fatal and Terminal Messages 
See the messages.gls file for error messages for fast_3dft. These error messages are numbered 
685�695; 740�750. 

FFTRF 
Computes the Fourier coefficients of a real periodic sequence. 

Required Arguments 
N — Length of the sequence to be transformed.   (Input) 

SEQ — Array of length N containing the periodic sequence.   (Input) 

COEF — Array of length N containing the Fourier coefficients.   (Output) 

FORTRAN 90 Interface 
Generic: CALL FFTRF (N, SEQ, COEF) 

Specific: The specific interface names are S_FFTRF and D_FFTRF. 

FORTRAN 77 Interface 
Single: CALL FFTRF (N, SEQ, COEF) 

Double: The double precision name is DFFTRF. 

Example 
In this example, a pure cosine wave is used as a data vector, and its Fourier series is recovered. 
The Fourier series is a vector with all components zero except at the appropriate frequency 
where it has an N. 

      USE FFTRF_INT 
      USE CONST_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, NOUT 
      REAL       COEF(N), COS, FLOAT, TWOPI, SEQ(N) 
      INTRINSIC  COS, FLOAT 
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      TWOPI = CONST(’PI’) 
! 
      TWOPI = 2.0*TWOPI 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 This loop fills out the data vector 
!                                 with a pure exponential signal 
      DO 10  I=1, N 
         SEQ(I) = COS(FLOAT(I-1)*TWOPI/FLOAT(N)) 
   10 CONTINUE 
!                                 Compute the Fourier transform of SEQ 
      CALL FFTRF (N, SEQ, COEF) 
!                                 Print results 
      WRITE (NOUT,99998) 
99998 FORMAT (9X, ’INDEX’, 5X, ’SEQ’, 6X, ’COEF’) 
      WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 
99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2) 
      END 

Output 
INDEX     SEQ      COEF 
  1      1.00      0.00 
  2      0.62      3.50 
  3     -0.22      0.00 
  4     -0.90      0.00 
  5     -0.90      0.00 
  6     -0.22      0.00 
  7      0.62      0.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2TRF/DF2TRF. The 

reference is: 

CALL F2TRF (N, SEQ, COEF, WFFTR) 

The additional argument is 

WFFTR — Array of length 2N + 15 initialized by FFTRI (page 1015).   (Input)  
The initialization depends on N. 

2. The routine FFTRF is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If FFTRF/FFTRB is used repeatedly with the same value of N, then call FFTRI followed 
by repeated calls to F2TRF/F2TRB. This is more efficient than repeated calls to 
FFTRF/FFTRB. 
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Description 
The routine FFTRF computes the discrete Fourier transform of a real vector of size N. The 
method used is a variant of the Cooley-Tukey algorithm that is most efficient when N is a 
product of small prime factors. If N satisfies this condition, then the computational effort is 
proportional to N log N. 

Specifically, given an N-vector s = SEQ, FFTRF returns in c = COEF, if N is even: 
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If N is odd, cm is defined as above for m from 2 to (N + 1)/2. 

We now describe a fairly common usage of this routine. Let f be a real valued function of time. 
Suppose we sample f at N equally spaced time intervals of length � seconds starting at time t�. 
That is, we have 

SEQ i:= f (t� + (i � 1)�) i = 1, 2, �, N 

The routine FFTRF treats this sequence as if it were periodic of period N. In particular, it 
assumes that f (t�) = f (t� + N�). Hence, the period of the function is assumed to be T = N�. 

Now, FFTRF accepts as input SEQ and returns as output coefficients c = COEF that satisfy the 
following relation when N is odd (N even is similar): 
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This formula is very revealing. It can be interpreted in the following manner. The coefficients 
produced by FFTRF produce an interpolating trigonometric polynomial to the data. That is, if we 
define 
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then, we have 

f(t� + (i � 1)�) = g(t� + (i � 1)�) 

Now, suppose we want to discover the dominant frequencies. One forms the vector P of length 
N/2 as follows: 
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These numbers correspond to the energy in the spectrum of the signal. In particular, Pk 
corresponds to the energy level at frequency 

1 1 11, 2, ,
2

k k Nk
T N
� � �

� �
�

�  

Furthermore, note that there are only (N + 1)/2 � T/(2�) resolvable frequencies when N 
observations are taken. This is related to the Nyquist phenomenon, which is induced by discrete 
sampling of a continuous signal. 

Similar relations hold for the case when N is even. 

Finally, note that the Fourier transform hsas an (unnormalized) inverse that is implemented in 
FFTRB (page 1012). The routine FFTRF is based on the real FFT in FFTPACK. The package 
FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric 
Research. 

FFTRB 
Computes the real periodic sequence from its Fourier coefficients. 

Required Arguments 
N — Length of the sequence to be transformed.   (Input) 

COEF — Array of length N containing the Fourier coefficients.   (Input) 

SEQ — Array of length N containing the periodic sequence.   (Output) 

FORTRAN 90 Interface 
Generic: CALL FFTRB (N, COEF, SEQ [,…]) 

Specific: The specific interface names are S_FFTRB and D_FFTRB. 

FORTRAN 77 Interface 
Single: CALL FFTRB (N, COEF, SEQ) 

Double: The double precision name is DFFTRB. 

Example 
We compute the forward real FFT followed by the inverse operation. In this example, we first 
compute the Fourier transform 
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COEFx̂ �  

of the vector x, where xj = (�1)j for j = 1 to N. This vector 

x̂  

is now input into FFTRB with the resulting output s = Nx, that is, sj = (�1)j N for j = 1 to N. 
      USE FFTRB_INT 
      USE CONST_INT 
      USE FFTRF_INT 
      USE UMACH_INT 

      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, NOUT 
      REAL       COEF(N), FLOAT, SEQ(N), TWOPI, X(N) 
      INTRINSIC  FLOAT 
      TWOPI = CONST(’PI’) 
! 
      TWOPI = TWOPI 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Fill the data vector 
      DO 10  I=1, N 
         X(I) = FLOAT((-1)**I) 
   10 CONTINUE 
!                                 Compute the forward transform of X 
      CALL FFTRF (N, X, COEF) 
!                                 Print results 
      WRITE (NOUT,99994) 
      WRITE (NOUT,99995) 
99994 FORMAT (9X, ’Result after forward transform’) 
99995 FORMAT (9X, ’INDEX’, 5X, ’X’, 8X, ’COEF’) 
      WRITE (NOUT,99996) (I, X(I), COEF(I), I=1,N) 
99996 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2) 
!                                 Compute the backward transform of 
!                                 COEF 
      CALL FFTRB (N, COEF, SEQ) 
!                                Print results 
      WRITE (NOUT,99997) 
      WRITE (NOUT,99998) 
99997 FORMAT (/, 9X, ’Result after backward transform’) 
99998 FORMAT (9X, ’INDEX’, 4X, ’COEF’, 6X, ’SEQ’) 
      WRITE (NOUT,99999) (I, COEF(I), SEQ(I), I=1,N) 
99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2) 
      END 

Output 
Result after forward transform 
INDEX     X        COEF 
  1     -1.00     -1.00 
  2      1.00     -1.00 
  3     -1.00     -0.48 
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  4      1.00     -1.00 
  5     -1.00     -1.25 
  6      1.00     -1.00 
  7     -1.00     -4.38 
 
Result after backward transform 
INDEX    COEF      SEQ 
  1     -1.00     -7.00 
  2     -1.00      7.00 
  3     -0.48     -7.00 
  4     -1.00      7.00 
  5     -1.25     -7.00 
  6     -1.00      7.00 
  7     -4.38     -7.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2TRB/DF2TRB. The 

reference is: 

CALL F2TRB (N, COEF, SEQ, WFFTR) 

The additional argument is 

WFFTR — Array of length 2N + 15 initialized by FFTRI (page 1015).   (Input)  
The initialization depends on N. 

2. The routine FFTRB is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If FFTRF/FFTRB is used repeatedly with the same value of N, then call FFTRI (page 
1015) followed by repeated calls to F2TRF/F2TRB. This is more efficient than repeated 
calls to FFTRF/FFTRB. 

Description 
The routine FFTRB is the unnormalized inverse of the routine FFTRF (page 1009). This routine 
computes the discrete inverse Fourier transform of a real vector of size N. The method used is a 
variant of the Cooley-Tukey algorithm, which is most efficient when N is a product of small 
prime factors. If N satisfies this condition, then the computational effort is proportional to N log 
N. 

Specifically, given an N-vector c = COEF, FFTRB returns in s = SEQ, if N is even: 
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If N is odd: 
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The routine FFTRB is based on the inverse real FFT in FFTPACK. The package FFTPACK was 
developed by Paul Swarztrauber at the National Center for Atmospheric Research. 

 

 

 

FFTRI 
Computes parameters needed by FFTRF and FFTRB. 

Required Arguments 
N — Length of the sequence to be transformed.   (Input) 

WFFTR — Array of length 2N + 15 containing parameters needed by FFTRF and FFTRB.   
(Output) 

FORTRAN 90 Interface 
Generic: CALL FFTRI (N, WFFTR) 

Specific: The specific interface names are S_FFTRI and D_FFTRI. 

FORTRAN 77 Interface 
Single: CALL FFTRI (N, WFFTR) 

Double: The double precision name is DFFTRI. 

Example 
In this example, we compute three distinct real FFTs by calling FFTRI once and then calling 
F2TRF three times. 

      USE FFTRI_INT 
      USE CONST_INT 
      USE F2TRF_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, K, NOUT 
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      REAL       COEF(N), COS, FLOAT, TWOPI, WFFTR(29), SEQ(N) 
      INTRINSIC  COS, FLOAT 
! 
      TWOPI = CONST(’PI’) 
      TWOPI = 2* TWOPI  
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Set the work vector 
      CALL FFTRI (N, WFFTR) 
! 
      DO 20  K=1, 3 
!                                 This loop fills out the data vector 
!                                 with a pure exponential signal 
         DO 10  I=1, N 
            SEQ(I) = COS(FLOAT(K*(I-1))*TWOPI/FLOAT(N)) 
   10 CONTINUE 
!                                 Compute the Fourier transform of SEQ 
         CALL F2TRF (N, SEQ, COEF, WFFTR) 
!                                 Print results 
         WRITE (NOUT,99998) 
99998    FORMAT (/, 9X, ’INDEX’, 5X, ’SEQ’, 6X, ’COEF’) 
         WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 
99999    FORMAT (1X, I11, 5X, F5.2, 5X, F5.2) 
! 
   20 CONTINUE 
      END 

Output 
INDEX     SEQ      COEF 
  1      1.00      0.00 
  2      0.62      3.50 
  3     -0.22      0.00 
  4     -0.90      0.00 
  5     -0.90      0.00 
  6     -0.22      0.00 
  7      0.62      0.00 
 
 
 
INDEX     SEQ      COEF 
  1      1.00      0.00 
  2     -0.22      0.00 
  3     -0.90      0.00 
  4      0.62      3.50 
  5      0.62      0.00 
  6     -0.90      0.00 
  7     -0.22      0.00 
 
 
INDEX     SEQ      COEF 
1      1.00      0.00 
2     -0.90      0.00 
3      0.62      0.00 
4     -0.22      0.00 
5     -0.22      0.00 
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6      0.62      3.50 
7     -0.90      0.00 

Comments 
Different WFFTR arrays are needed for different values of N. 

Description 
The routine FFTRI initializes the routines FFTRF (page 1009) and FFTRB (page 1012). An 
efficient way to make multiple calls for the same N to routine FFTRF or FFTRB, is to use routine 
FFTRI for initialization. (In this case, replace FFTRF or FFTRB with F2TRF or F2TRB, 
respectively.) The routine FFTRI is based on the routine RFFTI in FFTPACK. The package 
FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric 
Research. 

FFTCF 
Computes the Fourier coefficients of a complex periodic sequence. 

Required Arguments 
N — Length of the sequence to be transformed.   (Input) 

SEQ — Complex array of length N containing the periodic sequence.   (Input) 

COEF — Complex array of length N containing the Fourier coefficients.   (Output) 

FORTRAN 90 Interface 
Generic: CALL FFTCF (N, SEQ, COEF) 

Specific: The specific interface names are S_FFTCF and D_FFTCF. 

FORTRAN 77 Interface 
Single: CALL FFTCF (N, SEQ, COEF) 

Double: The double precision name is DFFTCF. 

Example 
In this example, we input a pure exponential data vector and recover its Fourier series, which is 
a vector with all components zero except at the appropriate frequency where it has an N. Notice 
that the norm of the input vector is  

N  
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but the norm of the output vector is N. 
      USE FFTCF_INT 
      USE CONST_INT 
      USE UMACH_INT 

      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, NOUT 
      REAL       TWOPI 
      COMPLEX    C, CEXP, COEF(N), H, SEQ(N) 
      INTRINSIC  CEXP 
! 
      C     = (0.,1.) 
      TWOPI = CONST(’PI’) 
      TWOPI = 2.0 * TWOPI 
!                                 Here we compute (2*pi*i/N)*3. 
      H = (TWOPI*C/N)*3. 
!                                 This loop fills out the data vector 
!                                 with a pure exponential signal of 
!                                 frequency 3. 
      DO 10  I=1, N 
         SEQ(I) = CEXP((I-1)*H) 
   10 CONTINUE 
!                                 Compute the Fourier transform of SEQ 
      CALL FFTCF (N, SEQ, COEF) 
!                                 Get output unit number and print 
!                                 results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99998) 
99998 FORMAT (9X, ’INDEX’, 8X, ’SEQ’, 15X, ’COEF’) 
      WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 
99999 FORMAT (1X, I11, 5X,’(’,F5.2,’,’,F5.2,’)’, & 
                      5X,’(’,F5.2,’,’,F5.2,’)’) 
      END 

Output 
INDEX        SEQ               COEF 
  1     ( 1.00, 0.00)     ( 0.00, 0.00) 
  2     (-0.90, 0.43)     ( 0.00, 0.00) 
  3     ( 0.62,-0.78)     ( 0.00, 0.00) 
  4     (-0.22, 0.97)     ( 7.00, 0.00) 
  5     (-0.22,-0.97)     ( 0.00, 0.00) 
  6     ( 0.62, 0.78)     ( 0.00, 0.00) 
  7     (-0.90,-0.43)     ( 0.00, 0.00) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2TCF/DF2TCF. The 

reference is: 

CALL F2TCF (N, SEQ, COEF, WFFTC, CPY) 

The additional arguments are as follows: 
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WFFTC — Real array of length 4 * N + 15 initialized by FFTCI (page 1022). The 
initialization depends on N.   (Input) 

CPY — Real array of length 2 * N. (Workspace) 

2. The routine FFTCF is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If FFTCF/FFTCB is used repeatedly with the same value of N, then call FFTCI followed 
by repeated calls to F2TCF/F2TCB. This is more efficient than repeated calls to 
FFTCF/FFTCB. 

Description 
The routine FFTCF computes the discrete complex Fourier transform of a complex vector of size 
N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N 
is a product of small prime factors. If N satisfies this condition, then the computational effort is 
proportional to N log N. This considerable savings has historically led people to refer to this 
algorithm as the “fast Fourier transform” or FFT. 

Specifically, given an N-vector x, FFTCF returns in c = COEF 
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Furthermore, a vector of Euclidean norm S is mapped into a vector of norm  

N S  

Finally, note that we can invert the Fourier transform as follows: 
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This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has 
the coefficients for a trigonometric interpolating polynomial to the data. An unnormalized 
inverse is implemented in FFTCB (page 1019). FFTCF is based on the complex FFT in 
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center 
for Atmospheric Research. 

FFTCB 
Computes the complex periodic sequence from its Fourier coefficients. 

Required Arguments 
N — Length of the sequence to be transformed.   (Input) 

COEF — Complex array of length N containing the Fourier coefficients.   (Input) 
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SEQ — Complex array of length N containing the periodic sequence.   (Output) 

FORTRAN 90 Interface 
Generic: CALL FFTCB (N, COEF, SEQ) 

Specific: The specific interface names are S_FFTCB and D_FFTCB. 

FORTRAN 77 Interface 
Single: CALL FFTCB (N, COEF, SEQ) 

Double: The double precision name is DFFTCB. 

Example 
In this example, we first compute the Fourier transform of the vector x, where xj = j for j = 1 to 
N. Note that the norm of x is (N[N + 1][2N + 1]/6)���, and hence, the norm of the transformed 
vector 

x̂ c�  

is N([N + 1][2N + 1]/6)���. The vector 

x̂  

is used as input into FFTCB with the resulting output s = Nx, that is, sj = jN, for j = 1 to N. 
      USE FFTCB_INT 
      USE FFTCF_INT 
      USE UMACH_INT 
 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, NOUT 
      COMPLEX    CMPLX, SEQ(N), COEF(N), X(N) 
      INTRINSIC  CMPLX 
!                                 This loop fills out the data vector 
!                                 with X(I)=I, I=1,N 
      DO 10  I=1, N 
         X(I) = CMPLX(I,0) 
   10 CONTINUE 
!                                 Compute the forward transform of X 
      CALL FFTCF (N, X, COEF) 
!                                 Compute the backward transform of 
!                                 COEF 
      CALL FFTCB (N, COEF, SEQ) 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Print results 
      WRITE (NOUT,99998) 
      WRITE (NOUT,99999) (I, X(I), COEF(I), SEQ(I), I=1,N) 
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99998 FORMAT (5X, ’INDEX’, 9X, ’INPUT’, 9X, ’FORWARD TRANSFORM’, 3X, & 
            ’BACKWARD TRANSFORM’) 
99999 FORMAT (1X, I7, 7X,’(’,F5.2,’,’,F5.2,’)’, & 
                     7X,’(’,F5.2,’,’,F5.2,’)’, & 
                     7X,’(’,F5.2,’,’,F5.2,’)’) 
      END 

Output 
INDEX      INPUT         FORWARD TRANSFORM   BACKWARD TRANSFORM 
 1       ( 1.00, 0.00)       (28.00, 0.00)       ( 7.00, 0.00) 
 2       ( 2.00, 0.00)       (-3.50, 7.27)       (14.00, 0.00) 
 3       ( 3.00, 0.00)       (-3.50, 2.79)       (21.00, 0.00) 
 4       ( 4.00, 0.00)       (-3.50, 0.80)       (28.00, 0.00) 
 5       ( 5.00, 0.00)       (-3.50,-0.80)       (35.00, 0.00) 
 6       ( 6.00, 0.00)       (-3.50,-2.79)       (42.00, 0.00) 
 7       ( 7.00, 0.00)       (-3.50,-7.27)       (49.00, 0.00) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2TCB/DF2TCB. The 

reference is: 

CALL F2TCB (N, COEF, SEQ, WFFTC, CPY) 

The additional arguments are as follows: 

WFFTC — Real array of length 4 * N + 15 initialized by FFTCI (page 1022). The 
initialization depends on N.   (Input) 

CPY — Real array of length 2 * N. (Workspace) 

2. The routine FFTCB is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If FFTCF/FFTCB is used repeatedly with the same value of N; then call FFTCI followed 
by repeated calls to F2TCF/F2TCB. This is more efficient than repeated calls to 
FFTCF/FFTCB. 

Description 
The routine FFTCB computes the inverse discrete complex Fourier transform of a complex 
vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is most 
efficient when N is a product of small prime factors. If N satisfies this condition, then the 
computational effort is proportional to N log N. This considerable savings has historically led 
people to refer to this algorithm as the “fast Fourier transform” or FFT. 

Specifically, given an N-vector c = COEF, FFTCB returns in s = SEQ 
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Furthermore, a vector of Euclidean norm S is mapped into a vector of norm 

N S  

Finally, note that we can invert the inverse Fourier transform as follows: 
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This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has 
the coefficients for a trigonometric interpolating polynomial to the data. FFTCB is based on the 
complex inverse FFT in FFTPACK. The package FFTPACK was developed by Paul 
Swarztrauber at the National Center for Atmospheric Research. 

FFTCI 
Computes parameters needed by FFTCF and FFTCB. 

Required Arguments 
N — Length of the sequence to be transformed.   (Input) 

WFFTC — Array of length 4N + 15 containing parameters needed by FFTCF and FFTCB.   
(Output) 

FORTRAN 90 Interface 
Generic: CALL FFTCI (N, WFFTC) 

Specific: The specific interface names are S_FFTCI and D_FFTCI. 

FORTRAN 77 Interface 
Single: CALL FFTCI (N, WFFTC) 

Double: The double precision name is DFFTCI. 

Example 
In this example, we compute a two-dimensional complex FFT by making one call to FFTCI 
followed by 2N calls to F2TCF. 

      USE FFTCI_INT 
      USE CONST_INT 
      USE F2TCF_INT 
      USE UMACH_INT 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    N 
      PARAMETER  (N=4) 
! 
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      INTEGER    I, IR, IS, J, NOUT 
      REAL       FLOAT, TWOPI, WFFTC(35), CPY(2*N) 
      COMPLEX    CEXP, CMPLX, COEF(N,N), H, SEQ(N,N), TEMP 
      INTRINSIC  CEXP, CMPLX, FLOAT 
! 
      TWOPI = CONST(’PI’) 
      TWOPI = 2*TWOPI 
      IR    = 3 
      IS    = 1 
!                                 Here we compute e**(2*pi*i/N) 
      TEMP = CMPLX(0.0,TWOPI/FLOAT(N)) 
      H    = CEXP(TEMP) 
!                                 Fill SEQ with data 
      DO 20  I=1, N 
         DO 10  J=1, N 
            SEQ(I,J) = H**((I-1)*(IR-1)+(J-1)*(IS-1)) 
   10 CONTINUE 
   20 CONTINUE 
!                                 Print out SEQ 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99997) 
      DO 30  I=1, N 
         WRITE (NOUT,99998) (SEQ(I,J),J=1,N) 
   30 CONTINUE 
!                                 Set initialization vector 
      CALL FFTCI (N, WFFTC) 
!                                 Transform the columns of SEQ 
      DO 40  I=1, N 
         CALL F2TCF (N, SEQ(1:,I), COEF(1:,I), WFFTC, CPY) 
   40 CONTINUE 
!                                 Take transpose of the result 
      DO 60  I=1, N 
         DO 50  J=I + 1, N 
            TEMP      = COEF(I,J) 
            COEF(I,J) = COEF(J,I) 
            COEF(J,I) = TEMP 
   50  CONTINUE 
   60 CONTINUE 
!                                 Transform the columns of this result 
      DO 70  I=1, N 
         CALL F2TCF (N, COEF(1:,I), SEQ(1:,I), WFFTC, CPY) 
   70 CONTINUE 
!                                 Take transpose of the result 
      DO 90  I=1, N 
         DO 80  J=I + 1, N 
            TEMP     = SEQ(I,J) 
            SEQ(I,J) = SEQ(J,I) 
            SEQ(J,I) = TEMP 
   80  CONTINUE 
   90 CONTINUE 
!                                 Print results 
      WRITE (NOUT,99999) 
      DO 100  I=1, N 
         WRITE (NOUT,99998) (SEQ(I,J),J=1,N) 
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  100 CONTINUE 
! 
99997 FORMAT (1X, ’The input matrix is below’) 
99998 FORMAT (1X, 4(’ (’,F5.2,’,’,F5.2,’)’)) 
99999 FORMAT (/, 1X, ’Result of two-dimensional transform’) 
      END 

Output 
The input matrix is below 
 ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) 
 (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) 
 ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) 
 (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) 
 
Result of two-dimensional transform 
 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) 
 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) 
 (16.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) 
 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) 

Comments 
Different WFFTC arrays are needed for different values of N. 

Description 
The routine FFTCI initializes the routines FFTCF (page 1017) and FFTCB (page 1019). An 
efficient way to make multiple calls for the same N to IMSL routine FFTCF or FFTCB is to use 
routine FFTCI for initialization. (In this case, replace FFTCF or FFTCB with F2TCF or F2TCB, 
respectively.) The routine FFTCI is based on the routine CFFTI in FFTPACK. The package 
FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric 
Research. 

FSINT 
Computes the discrete Fourier sine transformation of an odd sequence. 

Required Arguments 
N — Length of the sequence to be transformed. It must be greater than 1.   (Input) 

SEQ — Array of length N containing the sequence to be transformed.   (Input) 

COEF — Array of length N + 1 containing the transformed sequence.   (Output) 

FORTRAN 90 Interface 
Generic: CALL FSINT (N, SEQ, COEF) 

Specific: The specific interface names are S_FSINT and D_FSINT. 
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FORTRAN 77 Interface 
Single: CALL FSINT (N, SEQ, COEF) 

Double: The double precision name is DFSINT. 

Example 
In this example, we input a pure sine wave as a data vector and recover its Fourier sine series, 
which is a vector with all components zero except at the appropriate frequency it has an N. 

      USE FSINT_INT 
      USE CONST_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, NOUT 
      REAL       COEF(N+1), FLOAT, PI, SIN, SEQ(N) 
      INTRINSIC  FLOAT, SIN 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Fill the data vector SEQ 
!                                 with a pure sine wave 
      PI = CONST(’PI’) 
      DO 10  I=1, N 
         SEQ(I) = SIN(FLOAT(I)*PI/FLOAT(N+1)) 
   10 CONTINUE 
!                                 Compute the transform of SEQ 
      CALL FSINT (N, SEQ, COEF) 
!                                 Print results 
      WRITE (NOUT,99998) 
      WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 
99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’) 
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 
      END 

Output 
INDEX      SEQ       COEF 
  1       0.38       8.00 
  2       0.71       0.00 
  3       0.92       0.00 
  4       1.00       0.00 
  5       0.92       0.00 
  6       0.71       0.00 
  7       0.38       0.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2INT/DF2INT. The 

reference is: 

CALL F2INT (N, SEQ, COEF, WFSIN) 
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The additional argument is: 

WFSIN — Array of length INT(2.5 * N + 15) initialized by FSINI. The 
initialization depends on N.   (Input) 

2. The routine FSINT is most efficient when N + 1 is the product of small primes. 

3. The routine FSINT is its own (unnormalized) inverse. Applying FSINT twice will 
reproduce the original sequence multiplied by 2 * (N + 1). 

4. The arrays COEF and SEQ may be the same, if SEQ is also dimensioned at least N + 1. 

5. COEF (N + 1) is needed as workspace. 

6. If FSINT is used repeatedly with the same value of N, then call FSINI (page 1026) 
followed by repeated calls to F2INT. This is more efficient than repeated calls to 
FSINT. 

Description 
The routine FSINT computes the discrete Fourier sine transform of a real vector of size N. The 
method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N + 1 is a 
product of small prime factors. If N satisfies this condition, then the computational effort is 
proportional to N log N. 

Specifically, given an N-vector s = SEQ, FSINT returns in c = COEF 
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Finally, note that the Fourier sine transform is its own (unnormalized) inverse. The routine 
FSINT is based on the sine FFT in FFTPACK. The package FFTPACK was developed by Paul 
Swarztrauber at the National Center for Atmospheric Research. 

FSINI 
Computes parameters needed by FSINT. 

Required Arguments 
N — Length of the sequence to be transformed. N must be greater than 1.   (Input) 

WFSIN — Array of length INT(2.5 * N + 15) containing parameters needed by FSINT.   
(Output) 

FORTRAN 90 Interface 
Generic: CALL FSINI (N, WFSIN) 
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Specific: The specific interface names are S_FSINI and D_FSINI. 

FORTRAN 77 Interface 
Single: CALL FSINI (N, WFSIN) 

Double: The double precision name is DFSINI. 

Example 
In this example, we compute three distinct sine FFTs by calling FSINI once and then calling 
F2INT three times. 

      USE FSINI_INT 
      USE UMACH_INT 
      USE CONST_INT 
      USE F2INT_INT 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, K, NOUT 
      REAL       COEF(N+1), FLOAT, PI, SIN, WFSIN(32), SEQ(N) 
      INTRINSIC  FLOAT, SIN 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Initialize the work vector WFSIN 
      CALL FSINI (N, WFSIN) 
!                                 Different frequencies of the same 
!                                 wave will be transformed 
      DO 20  K=1, 3 
!                                 Fill the data vector SEQ 
!                                 with a pure sine wave 
         PI = CONST(’PI’) 
         DO 10  I=1, N 
            SEQ(I) = SIN(FLOAT(K*I)*PI/FLOAT(N+1)) 
   10    CONTINUE 
!                                 Compute the transform of SEQ 
         CALL F2INT (N, SEQ, COEF, WFSIN) 
!                                 Print results 
         WRITE (NOUT,99998) 
         WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 
   20 CONTINUE 
99998 FORMAT (/, 9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’) 
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 
      END 

Output 
INDEX      SEQ       COEF 
  1       0.38       8.00 
  2       0.71       0.00 
  3       0.92       0.00 
  4       1.00       0.00 
  5       0.92       0.00 
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  6       0.71       0.00 
  7       0.38       0.00 
 
INDEX      SEQ       COEF 
  1       0.71       0.00 
  2       1.00       8.00 
  3       0.71       0.00 
  4       0.00       0.00 
  5      -0.71       0.00 
  6      -1.00       0.00 
  7      -0.71       0.00 
 
INDEX      SEQ       COEF 
  1       0.92       0.00 
  2       0.71       0.00 
  3      -0.38       8.00 
  4      -1.00       0.00 
  5      -0.38       0.00 
  6       0.71       0.00 
  7       0.92       0.00 

Comments 
Different WFSIN arrays are needed for different values of N. 

Description 
The routine FSINI initializes the routine FSINT (page 1024). An efficient way to make multiple 
calls for the same N to IMSL routine FSINT, is to use routine FSINI for initialization. (In this 
case, replace FSINT with F2INT.) The routine FSINI is based on the routine SINTI in 
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center 
for Atmospheric Research. 

FCOST 
Computes the discrete Fourier cosine transformation of an even sequence. 

Required Arguments 
N — Length of the sequence to be transformed. It must be greater than 1.   (Input) 

SEQ — Array of length N containing the sequence to be transformed.   (Input) 

COEF — Array of length N containing the transformed sequence.   (Output) 

FORTRAN 90 Interface 
Generic: CALL FCOST (N, SEQ, COEF) 

Specific: The specific interface names are S_FCOST and D_FCOST. 
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FORTRAN 77 Interface 
Single: CALL FCOST (N, SEQ, COEF) 

Double: The double precision name is DFCOST. 

Example 
In this example, we input a pure cosine wave as a data vector and recover its Fourier cosine 
series, which is a vector with all components zero except at the appropriate frequency it has an 
N � 1. 

      USE FCOST_INT 
      USE CONST_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, NOUT 
      REAL       COEF(N), COS, FLOAT, PI, SEQ(N) 
      INTRINSIC  COS, FLOAT 
! 
      CALL UMACH (2, NOUT) 
!                                 Fill the data vector SEQ 
!                                 with a pure cosine wave 
      PI = CONST(’PI’) 
      DO 10  I=1, N 
         SEQ(I) = COS(FLOAT(I-1)*PI/FLOAT(N-1)) 
   10 CONTINUE 
!                                 Compute the transform of SEQ 
      CALL FCOST (N, SEQ, COEF) 
!                                 Print results 
      WRITE (NOUT,99998) 
      WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 
99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’) 
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 
      END 

Output 
INDEX      SEQ       COEF 
  1       1.00       0.00 
  2       0.87       6.00 
  3       0.50       0.00 
  4       0.00       0.00 
  5      -0.50       0.00 
  6      -0.87       0.00 
  7      -1.00       0.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2OST/DF2OST. The 

reference is: 
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CALL F2OST (N, SEQ, COEF, WFCOS) 

The additional argument is 

WFCOS — Array of length 3 * N + 15 initialized by FCOSI (page 1030). The 
initialization depends on N.   (Input) 

2. The routine FCOST is most efficient when N � 1 is the product of small primes. 

3. The routine FCOST is its own (unnormalized) inverse. Applying FCOST twice will 
reproduce the original sequence multiplied by 2 * (N � 1). 

4. The arrays COEF and SEQ may be the same. 

5. If FCOST is used repeatedly with the same value of N, then call FCOSI followed by 
repeated calls to F2OST. This is more efficient than repeated calls to FCOST. 

Description 
The routine FCOST computes the discrete Fourier cosine transform of a real vector of size N. 
The method used is a variant of the Cooley-Tukey algorithm , which is most efficient when N � 
1 is a product of small prime factors. If N satisfies this condition, then the computational effort 
is proportional to N log N. 

Specifically, given an N-vector s = SEQ, FCOST returns in c = COEF 

� �� �
� �

� �
1

1
1

2

1 1
2 cos 1

1

N
m

m n N
n

m n
c s s s

N
�

�

�

�

� �� �
� � � �� �

�� 	
�  

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse. Two 
applications of FCOST to a vector s produces (2N � 2)s. The routine FCOST is based on the 
cosine FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the 
National Center for Atmospheric Research. 

FCOSI 
Computes parameters needed by FCOST. 

Required Arguments 
N — Length of the sequence to be transformed. N must be greater than 1.   (Input) 

WFCOS — Array of length 3N + 15 containing parameters needed by FCOST.   (Output) 

FORTRAN 90 Interface 
Generic: CALL FCOSI (N, WFCOS) 
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Specific: The specific interface names are S_FCOSI and D_FCOSI. 

FORTRAN 77 Interface 
Single: CALL FCOSI (N, WFCOS) 

Double: The double precision name is DFCOSI. 

Example 
In this example, we compute three distinct cosine FFTs by calling FCOSI once and then calling 
F2OST three times. 

      USE FCOSI_INT 
      USE CONST_INT 
      USE F2OST_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, K, NOUT 
      REAL       COEF(N), COS, FLOAT, PI, WFCOS(36), SEQ(N) 
      INTRINSIC  COS, FLOAT 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Initialize the work vector WFCOS 
      CALL FCOSI (N, WFCOS) 
!                                 Different frequencies of the same 
!                                 wave will be transformed 
      PI = CONST(’PI’) 
      DO 20  K=1, 3 
!                                 Fill the data vector SEQ 
!                                 with a pure cosine wave 
         DO 10  I=1, N 
            SEQ(I) = COS(FLOAT(K*(I-1))*PI/FLOAT(N-1)) 
   10    CONTINUE 
!                                 Compute the transform of SEQ 
         CALL F2OST (N, SEQ, COEF, WFCOS) 
!                                 Print results 
         WRITE (NOUT,99998) 
         WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 
   20 CONTINUE 
99998 FORMAT (/, 9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’) 
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 
      END 

Output 
INDEX      SEQ       COEF 
  1       1.00       0.00 
  2       0.87       6.00 
  3       0.50       0.00 
  4       0.00       0.00 
  5      -0.50       0.00 
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  6      -0.87       0.00 
  7      -1.00       0.00 
 
INDEX      SEQ       COEF 
  1       1.00       0.00 
  2       0.50       0.00 
  3      -0.50       6.00 
  4      -1.00       0.00 
  5      -0.50       0.00 
  6       0.50       0.00 
  7       1.00       0.00 
 
INDEX      SEQ       COEF 
  1       1.00       0.00 
  2       0.00       0.00 
  3      -1.00       0.00 
  4       0.00       6.00 
  5       1.00       0.00 
  6       0.00       0.00 
  7      -1.00       0.00 

Comments 
Different WFCOS arrays are needed for different values of N. 

Description 
The routine FCOSI initializes the routine FCOST (page 1028). An efficient way to make multiple 
calls for the same N to IMSL routine FCOST is to use routine FCOSI for initialization. (In this 
case, replace FCOST with F2OST.) The routine FCOSI is based on the routine COSTI in 
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center 
for Atmospheric Research. 

QSINF 
Computes the coefficients of the sine Fourier transform with only odd wave numbers. 

Required Arguments 
N — Length of the sequence to be transformed.   (Input) 

SEQ — Array of length N containing the sequence.   (Input) 

COEF — Array of length N containing the Fourier coefficients.   (Output) 

FORTRAN 90 Interface 
Generic: CALL QSINF (N, SEQ, COEF) 

Specific: The specific interface names are S_QSINF and D_QSINF. 
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FORTRAN 77 Interface 
Single: CALL QSINF (N, SEQ, COEF) 

Double: The double precision name is DQSINF. 

Example 
In this example, we input a pure quarter sine wave as a data vector and recover its Fourier 
quarter sine series. 

      USE QSINF_INT 
      USE CONST_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, NOUT 
      REAL       COEF(N), FLOAT, PI, SIN, SEQ(N) 
      INTRINSIC  FLOAT, SIN 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Fill the data vector SEQ 
!                                 with a pure sine wave 
      PI = CONST(’PI’) 
      DO 10  I=1, N 
         SEQ(I) = SIN(FLOAT(I)*(PI/2.0)/FLOAT(N)) 
   10 CONTINUE 
!                                 Compute the transform of SEQ 
      CALL QSINF (N, SEQ, COEF) 
!                                 Print results 
      WRITE (NOUT,99998) 
      WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 
99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’) 
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 
      END 

Output 
INDEX      SEQ       COEF 
  1       0.22       7.00 
  2       0.43       0.00 
  3       0.62       0.00 
  4       0.78       0.00 
  5       0.90       0.00 
  6       0.97       0.00 
  7       1.00       0.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2INF/DQ2INF. The 

reference is: 

CALL Q2INF (N, SEQ, COEF, WQSIN) 
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The additional argument is: 

WQSIN — Array of length 3 * N + 15 initialized by QSINI (page 1037). The 
initialization depends on N.   (Input) 

2. The routine QSINF is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If QSINF/QSINB is used repeatedly with the same value of N, then call QSINI followed 
by repeated calls to Q2INF/Q2INB. This is more efficient than repeated calls to 
QSINF/QSINB. 

Description 
The routine QSINF computes the discrete Fourier quarter sine transform of a real vector of size 
N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N 
is a product of small prime factors. If N satisfies this condition, then the computational effort is 
proportional to N log N. 

Specifically, given an N-vector s = SEQ, QSINF returns in c = COEF 
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Finally, note that the Fourier quarter sine transform has an (unnormalized) inverse, which is 
implemented in the IMSL routine QSINB. The routine QSINF is based on the quarter sine FFT in 
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center 
for Atmospheric Research. 

QSINB 
Computes a sequence from its sine Fourier coefficients with only odd wave numbers. 

Required Arguments 
N — Length of the sequence to be transformed.   (Input) 

COEF — Array of length N containing the Fourier coefficients.   (Input) 

SEQ — Array of length N containing the sequence.   (Output) 

FORTRAN 90 Interface 
Generic: CALL QSINB (N, COEF, SEQ) 

Specific: The specific interface names are S_QSINB and D_QSINB. 
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FORTRAN 77 Interface 
Single: CALL QSINB (N, COEF, SEQ) 

Double: The double precision name is DQSINB. 

Example 
In this example, we first compute the quarter wave sine Fourier transform c of the vector x 
where xn = n for n = 1 to N. We then compute the inverse quarter wave Fourier transform of c 
which is 4Nx = s. 

      USE QSINB_INT 
      USE QSINF_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, NOUT 
      REAL       FLOAT, SEQ(N), COEF(N), X(N) 
      INTRINSIC  FLOAT 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Fill the data vector X 
!                                 with X(I) = I, I=1,N 
      DO 10  I=1, N 
         X(I) = FLOAT(I) 
   10 CONTINUE 
!                                 Compute the forward transform of X 
      CALL QSINF (N, X, COEF) 
!                                 Compute the backward transform of W 
      CALL QSINB (N, COEF, SEQ) 
!C                                 Print results 
      WRITE (NOUT,99998) 
      WRITE (NOUT,99999) (X(I), COEF(I), SEQ(I), I=1,N) 
99998 FORMAT (5X, ’INPUT’, 5X, ’FORWARD TRANSFORM’, 3X, ’BACKWARD ’, & 
            ’TRANSFORM’) 
99999 FORMAT (3X, F6.2, 10X, F6.2, 15X, F6.2) 
      END 
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Output 
 
INPUT     FORWARD TRANSFORM   BACKWARD TRANSFORM 
1.00           39.88                28.00 
2.00           -4.58                56.00 
3.00            1.77                84.00 
4.00           -1.00               112.00 
5.00            0.70               140.00 
6.00           -0.56               168.00 
7.00            0.51               196.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2INB/DQ2INB. The 

reference is: 

CALL Q2INB (N, SEQ, COEF, WQSIN) 

The additional argument is: 

WQSIN — ray of length 3 * N + 15 initialized by QSINI (page 1037). The 
initialization depends on N.(Input) 

2. The routine QSINB is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If QSINF/QSINB is used repeatedly with the same value of N, then call QSINI followed 
by repeated calls to Q2INF/Q2INB. This is more efficient than repeated calls to 
QSINF/QSINB. 

Description 
The routine QSINB computes the discrete (unnormalized) inverse Fourier quarter sine transform 
of a real vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is 
most efficient when N is a product of small prime factors. If N satisfies this condition, then the 
computational effort is proportional to N log N.  

Specifically, given an N-vector c = COEF, QSINB returns in s = SEQ 
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Furthermore, a vector x of length N that is first transformed by QSINF (page 1032) and then by 
QSINB will be returned by QSINB as 4Nx. The routine QSINB is based on the inverse quarter 
sine FFT in FFTPACK which was developed by Paul Swarztrauber at the National Center for 
Atmospheric Research. 
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QSINI 
Computes parameters needed by QSINF and QSINB. 

CALL QSINI (N, WQSIN) 

Required Arguments 
N — Length of the sequence to be transformed.   (Input) 

WQSIN — Array of length 3N + 15 containing parameters needed by QSINF and QSINB.   
(Output) 

FORTRAN 90 Interface 
Generic: CALL QSINI (N, WQSIN) 

Specific: The specific interface names are S_QSINI and D_QSINI. 

FORTRAN 77 Interface 
Single: CALL QSINI (N, WQSIN) 

Double: The double precision name is DQSINI. 

Example 
In this example, we compute three distinct quarter sine transforms by calling QSINI once and 
then calling Q2INF three times. 

      USE QSINI_INT 
      USE CONST_INT 
      USE Q2INF_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, K, NOUT 
      REAL       COEF(N), FLOAT, PI, SIN, WQSIN(36), SEQ(N) 
      INTRINSIC  FLOAT, SIN 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Initialize the work vector WQSIN 
      CALL QSINI (N, WQSIN) 
!                                 Different frequencies of the same 
!                                 wave will be transformed 
      PI = CONST(’PI’) 
      DO 20  K=1, 3 
!                                 Fill the data vector SEQ 
!                                 with a pure sine wave 
         DO 10  I=1, N 
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            SEQ(I) = SIN(FLOAT((2*K-1)*I)*(PI/2.0)/FLOAT(N)) 
   10    CONTINUE 
!                                 Compute the transform of SEQ 
         CALL Q2INF (N, SEQ, COEF, WQSIN) 
!                                 Print results 
         WRITE (NOUT,99998) 
         WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 
   20 CONTINUE 
99998 FORMAT (/, 9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’) 
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 
      END 

Output 
INDEX      SEQ       COEF 
  1       0.22       7.00 
  2       0.43       0.00 
  3       0.62       0.00 
  4       0.78       0.00 
  5       0.90       0.00 
  6       0.97       0.00 
  7       1.00       0.00 
 
INDEX      SEQ       COEF 
  1       0.62       0.00 
  2       0.97       7.00 
  3       0.90       0.00 
  4       0.43       0.00 
  5      -0.22       0.00 
  6      -0.78       0.00 
  7      -1.00       0.00 
 
INDEX      SEQ       COEF 
  1       0.90       0.00 
  2       0.78       0.00 
  3      -0.22       7.00 
  4      -0.97       0.00 
  5      -0.62       0.00 
  6       0.43       0.00 
  7       1.00       0.00 

Comments 
Different WQSIN arrays are needed for different values of N. 

Description 
The routine QSINI initializes the routines QSINF (page 1032) and QSINB (page 1034). An 
efficient way to make multiple calls for the same N to IMSL routine QSINF or QSINB is to use 
routine QSINI for initialization. (In this case, replace QSINF or QSINB with Q2INF or Q2INB, 
respectively.) The routine QSINI is based on the routine SINQI in FFTPACK. The package 
FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric 
Research. 
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QCOSF 
Computes the coefficients of the cosine Fourier transform with only odd wave numbers. 

Required Arguments 
N — Length of the sequence to be transformed.   (Input) 

SEQ — Array of length N containing the sequence.   (Input) 

COEF — Array of length N containing the Fourier coefficients.   (Output) 

FORTRAN 90 Interface 
Generic: CALL QCOSF (N, SEQ, COEF [,…]) 

Specific: The specific interface names are S_QCOSF and D_QCOSF. 

FORTRAN 77 Interface 
Single: CALL QCOSF (N, SEQ, COEF) 

Double: The double precision name is DQCOSF. 

Example 
In this example, we input a pure quarter cosine wave as a data vector and recover its Fourier 
quarter cosine series. 

      USE QCOSF_INT 
      USE CONST_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, NOUT 
      REAL       COEF(N), COS, FLOAT, PI, SEQ(N) 
      INTRINSIC  COS, FLOAT 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Fill the data vector SEQ 
!                                 with a pure cosine wave 
      PI = CONST(’PI’) 
      DO 10  I=1, N 
            SEQ(I) = COS(FLOAT(I-1)*(PI/2.0)/FLOAT(N)) 
   10    CONTINUE 
 
!                                 Compute the transform of SEQ 
         Call QCOSF (N, SEQ, COEF) 
!                                  Print results 
         WRITE (NOUT,99998) 
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         WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 
99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’) 
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 
      END 

Output 
INDEX      SEQ       COEF 
  1       1.00       7.00 
  2       0.97       0.00 
  3       0.90       0.00 
  4       0.78       0.00 
  5       0.62       0.00 
  6       0.43       0.00 
  7       0.22       0.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2OSF/DQ2OSF. The 

reference is: 

CALL Q2OSF (N, SEQ, COEF, WQCOS) 

The additional argument is: 

WQCOS — Array of length 3 * N + 15 initialized by QCOSI (page 1043). The 
initialization depends on N.   (Input) 

2. The routine QCOSF is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If QCOSF/QCOSB is used repeatedly with the same value of N, then call QCOSI followed 
by repeated calls to Q2OSF/Q2OSB. This is more efficient than repeated calls to 
QCOSF/QCOSB. 

Description 
The routine QCOSF computes the discrete Fourier quarter cosine transform of a real vector of 
size N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient 
when N is a product of small prime factors. If N satisfies this condition, then the computational 
effort is proportional to N log N. 

Specifically, given an N-vector s = SEQ, QCOSF returns in c = COEF 
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Finally, note that the Fourier quarter cosine transform has an (unnormalized) inverse which is 
implemented in QCOSB. The routine QCOSF is based on the quarter cosine FFT in FFTPACK. 
The package FFTPACK was developed by Paul Swarztrauber at the National Center for 
Atmospheric Research. 
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QCOSB 
Computes a sequence from its cosine Fourier coefficients with only odd wave numbers. 

Required Arguments 
N — Length of the sequence to be transformed.   (Input) 

COEF — Array of length N containing the Fourier coefficients.   (Input) 

SEQ — Array of length N containing the sequence.   (Output) 

FORTRAN 90 Interface 
Generic: CALL QCOSB (N, COEF, SEQ) 

Specific: The specific interface names are S_QCOSB and D_QCOSB. 

FORTRAN 77 Interface 
Single: CALL QCOSB (N, COEF, SEQ) 

Double: The double precision name is DQCOSB. 

Example 
In this example, we first compute the quarter wave cosine Fourier transform c of the vector x, 
where xn = n for n = 1 to N. We then compute the inverse quarter wave Fourier transform of c 
which is 4Nx = s. 

      USE QCOSB_INT 
      USE QCOSF_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, NOUT 
      REAL       FLOAT, SEQ(N), COEF(N), X(N) 
      INTRINSIC  FLOAT 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Fill the data vector X 
!                                 with X(I) = I, I=1,N 
      DO 10  I=1, N 
         X(I) = FLOAT(I) 
   10 CONTINUE 
!                                 Compute the forward transform of X 
      CALL QCOSF (N, X, COEF) 
!                                 Compute the backward transform of 
!                                 COEF 
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      CALL QCOSB (N, COEF, SEQ) 
!                                 Print results 
      WRITE (NOUT,99998) 
      DO 20  I=1, N 
         WRITE (NOUT,99999) X(I), COEF(I), SEQ(I) 
   20 CONTINUE 
99998 FORMAT (5X, ’INPUT’, 5X, ’FORWARD TRANSFORM’, 3X, ’BACKWARD ’, & 
            ’TRANSFORM’) 
99999 FORMAT (3X, F6.2, 10X, F6.2, 15X, F6.2) 
      END 

Output 
INPUT     FORWARD TRANSFORM   BACKWARD TRANSFORM 
1.00           31.12                28.00 
2.00          -27.45                56.00 
3.00           10.97                84.00 
4.00           -9.00               112.00 
5.00            4.33               140.00 
6.00           -3.36               168.00 
7.00            0.40               196.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2OSB/DQ2OSB. The 

reference is: 

CALL Q2OSB (N, COEF, SEQ, WQCOS) 

The additional argument is: 

WQCOS — Array of length 3 * N + 15 initialized by QCOSI (page 1043). The 
initialization depends on N.   (Input) 

2. The routine QCOSB is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If QCOSF/QCOSB is used repeatedly with the same value of N, then call QCOSI followed 
by repeated calls to Q2OSF/Q2OSB. This is more efficient than repeated calls to 
QCOSF/QCOSB. 

Description 
The routine QCOSB computes the discrete (unnormalized) inverse Fourier quarter cosine 
transform of a real vector of size N. The method used is a variant of the Cooley-Tukey 
algorithm, which is most efficient when N is a product of small prime factors. If N satisfies this 
condition, then the computational effort is proportional to N log N. Specifically, given an N-
vector c = COEF, QCOSB returns in s = SEQ 
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Furthermore, a vector x of length N that is first transformed by QCOSF (page 1039) and then by 
QCOSB will be returned by QCOSB as 4Nx. The routine QCOSB is based on the inverse quarter 
cosine FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the 
National Center for Atmospheric Research. 

QCOSI 
Computes parameters needed by QCOSF and QCOSB. 

Required Arguments 
N — Length of the sequence to be transformed.   (Input) 

WQCOS — Array of length 3N + 15 containing parameters needed by QCOSF and QCOSB.   
(Output) 

FORTRAN 90 Interface 
Generic: CALL QCOSI (N, WQCOS) 

Specific: The specific interface names are S_QCOSI and D_QCOSI. 

FORTRAN 77 Interface 
Single: CALL QCOSI (N, WQCOS) 

Double: The double precision name is DQCOSI. 

Example 
In this example, we compute three distinct quarter cosine transforms by calling QCOSI once and 
then calling Q2OSF three times. 

      USE QCOSI_INT 
      USE CONST_INT 
      USE Q2OSF_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=7) 
! 
      INTEGER    I, K, NOUT 
      REAL       COEF(N), COS, FLOAT, PI, WQCOS(36), SEQ(N) 
      INTRINSIC  COS, FLOAT 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Initialize the work vector WQCOS 
      CALL QCOSI (N, WQCOS) 
!                                 Different frequencies of the same 
!                                 wave will be transformed 
      PI = CONST(’PI’) 
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      DO 20  K=1, 3 
!                                 Fill the data vector SEQ 
!                                 with a pure cosine wave 
         DO 10  I=1, N 
            SEQ(I) = COS(FLOAT((2*K-1)*(I-1))*(PI/2.0)/FLOAT(N)) 
   10    CONTINUE 
!                                 Compute the transform of SEQ 
         CALL Q2OSF (N, SEQ, COEF, WQCOS) 
!                                 Print results 
         WRITE (NOUT,99998) 
         WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 
   20 CONTINUE 
99998 FORMAT (/, 9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’) 
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 
      END 

Output 
INDEX      SEQ       COEF 
  1       1.00       7.00 
  2       0.97       0.00 
  3       0.90       0.00 
  4       0.78       0.00 
  5       0.62       0.00 
  6       0.43       0.00 
  7       0.22       0.00 
 
INDEX      SEQ       COEF 
  1       1.00       0.00 
  2       0.78       7.00 
  3       0.22       0.00 
  4      -0.43       0.00 
  5      -0.90       0.00 
  6      -0.97       0.00 
  7      -0.62       0.00 
 
INDEX      SEQ       COEF 
  1       1.00       0.00 
  2       0.43       0.00 
  3      -0.62       7.00 
  4      -0.97       0.00 
  5      -0.22       0.00 
  6       0.78       0.00 
  7       0.90       0.00 

Comments 
Different WQCOS arrays are needed for different values of N. 

Description 
The routine QCOSI initializes the routines QCOSF (page 1039) and QCOSB (page 1041). An 
efficient way to make multiple calls for the same N to IMSL routine QCOSF or QCOSB is to use 
routine QCOSI for initialization. (In this case, replace QCOSF or QCOSB with Q2OSF or Q2OSB , 
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respectively.) The routine QCOSI is based on the routine COSQI in FFTPACK, which was 
developed by Paul Swarztrauber at the National Center for Atmospheric Research. 

FFT2D 
Computes Fourier coefficients of a complex periodic two-dimensional array. 

Required Arguments 
A — NRA by NCA complex matrix containing the periodic data to be transformed.   (Input) 

COEF — NRA by NCA complex matrix containing the Fourier coefficients of A.   (Output) 

Optional Arguments 
NRA — The number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — The number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDCOEF = size (COEF,1). 

FORTRAN 90 Interface 
Generic: CALL FFT2D (A, COEF [,…]) 

Specific: The specific interface names are S_FFT2D and D_FFT2D. 

FORTRAN 77 Interface 
Single: CALL FFT2D (NRA, NCA, A, LDA, COEF, LDCOEF) 

Double: The double precision name is DFFT2D. 

Example 
In this example, we compute the Fourier transform of the pure frequency input for a 5 � 4 array 
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for 1 � n � 5 and 1 � m � 4 using the IMSL routine FFT2D. The result 

â c�  

has all zeros except in the (3, 4) position. 
      USE FFT2D_INT 
      USE CONST_INT 
      USE WRCRN_INT 
      INTEGER    I, IR, IS, J, NCA, NRA 
      REAL       FLOAT, TWOPI 
      COMPLEX    A(5,4), C, CEXP, CMPLX, COEF(5,4), H 
      CHARACTER  TITLE1*26, TITLE2*26 
      INTRINSIC  CEXP, CMPLX, FLOAT 
! 
      TITLE1 = ’The input matrix is below ’ 
      TITLE2 = ’The output matrix is below’ 
      NRA    = 5 
      NCA    = 4 
      IR     = 3 
      IS     = 4 
!                                 Fill A with initial data 
      TWOPI = CONST(’PI’) 
      TWOPI = 2.0*TWOPI 
      C     = CMPLX(0.0,1.0) 
      H     = CEXP(TWOPI*C) 
      DO 10  I=1, NRA 
         DO 10  J=1, NCA 
            A(I,J) = CEXP(TWOPI*C*((FLOAT((I-1)*(IR-1))/FLOAT(NRA)+ & 
                    FLOAT((J-1)*(IS-1))/FLOAT(NCA)))) 
   10 CONTINUE 
! 
      CALL WRCRN (TITLE1, A) 
! 
      CALL FFT2D (A, COEF) 
! 
      CALL WRCRN (TITLE2, COEF) 
! 
      END 

Output 
                The input matrix is below 
                1                2                3                4 
1  ( 1.000, 0.000)  ( 0.000,-1.000)  (-1.000, 0.000)  ( 0.000, 1.000) 
2  (-0.809, 0.588)  ( 0.588, 0.809)  ( 0.809,-0.588)  (-0.588,-0.809) 
3  ( 0.309,-0.951)  (-0.951,-0.309)  (-0.309, 0.951)  ( 0.951, 0.309) 
4  ( 0.309, 0.951)  ( 0.951,-0.309)  (-0.309,-0.951)  (-0.951, 0.309) 
5  (-0.809,-0.588)  (-0.588, 0.809)  ( 0.809, 0.588)  ( 0.588,-0.809) 
 
                 The Output matrix is below 
                1                2                3                4 
1  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00) 
2  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00) 
3  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  ( 20.00,  0.00) 
4  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00) 
5  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00) 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of F2T2D/DF2T2D. The 

reference is: 

CALL F2T2D (NRA, NCA, A, LDA, COEF, LDCOEF, WFF1,  
            WFF2, CWK, CPY) 

 

The additional arguments are as follows: 

WFF1 — Real array of length 4 * NRA + 15 initialized by FFTCI. The initialization 
depends on NRA.   (Input) 

WFF2 — Real array of length 4 * NCA + 15 initialized by FFTCI. The initialization 
depends on NCA.   (Input) 

CWK — Complex array of length 1.   (Workspace) 

CPY — Real array of length 2 * MAX(NRA, NCA).   (Workspace) 

2. The routine FFT2D is most efficient when NRA and NCA are the product of small primes. 

3. The arrays COEF and A may be the same. 

4. If FFT2D/FFT2B is used repeatedly, with the same values for NRA and NCA, then use 
FFTCI (page 1022) to fill WFF1(N = NRA) and WFF2(N = NCA). Follow this with 
repeated calls to F2T2D/F2T2B. This is more efficient than repeated calls to 
FFT2D/FFT2B. 

Description 
The routine FFT2D computes the discrete complex Fourier transform of a complex two 
dimensional array of size (NRA = N) � (NCA = M). The method used is a variant of the Cooley-
Tukey algorithm , which is most efficient when N and M are each products of small prime 
factors. If N and M satisfy this condition, then the computational effort is proportional to N M 
log N M. This considerable savings has historically led people to refer to this algorithm as the 
“fast Fourier transform” or FFT. 

Specifically, given an N � M array a, FFT2D returns in c = COEF 
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Furthermore, a vector of Euclidean norm S is mapped into a vector of norm 
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Finally, note that an unnormalized inverse is implemented in FFT2B (page 1048). The routine 
FFT2D is based on the complex FFT in FFTPACK. The package FFTPACK was developed by 
Paul Swarztrauber at the National Center for Atmospheric Research. 

FFT2B 
Computes the inverse Fourier transform of a complex periodic two-dimensional array. 

Required Arguments 
COEF — NRCOEF by NCCOEF complex array containing the Fourier coefficients to be 

transformed.   (Input) 

A — NRCOEF by NCCOEF complex array containing the Inverse Fourier coefficients of COEF.   
(Output) 

Optional Arguments 
NRCOEF — The number of rows of COEF.   (Input) 

Default: NRCOEF = size (COEF,1). 

NCCOEF — The number of columns of COEF.   (Input) 
Default: NCCOEF = size (COEF,2). 

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDCOEF = size (COEF,1). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL FFT2B (COEF, A [,…]) 

Specific: The specific interface names are S_FFT2B and D_FFT2B. 

FORTRAN 77 Interface 
Single: CALL FFT2B (NRCOEF, NCCOEF, COEF, LDCOEF, A, LDA) 

Double: The double precision name is DFFT2B. 

Example 
In this example, we first compute the Fourier transform of the 5 � 4 array 
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� �5 1nmx n m� � �  

for 1 � n � 5 and 1 � m � 4 using the IMSL routine FFT2D. The result 

x̂ c�  

is then inverted by a call to FFT2B. Note that the result is an array a satisfying a = (5)(4)x = 20x. 
In general, FFT2B is an unnormalized inverse with expansion factor N M. 

      USE FFT2B_INT 
      USE FFT2D_INT 
      USE WRCRN_INT 
      INTEGER    M, N, NCA, NRA 
      COMPLEX    CMPLX, X(5,4), A(5,4), COEF(5,4) 
      CHARACTER  TITLE1*26, TITLE2*26, TITLE3*26 
      INTRINSIC  CMPLX 
! 
      TITLE1 = ’The input matrix is below ’ 
      TITLE2 = ’After FFT2D               ’ 
      TITLE3 = ’After FFT2B               ’ 
      NRA    = 5 
      NCA    = 4 
!                                 Fill X with initial data 
      DO 20  N=1, NRA 
         DO 10  M=1, NCA 
            X(N,M) = CMPLX(FLOAT(N+5*M-5),0.0) 
   10    CONTINUE 
   20 CONTINUE 
! 
      CALL WRCRN (TITLE1, X) 
! 
      CALL FFT2D (X, COEF) 
! 
      CALL WRCRN (TITLE2, COEF) 
! 
      CALL FFT2B (COEF, A) 
! 
      CALL WRCRN (TITLE3, A) 
! 
      END 

Output 
                The input matrix is below 
                1                2                3                4 
1  (  1.00,  0.00)  (  6.00,  0.00)  ( 11.00,  0.00)  ( 16.00,  0.00) 
2  (  2.00,  0.00)  (  7.00,  0.00)  ( 12.00,  0.00)  ( 17.00,  0.00) 
3  (  3.00,  0.00)  (  8.00,  0.00)  ( 13.00,  0.00)  ( 18.00,  0.00) 
4  (  4.00,  0.00)  (  9.00,  0.00)  ( 14.00,  0.00)  ( 19.00,  0.00) 
5  (  5.00,  0.00)  ( 10.00,  0.00)  ( 15.00,  0.00)  ( 20.00,  0.00) 
 
                             After FFT2D 
                1                2                3                4 
1  ( 210.0,   0.0)  ( -50.0,  50.0)  ( -50.0,   0.0)  ( -50.0, -50.0) 
2  ( -10.0,  13.8)  (   0.0,   0.0)  (   0.0,   0.0)  (   0.0,   0.0) 
3  ( -10.0,   3.2)  (   0.0,   0.0)  (   0.0,   0.0)  (   0.0,   0.0) 
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4  ( -10.0,  -3.2)  (   0.0,   0.0)  (   0.0,   0.0)  (   0.0,   0.0) 
5  ( -10.0, -13.8)  (   0.0,   0.0)  (   0.0,   0.0)  (   0.0,   0.0) 
 
                             After FFT2B 
                1                2                3                4 
1  (  20.0,   0.0)  ( 120.0,   0.0)  ( 220.0,   0.0)  ( 320.0,   0.0) 
2  (  40.0,   0.0)  ( 140.0,   0.0)  ( 240.0,   0.0)  ( 340.0,   0.0) 
3  (  60.0,   0.0)  ( 160.0,   0.0)  ( 260.0,   0.0)  ( 360.0,   0.0) 
4  (  80.0,   0.0)  ( 180.0,   0.0)  ( 280.0,   0.0)  ( 380.0,   0.0) 
5  ( 100.0,   0.0)  ( 200.0,   0.0)  ( 300.0,   0.0)  ( 400.0,   0.0) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2T2B/DF2T2B. The 

reference is: 

CALL F2T2B (NRCOEF, NCCOEF, A, LDA, COEF, LDCOEF,  
     WFF1, WFF2, CWK, CPY) 

The additional arguments are as follows: 

WFF1 — Real array of length 4 * NRCOEF + 15 initialized by FFTCI (page 1022). The 
initialization depends on NRCOEF.   (Input) 

WFF2 — Real array of length 4 * NCCOEF + 15 initialized by FFTCI. The initialization 
depends on NCCOEF.   (Input) 

CWK — Complex array of length 1.   (Workspace) 

CPY — Real array of length 2 * MAX(NRCOEF, NCCOEF).   (Workspace) 

2. The routine FFT2B is most efficient when NRCOEF and NCCOEF are the product of 
small primes. 

3. The arrays COEF and A may be the same. 

4. If FFT2D/FFT2B is used repeatedly, with the same values for NRCOEF and NCCOEF, 
then use FFTCI to fill WFF1(N = NRCOEF) and WFF2(N = NCCOEF). Follow this with 
repeated calls to F2T2D/F2T2B. This is more efficient than repeated calls to 
FFT2D/FFT2B. 

Description 
The routine FFT2B computes the inverse discrete complex Fourier transform of a complex two-
dimensional array of size (NRCOEF = N) × (NCCOEF = M). The method used is a variant of the 
Cooley-Tukey algorithm , which is most efficient when N and M are both products of small 
prime factors. If N and M satisfy this condition, then the computational effort is proportional to 
N M log N M. This considerable savings has historically led people to refer to this algorithm  as 
the “fast Fourier transform” or FFT. 
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Specifically, given an N � M array c = COEF, FFT2B returns in a 

� �� � � �� �2 1 1 / 2 1 1 /

1 1

N M
i j n N i k m M

jk nm
n m

a c e e� �� � � �

� �

���  

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm 

S NM  

Finally, note that an unnormalized inverse is implemented in FFT2D (page 1045). The routine 
FFT2B is based on the complex FFT in FFTPACK. The package FFTPACK was developed by 
Paul Swarztrauber at the National Center for Atmospheric Research. 

FFT3F 
Computes Fourier coefficients of a complex periodic three-dimensional array. 

Required Arguments 
A — Three-dimensional complex matrix containing the data to be transformed.   (Input) 

B — Three-dimensional complex matrix containing the Fourier coefficients of A.   (Output) 
The matrices A and B may be the same. 

Optional Arguments 
N1 — Limit on the first subscript of matrices A and B.   (Input) 

Default: N1 = size(A, 1) 

N2 — Limit on the second subscript of matrices A and B.   (Input) 
Default: N2 = size(A, 2) 

N3 — Limit on the third subscript of matrices A and B.   (Input) 
Default: N3 = size(A, 3) 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

MDA — Middle dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: MDA = size (A,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 
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MDB — Middle dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: MDB = size (B,2). 

FORTRAN 90 Interface 
Generic: CALL FFT3F (A, B [,…]) 

Specific: The specific interface names are S_FFT3F and D_FFT3F. 

FORTRAN 77 Interface 
Single: CALL FFT3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB) 

Double: The double precision name is DFFT3F. 

Example 
In this example, we compute the Fourier transform of the pure frequency input for a 2 � 3 � 4 
array 

� � � � � �2 1 1/ 2 2 1 2 / 3 2 1 2 / 4i n i m i l
nmla e e e� � �� � �

�  

for 1 � n � 2, 1 � m � 3, and 1 � l � 4 using the IMSL routine FFT3F. The result 

â c�  

has all zeros except in the (2, 3, 3) position. 
      USE FFT3F_INT 
      USE UMACH_INT 
      USE CONST_INT 
      INTEGER    LDA, LDB, MDA, MDB, NDA, NDB 
      PARAMETER  (LDA=2, LDB=2, MDA=3, MDB=3, NDA=4, NDB=4) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, J, K, L, M, N, N1, N2, N3, NOUT 
      REAL       PI 
      COMPLEX    A(LDA,MDA,NDA), B(LDB,MDB,NDB), C, H 
!                                 SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  CEXP, CMPLX 
      COMPLEX    CEXP, CMPLX 
!                                 SPECIFICATIONS FOR SUBROUTINES 
!                                 SPECIFICATIONS FOR FUNCTIONS 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
      PI = CONST(’PI’) 
      C  = CMPLX(0.0,2.0*PI) 
!                                 Set array A 
      DO 30  N=1, 2 
         DO 20  M=1, 3 
            DO 10  L=1, 4 
               H        = C*(N-1)*1/2 + C*(M-1)*2/3 + C*(L-1)*2/4 
               A(N,M,L) = CEXP(H) 
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   10       CONTINUE 
   20    CONTINUE 
   30 CONTINUE 
! 
      CALL FFT3F (A, B) 
! 
      WRITE (NOUT,99996) 
      DO 50  I=1, 2 
         WRITE (NOUT,99998) I 
         DO 40  J=1, 3 
            WRITE (NOUT,99999) (A(I,J,K),K=1,4) 
   40    CONTINUE 
   50 CONTINUE 
! 
      WRITE (NOUT,99997) 
      DO 70  I=1, 2 
         WRITE (NOUT,99998) I 
         DO 60  J=1, 3 
            WRITE (NOUT,99999) (B(I,J,K),K=1,4) 
   60    CONTINUE 
   70 CONTINUE 
! 
99996 FORMAT (13X, ’The input for FFT3F is’) 
99997 FORMAT (/, 13X, ’The results from FFT3F are’) 
99998 FORMAT (/, ’ Face no. ’, I1) 
99999 FORMAT (1X, 4(’(’,F6.2,’,’,F6.2,’)’,3X)) 
      END 

Output 
            The input for FFT3F is 
 
Face no. 1 
(  1.00,  0.00)   ( -1.00,  0.00)   (  1.00,  0.00)   ( -1.00,  0.00) 
( -0.50, -0.87)   (  0.50,  0.87)   ( -0.50, -0.87)   (  0.50,  0.87) 
( -0.50,  0.87)   (  0.50, -0.87)   ( -0.50,  0.87)   (  0.50, -0.87) 
 
Face no. 2 
( -1.00,  0.00)   (  1.00,  0.00)   ( -1.00,  0.00)   (  1.00,  0.00) 
(  0.50,  0.87)   ( -0.50, -0.87)   (  0.50,  0.87)   ( -0.50, -0.87) 
(  0.50, -0.87)   ( -0.50,  0.87)   (  0.50, -0.87)   ( -0.50,  0.87) 
 
The results from FFT3F are 
 
Face no. 1 
(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 
(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 
(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 
 
Face no. 2 
(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 
(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 
(  0.00,  0.00)   (  0.00,  0.00)   ( 24.00,  0.00)   (  0.00,  0.00) 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of F2T3F/DF2T3F. The 

reference is: 

CALL F2T3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB,  
     WFF1, WFF2, WFF3, CPY) 

The additional arguments are as follows: 

WFF1 — Real array of length 4 * N1 + 15 initialized by FFTCI (page 1022). The 
initialization depends on N1.   (Input) 

WFF2 — Real array of length 4 * N2 + 15 initialized by FFTCI. The initialization 
depends on N2.   (Input) 

WFF3 — Real array of length 4 * N3 + 15 initialized by FFTCI. The initialization 
depends on N3.   (Input) 

CPY — Real array of size 2 * MAX(N1, N2, N3).   (Workspace) 

2. The routine FFT3F is most efficient when N1, N2, and N3 are the product of small 
primes. 

3. If FFT3F/FFT3B is used repeatedly with the same values for N1, N2 and N3, then use 
FFTCI to fill WFF1(N = N1), WFF2(N = N2), and WFF3(N = N3). Follow this with 
repeated calls to F2T3F/F2T3B. This is more efficient than repeated calls to 
FFT3F/FFT3B. 

Description 
The routine FFT3F computes the forward discrete complex Fourier transform of a complex 
three-dimensional array of size (N1 = N) � (N2 = M) � (N3 = L). The method used is a variant of 
the Cooley-Tukey algorithm , which is most efficient when N, M, and L are each products of 
small prime factors. If N, M, and L satisfy this condition, then the computational effort is 
proportional to N M L log N M L. This considerable savings has historically led people to refer 
to this algorithm  as the “fast Fourier transform” or FFT.  

Specifically, given an N � M � L array a, FFT3F returns in c = COEF 

� �� � � �� � � �� �2 1 1 / 2 1 1 / 2 1 1 /

1 1 1

N M L
i j n N i k m M i k l L

jkl nml
n m l

c a e e e� � �� � � � � � � � �

� � �

����  

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm 

NMLS  

Finally, note that an unnormalized inverse is implemented in FFT3B. The routine FFT3F is 
based on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul 
Swarztrauber at the National Center for Atmospheric Research. 
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FFT3B 
Computes the inverse Fourier transform of a complex periodic three-dimensional array. 

Required Arguments 
A — Three-dimensional complex matrix containing the data to be transformed.   (Input) 

B — Three-dimensional complex matrix containing the inverse Fourier coefficients of A.   
(Output)  
The matrices A and B may be the same. 

Optional Arguments 
N1 — Limit on the first subscript of matrices A and B.   (Input) 

Default: N1 = size (A,1). 

N2 — Limit on the second subscript of matrices A and B.   (Input) 
Default: N2 = size (A,2). 

N3 — Limit on the third subscript of matrices A and B.   (Input) 
Default: N3 = size (A,3). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

MDA — Middle dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: MDA = size (A,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

MDB — Middle dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: MDB = size (B,2). 

FORTRAN 90 Interface 
Generic: CALL FFT3B (A, B [,…]) 

Specific: The specific interface names are S_FFT3B and D_FFT3B. 
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FORTRAN 77 Interface 
Single: CALL FFT3B (N1, N2, N3, A, LDA, MDA, B, LDB, MDB) 

Double: The double precision name is DFFT3B. 

Example 
In this example, we compute the Fourier transform of the 2 � 3 � 4 array 

� � � �� �2 1 2 3 1nmlx n m l� � � � �  

for 1 � n � 2, 1 � m � 3, and 1 � l � 4 using the IMSL routine FFT3F. The result 

ˆa x�  

is then inverted using FFT3B. Note that the result is an array b satisfying b = 2(3)(4)x = 24x. In 
general, FFT3B is an unnormalized inverse with expansion factor N M L. 

      USE FFT3B_INT 
      USE FFT3F_INT 
      USE UMACH_INT 
      INTEGER    LDA, LDB, MDA, MDB, NDA, NDB 
      PARAMETER  (LDA=2, LDB=2, MDA=3, MDB=3, NDA=4, NDB=4) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, J, K, L, M, N, N1, N2, N3, NOUT 
      COMPLEX    A(LDA,MDA,NDA), B(LDB,MDB,NDB), X(LDB,MDB,NDB) 
!                                 SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  CEXP, CMPLX 
      COMPLEX    CEXP, CMPLX 
!                                 SPECIFICATIONS FOR SUBROUTINES 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
      N1 = 2 
      N2 = 3 
      N3 = 4 
!                                 Set array X 
      DO 30  N=1, 2 
         DO 20  M=1, 3 
            DO 10  L=1, 4 
               X(N,M,L) = N + 2*(M-1) + 2*3*(L-1) 
   10       CONTINUE 
   20    CONTINUE 
   30 CONTINUE 
! 
      CALL FFT3F (X, A) 
      CALL FFT3B (A, B) 
! 
      WRITE (NOUT,99996) 
      DO 50  I=1, 2 
         WRITE (NOUT,99998) I 
         DO 40  J=1, 3 
            WRITE (NOUT,99999) (X(I,J,K),K=1,4) 
   40    CONTINUE 
   50 CONTINUE 
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! 
      WRITE (NOUT,99997) 
      DO 70  I=1, 2 
         WRITE (NOUT,99998) I 
         DO 60  J=1, 3 
            WRITE (NOUT,99999) (A(I,J,K),K=1,4) 
   60    CONTINUE 
   70 CONTINUE 
! 
      WRITE (NOUT, 99995) 
      DO 90  I=1, 2 
         WRITE (NOUT,99998) I 
         DO 80  J=1, 3 
            WRITE (NOUT,99999) (B(I,J,K),K=1,4) 
   80    CONTINUE 
   90 CONTINUE 
99995 FORMAT (13X, ’The unnormalized inverse is’) 
99996 FORMAT (13X, ’The input for FFT3F is’) 
99997 FORMAT (/, 13X, ’The results from FFT3F are’) 
99998 FORMAT (/, ’ Face no. ’, I1) 
99999 FORMAT (1X, 4(’(’,F6.2,’,’,F6.2,’)’,3X)) 
      END 

Output 
            The input for FFT3F is 
 
Face no. 1 
(  1.00,  0.00)   (  7.00,  0.00)   ( 13.00,  0.00)   ( 19.00,  0.00) 
(  3.00,  0.00)   (  9.00,  0.00)   ( 15.00,  0.00)   ( 21.00,  0.00) 
(  5.00,  0.00)   ( 11.00,  0.00)   ( 17.00,  0.00)   ( 23.00,  0.00) 
 
Face no. 2 
(  2.00,  0.00)   (  8.00,  0.00)   ( 14.00,  0.00)   ( 20.00,  0.00) 
(  4.00,  0.00)   ( 10.00,  0.00)   ( 16.00,  0.00)   ( 22.00,  0.00) 
(  6.00,  0.00)   ( 12.00,  0.00)   ( 18.00,  0.00)   ( 24.00,  0.00) 
 
The results from FFT3F are 
 
Face no. 1 
(300.00,  0.00)   (-72.00, 72.00)   (-72.00,  0.00)   (-72.00,-72.00) 
(-24.00, 13.86)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 
(-24.00,-13.86)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 
 
Face no. 2 
(-12.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 
(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 
(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 
 
The unnormalized inverse is 
 
Face no. 1 
( 24.00,  0.00)   (168.00,  0.00)   (312.00,  0.00)   (456.00,  0.00) 
( 72.00,  0.00)   (216.00,  0.00)   (360.00,  0.00)   (504.00,  0.00) 
(120.00,  0.00)   (264.00,  0.00)   (408.00,  0.00)   (552.00,  0.00) 
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Face no. 2 
( 48.00,  0.00)   (192.00,  0.00)   (336.00,  0.00)   (480.00,  0.00) 
( 96.00,  0.00)   (240.00,  0.00)   (384.00,  0.00)   (528.00,  0.00) 
(144.00,  0.00)   (288.00,  0.00)   (432.00,  0.00)   (576.00,  0.00) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2T3B/DF2T3B. The 

reference is: 

CALL F2T3B (N1, N2, N3, A, LDA, MDA, B, LDB, MDB, 
     WFF1, WFF2, WFF3, CPY) 

The additional arguments are as follows: 

WFF1 — Real array of length 4 * N1 + 15 initialized by FFTCI (page 1022). The 
initialization depends on N1.   (Input) 

WFF2 — Real array of length 4 * N2 + 15 initialized by FFTCI. The initialization 
depends on N2.   (Input) 

WFF3 — Real array of length 4 * N3 + 15 initialized by FFTCI. The initialization 
depends on N3.   (Input) 

CPY — Real array of size 2 * MAX(N1, N2, N3).   (Workspace) 

2. The routine FFT3B is most efficient when N1, N2, and N3 are the product of small 
primes. 

3. If FFT3F/FFT3B is used repeatedly with the same values for N1, N2 and N3, then use 
FFTCI to fill WFF1(N = N1), WFF2(N = N2), and WFF3(N = N3). Follow this with 
repeated calls to F2T3F/F2T3B. This is more efficient than repeated calls to 
FFT3F/FFT3B. 

Description 
The routine FFT3B computes the inverse discrete complex Fourier transform of a complex 
three-dimensional array of size (N1 = N) × (N2 = M) × (N3 = L). The method used is a variant of 
the Cooley-Tukey algorithm, which is most efficient when N, M, and L are each products of 
small prime factors. If N, M, and L satisfy this condition, then the computational effort is 
proportional to N M L log N M L. This considerable savings has historically led people to refer 
to this algorithm as the “fast Fourier transform” or FFT.  

Specifically, given an N � M � L array a, FFT3B returns in b 

� �� � � �� � � �� �2 1 1 / 2 1 1 / 2 1 1 /

1 1 1

N M L
i j n N i k m M i k l L

jkl nml
n m l

b a e e e� � �� � � � � �

� � �

���  

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm 
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NMLS  

Finally, note that an unnormalized inverse is implemented in FFT3F. The routine FFT3B is 
based on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul 
Swarztrauber at the National Center for Atmospheric Research. 

RCONV 
Computes the convolution of two real vectors. 

Required Arguments 
X — Real vector of length NX.   (Input) 

Y — Real vector of length NY.   (Input) 

Z — Real vector of length NZ ontaining the convolution of X and Y.   (Output) 

ZHAT — Real vector of length NZ containing the discrete Fourier transform of Z.   (Output) 

Optional Arguments 
IDO — Flag indicating the usage of RCONV.   (Input) 

     Default: IDO = 0.   

 IDO Usage 

0 If this is the only call to RCONV. 

If RCONV is called multiple times in sequence with the same NX, NY, and IPAD, IDO 
should be set to 

1 on the first call 

2 on the intermediate calls 

 3 on the final call. 

NX — Length of the vector X.   (Input) 
Default: NX = size (X,1). 

NY — Length of the vector Y.   (Input) 
Default: NY = size (Y,1). 

IPAD — IPAD should be set to zero for periodic data or to one for nonperiodic data.   (Input) 
Default: IPAD = 0. 
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NZ — Length of the vector Z.   (Input/Output)  
Upon input: When IPAD is zero, NZ must be at least MAX(NX, NY). When IPAD is one, 
NZ must be greater than or equal to the smallest integer greater than or equal to (NX + 
NY �1) of the form (2�) * (3�) * (5�) where alpha, beta, and gamma are nonnegative 
integers. Upon output, the value for NZ that was used by RCONV. 
Default: NZ = size (Z,1). 

FORTRAN 90 Interface 
Generic: CALL RCONV (X, Y, Z, ZHAT [,…]) 

Specific: The specific interface names are S_RCONV and D_RCONV. 

FORTRAN 77 Interface 
Single: CALL RCONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT) 

Double: The double precision name is DRCONV. 

Example 
In this example, we compute both a periodic and a non-periodic convolution. The idea here is 
that one can compute a moving average of the type found in digital filtering using this routine. 
The averaging operator in this case is especially simple and is given by averaging five 
consecutive points in the sequence. The periodic case tries to recover a noisy sin function by 
averaging five nearby values. The nonperiodic case tries to recover the values of an exponential 
function contaminated by noise. The large error for the last value printed has to do with the fact 
that the convolution is averaging the zeroes in the “pad” rather than function values. Notice that 
the signal size is 100, but we only report the errors at ten points. 

      USE IMSL_LIBRARIES 
      INTEGER    NFLTR, NY 
      PARAMETER  (NFLTR=5, NY=100) 
! 
      INTEGER    I, IPAD, K, MOD, NOUT, NZ 
      REAL       ABS, EXP, F1, F2, FLOAT, FLTR(NFLTR), & 
                FLTRER, ORIGER, SIN, TOTAL1, TOTAL2, TWOPI, X, & 
                Y(NY), Z(2*(NFLTR+NY-1)), ZHAT(2*(NFLTR+NY-1)) 
      INTRINSIC  ABS, EXP, FLOAT, MOD, SIN 
!                                DEFINE FUNCTIONS 
      F1(X) = SIN(X) 
      F2(X) = EXP(X) 
! 
      CALL RNSET (1234579) 
      CALL UMACH (2, NOUT) 
      TWOPI = CONST(’PI’) 
      TWOPI = 2.0*TWOPI 
!                                 SET UP THE FILTER 
      DO 10  I=1, 5 
         FLTR(I) = 0.2 
   10 CONTINUE 
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!                                 SET UP Y-VECTOR FOR THE PERIODIC 
!                                 CASE. 
      DO 20  I=1, NY 
         X    = TWOPI*FLOAT(I-1)/FLOAT(NY-1) 
         Y(I) = RNUNF() 
         Y(I) = F1(X) + 0.5*Y(I) - 0.25 
   20 CONTINUE 
!                                 CALL THE CONVOLUTION ROUTINE FOR THE 
!                                 PERIODIC CASE. 
      NZ = 2*(NFLTR+NY-1) 
      CALL RCONV (FLTR, Y, Z, ZHAT, IPAD=0, NZ=NZ) 
!                                 PRINT RESULTS 
      WRITE (NOUT,99993) 
      WRITE (NOUT,99995) 
      TOTAL1 = 0.0 
      TOTAL2 = 0.0 
      DO 30  I=1, NY 
!                                 COMPUTE THE OFFSET FOR THE Z-VECTOR 
         IF (I .GE. NY-1) THEN 
            K = I - NY + 2 
         ELSE 
            K = I + 2 
         END IF 
! 
         X      = TWOPI*FLOAT(I-1)/FLOAT(NY-1) 
         ORIGER = ABS(Y(I)-F1(X)) 
         FLTRER = ABS(Z(K)-F1(X)) 
         IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F1(X), ORIGER, & 
            FLTRER 
         TOTAL1 = TOTAL1 + ORIGER 
         TOTAL2 = TOTAL2 + FLTRER 
   30 CONTINUE 
      WRITE (NOUT,99998) TOTAL1/FLOAT(NY) 
      WRITE (NOUT,99999) TOTAL2/FLOAT(NY) 
!                                 SET UP Y-VECTOR FOR THE NONPERIODIC 
!                                 CASE. 
      DO 40  I=1, NY 
         A    = FLOAT(I-1)/FLOAT(NY-1) 
         Y(I) = RNUNF() 
         Y(I) = F2(A) + 0.5*Y(I) - 0.25 
   40 CONTINUE 
!                                 CALL THE CONVOLUTION ROUTINE FOR THE 
!                                 NONPERIODIC CASE. 
      NZ = 2*(NFLTR+NY-1) 
      CALL RCONV (FLTR, Y, Z, ZHAT, IPAD=1) 
!                                 PRINT RESULTS 
      WRITE (NOUT,99994) 
      WRITE (NOUT,99996) 
      TOTAL1 = 0.0 
      TOTAL2 = 0.0 
      DO 50  I=1, NY 
         X      = FLOAT(I-1)/FLOAT(NY-1) 
         ORIGER = ABS(Y(I)-F2(X)) 
         FLTRER = ABS(Z(I+2)-F2(X)) 
         IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F2(X), ORIGER, & 
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            FLTRER 
         TOTAL1 = TOTAL1 + ORIGER 
         TOTAL2 = TOTAL2 + FLTRER 
   50 CONTINUE 
      WRITE (NOUT,99998) TOTAL1/FLOAT(NY) 
      WRITE (NOUT,99999) TOTAL2/FLOAT(NY) 
99993 FORMAT (’ Periodic Case’) 
99994 FORMAT (/,’ Nonperiodic Case’) 
99995 FORMAT (8X, ’x’, 9X, ’sin(x)’, 6X, ’Original Error’, 5X, & 
            ’Filtered Error’) 
99996 FORMAT (8X, ’x’, 9X, ’exp(x)’, 6X, ’Original Error’, 5X, & 
            ’Filtered Error’) 
99997 FORMAT (1X, F10.4, F13.4, 2F18.4) 
99998 FORMAT (’ Average absolute error before filter:’, F10.5) 
99999 FORMAT (’ Average absolute error after filter:’, F11.5) 
      END 

Output 
Periodic Case 
    x         sin(x)      Original Error     Filtered Error 
 0.0000       0.0000            0.0811            0.0587 
 0.6981       0.6428            0.0226            0.0781 
 1.3963       0.9848            0.1526            0.0529 
 2.0944       0.8660            0.0959            0.0125 
 2.7925       0.3420            0.1747            0.0292 
 3.4907      -0.3420            0.1035            0.0238 
 4.1888      -0.8660            0.0402            0.0595 
 4.8869      -0.9848            0.0673            0.0798 
 5.5851      -0.6428            0.1044            0.0074 
 6.2832       0.0000            0.0154            0.0018 
 Average absolute error before filter:   0.12481 
 Average absolute error after filter:    0.04778 
 
Nonperiodic Case 
    x         exp(x)      Original Error     Filtered Error 
 0.0000       1.0000            0.1476            0.3915 
 0.1111       1.1175            0.0537            0.0326 
 0.2222       1.2488            0.1278            0.0932 
 0.3333       1.3956            0.1136            0.0987 
 0.4444       1.5596            0.1617            0.0964 
 0.5556       1.7429            0.0071            0.0662 
 0.6667       1.9477            0.1248            0.0713 
 0.7778       2.1766            0.1556            0.0158 
 0.8889       2.4324            0.1529            0.0696 
 1.0000       2.7183            0.2124            1.0562 
 Average absolute error before filter:   0.12538 
 Average absolute error after filter:    0.07764 

Comments 
1. Workspace may be explicitly provided, if desired, by use of R2ONV/DR2ONV. The 

reference is: 
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CALL R2ONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT  
     XWK, YWK, WK) 

The additional arguments are as follows: 

XWK — Real work array of length NZ. 

YWK — Real work array of length NZ. 

WK — Real work arrary of length 2 * NZ + 15. 

2. Informational error 

Type Code 
   4    1 The length of the vector Z must be large enough to hold the results. 

An acceptable length is returned in NZ. 

Description 
The routine RCONV computes the discrete convolution of two sequences x and y. More precisely, 
let nx be the length of x and ny denote the length of y. If a circular convolution is desired, then 
IPAD must be set to zero. We set 

nz := max{nx, ny} 

and we pad out the shorter vector with zeroes. Then, we compute 

1
1

zn

i i j j
j

z x y
� �

�

��  

where the index on x is interpreted as a positive number between 1 and nz, modulo nz.  

The technique used to compute the zi’s is based on the fact that the (complex discrete) Fourier 
transform maps convolution into multiplication. Thus, the Fourier transform of z is given by  

� � � � � �ˆ ˆẑ n x n y n�  

where  

� � � �� �2 1 1 /
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ˆ
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The technique used here to compute the convolution is to take the discrete Fourier transform of 
x and y, multiply the results together component-wise, and then take the inverse transform of 
this product. It is very important to make sure that nz is a product of small primes if IPAD is set 
to zero. If nz is a product of small primes, then the computational effort will be proportional to 
nz log(nz). If IPAD is one, then a good value is chosen for nz so that the Fourier transforms are 
efficient and nz � nx + ny � 1. This will mean that both vectors will be padded with zeroes. 

We point out that no complex transforms of x or y are taken since both sequences are real, we 
can take real transforms and simulate the complex transform above. This can produce a savings 
of a factor of six in time as well as save space over using the complex transform. 
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CCONV 
Computes the convolution of two complex vectors. 

Required Arguments 
X — Complex vector of length NX.   (Input) 

Y — Complex vector of length NY.   (Input) 

Z — Complex vector of length NZ containing the convolution of X and Y.   (Output) 

ZHAT — Complex vector of length NZ containing the discrete complex Fourier transform of 
Z.   (Output) 

Optional Arguments 
IDO — Flag indicating the usage of CCONV.   (Input) 

   Default: IDO = 0.    

IDO Usage 

0 If this is the only call to CCONV. 

If CCONV is called multiple times in sequence with the same NX, NY, and IPAD, IDO 
should be set to: 

1 on the first call 

2 on the intermediate calls 

 3 on the final call. 

NX — Length of the vector X.   (Input) 
Default: NX = size (X,1). 

NY — Length of the vector Y.   (Input) 
Default: NY = size (Y,1). 

IPAD — IPAD should be set to zero for periodic data or to one for nonperiodic data.   (Input) 
Default: IPAD =0. 

NZ — Length of the vector Z.   (Input/Output)  
Upon input: When IPAD is zero, NZ must be at least MAX(NX, NY). When IPAD is one, 
NZ must be greater than or equal to the smallest integer greater than or equal to (NX + 
NY � 1) of the form (2�) * (3�) * (5�) where alpha, beta, and gamma are nonnegative 
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integers. Upon output, the value for NZ that was used by CCONV. 
Default: NZ = size (Z,1). 

FORTRAN 90 Interface 
Generic: CALL CCONV (X, Y, Z, ZHAT [,…]) 

Specific: The specific interface names are S_CCONV and D_CCONV. 

FORTRAN 77 Interface 
Single: CALL CCONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT) 

Double: The double precision name is DCCONV. 

Example 
In this example, we compute both a periodic and a non-periodic convolution. The idea here is 
that one can compute a moving average of the type found in digital filtering using this routine. 
The averaging operator in this case is especially simple and is given by averaging five 
consecutive points in the sequence. The periodic case tries to recover a noisy function f�(x) = 
cos(x) + i sin(x) by averaging five nearby values. The nonperiodic case tries to recover the 
values of the function f�(x) = exf�(x) contaminated by noise. The large error for the first and last 
value printed has to do with the fact that the convolution is averaging the zeroes in the “pad” 
rather than function values. Notice that the signal size is 100, but we only report the errors at ten 
points. 

      USE IMSL_LIBRARIES 
      INTEGER    NFLTR, NY 
      PARAMETER  (NFLTR=5, NY=100) 
! 
      INTEGER    I, IPAD, K, MOD, NOUT, NZ 
      REAL       CABS, COS, EXP, FLOAT, FLTRER, ORIGER,  & 
                SIN, TOTAL1, TOTAL2, TWOPI, X, T1, T2 
      COMPLEX    CMPLX, F1, F2, FLTR(NFLTR), Y(NY), Z(2*(NFLTR+NY-1)), & 
                ZHAT(2*(NFLTR+NY-1)) 
      INTRINSIC  CABS, CMPLX, COS, EXP, FLOAT, MOD, SIN 
!                                DEFINE FUNCTIONS 
      F1(X) = CMPLX(COS(X),SIN(X)) 
      F2(X) = EXP(X)*CMPLX(COS(X),SIN(X)) 
! 
      CALL RNSET (1234579) 
      CALL UMACH (2, NOUT) 
      TWOPI = CONST(’PI’) 
      TWOPI = 2.0*TWOPI 
!                                 SET UP THE FILTER 
      CALL CSET(NFLTR,(0.2,0.0),FLTR,1) 
!                                 SET UP Y-VECTOR FOR THE PERIODIC 
!                                 CASE. 
      DO 20  I=1, NY 
         X    = TWOPI*FLOAT(I-1)/FLOAT(NY-1) 
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         T1   = RNUNF() 
         T2   = RNUNF() 
         Y(I) = F1(X) + CMPLX(0.5*T1-0.25,0.5*T2-0.25) 
   20 CONTINUE 
!                                 CALL THE CONVOLUTION ROUTINE FOR THE 
!                                 PERIODIC CASE. 
      NZ = 2*(NFLTR+NY-1) 
      CALL CCONV (FLTR, Y, Z, ZHAT) 
!                                 PRINT RESULTS 
      WRITE (NOUT,99993) 
      WRITE (NOUT,99995) 
      TOTAL1 = 0.0 
      TOTAL2 = 0.0 
      DO 30  I=1, NY 
!                                 COMPUTE THE OFFSET FOR THE Z-VECTOR 
         IF (I .GE. NY-1) THEN 
            K = I - NY + 2 
         ELSE 
            K = I + 2 
         END IF 
! 
         X      = TWOPI*FLOAT(I-1)/FLOAT(NY-1) 
         ORIGER = CABS(Y(I)-F1(X)) 
         FLTRER = CABS(Z(K)-F1(X)) 
         IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F1(X), ORIGER, & 
            FLTRER 
         TOTAL1 = TOTAL1 + ORIGER 
         TOTAL2 = TOTAL2 + FLTRER 
   30 CONTINUE 
      WRITE (NOUT,99998) TOTAL1/FLOAT(NY) 
      WRITE (NOUT,99999) TOTAL2/FLOAT(NY) 
!                                 SET UP Y-VECTOR FOR THE NONPERIODIC 
!                                 CASE. 
      DO 40  I=1, NY 
         X    = FLOAT(I-1)/FLOAT(NY-1) 
         T1   = RNUNF() 
         T2   = RNUNF() 
         Y(I) = F2(X) + CMPLX(0.5*T1-0.25,0.5*T2-0.25) 
   40 CONTINUE 
!                                 CALL THE CONVOLUTION ROUTINE FOR THE 
!                                 NONPERIODIC CASE. 
      NZ = 2*(NFLTR+NY-1) 
      CALL CCONV (FLTR, Y, Z, ZHAT, IPAD=1) 
!                                 PRINT RESULTS 
      WRITE (NOUT,99994) 
      WRITE (NOUT,99996) 
      TOTAL1 = 0.0 
      TOTAL2 = 0.0 
      DO 50  I=1, NY 
         X      = FLOAT(I-1)/FLOAT(NY-1) 
         ORIGER = CABS(Y(I)-F2(X)) 
         FLTRER = CABS(Z(I+2)-F2(X)) 
         IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F2(X), ORIGER, & 
            FLTRER 
         TOTAL1 = TOTAL1 + ORIGER 
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         TOTAL2 = TOTAL2 + FLTRER 
   50 CONTINUE 
      WRITE (NOUT,99998) TOTAL1/FLOAT(NY) 
      WRITE (NOUT,99999) TOTAL2/FLOAT(NY) 
99993 FORMAT (’ Periodic Case’) 
99994 FORMAT (/, ’ Nonperiodic Case’) 
99995 FORMAT (8X, ’x’, 15X, ’f1(x)’, 8X, ’Original Error’, 5X, & 
            ’Filtered Error’) 
99996 FORMAT (8X, ’x’, 15X, ’f2(x)’, 8X, ’Original Error’, 5X, & 
            ’Filtered Error’) 
99997 FORMAT (1X, F10.4, 5X, ’(’, F7.4, ’,’, F8.4, ’ )’, 5X, F8.4, & 
            10X, F8.4) 
99998 FORMAT (’ Average absolute error before filter:’, F11.5) 
99999 FORMAT (’ Average absolute error after filter:’, F12.5) 
      END 

Output 
Periodic Case 
 x               f1(x)        Original Error     Filtered Error 
 0.0000     ( 1.0000,  0.0000 )       0.1666            0.0773 
 0.6981     ( 0.7660,  0.6428 )       0.1685            0.1399 
 1.3963     ( 0.1736,  0.9848 )       0.1756            0.0368 
 2.0944     (-0.5000,  0.8660 )       0.2171            0.0142 
 2.7925     (-0.9397,  0.3420 )       0.1147            0.0200 
 3.4907     (-0.9397, -0.3420 )       0.0998            0.0331 
 4.1888     (-0.5000, -0.8660 )       0.1137            0.0586 
 4.8869     ( 0.1736, -0.9848 )       0.2217            0.0843 
 5.5851     ( 0.7660, -0.6428 )       0.1831            0.0744 
 6.2832     ( 1.0000,  0.0000 )       0.3234            0.0893 
 Average absolute error before filter:    0.19315 
 Average absolute error after filter:     0.08296 
 
Nonperiodic Case 
 x               f2(x)        Original Error     Filtered Error 
 0.0000     ( 1.0000,  0.0000 )       0.0783            0.4336 
 0.1111     ( 1.1106,  0.1239 )       0.2434            0.0477 
 0.2222     ( 1.2181,  0.2752 )       0.1819            0.0584 
 0.3333     ( 1.3188,  0.4566 )       0.0703            0.1267 
 0.4444     ( 1.4081,  0.6706 )       0.1458            0.0868 
 0.5556     ( 1.4808,  0.9192 )       0.1946            0.0930 
 0.6667     ( 1.5307,  1.2044 )       0.1458            0.0734 
 0.7778     ( 1.5508,  1.5273 )       0.1815            0.0690 
 0.8889     ( 1.5331,  1.8885 )       0.0805            0.0193 
 1.0000     ( 1.4687,  2.2874 )       0.2396            1.1708 
 Average absolute error before filter:    0.18549 
 Average absolute error after filter:     0.09636 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2ONV/DC2ONV. The 

reference is: 

CALL C2ONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT, 
     XWK, YWK, WK) 
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The additional arguments are as follows: 

XWK — Complex work array of length NZ. 

YWK — Complex work array of length NZ. 

WK — Real work array of length 6 * NZ + 15. 

2. Informational error 

Type Code 
   4    1 The length of the vector Z must be large enough to hold the results. 

An acceptable length is returned in NZ. 

Description 
The subroutine CCONV computes the discrete convolution of two complex sequences x and y. 
More precisely, let nx be the length of x and ny denote the length of y. If a circular convolution is 
desired, then IPAD must be set to zero. We set 

nz := max{nx, ny} 

and we pad out the shorter vector with zeroes. Then, we compute 
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where the index on x is interpreted as a positive number between 1 and nz, modulo nz.  

The technique used to compute the zi’s is based on the fact that the (complex discrete) Fourier 
transform maps convolution into multiplication. Thus, the Fourier transform of z is given by  

� � � � � �ˆ ˆẑ n x n y n�  

where  
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The technique used here to compute the convolution is to take the discrete Fourier transform of 
x and y, multiply the results together component-wise, and then take the inverse transform of 
this product. It is very important to make sure that nz is a product of small primes if IPAD is set 
to zero. If nz is a product of small primes, then the computational effort will be proportional to 
nz log(nz). If IPAD is one, then a a good value is chosen for nz so that the Fourier transforms are 
efficient and nz � nx + ny � 1. This will mean that both vectors will be padded with zeroes. 

RCORL 
Computes the correlation of two real vectors. 
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Required Arguments 
X — Real vector of length N.   (Input) 

Y — Real vector of length N.   (Input) 

Z — Real vector of length NZ containing the correlation of X and Y.   (Output) 

ZHAT — Real vector of length NZ containing the discrete Fourier transform of Z.   (Output) 

Optional Arguments 
IDO — Flag indicating the usage of RCORL.   (Input)  

   Default: IDO = 0.   

 IDO Usage 

0 If this is the only call to RCORL. 

If RCORL is called multiple times in sequence with the same NX, NY, and IPAD, IDO 
should be set to: 

1 on the first call 

2 on the intermediate calls 

3 on the final call. 

N — Length of the X and Y vectors.   (Input) 
Default: N = size (X,1). 

IPAD — IPAD should be set as follows.   (Input)  
Default: IPAD = 0. 

IPAD Value 

IPAD 0 for periodic data with X and Y different. 

IPAD 1 for nonperiodic data with X and Y different. 

IPAD 2 for periodic data with X and Y identical. 

IPAD 3 for nonperiodic data with X and Y identical. 

NZ — Length of the vector Z.   (Input/Output)  
Upon input: When IPAD is zero or two, NZ must be at least (2 * N � 1). When IPAD is 
one or three, NZ must be greater than or equal to the smallest integer greater than or 
equal to (2 * N � 1) of the form (2�) * (3�) * (5�) where alpha, beta, and gamma are 
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nonnegative integers. Upon output, the value for NZ that was used by RCORL. 
Default: NZ = size (Z,1). 

FORTRAN 90 Interface 
Generic: CALL RCORL (X, Y, Z, ZHAT [,…]) 

Specific: The specific interface names are S_RCORL and D_RCORL. 

FORTRAN 77 Interface 
Single: CALL RCORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT) 

Double: The double precision name is DRCORL. 

Example 
In this example, we compute both a periodic and a non-periodic correlation between two distinct 
signals x and y. In the first case we have 100 equally spaced points on the interval [0, 2�] and 
f�(x) = sin(x). We define x and y as follows 
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Note that the maximum value of z (the correlation of x with y) occurs at i = 26, which 
corresponds to the offset. 

The nonperiodic case uses the function f�(x) = sin(x�). The two input signals are on the interval 
[0, 4�]. 
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The offset of x to y is again (roughly) 26 and this is where z has its maximum value. 
      USE IMSL_LIBRARIES 
      INTEGER    N 
      PARAMETER  (N=100) 
! 
      INTEGER    I, IPAD, K, NOUT, NZ 
      REAL       A, F1, F2, FLOAT, PI, SIN, X(N), XNORM, & 
                Y(N), YNORM, Z(4*N), ZHAT(4*N) 
      INTRINSIC  FLOAT, SIN 
!                                Define functions 
      F1(A) = SIN(A) 
      F2(A) = SIN(A*A) 
! 
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      CALL UMACH (2, NOUT) 
      PI = CONST(’pi’) 
!                                 Set up the vectors for the 
!                                 periodic case. 
      DO 10  I=1, N 
         X(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)) 
         Y(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI/2.0) 
   10 CONTINUE 
!                                 Call the correlation routine for the 
!                                 periodic case. 
      NZ = 2*N 
      CALL RCORL (X, Y, Z, ZHAT) 
!                                 Find the element of Z with the 
!                                 largest normalized value. 
      XNORM = SNRM2(N,X,1) 
      YNORM = SNRM2(N,Y,1) 
      DO 20  I=1, N 
         Z(I) = Z(I)/(XNORM*YNORM) 
   20 CONTINUE 
      K = ISMAX(N,Z,1) 
!                                 Print results for the periodic 
!                                 case. 
      WRITE (NOUT,99995) 
      WRITE (NOUT,99994) 
      WRITE (NOUT,99997) 
      WRITE (NOUT,99998) K 
      WRITE (NOUT,99999) K, Z(K) 
!                                 Set up the vectors for the 
!                                 nonperiodic case. 
      DO 30  I=1, N 
         X(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)) 
         Y(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI) 
   30 CONTINUE 
!                                 Call the correlation routine for the 
!                                 nonperiodic case. 
      NZ = 4*N 
      CALL RCORL (X, Y, Z, ZHAT, IPAD=1) 
!                                 Find the element of Z with the 
!                                 largest normalized value. 
      XNORM = SNRM2(N,X,1) 
      YNORM = SNRM2(N,Y,1) 
      DO 40  I=1, N 
         Z(I) = Z(I)/(XNORM*YNORM) 
   40 CONTINUE 
      K = ISMAX(N,Z,1) 
!                                 Print results for the nonperiodic 
!                                 case. 
      WRITE (NOUT,99996) 
      WRITE (NOUT,99994) 
      WRITE (NOUT,99997) 
      WRITE (NOUT,99998) K 
      WRITE (NOUT,99999) K, Z(K) 
99994 FORMAT (1X, 28(’-’)) 
99995 FORMAT (’ Case #1: Periodic data’) 
99996 FORMAT (/, ’ Case #2: Nonperiodic data’) 
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99997 FORMAT (’ The element of Z with the largest normalized ’) 
99998 FORMAT (’ value is Z(’, I2, ’).’) 
99999 FORMAT (’ The normalized value of Z(’, I2, ’) is’, F6.3) 
      END 

Output 
Example #1: Periodic case 
---------------------------- 
The element of Z with the largest normalized value is Z(26). 
The normalized value of Z(26) is 1.000 
 
Example #2: Nonperiodic case 
---------------------------- 
The element of Z with the largest normalized value is Z(26). 
The normalized value of Z(26) is 0.661 

Comments 
1. Workspace may be explicitly provided, if desired, by use of R2ORL/DR2ORL. The 

reference is: 

CALL R2ORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT, XWK,  
     YWK, WK) 

The additional arguments are as follows: 

XWK — Real work array of length NZ. 

YWK — Real work array of length NZ. 

WK — Real work arrary of length 2 * NZ + 15. 

2. Informational error 

Type Code  
   4     1 The length of the vector Z must be large enough to hold the results. 

An acceptable length is returned in NZ. 

Description 
The subroutine RCORL computes the discrete correlation of two sequences x and y. More 
precisely, let n be the length of x and y. If a circular correlation is desired, then IPAD must be set 
to zero (for x and y distinct) and two (for x = y). We set (on output) 

if IPAD = 0, 2

2 3 5 2 1 if IPAD = 1, 3
z

z

n n

n n� � �

�

� � �

 

where �, �, � are nonnegative integers yielding the smallest number of the type 2�3�5� satisfying 
the inequality. Once nz is determined, we pad out the vectors with zeroes. Then, we compute 

1
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i i j j
j

z x y
� �

�

��  
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where the index on x is interpreted as a positive number between one and nz, modulo nz. Note 
that this means that 

zn kz
�

 

contains the correlation of x(	 � k � 1) with y as k = 0, 1, 
, nz /2. Thus, if  
x(k � 1) = y(k) for all k, then we would expect 

znz  

to be the largest component of z. 

The technique used to compute the zi’s is based on the fact that the (complex discrete) Fourier 
transform maps correlation into multiplication. Thus, the Fourier transform of z is given by 

ˆ ˆˆ j j jz x y�  

where 

� �� �2 1 1 /

1

ˆ
z

z

n
i m j n

j m
m

z z e �� � �

�

��  

Thus, the technique used here to compute the correlation is to take the discrete Fourier 
transform of x and the conjugate of the discrete Fourier transform of y, multiply the results 
together component-wise, and then take the inverse transform of this product. It is very 
important to make sure that nz is a product of small primes if IPAD is set to zero or two. If nz is a 
product of small primes, then the computational effort will be proportional to nz log(nz). If IPAD 
is one or three, then a good value is chosen for nz so that the Fourier transforms are efficient and 
nz � 2n � 1. This will mean that both vectors will be padded with zeroes. 

We point out that no complex transforms of x or y are taken since both sequences are real, and 
we can take real transforms and simulate the complex transform above. This can produce a 
savings of a factor of six in time as well as save space over using the complex transform. 

CCORL 
Computes the correlation of two complex vectors. 

Required Arguments 
X — Complex vector of length N.   (Input) 

Y — Complex vector of length N.   (Input) 

Z — Complex vector of length NZ containing the correlation of X and Y.   (Output) 

ZHAT — Complex vector of length NZ containing the inverse discrete complex Fourier 
transform of Z.   (Output) 
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Optional Arguments 
IDO — Flag indicating the usage of CCORL.   (Input) 

Default: IDO = 0. 

IDO Usage 

0 If this is the only call to CCORL. 

If CCORL is called multiple times in sequence with the same NX, NY, and IPAD, IDO 
should be set to: 

1 on the first call 

2 on the intermediate calls 

3 on the final call. 

N — Length of the X and Y vectors.   (Input) 
Default: N = size (X,1). 

IPAD — IPAD should be set as follows.   (Input)  
IPAD = 0 for periodic data with X and Y different. IPAD = 1 for nonperiodic data with X 
and Y different. IPAD = 2 for periodic data with X and Y identical. IPAD = 3 for 
nonperiodic data with X and Y identical. 
Default: IPAD = 0. 

NZ — Length of the vector Z.   (Input/Output)  
Upon input: When IPAD is zero or two, NZ must be at least (2 * N � 1). When IPAD is 
one or three, NZ must be greater than or equal to the smallest integer greater than or 
equal to (2 * N � 1) of the form (2�) * (3�) * (5�) where alpha, beta, and gamma are 
nonnegative integers. Upon output, the value for NZ that was used by CCORL. 
Default: NZ = size (Z,1). 

FORTRAN 90 Interface 
Generic: CALL CCORL (X, Y, Z, ZHAT [,…]) 

Specific: The specific interface names are S_CCORL and D_CCORL. 

FORTRAN 77 Interface 
Single: CALL CCORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT) 

Double: The double precision name is DCCORL. 
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Example 
In this example, we compute both a periodic and a non-periodic correlation between two distinct 
signals x and y. In the first case, we have 100 equally spaced points on the interval [0, 2�] and 
f�(x) = cos(x) + i sin(x). We define x and y as follows 
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Note that the maximum value of z (the correlation of x with y) occurs at i = 26, which 
corresponds to the offset. 

The nonperiodic case uses the function f�(x) = cos(x�) + i sin(x�). The two input signals are on 
the interval [0, 4�]. 
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The offset of x to y is again (roughly) 26 and this is where z has its maximum value. 
      USE IMSL_LIBRARIES 
      INTEGER    N 
      PARAMETER  (N=100) 
! 
      INTEGER    I, IPAD, K, NOUT, NZ 
      REAL       A, COS, F1, F2, FLOAT, PI, SIN, & 
                XNORM, YNORM, ZREAL1(4*N) 
      COMPLEX    CMPLX, X(N), Y(N), Z(4*N), ZHAT(4*N) 
      INTRINSIC  CMPLX, COS, FLOAT, SIN 
!                                Define functions 
      F1(A) = CMPLX(COS(A),SIN(A)) 
      F2(A) = CMPLX(COS(A*A),SIN(A*A)) 
! 
      CALL RNSET (1234579) 
      CALL UMACH (2, NOUT) 
      PI = CONST(’pi’) 
!                                 Set up the vectors for the 
!                                 periodic case. 
      DO 10  I=1, N 
         X(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)) 
         Y(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI/2.0) 
   10 CONTINUE 
!                                 Call the correlation routine for the 
!                                 periodic case. 
      NZ = 2*N 
      CALL CCORL (X, Y, Z, ZHAT, IPAD=0, NZ=NZ) 
!                                 Find the element of Z with the 
!                                 largest normalized real part. 
      XNORM = SCNRM2(N,X,1) 
      YNORM = SCNRM2(N,Y,1) 
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      DO 20  I=1, N 
         ZREAL1(I) = REAL(Z(I))/(XNORM*YNORM) 
   20 CONTINUE 
      K = ISMAX(N,ZREAL1,1) 
!                                 Print results for the periodic 
!                                 case. 
      WRITE (NOUT,99995) 
      WRITE (NOUT,99994) 
      WRITE (NOUT,99997) 
      WRITE (NOUT,99998) K 
      WRITE (NOUT,99999) K, ZREAL1(K) 
!                                 Set up the vectors for the 
!                                 nonperioddic case. 
      DO 30  I=1, N 
         X(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)) 
         Y(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI) 
   30 CONTINUE 
!                                 Call the correlation routine for the 
!                                 nonperiodic case. 
      NZ = 4*N 
      CALL CCORL (X, Y, Z, ZHAT, IPAD=1, NZ=NZ) 
!                                 Find the element of z with the 
!                                 largest normalized real part. 
      XNORM = SCNRM2(N,X,1) 
      YNORM = SCNRM2(N,Y,1) 
      DO 40  I=1, N 
         ZREAL1(I) = REAL(Z(I))/(XNORM*YNORM) 
   40 CONTINUE 
      K = ISMAX(N,ZREAL1,1) 
!                                 Print results for the nonperiodic 
!                                 case. 
      WRITE (NOUT,99996) 
      WRITE (NOUT,99994) 
      WRITE (NOUT,99997) 
      WRITE (NOUT,99998) K 
      WRITE (NOUT,99999) K, ZREAL1(K) 
99994 FORMAT (1X, 28(’-’)) 
99995 FORMAT (’ Case #1: periodic data’) 
99996 FORMAT (/, ’ Case #2: nonperiodic data’) 
99997 FORMAT (’ The element of Z with the largest normalized ’) 
99998 FORMAT (’ real part is Z(’, I2, ’).’) 
99999 FORMAT (’ The normalized value of real(Z(’, I2, ’)) is’, F6.3) 
      END 

Output 
Example #1: periodic case 
---------------------------- 
The element of Z with the largest normalized real part is Z(26). 
The normalized value of real(Z(26)) is 1.000 
 
Example #2: nonperiodic case 
---------------------------- 
The element of Z with the largest normalized real part is Z(26). 
The normalized value of real(Z(26)) is 0.638 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of C2ORL/DC2ORL. The 

reference is: 

CALL C2ORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT, XWK,  
     YWK, WK) 

The additional arguments are as follows: 

XWK — Complex work array of length NZ. 

YWK — Complex work array of length NZ. 

WK — Real work arrary of length 6 * NZ + 15. 

2. Informational error 

Type Code 
   4    1 The length of the vector Z must be large enough to hold the results. 

An acceptable length is returned in NZ. 

Description 
The subroutine CCORL computes the discrete correlation of two complex sequences x and y. 
More precisely, let n be the length of x and y. If a circular correlation is desired, then IPAD must 
be set to zero (for x and y distinct) and two (for x = y). We set (on output) 

if IPAD = 0, 2

2 3 5 2 1 if IPAD = 1, 3
z

z

n n
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where �, �, � are nonnegative integers yielding the smallest number of the type 2�3�5� satisfying 
the inequality. Once nz is determined, we pad out the vectors with zeroes. Then, we compute 
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z x y
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where the index on x is interpreted as a positive number between one and nz, modulo nz. Note 
that this means that 

zn kz
�

 

contains the correlation of x(	 � k � 1) with y as k = 0, 1, 
, nz /2. Thus, if  
x(k � 1) = y(k) for all k, then we would expect 

znz�  

to be the largest component of �z. 

The technique used to compute the zi’s is based on the fact that the (complex discrete) Fourier 
transform maps correlation into multiplication. Thus, the Fourier transform of z is given by 
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where 
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Thus, the technique used here to compute the correlation is to take the discrete Fourier 
transform of x and the conjugate of the discrete Fourier transform of y, multiply the results 
together component-wise, and then take the inverse transform of this product. It is very 
important to make sure that nz is a product of small primes if IPAD is set to zero or two. If nz is a 
product of small primes, then the computational effort will be proportional to nz log(nz). If IPAD 
is one or three, then a good value is chosen for nz so that the Fourier transforms are efficient and 
nz � 2n � 1. This will mean that both vectors will be padded with zeroes. 

INLAP 
Computes the inverse Laplace transform of a complex function. 

Required Arguments 
F — User-supplied FUNCTION to which the inverse Laplace transform will be computed. The 

form is F(Z), where 

 Z – Complex argument.   (Input) 
F – The complex function value.   (Output) 

F must be declared EXTERNAL in the calling program. F should also be declared COMPLEX. 

T — Array of length N containing the points at which the inverse Laplace transform is 
desired.   (Input) 
T(I) must be greater than zero for all I. 

FINV — Array of length N whose I-th component contains the approximate value of the 
Laplace transform at the point T(I).   (Output) 

Optional Arguments 
N — Number of points at which the inverse Laplace transform is desired.   (Input) 

Default: N = size (T,1). 

ALPHA — An estimate for the maximum of the real parts of the singularities of F. If 
unknown, set ALPHA = 0.   (Input) 
Default: ALPHA = 0.0. 

KMAX — The number of function evaluations allowed for each T(I).   (Input) 
Default: KMAX = 500. 
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RELERR — The relative accuracy desired.   (Input) 
Default: RELERR = 1.1920929e-5 for single precision and 2.22d-10 for double 
precision. 

FORTRAN 90 Interface 
Generic: CALL INLAP (F, T, FINV [,…]) 

Specific: The specific interface names are S_INLAP and D_INLAP. 

FORTRAN 77 Interface 
Single: CALL INLAP (F, N, T, ALPHA, RELERR, KMAX, FINV) 

Double: The double precision name is DINLAP. 

Example 
We invert the Laplace transform of the simple function (s � 1)�� and print the computed answer, 
the true solution and the difference at five different points. The correct inverse transform is xex. 

      USE INLAP_INT 
      USE UMACH_INT 
      INTEGER    I, KMAX, N, NOUT 
      REAL       ALPHA, DIF(5), EXP, FINV(5), FLOAT, RELERR, T(5), & 
                TRUE(5) 
      COMPLEX    F 
      INTRINSIC  EXP, FLOAT 
      EXTERNAL   F 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
! 
      DO 10  I=1, 5 
         T(I) = FLOAT(I) - 0.5 
   10 CONTINUE 
      N      = 5 
      ALPHA  = 1.0E0 
      RELERR = 5.0E-4 
      CALL INLAP (F, T, FINV, ALPHA=ALPHA, RELERR=RELERR) 
!                                 Evaluate the true solution and the 
!                                 difference 
      DO 20  I=1, 5 
         TRUE(I) = T(I)*EXP(T(I)) 
         DIF(I) = TRUE(I) - FINV(I) 
   20 CONTINUE 
! 
      WRITE (NOUT,99999) (T(I),FINV(I),TRUE(I),DIF(I),I=1,5) 
99999 FORMAT (7X, ’T’, 8X, ’FINV’, 9X, ’TRUE’, 9X, ’DIFF’, /, & 
            5(1X,E9.1,3X,1PE10.3,3X,1PE10.3,3X,1PE10.3,/)) 
      END 
! 
      COMPLEX FUNCTION F (S) 
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      COMPLEX    S 
      F = 1./(S-1.)**2 
      RETURN 
      END 

Output 
    T        FINV         TRUE         DIFF 
0.5E+00    8.244E-01    8.244E-01   -4.768E-06 
1.5E+00    6.723E+00    6.723E+00   -3.481E-05 
2.5E+00    3.046E+01    3.046E+01   -1.678E-04 
3.5E+00    1.159E+02    1.159E+02   -6.027E-04 
4.5E+00    4.051E+02    4.051E+02   -2.106E-03 

Comments 
Informational errors  

Type Code 

   4    1 The algorithm was not able to achieve the accuracy requested within KMAX 
 function evaluations for some T(I). 

   4    2 Overflow is occurring for a particular value of T. 

Description 
The routine INLAP computes the inverse Laplace transform of a complex-valued function. 
Recall that if f is a function that vanishes on the negative real axis, then we can define the 
Laplace transform of f by 

� �� � � �
0

: sxL f s e f x dx
�

�

� �  

It is assumed that for some value of s the integrand is absolutely integrable. 

The computation of the inverse Laplace transform is based on applying the epsilon algorithm to 
the complex Fourier series obtained as a discrete approximation to the inversion integral. The 
initial algorithm was proposed by K.S. Crump (1976) but was significantly improved by de 
Hoog et al. (1982). Given a complex-valued transform F(s) = L[f](s), the trapezoidal rule gives 
the approximation to the inverse transform 

� � � � � �
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This is the real part of the sum of a complex power series in z = exp(i�t/T), and the algorithm 
accelerates the convergence of the partial sums of this power series by using the epsilon 
algorithm to compute the corresponding diagonal Pade approximants. The algorithm attempts to 
choose the order of the Pade approximant to obtain the specified relative accuracy while not 
exceeding the maximum number of function evaluations allowed. The parameter � is an 
estimate for the maximum of the real parts of the singularities of F, and an incorrect choice of � 
may give false convergence. Even in cases where the correct value of � is unknown, the 
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algorithm will attempt to estimate an acceptable value. Assuming satisfactory convergence, the 
discretization error E := g � f satisfies 

� �2

1
2n T

n
E e f nT t�

�

�

�

� ��  

It follows that if |f(t)| � Me�t, then we can estimate the expression above to obtain  
(for 0 � t � 2T) 

� �� �2/ 1TtE Me e � �� �

� �  

SINLP 
Computes the inverse Laplace transform of a complex function. 

Required Arguments 
F — User-supplied FUNCTION to which the inverse Laplace transform will be  

computed. The form is F(Z), where 

 Z — Complex argument.   (Input) 
F — The complex function value.   (Output) 

 F must be declared EXTERNAL in the calling program. F must also be declared 
COMPLEX. 

T — Vector of length N containing points at which the inverse Laplace transform is desired.   
(Input)  
T(I) must be greater than zero for all I. 

FINV — Vector of length N whose I-th component contains the approximate value of the 
inverse Laplace transform at the point T(I).   (Output) 

Optional Arguments 
N — The number of points at which the inverse Laplace transform is desired.   (Input) 

Default: N = size (T,1). 

SIGMA0 — An estimate for the maximum of the real parts of the singularities of F.   (Input)  
If unknown, set SIGMA0 = 0.0. 
Default: SIGMA0 = 0.e0. 

EPSTOL — The required absolute uniform pseudo accuracy for the coefficients and inverse 
Laplace transform values.   (Input) 
Default: EPSTOL = 1.1920929e-5 for single precision and 2.22d-10 for double 
precision. 
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ERRVEC — Vector of length eight containing diagnostic information.   (Output)  
All components depend on the intermediately generated Laguerre coefficients. See 
Comments. 

FORTRAN 90 Interface 
Generic: CALL SINLP (F, T, FINV [,…]) 

Specific: The specific interface names are S_SINLP and D_SINLP. 

FORTRAN 77 Interface 
Single: CALL SINLP (F, N, T, SIGMA0, EPSTOL, ERRVEC, FINV) 

Double: The double precision name is DSINLP. 

Example 
We invert the Laplace transform of the simple function (s � 1)�� and print the computed answer,  
the true solution, and the difference at five different points. The correct inverse transform is xex. 

      USE SINLP_INT 
      USE UMACH_INT 
      INTEGER    I, NOUT 
      REAL       DIF(5), ERRVEC(8), EXP, FINV(5), FLOAT, RELERR, & 
                SIGMA0, T(5), TRUE(5) 
      COMPLEX    F 
      INTRINSIC  EXP, FLOAT 
      EXTERNAL   F 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
! 
      DO 10  I=1, 5 
         T(I) = FLOAT(I) - 0.5 
   10 CONTINUE 
      SIGMA0 = 1.0E0 
      RELERR = 5.0E-4 
      EPSTOL = 1.0E-4 
      CALL SINLP (F, T, FINV, SIGMA0=SIGMA0, EPSTOL=RELERR) 
!                                 Evaluate the true solution and the 
!                                 difference 
      DO 20  I=1, 5 
         TRUE(I) = T(I)*EXP(T(I)) 
         DIF(I) = TRUE(I) - FINV(I) 
   20 CONTINUE 
! 
      WRITE (NOUT,99999) (T(I),FINV(I),TRUE(I),DIF(I),I=1,5) 
99999 FORMAT (7X, ’T’, 8X, ’FINV’, 9X, ’TRUE’, 9X, ’DIFF’, /, & 
            5(1X,E9.1,3X,1PE10.3,3X,1PE10.3,3X,1PE10.3,/)) 
      END 
! 
      COMPLEX FUNCTION F (S) 
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      COMPLEX    S 
! 
      F = 1./(S-1.)**2 
      RETURN 
      END 

Output 
    T        FINV         TRUE         DIFF 
0.5E+00    8.244E-01    8.244E-01   -2.086E-06 
1.5E+00    6.723E+00    6.723E+00   -8.583E-06 
2.5E+00    3.046E+01    3.046E+01    0.000E+00 
3.5E+00    1.159E+02    1.159E+02    2.289E-05 
4.5E+00    4.051E+02    4.051E+02   -2.136E-04 

Comments 
1. Workspace may be explicitly provided, if desired, by use of S2NLP/DS2NLP. The 

reference is: 

CALL S2NLP (F, N, T, SIGMA0, EPSTOL, ERRVEC, FINV,  
     SIGMA, BVALUE, MTOP, WK, IFLOVC) 

The additional arguments are as follows: 

SIGMA — The first parameter of the Laguerre expansion. If SIGMA is not greater than 
SIGMA0, it is reset to SIGMA0 + 0.7.   (Input) 

BVALUE — The second parameter of the Laguerre expansion. If BVALUE is less than 
2.0 * (SIGMA � SIGMA0), it is reset to 2.5 * (SIGMA � SIGMA0).   (Input) 

MTOP — An upper limit on the number of coefficients to be computed in the Laguerre 
expansion. MTOP must be a multiple of four. Note that the maximum number of 
Laplace transform evaluations is MTOP/2 + 2. (Default: 1024.)    (Input) 

WK — Real work vector of length 9 * MTOP/4. 

IFLOVC — Integer vector of length N, the I-th component of which contains the 
overflow/underflow indicator for the computed value of FINV(I).   (Output)  
See Comment 3. 

2. Informational errors 

Type Code 
   1    1 Normal termination, but with estimated error bounds slightly larger 

than EPSTOL. Note, however, that the actual errors on the final 
results may be smaller than EPSTOL as bounds independent of T are 
pessimistic. 

   3    2 Normal calculation, terminated early at the roundoff error level 
estimate because this estimate exceeds the required accuracy (usually 
due to overly optimistic expectation by the user about attainable 
accuracy). 
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   4    3 The decay rate of the coefficients is too small. It may improve results 
to use S2NLP and increase MTOP. 

   4    4 The decay rate of the coefficients is too small. In addition, the 
roundoff error level is such that required accuracy cannot be reached. 

   4    5 No error bounds are returned as the behavior of the coefficients does 
not enable reasonable prediction. Results are probably wrong. Check 
the value of SIGMA0. In this case, each of ERRVEC(J), J = 1, 
, 5, is 
set to � 1.0. 

3. The following are descriptions of the vectors ERRVEC and IFLOVC. 

ERRVEC — Real vector of length eight. 

ERRVEC(1) = Overall estimate of the pseudo error, ERRVEC(2) + ERRVEC(3) + 
ERRVEC(4). Pseudo error = absolute error / exp(sigma * tvalue). 

ERRVEC(2) = Estimate of the pseudo discretization error. 

ERRVEC(3) = Estimate of the pseudo truncation error. 

ERRVEC(4) = Estimate of the pseudo condition error on the basis of minimal noise 
levels in the function values. 

ERRVEC(5) = K, the coefficient of the decay function for ACOEF, the coefficients of the 
Laguerre expansion. 

ERRVEC(6) = R, the base of the decay function for ACOEF. Here abs(ACOEF (J + 
1)).LE.K/R**J for J.GE.MACT/2, where MACT is the number of Laguerre 
coefficients actually computed. 

ERRVEC(7) = ALPHA, the logarithm of the largest ACOEF. 

ERRVEC(8) = BETA, the logarithm of the smallest nonzero ACOEF. 

IFLOVC — Integer vector of length N containing the overflow/underflow indicators 
for FINV. For each I, the value of IFLOVC(I) signifies the following. 

  0 =  Normal termination. 

  1 =  The value of the inverse Laplace transform is found to be too large to be 
representable; FINV(I) is set to AMACH(6). 

�1 =  The value of the inverse Laplace transform is found to be too small to be 
representable; FINV(I) is set to 0.0. 

 2 =  The value of the inverse Laplace transform is estimated to be too large, even 
before the series expansion, to be representable; FINV(I) is set to AMACH(6). 

�2 =  The value of the inverse Laplace transform is estimated to be too small, even 
before the series expansion, to be representable; FINV(I) is set to 0.0. 
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Description 
The routine SINLP computes the inverse Laplace transform of a complex-valued function. 
Recall that if f is a function that vanishes on the negative real axis, then we can define the 
Laplace transform of f by 

� �� � � �
0

: sxL f s e f x dx
�

�

� �  

It is assumed that for some value of s the integrand is absolutely integrable. 

The computation of the inverse Laplace transform is based on a modification of Weeks’ method 
(see W.T. Weeks (1966)) due to B.S. Garbow et. al. (1988). This method is suitable when f has 
continuous derivatives of all orders on [0, �). In this situation, this routine should be used in 
place of the IMSL routine INLAP (page 1078). It is especially efficient when multiple function 
values are desired. In particular, given a complex-valued function F(s) = L[f](s), we can expand 
f in a Laguerre series whose coefficients are determined by F. This is fully described in B.S. 
Garbow et. al. (1988) and Lyness and Giunta (1986). 

The algorithm attempts to return approximations g(t) to f(t) satisfying 

� � � �
t

g t f t
e�

�

�

�  

where 
 := EPSTOL and � := SIGMA > SIGMA0. The expression on the left is called the pseudo 
error. An estimate of the pseudo error is available in ERRVEC(1). 

The first step in the method is to transform F to � where 

� �
1 1 2

b b bz F
z z

� �
� �

� � �� �
� �� 	

 

Then, if f is smooth, it is known that � is analytic in the unit disc of the complex plane and 
hence has a Taylor series expansion 

� �
0

s
s

s
z a z�

�

�

��  

which converges for all z whose absolute value is less than the radius of convergence Rc. This 
number is estimated in ERRVEC(6). In ERRVEC(5), we estimate the smallest number K which 
satisfies 

s s

Ka
R

�  

for all R < Rc. 

The coefficients of the Taylor series for � can be used to expand f in a Laguerre series 

� � � �/ 2

0

t bt
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s
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�

�

�
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Chapter 7: Nonlinear Equations 

Routines 
7.1.  Zeros of a Polynomial 

Real coefficients using Laguerre method ............................ ZPLRC 1148 
Real coefficients using Jenkins-Traub method................... ZPORC 1150 
Complex coefficients........................................................... ZPOCC 1152 

7.2.  Zero(s) of a Function 
Zeros of a complex analytic function ................................... ZANLY 1153 
Zero of a real function with sign changes ............................ZBREN 1156 
Zeros of a real function ........................................................ ZREAL 1159 

7.3.  Root of a System of Equations 
Finite-difference Jacobian................................................... NEQNF 1162 
Analytic Jacobian.................................................................NEQNJ 1165 
Broyden’s update and Finite-difference Jacobian ...............NEQBF 1169 
Broyden’s update and Analytic Jacobian.............................NEQBJ 1174 

Usage Notes 
Zeros of a Polynomial 

A polynomial function of degree n can be expressed as follows: 

p(z) = anzn + an��zn�� + � + a�z + a� 

where an � 0. 

There are three routines for zeros of a polynomial. The routines ZPLRC (page 1148) and ZPORC 
(page 1150) find zeros of the polynomial with real coefficients while the routine ZPOCC (page 
1152) finds zeros of the polynomial with complex coefficients. 

The Jenkins-Traub method is used for the routines ZPORC and ZPOCC; whereas ZPLRC uses the 
Laguerre method. Both methods perform well in comparison with other methods. The Jenkins-
Traub algorithm usually runs faster than the Laguerre method. Furthermore, the routine ZANLY 
(page 1153) in the next section can also be used for the complex polynomial. 



 

 
 

1148 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY 

 

 

 

Zero(s) of a Function 
The routines ZANLY (page 1153) and ZREAL (page 1159) use Müller’s method to find the zeros 
of a complex analytic function and real zeros of a real function, respectively. The routine ZBREN 
(page 1156) finds a zero of a real function, using an algorithm that is a combination of 
interpolation and bisection. This algorithm requires the user to supply two points such that the 
function values at these two points have opposite sign. For functions where it is difficult to 
obtain two such points, ZREAL can be used. 

Root of System of Equations 
A system of equations can be stated as follows: 

fi(x) = 0, for i = 1, 2, �, n 

where x � Rn. 

The routines NEQNF (page 1162) and NEQNJ (page 1165) use a modified Powell hybrid method 
to find a zero of a system of nonlinear equations. The difference between these two routines is 
that the Jacobian is estimated by a finite-difference method in NEQNF, whereas the user has to 
provide the Jacobian for NEQNJ. It is advised that the Jacobian-checking routine, CHJAC (page 
952), be used to ensure the accuracy of the user-supplied Jacobian. 

The routines NEQBF (page 1169) and NEQBJ (page 1174) use a secant method with Broyden’s 
update to find a zero of a system of nonlinear equations. The difference between these two 
routines is that the Jacobian is estimated by a finite-difference method in NEQBF; whereas the 
user has to provide the Jacobian for NEQBJ. For more details, see Dennis and Schnabel (1983, 
Chapter 8). 

 ZPLRC 
Finds the zeros of a polynomial with real coefficients using Laguerre’s method. 

Required Arguments 
COEFF — Vector of length NDEG + 1 containing the coefficients of the polynomial in 

increasing order by degree.   (Input)  
The polynomial is COEFF(NDEG + 1) * Z**NDEG + COEFF(NDEG) * Z**(NDEG � 1) + 
� + COEFF(1). 

ROOT — Complex vector of length NDEG containing the zeros of the polynomial.   (Output) 

Optional Arguments 
NDEG — Degree of the polynomial. 1 � NDEG � 100    (Input) 

Default: NDEG = size (COEFF,1) – 1.  
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FORTRAN 90 Interface 
Generic: CALL ZPLRC (COEFF, ROOT [,…]) 

Specific: The specific interface names are S_ZPLRC and D_ZPLRC. 

FORTRAN 77 Interface 
Single: CALL ZPLRC (NDEG, COEFF, ROOT) 

Double: The double precision name is DZPLRC. 

Example 
This example finds the zeros of the third-degree polynomial 

p(z) = z� � 3z� + 4z �2 

where z is a complex variable. 
      USE ZPLRC_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    NDEG 
      PARAMETER  (NDEG=3) 
! 
      REAL       COEFF(NDEG+1) 
      COMPLEX    ZERO(NDEG) 
!                                 Set values of COEFF 
!                                 COEFF = (-2.0  4.0 -3.0  1.0) 
! 
      DATA COEFF/-2.0, 4.0, -3.0, 1.0/ 
! 
      CALL ZPLRC (COEFF, ZERO, NDEG) 
! 
      CALL WRCRN (’The zeros found are’, ZERO, 1, NDEG, 1) 
! 
      END 

Output 
              The zeros found are 
             1                2                3 
( 1.000, 1.000)  ( 1.000,-1.000)  ( 1.000, 0.000) 

Comments 
Informational errors  

Type  Code  

   3    1 The first several coefficients of the polynomial are equal to zero. Several of the 
 last roots will be set to machine infinity to compensate for this problem. 



 

 
 

1150 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY 

 

 

 

   3    2  Fewer than NDEG zeros were found. The ROOT vector will contain the value for 
 machine infinity in the locations that do not contain zeros. 

Description 
Routine ZPLRC computes the n zeros of the polynomial 

p(z) = anzn + an��zn�� + � + a�z + a� 

where the coefficients ai for i = 0, 1, �, n are real and n is the degree of the polynomial.  

The routine ZPLRC is a modification of B.T. Smith’s routine ZERPOL (Smith 1967) that uses 
Laguerre’s method. Laguerre’s method is cubically convergent for isolated zeros and linearly 
convergent for multiple zeros. The maximum length of the step between successive iterates is 
restricted so that each new iterate lies inside a region about the previous iterate known to 
contain a zero of the polynomial. An iterate is accepted as a zero when the polynomial value at 
that iterate is smaller than a computed bound for the rounding error in the polynomial value at 
that iterate. The original polynomial is deflated after each real zero or pair of complex zeros is 
found. Subsequent zeros are found using the deflated polynomial. 

ZPORC 
Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub three-stage 
algorithm. 

Required Arguments 
COEFF — Vector of length NDEG + 1 containing the coefficients of the polynomial in 

increasing order by degree.   (Input)  
The polynomial is COEFF(NDEG + 1)*Z**NDEG + COEFF(NDEG) * Z**(NDEG �1) 
+ � + COEFF(1). 

ROOT — Complex vector of length NDEG containing the zeros of the polynomial.   (Output) 

Optional Arguments 
NDEG — Degree of the polynomial. 1 � NDEG � 100    (Input) 

Default: NDEG = size (COEFF,1) – 1. 

FORTRAN 90 Interface 
Generic: CALL ZPORC (COEFF, ROOT [,…]) 

Specific: The specific interface names are S_ZPORC and D_ZPORC. 

FORTRAN 77 Interface 
Single: CALL ZPORC (NDEG, COEFF, ROOT) 
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Double: The double precision name is DZPORC. 

Example 
This example finds the zeros of the third-degree polynomial 

p(z) = z� � 3z� + 4z �2 

where z is a complex variable. 
      USE ZPORC_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    NDEG 
      PARAMETER  (NDEG=3) 
! 
      REAL       COEFF(NDEG+1) 
      COMPLEX    ZERO(NDEG) 
!                                 Set values of COEFF 
!                                 COEFF = (-2.0  4.0 -3.0  1.0) 
! 
      DATA COEFF/-2.0, 4.0, -3.0, 1.0/ 
! 
      CALL ZPORC (COEFF, ZERO) 
! 
      CALL WRCRN (’The zeros found are’, ZERO, 1, NDEG, 1) 
! 
      END 

Output 
              The zeros found are 
             1                2                3 
( 1.000, 0.000)  ( 1.000, 1.000)  ( 1.000,-1.000) 

Comments 
Informational errors 

Type Code  

   3    1 The first several coefficients of the polynomial are equal to zero. Several of 
the last roots will be set to machine infinity to compensate for this problem. 

   3    2  Fewer than NDEG zeros were found. The ROOT vector will contain the value 
for machine infinity in the locations that do not contain zeros. 

Description 
Routine ZPORC computes the n zeros of the polynomial 

p(z) = anzn + an��zn�� + � + a�z + a� 

where the coefficients ai for i = 0, 1, �, n are real and n is the degree of the polynomial.  
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The routine ZPORC uses the Jenkins-Traub three-stage algorithm (Jenkins and Traub 1970; 
Jenkins 1975). The zeros are computed one at a time for real zeros or two at a time for complex 
conjugate pairs. As the zeros are found, the real zero or quadratic factor is removed by 
polynomial deflation. 

 

 

 

ZPOCC 
Finds the zeros of a polynomial with complex coefficients. 

Required Arguments 
COEFF — Complex vector of length NDEG + 1 containing the coefficients of the polynomial 

in increasing order by degree.   (Input)  
The polynomial is COEFF(NDEG + 1) * Z**NDEG + COEFF(NDEG) * Z**(NDEG � 1) + 
� + COEFF(1). 

ROOT — Complex vector of length NDEG containing the zeros of the polynomial.   (Output) 

Optional Arguments 
NDEG —  Degree of the polynomial. 1 � NDEG < 50    (Input) 

Default: NDEG = size (COEFF,1) – 1. 

FORTRAN 90 Interface 
Generic: CALL ZPOCC (COEFF, ROOT [,…]) 

Specific: The specific interface names are S_ZPOCC and D_ZPOCC. 

FORTRAN 77 Interface 
Single: CALL ZPOCC (NDEG, COEFF, ROOT) 

Double: The double precision name is DZPOCC. 

Example 
This example finds the zeros of the third-degree polynomial 

p(z) = z� � (3 + 6i)z� � (8 � 12i)z + 10 

where z is a complex variable. 
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      USE ZPOCC_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    NDEG 
      PARAMETER  (NDEG=3) 
! 
      COMPLEX    COEFF(NDEG+1), ZERO(NDEG) 
!                                 Set values of COEFF 
!                                 COEFF = ( 10.0 +  0.0i ) 
!                                         ( -8.0 + 12.0i ) 
!                                         ( -3.0 -  6.0i ) 
!                                         (  1.0 +  0.0i ) 
! 
      DATA COEFF/(10.0,0.0), (-8.0,12.0), (-3.0,-6.0), (1.0,0.0)/ 
! 
      CALL ZPOCC (COEFF, ZERO) 
! 
      CALL WRCRN (’The zeros found are’, ZERO, 1, NDEG, 1) 
! 
      END 

Output 
              The zeros found are 
             1                2                3 
( 1.000, 1.000)  ( 1.000, 2.000)  ( 1.000, 3.000) 

Comments 
Informational errors 

Type  Code  

   3    1  The first several coefficients of the polynomial are equal to zero. Several of 
the last roots will be set to machine infinity to compensate for this problem. 

   3    2  Fewer than NDEG zeros were found. The ROOT vector will contain the value 
for machine infinity in the locations that do not contain zeros. 

Description 
Routine ZPOCC computes the n zeros of the polynomial 

p(z) = anzn + an��zn�� + � + a�z + a� 

where the coefficients ai for i = 0, 1, �, n are real and n is the degree of the polynomial.  

The routine ZPOCC uses the Jenkins-Traub three-stage complex algorithm (Jenkins and Traub 
1970, 1972). The zeros are computed one at a time in roughly increasing order of modulus. As 
each zero is found, the polynomial is deflated to one of lower degree. 

ZANLY 
Finds the zeros of a univariate complex function using Müller’s method. 
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Required Arguments 
F — User-supplied COMPLEX FUNCTION to compute the value of the function  

of which the zeros will be found. The form is F(Z), where 

Z — The complex value at which the function is evaluated.   (Input)  
Z should not be changed by F. 

F — The computed complex function value at the point Z.   (Output) 
F must be declared EXTERNAL in the calling program. 

Z — A complex vector of length NKNOWN + NNEW.   (Output)  
Z(1), �, Z(NKNOWN) contain the known zeros. Z(NKNOWN + 1), �, Z(NKNOWN + NNEW) 
contain the new zeros found by ZANLY. If ZINIT is not needed, ZINIT and Z can share 
the same storage locations. 

Optional Arguments 
ERRABS — First stopping criterion.   (Input)  

Let FP(Z) = F(Z)/P where P = (Z � Z(1)) * (Z � Z(2)) *�* (Z � Z(K � 1)) and Z(1), �, 
Z(K � 1) are previously found zeros. If 
(CABS(F(Z)).LE.ERRABS.AND.CABS(FP(Z)).LE.ERRABS), then Z is accepted as a 
zero. 
Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision. 

ERRREL — Second stopping criterion is the relative error.   (Input)  
A zero is accepted if the difference in two successive approximations to this zero is 
within ERRREL. ERRREL must be less than 0.01; otherwise, 0.01 will be used. 
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision. 

NKNOWN — The number of previously known zeros, if any, that must be stored in 
ZINIT(1), �, ZINIT(NKNOWN) prior to entry to ZANLY.   (Input) 
NKNOWN must be set equal to zero if no zeros are known. 
Default: NKNOWN = 0. 

NNEW — The number of new zeros to be found by ZANLY.   (Input) 
Default: NNEW = 1.  

NGUESS — The number of initial guesses provided.   (Input)  
These guesses must be stored in ZINIT(NKNOWN + 1), �, ZINIT(NKNOWN + NGUESS). 
NGUESS must be set equal to zero if no guesses are provided. 
Default: NGUESS = 0. 

ITMAX — The maximum allowable number of iterations per zero.   (Input) 
Default: ITMAX = 100. 
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ZINIT — A complex vector of length NKNOWN + NNEW.   (Input)  
ZINIT(1), �, ZINIT(NKNOWN) must contain the known zeros. ZINIT(NKNOWN + 1), �, 
ZINIT(NKNOWN + NNEW) may, on user option, contain initial guesses for the NNEW new 
zeros that are to be computed. If the user does not provide an initial guess, zero is used. 

INFO — An integer vector of length NKNOWN + NNEW.   (Output)  
INFO(J) contains the number of iterations used in finding the J-th zero when 
convergence was achieved. If convergence was not obtained in ITMAX iterations, 
INFO(J) will be greater than ITMAX. 

FORTRAN 90 Interface 
Generic: CALL ZANLY (F, Z [,…]) 

Specific: The specific interface names are S_ZANLY and D_ZANLY. 

FORTRAN 77 Interface 
Single: CALL ZANLY (F, ERRABS, ERRREL, NKNOWN, NNEW, NGUESS, 

 ZINIT, ITMAX, Z, INFO) 

Double: The double precision name is DZANLY. 

Comments 
1. Informational error 

Type Code 
   3    1 Failure to converge within ITMAX iterations for at least one of the 

NNEW new roots. 

2. Routine ZANLY always returns the last approximation for zero J in Z(J). If the 
convergence criterion is satisfied, then INFO(J) is less than or equal to ITMAX. If the 
convergence criterion is not satisfied, then INFO(J) is set to either ITMAX + 1 or  
ITMAX + K, with K greater than 1. INFO(J) = ITMAX + 1 indicates that ZANLY did not 
obtain convergence in the allowed number of iterations. In this case, the user may wish 
to set ITMAX to a larger value. INFO(J) = ITMAX + K means that convergence was 
obtained (on iteration K) for the deflated function FP(Z) = F(Z)/((Z � Z(1)) � (Z � Z(J 
� 1))) but failed for F(Z). In this case, better initial guesses might help or it might be 
necessary to relax the convergence criterion. 

Description 
Müller’s method with deflation is used. It assumes that the complex function f(z) has at least 
two continuous derivatives. For more details, see Müller (1965). 
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Example 
This example finds the zeros of the equation f(z) = z� + 5z� + 9z + 45, where z is a complex 
variable. 

      USE ZANLY_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    INFO(3), NGUESS, NNEW 
      COMPLEX    F, Z(3), ZINIT(3) 
      EXTERNAL   F 
!                                 Set the guessed zero values in ZINIT 
! 
!                                 ZINIT = (1.0+1.0i 1.0+1.0i 1.0+1.0i) 
      DATA ZINIT/3*(1.0,1.0)/ 
!                                 Set values for all input parameters 
      NNEW   = 3 
      NGUESS = 3 
!                                 Find the zeros of F 
      CALL ZANLY (F, Z, NNEW=NNEW, NGUESS=NGUESS, & 
                 ZINIT=ZINIT, INFO=INFO) 
!                                 Print results 
      CALL WRCRN (’The zeros are’, Z) 
      END 
!                                 External complex function 
      COMPLEX FUNCTION F (Z) 
      COMPLEX    Z 
! 
      F = Z**3 + 5.0*Z**2 + 9.0*Z + 45.0 
      RETURN 
      END 

Output 
              The zeros are 
             1                2                3 
( 0.000, 3.000)  ( 0.000,-3.000)  (-5.000, 0.000) 

ZBREN 
Finds a zero of a real function that changes sign in a given interval. 

Required Arguments 
F — User-supplied FUNCTION to compute the value of the function of which a zero will be 

found. The form is F(X), where 

X — The point at which the function is evaluated.   (Input)  
X should not be changed by F. 

F — The computed function value at the point X.   (Output) 
F must be declared EXTERNAL in the calling program. 
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A — See B.   (Input/Output) 

B — On input, the user must supply two points, A and B, such that F(A) and F(B) are opposite 
in sign.   (Input/Output)  
On output, both A and B are altered. B will contain the best approximation to the zero of 
F. 

Optional Arguments 
ERRABS — First stopping criterion.   (Input)  

A zero, B, is accepted if ABS(F(B)) is less than or equal to ERRABS. ERRABS may be set 
to zero. 
Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision. 

ERRREL — Second stopping criterion is the relative error.   (Input)  
A zero is accepted if the change between two successive approximations to this zero is 
within ERRREL. 
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision. 

MAXFN — On input, MAXFN specifies an upper bound on the number of function evaluations 
required for convergence.   (Input/Output)  
On output, MAXFN will contain the actual number of function evaluations used. 
Default: MAXFN = 100. 

FORTRAN 90 Interface 
Generic: CALL ZBREN (F, A, B [,…]) 

Specific: The specific interface names are S_ZBREN and D_ZBREN. 

FORTRAN 77 Interface 
Single: CALL ZBREN (F, ERRABS, ERRREL, A, B, MAXFN) 

Double: The double precision name is DZBREN. 

Example 
This example finds a zero of the function 

f(x) = x� + x � 2 

in the interval ( � 10.0, 0.0). 
      USE ZBREN_INT 
      USE UMACH_INT 
!                                 Declare variables 
      REAL       ERRABS, ERRREL 
! 
      INTEGER    NOUT 
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      REAL       A, B, F 
      EXTERNAL   F 
!                                 Set values of A, B, ERRABS, 
!                                 ERRREL, MAXFN 
      A      = -10.0 
      B      = 0.0 
      ERRABS = 0.0 
      ERRREL = 0.001 
      MAXFN  = 100 
! 
      CALL UMACH (2, NOUT) 
!                                 Find zero of F 
      CALL ZBREN (F, A, B, ERRABS=ERRABS, ERRREL=ERRREL, MAXFN=MAXFN) 
! 
      WRITE (NOUT,99999) B, MAXFN 
99999 FORMAT (’  The best approximation to the zero of F is equal to’, & 
            F5.1, ’.’, /, ’  The number of function evaluations’, & 
            ’ required was ’, I2, ’.’, //) 
! 
      END 
! 
      REAL FUNCTION F (X) 
      REAL       X 
! 
      F = X**2 + X - 2.0 
      RETURN 
      END 

Output 
The best approximation to the zero of F is equal to -2.0.  
The number of function evaluations required was 12. 

Comments 
1. Informational error 

Type Code 
   4    1 Failure to converge in MAXFN function evaluations. 

2. On exit from ZBREN without any error message, A and B satisfy the following:  

 F(A)F(B) � 0.0 
 |F(B)| � |F(A)|, and 
 either |F(B)| � ERRABS or 
 |A � B| � max(|B|, 0.1) * ERRREL. 

The presence of 0.1 in the stopping criterion causes leading zeros to the right of the 
decimal point to be counted as significant digits. Scaling may be required in order to 
accurately determine a zero of small magnitude. 

3. ZBREN is guaranteed to convergence within K function evaluations, where  
K = (ln((B � A)/D) + 1.0)�, and  
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= min max ,0.1
x � A B

D x *ERRREL  

 This is an upper bound on the number of evaluations. Rarely does the actual number of 
evaluations used by ZBREN exceed  

K  

D can be computed as follows: 
P = AMAX1(0.1, AMIN1(|A|, |B|)) 
IF((A � 0.1) * (B � 0.1) < 0.0) P = 0.1, 
D = P * ERRREL 

Description 
The algorithm used by ZBREN is a combination of linear interpolation, inverse quadratic 
interpolation, and bisection. Convergence is usually superlinear and is never much slower than 
the rate for the bisection method. See Brent (1971) for a more detailed account of this algorithm. 

ZREAL 
Finds the real zeros of a real function using Müller’s method. 

Required Arguments 
F — User-supplied FUNCTION to compute the value of the function of which a zero will be 

found. The form is F(X), where 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by F. 

F – The computed function value at the point X.   (Output) 
F must be declared EXTERNAL in the calling program. 

X — A vector of length NROOT.   (Output)  
X contains the computed zeros. 

Optional Arguments 
ERRABS — First stopping criterion.   (Input)  

A zero X(I) is accepted if ABS(F(X(I)).LT. ERRABS. 
Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision. 

ERRREL — Second stopping criterion is the relative error.   (Input)  
A zero X(I) is accepted if the relative change of two successive approximations to X(I) 
is less than ERRREL. 
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision. 
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EPS — See ETA.   (Input) 
Default: EPS = 1.e-4 for single precision and 1.d-8 for double precision. 

ETA — Spread criteria for multiple zeros.   (Input)  
If the zero X(I) has been computed and ABS(X(I) � X(J)).LT.EPS, where X(J) is a 
previously computed zero, then the computation is restarted with a guess equal to  
X(I) + ETA. 
Default: ETA = .01. 

NROOT — The number of zeros to be found by ZREAL.   (Input) 
Default: NROOT = 1. 

ITMAX — The maximum allowable number of iterations per zero.   (Input) 
Default: ITMAX = 100. 

XGUESS — A vector of length NROOT.   (Input)  
XGUESS contains the initial guesses for the zeros. 
Default: XGUESS = 0.0. 

INFO — An integer vector of length NROOT.   (Output)  
INFO(J) contains the number of iterations used in finding the J-th zero when 
convergence was achieved. If convergence was not obtained in ITMAX iterations, 
INFO(J) will be greater than ITMAX. 

FORTRAN 90 Interface 
Generic: CALL ZREAL (F, X [,…]) 

Specific: The specific interface names are S_ZREAL and D_ZREAL. 

FORTRAN 77 Interface 
Single: CALL ZREAL (F, ERRABS, ERRREL, EPS, ETA, NROOT, ITMAX,  

     XGUESS, X, INFO) 

Double: The double precision name is DZREAL. 

Example 
This example finds the real zeros of the second-degree polynomial 

f(x) = x� + 2x � 6 

with the initial guess (4.6, �193.3). 
      USE ZREAL_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    NROOT 
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      REAL       EPS, ERRABS, ERRREL 
      PARAMETER  (NROOT=2) 
! 
      INTEGER    INFO(NROOT) 
      REAL       F, X(NROOT), XGUESS(NROOT) 
      EXTERNAL   F 
!                                 Set values of initial guess 
!                                 XGUESS = (  4.6 -193.3) 
! 
      DATA XGUESS/4.6, -193.3/ 
! 
      EPS    = 1.0E-5 
      ERRABS = 1.0E-5 
      ERRREL = 1.0E-5 
 
!                                 Find the zeros 
      CALL ZREAL (F, X, ERRABS=ERRABS, ERRREL=ERRREL, EPS=EPS, & 
                 NROOT=NROOT, XGUESS=XGUESS) 
! 
      CALL WRRRN (’The zeros are’, X, 1, NROOT, 1) 
! 
      END 
! 
      REAL FUNCTION F (X) 
      REAL       X 
! 
      F = X*X + 2.0*X - 6.0 
      RETURN 
      END 

Output 
The zeros are 
    1       2 
1.646  -3.646 

Comments 
1. Informational error 

Type Code 
   3    1 Failure to converge within ITMAX iterations for at least one of the 

NROOT roots. 

2. Routine ZREAL always returns the last approximation for zero J in X(J). If the 
convergence criterion is satisfied, then INFO(J) is less than or equal to ITMAX. If the 
convergence criterion is not satisfied, then INFO(J) is set to ITMAX + 1. 

3. The routine ZREAL assumes that there exist NROOT distinct real zeros for the function F 
and that they can be reached from the initial guesses supplied. The routine is designed 
so that convergence to any single zero cannot be obtained from two different initial 
guesses. 
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4. Scaling the X vector in the function F may be required, if any of the zeros are known to 
be less than one. 

Description 
Routine ZREAL computes n real zeros of a real function f. Given a user-supplied function f(x) 
and an n-vector of initial guesses x�, x�, �, xn, the routine uses Müller’s method to locate n real 
zeros of f, that is, n real values of x for which f(x) = 0. The routine has two convergence criteria: 
the first requires that 

� �mif x  

be less than ERRABS; the second requires that the relative change of any two successive 
approximations to an xi be less than ERRREL. Here, 

m
ix  

is the m-th approximation to xi. Let ERRABS be ��, and ERRREL be ��.The criteria may be stated 
mathematically as follows: 

Criterion 1: 

� � 1
m
if x ��  

Criterion 2:  
1

2

m m
i i

m
i

x x
x

�

�

�

�  

“Convergence” is the satisfaction of either criterion. 

NEQNF 
Solves a system of nonlinear equations using a modified Powell hybrid algorithm and a finite-
difference approximation to the Jacobian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The 

usage is CALL FCN (X, F, N), where 

X – The point at which the functions are evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function values at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

 N — Length of X and F.   (Input) 
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X — A vector of length N.   (Output)  
X contains the best estimate of the root found by NEQNF. 

Optional Arguments 
ERRREL — Stopping criterion.   (Input)  

The root is accepted if the relative error between two successive approximations to this 
root is less than ERRREL. 
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision. 

N – The number of equations to be solved and the number of unknowns.   (Input) 
Default: N = size (X,1). 

ITMAX — The maximum allowable number of iterations.   (Input)  
The maximum number of calls to FCN is ITMAX * (N + 1). Suggested value  
ITMAX = 200. 
Default: ITMAX = 200. 

XGUESS — A vector of length N.   (Input)  
XGUESS contains the initial estimate of the root. 
Default: XGUESS = 0.0. 

FNORM — A scalar that has the value F(1)� + � + F(N)� at the point X.   (Output) 

FORTRAN 90 Interface 
Generic: CALL NEQNF (FCN, X [,…]) 

Specific: The specific interface names are S_NEQNF and D_NEQNF. 

FORTRAN 77 Interface 
Single: CALL NEQNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM) 

Double: The double precision name is DNEQNF. 

Example 
The following 3 � 3 system of nonlinear equations 
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is solved with the initial guess (4.0, 4.0, 4.0). 
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      USE NEQNF_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=3) 
! 
      INTEGER    K, NOUT 
      REAL       FNORM, X(N), XGUESS(N) 
      EXTERNAL   FCN 
!                                 Set values of initial guess 
!                                 XGUESS = (  4.0  4.0  4.0 ) 
! 
      DATA XGUESS/4.0, 4.0, 4.0/ 
! 
! 
      CALL UMACH (2, NOUT) 
!                                 Find the solution 
      CALL NEQNF (FCN, X, XGUESS=XGUESS, FNORM=FNORM) 
!                                 Output 
      WRITE (NOUT,99999) (X(K),K=1,N), FNORM 
99999 FORMAT (’  The solution to the system is’, /, ’  X = (’, 3F5.1, & 
            ’)’, /, ’  with FNORM =’, F5.4, //) 
! 
      END 
!                                 User-defined subroutine 
      SUBROUTINE FCN (X, F, N) 
      INTEGER    N 
      REAL       X(N), F(N) 
! 
      REAL       EXP, SIN 
      INTRINSIC  EXP, SIN 
! 
      F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0 
      F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0 
      F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0 
      RETURN 
      END 

Output 
The solution to the system is 
X = (  1.0  2.0  3.0)  
with FNORM =.0000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of N2QNF/DN2QNF. The 

reference is: 

CALL N2QNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM,  
     FVEC, FJAC, R, QTF, WK) 

The additional arguments are as follows: 

FVEC — A vector of length N. FVEC contains the functions evaluated at the point X. 



 

 
 

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1165 

 

 

 

FJAC — An N by N matrix. FJAC contains the orthogonal matrix Q produced by the 
QR factorization of the final approximate Jacobian. 

R — A vector of length N * (N + 1)/2. R contains the upper triangular matrix produced 
by the QR factorization of the final approximate Jacobian. R is stored row-wise. 

QTF — A vector of length N. QTF contains the vector TRANS(Q) * FVEC. 

WK — A work vector of length 5 * N. 

2. Informational errors 

Type  Code  
   4    1 The number of calls to FCN has exceeded ITMAX * (N + 1). A new 

initial guess may be tried. 
   4    2 ERRREL is too small. No further improvement in the approximate 

solution is possible. 
   4    3 The iteration has not made good progress. A new initial guess may 

be tried. 

Description 
Routine NEQNF is based on the MINPACK subroutine HYBRD1, which uses a modification of 
M.J.D. Powell’s hybrid algorithm. This algorithm is a variation of Newton’s method, which 
uses a finite-difference approximation to the Jacobian and takes precautions to avoid large step 
sizes or increasing residuals. For further description, see More  et al. (1980). 

Since a finite-difference method is used to estimate the Jacobian, for single precision 
calculation, the Jacobian may be so incorrect that the algorithm terminates far from a root. In 
such cases, high precision arithmetic is recommended. Also, whenever the exact Jacobian can 
be easily provided, IMSL routine NEQNJ (page 1165) should be used instead. 

NEQNJ 
Solves a system of nonlinear equations using a modified Powell hybrid algorithm with a user-
supplied Jacobian. 

 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The 

usage is CALL FCN (X, F, N), where 

X – The point at which the functions are evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function values at the point X.   (Output) 

N – Length of X, F.   (Input) 
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FCN must be declared EXTERNAL in the calling program. 

LSJAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is 
CALL LSJAC (N, X, FJAC), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by LSJAC. 

FJAC — The computed N by N Jacobian at the point X.   (Output) 

LSJAC must be declared EXTERNAL in the calling program. 

X — A vector of length N.   (Output)  
X contains the best estimate of the root found by NEQNJ. 

Optional Arguments 
ERRREL — Stopping criterion.   (Input)  

The root is accepted if the relative error between two successive approximations to this 
root is less than ERRREL. 
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision. 

N — The number of equations to be solved and the number of unknowns.   (Input) 
Default: N = size (X,1). 

ITMAX — The maximum allowable number of iterations.   (Input)  
Suggested value = 200. 
Default: ITMAX = 200. 

XGUESS — A vector of length N.   (Input)  
XGUESS contains the initial estimate of the root. 
Default: XGUESS = 0.0. 

FNORM — A scalar that has the value F(1)� + � + F(N)� at the point X.   (Output) 

FORTRAN 90 Interface 
Generic: CALL NEQNJ (FCN, LSJAC, X [,…]) 

Specific: The specific interface names are S_NEQNJ and D_NEQNJ. 

FORTRAN 77 Interface 
Single: CALL NEQNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X, FNORM) 
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Double: The double precision name is DNEQNJ. 

Example 
The following 3 � 3 system of nonlinear equations 
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is solved with the initial guess (4.0, 4.0, 4.0). 
      USE NEQNJ_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=3) 
! 
      INTEGER    K, NOUT 
      REAL       FNORM, X(N), XGUESS(N) 
      EXTERNAL   FCN, LSJAC 
!                                 Set values of initial guess 
!                                 XGUESS = (  4.0  4.0  4.0  ) 
! 
      DATA XGUESS/4.0, 4.0, 4.0/ 
! 
! 
      CALL UMACH (2, NOUT) 
!                                 Find the solution 
      CALL NEQNJ (FCN, LSJAC, X, XGUESS=XGUESS, FNORM=FNORM) 
!                                 Output 
      WRITE (NOUT,99999) (X(K),K=1,N), FNORM 
99999 FORMAT (’  The roots found are’, /, ’  X = (’, 3F5.1, & 
            ’)’, /, ’  with FNORM = ’,F5.4, //) 
! 
      END 
!                                 User-supplied subroutine 
      SUBROUTINE FCN (X, F, N) 
      INTEGER    N 
      REAL       X(N), F(N) 
! 
      REAL       EXP, SIN 
      INTRINSIC  EXP, SIN 
! 
      F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0 
      F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0 
      F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0 
      RETURN 
      END 
!                                 User-supplied subroutine to 
!                                 compute Jacobian 
      SUBROUTINE LSJAC (N, X, FJAC) 
      INTEGER    N 
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      REAL       X(N), FJAC(N,N) 
! 
      REAL       COS, EXP 
      INTRINSIC  COS, EXP 
! 
      FJAC(1,1) = 1.0 + EXP(X(1)-1.0) 
      FJAC(1,2) = 2.0*(X(2)+X(3)) 
      FJAC(1,3) = 2.0*(X(2)+X(3)) 
      FJAC(2,1) = -EXP(X(2)-2.0)*(1.0/X(1)**2) 
      FJAC(2,2) = EXP(X(2)-2.0)*(1.0/X(1)) 
      FJAC(2,3) = 2.0*X(3) 
      FJAC(3,1) = 0.0 
      FJAC(3,2) = COS(X(2)-2.0) + 2.0*X(2) 
      FJAC(3,3) = 1.0 
      RETURN 
      END 

Output 
The roots found are 
X = (  1.0  2.0  3.0) 
with FNORM =.0000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of N2QNJ/DN2QNJ. The 

reference is: 

CALL N2QNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X,  
FNORM, FVEC, FJAC, R, QTF, WK) 

The additional arguments are as follows: 

FVEC — A vector of length N. FVEC contains the functions evaluated at the point X. 

FJAC — An N by N matrix. FJAC contains the orthogonal matrix Q produced by the 
QR factorization of the final approximate Jacobian. 

R — A vector of length N * (N + 1)/2. R contains the upper triangular matrix 
produced by the QR factorization of the final approximate Jacobian. R is stored 
row-wise. 

QTF — A vector of length N. QTF contains the vector TRANS(Q) * FVEC. 

WK — A work vector of length 5 * N. 

2. Informational errors 

Type Code 
   4    1 The number of calls to FCN has exceeded ITMAX. A new initial guess 

may be tried. 
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   4    2 ERRREL is too small. No further improvement in the approximate 
solution is possible. 

   4    3 The iteration has not made good progress. A new initial guess may 
be tried. 

Description 
Routine NEQNJ is based on the MINPACK subroutine HYBRDJ, which uses a modification of 
M.J.D. Powell’s hybrid algorithm. This algorithm is a variation of Newton’s method, which 
takes precautions to avoid large step sizes or increasing residuals. For further description, see 
More et al. (1980). 

NEQBF 
Solves a system of nonlinear equations using factored secant update with a finite-difference 
approximation to the Jacobian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The 

usage is CALL FCN (N, X, F), where 

N – Length of X and F.   (Input) 

X – The point at which the functions are evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function values at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing initial guess of the root.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the distance between two points. In the absence of 
other information, set all entries to 1.0. If internal scaling is desired for XSCALE, set 
IPARAM (6) to 1. 
Default: XSCALE = 1.0. 
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FSCALE — Vector of length N containing the diagonal scaling matrix for the functions.   
(Input)  
FSCALE is used mainly in scaling the function residuals. In the absence of other 
information, set all entries to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM (1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 5.   (Input/Output)  
See Comment 4. 

FVEC — Vector of length N containing the values of the functions at the approximate 
solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL NEQBF (FCN, X [,…]) 

Specific: The specific interface names are S_NEQBF and D_NEQBF. 

FORTRAN 77 Interface 
Single: CALL NEQBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,  

                 X, FVEC) 

Double: The double precision name is DNEQBF. 

Example 
The following 3 � 3 system of nonlinear equations: 
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is solved with the initial guess (4.0, 4.0, 4.0). 
      USE NEQBF_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=3) 
! 
      INTEGER    K, NOUT 
      REAL       X(N), XGUESS(N) 
      EXTERNAL   FCN 
!                                 Set values of initial guess 
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!                                 XGUESS = (  4.0  4.0  4.0 ) 
! 
      DATA XGUESS/3*4.0/ 
! 
!                                 Find the solution 
      CALL NEQBF (FCN, X, XGUESS=XGUESS) 
!                                 Output 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (X(K),K=1,N) 
99999 FORMAT (’  The solution to the system is’, /, ’  X = (’, 3F8.3, & 
            ’)’) 
! 
      END 
!                                 User-defined subroutine 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(N), F(N) 
! 
      REAL       EXP, SIN 
      INTRINSIC  EXP, SIN 
! 
      F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0 
      F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0 
      F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0 
      RETURN 
      END 

Output 
The solution to the system is 
X = (   1.000   2.000   3.000) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of N2QBF/DN2QBF. The 

reference is: 

CALL N2QBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM,  
RPARAM, X, FVEC, WK, LWK) 

The additional arguments are as follows: 

WK — A work vector of length LWK. On output WK contains the following information: 

The third N locations contain the last step taken. 

The fourth N locations contain the last Newton step. 

The final N� locations contain an estimate of the Jacobian at the solution. 

LWK — Length of WK, which must be at least 2 * N� + 11 * N.   (Input) 

2. Informational errors 
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Type Code 
   3    1 The last global step failed to decrease the 2-norm of F(X) sufficiently; 

either the current point is close to a root of F(X) and no more 
accuracy is possible, or the secant approximation to the Jacobian is 
inaccurate, or the step tolerance is too large. 

   3    3 The scaled distance between the last two steps is less than the step 
tolerance; the current point is probably an approximate root of F(X) 
(unless STEPTL is too large). 

   3    4 Maximum number of iterations exceeded. 
   3    5 Maximum number of function evaluations exceeded. 
   3    7 Five consecutive steps of length STEPMX have been taken; either the 

2-norm of F(X) asymptotes from above to a finite value in some 
direction or the maximum allowable step size STEPMX is too small. 

3. The stopping criterion for NEQBF occurs when the scaled norm of the functions is less 
than the scaled function tolerance (RPARAM(1)). 

4. If the default parameters are desired for NEQBF, then set IPARAM(1) to zero and call 
routine NEQBF. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling NEQBF: 

CALL N4QBJ (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to N4QBJ will set IPARAM and RPARAM to their default values, so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 
Default: not used in NEQBF. 
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IPARAM(6) = Internal variable scaling flag. 
If IPARAM(6) = 1, then the values of XSCALE are set internally. 
Default: 0. 

RPARAM — Real vector of length 5.  

 RPARAM(1) = Scaled function tolerance. 
The scaled norm of the functions is computed as 

� �max *i if fsi  

 where fi is the i-th component of the function vector F, and fsi is the i-th 
component of FSCALE. 
Default: 

�  

 where � is the machine precision. 

   RPARAM(2) = Scaled step tolerance. (STEPTL) 
The scaled norm of the step between two points x and y is computed as 

� �
max { }

max , 1/
i i

i i

x y
i x s

�

 

where si is the i-th component of XSCALE. 
Default: ����, where � is the machine precision. 

RPARAM(3) = False convergence tolerance. 
Default: not used in NEQBF. 

RPARAM(4) = Maximum allowable step size. (STEPMX) 

Default: 1000 * max(��, ��), where  

� �
2

1 1

n
i ii
s t�

�

� �  

�� = ||s||�, s = XSCALE, and t = XGUESS. 

RPARAM(5) = Size of initial trust region. 
Default: based on the initial scaled Cauchy step. 

If double precision is desired, then DN4QBJ is called and RPARAM is declared 
double precision. 



 

 
 

1174 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY 

 

 

 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
Routine NEQBF uses a secant algorithm to solve a system of nonlinear equations, i.e., 

F(x) = 0 

where F : Rn � Rn, and x � Rn. 

From a current point, the algorithm uses a double dogleg method to solve the following 
subproblem approximately: 

� � � �min
2n c cs

F x J x s
�

�
R

 

subject to || s ||� � 	c 

to get a direction sc, where F(xc) and J(xc) are the function values and the approximate Jacobian 
respectively evaluated at the current point xc. Then, the function values at the point xn = xc + sc 
are evaluated and used to decide whether the new point xn should be accepted. 

When the point xn is rejected, this routine reduces the trust region 	c and goes back to solve the 
subproblem again. This procedure is repeated until a better point is found. 

The algorithm terminates if the new point satisfies the stopping criterion. Otherwise, 	c is 
adjusted, and the approximate Jacobian is updated by Broyden’s formula, 

� � T
c c c

n c T
c c

y J s s
J J

s s
�

� �  

where Jn = J(xn), Jc = J(xc), and y = F (xn) � F (xc). The algorithm then continues using the new 
point as the current point, i.e. xc 
 xn. 

For more details, see Dennis and Schnabel (1983, Chapter 8). 

Since a finite-difference method is used to estimate the initial Jacobian, for single precision 
calculation, the Jacobian may be so incorrect that the algorithm terminates far from a root. In 
such cases, high precision arithmetic is recommended. Also, whenever the exact Jacobian can 
be easily provided, IMSL routine NEQBJ (page 1174) should be used instead. 

NEQBJ 
Solves a system of nonlinear equations using factored secant update with a user-supplied Jacobian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The 

usage is CALL FCN (N, X, F), where 

N – Length of X and F.   (Input) 
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X – The point at which the functions are evaluated.   (Input) 
X should not be changed by FCN. 
F – The computed function values at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL 
JAC (N, X, FJAC, LDFJAC), where 

N – Length of X.   (Input) 
X – Vector of length N at which point the Jacobian is evaluated.   (Input) 
X should not be changed by JAC. 
FJAC – The computed N by N Jacobian at the point X.   (Output) 
LDFJAC – Leading dimension of FJAC.   (Input) 

JAC must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 
          Default: N = size (X,1). 

XGUESS — Vector of length N containing initial guess of the root.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the distance between two points. In the absence of 
other information, set all entries to 1.0. If internal scaling is desired for XSCALE, set 
IPARAM(6) to 1. 
Default: XSCALE = 1.0. 

FSCALE — Vector of length N containing the diagonal scaling matrix for the functions.   
(Input)  
FSCALE is used mainly in scaling the function residuals. In the absence of other 
information, set all entries to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM (1) to zero for default values of IPARAM and RPARAM. 
See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 5.   (Input/Output)  
See Comment 4. 

FVEC — Vector of length N containing the values of the functions at the approximate 
solution.   (Output) 
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FORTRAN 90 Interface 
Generic: CALL NEQBJ (FCN, JAC, X [,…]) 

Specific: The specific interface names are S_NEQBJ and D_NEQBJ. 

FORTRAN 77 Interface 
Single: CALL NEQBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE, IPARAM,  

     RPARAM, X, FVEC) 

Double: The double precision name is DNEQBJ. 

Example 
The following 3 � 3 system of nonlinear equations 

� � � �

� �

� � � �

1

2

21
1 1 2 3

2 2
2 1 3

2
3 3 2 2

27 0

/ 10 0

sin 2 7 0

x

x

f x x e x x

f x e x x

f x x x x

�

�

� � � � � �

� � � �

� � � � � �

 

is solved with the initial guess (4.0, 4.0, 4.0). 
      USE NEQBJ_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=3) 
! 
      INTEGER    K, NOUT 
      REAL       X(N), XGUESS(N) 
      EXTERNAL   FCN, JAC 
!                                 Set values of initial guess 
!                                 XGUESS = (  4.0  4.0  4.0 ) 
! 
      DATA XGUESS/3*4.0/ 
!                                 Find the solution 
      CALL NEQBJ (FCN, JAC, X, XGUESS=XGUESS) 
!                                 Output 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (X(K),K=1,N) 
99999 FORMAT (’  The solution to the system is’, /, ’  X = (’, 3F8.3, & 
            ’)’) 
! 
      END 
!                                 User-defined subroutine 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(N), F(N) 
! 
      REAL       EXP, SIN 
      INTRINSIC  EXP, SIN 
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! 
      F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0 
      F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0 
      F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0 
      RETURN 
      END 
!                                 User-supplied subroutine to 
!                                 compute Jacobian 
      SUBROUTINE JAC (N, X, FJAC, LDFJAC) 
      INTEGER    N, LDFJAC 
      REAL       X(N), FJAC(LDFJAC,N) 
! 
      REAL       COS, EXP 
      INTRINSIC  COS, EXP 
! 
      FJAC(1,1) = 1.0 + EXP(X(1)-1.0) 
      FJAC(1,2) = 2.0*(X(2)+X(3)) 
      FJAC(1,3) = 2.0*(X(2)+X(3)) 
      FJAC(2,1) = -EXP(X(2)-2.0)*(1.0/X(1)**2) 
      FJAC(2,2) = EXP(X(2)-2.0)*(1.0/X(1)) 
      FJAC(2,3) = 2.0*X(3) 
      FJAC(3,1) = 0.0 
      FJAC(3,2) = COS(X(2)-2.0) + 2.0*X(2) 
      FJAC(3,3) = 1.0 
      RETURN 
      END 

Output 
The solution to the system is 
X = (   1.000   2.000   3.000) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of N2QBJ/DN2QBJ. The 

reference is: 

CALL N2QBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE,  
     IPARAM, RPARAM, X, FVEC, WK, LWK) 

The additional arguments are as follows: 

WK — A work vector of length LWK. On output WK contains the following information: 
The third N locations contain the last step taken. The fourth N locations contain 
the last Newton step. The final N� locations contain an estimate of the Jacobian 
at the solution. 

LWK — Length of WK, which must be at least 2 * N� + 11 * N.   (Input) 

2. Informational errors 

Type Code 
   3    1 The last global step failed to decrease the 2-norm of F(X) sufficiently; 

either the current point is close to a root of F(X) and no more 
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accuracy is possible, or the secant approximation to the Jacobian is 
inaccurate, or the step tolerance is too large. 

   3    3 The scaled distance between the last two steps is less than the step 
tolerance; the current point is probably an approximate root of F(X) 
(unless STEPTL is too large). 

   3    4 Maximum number of iterations exceeded. 
   3    5 Maximum number of function evaluations exceeded. 
   3    7 Five consecutive steps of length STEPMX have been taken; either the 

2-norm of F(X) asymptotes from above to a finite value in some 
direction or the maximum allowable stepsize STEPMX is too small. 

3. The stopping criterion for NEQBJ occurs when the scaled norm of the functions is less 
than the scaled function tolerance (RPARAM(1)). 

4. If the default parameters are desired for NEQBJ, then set IPARAM(1) to zero and call 
routine NEQBJ. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling NEQBJ: 

CALL N4QBJ (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to N4QBJ will set IPARAM and RPARAM to their default values, so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 
Default: not used in NEQBJ. 

IPARAM(6) = Internal variable scaling flag. 
If IPARAM(6) = 1, then the values of XSCALE are set internally. 
Default: 0. 

RPARAM — Real vector of length 5. 
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RPARAM(1) = Scaled function tolerance. 
The scaled norm of the functions is computed as 

� �max *i if fsi  

where fi is the i-th component of the function vector F, and fsi is the i-th component of 
FSCALE. 
Default: 

�  

where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The scaled norm of the step between two points x and y is computed as 

� �
max { }

max , 1/
i i

i i

x y
i x s

�

 

where si is the i-th component of XSCALE. 

Default: ����, where � is the machine precision. 

RPARAM(3) = False convergence tolerance. 
Default: not used in NEQBJ. 

RPARAM(4) = Maximum allowable step size. (STEPMX) 

Default: 1000 * max(��, ��), where  

� �
2

1 1

n
i ii
s t�

�

� �  

�� = ||s||�, s = XSCALE, and t = XGUESS. 

RPARAM(5) = Size of initial trust region. 
Default: based on the initial scaled Cauchy step. 

If double precision is desired, then DN4QBJ is called and RPARAM is declared double  
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
Routine NEQBJ uses a secant algorithm to solve a system of nonlinear equations, i. e., 
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F (x) = 0 

where F : Rn� Rn, and x � Rn. 

From a current point, the algorithm uses a double dogleg method to solve the following 
subproblem approximately: 

� � � �
2

min
n c c

s
F x J x s

�

�

R
 

subject to ||s||� � 	c 

to get a direction sc, where F(xc) and J(xc) are the function values and the approximate Jacobian 
respectively evaluated at the current point xc. Then, the function values at the point xn = xc + sc 
are evaluated and used to decide whether the new point xn should be accepted. 

When the point xn is rejected, this routine reduces the trust region 	c and goes back to solve the 
subproblem again. This procedure is repeated until a better point is found. 

The algorithm terminates if the new point satisfies the stopping criterion. Otherwise, 	c is 
adjusted, and the approximate Jacobian is updated by Broyden’s formula, 

� � T
c c c

n c T
c c

y J s s
J J

s s
�

� �  

where Jn = J(xn), Jc = J(xc), and y = F (xn) � F (xc). The algorithm then continues using the new 
point as the current point, i.e. xc 
 xn. 

For more details, see Dennis and Schnabel (1983, Chapter 8). 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1181 

 

 

 

Chapter 8: Optimization 

Routines 
8.1. Unconstrained Minimization 
8.1.1 Univariate Function 

Using function values only ....................................................UVMIF 1186 
Using function and first derivative values ............................ UVMID 1189 
Nonsmooth function............................................................UVMGS 1193 

8.1.2 Multivariate Function 
Using finite-difference gradient .............................................UMINF 1196 
Using analytic gradient ........................................................UMING 1202 
Using finite-difference Hessian ............................................ UMIDH 1208 
Using analytic Hessian ........................................................ UMIAH 1213 
Using conjugate gradient with finite-difference gradient.....UMCGF 1219 
Using conjugate gradient with analytic gradient ................ UMCGG 1223 
Nonsmooth function............................................................ UMPOL 1227 

8.1.3 Nonlinear Least Squares 
Using finite-difference Jacobian........................................... UNLSF 1231 
Using analytic Jacobian ........................................................UNLSJ 1237 

8.2. Minimization with Simple Bounds 
Using finite-difference gradient ........................................... BCONF 1243 
Using analytic gradient .......................................................BCONG 1249 
Using finite-difference Hessian ...........................................BCODH 1257 
Using analytic Hessian ....................................................... BCOAH 1263 
Nonsmooth Function............................................................BCPOL 1271 
Nonlinear least squares using finite-difference Jacobian .... BCLSF 1274 
Nonlinear least squares using analytic Jacobian..................BCLSJ 1281 
Nonlinear least squares problem subject to bounds............BCNLS 1288 

8.3. Linearly Constrained Minimization 
Dense linear programming ..................................................DLPRS 1297 
Sparse linear programming ................................................. SLPRS 1301 
Quadratic programming ......................................................QPROG 1307 
General objective function with finite-difference gradient....LCONF 1310 
General objective function with analytic gradient ............... LCONG 1316 
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8.4. Nonlinearly Constrained Minimization 
Using a sequential equality constrained QP method ...........NNLPF 1323 
Using a sequential equality constrained QP method ..........NNLPG 1329 
 

8.5. Service Routines 
Central-difference gradient................................................. CDGRD 1336 
Forward-difference gradient ................................................FDGRD 1338 
Forward-difference Hessian ................................................ FDHES 1340 
Forward-difference Hessian using analytic gradient ...........GDHES 1343 
Forward-difference Jacobian................................................FDJAC 1346 
Check user-supplied gradient ............................................ CHGRD 1349 
Check user-supplied Hessian .............................................CHHES 1352 
Check user-supplied Jacobian ............................................ CHJAC 1355 
Generate starting points ..................................................... GGUES 1359 

Usage Notes 
Unconstrained Minimization 
The unconstrained minimization problem can be stated as follows: 

� �min
nx

f x
�R

 

where f : Rn� R is at least continuous. The routines for unconstrained minimization are grouped 
into three categories: univariate functions (UV***), multivariate functions (UM***), and nonlinear 
least squares (UNLS*). 

For the univariate function routines, it is assumed that the function is unimodal within the 
specified interval. Otherwise, only a local minimum can be expected. For further discussion on 
unimodality, see Brent (1973). 

A quasi-Newton method is used for the multivariate function routines UMINF (page 1196) and 
UMING (page 1202), whereas UMIDH (page 1208) and UMIAH (page 1213) use a modified Newton 
algorithm. The routines UMCGF (page 1219) and UMCGG (page 1223) make use of a conjugate 
gradient approach, and UMPOL (page 1227) uses a polytope method. For more details on these 
algorithms, see the documentation for the corresponding routines. 

The nonlinear least squares routines use a modified Levenberg-Marquardt algorithm. If the 
nonlinear least squares problem is a nonlinear data-fitting problem, then software that is designed 
to deliver better statistical output may be useful; see IMSL (1991). 

These routines are designed to find only a local minimum point. However, a function may have 
many local minima. It is often possible to obtain a better local solution by trying different initial 
points and intervals. 

High precision arithmetic is recommended for the routines that use only function values. Also it is 
advised that the derivative-checking routines CH*** be used to ensure the accuracy of the user-
supplied derivative evaluation subroutines. 
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Minimization with Simple Bounds 
The minimization with simple bounds problem can be stated as follows: 

� �min
nx

f x
�R

 

subject to li � xi � ui, for i = 1, 2, �, n 

where f : Rn� R, and all the variables are not necessarily bounded. 

The routines BCO** use the same algorithms as the routines UMI**, and the routines BCLS* are 
the corresponding routines of UNLS*. The only difference is that an active set strategy is used to 
ensure that each variable stays within its bounds. The routine BCPOL (page 1271) uses a function 
comparison method similar to the one used by UMPOL (page 1227). Convergence for these 
polytope methods is not guaranteed; therefore, these routines should be used as a last alternative. 

Linearly Constrained Minimization 
The linearly constrained minimization problem can be stated as follows: 

� �min
nx

f x
�R

 

subject to Ax = b 

where f : Rn� R, A is an m � n coefficient matrix, and b is a vector of length m. If f(x) is linear, 
then the problem is a linear programming problem; if f(x) is quadratic, the problem is a quadratic 
programming problem. 

The routine DLPRS (page 1297) uses a revised simplex method to solve small- to medium-sized 
linear programming problems. No sparsity is assumed since the coefficients are stored in full 
matrix form. 

The routine QPROG (page 1307) is designed to solve convex quadratic programming problems 
using a dual quadratic programming algorithm. If the given Hessian is not positive definite, then 
QPROG modifies it to be positive definite. In this case, output should be interpreted with care. 

The routines LCONF (page 1310) and LCONG (page 1316) use an iterative method to solve the 
linearly constrained problem with a general objective function. For a detailed description of the 
algorithm, see Powell (1988, 1989). 

Nonlinearly Constrained Minimization 
The nonlinearly constrained minimization problem can be stated as follows: 

� �min
nx

f x
�R

 

subject to gi(x) = 0, for i = 1, 2, �, m� 

    gi(x) � 0, for i = m� + 1, �, m 

where f : Rn� R and gi : Rn� R, for i = 1, 2, �, m 
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The routines NNLPF (page 1323) and NNLPG (page 1329) use a sequential equality constrained 
quadratic programming method. A more complete discussion of this algorithm can be found in the 
documentation. 

Selection of Routines 
The following general guidelines are provided to aid in the selection of the appropriate routine. 

Unconstrained Minimization 
1. For the univariate case, use UVMID (page 1189) when the gradient is available, and use 

UVMIF (page 1182) when it is not. If discontinuities exist, then use UVMGS (page 1193). 

2. For the multivariate case, use UMCG* when storage is a problem, and use UMPOL (page 
1227) when the function is nonsmooth. Otherwise, use UMI** depending on the 
availability of the gradient and the Hessian. 

3. For least squares problems, use UNLSJ (page 1237) when the Jacobian is available, and 
use UNLSF (page 1231) when it is not. 

Minimization with Simple Bounds 
1. Use BCONF (page 1243) when only function values are available. When first 

derivatives are available, use either BCONG (page 1249) or BCODH (page 1257). If first 
and second derivatives are available, then use BCOAH (page 1263). 

2. For least squares, use BCLSF (page 1274) or BCLSJ (page 1281) depending on the 
availability of the Jacobian. 

3. Use BCPOL (page 1271) for nonsmooth functions that could not be solved satisfactorily 
by the other routines. 
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The following charts provide a quick reference to routines in this chapter: 

nonsmooth

UMCGF no derivative large-size

least squaresno Jacobian

no derivative

nonsmooth

UNLSF

UVMSG

UVMIF

UMCGG

UNLSJ

UMPOL

UMINF

UMING
UMIDH

UVMID UMIAH

no first
derivative

no second

problem

derivative

UNCONSTRAINED
MINIMIZATION

univariate multivariate

smooth
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UVMIF 
Finds the minimum point of a smooth function of a single variable using only function 
evaluations. 

Required Arguments 
F — User-supplied FUNCTION to compute the value of the function to be minimized. The 

form is F(X), where 
X – The point at which the function is evaluated.   (Input)  
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X should not be changed by F. 
F – The computed function value at the point X.   (Output) 

F must be declared EXTERNAL in the calling program. 

XGUESS — An initial guess of the minimum point of F.   (Input) 

BOUND — A positive number that limits the amount by which X may be changed from its 
initial value.   (Input) 

X — The point at which a minimum value of F is found.   (Output) 

Optional Arguments 
STEP — An order of magnitude estimate of the required change in X.   (Input) 

Default: STEP = 1.0. 

XACC — The required absolute accuracy in the final value of X.   (Input)  
On a normal return there are points on either side of X within a distance XACC at which 
F is no less than F(X). 
Default: XACC = 1.e-4.  

MAXFN — Maximum number of function evaluations allowed.   (Input) 
Default: MAXFN = 1000. 

FORTRAN 90 Interface 
Generic: CALL UVMIF (F, XGUESS, BOUND, X [,…]) 

Specific: The specific interface names are S_UVMIF and D_UVMIF. 

FORTRAN 77 Interface 
Single: CALL UVMIF (F, XGUESS, STEP, BOUND, XACC, MAXFN, X) 

Double: The double precision name is DUVMIF. 

Example 

A minimum point of ex � 5x is found. 
      USE UVMIF_INT 
      USE UMACH_INT 
!                                  Declare variables 
      INTEGER    MAXFN, NOUT 
      REAL       BOUND, F, FX, STEP, X, XACC, XGUESS 
      EXTERNAL   F 
!                                  Initialize variables 
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      XGUESS = 0.0 
      XACC   = 0.001 
      BOUND  = 100.0 
      STEP   = 0.1 
      MAXFN  = 50 
! 
!                                 Find minimum for F = EXP(X) - 5X 
      CALL UVMIF (F, XGUESS, BOUND, X, STEP=STEP, XACC=XACC, MAXFN=MAXFN) 
      FX = F(X) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, FX 
! 
99999 FORMAT (’   The minimum is at ’, 7X, F7.3, //, ’   The function ’ & 
            , ’value is ’, F7.3) 
! 
      END 
!                                 Real function: F = EXP(X) - 5.0*X 
      REAL FUNCTION F (X) 
      REAL       X 
! 
      REAL       EXP 
      INTRINSIC  EXP 
! 
      F = EXP(X) - 5.0E0*X 
! 
      RETURN 
      END 

Output 
The minimum is at          1.609 
 
The function value is  -3.047 

Comments 
Informational errors  

Type  Code  
   3    1  Computer rounding errors prevent further refinement of X. 
   3    2  The final value of X is at a bound. The minimum is probably beyond the 

bound. 
   4    3  The number of function evaluations has exceeded MAXFN. 

Description 
The routine UVMIF uses a safeguarded quadratic interpolation method to find a minimum point 
of a univariate function. Both the code and the underlying algorithm are based on the routine 
ZXLSF written by M.J.D. Powell at the University of Cambridge. 

The routine UVMIF finds the least value of a univariate function, f, that is specified by the 
function subroutine F. Other required data include an initial estimate of the solution, XGUESS , 
and a positive number BOUND. Let x� = XGUESS and b = BOUND, then x is restricted to the 
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interval [x� � b, x� + b]. Usually, the algorithm begins the search by moving from x� to  
x = x� + s, where s = STEP is also provided by the user and may be positive or negative. The first 
two function evaluations indicate the direction to the minimum point, and the search strides out 
along this direction until a bracket on a minimum point is found or until x reaches one of the 
bounds x� � b. During this stage, the step length increases by a factor of between two and nine 
per function evaluation; the factor depends on the position of the minimum point that is 
predicted by quadratic interpolation of the three most recent function values. 

When an interval containing a solution has been found, we will have three points, x�, x�, and x�, 
with x� < x� < x� and f (x�) � f (x�) and f (x�) � f (x�). There are three main ingredients in the 
technique for choosing the new x from these three points. They are (i) the estimate of the 
minimum point that is given by quadratic interpolation of the three function values, (ii) a 
tolerance parameter �, that depends on the closeness of f to a quadratic, and (iii) whether x� is 
near the center of the range between x� and x� or is relatively close to an end of this range. In 
outline, the new value of x is as near as possible to the predicted minimum point, subject to 
being at least � from x�, and subject to being in the longer interval between x� and x� or x� and x� 
when x� is particularly close to x� or x�. There is some elaboration, however, when the distance 
between these points is close to the required accuracy; when the distance is close to the machine 
precision; or when � is relatively large. 

The algorithm is intended to provide fast convergence when f has a positive and continuous 
second derivative at the minimum and to avoid gross inefficiencies in pathological cases, such 
as  

f (x) = x + 1.001|x| 

The algorithm can make � large automatically in the pathological cases. In this case, it is usual 
for a new value of x to be at the midpoint of the longer interval that is adjacent to the least 
calculated function value. The midpoint strategy is used frequently when changes to f are 
dominated by computer rounding errors, which will almost certainly happen if the user requests 
an accuracy that is less than the square root of the machine precision. In such cases, the routine 
claims to have achieved the required accuracy if it knows that there is a local minimum point 
within distance 	 of x, where 	 = XACC, even though the rounding errors in f may cause the 
existence of other local minimum points nearby. This difficulty is inevitable in minimization 
routines that use only function values, so high precision arithmetic is recommended. 

UVMID 
Finds the minimum point of a smooth function of a single variable using both function evaluations 
and first derivative evaluations. 

Required Arguments 
F — User-supplied FUNCTION to define the function to be minimized. The form is F(X), 

where 

X — The point at which the function is to be evaluated.   (Input) 
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F — The computed value of the function at X.   (Output) 

F must be declared EXTERNAL in the calling program. 

G — User-supplied FUNCTION to compute the derivative of the function. The form is G(X), 
where 

X — The point at which the derivative is to be computed.   (Input) 

G — The computed value of the derivative at X.   (Output) 

G must be declared EXTERNAL in the calling program. 

A — A is the lower endpoint of the interval in which the minimum point of F is to be located.   
(Input) 

B — B is the upper endpoint of the interval in which the minimum point of F is to be located.   
(Input) 

X — The point at which a minimum value of F is found.   (Output) 

Optional Arguments 
XGUESS — An initial guess of the minimum point of F.   (Input) 

Default: XGUESS = (a + b) / 2.0. 

ERRREL — The required relative accuracy in the final value of X.   (Input)  
This is the first stopping criterion. On a normal return, the solution X is in an interval 
that contains a local minimum and is less than or equal to MAX(1.0, ABS(X)) * ERRREL. 
When the given ERRREL is less than machine epsilon, SQRT(machine epsilon) is used 
as ERRREL. 
Default: ERRREL = 1.e-4. 

GTOL — The derivative tolerance used to decide if the current point is a local minimum.   
(Input)  
This is the second stopping criterion. X is returned as a solution when GX is less than or 
equal to GTOL. GTOL should be nonnegative, otherwise zero would be used. 
Default: GTOL = 1.e-4. 

MAXFN — Maximum number of function evaluations allowed.   (Input) 
Default: MAXFN = 1000. 

FX — The function value at point X.   (Output) 

GX — The derivative value at point X.   (Output) 
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FORTRAN 90 Interface 
Generic: CALL UVMID (F, G, A, B, X [,…]) 

Specific: The specific interface names are S_UVMID and D_UVMID. 

FORTRAN 77 Interface 
Single: CALL UVMID (F, G, XGUESS, ERRREL, GTOL, MAXFN, A, B, X, FX, 

GX) 

Double: The double precision name is DUVMID. 

Example 

A minimum point of ex � 5x is found. 
      USE UVMID_INT 
      USE UMACH_INT 
!                                  Declare variables 
      INTEGER    MAXFN, NOUT 
      REAL       A, B, ERRREL, F, FX, G, GTOL, GX, X, XGUESS 
      EXTERNAL   F, G 
!                                  Initialize variables 
      XGUESS = 0.0 
!                                 Set ERRREL to zero in order 
!                                 to use SQRT(machine epsilon) 
!                                 as relative error 
      ERRREL = 0.0 
      GTOL   = 0.0 
      A      = -10.0 
      B      = 10.0 
      MAXFN  = 50 
! 
!                                 Find minimum for F = EXP(X) - 5X 
      CALL UVMID (F, G, A, B, X, XGUESS=XGUESS, ERRREL=ERRREL,  & 
                 GTOL=FTOL, MAXFN=MAXFN, FX=FX, GX=GX) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, FX, GX 
! 
99999 FORMAT (’   The minimum is at ’, 7X, F7.3, //, ’   The function ’ & 
            , ’value is ’, F7.3, //, ’   The derivative is ’, F7.3) 
! 
      END 
!                                 Real function: F = EXP(X) - 5.0*X 
      REAL FUNCTION F (X) 
      REAL       X 
! 
      REAL       EXP 
      INTRINSIC  EXP 
! 
      F = EXP(X) - 5.0E0*X 
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! 
      RETURN 
      END 
! 
      REAL FUNCTION G (X) 
      REAL       X 
! 
      REAL       EXP 
      INTRINSIC  EXP 
! 
      G = EXP(X) - 5.0E0 
      RETURN 
      END 

Output 
The minimum is at       1.609 
 
The function value is  -3.047 
 
The derivative is  -0.001 

Comments 
Informational errors 

Type  Code  
   3     1  The final value of X is at the lower bound. The minimum is probably 

beyond the bound. 
   3    2  The final value of X is at the upper bound. The minimum is probably 

beyond the bound. 
   4     3  The maximum number of function evaluations has been exceeded. 

Description 
The routine UVMID uses a descent method with either the secant method or cubic interpolation to 
find a minimum point of a univariate function. It starts with an initial guess and two endpoints. 
If any of the three points is a local minimum point and has least function value, the routine 
terminates with a solution. Otherwise, the point with least function value will be used as the 
starting point. 

From the starting point, say xc, the function value fc = f (xc), the derivative value gc = g(xc), and 
a new point xn defined by xn = xc � gc are computed. The function fn = f(xn), and the derivative 
gn = g(xn) are then evaluated. If either fn � fc or gn has the opposite sign of gc, then there exists a 
minimum point between xc and xn; and an initial interval is obtained. Otherwise, since xc is kept 
as the point that has lowest function value, an interchange between xn and xc is performed. The 
secant method is then used to get a new point 

( )n c
s c c

n c

g g
x x g

x x
�

� �

�
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Let xn 
 xs and repeat this process until an interval containing a minimum is found or one of the 
convergence criteria is satisfied. The convergence criteria are as follows: Criterion 1: 

c n cx x �� �  

 

Criterion 2: 

c gg ��  

where �c = max{1.0, |xc|}�, � is a relative error tolerance and �g is a gradient tolerance.  

When convergence is not achieved, a cubic interpolation is performed to obtain a new point. 
Function and derivative are then evaluated at that point; and accordingly, a smaller interval that 
contains a minimum point is chosen. A safeguarded method is used to ensure that the interval 
reduces by at least a fraction of the previous interval. Another cubic interpolation is then 
performed, and this procedure is repeated until one of the stopping criteria is met. 

UVMGS 
Finds the minimum point of a nonsmooth function of a single variable. 

 

Required Arguments 
F — User-supplied FUNCTION to compute the value of the function to be minimized. The 

form is F(X), where 

X – The point at which the function is evaluated.   (Input) 
X should not be changed by F. 

F – The computed function value at the point X.   (Output) 

F must be declared EXTERNAL in the calling program. 

A — On input, A is the lower endpoint of the interval in which the minimum of F is to be 
located. On output, A is the lower endpoint of the interval in which the minimum of F 
is located.   (Input/Output) 

B — On input, B is the upper endpoint of the interval in which the minimum of F is to be 
located. On output, B is the upper endpoint of the interval in which the minimum of F 
is located.   (Input/Output) 

XMIN — The approximate minimum point of the function F on the original interval (A, B).   
(Output) 



 

 
 

1194 � Chapter 8: Optimization IMSL MATH/LIBRARY 

 

 

 

Optional Arguments 
TOL — The allowable length of the final subinterval containing the minimum point.   (Input) 

Default: TOL = 1.e-4. 

FORTRAN 90 Interface 
Generic: CALL UVMGS (F, A, B, XMIN [,…]) 

Specific: The specific interface names are S_UVMGS and D_UVMGS. 

FORTRAN 77 Interface 
Single: CALL UVMGS (F, A, B, TOL, XMIN) 

Double: The double precision name is DUVMGS. 

Example 
A minimum point of 3x� � 2x + 4 is found. 

      USE UVMGS_INT 
      USE UMACH_INT 
!                                 Specification of variables 
      INTEGER    NOUT 
      REAL       A, B, FCN, FMIN, TOL, XMIN 
      EXTERNAL   FCN 
!                                 Initialize variables 
      A   = 0.0E0 
      B   = 5.0E0 
      TOL = 1.0E-3 
!                                 Minimize FCN 
      CALL UVMGS (FCN, A, B, XMIN, TOL=TOL) 
      FMIN = FCN(XMIN) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) XMIN, FMIN, A, B 
99999 FORMAT (’   The minimum is at ’, F5.3, //, ’   The ’, & 
            ’function value is ’, F5.3, //, ’   The final ’, & 
            ’interval is (’, F6.4, ’,’, F6.4, ’)’, /) 
! 
      END 
! 
!                                 REAL FUNCTION: F = 3*X**2 - 2*X + 4 
      REAL FUNCTION FCN (X) 
      REAL       X 
! 
      FCN = 3.0E0*X*X - 2.0E0*X + 4.0E0 
! 
      RETURN 
      END 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1195 

 

 

 

Output 
The minimum is at 0.333 
 
The function value is 3.667 
 
The final interval is (0.3331,0.3340) 
 

Comments 
1. Informational errors 

Type  Code 
   3    1 TOL is too small to be satisfied. 
   4    2 Due to rounding errors F does not appear to be unimodal. 

2. On exit from UVMGS without any error messages, the following conditions hold: (B-A) � 
TOL. 
A � XMIN and XMIN � B 
F(XMIN) � F(A) and F(XMIN) � F(B) 

3. On exit from UVMGS with error code 2, the following conditions hold: 
A � XMIN and XMIN � B 
F(XMIN) � F(A) and F(XMIN) � F(B) (only one equality can hold). 
Further analysis of the function F is necessary in order to determine whether it is not 
unimodal in the mathematical sense or whether it appears to be not unimodal to the 
routine due to rounding errors in which case the A, B, and XMIN returned may be 
acceptable. 

Description 
The routine UVMGS uses the golden section search technique to compute to the desired accuracy 
the independent variable value that minimizes a unimodal function of one independent variable, 
where a known finite interval contains the minimum. 

Let � = TOL. The number of iterations required to compute the minimizing value to accuracy � is 
the greatest integer less than or equal to 

� �� �
� �

ln /
1

ln 1
b a

c
� �

�

�

 

where a and b define the interval and  

� �3 5 / 2c � �  

The first two test points are v� and v� that are defined as 

v� = a + c(b � a), and v� = b � c(b � a) 
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If f(v�) < f(v�), then the minimizing value is in the interval (a, v�). In this case, b 
 v�, v� 
 v�, 
and v� 
 a + c(b � a). If f(v�) � f(v�), the minimizing value is in (v�, b). In this case, a 
 v�, v� 

 v�, and v� 
 b � c(b � a). 

The algorithm continues in an analogous manner where only one new test point is computed at 
each step. This process continues until the desired accuracy � is achieved. XMIN is set to the 
point producing the minimum value for the current iteration. 

Mathematically, the algorithm always produces the minimizing value to the desired accuracy; 
however, numerical problems may be encountered. If f is too flat in part of the region of interest, 
the function may appear to be constant to the computer in that region. Error code 2 indicates that 
this problem has occurred. The user may rectify the problem by relaxing the requirement on �, 
modifying (scaling, etc.) the form of f or executing the program in a higher precision. 

UMINF 
Minimizes a function of N variables using a quasi-Newton method and a finite-difference gradient. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing an initial guess of the computed solution.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 
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FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.(Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMINF (FCN, X [,…]) 

Specific: The specific interface names are S_UMINF and D_UMINF. 

FORTRAN 77 Interface 
Single: CALL UMINF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,  

X, FVALUE) 

Double: The double precision name is DUMINF. 

Example 
The function  

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized. 
      USE UMINF_INT 
      USE U4INF_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IPARAM(7), L, NOUT 
      REAL       F, RPARAM(7), X(N), XGUESS(N), & 
                XSCALE(N) 
      EXTERNAL   ROSBRK 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
! 
!                                 Relax gradient tolerance stopping 
!                                 criterion 
      CALL U4INF (IPARAM, RPARAM) 
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      RPARAM(1) = 10.0E0*RPARAM(1) 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 

CALL UMINF (ROSBRK, X, XGUESS=XGUESS, IPARAM=IPARAM, RPARAM=RPARAM, &   
FVALUE=F) 

!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 

Output 
The solution is          1.000   1.000 
 
The function value is    0.000 
 
The number of iterations is            15 
The number of function evaluations is  40 
The number of gradient evaluations is  19 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2INF/DU2INF. The 

reference is: 

CALL U2INF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM,  
RPARAM, X,FVALUE, WK) 

The additional argument is: 

WK — Work vector of length N(N + 8). WK contains the following information on 
output: The second N locations contain the last step taken. The third N locations 
contain the last Newton step. The fourth N locations contain an estimate of the 
gradient at the solution. The final N� locations contain the Cholesky 
factorization of a BFGS approximation to the Hessian at the solution. 

2. Informational errors 

Type Code 
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   3    1 Both the actual and predicted relative reductions in the function are 
less than or equal to the relative function convergence tolerance. 

   4    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   3    8 The last global step failed to locate a lower point than the current X 
value. 

3. The first stopping criterion for UMINF occurs when the infinity norm of the scaled 
gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping 
criterion for UMINF occurs when the scaled distance between the last two steps is less 
than the step tolerance (RPARAM(2)). 

4. If the default parameters are desired for UMINF, then set IPARAM(1) to zero and call the 
routine UMINF. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling UMINF: 

CALL U4INF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 
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IPARAM(6) = Hessian initialization parameter. 
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it is 
initialized to a diagonal matrix containing  

� �� � 2max , s if t f s�  

on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE. 
Default: 0. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default: Not used in UMINF. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at 
x is calculated as 

� �

� �� �

*max ,1/

max ,
i i i

s

g x s

f x f
 

where g = �f (x), s = XSCALE, and fs = FSCALE. 
Default:  

3,� �  

in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 
Default: �
�� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max(10���, ����) in double where � is the machine 
precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in UMINF. 

RPARAM(5) = False convergence tolerance. 
Default: Not used in UMINF. 
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RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 2 21
XSCALE XGUESS, , ,  and n

i ii
s t s s t� �

�

� � � ��  

RPARAM(7) = Size of initial trust region radius. 
Default: Not used in UMINF. 

If double precision is required, then DU4INF is called, and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine UMINF uses a quasi-Newton method to find the minimum of a function f(x) of n 
variables. Only function values are required. The problem is stated as follows: 

� �min
nx

f x
�R

 

Given a starting point xc, the search direction is computed according to the formula 

d = �B�� gc 

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at 
xc. A line search is then used to find a new point 

xn = xc + �d, � > 0 

such that 

f(xn) � f(xc) + �gT d, � � (0, 0.5) 

Finally, the optimality condition ||g(x)|| = � is checked where � is a gradient tolerance. 

When optimality is not achieved, B is updated according to the BFGS formula 
T T

T T

Bss B yyB B
s Bs y s

� � �  

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next 
iteration. For more details, see Dennis and Schnabel (1983, Appendix A). 

Since a finite-difference method is used to estimate the gradient, for some single precision 
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact gradient can be easily provided, IMSL routine UMING (page 1202) should be used instead. 



 

 
 

1202 � Chapter 8: Optimization IMSL MATH/LIBRARY 

 

 

 

UMING 
Minimizes a function of N variables using a quasi-Newton method and a user-supplied gradient. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 
X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by GRAD . 
G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
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FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMING (FCN, GRAD, X [,…]) 

Specific: The specific interface names are S_UMING and D_UMING. 

FORTRAN 77 Interface 
Single: CALL UMING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,  

RPARAM, X, FVALUE) 

Double: The double precision name is DUMING. 

Example 
The function  

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized. Default values for parameters are used. 
      USE UMING_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IPARAM(7), L, NOUT 
      REAL       F, X(N), XGUESS(N) 
      EXTERNAL   ROSBRK, ROSGRD 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
! 
      IPARAM(1) = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 
      CALL UMING (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 
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! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 
! 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 

Output 
The solution is          1.000   1.000 
 
The function value is    0.000 
 
The number of iterations is            18 
The number of function evaluations is  31 
The number of gradient evaluations is  22 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2ING/DU2ING. The 

reference is: 

CALL U2ING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM, 
RPARAM, X, FVALUE, WK) 

The additional argument is 

WK — Work vector of length N * (N + 8). WK contains the following information on 
output: The second N locations contain the last step taken. The third N locations 
contain the last Newton step. The fourth N locations contain an estimate of the 
gradient at the solution. The final N� locations contain the Cholesky factorization 
of a BFGS approximation to the Hessian at the solution. 

2. Informational errors 
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Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   4    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   3    8 The last global step failed to locate a lower point than the current X 
value. 

3. The first stopping criterion for UMING occurs when the infinity norm of the scaled 
gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping 
criterion for UMING occurs when the scaled distance between the last two steps is less 
than the step tolerance (RPARAM(2)). 

4. If the default parameters are desired for UMING, then set IPARAM(1) to zero and call 
routine UMING (page 1202). Otherwise, if any nondefault parameters are desired for 
IPARAM or RPARAM, then the following steps should be taken before calling UMING: 

 CALL U4INF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 
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IPARAM(6) = Hessian initialization parameter 
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it is 
initialized to a diagonal matrix containing  

 � �� � 2max , s if t f s�  

on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE. 
Default: 0. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default: Not used in UMING. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at 
x is calculated as 

� �

� �� �

* max ,1/

max ,
i i i

s

g x s

f x f
 

where g = �f (x), s = XSCALE, and fs = FSCALE. 
Default:  

3,� �  

in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max(10���, ����) in double where � is the machine 
precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in UMING. 
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RPARAM(5) = False convergence tolerance. 
Default: Not used in UMING. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

� �  

�� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: Not used in UMING. 

If double precision is required, then DU4INF is called, and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine UMING uses a quasi-Newton method to find the minimum of a function f(x) of n 
variables. Function values and first derivatives are required. The problem is stated as follows: 

� �min
nx

f x
�R

 

Given a starting point xc, the search direction is computed according to the formula 

d = �B�� gc 

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at 
xc. A line search is then used to find a new point 

xn = xc + �d, � > 0 

such that 

f(xn) � f(xc) + �gT d, � � (0, 0.5) 

Finally, the optimality condition ||g(x)|| = � is checked where � is a gradient tolerance. 

When optimality is not achieved, B is updated according to the BFGS formula 
T T

T T

Bss B yyB B
s Bs y s

� � �  

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next 
iteration. For more details, see Dennis and Schnabel (1983, Appendix A). 
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UMIDH 
Minimizes a function of N variables using a modified Newton method and a finite-difference 
Hessian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – The point at which the gradient is evaluated.   (Input)  
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing initial guess.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 
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FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMIDH (FCN, GRAD, X [,…]) 

Specific: The specific interface names are S_UMIDH and D_UMIDH. 

FORTRAN 77 Interface 
Single: CALL UMIDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,  

RPARAM, X, FVALUE) 

Double: The double precision name is DUMIDH. 

Example 
The function 

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized. Default values for parameters are used. 
      USE UMIDH_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IPARAM(7), L, NOUT 
      REAL       F, X(N), XGUESS(N) 
      EXTERNAL   ROSBRK, ROSGRD 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
! 
      IPARAM(1) = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 
      CALL UMIDH (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F) 
!                                 Print results 
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      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3, /, & 
            ’  The number of Hessian evaluations is  ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 
! 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 

Output 
The solution is          1.000   1.000 
 
The function value is    0.000 
 
The number of iterations is            21 
The number of function evaluations is  30 
The number of gradient evaluations is  22 
The number of Hessian evaluations is   21 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2IDH/DU2IDH. The 

reference is: 

1CALL U2IDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM, 
RPARAM, X, FVALUE, WK) 

The additional argument is: 

WK — Work vector of length N * (N + 9). WK contains the following information on 
output: The second N locations contain the last step taken. The third N locations 
contain the last Newton step. The fourth N locations contain an estimate of the 
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gradient at the solution. The final N� locations contain the Hessian at the 
approximate solution. 

2. Informational errors 

Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   4    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   4    7 Maximum number of Hessian evaluations exceeded. 
   3    8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for UMIDH occurs when the norm of the gradient is less than 
the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIDH 
occurs when the scaled distance between the last two steps is less than the step 
tolerance (RPARAM(2)). 

4. If the default parameters are desired for UMIDH, then set IPARAM(1) to zero and call 
routine UMIDH. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling UMIDH: 

CALL U4INF (IPARAM, RPARAM) 

Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

 IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 
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IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 

IPARAM(6) = Hessian initialization parameter 
Default: Not used in UMIDH. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default:100 

RPARAM — Real vector of length 7. 
 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �� �

* max ,1/

max ,
i i i

s

g x s

f x f
 

where g = �f (x), s = XSCALE, and fs = FSCALE. 
Default:  

3,� �  

in double where � is the machine precision. 

 RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

 where s = XSCALE. 
Default: ���� where � is the machine precision. 

 RPARAM(3) = Relative function tolerance.   

  Default: max(10���, ����), max(10���, ����) in double where � is the machine  
 precision. 

 RPARAM(4) = Absolute function tolerance.   

   Default: Not used in UMIDH. 
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 RPARAM(5) = False convergence tolerance. 

   Default: 100� where � is the machine precision. 

 RPARAM(6) = Maximum allowable step size. 

  Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

� �  

 �� = || s ||�, s = XSCALE, and t = XGUESS. 

 RPARAM(7) = Size of initial trust region radius. 

  Default: Based on initial scaled Cauchy step. 

If double precision is required, then DU4INF is called, and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine UMIDH uses a modified Newton method to find the minimum of a function f (x) of n 
variables. First derivatives must be provided by the user. The algorithm computes an optimal 
locally constrained step (Gay 1981) with a trust region restriction on the step. It handles the case 
that the Hessian is indefinite and provides a way to deal with negative curvature. For more 
details, see Dennis and Schnabel (1983, Appendix A) and Gay (1983). 

Since a finite-difference method is used to estimate the Hessian for some single precision 
calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact Hessian can be easily provided, IMSL routine UMIAH (page 1213) should be used instead. 

UMIAH 
Minimizes a function of N variables using a modified Newton method and a user-supplied 
Hessian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 
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X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the gradient is evaluated.   (Input)  
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The usage is 
CALL HESS (N, X, H, LDH), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the Hessian is evaluated.   (Input)  
X should not be changed by HESS. 

H – The Hessian evaluated at the point X.   (Output) 

LDH – Leading dimension of H exactly as specified in the dimension statement of the 
calling program. LDH must be equal to N in this routine.   (Input) 

HESS must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing initial guess.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input) 
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
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the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMIAH (FCN, GRAD, HESS, X, [,…]) 

Specific: The specific interface names are S_UMIAH and D_UMIAH. 

FORTRAN 77 Interface 
Single: CALL UMIAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE,  

IPARAM, RPARAM, X, FVALUE) 

Double: The double precision name is DUMIAH. 

Example 
The function 

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized. Default values for parameters are used. 
      USE UMIAH_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IPARAM(7), L, NOUT 
      REAL       F, FSCALE, RPARAM(7), X(N), & 
                XGUESS(N), XSCALE(N) 
      EXTERNAL   ROSBRK, ROSGRD, ROSHES 
! 
      DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/ 
! 
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      IPARAM(1) = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 

CALL UMIAH (ROSBRK, ROSGRD, ROSHES, X, XGUESS=XGUESS, IPARAM=IPARAM, &  
FVALUE=F) 

!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3, /, & 
            ’  The number of Hessian evaluations is  ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 
! 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 
! 
      SUBROUTINE ROSHES (N, X, H, LDH) 
      INTEGER    N, LDH 
      REAL       X(N), H(LDH,N) 
! 
      H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0 
      H(2,1) = -4.0E2*X(1) 
      H(1,2) = H(2,1) 
      H(2,2) = 2.0E2 
! 
      RETURN 
      END 

Output 
The solution is          1.000   1.000 
 
The function value is    0.000 
 
The number of iterations is            21 
The number of function evaluations is  31 
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The number of gradient evaluations is  22 
The number of Hessian evaluations is   21 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2IAH/DU2IAH. The 

reference is: 

CALL U2IAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE, IPARAM, 
RPARAM, X, FVALUE, WK) 

The additional argument is: 

WK — Work vector of length N * (N + 9). WK contains the following information on 
output: The second N locations contain the last step taken. The third N locations 
contain the last Newton step. The fourth N locations contain an estimate of the 
gradient at the solution. The final N� locations contain the Hessian at the 
approximate solution. 

2. Informational errors 

Type Code 
   3     1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   4    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   4    7 Maximum number of Hessian evaluations exceeded. 
   3    8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for UMIAH occurs when the norm of the gradient is less than 
the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIAH 
occurs when the scaled distance between the last two steps is less than the step 
tolerance (RPARAM(2)). 

4. If the default parameters are desired for UMIAH, then set IPARAM(1) to zero and call the 
routine UMIAH. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling UMIAH: 

CALL U4INF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 
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Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 

IPARAM(6) = Hessian initialization parameter 
Default: Not used in UMIAH. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default: 100. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 

 where g = �f (x), s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

 in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�
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 where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max(10���, ����) in double where � is the machine 
precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in UMIAH. 

RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

� �  

 �� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is required, then DU4INF is called, and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine UMIAH uses a modified Newton method to find the minimum of a function f(x) of n 
variables. First and second derivatives must be provided by the user. The algorithm computes an 
optimal locally constrained step (Gay 1981) with a trust region restriction on the step. This 
algorithm handles the case where the Hessian is indefinite and provides a way to deal with 
negative curvature. For more details, see Dennis and Schnabel (1983, Appendix A) and Gay 
(1983). 

UMCGF 
Minimizes a function of N variables using a conjugate gradient algorithm and a finite-difference 
gradient. 
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Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

DFPRED — A rough estimate of the expected reduction in the function.   (Input)  
DFPRED is used to determine the size of the initial change to X. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input) 
Default: XSCALE = 1.0. 

GRADTL — Convergence criterion.   (Input)  
The calculation ends when the sum of squares of the components of G is less than 
GRADTL. 
Default: GRADTL = 1.e-4. 

MAXFN — Maximum number of function evaluations.   (Input)  
If MAXFN is set to zero, then no restriction on the number of function evaluations is set. 
Default: MAXFN = 0. 

G — Vector of length N containing the components of the gradient at the final parameter 
estimates.   (Output) 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMCGF (FCN, DFPRED, X [,…]) 
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Specific: The specific interface names are S_UMCGF and D_UMCGF. 

FORTRAN 77 Interface 
Single: CALL UMCGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED,  

X, G, FVALUE) 

Double: The double precision name is DUMCGF. 

Example 
The function 

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized and the solution is printed. 
      USE UMCGF_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    I, MAXFN, NOUT 
      REAL       DFPRED, FVALUE, G(N), GRADTL, X(N), XGUESS(N) 
      EXTERNAL   ROSBRK 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
! 
      DFPRED = 0.2 
      GRADTL = 1.0E-6 
      MAXFN  = 100 
!                                 Minimize the Rosenbrock function 
      CALL UMCGF (ROSBRK, DFPRED, X, XGUESS=XGUESS, GRADTL=GRADTL, & 
                 G=G, FVALUE=FVALUE) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N) 
99999 FORMAT (’  The solution is ’, 2F8.3, //, ’  The function ’, & 
            ’evaluated at the solution is ’, F8.3, //, ’  The ’, & 
            ’gradient is ’, 2F8.3, /) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
      RETURN 
      END 
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Output 
The solution is    0.999   0.998 
 
The function evaluated at the solution is    0.000 
 
The gradient is   -0.001   0.000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2CGF/DU2CGF. The 

reference is: 

CALL U2CGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED, X, G, 
FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT) 

The additional arguments are as follows: 

S — Vector of length N used for the search direction in each iteration. 

RSS — Vector of length N containing conjugacy information. 

RSG — Vector of length N containing conjugacy information. 

GINIT — Vector of length N containing the gradient values at the start of an iteration. 

XOPT — Vector of length N containing the parameter values that yield the least 
calculated value for FVALUE. 

GOPT — Vector of length N containing the gradient values that yield the least 
calculated value for FVALUE. 

2. Informational errors 

Type Code 
   4    1 The line search of an integration was abandoned. This error may be 

caused by an error in gradient. 
   4    2 The calculation cannot continue because the search is uphill. 
   4    3 The iteration was terminated because MAXFN was exceeded. 
   3    4 The calculation was terminated because two consecutive iterations 

failed to reduce the function. 

3. Because of the close relation between the conjugate-gradient method and the method of 
steepest descent, it is very helpful to choose the scale of the variables in a way that 
balances the magnitudes of the components of a typical gradient vector. It can be 
particularly inefficient if a few components of the gradient are much larger than the 
rest. 

4. If the value of the parameter GRADTL in the argument list of the routine is set to zero, 
then the subroutine will continue its calculation until it stops reducing the objective 
function. In this case, the usual behavior is that changes in the objective function 
become dominated by computer rounding errors before precision is lost in the gradient 
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vector. Therefore, because the point of view has been taken that the user requires the 
least possible value of the function, a value of the objective function that is small due 
to computer rounding errors can prevent further progress. Hence, the precision in the 
final values of the variables may be only about half the number of significant digits in 
the computer arithmetic, but the least value of FVALUE is usually found to be quite 
accurate. 

Description 
The routine UMCGF uses a conjugate gradient method to find the minimum of a function f (x) of 
n variables. Only function values are required. 

The routine is based on the version of the conjugate gradient algorithm described in Powell 
(1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of 
convergence without the storage of any matrices. Therefore, it is particularly suitable for 
unconstrained minimization calculations where the number of variables is so large that matrices 
of dimension n cannot be stored in the main memory of the computer. For smaller problems, 
however, a routine such as routine UMINF (page 1196), is usually more efficient because each 
iteration makes use of additional information from previous iterations. 

Since a finite-difference method is used to estimate the gradient for some single precision 
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact gradient can be easily provided, routine UMCGG (page 1223) should be used instead. 

UMCGG 
Minimizes a function of N variables using a conjugate gradient algorithm and a user-supplied 
gradient. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 
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X – The point at which the gradient is evaluated.   (Input)  
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

DFPRED — A rough estimate of the expected reduction in the function.   (Input) DFPRED is 
used to determine the size of the initial change to X. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

GRADTL — Convergence criterion.   (Input)  
The calculation ends when the sum of squares of the components of G is less than 
GRADTL. 
Default: GRADTL = 1.e-4. 

MAXFN — Maximum number of function evaluations.   (Input) 
Default: MAXFN = 100. 

G — Vector of length N containing the components of the gradient at the final parameter 
estimates.   (Output) 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMCGG (FCN, GRAD, DFPRED, X [,…]) 

Specific: The specific interface names are S_UMCGG and D_UMCGG. 

FORTRAN 77 Interface 
Single: CALL UMCGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X,  

G, FVALUE) 

Double: The double precision name is DUMCGG. 
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Example 
The function 

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized and the solution is printed. 
      USE UMCGG_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    I, NOUT 
      REAL       DFPRED, FVALUE, G(N), GRADTL, X(N), & 
                XGUESS(N) 
      EXTERNAL   ROSBRK, ROSGRD 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
! 
      DFPRED = 0.2 
      GRADTL = 1.0E-7 
!                                 Minimize the Rosenbrock function 
      CALL UMCGG (ROSBRK, ROSGRD, DFPRED, X, XGUESS=XGUESS, & 
                 GRADTL=GRADTL, G=G, FVALUE=FVALUE) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N) 
99999 FORMAT (’  The solution is ’, 2F8.3, //, ’  The function ’, & 
            ’evaluated at the solution is ’, F8.3, //, ’  The ’, & 
            ’gradient is ’, 2F8.3, /) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
      RETURN 
      END 
! 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 
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Output 
The solution is    1.000   1.000 
 
The function evaluated at the solution is    0.000 
 
The gradient is    0.000   0.000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2CGG/DU2CGG. The 

reference is: 

CALL U2CGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X, G, 
FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT) 

The additional arguments are as follows: 

S — Vector of length N used for the search direction in each iteration. 

RSS — Vector of length N containing conjugacy information. 

RSG — Vector of length N containing conjugacy information. 

GINIT — Vector of length N containing the gradient values at the start on an iteration. 

XOPT — Vector of length N containing the parameter values which yield the least 
calculated value for FVALUE. 

GOPT — Vector of length N containing the gradient values which yield the least 
calculated value for FVALUE. 

2. Informational errors 

Type Code 
   4 1 The line search of an integration was abandoned. This error may be 

caused by an error in gradient. 
   4 2 The calculation cannot continue because the search is uphill. 
   4 3 The iteration was terminated because MAXFN was exceeded. 
   3 4 The calculation was terminated because two consecutive iterations 

failed to reduce the function. 

3. The routine includes no thorough checks on the part of the user program that calculates 
the derivatives of the objective function. Therefore, because derivative calculation is a 
frequent source of error, the user should verify independently the correctness of the 
derivatives that are given to the routine. 

4. Because of the close relation between the conjugate-gradient method and the method of 
steepest descent, it is very helpful to choose the scale of the variables in a way that 
balances the magnitudes of the components of a typical gradient vector. It can be 
particularly inefficient if a few components of the gradient are much larger than the 
rest. 
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5. If the value of the parameter GRADTL in the argument list of the routine is set to zero, 
then the subroutine will continue its calculation until it stops reducing the objective 
function. In this case, the usual behavior is that changes in the objective function 
become dominated by computer rounding errors before precision is lost in the gradient 
vector. Therefore, because the point of view has been taken that the user requires the 
least possible value of the function, a value of the objective function that is small due 
to computer rounding errors can prevent further progress. Hence, the precision in the 
final values of the variables may be only about half the number of significant digits in 
the computer arithmetic, but the least value of FVALUE is usually found to be quite 
accurate. 

Description 
The routine UMCGG uses a conjugate gradient method to find the minimum of a function f (x) of 
n variables. Function values and first derivatives are required. 

The routine is based on the version of the conjugate gradient algorithm described in Powell 
(1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of 
convergence without the storage of any matrices. Therefore, it is particularly suitable for 
unconstrained minimization calculations where the number of variables is so large that matrices 
of dimension n cannot be stored in the main memory of the computer. For smaller problems, 
however, a subroutine such as IMSL routine UMING (page 1202), is usually more efficient 
because each iteration makes use of additional information from previous iterations. 

UMPOL 
Minimizes a function of N variables using a direct search polytope algorithm. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

X — Real vector of length N containing the best estimate of the minimum found.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 
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XGUESS — Real vector of length N which contains an initial guess to the minimum.   (Input) 
Default: XGUESS = 0.0. 

S — On input, real scalar containing the length of each side of the initial simplex.   
(Input/Output)  
If no reasonable information about S is known, S could be set to a number less than or 
equal to zero and UMPOL will generate the starting simplex from the initial guess with a 
random number generator. On output, the average distance from the vertices to the 
centroid that is taken to be the solution; see Comment 4. 
Default: S = 0.0. 

FTOL — First convergence criterion.   (Input)  
The algorithm stops when a relative error in the function values is less than FTOL, i.e. 
when (F(worst) � F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and F(best) are 
the function values of the current worst and best points, respectively. Second 
convergence criterion. The algorithm stops when the standard deviation of the function 
values at the N + 1 current points is less than FTOL. If the subroutine terminates 
prematurely, try again with a smaller value for FTOL. 
Default: FTOL = 1.e-7. 

MAXFCN — On input, maximum allowed number of function evaluations.   (Input/ Output) 
On output, actual number of function evaluations needed. 
Default: MAXFCN = 200. 

FVALUE — Function value at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMPOL (FCN, X [,…]) 

Specific: The specific interface names are S_UMPOL and D_UMPOL. 

FORTRAN 77 Interface 
Single: CALL UMPOL (FCN, N, XGUESS, S, FTOL, MAXFCN, X, FVALUE) 

Double: The double precision name is DUMPOL. 

Example 
The function 

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized and the solution is printed. 
      USE UMPOL_INT 
      USE UMACH_INT 
!                                 Variable declarations 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1229 

 

 

 

      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    K, NOUT 
      REAL       FTOL, FVALUE, S, X(N), XGUESS(N) 
      EXTERNAL   FCN 
! 
!                                 Initializations 
!                                 XGUESS = ( -1.2, 1.0) 
! 
      DATA XGUESS/-1.2, 1.0/ 
! 
      FTOL   = 1.0E-10 
      S      = 1.0 
! 
      CALL UMPOL (FCN, X, XGUESS=XGUESS, S=S, FTOL=FTOL,& 
                  FVALUE=FVALUE) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (X(K),K=1,N), FVALUE 
99999 FORMAT (’  The best estimate for the minimum value of the’, /, & 
            ’  function is X = (’, 2(2X,F4.2), ’)’, /, ’  with ’, & 
            ’function value FVALUE = ’, E12.6) 
! 
      END 
!                                 External function to be minimized 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 100.0*(X(1)*X(1)-X(2))**2 + (1.0-X(1))**2 
      RETURN 
      END 

Output 
The best estimate for the minimum value of the 
function is X = (  1.00  1.00) 
with function value FVALUE = 0.502496E-10 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2POL/DU2POL. The 

reference is: 

CALL U2POL (FCN, N, XGUESS, S, FTOL, MAXFCN, X,  
FVALUE, WK) 

The additional argument is: 

WK — Real work vector of length N**2 + 5 * N + 1. 

2. Informational error 

Type Code 
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   4    1 Maximum number of function evaluations exceeded. 

3. Since UMPOL uses only function value information at each step to determine a new 
approximate minimum, it could be quite ineficient on smooth problems compared to 
other methods such as those implemented in routine UMINF that takes into account 
derivative information at each iteration. Hence, routine UMPOL should only be used as a 
last resort. Briefly, a set of N + 1 points in an N-dimensional space is called a simplex. 
The minimization process iterates by replacing the point with the largest function value 
by a new point with a smaller function value. The iteration continues until all the points 
cluster sufficiently close to a minimum. 

4. The value returned in S is useful for assessing the flatness of the function near the 
computed minimum. The larger its value for a given value of FTOL, the flatter the 
function tends to be in the neighborhood of the returned point. 

Description 
The routine UMPOL uses the polytope algorithm to find a minimum point of a function f(x) of n 
variables. The polytope method is based on function comparison; no smoothness is assumed. It 
starts with n + 1 points x�, x�, �, xn + 1. At each iteration, a new point is generated to replace the 
worst point xj, which has the largest function value among these n + 1 points. The new point is 
constructed by the following formula: 

xk = c + �(c � xj) 

where 

1
i j ic x

n �
� �  

and � (� > 0) is the reflection coefficient. 

When xk is a best point, that is f(xk) � f(xi) for i = 1, �, n + 1, an expansion point is computed  
xe = c + �(xk � c) where �(� > 1) is called the expansion coefficient. If the new point is a worst 
point, then the polytope would be contracted to get a better new point. If the contraction step is 
unsuccessful, the polytope is shrunk by moving the vertices halfway toward current best point. 
This procedure is repeated until one of the following stopping criteria is satisfied: 

Criterion 1: 

fbest � fworst � �f (1. + |fbest|) 

Criterion 2:  
1

1
1 2

1
( )

1

n
n jj

i f
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f
f

n
�

�

�

�

�

� �

�

�
�  

where fi = f (xi), fj = f (xj), and �f is a given tolerance. For a complete description, see Nelder and 
Mead (1965) or Gill et al. (1981). 
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UNLSF 
Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm and a 
finite-difference Jacobian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function that defines the least-squares 

problem. The usage is CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – Vector of length M containing the function values at X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 
N — Number of variables. N must be less than or equal to M.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 
Default: NDEG = size (COEFF,1) – 1. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. By 
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4. 
Default: XSCALE = 1.0. 

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.   
(Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
all entries to 1.0. 
Default: FSCALE = 1.0. 
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IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVEC — Vector of length M containing the residuals at the approximate solution.   (Output) 

FJAC — M by N matrix containing a finite difference approximate Jacobian at the 
approximate solution.   (Output) 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFJAC = size (FJAC,1). 

FORTRAN 90 Interface 
Generic: CALL UNLSF (FCN, M, X [,…]) 

Specific: The specific interface names are S_UNLSF and D_UNLSF. 

FORTRAN 77 Interface 
Single: CALL UNLSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM,  

RPARAM, X, FVEC, FJAC, LDFJAC) 

Double: The double precision name is DUNLSF. 

Example 
The nonlinear least squares problem 

� �
2

2
2

1

1min
2 i

x i
f x

�
�

�
R

 

where 

� � � � � � � �2
1 2 1 2 110  and  1f x x x f x x� � � �  

is solved. RPARAM(4) is changed to a non-default value. 
      USE UNLSF_INT 
      USE UMACH_INT 
      USE U4LSF_INT 
!                                 Declaration of variables 
      INTEGER    LDFJAC, M, N 
      PARAMETER  (LDFJAC=2, M=2, N=2) 
! 
      INTEGER    IPARAM(6), NOUT 
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      REAL       FVEC(M), RPARAM(7),X(N), XGUESS(N) 
      EXTERNAL   ROSBCK 
!                                 Compute the least squares for the 
!                                 Rosenbrock function. 
      DATA XGUESS/-1.2E0, 1.0E0/ 
! 
!                                 Relax the first stopping criterion by 
!                                 calling U4LSF and scaling the 
!                                 absolute function tolerance by 10. 
      CALL U4LSF (IPARAM, RPARAM) 
      RPARAM(4) = 10.0E0*RPARAM(4) 
! 

CALL UNLSF (ROSBCK, M, X,XGUESS=XGUESS, IPARAM=IPARAM, & 
RPARAM=RPARAM, FVEC=FVEC) 

!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4) 
! 
99999 FORMAT (’  The solution is ’, 2F9.4, //, ’  The function ’, & 
            ’evaluated at the solution is ’, /, 18X, 2F9.4, //, & 
            ’  The number of iterations is ’, 10X, I3, /, ’  The ’, & 
            ’number of function evaluations is ’, I3, /) 
      END 
! 
      SUBROUTINE ROSBCK (M, N, X, F) 
      INTEGER    M, N 
      REAL       X(N), F(M) 
! 
      F(1) = 10.0E0*(X(2)-X(1)*X(1)) 
      F(2) = 1.0E0 - X(1) 
      RETURN 
      END 

Output 
The solution is    1.0000   1.0000 
 
The function evaluated at the solution is 
0.0000   0.0000 
 
The number of iterations is            24 
The number of function evaluations is  33 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2LSF/DU2LSF. The 

reference is: 

CALL U2LSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, 
X, FVEC, FJAC, LDFJAC, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length 9 * N + 3 * M � 1. WK contains the following 
information on output: The second N locations contain the last step taken. The 
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third N locations contain the last Gauss-Newton step. The fourth N locations 
contain an estimate of the gradient at the solution. 

IWK — Integer work vector of length N containing the permutations used in the QR 
factorization of the Jacobian at the solution. 

2. Informational errors 

Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   3    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   3    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

3. The first stopping criterion for UNLSF occurs when the norm of the function is less than 
the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs 
when the norm of the scaled gradient is less than the given gradient tolerance 
(RPARAM(1)). The third stopping criterion for UNLSF occurs when the scaled distance 
between the last two steps is less than the step tolerance (RPARAM(2)). 

4. If the default parameters are desired for UNLSF, then set IPARAM(1) to zero and call the 
routine UNLSF. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling UNLSF: 

CALL U4LSF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 
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IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 
Default: Not used in UNLSF. 

IPARAM(6) = Internal variable scaling flag. 
If IPARAM(6) = 1, then the values for XSCALE are set internally. 
Default: 1. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �
2

2

max ,1/i i ig x s

F x

�

 

 where 

� � � �� � � �
2T

i s ii
g J x F x f� �  

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE. 
Default:  

3,� �  

 in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

 where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max (10���, ����) in double where � is the machine 
precision. 

RPARAM(4) = Absolute function tolerance. 
Default: max (10���, ��), max(10���, ��) in double where � is the machine 
precision. 
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RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

� �  

 �� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is desired, then DU4LSF is called and RPARAM is declared double            
           precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine UNLSF is based on the MINPACK routine LMDIF by Moré et al. (1980). It uses a 
modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem 
is stated as follows: 

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

 

where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a current 
point, the algorithm uses the trust region approach: 

� � � �� �
2

min
n

n
c c n c

x
F x J x x x

�

� �

R
 

subject to  ||xn � xc||� � 	c 

to get a new point xn, which is computed as 

� � � �� � � � � �
1T T

n c c c c c cx x J x J x I J x F x�

�

� � �  

where �c = 0 if 	c � ||(J(xc)T J(xc))�� J(xc)T F(xc)||� and �c > 0 otherwise. F(xc) and J(xc) are the 
function values and the Jacobian evaluated at the current point xc. This procedure is repeated 
until the stopping criteria are satisfied. For more details, see Levenberg (1944), Marquardt 
(1963), or Dennis and Schnabel (1983, Chapter 10). 

Since a finite-difference method is used to estimate the Jacobian for some single precision 
calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a 
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noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact Jacobian can be easily provided, routine UNLSJ (page 1237) should be used instead. 

UNLSJ 
Solves a nonlinear least squares problem using a modified Levenberg-Marquardt algorithm and a 
user-supplied Jacobian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function which defines the least-squares 

problem. The usage is CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 
N – Length of X.   (Input) 
X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 
F – Vector of length M containing the function values at X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL 
JAC (M, N, X, FJAC, LDFJAC), where 

M – Length of F.   (Input) 
N – Length of X.   (Input) 
X – Vector of length N at which point the Jacobian is evaluated.   (Input)  
X should not be changed by JAC. 
FJAC – The computed M by N Jacobian at the point X.   (Output) 
LDFJAC – Leading dimension of FJAC.   (Input) 

JAC must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 
N — Number of variables. N must be less than or equal to M.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. By 
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4. 
Default: XSCALE = 1.0. 
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FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.   
(Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
all entries to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVEC — Vector of length M containing the residuals at the approximate solution.   (Output) 

FJAC — M by N matrix containing a finite-difference approximate Jacobian at the 
approximate solution.   (Output) 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFJAC = size (FJAC,1). 

FORTRAN 90 Interface 
Generic: CALL UNLSJ (FCN, JAC, M, X [,…]) 

Specific: The specific interface names are S_UNLSJ and D_UNLSJ. 

FORTRAN 77 Interface 
Single: CALL UNLSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM,  

RPARAM, X, FVEC, FJAC, LDFJAC) 

Double: The double precision name is DUNLSJ. 

Example 

The nonlinear least-squares problem 

� �
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where 

� � � � � � � �2
1 2 1 2 110  and  1f x x x f x x� � � �  

is solved; default values for parameters are used. 
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      USE UNLSJ_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    LDFJAC, M, N 
      PARAMETER  (LDFJAC=2, M=2, N=2) 
! 
      INTEGER    IPARAM(6), NOUT 
      REAL       FVEC(M), X(N), XGUESS(N) 
      EXTERNAL   ROSBCK, ROSJAC 
!                                 Compute the least squares for the 
!                                 Rosenbrock function. 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      IPARAM(1) = 0 
! 
      CALL UNLSJ (ROSBCK, ROSJAC, M, X, XGUESS=XGUESS, & 
                 IPARAM=IPARAM, FVEC=FVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4), IPARAM(5) 
! 
99999 FORMAT (’  The solution is ’, 2F9.4, //, ’  The function ’, & 
            ’evaluated at the solution is ’, /, 18X, 2F9.4, //, & 
            ’  The number of iterations is ’, 10X, I3, /, ’  The ’, & 
            ’number of function evaluations is ’, I3, /, ’  The ’, & 
            ’number of Jacobian evaluations is ’, I3, /) 
      END 
! 
      SUBROUTINE ROSBCK (M, N, X, F) 
      INTEGER    M, N 
      REAL       X(N), F(M) 
! 
      F(1) = 10.0E0*(X(2)-X(1)*X(1)) 
      F(2) = 1.0E0 - X(1) 
      RETURN 
      END 
! 
      SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC) 
      INTEGER    M, N, LDFJAC 
      REAL       X(N), FJAC(LDFJAC,N) 
! 
      FJAC(1,1) = -20.0E0*X(1) 
      FJAC(2,1) = -1.0E0 
      FJAC(1,2) = 10.0E0 
      FJAC(2,2) = 0.0E0 
      RETURN 
      END 

Output 
The solution is    1.0000   1.0000 
 
The function evaluated at the solution is 
0.0000   0.0000 
 
The number of iterations is            23 
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The number of function evaluations is  32 
The number of Jacobian evaluations is  24 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2LSJ/DU2LSJ. The 

reference is: 

CALL U2LSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM, 
RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK) 

The additional arguments are as follows: 

WK — Work vector of length 9 * N + 3 * M � 1. WK contains the following information 
on output: The second N locations contain the last step taken. The third N 
locations contain the last Gauss-Newton step. The fourth N locations contain an 
estimate of the gradient at the solution. 

IWK — Work vector of length N containing the permutations used in the QR 
factorization of the Jacobian at the solution. 

2. Informational errors 

Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   3    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of Jacobian evaluations exceeded. 
   3    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

3. The first stopping criterion for UNLSJ occurs when the norm of the function is less than 
the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs 
when the norm of the scaled gradient is less than the given gradient tolerance 
(RPARAM(1)). The third stopping criterion for UNLSJ occurs when the scaled distance 
between the last two steps is less than the step tolerance (RPARAM(2)). 

4. If the default parameters are desired for UNLSJ, then set IPARAM(1) to zero and call the 
routine UNLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling UNLSJ: 

CALL U4LSF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 
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Note that the call to U4LSF will set IPARAM and RPARAM to their default values, so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 
Default: 100. 

IPARAM(6) = Internal variable scaling flag. 
If IPARAM(6) = 1, then the values for XSCALE are set internally. 
Default: 1. 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �
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 where 
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2T
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 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

 in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 
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 where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max (10���, ����) in double where � is the machine 
precision. 

RPARAM(4) = Absolute function tolerance. 
Default: max (10���, ��), max(10���, ��) in double where � is the machine 
precision. 

RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

�  

 �� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is desired, then DU4LSF is called and RPARAM is declared double  
           precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine UNLSJ is based on the MINPACK routine LMDER by Moré et al. (1980). It uses a 
modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem 
is stated as follows: 
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where  m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a current 
point, the algorithm uses the trust region approach: 
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subject to  ||xn � xc||� � 	c 

to get a new point xn, which is computed as 

� � � �� � � � � �
1T T

n c c c c c cx x J x J x I J x F x�

�

� � �  

where �c = 0 if 	c � ||(J(xc)T J(xc))�� J(xc)T F (xc)||� and �c > 0 otherwise. F(xc) and J(xc) are the 
function values and the Jacobian evaluated at the current point xc. This procedure is repeated 
until the stopping criteria are satisfied. For more details, see Levenberg (1944), 
Marquardt(1963), or Dennis and Schnabel (1983, Chapter 10). 

BCONF 
Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton 
method and a finite-difference gradient. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have 
 the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 
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XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing an initial guess of the computed solution.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BCONF (FCN, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCONF and D_BCONF. 

FORTRAN 77 Interface 
Single: CALL BCONF (FCN, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 

FSCALE, IPARAM, RPARAM, X, FVALUE) 

Double: The double precision name is DBCONF. 
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Example 
The problem  
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f x x x x
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x
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is solved with an initial guess (�1.2, 1.0) and default values for parameters. 
      USE BCONF_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IPARAM(7), ITP, L, NOUT 
      REAL       F, FSCALE, RPARAM(7), X(N), XGUESS(N), & 
                XLB(N), XSCALE(N), XUB(N) 
      EXTERNAL   ROSBRK 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
!                                 All the bounds are provided 
      ITP = 0 
!                                 Default parameters are used 
      IPARAM(1) = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 
      CALL BCONF (ROSBRK, ITP, XLB, XUB, X, XGUESS=XGUESS,  & 
                 IPARAM=IPARAM, FVALUE=F) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 

Output 
The solution is          0.500   0.250 
 
The function value is    0.250 
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The number of iterations is            24 
The number of function evaluations is  34 
The number of gradient evaluations is  26 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2ONF/DB2ONF. The 

reference is: 

CALL B2ONF (FCN, N, XGUESS, IBTYPE, XLB, XUB,  
     XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length N * (2 * N + 8). WK contains the following 
information on output: The second N locations contain the last step taken. The 
third N locations contain the last Newton step. The fourth N locations contain an 
estimate of the gradient at the solution. The final N� locations contain a BFGS 
approximation to the Hessian at the solution. 

IWK — Work vector of length N stored in column order. Only the lower triangular 
portion of the matrix is stored in WK. The values returned in the upper triangle 
should be ignored. 

2. Informational errors 

Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   4    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   3    8 The last global step failed to locate a lower point than the current X 
value. 

3. The first stopping criterion for BCONF occurs when the norm of the gradient is less than 
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONF 
occurs when the scaled distance between the last two steps is less than the step 
tolerance (RPARAM(2)). 

4. If the default parameters are desired for BCONF, then set IPARAM(1) to zero and call the 
routine BCONF. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling BCONF: 
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CALL U4INF (IPARAM, RPARAM) 

Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 

IPARAM(6) = Hessian initialization parameter. 
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise,  
it is initialized to a diagonal matrix containing 

� �� � 2max , s if t f s�  

 on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE. 
Default: 0. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default: Not used in BCONF. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �� �
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s

g x s

f x f

�

 

 where g = �f(x), s = XSCALE, and fs = FSCALE. 
Default: 
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 in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

 where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max (10���, ����) in double where � is the machine 
precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in BCONF. 

RPARAM(5) = False convergence �	
��
���. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

�  

 �� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is required, then DU4INF is called and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine BCONF uses a quasi-Newton method and an active set strategy to solve minimization 
problems subject to simple bounds on the variables. The problem is stated as follows:  

� �min
nx

f x
�R
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subject to l � x � u 

From a given starting point xc, an active set IA, which contains the indices of the variables at 
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The 
routine then computes the search direction for the free variables according to the formula 

d = �B�� gc 

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at 
xc; both are computed with respect to the free variables. The search direction for the variables in 
IA is set to zero. A line search is used to find a new point xn , 

xn = xc + �d, � � (0, 1] 

such that  

f (xn) � f (xc) + �gT d, � � (0, 0.5) 

Finally, the optimality conditions 

||g(xi)|| � �, li < xi< ui 

g(xi) < 0,  xi = ui 

g(xi) > 0, xi = li 

are checked, where � is a gradient tolerance. When optimality is not achieved, B is updated 
according to the BFGS formula: 

T T

T T

Bss B yyB B
s Bs y s

� � �  

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next 
iteration. 

The active set is changed only when a free variable hits its bounds during an iteration or the 
optimality condition is met for the free variables but not for all variables in IA, the active set. In 
the latter case, a variable that violates the optimality condition will be dropped out of IA. For 
more details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For 
more detailed information on active set strategy, see Gill and Murray (1976). 

Since a finite-difference method is used to estimate the gradient for some single precision 
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact gradient can be easily provided, routine BCONG (page 1249) should be used instead. 

BCONG 
Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton 
method and a user-supplied gradient. 
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Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the gradient is evaluated.   (Input) 
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE  Action 

0   User will supply all the bounds. 

1   All variables are nonnegative. 

2   All variables are nonpositive. 

3   User supplies only the bounds on 1st variable, all other variables 
  will have the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Vector of length N containing the computed solution.   (Output) 
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Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BCONG (FCN, GRAD, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCONG and D_BCONG. 

FORTRAN 77 Interface 
Single: CALL BCONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,  

FSCALE, IPARAM, RPARAM, X, FVALUE) 

Double: The double precision name is DBCONG. 

Example 
The problem 
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1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

 

is solved with an initial guess (�1.2, 1.0), and default values for parameters. 
      USE BCONG_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IPARAM(7), ITP, L, NOUT 
      REAL       F, X(N), XGUESS(N), XLB(N), XUB(N) 
      EXTERNAL   ROSBRK, ROSGRD 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
!                                 All the bounds are provided 
      ITP = 0 
!                                 Default parameters are used 
      IPARAM(1) = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 
      CALL BCONG (ROSBRK, ROSGRD, ITP, XLB, XUB, X, XGUESS=XGUESS, & 
                 IPARAM=IPARAM, FVALUE=F) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 
! 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 
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Output 
The solution is          0.500   0.250 
 
The function value is    0.250 
 
The number of iterations is            22 
The number of function evaluations is  32 
The number of gradient evaluations is  23 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2ONG/DB2ONG. The 

reference is: 

 CALL B2ONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 
FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length N * (2 * N + 8). WK contains the following 
information on output: The second N locations contain the last step taken. The 
third N locations contain the last Newton step. The fourth N locations contain an 
estimate of the gradient at the solution. The final N� locations contain a BFGS 
approximation to the Hessian at the solution. 

IWK — Work vector of length N stored in column order. Only the lower triangular 
portion of the matrix is stored in WK. The values returned in the upper triangle 
should be ignored. 

2. Informational errors 

Type Code 

    3    1 Both the actual and predicted relative reductions in the function are less 
than or equal to the relative function convergence tolerance. 

    4    2 The iterates appear to be converging to a noncritical point. 

    4     3 Maximum number of iterations exceeded. 

    4    4  Maximum number of function evaluations exceeded. 

    4    5  Maximum number of gradient evaluations exceeded. 

    4    6 Five consecutive steps have been taken with the maximum step length. 

    2    7  Scaled step tolerance satisfied; the current point may be an approximate 
local solution, or the algorithm is making very slow progress and is not near a solution, 
or  STEPTL is too big. 
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3    8 The last global step failed to locate a lower point than the current X value. 

3. The first stopping criterion for BCONG occurs when the norm of the gradient is less than 
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONG 
occurs when the scaled distance between the last two steps is less than the step 
tolerance (RPARAM(2)). 

4. If the default parameters are desired for BCONG, then set IPARAM (1) to zero and call 
the routine BCONG. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling BCONG: 

CALL U4INF (IPARAM, RPARAM) 

Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 

IPARAM(6) = Hessian initialization parameter. 
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it 
is initialized to a diagonal matrix containing 

� �� � 2max , s if t f s�  

on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE. 
Default: 0. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default: Not used in BCONG. 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1255 

 

 

 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 

where g = �f (x), s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max (10���, ����) in double where � is the machine precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in BCONG. 

RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

�  

�� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is required, then DU4INF is called and RPARAM is declared double 
precision. 
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5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine BCONG uses a quasi-Newton method and an active set strategy to solve minimization 
problems subject to simple bounds on the variables. The problem is stated as follows: 

� �min
nx

f x
�R

 

subject to  l � x � u 

From a given starting point xc, an active set IA, which contains the indices of the variables at 
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The 
routine then computes the search direction for the free variables according to the formula 

d = �B�� gc 

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at 
xc; both are computed with respect to the free variables. The search direction for the variables in 
IA is set to zero. A line search is used to find a new point xn , 

xn = xc + �d, � � (0, 1] 

such that  

f (xn) � f (xc) + �gT d, � � (0, 0.5) 

Finally, the optimality conditions 

||g(xi)|| � �, li < xi< ui 

g(xi) < 0, xi = ui 

g(xi) > 0, xi = li 

are checked, where � is a gradient tolerance. When optimality is not achieved, B is updated 
according to the BFGS formula: 

T T

T T

Bss B yyB B
s Bs y s

� � �  

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next 
iteration. 

The active set is changed only when a free variable hits its bounds during an iteration or the 
optimality condition is met for the free variables but not for all variables in IA, the active set. In 
the latter case, a variable that violates the optimality condition will be dropped out of IA. For 
more details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For 
more detailed information on active set strategy, see Gill and Murray (1976). 
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BCODH 
Minimizes a function of N variables subject to bounds on the variables using a modified Newton 
method and a finite-difference Hessian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the gradient is evaluated.   (Input) 
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

 0   User will supply all the bounds.  

 1  All variables are nonnegative. 

 2  All variables are nonpositive. 

 3  User supplies only the bounds on 1st variable, all other variables will have 
 the same bounds. 

XLB — Vector of length N containing the lower bounds on the variables.   (Input) 

XUB — Vector of length N containing the upper bounds on the variables.   (Input) 
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X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BCODH (FCN, GRAD, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCODH and D_BCODH. 

FORTRAN 77 Interface 
Single: CALL BCODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 

FSCALE, IPARAM, RPARAM, X, FVALUE) 

Double: The double precision name is DBCODH. 

Example 

The problem 
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is solved with an initial guess (�1.2, 1.0), and default values for parameters. 
      USE BCODH_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IP, IPARAM(7), L, NOUT 
      REAL       F, X(N), XGUESS(N), XLB(N), XUB(N) 
      EXTERNAL   ROSBRK, ROSGRD 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
! 
      IPARAM(1) = 0 
      IP        = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 
      CALL BCODH (ROSBRK, ROSGRD, IP, XLB, XUB, X, XGUESS=XGUESS, & 
                 IPARAM=IPARAM, FVALUE=F) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 
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Output 
The solution is          0.500   0.250 
 
The function value is    0.250 
 
The number of iterations is            17 
The number of function evaluations is  26 
The number of gradient evaluations is  18 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2ODH/DB2ODH. The 

reference is: 

CALL B2ODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 
FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length N * (N + 8). WK contains the following 
information on output: The second N locations contain the last step taken. The 
third N locations contain the last Newton step. The fourth N locations contain an 
estimate of the gradient at the solution. The final N� locations contain the 
Hessian at the approximate solution. 

IWK — Integer work vector of length N. 

2. Informational errors 

Type Code  
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   4    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   4    7 Maximum number of Hessian evaluations exceeded. 

3. The first stopping criterion for BCODH occurs when the norm of the gradient is less than 
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCODH 
occurs when the scaled distance between the last two steps is less than the step 
tolerance (RPARAM(2)). 

4. If the default parameters are desired for BCODH, then set IPARAM(1) to zero and call the 
routine BCODH. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM; then the following steps should be taken before calling BCODH: 
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CALL U4INF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 

IPARAM(6) = Hessian initialization parameter. 
Default: Not used in BCODH. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default: 100. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 

where g = �f (x), s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 
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x y
x s
�

 

where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max (10���, ����) in double where � is the machine precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in BCODH. 

RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

�  

�� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is required, then DU4INF is called and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine BCODH uses a modified Newton method and an active set strategy to solve 
minimization problems subject to simple bounds on the variables. The problem is stated as 

� �min
nx

f x
�R

 

subject to l � x � u 

From a given starting point xc, an active set IA, which contains the indices of the variables at 
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The 
routine then computes the search direction for the free variables according to the formula 

d = �H�� gc 
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where H is the Hessian and gc is the gradient evaluated at xc; both are computed with respect to 
the free variables. The search direction for the variables in IA is set to zero. A line search is used 
to find a new point xn , 

xn = xc + �d, � � (0, 1] 

such that  

f (xn) � f (xc) + �gT d, � � (0, 0.5) 

Finally, the optimality conditions 

||g(xi)|| � �, li < xi < ui 

g(xi) < 0, xi = ui 

g(xi) > 0, xi = li 

are checked where � is a gradient tolerance. When optimality is not achieved, another search 
direction is computed to begin the next iteration. This process is repeated until the optimality 
criterion is met. 

The active set is changed only when a free variable hits its bounds during an iteration or the 
optimality condition is met for the free variables but not for all variables in IA, the active set. In 
the latter case, a variable that violates the optimality condition will be dropped out of IA. For 
more details on the modified Newton method and line search, see Dennis and Schnabel (1983). 
For more detailed information on active set strategy, see Gill and Murray (1976). 

Since a finite-difference method is used to estimate the Hessian for some single precision 
calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact Hessian can be easily provided, routine BCOAH (page 1263) should be used instead. 

BCOAH 
Minimizes a function of N variables subject to bounds on the variables using a modified Newton 
method and a user-supplied Hessian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 
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GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the gradient is evaluated.   (Input) 
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The usage is 
CALL HESS (N, X, H, LDH), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the Hessian is evaluated.   (Input)  
X should not be changed by HESS. 

H – The Hessian evaluated at the point X.   (Output) 

LDH – Leading dimension of H exactly as specified in the dimension statement of the 
calling program.   (Input) 

HESS must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have
 the same bounds. 

XLB — Vector of length N containing the lower bounds on the variables.   (Input) 

XUB — Vector of length N containing the upper bounds on the variables.   (Input) 

X — Vector of length N containing the computed solution.   (Output) 
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Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BCOAH (FCN, GRAD, HESS, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCOAH and D_BCOAH. 

FORTRAN 77 Interface 
Single: CALL BCOAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB, XUB,  

XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE) 

Double: The double precision name is DBCOAH. 

Example 
The problem 
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is solved with an initial guess (�1.2, 1.0), and default values for parameters. 
      USE BCOAH_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IP, IPARAM(7), L, NOUT 
      REAL       F, X(N), XGUESS(N), XLB(N), XUB(N) 
      EXTERNAL   ROSBRK, ROSGRD, ROSHES 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
! 
      IPARAM(1) = 0 
      IP        = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 
      CALL BCOAH (ROSBRK, ROSGRD, ROSHES, IP, XLB, XUB, X, & 
                 XGUESS=XGUESS,IPARAM=IPARAM, FVALUE=F) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3, /, & 
            ’  The number of Hessian evaluations is  ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 
! 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 
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! 
      SUBROUTINE ROSHES (N, X, H, LDH) 
      INTEGER    N, LDH 
      REAL       X(N), H(LDH,N) 
! 
      H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0 
      H(2,1) = -4.0E2*X(1) 
      H(1,2) = H(2,1) 
      H(2,2) = 2.0E2 
! 
      RETURN 
      END 

Output 
The solution is          0.500   0.250 
 
The function value is    0.250 
 
The number of iterations is            18 
The number of function evaluations is  29 
The number of gradient evaluations is  19 
The number of Hessian evaluations is   18 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2OAH/DB2OAH. The 

reference is: 

CALL B2OAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB,  
            XUB, XSCALE, FSCALE, IPARAM, RPARAM, X,  
            FVALUE, WK, IWK) 

 

 

The additional arguments are as follows: 

WK — Work vector of length N * (N + 8). WK contains the following information on 
output: The second N locations contain the last step taken. The third N locations 
contain the last Newton step. The fourth N locations contain an estimate of the 
gradient at the solution. The final N� locations contain the Hessian at the 
approximate solution. 

IWK — Work vector of length N. 

2. Informational errors 

Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   4    2 The iterates appear to be converging to a noncritical point. 
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   4    3 Maximum number of iterations exceeded. 
   4     4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4     6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   4     7 Maximum number of Hessian evaluations exceeded. 
   3    8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for BCOAH occurs when the norm of the gradient is less than 
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCOAH 
occurs when the scaled distance between the last two steps is less than the step 
tolerance (RPARAM(2)). 

4. If the default parameters are desired for BCOAH, then set IPARAM(1) to zero and call the 
routine BCOAH. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling BCOAH: 

CALL U4INF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 

IPARAM(6) = Hessian initialization parameter. 
Default: Not used in BCOAH. 
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IPARAM(7) = Maximum number of Hessian evaluations. 
Default: 100. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 

where g = �f(x), s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max (10���, ����) in double where � is the machine precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in BCOAH. 

RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

�  

�� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 
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If double precision is required, then DU4INF is called and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine BCOAH uses a modified Newton method and an active set strategy to solve 
minimization problems subject to simple bounds on the variables. The problem is stated as 
follows: 

� �min
nx

f x
�R

 

subject to l � x � u 

From a given starting point xc, an active set IA, which contains the indices of the variables at 
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The 
routine then computes the search direction for the free variables according to the formula 

d = �H�� gc 

where H is the Hessian and gc is the gradient evaluated at xc; both are computed with respect to 
the free variables. The search direction for the variables in IA is set to zero. A line search is used 
to find a new point xn , 

xn = xc + �d, � � (0, 1] 

such that  

f(xn) � f(xc) + �gT d, � � (0, 0.5) 

Finally, the optimality conditions 

||g(xi)|| � �, li < xi< ui 

g(xi) < 0, xi = ui 

g(xi) > 0, xi = li 

are checked where � is a gradient tolerance. When optimality is not achieved, another search 
direction is computed to begin the next iteration. This process is repeated until the optimality 
criterion is met. 

The active set is changed only when a free variable hits its bounds during an iteration or the 
optimality condition is met for the free variables but not for all variables in IA, the active set. In 
the latter case, a variable that violates the optimality condition will be dropped out of IA. For 
more details on the modified Newton method and line search, see Dennis and Schnabel (1983). 
For more detailed information on active set strategy, see Gill and Murray (1976). 
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BCPOL 
Minimizes a function of N variables subject to bounds on the variables using a direct search 
complex algorithm. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on the first, variable. All other variables will 
have the same bounds. 

XLB — Vector of length N containing the lower bounds on the variables.   (Input, if IBTYPE 
= 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on the variables.   (Input, if IBTYPE 
= 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Real vector of length N containing the best estimate of the minimum found.   (Output) 

Optional Arguments 
N — The number of variables.   (Input) 

Default: N = size (XGUESS,1). 

XGUESS — Real vector of length N that contains an initial guess to the minimum.   (Input) 
Default: XGUESS = 0.0. 
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FTOL — First convergence criterion.   (Input)  
The algorithm stops when a relative error in the function values is less than FTOL, i.e. 
when (F(worst) � F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and F(best) are 
the function values of the current worst and best point, respectively. Second 
convergence criterion. The algorithm stops when the standard deviation of the function 
values at the 2 * N current points is less than FTOL. If the subroutine terminates 
prematurely, try again with a smaller value FTOL. 
Default: FTOL = 1.0e-4 for single and 1.0d-8 for double precision. 

MAXFCN — On input, maximum allowed number of function evaluations.   (Input/ Output) 
On output, actual number of function evaluations needed. 
Default: MAXFCN = 300. 

FVALUE — Function value at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BCPOL (FCN, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCPOL and D_BCPOL. 

FORTRAN 77 Interface 
Single: CALL BCPOL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL, MAXFCN,  

X, FVALUE) 

Double: The double precision name is DBCPOL. 

 

Example 
The problem 
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is solved with an initial guess (�1.2, 1.0), and the solution is printed. 
      USE BCPOL_INT 
      USE UMACH_INT 
!                                 Variable declarations 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IBTYPE, K, NOUT 
      REAL       FTOL, FVALUE, X(N), XGUESS(N), XLB(N), XUB(N) 
      EXTERNAL   FCN 
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! 
!                                 Initializations 
!                                 XGUESS = (-1.2,  1.0) 
!                                 XLB    = (-2.0, -1.0) 
!                                 XUB    = ( 0.5,  2.0) 
      DATA  XGUESS/-1.2, 1.0/, XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
! 
      FTOL   = 1.0E-5 
      IBTYPE = 0 
! 
      CALL BCPOL (FCN, IBTYPE, XLB, XUB, X, XGUESS=XGUESS, FTOL=FTOL, & 
                 FVALUE=FVALUE) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (X(K),K=1,N), FVALUE 
99999 FORMAT (’  The best estimate for the minimum value of the’, /, & 
            ’  function is X = (’, 2(2X,F4.2), ’)’, /, ’  with ’, & 
            ’function value FVALUE = ’, E12.6) 
! 
      END 
!                                 External function to be minimized 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 100.0*(X(2)-X(1)*X(1))**2 + (1.0-X(1))**2 
      RETURN 
      END 

Output 
The best estimate for the minimum value of the 
function is X = (  0.50  0.25) 
with function value FVALUE = 0.250002E+00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2POL/DB2POL. The 

reference is: 

CALL B2POL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL,  
            MAXFCN, X, FVALUE, WK) 

The additional argument is: 

WK — Real work vector of length 2 * N**2 + 5 * N 

2. Informational error 

Type Code 
   3    1 The maximum number of function evaluations is exceeded. 

3. Since BCPOL uses only function-value information at each step to determine a new 
approximate minimum, it could be quite inefficient on smooth problems compared to 
other methods such as those implemented in routine BCONF (page 1243), which takes 
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into account derivative information at each iteration. Hence, routine BCPOL should only 
be used as a last resort. Briefly, a set of 2 * N points in an N-dimensional space is called 
a complex. The minimization process iterates by replacing the point with the largest 
function value by a new point with a smaller function value. The iteration continues 
until all the points cluster sufficiently close to a minimum. 

Description 
The routine BCPOL uses the complex method to find a minimum point of a function of n 
variables. The method is based on function comparison; no smoothness is assumed. It starts with 
2n points x�, x�, �, x�n. At each iteration, a new point is generated to replace the worst point xj, 
which has the largest function value among these 2n points. The new point is constructed by the 
following formula: 

xk = c + �(c � xj) 

where  

1
2 1 i j ic x

n �
�

�

�  

and � (� > 0) is the reflection coefficient. 

When xk is a best point, that is, when f (xk) � f (xi) for i = 1, �, 2n, an expansion point is 
computed xe = c + �(xk � c), where �(� > 1) is called the expansion coefficient. If the new point 
is a worst point, then the complex would be contracted to get a better new point. If the 
contraction step is unsuccessful, the complex is shrunk by moving the vertices halfway toward 
the current best point. Whenever the new point generated is beyond the bound, it will be set to 
the bound. This procedure is repeated until one of the following stopping criteria is satisfied: 

Criterion 1: 

fbest � fworst � �f(1. + |fbest|) 

 

Criterion 2:  
2

2
1 2

1
( )

2

n
n jj

i f
i

f
f

n
�

�

�

� �
�

�  

where fi = f(xi), fj = f(xj), and �f is a given tolerance. For a complete description, see Nelder and 
Mead (1965) or Gill et al. (1981). 

BCLSF 
Solves a nonlinear least squares problem subject to bounds on the variables using a modified 
Levenberg-Marquardt algorithm and a finite-difference Jacobian. 
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Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have 
 the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 
N — Number of variables.   (Input)  

N must be less than or equal to M. 
Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 
Default: XGUESS = 0.0. 



 

 
 

1276 � Chapter 8: Optimization IMSL MATH/LIBRARY 

 

 

 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. By 
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4. 

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.   
(Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
all entries to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM= 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVEC — Vector of length M containing the residuals at the approximate solution.   (Output) 

FJAC — M by N matrix containing a finite difference approximate Jacobian at the 
approximate solution.   (Output) 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFJAC = size (FJAC ,1). 

FORTRAN 90 Interface 
Generic: CALL BCLSF (FCN, M, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCLSF and D_BCLSF. 

FORTRAN 77 Interface 
Single: CALL BCLSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,  

FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC) 

Double: The double precision name is DBCLSF. 

Example 
The nonlinear least squares problem 

� �
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subject to �2 � x� � 0.5 
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 �1 � x� � 2 

where 

� � � � � � � �2
1 2 1 2 110  and  1f x x x f x x� � � �  

is solved with an initial guess (�1.2, 1.0) and default values for parameters. 
      USE BCLSF_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    M, N 
      PARAMETER  (M=2, N=2) 
! 
      INTEGER    IPARAM(7), ITP, NOUT 
      REAL       FSCALE(M), FVEC(M), X(N), XGUESS(N), XLB(N), XS(N), XUB(N) 
      EXTERNAL   ROSBCK 
!                                 Compute the least squares for the 
!                                 Rosenbrock function. 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
!                                 All the bounds are provided 
      ITP = 0 
!                                 Default parameters are used 
      IPARAM(1) = 0 
! 
      CALL BCLSF (ROSBCK, M, ITP, XLB, XUB, X, XGUESS=XGUESS, & 
                 IPARAM=IPARAM, FVEC=FVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4) 
! 
99999 FORMAT (’  The solution is ’, 2F9.4, //, ’  The function ’, & 
            ’evaluated at the solution is ’, /, 18X, 2F9.4, //, & 
            ’  The number of iterations is ’, 10X, I3, /, ’  The ’, & 
            ’number of function evaluations is ’, I3, /) 
      END 
! 
      SUBROUTINE ROSBCK (M, N, X, F) 
      INTEGER    M, N 
      REAL       X(N), F(M) 
! 
      F(1) = 1.0E1*(X(2)-X(1)*X(1)) 
      F(2) = 1.0E0 - X(1) 
      RETURN 
      END 

Output 
The solution is    0.5000   0.2500 
 
The function evaluated at the solution is 
0.0000   0.5000 
 
The number of iterations is            15 
The number of function evaluations is  20 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of B2LSF/DB2LSF. The 

reference is: 

CALL B2LSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, 
IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK) 

The additional arguments are as follows: 

WK — Work vector of length 11 * N + 3 * M � 1. WK contains the following 
information on output: The second N locations contain the last step taken. The 
third N locations contain the last Gauss-Newton step. The fourth N locations 
contain an estimate of the gradient at the solution. 

IWK — Work vector of length 2 * N containing the permutations used in the QR 
factorization of the Jacobian at the solution. 

2. Informational errors 

Type Code 
    3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   3     2 The iterates appear to be converging to a noncritical point. 
   4     3 Maximum number of iterations exceeded. 
   4     4 Maximum number of function evaluations exceeded. 
   3     6  Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

3. The first stopping criterion for BCLSF occurs when the norm of the function is less than 
the absolute function tolerance. The second stopping criterion occurs when the norm of 
the scaled gradient is less than the given gradient tolerance. The third stopping criterion 
for BCLSF occurs when the scaled distance between the last two steps is less than the 
step tolerance. 

4. If the default parameters are desired for BCLSF, then set IPARAM(1) to zero and call the 
routine BCLSF. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling BCLSF: 

CALL U4LSF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 
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IPARAM — Integer vector of length 6. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 
Default: 100. 

IPARAM(6) = Internal variable scaling flag. 
If IPARAM(6) = 1, then the values for XSCALE are set internally. 
Default: 1. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �
2

2

max ,1/i i ig x s

F x

�

 

where 

� � � �� � � �
2T

i s ii
g J x F x f� �  

J(x) is the Jacobian, s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 
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Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���� ������ max(10���, ����) in double where � is the machine precision. 

RPARAM(4) = Absolute function tolerance. 
Default: max (10���, ��), max(10�	�, ��) in double where � is the machine precision. 

RPARAM(5) = False convergence tolerance. 
Default: 100 � where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where  

� �
2

1 1

n
i ii

s t�
�

� �  

�2 = ||s||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is desired, then DU4LSF is called and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine BCLSF uses a modified Levenberg-Marquardt method and an active set strategy to 
solve nonlinear least squares problems subject to simple bounds on the variables. The problem 
is stated as follows: 

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

 

subject to l � x � u 

where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a given 
starting point, an active set IA, which contains the indices of the variables at their bounds, is 
built. A variable is called a “free variable” if it is not in the active set. The routine then 
computes the search direction for the free variables according to the formula 

d = � (JT J + �I)�� JT F 

where � is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian with respect to 
the free variables. The search direction for the variables in IA is set to zero. The trust region 
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approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the 
optimality conditions are checked. The conditions are 

||g(xi)|| � �, li < xi< ui 

g(xi) < 0,  xi = ui 

g(xi) > 0, xi = li 

where � is a gradient tolerance. This process is repeated until the optimality criterion is 
achieved. 

The active set is changed only when a free variable hits its bounds during an iteration or the 
optimality condition is met for the free variables but not for all variables in IA, the active set. In 
the latter case, a variable that violates the optimality condition will be dropped out of IA. For 
more detail on the Levenberg-Marquardt method, see Levenberg (1944), or Marquardt (1963). 
For more detailed information on active set strategy, see Gill and Murray (1976). 

Since a finite-difference method is used to estimate the Jacobian for some single precision 
calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact Jacobian can be easily provided, routine BCLSJ (page 1281) should be used instead. 

BCLSJ 
Solves a nonlinear least squares problem subject to bounds on the variables using a modified 
Levenberg-Marquardt algorithm and a user-supplied Jacobian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL 
JAC (M, N, X, FJAC, LDFJAC), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 



 

 
 

1282 � Chapter 8: Optimization IMSL MATH/LIBRARY 

 

 

 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

FJAC – The computed M by N Jacobian at the point X.   (Output) 

LDFJAC – Leading dimension of FJAC.   (Input) 

JAC must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have 
the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 
N — Number of variables.   (Input)  

N must be less than or equal to M. 
Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. By 
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4. 
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FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.   
(Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
all entries to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM= 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVEC — Vector of length M containing the residuals at the approximate solution.   (Output) 

FJAC — M by N matrix containing a finite difference approximate Jacobian at the 
approximate solution.   (Output) 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFJAC size = (FJAC,1). 

FORTRAN 90 Interface 
Generic: CALL BCLSJ (FCN, JAC, M, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCLSJ and D_BCLSJ. 

FORTRAN 77 Interface 
Single: CALL BCLSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB,  

XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, FJAC,  
LDFJAC) 

Double: The double precision name is DBCLSJ. 

Example 
The nonlinear least squares problem 

� �
2

2
2

1

1min
2 i

x i
f x

�
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�
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subject to �2 � x� � 0.5 

 �1 � x� � 2 

where 
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� � � � � � � �2
1 2 1 2 110  and  1f x x x f x x� � � �  

is solved with an initial guess ( �1.2, 1.0) and default values for parameters. 
      USE BCLSJ_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    LDFJAC, M, N 
      PARAMETER  (LDFJAC=2, M=2, N=2) 
! 
      INTEGER    IPARAM(7), ITP, NOUT 
      REAL       FVEC(M), RPARAM(7), X(N), XGUESS(N), XLB(N), XUB(N) 
      EXTERNAL   ROSBCK, ROSJAC 
!                                 Compute the least squares for the 
!                                 Rosenbrock function. 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
!                                 All the bounds are provided 
      ITP = 0 
!                                 Default parameters are used 
      IPARAM(1) = 0 
! 
      CALL BCLSJ (ROSBCK,ROSJAC,M,ITP,XLB,XUB,X,XGUESS=XGUESS, & 
                  IPARAM=IPARAM, FVEC=FVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4) 
! 
99999 FORMAT (’  The solution is ’, 2F9.4, //, ’  The function ’, & 
            ’evaluated at the solution is ’, /, 18X, 2F9.4, //, & 
            ’  The number of iterations is ’, 10X, I3, /, ’  The ’, & 
            ’number of function evaluations is ’, I3, /) 
      END 
! 
      SUBROUTINE ROSBCK (M, N, X, F) 
      INTEGER    M, N 
      REAL       X(N), F(M) 
! 
      F(1) = 1.0E1*(X(2)-X(1)*X(1)) 
      F(2) = 1.0E0 - X(1) 
      RETURN 
      END 
! 
      SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC) 
      INTEGER    M, N, LDFJAC 
      REAL       X(N), FJAC(LDFJAC,N) 
! 
      FJAC(1,1) = -20.0E0*X(1) 
      FJAC(2,1) = -1.0E0 
      FJAC(1,2) = 10.0E0 
      FJAC(2,2) = 0.0E0 
      RETURN 
      END 
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Output 
The solution is    0.5000   0.2500 
 
The function evaluated at the solution is 
0.0000   0.5000 
 
The number of iterations is            13 
The number of function evaluations is  21 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2LSJ/DB2LSJ. The 

reference is: 

CALL B2LSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 
FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK) 

The additional arguments are as follows: 

WK — Work vector of length 11 * N + 3 * M � 1. WK contains the following 
information on output: The second N locations contain the last step taken. The 
third N locations contain the last Gauss-Newton step. The fourth N locations 
contain an estimate of the gradient at the solution. 

IWK — Work vector of length 2 * N containing the permutations used in the QR 
factorization of the Jacobian at the solution. 

2. Informational errors 

Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   3    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   3    6 Five consecutive steps have been taken with the maximum step 

length. 
   4    5 Maximum number of Jacobian evaluations exceeded. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

3. The first stopping criterion for BCLSJ occurs when the norm of the function is less than 
the absolute function tolerance. The second stopping criterion occurs when the norm of 
the scaled gradient is less than the given gradient tolerance. The third stopping criterion 
for BCLSJ occurs when the scaled distance between the last two steps is less than the 
step tolerance. 

4. If the default parameters are desired for BCLSJ, then set IPARAM(1) to zero and call the 
routine BCLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling BCLSJ: 
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CALL U4LSF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 
Default: 100. 

IPARAM(6) = Internal variable scaling flag. 

If IPARAM(6) = 1, then the values for XSCALE are set internally. 
Default: 1. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �
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max ,1/i i ig x s
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where 
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J(x) is the Jacobian, s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

in double where � is the machine precision. 
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RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step 
between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 

Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max(10���, ����) in double where � is the machine precision. 

RPARAM(4) = Absolute function tolerance. 
Default: max (10���, ��), max(10���, ��) in double where � is the machine precision. 

RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

� �  

�2 = ||s||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is desired, then DU4LSF is called and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to ERROR HANDLING in the Introduction. 

Description 
The routine BCLSJ uses a modified Levenberg-Marquardt method and an active set strategy to 
solve nonlinear least squares problems subject to simple bounds on the variables. The problem 
is stated as follows: 
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subject to l � x � u 
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where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a given 
starting point, an active set IA, which contains the indices of the variables at their bounds, is 
built. A variable is called a “free variable” if it is not in the active set. The routine then 
computes the search direction for the free variables according to the formula 

d = � (JT J + �I)�� JT F 

where is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian with respect to the 
free variables. The search direction for the variables in IA is set to zero. The trust region 
approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the 
optimality conditions are checked. The conditions are 

||g(xi)|| � �, li < xi< ui 

g(xi) < 0,  xi = ui 

g(xi) > 0, xi = li 

where � is a gradient tolerance. This process is repeated until the optimality criterion is 
achieved. 

The active set is changed only when a free variable hits its bounds during an iteration or the 
optimality condition is met for the free variables but not for all variables in IA, the active set. In 
the latter case, a variable that violates the optimality condition will be dropped out of IA. For 
more detail on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt (1963). 
For more detailed information on active set strategy, see Gill and Murray (1976). 

BCNLS 
Solves a nonlinear least-squares problem subject to bounds on the variables and general linear 
constraints. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 
M � Number of functions.   (Input) 
N � Number of variables.   (Input) 
X � Array of length N containing the point at which the function will be evaluated.   
(Input) 
F � Array of length M containing the computed function at the point X.   (Output) 
The routine FCN must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

C — MCON � N matrix containing the coefficients of the MCON general linear constraints.   
(Input) 

BL — Vector of length MCON containing the lower limit of the general constraints.   (Input). 
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BU — Vector of length MCON containing the upper limit of the general constraints.   (Input). 

IRTYPE — Vector of length MCON indicating the types of general constraints in the matrix C.   
(Input) 
Let R(I) = C(I, 1)*X(1) + � + C(I, N)*X(N). Then the value of IRTYPE(I) 
signifies the following: 

 IRTYPE(I)  I-th CONSTRAINT 
   0      BL(I).EQ.R(I).EQ.BU(I) 
   1     R(I).LE.BU(I) 
   2     R(I).GE.BL(I) 
   3     BL(I).LE.R(I).LE.BU(I) 

XLB — Vector of length N containing the lower bounds on variables; if there is no lower 
bound on a variable, then 1.0E30 should be set as the lower bound.   (Input) 

XUB — Vector of length N containing the upper bounds on variables; if there is no upper 
bound on a variable, then �1.0E30 should be set as the upper bound.   (Input) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 
N — Number of variables.   (Input) 

Default: N = size (C,2). 

MCON — The number of general linear constraints for the system, not including simple 
bounds.   (Input) 
Default: MCON = size (C,1). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 
program.   (Input) 
LDC must be at least MCON. 
Default: LDC = size (C,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 
Default: XGUESS = 0.0. 

RNORM — The Euclidean length of components of the function f (x) after the approximate 
solution has been found.   (Output). 

ISTAT — Scalar indicating further information about the approximate solution X.   (Output) 
See the Comments section for a description of the tolerances and the vectors IPARAM 
and RPARAM. 

ISTAT Meaning 
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1 The function f (x) has a length less than TOLF = RPARAM(1). This is the expected 
value for ISTAT when an actual zero value of f (x) is anticipated. 

2 The function f (x) has reached a local minimum. This is the expected value for 
ISTAT when a nonzero value of f (x) is anticipated. 

3 A small change (absolute) was noted for the vector x. A full model problem step 
was taken. The condition for ISTAT = 2 may also be satisfied, so that a 
minimum has been found. However, this test is made before the test for 
ISTAT = 2. 

4 A small change (relative) was noted for the vector x. A full model problem step 
was taken. The condition for ISTAT = 2 may also be satisfied, so that a 
minimum has been found. However, this test is made before the test for 
ISTAT = 2. 

5 The number of terms in the quadratic model is being restricted by the amount of 
storage allowed for that purpose. It is suggested, but not required, that 
additional storage be given for the quadratic model parameters. This is 
accessed through the vector  
IPARAM, documented below. 

6 Return for evaluation of function and Jacobian if reverse  
communication is desired. See the Comments below. 

FORTRAN 90 Interface 
Generic: CALL BCNLS (FCN, M, C, BL, BU, IRTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCNLS and D_BCNLS. 

FORTRAN 77 Interface 
Single: CALL BCNLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE,  

XLB, XUB, XGUESS, X, RNORM, ISTAT) 

Double: The double precision name is DBCNLS. 

Example 1 
This example finds the four variables x1, x2, x3, x4 that are in the model function 

� � 2 4
1 3

x t x th t x e x e� �  

There are values of h(t) at five values of t. 
h(0.05) = 2.206 

h(0.1) = 1.994 
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h(0.4) = 1.35 

h(0.5) = 1.216 

h(1.0) = 0.7358 

There are also the constraints that x2, x4 � 0, x1, x3 � 0, and x2 and x4 must be separated by at 
least 0.05. Nothing more about the values of the parameters is known so the initial guess is 0. 

      USE BCNLS_INT 
      USE UMACH_INT 
      USE WRRRN_INT 
      INTEGER    MCON, N 
      PARAMETER  (MCON=1, N=4) 
!                                  SPECIFICATIONS FOR PARAMETERS 
      INTEGER    LDC, M 
      PARAMETER  (M=5, LDC=MCON) 
!                                  SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IRTYPE(MCON), NOUT 
      REAL       BL(MCON), C(MCON,N), RNORM, X(N), XLB(N), & 
                XUB(N) 
!                                  SPECIFICATIONS FOR SUBROUTINES 
!                                  SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCN 
! 
      CALL UMACH (2, NOUT) 
!                                  Define the separation between x(2) 
!                                  and x(4) 
      C(1,1) = 0.0 
      C(1,2) = 1.0 
      C(1,3) = 0.0 
      C(1,4) = -1.0 
      BL(1) = 0.05 
      IRTYPE(1) = 2 
!                                  Set lower bounds on variables 
      XLB(1) = 0.0 
      XLB(2) = 1.0E30 
      XLB(3) = 0.0 
      XLB(4) = 1.0E30 
!                                  Set upper bounds on variables 
      XUB(1) = -1.0E30 
      XUB(2) = 0.0 
      XUB(3) = -1.0E30 
      XUB(4) = 0.0 
! 
      CALL BCNLS (FCN, M, C, BL, BL, IRTYPE, XLB, XUB, X, RNORM=RNORM) 

      CALL WRRRN ('X', X, 1, N, 1) 
      WRITE (NOUT,99999) RNORM 
99999 FORMAT (/, 'rnorm = ', E10.5) 
      END 
! 
      SUBROUTINE FCN (M, N, X, F) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    M, N 
      REAL       X(*), F(*) 
!                                  SPECIFICATIONS FOR LOCAL VARIABLES 
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      INTEGER    I 
!                                  SPECIFICATIONS FOR SAVE VARIABLES 
      REAL       H(5), T(5) 
      SAVE       H, T 
!                                  SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  EXP 
      REAL       EXP 
! 
      DATA T/0.05, 0.1, 0.4, 0.5, 1.0/ 
      DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/ 
! 
      DO 10  I=1, M 
         F(I) = X(1)*EXP(X(2)*T(I)) + X(3)*EXP(X(4)*T(I)) - H(I) 
   10 CONTINUE 
      RETURN 
      END 
 

Output 
                   X 
       1       2       3       4 
   1.999  -1.000   0.500  -9.954  
rnorm = .42425E-03  

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2NLS/DB2NLS. The 

reference is: 

CALL B2NLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE, XLB, XUB, 
XGUESS, X, RNORM,ISTAT, IPARAM, RPARAM, JAC, F, FJ, LDFJ, 
IWORK, LIWORK, WORK, LWORK) 

The additional arguments are as follows: 

IPARAM — Integer vector of length six used to change certain default attributes of 
BCNLS.   (Input). 
If the default parameters are desired for BCNLS, set IPARAM(1) to zero. 
Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, the 
following steps should be taken before calling B2NLS: 

CALL B7NLS (IPARAM, RPARAM) 
Set nondefault values for IPARAM and RPARAM. 

If double precision is being used, DB7NLS should be called instead. Following is a list 
of parameters and the default values. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = ITMAX, the maximum number of iterations allowed. 
Default: 75 
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IPARAM(3) = a flag that suppresses the use of the quadratic model in the inner loop. If 
set to one, then the quadratic model is never used. Otherwise use the quadratic model 
where appropriate. This option decreases the amount of workspace as well as the 
computing overhead required. A user may wish to determine if the application really 
requires the use of the quadratic model. 
Default: 0 

IPARAM(4) = NTERMS, one more than the maximum number of terms used in the 
quadratic model. 
Default: 5 

IPARAM(5) = RCSTAT, a flag that determines whether forward or reverse 
communication is used. If set to zero, forward communication through functions FCN 
and JAC is used. If set to one, reverse communication is used, and the dummy routines 
B10LS/DB10LS and B11LS/DB11LS may be used in place of FCN and JAC, 
respectively. When BCNLS returns with ISTAT = 6, arrays F and FJ are filled with f(x) 
and the Jacobian of f(x), respectively. BCNLS is then called again. 
Default: 0 

IPARAM(6) = a flag that determines whether the analytic Jacobian, as supplied in JAC, 
is used, or if a finite difference approximation is computed. If set to zero, JAC is not 
accessed and finite differences are used.  If set to one, JAC is used to compute the 
Jacobian.  
Default: 0 

RPARAM — Real vector of length 7 used to change certain default attributes of 
BCNLS.   (Input) 

For the description of RPARAM, we make the following definitions: 
FC current value of the length of f (x) 
FB best value of length of f (x) 
FL value of length of f (x) at the previous step 
PV predicted value of length of f (x), after the step is taken, using  
                the approximating model  
� machine epsilon = amach(4) 

The conditions |FB � PV| � TOLSNR*FB and |FC � PV| � TOLP*FB and |FC � FL| � 
TOLSNR*FB together with taking a full model step, must be satisfied before the 
condition ISTAT = 2 is returned. (Decreasing any of the values for TOLF, TOLD, TOLX, 
TOLSNR, or TOLP will likely increase the number of iterations required for 
convergence.) 
RPARAM(1) = TOLF, tolerance used for stopping when FC � TOLF. 
Default : min(1.E 5, )��  
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RPARAM(2) = TOLX, tolerance for stopping when change to x values has length less than 
or equal to TOLX*length of x values. 
Default : min(1.E 5, )��  

RPARAM(3) = TOLD, tolerance for stopping when change to x values has length less than 
pr equal to TOLD. 
Default : min(1.E 5, )��  

RPARAM(4) = TOLSNR, tolerance used in stopping condition ISTAT = 2. 
Default: 1.E�5 

RPARAM(5) = TOLP, tolerance used in stopping condition ISTAT = 2. 
Default: 1.E�5 

RPARAM(6) = TOLUSE, tolerance used to avoid values of x in the quadratic model's 
interpolation of previous points. Decreasing this value may result in more terms being 
included in the quadratic model. 
Default : �  

RPARAM(7) = COND, largest condition number to allow when solving for the quadratic 
model coefficients. Increasing this value may result in more terms being included in 
the quadratic model. 
Default: 30 

JAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage is  
CALL JAC(M, N, X, FJAC, LDFJAC), where 
M � Number of functions.   (Input) 
N � Number of variables.   (Input) 
X � Array of length N containing the point at which the Jacobian will be evaluated.   
(Input) 
FJAC � The computed M � N Jacobian at the point X.   (Output) 
LDFJAC � Leading dimension of the array FJAC.   (Input) 
The routine JAC must be declared EXTERNAL in the calling program. 

F — Real vector of length N used to pass f(x) if reverse communication  
(IPARAM(4)) is enabled.   (Input) 

FJ — Real array of size M � N used to store the Jacobian matrix of f(x) if reverse 
communication (IPARAM(4)) is enabled.   (Input)  
Specifically,  

� �, i

j

f
FJ i j

x
�

�
�  
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LDFJ — Leading dimension of FJ exactly as specified in the dimension statement of the 
calling program.   (Input) 

IWORK — Integer work vector of length LIWORK. 

LIWORK — Length of work vector IWORK. LIWORK must be at least  
5MCON + 12N + 47 + MAX(M, N) 

WORK — Real work vector of length LWORK 

LWORK — Length of work vector WORK. LWORK must be at least 41N + 6M + 11MCON + (M + 
MCON)(N + 1) + NA(NA + 7) + 8 MAX(M, N) + 99. Where NA = MCON + 
2N + 6. 

2. Informational errors 

Type Code 
   3    1 The function f (x) has reached a value that may be a local minimum. 

However, the bounds on the trust region defining the size of the step 
are being hit at each step. Thus, the situation is suspect. (Situations of 
this type can occur when the solution is at infinity at some of the 
components of the unknowns, x). 

   3    2 The model problem solver has noted a value for the linear or 
quadratic model problem residual vector length that is greater than or 
equal to the current value of the function, i.e. the Euclidean length of 
f (x). This situation probably means that the evaluation of f (x) has 
more uncertainty or noise than is possible to account for in the 
tolerances used to not a local minimum. The value of x is suspect, but 
a minimum has probably been found. 

   3    3 More than ITMAX iterations were taken to obtain the solution. The 
value obtained for x is suspect, although it is the best set of x values 
that occurred in the entire computation. The value of ITMAX can be 
increased though the IPARAM vector. 

Description 
The routine BCNLS solves the nonlinear least squares problem 

� �
2

1
min

m

i
i

f x
�

�  

subject to 

l u

l u

b Cx b
x x x
� �

� �

 

BCNLS is based on the routine DQED by R.J. Hanson and F.T. Krogh. The section of BCNLS that 
approximates, using finite differences, the Jacobian of f(x) is a modification of JACBF by D.E. 
Salane. 
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Example 2 
This example solves the same problem as the last example, but reverse communication is used 
to evaluate f(x) and the Jacobian of f(x). The use of the quadratic model is turned off. 

 
      USE B2NLS_INT 
      USE UMACH_INT 
      USE WRRRN_INT 
      INTEGER    LDC, LDFJ, M, MCON, N 
      PARAMETER  (M=5, MCON=1, N=4, LDC=MCON, LDFJ=M) 
!                                  Specifications for local variables 
      INTEGER    I, IPARAM(6), IRTYPE(MCON), ISTAT, IWORK(1000), & 
                LIWORK, LWORK, NOUT 
      REAL       BL(MCON), C(MCON,N), F(M), FJ(M,N), RNORM, RPARAM(7), & 
                WORK(1000), X(N), XGUESS(N), XLB(N), XUB(N) 
      REAL       H(5), T(5) 
      SAVE       H, T 
      INTRINSIC  EXP 
      REAL       EXP 
!                                  Specifications for subroutines 
      EXTERNAL   B7NLS 
!                                  Specifications for functions 
      EXTERNAL   B10LS, B11LS 
! 
      DATA T/0.05, 0.1, 0.4, 0.5, 1.0/ 
      DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/ 
! 
      CALL UMACH (2, NOUT) 
!                                  Define the separation between x(2) 
!                                  and x(4) 
      C(1,1)    = 0.0 
      C(1,2)    = 1.0 
      C(1,3)    = 0.0 
      C(1,4)    = -1.0 
      BL(1)     = 0.05 
      IRTYPE(1) = 2 
!                                  Set lower bounds on variables 
      XLB(1) = 0.0 
      XLB(2) = 1.0E30 
      XLB(3) = 0.0 
      XLB(4) = 1.0E30 
!                                  Set upper bounds on variables 
      XUB(1) = -1.0E30 
      XUB(2) = 0.0 
      XUB(3) = -1.0E30 
      XUB(4) = 0.0 
!                                  Set initial guess to 0.0 
      XGUESS = 0.0E0 
!                                  Call B7NLS to set default parameters 
      CALL B7NLS (IPARAM, RPARAM) 
!                                  Suppress the use of the quadratic 
!                                  model, evaluate functions and 
!                                  Jacobian by reverse communication 
      IPARAM(3) = 1 
      IPARAM(5) = 1 
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      IPARAM(6) = 1 
      LWORK     = 1000 
      LIWORK    = 1000 
!                                  Specify dummy routines for FCN 
!                                  and JAC since we are using reverse 
!                                  communication 
   10 CONTINUE 
      CALL B2NLS (B10LS, M, N, MCON, C, LDC, BL, BL, IRTYPE, XLB, & 
                 XUB, XGUESS, X, RNORM, ISTAT, IPARAM, RPARAM, & 
                 B11LS, F, FJ, LDFJ, IWORK, LIWORK, WORK, LWORK) 
! 
!                                  Evaluate functions if the routine 
!                                  returns with ISTAT = 6 
      IF (ISTAT .EQ. 6) THEN 
         DO 20  I=1, M 
            FJ(I,1) = EXP(X(2)*T(I)) 
            FJ(I,2) = T(I)*X(1)*FJ(I,1) 
            FJ(I,3) = EXP(X(4)*T(I)) 
            FJ(I,4) = T(I)*X(3)*FJ(I,3) 
            F(I) = X(1)*FJ(I,1) + X(3)*FJ(I,3) - H(I) 
   20    CONTINUE 
         GO TO 10 
      END IF 
! 
      CALL WRRRN ('X', X, 1, N, 1) 
      WRITE (NOUT,99999) RNORM 
99999 FORMAT (/, 'rnorm = ', E10.5) 
      END 

      Output 
                   X 
       1       2       3       4 
   1.999  -1.000   0.500  -9.954  
rnorm = .42413E-03  
 

DLPRS 
Solves a linear programming problem via the revised simplex algorithm. 

Required Arguments 
A — M by NVAR matrix containing the coefficients of the M constraints.   (Input) 

BL — Vector of length M containing the lower limit of the general constraints; if there is no 
lower limit on the I-th constraint, then BL(I) is not referenced.   (Input) 

BU — Vector of length M containing the upper limit of the general constraints; if there is no 
upper limit on the I-th constraint, then BU(I) is not referenced; if there are no range 
constraints, BL and BU can share the same storage locations.   (Input) 
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C — Vector of length NVAR containing the coefficients of the objective function.   (Input) 

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.   
(Input)  
Let R(I) = A(I, 1) * XSOL(1) + � + A(I, NVAR) * XSOL(NVAR). Then, the value of 
IRTYPE(I) signifies the following:  

IRTYPE(I)   I-th Constraint 

0          BL(I).EQ.R(I).EQ.BU(I) 

1          R(I).LE.BU(I) 

2          R(I).GE.BL(I) 

3          BL(I).LE.R(I).LE.BU(I) 

OBJ — Value of the objective function.   (Output) 

XSOL — Vector of length NVAR containing the primal solution.   (Output) 

DSOL — Vector of length M containing the dual solution.   (Output) 

Optional Arguments 
M — Number of constraints.   (Input) 

Default: M = size (A,1). 

NVAR — Number of variables.   (Input) 
Default: NVAR = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input)  
LDA must be at least M. 
Default: LDA = size (A,1). 

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no 
lower bound on a variable, then 1.0E30 should be set as the lower bound.   (Input) 
Default: XLB = 0.0. 

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no 
upper bound on a variable, then �1.0E30 should be set as the upper bound.   (Input) 
Default: XUB = 3.4e38 for single precision and 1.79d + 308 for double precision. 

FORTRAN 90 Interface 
Generic: CALL DLPRS (A, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL [,…]) 
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Specific: The specific interface names are S_DLPRS and D_DLPRS. 

FORTRAN 77 Interface 
Single: CALL DLPRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB,  

     OBJ, XSOL, DSOL) 

Double: The double precision name is DDLPRS. 

Example 
A linear programming problem is solved. 

      USE DLPRS_INT 
      USE UMACH_INT 
      USE SSCAL_INT 
      INTEGER    LDA, M, NVAR 
      PARAMETER  (M=2, NVAR=2, LDA=M) 
!                                 M = number of constraints 
!                                 NVAR = number of variables 
! 
      INTEGER    I, IRTYPE(M), NOUT 
      REAL       A(LDA,NVAR), B(M), C(NVAR), DSOL(M), OBJ, XLB(NVAR), & 
                XSOL(NVAR), XUB(NVAR) 
! 
!                                 Set values for the following problem 
! 
!                                 Max 1.0*XSOL(1) + 3.0*XSOL(2) 
! 
!                                 XSOL(1) + XSOL(2) .LE. 1.5 
!                                 XSOL(1) + XSOL(2) .GE. 0.5 
! 
!                                 0 .LE. XSOL(1) .LE. 1 
!                                 0 .LE. XSOL(2) .LE. 1 
! 
      DATA XLB/2*0.0/, XUB/2*1.0/ 
      DATA A/4*1.0/, B/1.5, .5/, C/1.0, 3.0/ 
      DATA IRTYPE/1, 2/ 
!                                 To maximize, C must be multiplied by 
!                                 -1. 
      CALL SSCAL (NVAR, -1.0E0, C, 1) 
!                                 Solve the LP problem.  Since there is 
!                                 no range constraint, only B is 
!                                 needed. 
      CALL DLPRS (A, B, B, C, IRTYPE, OBJ, XSOL, DSOL, & 
                 XUB=XUB) 
!                                 OBJ must be multiplied by -1 to get 
!                                 the true maximum. 
      OBJ = -OBJ 
!                                 DSOL must be multiplied by -1 for 
!                                 maximization. 
      CALL SSCAL (M, -1.0E0, DSOL, 1) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
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      WRITE (NOUT,99999) OBJ, (XSOL(I),I=1,NVAR), (DSOL(I),I=1,M) 
! 
99999 FORMAT (//, ’   Objective       = ’, F9.4, //, ’   Primal ’,& 
             ’Solution =’, 2F9.4, //, ’   Dual solution   =’, 2F9.4) 
! 
      END 

Output 
Objective       =    3.5000 
 
Primal Solution =   0.5000   1.0000 
 
Dual solution   =   1.0000   0.0000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of D2PRS/DD2PRS. The 

reference is: 

CALL D2PRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB, OBJ, 
XSOL, DSOL, AWK, LDAWK, WK, IWK) 

 

 

The additional arguments are as follows: 

AWK — Real work array of dimension 1 by 1. (AWK is not used in the new 
implementation of the revised simplex algorithm. It is retained merely for 
calling sequence consistency.) 

LDAWK — Leading dimension of AWK exactly as specified in the dimension statement 
of the calling program. LDAWK should be 1. (LDAWK is not used in the new 
implementation of the revised simplex algorithm. It is retained merely for 
calling sequence consistency.) 

WK — Real work vector of length M * (M + 28). 

IWK — Integer work vector of length 29 * M + 3 * NVAR. 

2. Informational errors 

Type Code 
   3    1 The problem is unbounded. 
   4    2 Maximum number of iterations exceeded. 
   3    3 The problem is infeasible. 
   4    4 Moved to a vertex that is poorly conditioned; using double precision 

may help. 
   4    5 The bounds are inconsistent. 
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Description 
The routine DLPRS uses a revised simplex method to solve linear programming problems, i.e., 
problems of the form 

min
n

T

x
c x

�R
 

subject to bl � Ax � bu 

xl � x � xu 

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl 
and xu are the lower and upper bounds on the constraints and the variables, respectively. 

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983). 

SLPRS 
Solves a sparse linear programming problem via the revised simplex algorithm. 

Required Arguments 
A — Vector of length NZ containing the coefficients of the M constraints.   (Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding element in A.   
(Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 
in A. (Input) 

BL — Vector of length M containing the lower limit of the general constraints; if there is no 
lower limit on the I-th constraint, then BL(I) is not referenced.   (Input) 

BU — Vector of length M containing the upper lower limit of the general constraints; if there 
is no upper limit on the I-th constraint, then BU(I) is not referenced.   (Input) 

C — Vector of length NVAR containing the coefficients of the objective function.   (Input) 

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.   
(Input) 
Let R(I) = A(I, 1)*XSOL(1) + � + A(I, NVAR)*XSOL(NVAR) 

IRTYPE(I)  I-th CONSTRAINT 
    0  BL(I) = R(I) = BU(I) 
    1  R(I) � BU(I) 
    2  R(I) � BL(I) 
    3  BL(I) � R(I) � BU(I) 

OBJ — Value of the objective function.   (Output) 
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XSOL — Vector of length NVAR containing the primal solution.   (Output) 

DSOL — Vector of length M containing the dual solution.   (Output) 

Optional Arguments 
M — Number of constraints.   (Input) 

Default: M = size (IRTYPE,1). 

NVAR — Number of variables.   (Input) 
Default: NVAR = size (C,1). 

NZ — Number of nonzero coefficients in the matrix A.   (Input) 
Default: NZ = size (A,1). 

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no 
lower bound on a variable, then 1.0E30 should be set as the lower bound.   (Input) 
Default: XLB = 0.0. 

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no 
upper bound on a variable, then �1.0E30 should be set as the upper bound.   (Input) 
Default: XLB = 3.4e38 for single precision and 1.79d + 308 for double precision. 

FORTRAN 90 Interface 
Generic: CALL SLPRS (A, IROW, JCOL, BL, BU, C, IRTYPE,                   

OBJ, XSOL, DSOL [,…]) 

Specific: The specific interface names are S_SLPRS and D_SLPRS. 

FORTRAN 77 Interface 
Single: CALL SLPRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C, IRTYPE, 

XLB, XUB, OBJ, XSOL, DSOL) 

Double: The double precision name is DSLPRS. 

Example 
Solve a linear programming problem, with 

0 0.5
1 0.5

1
0.5
1

A

� �
� �
� �
� ��
� �
� �
� �� �

�

�

 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1303 

 

 

 

defined in sparse coordinate format. 
      USE SLPRS_INT 
      USE UMACH_INT 
      INTEGER    M, NVAR 
      PARAMETER  (M=200, NVAR=200) 
!                                  Specifications for local variables 
      INTEGER    INDEX, IROW(3*M), J, JCOL(3*M), NOUT, NZ 
      REAL       A(3*M), DSOL(M), OBJ, XSOL(NVAR) 
      INTEGER    IRTYPE(M) 
      REAL       B(M), C(NVAR), XL(NVAR), XU(NVAR) 
!                                  Specifications for subroutines 
      DATA B/199*1.7, 1.0/ 
      DATA C/-1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0, & 
      -10.0, 190*-1.0/ 
      DATA XL/200*0.1/ 
      DATA XU/200*2.0/ 
      DATA IRTYPE/200*1/ 
! 
      CALL UMACH (2, NOUT) 
!                                  Define A 
      INDEX = 1 
      DO 10  J=2, M 
!                                  Superdiagonal element 
         IROW(INDEX) = J - 1 
         JCOL(INDEX) = J 
         A(INDEX)    = 0.5 
!                                  Diagonal element 
         IROW(INDEX+1) = J 
         JCOL(INDEX+1) = J 
         A(INDEX+1) = 1.0 
         INDEX      = INDEX + 2 
   10 CONTINUE 
      NZ = INDEX - 1 
! 
! 
      XL(4) = 0.2 
      CALL SLPRS (A, IROW, JCOL, B, B, C, IRTYPE, OBJ, XSOL, DSOL, & 
                  NZ=NZ, XLB=XL, XUB=XU) 
! 
      WRITE (NOUT,99999) OBJ 
! 
99999 FORMAT (/, 'The value of the objective function is ', E12.6) 
! 
      END 
 

Output 
The value of the objective function is -.280971E+03  

Comments 
Workspace may be explicitly provided, if desired, by use of S2PRS/DS2PRS. The  

reference is: 
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CALL S2PRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C, 
            IRTYPE, XLB, XUB, OBJ, XSOL, DSOL, 
            IPARAM, RPARAM, COLSCL, ROWSCL, WORK, 
            LW, IWORK, LIW) 

The additional arguments are as follows: 

IPARAM — Integer parameter vector of length 12. If the default parameters are 
desired for SLPRS, then set IPARAM(1) to zero and call the routine SLPRS. 
Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then 
the following steps should be taken before calling SLPRS: 

CALL S5PRS (IPARAM, RPARAM) 
Set nondefault values for IPARAM and RPARAM. 

Note that the call to S5PRS will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above.  

IPARAM(1) = 0 indicates that a minimization problem is solved. If set to 1, a 
maximization problem is solved. 
Default: 0 

IPARAM(2) = switch indicating the maximum number of iterations to be taken before 
returning to the user. If set to zero, the maximum number of iterations taken is set to 
3*(NVARS+M). If positive, that value is used as the iteration limit. 
Default: IPARAM(2) = 0 

IPARAM(3) = indicator for choosing how columns are selected to enter the basis. If set 
to zero, the routine uses the steepest edge pricing strategy which is the best local move. 
If set to one, the minimum reduced cost pricing strategy is used. The steepest edge 
pricing strategy generally uses fewer iterations than the minimum reduced cost pricing, 
but each iteration costs more in terms of the amount of calculation performed. 
However, this is very problem-dependent.  
Default: IPARAM(3) = 0 

IPARAM(4) = MXITBR, the number of iterations between recalculating the error in the 
primal solution is used to monitor the error in solving the linear system. This is an 
expensive calculation and every tenth iteration is generally enough. 
Default: IPARAM(4) = 10 

IPARAM(5) = NPP, the number of negative reduced costs (at most) to be found at each 
iteration of choosing a variable to enter the basis. If set to zero, NPP = NVARS will be 
used, implying that all of the reduced costs are computed at each such step. This 
“Partial pricing” may increase the total number of iterations required. However, it 
decreases the number of calculation required at each iteration. The effect on overall 
efficiency is very problem-dependent. If set to some positive number, that value is used 
as NPP. 
Default: IPARAM(5) = 0 
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IPARAM(6) = IREDFQ, the number of steps between basis matrix redecompositions. 
Redecompositions also occur whenever the linear systems for the primal and dual 
systems have lost half their working precision. 
Default: IPARAM(6) = 50 

IPARAM(7) = LAMAT, the length of the portion of WORK that is allocated to sparse matrix 
storage and decomposition. LAMAT must be greater than NZ + NVARS + 4. 
Default: LAMAT = NZ + NVARS + 5 

IPARAM(8) = LBM, then length of the portion of IWORK that is allocated to sparse matrix 
storage and decomposition. LBM must be positive. 
Default: LBM = 8*M 

IPARAM(9) = switch indicating that partial results should be saved after the maximum 
number of iterations, IPARAM(2), or at the optimum. If IPARAM(9) is not zero, data 
essential to continuing the calculation is saved to a file, attached to unit number 
IPARAM(9). The data saved includes all the information about the sparse matrix A and 
information about the current basis. If IPARAM(9) is set to zero, partial results are not 
saved. It is the responsibility of the calling program to open the output file.  

IPARAM(10) = switch indicating that partial results have been computed and stored on 
unit number IPARAM(10), if greater than zero. If IPARAM(10) is zero, a new problem is 
started. 
Default: IPARAM(10) = 0 

IPARAM(11) = switch indicating that the user supplies scale factors for the columns of 
the matrix A. If IPARAM(11) = 0, SLPRS computes the scale factors as the reciprocals of 
the max norm of each column. If IPARAM(11) is set to one, element I of the vector 
COLSCL is used as the scale factor for column I of the matrix A. The scaling is implicit, 
so no input data is actually changed. 
Default: IPARAM(11) = 0 

IPARAM(12) = switch indicating that the user supplied scale factors for the rows of the 
matrix A. If IPARAM(12) is set to zero, no row scaling is one. If IPARAM(12) is set to 1, 
element I of the vector ROWSCL is used as the scale factor for row I of the matrix A. 
The scaling is implicit, so no input data is actually changed. 
Default: IPARAM(12) = 0 

RPARAM — Real parameter vector of length 7. 
RPARAM(1) = COSTSC, a scale factor for the vector of costs. Normally  
SLPRS computes this scale factor to be the reciprocal of the max norm if the 
vector costs after the column scaling has been applied. If RPARAM(1) is zero, 
SLPRS compute COSTSC. 
Default: RPARAM(1) = 0.0 

RPARAM(2) = ASMALL, the smallest magnitude of nonzero entries in the matrix A. If 
RPARAM(2) is nonzero, checking is done to ensure that all elements of A are at least as 
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large as RPARAM(2). Otherwise, no checking is done. 
Default: RPARAM(2) = 0.0 

RPARAM(3) = ABIG, the largest magnitude of nonzero entries in the matrix A. If 
RPARAM(3) is nonzero, checking is done to ensure that all elements of A are no larger 
than RPARAM(3). Otherwise, no checking is done. 
Default: RPARAM(3) = 0.0 

RPARAM(4) = TOLLS, the relative tolerance used in checking if the residuals are 
feasible. RPARAM(4) is nonzero, that value is used as TOLLS, otherwise the default 
value is used. 
Default: TOLLS = 1000.0*amach(4) 

RPARAM(5) = PHI, the scaling factor used to scale the reduced cost error estimates. In 
some environments, it may be necessary to reset PHI to the range [0.01, 0.1], 
particularly on machines with short word length and working precision when solving a 
large problem. If RPARAM(5) is nonzero, that value is used as PHI, otherwise the default 
value is used. 
Default: PHI = 1.0 

RPARAM(6) = TOLABS, an absolute error test on feasibility. Normally a relative test is 
used with TOLLS (see RPARAM(4)). If this test fails, an absolute test will be applied 
using the value TOLABS. 
Default: TOLABS = 0.0 

RPARAM(7) = pivot tolerance of the underlying sparse factorization routine. If 
RPARAM(7) is set to zero, the default pivot tolerance is used, otherwise, the RPARAM(7) 
is used. 
Default: RPARAM(7) = 0.1 

COLSCL — Array of length NVARS containing column scale factors for the matrix A.   
(Input). 
COLSCL is not used if IPARAM(11) is set to zero. 

ROWSCL — Array of length M containing row scale factors for the matrix A.   (Input)  
ROWSCL is not used if IPARAM(12) is set to zero. 

WORK — Work array of length LW. 

LW — Length of real work array. LW must be at least  
2 + 2NZ + 9NVAR + 27M + MAX(NZ + NVAR + 8, 4NVAR + 7). 

IWORK — Integer work array of length LIW. 

LIW — Length of integer work array. LIW must be at least  
1 + 3NVAR + 41M + MAX(NZ + NVAR + 8, 4NVAR + 7). 
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Description 
This subroutine solves problems of the form 

min cTx 

subject to 

,l u

l u

b Ax b
x x x
� �

� �

 

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl, 
and xu are the lower and upper bounds on the constraints and the variables, respectively. SLPRS 
is designed to take advantage of sparsity in A. The routine is based on DPLO by Hanson and 
Hiebert. 

QPROG 
Solves a quadratic programming problem subject to linear equality/inequality constraints. 

Required Arguments 
NEQ — The number of linear equality constraints.   (Input) 

A — NCON by NVAR matrix.   (Input) 
The matrix contains the equality contraints in the first NEQ rows followed by the 
inequality constraints. 

B — Vector of length NCON containing right-hand sides of the linear constraints.   (Input) 

G — Vector of length NVAR containing the coefficients of the linear term of the objective 
function.   (Input) 

H — NVAR by NVAR matrix containing the Hessian matrix of the objective function.   (Input) 
H should be symmetric positive definite; if H is not positive definite, the algorithm 
attempts to solve the QP problem with H replaced by a H + DIAGNL * I such that H + 
DIAGNL * I is positive definite. See Comment 3. 

SOL — Vector of length NVAR containing solution.   (Output) 

Optional Arguments 
NVAR — The number of variables.   (Input) 

Default: NVAR = size (A,2). 

NCON — The number of linear constraints.   (Input) 
Default: NCON = size (A,1). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDH = size (H,1). 

DIAGNL — Scalar equal to the multiple of the identity matrix added to H to give a positive 
definite matrix.   (Output) 

NACT — Final number of active constraints.   (Output) 

IACT — Vector of length NVAR containing the indices of the final active constraints in the 
first NACT positions.   (Output) 

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final 
active constraints in the first NACT positions.   (Output) 

FORTRAN 90 Interface 
Generic: CALL QPROG (NEQ, A, B, G, H, SOL [,…]) 

Specific: The specific interface names are S_QPROG and D_QPROG. 

FORTRAN 77 Interface 
Single: CALL QPROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH, DIAGNL,  

SOL, NACT, IACT, ALAMDA) 

Double: The double precision name is DQPROG. 

Example 
The quadratic programming problem  

min f x x x x x x x x x x x
x x x x x
x x x

b g � � � � � � � �

� � � � �

� � � �

1
2

2
2

3
2

4
2

5
2

2 3 4 5 1

1 2 3 4 5

3 4 5

2 2 2
5

2 2 3
subject to   

is solved. 
 

      USE QPROG_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    LDA, LDH, NCON, NEQ, NVAR 
      PARAMETER  (NCON=2, NEQ=2, NVAR=5, LDA=NCON, LDH=NVAR) 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1309 

 

 

 

! 
      INTEGER    K, NACT, NOUT 
      REAL       A(LDA,NVAR), ALAMDA(NVAR), B(NCON), G(NVAR), & 
                H(LDH,LDH), SOL(NVAR) 
! 
!                                 Set values of A, B, G and H. 
!                                 A = ( 1.0  1.0  1.0  1.0  1.0) 
!                                     ( 0.0  0.0  1.0 -2.0 -2.0) 
! 
!                                 B = ( 5.0 -3.0) 
! 
!                                 G = (-2.0  0.0  0.0  0.0  0.0) 
! 
!                                 H = ( 2.0  0.0  0.0  0.0  0.0) 
!                                     ( 0.0  2.0 -2.0  0.0  0.0) 
!                                     ( 0.0 -2.0  2.0  0.0  0.0) 
!                                     ( 0.0  0.0  0.0  2.0 -2.0) 
!                                     ( 0.0  0.0  0.0 -2.0  2.0) 
! 
      DATA A/1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, -2.0, 1.0, -2.0/ 
      DATA B/5.0, -3.0/ 
      DATA G/-2.0, 4*0.0/ 
      DATA H/2.0, 5*0.0, 2.0, -2.0, 3*0.0, -2.0, 2.0, 5*0.0, 2.0, & 
          -2.0, 3*0.0, -2.0, 2.0/ 
! 
      CALL QPROG (NEQ, A, B, G, H, SOL) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (SOL(K),K=1,NVAR) 
99999 FORMAT (’  The solution vector is’, /, ’  SOL = (’, 5F6.1, & 
            ’  )’) 
! 
      END 

Output 
The solution vector is 
SOL = (   1.0   1.0   1.0   1.0   1.0  ) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2ROG/DQ2ROG. The 

reference is: 

CALL Q2ROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH,  
     DIAGNL, SOL, NACT, IACT, ALAMDA, WK) 

The additional argument is: 

WK — Work vector of length (3 * NVAR**2 + 11 * NVAR)/2 + NCON. 

2. Informational errors 

Type Code 
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   3    1 Due to the effect of computer rounding error, a change in the 
variables fail to improve the objective function value; usually the 
solution is close to optimum. 

   4    2 The system of equations is inconsistent. There is no solution. 

3. If a perturbation of H, H + DIAGNL * I, was used in the QP problem, then H + DIAGNL * 
I should also be used in the definition of the Lagrange multipliers. 

Description 
The routine QPROG is based on M.J.D. Powell’s implementation of the Goldfarb and Idnani 
(1983) dual quadratic programming (QP) algorithm for convex QP problems subject to general 
linear equality/inequality constraints, i.e., problems of the form 

1min
2n

T T

x
g x x Hx

�

�

R
 

subject to A�x = b� 

  A�x � b� 

given the vectors b�, b�, and g and the matrices H, A�, and A�. H is required to be positive 
definite. In this case, a unique x solves the problem or the constraints are inconsistent. If H is not 
positive definite, a positive definite perturbation of H is used in place of H. For more details, see 
Powell (1983, 1985). 

LCONF 
Minimizes a general objective function subject to linear equality/inequality constraints. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Value of NVAR.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

NEQ — The number of linear equality constraints.   (Input) 

A — NCON by NVAR matrix.   (Input)  
The matrix contains the equality constraint gradients in the first NEQ rows, followed by 
the inequality constraint gradients. 
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B — Vector of length NCON containing right-hand sides of the linear constraints.   (Input)  
Specifically, the constraints on the variables X(I), I = 1, �, NVAR are A(K, 1) * X(1) + 
� + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, �, NEQ.A(K, 1) * X(1) + � + A(K, NVAR) 
* X(NVAR).LE.B(K), K = NEQ + 1, �, NCON. Note that the data that define the equality 
constraints come before the data of the inequalities. 

XLB — Vector of length NVAR containing the lower bounds on the variables; choose a very 
large negative value if a component should be unbounded below or set  
XLB(I) = XUB(I) to freeze the I-th variable.   (Input)  
Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, �, NVAR. 

XUB — Vector of length NVAR containing the upper bounds on the variables; choose a very 
large positive value if a component should be unbounded above.   (Input)  
Specifically, these simple bounds are X(I).LE.XUB(I), I = 1, �, NVAR. 

SOL — Vector of length NVAR containing solution.   (Output) 

Optional Arguments 
NVAR — The number of variables.   (Input) 

Default: NVAR = size (A,2). 

NCON — The number of linear constraints (excluding simple bounds).   (Input) 
Default: NCON = size (A,1). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

XGUESS — Vector of length NVAR containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

ACC — The nonnegative tolerance on the first order conditions at the calculated solution.   
(Input) 
Default: ACC = 1.e-4 for single precision and 1.d-8 for double precision. 

MAXFCN — On input, maximum number of function evaluations allowed.   (Input/ Output) 
On output, actual number of function evaluations needed. 
Default: MAXFCN = 400. 

OBJ — Value of the objective function.   (Output) 

NACT — Final number of active constraints.   (Output) 

IACT — Vector containing the indices of the final active constraints in the first NACT 
positions.   (Output)  
Its length must be at least NCON + 2 * NVAR. 
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ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final 
active constraints in the first NACT positions.   (Output) 

FORTRAN 90 Interface 
Generic: CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL [,…]) 

Specific: The specific interface names are S_LCONF and D_LCONF. 

FORTRAN 77 Interface 
Single: CALL LCONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB,  

XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT,  
ALAMDA) 

Double: The double precision name is DLCONF. 

Example 
The problem from Schittkowski (1987) 

min f(x) = �x�x�x� 

subject to       �x� � 2x� � 2x� � 0 

                         x� +2x� + 2x� � 72 

           0 � x� � 20 

            0 � x� � 11 

             0 � x� � 42 

is solved with an initial guess x� = 10, x� = 10 and x� = 10. 
      USE LCONF_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    NCON, NEQ, NVAR 
      PARAMETER  (NCON=2, NEQ=0, NVAR=3) 
! 
      INTEGER    MAXFCN, NOUT 
      REAL       A(NCON,NVAR), ACC, B(NCON), OBJ, & 
                SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR) 
      EXTERNAL   FCN 
! 
!                                 Set values for the following problem. 
! 
!                                 Min  -X(1)*X(2)*X(3) 
! 
!                                 -X(1) - 2*X(2) - 2*X(3)  .LE.   0 
!                                  X(1) + 2*X(2) + 2*X(3)  .LE.  72 
! 
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!                                 0  .LE.  X(1)  .LE.  20 
!                                 0  .LE.  X(2)  .LE.  11 
!                                 0  .LE.  X(3)  .LE.  42 
! 
      DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/ 
      DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/ 
      DATA ACC/0.0/, MAXFCN/400/ 
! 
      CALL UMACH (2, NOUT) 
! 
      CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS,  & 
                 MAXFCN=MAXFCN, ACC=ACC, OBJ=OBJ) 
! 
      WRITE (NOUT,99998) ’Solution:’ 
      WRITE (NOUT,99999) SOL 
      WRITE (NOUT,99998) ’Function value at solution:’ 
      WRITE (NOUT,99999) OBJ 
      WRITE (NOUT,99998) ’Number of function evaluations:’, MAXFCN 
      STOP 
99998 FORMAT (//, ’ ’, A, I4) 
99999 FORMAT (1X, 5F16.6) 
      END 
! 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(*), F 
! 
      F = -X(1)*X(2)*X(3) 
      RETURN 
      END 

Output 
Solution: 
 20.000000       11.000000       15.000000 
 
Function value at solution: 
-3300.000000 
 
Number of function evaluations:   5 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2ONF/DL2ONF. The 

reference is: 

CALL L2ONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS, 
ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA, IPRINT, INFO, WK) 

The additional arguments are as follows: 

IPRINT — Print option (see Comment 3).   (Input) 

INFO — Informational flag (see Comment 3).   (Output) 



 

 
 

1314 � Chapter 8: Optimization IMSL MATH/LIBRARY 

 

 

 

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON. 

2. Informational errors 

Type Code 
   4    4 The equality constraints are inconsistent. 
   4    5 The equality constraints and the bounds on the variables are found to 

be inconsistent. 
   4    6 No vector X satisfies all of the constraints. In particular, the current 

active constraints prevent any change in X that reduces the sum of 
constraint violations. 

   4    7 Maximum number of function evaluations exceeded. 
   4    9 The variables are determined by the equality constraints. 

3. The following are descriptions of the arguments IPRINT and INFO: 

IPRINT — This argument must be set by the user to specify the frequency of printing during 
the execution of the routine LCONF. There is no printed output if IPRINT = 0. 
Otherwise, after ensuring feasibility, information is given every IABS(IPRINT) 
iterations and whenever a parameter called TOL is reduced. The printing provides the 
values of X(.), F(.) and G(.) = GRAD(F) if IPRINT is positive. If IPRINT is negative, 
this information is augmented by the current values of IACT(K) K = 1, �, NACT, 
PAR(K) K = 1, �, NACT and RESKT(I) I = 1, �, N. The reason for returning to the 
calling program is also displayed when IPRINT is nonzero. 

INFO — On exit from L2ONF, INFO will have one of the following integer values to indicate 
the reason for leaving the routine: 

INFO = 1 SOL is feasible, and the condition that depends on ACC is satisfied. 

INFO = 2 SOL is feasible, and rounding errors are preventing further progress. 

INFO = 3 SOL is feasible, but the objective function fails to decrease although a 
decrease is predicted by the current gradient vector. 

INFO = 4  In this case, the calculation cannot begin because LDA is less than NCON or 
because the lower bound on a variable is greater than the upper bound. 

INFO = 5 This value indicates that the equality constraints are inconsistent. These 
constraints include any components of X(.) that are frozen by setting 
XL(I) = XU(I). 

INFO = 6 In this case there is an error return because the equality constraints and the 
bounds on the variables are found to be inconsistent. 

INFO = 7 This value indicates that there is no vector of variables that satisfies all of 
the constraints. Specifically, when this return or an INFO = 6 return occurs, the 
current active constraints (whose indices are IACT(K), K = 1, �, NACT) prevent 
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any change in X(.) that reduces the sum of constraint violations. Bounds are only 
included in this sum if INFO = 6. 

INFO = 8 Maximum number of function evaluations exceeded. 

INFO = 9 The variables are determined by the equality constraints. 

Description 
The routine LCONF is based on M.J.D. Powell’s TOLMIN, which solves linearly constrained 
optimization problems, i.e., problems of the form 

� �min
nx

f x
�R

 

subject to      A�x = b� 

                  A�x � b� 

                   xl � x � xu 

given the vectors b�, b�, xl and xu and the matrices A�, and A�. 

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If 
the equality constraints are consistent, the method will revise x�, the initial guess provided by 
the user, to satisfy 

A�x = b� 

Next, x� is adjusted to satisfy the simple bounds and inequality constraints. This is done by 
solving a sequence of quadratic programming subproblems to minimize the sum of the 
constraint or bound violations. 

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints 
that have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be 
the set of indices of active constraints. The following quadratic programming problem 

� � � �
1min
2

k T k T kf x d f x d B d� � �  

subject to     ajd =  0  j � Ik 

                 ajd � 0  j � Jk 

is solved to get (dk, �k) where aj is a row vector representing either a constraint in A�or A� or a 
bound constraint on x. In the latter case, the aj = ei for the bound constraint xi � (xu)i and aj = �ei 
for the constraint �xi � ( �xl)i. Here, ei is a vector with a 1 as the i-th component, and zeroes 

elsewhere. �k are the Lagrange multipliers, and Bk is a positive definite approximation to the 
second derivative ��f(xk). 



 

 
 

1316 � Chapter 8: Optimization IMSL MATH/LIBRARY 

 

 

 

After the search direction dk is obtained, a line search is performed to locate a better point. The 
new point xk+1= xk + �kdk has to satisfy the conditions 

� � � � � � � �0.1
Tk k k k k k kf x d f x d f x� �� � � �  

and 

� � � � � � � �0.7
T Tk k k k k kd f x d d f x�� � � �  

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-

length �k, then its index is not in Jk. Therefore, small steps are likely to be avoided. 

Finally, the second derivative approximation, Bk , is updated by the BFGS formula, if the 
condition  

� � � � � � 0
Tk k k k kd f x d f x�� � �� �  

holds. Let xk 
 xk+�, and start another iteration. 

 

The iteration repeats until the stopping criterion 

� �
2

k k kf x A � �� � �  

is satisfied; here, � is a user-supplied tolerance. For more details, see Powell (1988, 1989). 

Since a finite-difference method is used to estimate the gradient for some single precision 
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact gradient can be easily provided, routine LCONG (page 1316) should be used instead. 

LCONG 
Minimizes a general objective function subject to linear equality/inequality constraints. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Value of NVAR.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 
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GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Value of NVAR.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by GRAD. 

G – Vector of length N containing the values of the gradient of the objective function 
evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

NEQ — The number of linear equality constraints.   (Input) 

A — NCON by NVAR matrix.   (Input)  
The matrix contains the equality constraint gradients in the first NEQ rows, followed by 
the inequality constraint gradients. 

B — Vector of length NCON containing right-hand sides of the linear constraints.   (Input)  
Specifically, the constraints on the variables X(I), I = 1, �, NVAR are A(K, 1) * X(1) + 
� + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, �, NEQ.A(K, 1) * X(1) + � + A(K, NVAR) 
* X(NVAR).LE.B(K), K = NEQ + 1, �, NCON. Note that the data that define the equality 
constraints come before the data of the inequalities. 

XLB — Vector of length NVAR containing the lower bounds on the variables; choose a very 
large negative value if a component should be unbounded below or set XLB(I) = 
XUB(I) to freeze the I-th variable.   (Input)  
Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, �, NVAR. 

XUB — Vector of length NVAR containing the upper bounds on the variables; choose a very 
large positive value if a component should be unbounded above.   (Input)  
Specifically, these simple bounds are X(I).LE. XUB(I), I = 1, �, NVAR. 

SOL — Vector of length NVAR containing solution.   (Output) 

Optional Arguments 
NVAR — The number of variables.   (Input) 

Default: NVAR = size (A,2). 

NCON — The number of linear constraints (excluding simple bounds).   (Input) 
Default: NCON = size (A,1). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 
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XGUESS — Vector of length NVAR containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

ACC — The nonnegative tolerance on the first order conditions at the calculated solution.   
(Input) 
Default: ACC = 1.e-4 for single precision and 1.d-8 for double precision. 

MAXFCN — On input, maximum number of function evaluations allowed.(Input/ Output)  
On output, actual number of function evaluations needed. 
Default: MAXFCN = 400. 

OBJ — Value of the objective function.   (Output) 

NACT — Final number of active constraints.   (Output) 

IACT — Vector containing the indices of the final active constraints in the first NACT 
positions.   (Output)  
Its length must be at least NCON + 2 * NVAR. 

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final 
active constraints in the first NACT positions.   (Output) 

FORTRAN 90 Interface 
Generic: CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL [,…]) 

Specific: The specific interface names are S_LCONG and D_LCONG. 

FORTRAN 77 Interface 
Single: CALL LCONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB,  

XUB, XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT,  
ALAMDA) 

Double: The double precision name is DLCONG. 

Example 
The problem from Schittkowski (1987) 

min f(x) = �x�x�x� 

subject to �x� � 2x� � 2x� � 0 

   x� +2x� + 2x� � 72 

  0 � x� � 20 

  0 � x� � 11 
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  0 � x� � 42 

is solved with an initial guess x� = 10, x� = 10 and x� = 10. 
      USE LCONG_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    NCON, NEQ, NVAR 
      PARAMETER  (NCON=2, NEQ=0, NVAR=3) 
! 
      INTEGER    MAXFCN, NOUT 
      REAL       A(NCON,NVAR), ACC, B(NCON), OBJ, & 
                 SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR) 
      EXTERNAL   FCN, GRAD 
! 
!                                 Set values for the following problem. 
! 
!                                 Min  -X(1)*X(2)*X(3) 
! 
!                                 -X(1) - 2*X(2) - 2*X(3)  .LE.   0 
!                                  X(1) + 2*X(2) + 2*X(3)  .LE.  72 
! 
!                                 0  .LE.  X(1)  .LE.  20 
!                                 0  .LE.  X(2)  .LE.  11 
!                                 0  .LE.  X(3)  .LE.  42 
! 
      DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/ 
      DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/ 
      DATA ACC/0.0/, MAXFCN/400/ 
! 
      CALL UMACH (2, NOUT) 
! 
      CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS, & 
                  ACC=ACC, MAXFCN=MAXFCN, OBJ=OBJ) 
! 
      WRITE (NOUT,99998) ’Solution:’ 
      WRITE (NOUT,99999) SOL 
      WRITE (NOUT,99998) ’Function value at solution:’ 
      WRITE (NOUT,99999) OBJ 
      WRITE (NOUT,99998) ’Number of function evaluations:’, MAXFCN 
      STOP 
99998 FORMAT (//, ’ ’, A, I4) 
99999 FORMAT (1X, 5F16.6) 
      END 
! 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(*), F 
! 
      F = -X(1)*X(2)*X(3) 
      RETURN 
      END 
! 
      SUBROUTINE GRAD (N, X, G) 
      INTEGER    N 
      REAL       X(*), G(*) 
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! 
      G(1) = -X(2)*X(3) 
      G(2) = -X(1)*X(3) 
      G(3) = -X(1)*X(2) 
      RETURN 
      END 

Output 
Solution: 
20.000000       11.000000       15.000000 
 
Function value at solution: 
-3300.000000 
 
Number of function evaluations:   5 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2ONG/DL2ONG. The 

reference is: 

CALL L2ONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, 
XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA, IPRINT,  
INFO, WK) 

The additional arguments are as follows: 

IPRINT — Print option (see Comment 3).   (Input) 

INFO — Informational flag (see Comment 3).   (Output) 

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON. 

2. Informational errors 

Type Code 
   4    4 The equality constraints are inconsistent. 
   4     5 The equality constraints and the bounds on the variables are found to 

be inconsistent. 
   4    6 No vector X satisfies all of the constraints. In particular, the current 

active constraints prevent any change in X that reduces the sum of 
constraint violations. 

   4    7 Maximum number of function evaluations exceeded. 
   4    9 The variables are determined by the equality constraints. 

3. The following are descriptions of the arguments IPRINT and INFO: 

IPRINT — This argument must be set by the user to specify the frequency of printing 
during the execution of the routine LCONG. There is no printed output if IPRINT 
= 0. Otherwise, after ensuring feasibility, information is given every 
IABS(IPRINT) iterations and whenever a parameter called TOL is reduced. The 
printing provides the values of X(.), F(.) and G(.) = GRAD(F) if IPRINT is 
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positive. If IPRINT is negative, this information is augmented by the current 
values of IACT(K) K = 1, �,  
NACT, PAR(K) K = 1, �, NACT and RESKT(I) I = 1, �, N. The reason for 
returning to the calling program is also displayed when IPRINT is nonzero. 

INFO —  On exit from L2ONG, INFO will have one of the following integer 
  values to indicate the reason for leaving the routine: 

INFO = 1 SOL is feasible and the condition that depends on ACC is satisfied. 

INFO = 2 SOL is feasible and rounding errors are preventing further progress. 

INFO = 3 SOL is feasible but the objective function fails to decrease although 
  a decrease is predicted by the current gradient vector. 

INFO = 4 In this case, the calculation cannot begin because LDA is less than 
  NCON or because the lower bound on a variable is greater than the 
  upper bound. 

INFO = 5 This value indicates that the equality constraints are inconsistent. 
  These constraints include any components of X(.) that are frozen 
  by setting XL(I) = XU(I). 

INFO = 6 In this case, there is an error return because the equality constraints 
  and the bounds on the variables are found to be inconsistent. 

INFO = 7 This value indicates that there is no vector of variables that  
  satisfies all of the constraints. Specifically, when this return or an 
  INFO = 6 return occurs, the current active constraints (whose  
  indices are IACT(K), K = 1, �, NACT) prevent any change in X(.) 
  that reduces the sum of constraint violations, where only bounds 
  are included in this sum if INFO = 6. 

INFO = 8 Maximum number of function evaluations exceeded. 

INFO = 9 The variables are determined by the equality constraints. 

Description 
The routine LCONG is based on M.J.D. Powell’s TOLMIN, which solves linearly constrained 
optimization problems, i.e., problems of the form 

� �min
nx

f x
�R

 

subject to A�x = b� 

  A�x � b� 
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  xl � x � xu 

given the vectors b�, b�, xl and xu and the matrices A�, and A�. 

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If 
the equality constraints are consistent, the method will revise x�, the initial guess provided by 
the user, to satisfy 

A�x = b� 

Next, x� is adjusted to satisfy the simple bounds and inequality constraints. This is done by 
solving a sequence of quadratic programming subproblems to minimize the sum of the 
constraint or bound violations. 

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints 
that have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be 
the set of indices of active constraints. The following quadratic programming problem 

� � � �
1min
2

k T k T kf x d f x d B d� � �  

subject to ajd = 0 j � Ik 

  ajd � 0 j � Jk 

is solved to get (dk, �k) where aj is a row vector representing either a constraint in A�or A� or a 
bound constraint on x. In the latter case, the aj = ei for the bound constraint xi � (xu)i and  
aj = � ei for the constraint � xi � ( � xl)i. Here, ei is a vector with a 1 as the i-th component, and 

zeroes elsewhere. �k are the Lagrange multipliers, and Bk is a positive definite approximation to 
the second derivative ��f(xk). 

After the search direction dk is obtained, a line search is performed to locate a better point. The 
new point xk+1= xk + �kdk has to satisfy the conditions 

� � � � � � � �0.1
Tk k k k k k kf x d f x d f x� �� � � �  

and 

� � � � � � � �0.7
T Tk k k k k kd f x d d f x�� � � �  

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-

length �k, then its index is not in Jk. Therefore, small steps are likely to be avoided. 

Finally, the second derivative approximation, Bk, is updated by the BFGS formula, if the 
condition  

� � � � � � 0
Tk k k k kd f x d f x�� � �� �  

holds. Let xk 
 xk+1, and start another iteration. 
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The iteration repeats until the stopping criterion 

� �
2

k k kf x A � �� � �  

is satisfied; here, � is a user-supplied tolerance. For more details, see Powell (1988, 1989).  

NNLPF 
Solves a general nonlinear programming problem using a sequential equality constrained quadratic 
programming method. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the objective function and constraints at a 

given point. The internal usage is CALL FCN (X, IACT, RESULT, IERR),  
where 

           X – The point at which the objective function or  constraint is evaluated.   (Input) 

IACT – Integer indicating  whether evaluation of the objective function is requested or 
evaluation of a constraint is requested.  If IACT is zero, then an objective 
function evaluation is requested.  If IACT is nonzero then the value if IACT 
indicates the index of the constraint to evaluate.   (Input) 

RESULT – If IACT is zero,  then RESULT is the computed function value at the point 
X.   If IACT is nonzero, then RESULT is the computed constraint value at the 
point X.     (Output) 

IERR – Logical variable.  On input IERR is set to .FALSE.  If an error or other 
undesirable condition occurs during evaluation, then IERR should be set to 
.TRUE.  Setting IERR to .TRUE.  will result in the step size being reduced and 
the step being tried again.  (If IERR is set to .TRUE. for XGUESS, then an error is 
issued.) 

The routine FCN must be use-associated in a user module that uses NNLPF_INT, or else 
declared  EXTERNAL in the calling program. If FCN is a separately compiled routine, not 
in a module, then it must be declared EXTERNAL. 

M — Total number of constraints.  (Input) 

ME — Number of equality constraints.  (Input) 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 
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1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable; all other variables will have 
 the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)  
If there is no lower bound for a variable, then the corresponding XLB value should be 
set to �Huge(X(1)). 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3). 
If there is no upper bound for a variable, then the corresponding XUB value should be 
set to Huge(X(1)). 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Number of variables.   (Input) 

Default: N = size(X). 

XGUESS — Vector of length N containing an initial guess of the solution.   (Input) 
Default: XGUESS = X, (with the smallest value of 

2
X ) that satisfies the bounds. 

XSCALE — Vector of length N setting the internal scaling of the variables.  The initial value 
given and the objective function and gradient evaluations however are always in the 
original unscaled variables.  The first internal variable is obtained by dividing values 
X(I) by XSCALE(I).  (Input) 
In the absence of other information, set all entries to 1.0. 
Default: XSCALE(:) = 1.0. 

IPRINT — Parameter indicating the desired output level.   (Input) 

IPRINT Action 

0  No output printed. 

1  One line of intermediate results is printed in each iteration. 

2  Lines of intermediate results summarizing the most important data  for each 
step are printed. 
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3        Lines of detailed intermediate results showing all primal and dual variables, 
the relevant values from the working set, progress in the backtracking and 
etc are printed 

4        Lines of detailed intermediate results showing all primal and dual variables, 
the relevant values from the working set, progress in the backtracking, the 
gradients in the working set, the quasi-Newton updated and etc are printed. 

 Default: IPRINT = 0. 

MAXITN — Maximum number of iterations allowed.   (Input) 
Default: MAXITN = 200. 

EPSDIF — Relative precision in gradients. (Input)  
Default: EPSDIF = epsilon(x(1)) 

TAU0 — A universal bound describing how much the unscaled penalty-term may deviate 
from zero. (Input)  
NNLPF assumes that within the region described by 

� � � �� �
1 1

min 0,
e

e

M M

i i
i i M

g x g x
� � �

� �� � TAU0  

all functions may be evaluated safely. The initial guess, however, may violate these 
requirements. In that case an initial feasibility improvement phase is run by NNLPF 
until such a point is found. A small TAU0 diminishes the efficiency of  NNLPF, because 
the iterates then will follow the boundary of the feasible set closely. Conversely, a large 
TAU0 may degrade the reliability of the code.  
Default TAU0 = 1.E0 

DEL0 — In the initial phase of minimization a constraint is considered binding if 

� �

� �� �max 1,
i

i

g x

g x
�

�

DEL0            1, ,ei M M� � �  

Good values are between .01 and 1.0. If DEL0 is chosen too small then identification 
of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large, 
then the method will often escape to the full regularized SQP method, using individual 
slack variables for any active constraint, which is quite costly. For well-scaled 
problems DEL0=1.0 is reasonable.  (Input) 
Default: DEL0 = .5*TAU0 

EPSFCN – Relative precision of the function evaluation routine. (Input) 
Default: EPSFCN = epsilon(x(1)) 

IDTYPE – Type of numerical differentiation to be used. (Input) 
Default: IDTYPE = 1 
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IDTYPE Action 

1  Use a forward difference quotient with discretization stepsize   
 0.1(EPSFCN���� componentwise relative. 

2  Use the symmetric difference quotient with discretization stepsize 
 0.1(EPSFCN���) componentwise relative 

3  Use the sixth order approximation computing a Richardson extrapolation of 
 three symmetric difference quotient values.  This uses a discretization 
 stepsize 0.01(EPSFCN���) 

TAUBND – Amount by which bounds may be violated during  numerical differentiation.  
Bounds are violated by TAUBND (at most) only if a variable is on a bound  and finite 
differences are taken for gradient evaluations.  (Input) 
Default: TAUBND = 1.E0 

SMALLW — Scalar containing the error allowed in the multipliers.  For example, a negative 
multiplier of an inequality constraint is accepted (as zero) if its absolute value is less 
than SMALLW.   (Input)  
Default: SMALLW = exp(2*log(epsilon(x(1)/3))) 

DELMIN — Scalar which defines allowable constraint violations of the final accepted result.   
Constraints are satisfied if |gi(x)| � DELMIN , and gj(x) � (-DELMIN ) respectively. 
(Input)  
Default: DELMIN = min(DEL0/10, max(EPSDIF, min(DEL0/10,  
max(1.E-6*DEL0, SMALLW)) 

SCFMAX — Scalar containing the bound for the internal automatic scaling of the objective 
function.   (Intput)  
Default: SCFMAX = 1.0E4 

FVALUE — Scalar containing the value of the objective function at the computed solution.   
(Output) 

FORTRAN 90 Interface 
Generic: CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_NNLPF and D_NNLPF . 

Example 
The problem 
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� � � � � �

� �

� �

2 2
1 2

1 1 2

2 2
2 1 2

min 2 1

subject to  2 1 0

/ 4 1 0

F x x x

g x x x

g x x x

� � � �

� � � �

� � � � �

 

is solved. 
      USE NNLPF_INT 
      USE WRRRN_INT 
      INTEGER    IBTYPE, M, ME 
      PARAMETER  (IBTYPE=0, M=2, ME=1) 
! 
      REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2) 
      EXTERNAL FCN, GRAD 
!                                    
      XLB = -HUGE(X(1)) 
      XUB = HUGE(X(1)) 
! 
      CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X) 
! 
      CALL WRRRN ('The solution is', X) 
      END 
 
      SUBROUTINE FCN (X, IACT, RESULT, IERR) 
      INTEGER    IACT 
      REAL(KIND(1E0)) X(*), RESULT 
      LOGICAL IERR 
!    
      SELECT CASE (IACT) 
      CASE(0)  
         RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2 
      CASE(1) 
         RESULT = X(1) - 2.0E0*X(2) + 1.0E0 
      CASE(2) 
         RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0 
      END SELECT 
      RETURN 
      END     

Output 
The solution is 
 1   0.8229 
 2   0.9114 

Comments 
1. Informational errors 

Type Code 
   4    1 Constraint evaluation returns an error with current point. 
   4    2 Objective evaluation returns an error with current point. 
   4    3 Working set is singular in dual extended QP. 
   4    4 QP problem is seemingly infeasible. 
   4    5 A stationary point located. 
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 4    6 A stationary point located or termination criteria too strong. 
 4    7 Maximum number of iterations exceeded. 
 4    8 Stationary point not feasible. 
 4    9 Very slow primal progress. 
 4   10 The problem is singular.  
 4   11 Matrix of gradients of binding constraints is singular or very ill-

conditioned.  
 4   12 Small changes in the penalty function. 

Description 
The routine NNLPF provides an interface to a licensed version of subroutine DONLP2, a 
FORTRAN code developed by Peter Spellucci (1998). It uses a sequential equality constrained 
quadratic programming method with an active set technique, and an alternative usage of a fully 
regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear 
dependent gradients in the “working sets”). It uses a slightly modified version of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variable dual scaling and an improved 
Armjijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection 
like fashion. Details may be found in the following two papers:  

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained 
subproblems. Math. Prog. 82, (1998), 413-448. 

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of 
Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany). 

The problem is stated as follows: 

� �min
nx

f x
�R

 

� �

� �

subject to 0, for 1, ,

0, for 1, ,
j e

j e

l u

g x j m

g x j m m

x x x

� �

� � �

� �

�

�  

 

Although default values are provided for optional input arguments, it may be necessary to adjust 
these values for some problems. Through the use of optional arguments, NNLPF allows for 
several parameters of the algorithm to be adjusted to account for specific characteristics of 
problems.   The DONLP2 Users Guide provides detailed descriptions of these parameters as 
well as strategies for maximizing the perfomance of the algorithm.  The DONLP2 Users Guide 
is available in the “help” subdirectory of the main IMSL product installation directory. In 
addition, the following are a number of guidelines to consider when using NNLPF. 

�� A good initial starting point is very problem specific and should be provided by the 
calling program whenever possible.  See optional argument  XGUESS. 

�� Gradient approximation methods can have an effect on the success of NNLPF.  
Selecting a higher order appoximation method may be necessary for some problems. 
See optional argument  IDTYPE. 
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�� If a two sided constraint ( )i i il g x u� � is transformed into two constraints 2 ( ) 0ig x �  
and 2 1( ) 0ig x

�
� , then choose � �1

2DEL0 ( ) / {1, }i i iu l max g x� � � , or at least try to 
provide an estimate for that value.  This will increase the efficiency of the algorithm.  
See optional argument  DEL0. 

�� The parameter IERR provided in the interface to the user supplied function FCN can be 
very useful in cases when evaluation is requested at a point that is not possible or 
reasonable.   For example, if evaluation at the requested point would result in a floating 
point exception, then setting IERR to .TRUE. and returning without performing the 
evaluation will avoid the exception.   NNLPF will then reduce the stepsize and try the 
step again.  Note, if IERR is set to .TRUE. for the initial guess, then an error is issued. 

NNLPG 
Solves a general nonlinear programming problem using a sequential equality constrained quadratic 
programming method with user supplied gradients. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the objective function and constraints at a 

given point. The internal usage is CALL FCN (X, IACT, RESULT, IERR),  
where 

           X – The point at which the objective function or  constraint is evaluated.   (Input) 

IACT – Integer indicating  whether evaluation of the objective function is requested or 
evaluation of a constraint is requested.  If IACT is zero, then an objective 
function evaluation is requested.  If IACT is nonzero then the value if IACT 
indicates the index of the constraint to evaluate.   (Input) 

RESULT – If IACT is zero,  then RESULT is the computed objective function value at 
the point X.   If IACT is nonzero, then RESULT is the computed constraint value 
at the point X.     (Output) 

IERR – Logical variable.  On input IERR is set to .FALSE.  If an error or other 
undesirable condition occurs during evaluation, then IERR should be set to 
.TRUE.  Setting IERR to .TRUE.  will result in the step size being reduced and 
the step being tried again.  (If IERR is set to .TRUE. for XGUESS, then an error is 
issued.) 

The routine FCN must be use-associated in a user module that uses NNLPG_INT, or else 
declared  EXTERNAL in the calling program. If FCN is a separately compiled routine, not 
in a module, then it must be declared EXTERNAL. 

GRAD — User-supplied SUBROUTINE to evaluate the gradients at a given point. The usage is 
CALL GRAD (X, IACT, RESULT), where 
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           X – The point at which the gradient of the objective function or gradient of a constraint 
is evaluated.   (Input) 

IACT – Integer indicating  whether evaluation of the function gradient is requested or 
evaluation of a constraint gradient is requested.  If IACT is zero, then an 
objective function gradient evaluation is requested.  If IACT is nonzero then the 
value if IACT indicates the index of the constraint gradient to evaluate.   
(Input)RESULT – If IACT is zero,  then RESULT is the computed gradient of the 
objective function at the point X.   If IACT is nonzero, then RESULT is the 
computed gradient of the requested constraint value at the point X.     (Output) 

The routine GRAD must be use-associated in a user module that uses NNLPG_INT, or 
else declared  EXTERNAL in the calling program.  If GRAD is a separately compiled 
routine, not in a module, then is must be declared EXTERNAL 

M — Total number of constraints. (Input) 

ME — Number of equality constraints. (Input) 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have 
 the same bounds. 

XLB — Vector of length N containing the lower bounds on the variables.   (Input, if  
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is no 
lower bound on a variable, then the corresponding XLB value should be set to  
�huge(x(1)). 

XUB — Vector of length N containing the upper bounds on the variables.   (Input, if IBTYPE 
= 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is no upper bound 
on a variable, then the corresponding XUB value should be set to huge(x(1)). 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Number of variables.   (Input) 

Default: N = size(X). 
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IPRINT — Parameter indicating the desired output level.   (Input) 

IPRINT Action 

0  No output printed. 

1  One line of intermediate results is printed in each iteration. 

2  Lines of intermediate results summarizing the most important data  for each 
step are printed. 

 3 Lines of detailed intermediate results showing all primal and dual variables, 
the relevant values from the working set, progress in the backtracking and 
etc are printed 

4 Lines of detailed intermediate results showing all primal and dual variables, 
the relevant values from the working set, progress in the backtracking, the 
gradients in the working set, the quasi-Newton updated and etc are printed. 

 Default: IPRINT = 0. 

MAXITN — Maximum number of iterations allowed.   (Input) 
Default: MAXITN = 200. 

XGUESS — Vector of length N containing an initial guess of the solution.   (Input) 
Default: XGUESS = X, (with the smallest value of 

2
X ) that satisfies the bounds. 

TAU0 — A universal bound describing how much the unscaled penalty-term may deviate 
from zero. (Input)  
NNLPG assumes that within the region described by 

� � � �� �
1 1

min 0,
e

e

M M

i i
i i M

g x g x
� � �

� �� � TAU0  

all functions may be evaluated safely. The initial guess however, may violate these 
requirements. In that case an initial feasibility improvement phase is run by NNLPG 
until such a point is found. A small TAU0 diminishes the efficiency of  NNLPG, because 
the iterates then will follow the boundary of the feasible set closely. Conversely, a large 
TAU0 may degrade the reliability of the code. 
Default: TAU0 = 1.E0 

DEL0 — In the initial phase of minimization a constraint is considered binding if 

� �

� �� �max 1,
i

i

g x

g x
�

�

DEL0           1, ,ei M M� � �  
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Good values are between .01 and 1.0. If DEL0 is chosen too small then identification 
of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large, 
then the method will often escape to the full regularized SQP method, using individual 
slack variables for any active constraint, which is quite costly. For well-scaled 
problems DEL0=1.0 is reasonable.  (Input) 
Default: DEL0 = .5*TAU0 

SMALLW — Scalar containing the error allowed in the multipliers.  For example, a negative 
multiplier of an inequality constraint is accepted (as zero) if its absolute value is less 
than SMALLW.   (Input)  
Default: SMALLW = exp(2*log(epsilon(x(1)/3))) 

DELMIN — Scalar which defines allowable constraint violations of the final accepted result.   
Constraints are satisfied if |gi(x)| � DELMIN , and gj(x) � (-DELMIN ) respectively. 
(Input)  
Default: DELMIN = min(DEL0/10, max(EPSDIF, min(DEL0/10,  
max(1.E-6*DEL0, SMALLW)) 

SCFMAX — Scalar containing the bound for the internal automatic scaling of the objective 
function.   (Intput)  
Default: SCFMAX = 1.0E4 

FVALUE — Scalar containing the value of the objective function at the computed solution.   
(Output) 

FORTRAN 90 Interface 
Generic: CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_NNLPG and D_NNLPG. 

Example 1 

The problem 

� � � � � �

� �

� �

2 2
1 2

1 1 2

2 2
2 1 2

min 2 1

subject to  2 1 0

/ 4 1 0

F x x x

g x x x

g x x x

� � � �

� � � �

� � � � �

 

is solved. 
      USE NNLPG_INT 
      USE WRRRN_INT 
      INTEGER    IBTYPE, M, ME 
      PARAMETER  (IBTYPE=0, M=2, ME=1) 
! 
      REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2) 
      EXTERNAL FCN, GRAD 
!                                    
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      XLB = -HUGE(X(1)) 
      XUB = HUGE(X(1)) 
! 
      CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X) 
! 
      CALL WRRRN ('The solution is', X) 
      END 
 
      SUBROUTINE FCN (X, IACT, RESULT, IERR) 
      INTEGER    IACT 
      REAL(KIND(1E0)) X(*), RESULT 
      LOGICAL IERR 
!    
      SELECT CASE (IACT) 
      CASE(0)  
         RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2 
      CASE(1) 
         RESULT = X(1) - 2.0E0*X(2) + 1.0E0 
      CASE(2) 
         RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0 
      END SELECT 
      RETURN 
      END     
 
      SUBROUTINE GRAD (X, IACT, RESULT) 
      INTEGER    IACT 
      REAL(KIND(1E0)) X(*),RESULT(*) 
! 
      SELECT CASE (IACT) 
      CASE(0)  
         RESULT (1) = 2.0E0*(X(1)-2.0E0) 
         RESULT (2) = 2.0E0*(X(2)-1.0E0) 
      CASE(1) 
         RESULT (1) = 1.0E0 
         RESULT (2) = -2.0E0 
      CASE(2) 
         RESULT (1) = -0.5E0*X(1) 
         RESULT (2) = -2.0E0*X(2) 
      END SELECT 
      RETURN 
      END 

Output 
 The solution is 
 1   0.8229 
 2   0.9114 

Comments 
1. Informational errors 

Type Code 
   4    1 Constraint evaluation returns an error with current point. 
   4    2 Objective evaluation returns an error with current point. 
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   4    3 Working set is singular in dual extended QP. 
   4    4 QP problem is seemingly infeasible. 
   4    5 A stationary point located. 
 4    6 A stationary point located or termination criteria too strong. 
 4    7 Maximum number of iterations exceeded. 
 4    8 Stationary point not feasible. 
 4    9 Very slow primal progress. 
 4   10 The problem is singular.  
 4   11 Matrix of gradients of binding constraints is singular or very ill-

conditioned.  
 4   12 Small changes in the penalty function. 

. 

Description 
The routine NNLPG provides an interface to a licensed version of subroutine DONLP2, a 
FORTRAN code developed by Peter Spellucci (1998). It uses a sequential equality constrained 
quadratic programming method with an active set technique, and an alternative usage of a fully 
regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear 
dependent gradients in the “working sets”). It uses a slightly modified version of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variable dual scaling and an improved 
Armjijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection 
like fashion. Details may be found in the following two papers:  

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained 
subproblems. Math. Prog. 82, (1998), 413-448. 

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of 
Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany). 

The problem is stated as follows: 

� �min
nx

f x
�R

 

� �

� �

subject to 0, for 1, ,

0, for 1, ,
j e

j e

l u

g x j m

g x j m m

x x x

� �

� � �

� �

�

�  

Although default values are provided for optional input arguments, it may be necessary to adjust 
these values for some problems. Through the use of optional arguments, NNLPG allows for 
several parameters of the algorithm to be adjusted to account for specific characteristics of 
problems.   The DONLP2 Users Guide provides detailed descriptions of these parameters as 
well as strategies for maximizing the perfomance of the algorithm.  The DONLP2 Users Guide 
is available in the “help” subdirectory of the main IMSL product installation directory. In 
addition, the following are a number of guidelines to consider when using NNLPG. 

�� A good initial starting point is very problem specific and should be provided by the 
calling program whenever possible.  See optional argument  XGUESS. 
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�� If a two sided constraint ( )i i il g x u� � is transformed into two constraints 2 ( ) 0ig x �  
and 2 1( ) 0ig x

�
� , then choose � �1

2DEL0 ( ) / {1, }i i iu l max g x� � � , or at least try to 
provide an estimate for that value.  This will increase the efficiency of the algorithm.  
See optional argument  DEL0. 

�� The parameter IERR provided in the interface to the user supplied function FCN can be 
very useful in cases when evaluation is requested at a point that is not possible or 
reasonable.   For example, if evaluation at the requested point would result in a floating 
point exception, then setting IERR to .TRUE. and returning without performing the 
evaluation will avoid the exception.   NNLPG will then reduce the stepsize and try the 
step again.  Note, if IERR is set to .TRUE. for the initial guess, then an error is issued. 

Example 2 

The same problem from Example 1 is solved, but here we use central differences to compute the 
gradient of the first constraint.  This example demonstrates how NNLPG can be used in cases 
when analytic gradients are known for only a portion of the constraints and/or objective 
function.   The subroutine CDGRD is used to compute an approximation to the gradient of the 
first constraint. 

             
      USE NNLPG_INT 
      USE CDGRD_INT 
      USE WRRRN_INT 
      INTEGER    IBTYPE, M, ME 
      PARAMETER  (IBTYPE=0, M=2, ME=1) 
! 
      REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2) 
      EXTERNAL FCN, GRAD 
!                                    
      XLB = -HUGE(X(1)) 
      XUB = HUGE(X(1)) 
! 
      CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X) 
! 
      CALL WRRRN ('The solution is', X) 
      END 
 
      SUBROUTINE FCN (X, IACT, RESULT, IERR) 
      INTEGER    IACT 
      REAL(KIND(1E0)) X(2), RESULT 
      LOGICAL IERR 
      EXTERNAL CONSTR1 
!    
      SELECT CASE (IACT) 
      CASE(0)  
         RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2 
      CASE(1) 
         CALL CONSTR1(2, X, RESULT) 
      CASE(2) 
         RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0 
      END SELECT 
      RETURN 
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      END 
 
      SUBROUTINE GRAD (X, IACT, RESULT) 
      USE CDGRD_INT 
      INTEGER    IACT 
      REAL(KIND(1E0)) X(2),RESULT(2) 
      EXTERNAL CONSTR1 
! 
      SELECT CASE (IACT) 
      CASE(0)  
         RESULT (1) = 2.0E0*(X(1)-2.0E0) 
         RESULT (2) = 2.0E0*(X(2)-1.0E0) 
      CASE(1) 
         CALL CDGRD(CONSTR1, X, RESULT) 
      CASE(2) 
         RESULT (1) = -0.5E0*X(1) 
         RESULT (2) = -2.0E0*X(2) 
      END SELECT 
      RETURN 
      END 
 
      SUBROUTINE CONSTR1 (N, X, RESULT) 
      INTEGER N 
      REAL(KIND(1E0)) X(*), RESULT 
      RESULT = X(1) - 2.0E0*X(2) + 1.0E0 
      RETURN 
      END 

Output 
 The solution is 
 1   0.8229 
 2   0.9114 

CDGRD 
Approximates the gradient using central differences. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 
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XC — Vector of length N containing the point at which the gradient is to be estimated.   
(Input) 

GC — Vector of length N containing the estimated gradient at XC.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
In the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

EPSFCN — Estimate for the relative noise in the function.   (Input)  
EPSFCN must be less than or equal to 0.1. In the absence of other information, set 
EPSFCN to 0.0. 
Default: EPSFCN = 0.0. 

FORTRAN 90 Interface 
Generic: CALL CDGRD (FCN, XC, GC [,…]) 

Specific: The specific interface names are S_CDGRD and D_CDGRD. 

FORTRAN 77 Interface 
Single: CALL CDGRD (FCN, N, XC, XSCALE, EPSFCN, GC) 

Double: The double precision name is DCDGRD. 

Example 
In this example, the gradient of f(x) = x��� x�x� � 2 is estimated by the finite-difference method 
at the point (1.0, 1.0). 

      USE CDGRD_INT 
      USE UMACH_INT 
      INTEGER    I, N, NOUT 
      PARAMETER  (N=2) 
      REAL       EPSFCN, GC(N), XC(N) 
      EXTERNAL   FCN 
!                                  Initialization. 
      DATA XC/2*1.0E0/ 
!                                  Set function noise. 
      EPSFCN = 0.01 
! 
      CALL CDGRD (FCN, XC, GC, EPSFCN=EPSFCN) 
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! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (GC(I),I=1,N) 
99999 FORMAT (’  The gradient is’, 2F8.2, /) 
! 
      END 
! 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = X(1) - X(1)*X(2) - 2.0E0 
! 
      RETURN 
      END 

Output 
The gradient is    0.00   -1.00 

Comments 
This is Description A5.6.4, Dennis and Schnabel, 1983, page 323. 

Description 
The routine CDGRD uses the following finite-difference formula to estimate the gradient of a 
function of n variables at x: 

� � � �
    for 1, ,

2
i i i i

i

f x h e f x h e
i n

h
� � �

� �  

where hi = ���� max{|xi|, 1/si} sign(xi), � is the machine epsilon, si is the scaling factor of the i-th 
variable, and ei is the i-th unit vector. For more details, see Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 
users should be aware of possible poor performance. When possible, high precision arithmetic is 
recommended. 

FDGRD 
Approximates the gradient using forward differences. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 
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F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the gradient is to be estimated.   
(Input) 

FC — Scalar containing the value of the function at XC.   (Input) 

GC — Vector of length N containing the estimated gradient at XC.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
In the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

EPSFCN — Estimate of the relative noise in the function.   (Input)  
EPSFCN must be less than or equal to 0.1. In the absence of other information, set 
EPSFCN to 0.0. 
Default: EPSFCN = 0.0. 

FORTRAN 90 Interface 
Generic: CALL FDGRD (FCN, XC, FC, GC [,…]) 

Specific: The specific interface names are S_FDGRD and D_FDGRD. 

FORTRAN 77 Interface 
Single: CALL FDGRD (FCN, XC, FC, GC, N, XSCALE, EPSFCN) 

Double: The double precision name is DFDGRD. 

Example 
In this example, the gradient of f(x) = x� � x�x� � 2 is estimated by the finite-difference method 
at the point (1.0, 1.0). 

      USE FDGRD_INT 
      USE UMACH_INT 
      INTEGER    I, N, NOUT 
      PARAMETER  (N=2) 
      REAL       EPSFCN, FC, GC(N), XC(N) 
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      EXTERNAL   FCN 
!                                  Initialization. 
      DATA XC/2*1.0E0/ 
!                                  Set function noise. 
      EPSFCN = 0.01 
!                                  Get function value at current 
!                                  point. 
      CALL FCN (N, XC, FC) 
! 
      CALL FDGRD (FCN, XC, FC, GC, EPSFCN=EPSFCN) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (GC(I),I=1,N) 
99999 FORMAT (’  The gradient is’, 2F8.2, /) 
! 
      END 
! 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = X(1) - X(1)*X(2) - 2.0E0 
! 
      RETURN 
      END 

Output 
The gradient is    0.00   -1.00 

Comments 
This is Description A5.6.3, Dennis and Schnabel, 1983, page 322. 

Description 
The routine FDGRD uses the following finite-difference formula to estimate the gradient of a 
function of n variables at x: 

� � � �
    for 1, ,i i

i

f x h e f x
i n

h
� �

� �  

where hi = ���� max{|xi|, 1/si} sign(xi), � is the machine epsilon, ei is the i-th unit vector, and si is 
the scaling factor of the i-th variable. For more details, see Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 
users should be aware of possible poor performance. When possible, high precision arithmetic is 
recommended. When accuracy of the gradient is important, IMSL routine CDGRD (page 1336) 
should be used. 

FDHES 
Approximates the Hessian using forward differences and function values. 
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Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the Hessian is to be approximated.   
(Input) 

FC — Function value at XC.   (Input) 

H — N by N matrix containing the finite difference approximation to the Hessian in the lower 
triangle.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
In the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

EPSFCN — Estimate of the relative noise in the function.   (Input)  
EPSFCN must be less than or equal to 0.1. In the absence of other information, set 
EPSFCN to 0.0. 
Default: EPSFCN = 0.0. 

LDH — Row dimension of H exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDH = size (H,1). 

FORTRAN 90 Interface 
Generic: CALL FDHES (FCN, XC, FC, H [,…]) 

Specific: The specific interface names are S_FDHES and D_FDHES. 
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FORTRAN 77 Interface 
Single: CALL FDHES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH) 

Double: The double precision name is DFDHES. 

Example 
The Hessian is estimated for the following function at (1, �1) 

� � 2
1 1 2 2f x x x x� � �  

      USE FDHES_INT 
      USE UMACH_INT 

!                                 Declaration of variables 
      INTEGER    N, LDHES, NOUT 
      PARAMETER  (N=2, LDHES=2) 
      REAL       XC(N), FVALUE, HES(LDHES,N), EPSFCN 
      EXTERNAL   FCN 
!                                   Initialization 
      DATA XC/1.0E0,-1.0E0/ 
!                                   Set function noise 
      EPSFCN = 0.001 
!                                   Evaluate the function at 
!                                   current point 
      CALL FCN (N, XC, FVALUE) 
!                                 Get Hessian forward difference 
!                                 approximation 
      CALL FDHES (FCN, XC, FVALUE, HES, EPSFCN=EPSFCN) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) ((HES(I,J),J=1,I),I=1,N) 
99999 FORMAT (’  The lower triangle of the Hessian is’, /,& 
               5X,F10.2,/,5X,2F10.2,/) 
! 
      END 
! 
      SUBROUTINE FCN (N, X, F) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      INTEGER N 
      REAL    X(N), F 
! 
      F = X(1)*(X(1) - X(2)) - 2.0E0 
! 
      RETURN 
      END 

Output 
 The lower triangle of the Hessian is 
  2.00 
 -1.00      0.00 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of F2HES/DF2HES. The 

reference is: 

CALL F2HES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH, WK1, WK2) 

The additional arguments are as follows: 

WK1 — Real work vector of length N. 

WK2 — Real work vector of length N. 

2. This is Description A5.6.2 from Dennis and Schnabel, 1983; page 321. 

Description 
The routine FDHES uses the following finite-difference formula to estimate the Hessian matrix 
of function f at x: 

� � � � � � � �i i j j i i j j

i j

f x h e h e f x h e f x h e f x

h h

� � � � � � �

 

where hi = �����max{|xi|, 1/si} sign(xi), hj = ���� max{|xj|, 1/si} sign(xj), � is the machine epsilon or 
user-supplied estimate of the relative noise, si and sj are the scaling factors of the i-th and j-th 
variables, and ei and ej are the i-th and j-th unit vectors, respectively. For more details, see 
Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 
users should be aware of possible poor performance. When possible, high precision arithmetic is 
recommended. 

GDHES 
Approximates the Hessian using forward differences and a user-supplied gradient. 

Required Arguments 
GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – The point at which the gradient is evaluated.   (Input)  
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 
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GRAD must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the Hessian is to be estimated.   
(Input) 

GC — Vector of length N containing the gradient of the function at XC.   (Input) 

H — N by N matrix containing the finite-difference approximation to the Hessian in the lower 
triangular part and diagonal.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
In the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

EPSFCN — Estimate of the relative noise in the function.   (Input)  
EPSFCN must be less than or equal to 0.1. In the absence of other information, set 
EPSFCN to 0.0. 
Default: EPSFCN = 0.0. 

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDH = size (H,1). 

FORTRAN 90 Interface 
Generic: CALL GDHES (GRAD, XC, GC, H [,…]) 

Specific: The specific interface names are S_GDHES and D_GDHES. 

FORTRAN 77 Interface 
Single: CALL GDHES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH) 

Double: The double precision name is DGDHES. 

Example 
The Hessian is estimated by the finite-difference method at point (1.0, 1.0) from the following 
gradient functions: 
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2 1 1

2 2
1

g x x
g x x

� �

� �

 

      USE GDHES_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    N, LDHES, NOUT 
      PARAMETER  (N=2, LDHES=2) 
      REAL       XC(N), GC(N), HES(LDHES,N) 
      EXTERNAL   GRAD 
! 
      DATA XC/2*1.0E0/ 
!                                 Set function noise 
!                                 Evaluate the gradient at the 
!                                 current point 
      CALL GRAD (N, XC, GC) 
!                                 Get Hessian forward-difference 
!                                 approximation 
      CALL GDHES (GRAD, XC, GC, HES) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) ((HES(I,J),J=1,N),I=1,N) 
99999 FORMAT (’  THE HESSIAN IS’, /, 2(5X,2F10.2,/),/) 
! 
      END 
! 
      SUBROUTINE GRAD (N, X, G) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      INTEGER N 
      REAL    X(N), G(N) 
! 
      G(1) = 2.0E0*X(1)*X(2) - 2.0E0 
      G(2) = X(1)*X(1) + 1.0E0 
! 
      RETURN 
      END 

Output 
 THE HESSIAN IS 
 2.00      2.00 
 2.00      0.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G2HES/DG2HES. The 

reference is: 

CALL G2HES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH, WK) 

The additional argument is 

WK — Work vector of length N. 

2. This is Description A5.6.1, Dennis and Schnabel, 1983; page 320. 
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Description 
The routine GDHES uses the following finite-difference formula to estimate the Hessian matrix 
of function F at x: 

� � � �j j

j

g x h e g x

h

� �

 

where hj = ���� max{|xj|, 1/sj} sign(xj), � is the machine epsilon, sj is the scaling factor of the j-th 
variable, g is the analytic gradient of F at x, and ej is the j-th unit vector. For more details, see 
Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 
users should be aware of possible poor performance. When possible, high precision arithmetic is 
recommended. 

FDJAC 
Approximates the Jacobian of M functions in N unknowns using forward differences. 

 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the gradient is to be estimated.   
(Input) 

FC — Vector of length M containing the function values at XC.   (Input) 

FJAC — M by N matrix containing the estimated Jacobian at XC.   (Output) 

Optional Arguments 
M — The number of functions.   (Input) 

Default: M = size (FC,1). 
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N — The number of variables.   (Input) 
Default: N = size (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
In the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

EPSFCN — Estimate for the relative noise in the function.   (Input)  
EPSFCN must be less than or equal to 0.1. In the absence of other information, set 
EPSFCN to 0.0. 
Default: EPSFCN = 0.0. 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFJAC = size (FJAC,1). 

FORTRAN 90 Interface 
Generic: CALL FDJAC (FCN, XC, FC, FJAC [,…]) 

Specific: The specific interface names are S_FDJAC and D_FDJAC. 

FORTRAN 77 Interface 
Single: CALL FDJAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC,  

LDFJAC) 

Double: The double precision name is DFDJAC. 

Example 
In this example, the Jacobian matrix of 

� �

� �
1 1 2

2 1 1 2

2

1

f x x x

f x x x x

� �

� � �

 

is estimated by the finite-difference method at the point (1.0, 1.0). 
      USE FDJAC_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER   N, M, LDFJAC, NOUT 
      PARAMETER (N=2, M=2, LDFJAC=2) 
      REAL      FJAC(LDFJAC,N), XC(N), FC(M), EPSFCN 
      EXTERNAL  FCN 
! 
      DATA XC/2*1.0E0/ 
!                                 Set function noise 
      EPSFCN = 0.01 
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!                                 Evaluate the function at the 
!                                 current point 
      CALL FCN (M, N, XC, FC) 
!                                 Get Jacobian forward-difference 
!                                 approximation 
      CALL FDJAC (FCN, XC, FC, FJAC, EPSFCN=EPFSCN) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) ((FJAC(I,J),J=1,N),I=1,M) 
99999 FORMAT (’  The Jacobian is’, /, 2(5X,2F10.2,/),/) 
! 
      END 
! 
      SUBROUTINE FCN (M, N, X, F) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      INTEGER M, N 
      REAL    X(N), F(M) 
! 
      F(1) = X(1)*X(2) - 2.0E0 
      F(2) = X(1) - X(1)*X(2) + 1.0E0 
! 
      RETURN 
      END 

Output 
 The Jacobian is 
 1.00      1.00 
 0.00     -1.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2JAC/DF2JAC. The 

reference is: 

CALL F2JAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC, LDFJAC, WK) 

The additional argument is: 

WK — Work vector of length M. 

2. This is Description A5.4.1, Dennis and Schnabel, 1983, page 314. 

Description 
The routine FDJAC uses the following finite-difference formula to estimate the Jacobian matrix 
of function f at x: 

� � � �j j

j

f x h e f x

h

� �

 

where ej is the j-th unit vector, hj = ���� max{|xj|, 1/sj} sign(xj), � is the machine epsilon, and sj is 
the scaling factor of the j-th variable. For more details, see Dennis and Schnabel (1983). 
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Since the finite-difference method has truncation error, cancellation error, and rounding error, 
users should be aware of possible poor performance. When possible, high precision arithmetic is 
recommended. 

CHGRD 
Checks a user-supplied gradient of a function. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function of which the gradient will be 

checked. The usage is CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — Vector of length N containing the estimated gradient at X.   (Input) 

X — Vector of length N containing the point at which the gradient is to be checked.   (Input) 

INFO — Integer vector of length N.   (Output)  

INFO(I) = 0 means the user-supplied gradient is a poor estimate of the numerical 
gradient at the point X(I). 

INFO(I) = 1 means the user-supplied gradient is a good estimate of the numerical 
gradient at the point X(I). 

INFO(I) = 2 means the user-supplied gradient disagrees with the numerical gradient at 
the point X(I), but it might be impossible to calculate the numerical gradient. 

INFO(I) = 3 means the user-supplied gradient and the numerical gradient are both zero 
at X(I), and, therefore, the gradient should be rechecked at a different point. 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 
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FORTRAN 90 Interface 
Generic: CALL CHGRD (FCN, GRAD, X, INFO [,…]) 

Specific: The specific interface names are S_CHGRD and D_CHGRD. 

FORTRAN 77 Interface 
Single: CALL CHGRD (FCN, GRAD, N, X, INFO) 

Double: The double precision name is DCHGRD. 

Example 
The user-supplied gradient of 

� � � �3 42 /
2

t x x
if x x x e� �

� �  

at (625, 1, 3.125, 0.25) is checked where t = 2.125. 
      USE CHGRD_INT 
      USE WRIRN_INT 
!                              Declare variables 
      INTEGER    N 
      PARAMETER  (N=4) 
! 
      INTEGER    INFO(N) 
      REAL       GRAD(N), X(N) 
      EXTERNAL   DRIV, FCN 
! 
!                              Input values for point X 
!                              X = (625.0, 1.0, 3.125, .25) 
! 
      DATA X/625.0E0, 1.0E0, 3.125E0, 0.25E0/ 
! 
      CALL DRIV (N, X, GRAD) 
! 
      CALL CHGRD (FCN, GRAD, X, INFO) 
      CALL WRIRN (’The information vector’, INFO, 1, N, 1) 
! 
      END 
! 
      SUBROUTINE FCN (N, X, FX) 
      INTEGER    N 
      REAL       X(N), FX 
! 
      REAL       EXP 
      INTRINSIC  EXP 
! 
      FX = X(1) + X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4)) 
      RETURN 
      END 
! 
      SUBROUTINE DRIV (N, X, GRAD) 
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      INTEGER    N 
      REAL       X(N), GRAD(N) 
! 
      REAL       EXP 
      INTRINSIC  EXP 
! 
      GRAD(1) = 1.0E0 
      GRAD(2) = EXP(-1.0E0*(2.125E0-X(3))**2/X(4)) 
      GRAD(3) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))*2.0E0/X(4)* & 
               (2.125-X(3)) 
      GRAD(4) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))* & 
               (2.125E0-X(3))**2/(X(4)*X(4)) 
      RETURN 
      END 

Output 
 The information vector 
 1   2   3   4 
 1   1   1   1 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2GRD/DC2GRD. The 

reference is: 

CALL C2GRD (FCN, GRAD, N, X, INFO, FX, XSCALE, EPSFCN, XNEW) 

The additional arguments are as follows: 

FX — The functional value at X. 

XSCALE — Real vector of length N containing the diagonal scaling matrix. 

EPSFCN — The relative “noise” of the function FCN. 

XNEW — Real work vector of length N. 

2. Informational errors 

Type Code 
   4    1 The user-supplied gradient is a poor estimate of the numerical 

gradient. 

Description 
The routine CHGRD uses the following finite-difference formula to estimate the gradient of a 
function of n variables at x: 

� �
� � � �

for =1, ,i i
i

i

f x h e f x
g x i n

h
� �

� �  
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where hi = ���� max{|xi|, 1/si} sign(xi), � is the machine epsilon, ei is the i-th unit vector, and si is 
the scaling factor of the i-th variable. 

The routine CHGRD checks the user-supplied gradient �f(x) by comparing it with the finite-
difference gradient g(x). If 

� � � �� � � �� �i i i
g x f x f x�� � � �  

where � = ����, then (�f(x))i, which is the i-th element of �f(x), is declared correct; otherwise, 
CHGRD computes the bounds of calculation error and approximation error. When both bounds 
are too small to account for the difference, (�f(x))i is reported as incorrect. In the case of a large 
error bound, CHGRD uses a nearly optimal stepsize to recompute gi(x) and reports that (�f(x))i is 
correct if 

� � � �� � � �� �2i i i
g x f x f x�� � � �  

Otherwise, (�f(x))i is considered incorrect unless the error bound for the optimal step is greater 
than � |(�f(x))i|. In this case, the numeric gradient may be impossible to compute correctly. For 
more details, see Schnabel (1985). 

CHHES 
Checks a user-supplied Hessian of an analytic function. 

Required Arguments 
GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – The point at which the gradient is evaluated. X should not be changed by GRAD.   
(Input) 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The usage is 
CALL HESS (N, X, H, LDH), where 

N – Length of X.   (Input) 

X – The point at which the Hessian is evaluated.   (Input) 
X should not be changed by HESS. 

H – The Hessian evaluated at the point X.   (Output) 
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LDH – Leading dimension of H exactly as specified in in the dimension statement of the 
calling program.   (Input) 

HESS must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the point at which the Hessian is to be checked.   (Input) 

INFO — Integer matrix of dimension N by N.   (Output) 

INFO(I, J) = 0 means the Hessian is a poor estimate for function I at the point X(J). 

INFO(I, J) = 1 means the Hessian is a good estimate for function I at the point X(J). 

INFO(I, J) = 2 means the Hessian disagrees with the numerical Hessian for function I 
at the point X(J), but it might be impossible to calculate the numerical Hessian. 

INFO(I, J) = 3 means the Hessian for function I at the point X(J) and the numerical 
Hessian are both zero, and, therefore, the gradient should be rechecked at a 
different point. 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

LDINFO — Leading dimension of INFO exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDINFO = size (INFO,1). 

FORTRAN 90 Interface 
Generic: CALL CHHES (GRAD, HESS, X, INFO [,…]) 

Specific:  The specific interface names are S_CHHES and D_CHHES. 

FORTRAN 77 Interface 
Single: CALL CHHES (GRAD, HESS, N, X, INFO, LDINFO) 

Double: The double precision name is DCHHES. 

Example 
The user-supplied Hessian of 

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  
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at (�1.2, 1.0) is checked, and the error is found. 
      USE CHHES_INT 
      INTEGER    LDINFO, N 
      PARAMETER  (N=2, LDINFO=N) 
! 
      INTEGER    INFO(LDINFO,N) 
      REAL       X(N) 
      EXTERNAL   GRD, HES 
! 
!                                Input values for X 
!                                  X = (-1.2, 1.0) 
! 
      DATA X/-1.2, 1.0/ 
! 
      CALL CHHES (GRD, HES, X, INFO) 
! 
      END 
! 
      SUBROUTINE GRD (N, X, UG) 
      INTEGER    N 
      REAL       X(N), UG(N) 
! 
      UG(1) = -400.0*X(1)*(X(2)-X(1)*X(1)) + 2.0*X(1) - 2.0 
      UG(2) = 200.0*X(2) - 200.0*X(1)*X(1) 
      RETURN 
      END 
! 
      SUBROUTINE HES (N, X, HX, LDHS) 
      INTEGER    N, LDHS 
      REAL       X(N), HX(LDHS,N) 
! 
      HX(1,1) = -400.0*X(2) + 1200.0*X(1)*X(1) + 2.0 
      HX(1,2) = -400.0*X(1) 
      HX(2,1) = -400.0*X(1) 
!                                 A sign change is made to HX(2,2) 
! 
      HX(2,2) = -200.0 
      RETURN 
      END 

Output 
*** FATAL    ERROR 1 from CHHES.  The Hessian evaluation with respect to 
***          X(2) and X(2) is a poor estimate. 

Comments 
Workspace may be explicitly provided, if desired, by use of C2HES/DC2HES. The reference is 

CALL C2HES (GRAD, HESS, N, X, INFO, LDINFO, G, HX, HS,  
     XSCALE, EPSFCN, INFT, NEWX) 

The additional arguments are as follows: 

G — Vector of length N containing the value of the gradient GRD at X. 
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HX — Real matrix of dimension N by N containing the Hessian evaluated at X. 

HS — Real work vector of length N. 

XSCALE — Vector of length N used to store the diagonal scaling matrix for the 
variables. 

EPSFCN — Estimate of the relative noise in the function. 

INFT — Vector of length N. For I = 1 through N, INFT contains information about the 
Jacobian. 

NEWX — Real work array of length N. 

Description 
The routine CHHES uses the following finite-difference formula to estimate the Hessian of a 
function of n variables at x: 

� � � � � �� � / for 1, ,ij i j j i jB x g x h e g x h j n� � � � �  

where hj = ����max{|xj|, 1/sj} sign(xj), � is the machine epsilon, ej is the j-th unit vector, sj is the 
scaling factor of the j-th variable, and gi(x) is the gradient of the function with respect to the i-th 
variable. 

Next, CHHES checks the user-supplied Hessian H(x) by comparing it with the finite difference 
approximation B(x). If 

|Bij(x) � Hij(x)| < � |Hij(x)| 

where � = ����, then Hij(x) is declared correct; otherwise, CHHES computes the bounds of 
calculation error and approximation error. When both bounds are too small to account for the 
difference, Hij(x) is reported as incorrect. In the case of a large error bound, CHHES uses a nearly 
optimal stepsize to recompute Bij(x) and reports that Bij(x) is correct if 

|Bij(x) � Hij(x)| < 2� |Hij(x)| 

Otherwise, Hij(x) is considered incorrect unless the error bound for the optimal step is greater 
than � |Hij(x)|. In this case, the numeric approximation may be impossible to compute correctly. 
For more details, see Schnabel (1985). 

CHJAC 
Checks a user-supplied Jacobian of a system of equations with M functions in N unknowns. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 
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M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL 
JAC (M, N, X, FJAC, LDFJAC), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

FJAC – The computed M by N Jacobian at the point X.   (Output) 

LDFJAC – Leading dimension of FJAC.   (Input) 

JAC must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the point at which the Jacobian is to be checked.   (Input) 

INFO — Integer matrix of dimension M by N.   (Output)  

INFO(I, J) = 0 means the user-supplied Jacobian is a poor estimate for function I at 
the point X(J). 

INFO(I, J) = 1 means the user-supplied Jacobian is a good estimate for function I at 
the point X(J). 

INFO(I, J) = 2 means the user-supplied Jacobian disagrees with the numerical Jacobian 
for function I at the point X(J), but it might be impossible to calculate the 
numerical Jacobian. 

INFO(I, J) = 3 means the user-supplied Jacobian for function I at the point X(J) and 
the numerical Jacobian are both zero. Therefore, the gradient should be 
rechecked at a different point. 
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Optional Arguments 
M — The number of functions in the system of equations.   (Input) 

Default: M = size (INFO,1). 

N — The number of unknowns in the system of equations.   (Input) 
Default: N = size (X,1). 

LDINFO — Leading dimension of INFO exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDINFO = size (INFO,1). 

FORTRAN 90 Interface 
Generic: CALL CHJAC (FCN, JAC, X, INFO [,…]) 

Specific: The specific interface names are S_CHJAC and D_CHJAC. 

FORTRAN 77 Interface 
Single: CALL CHJAC (FCN, JAC, M, N, X, INFO, LDINFO) 

Double: The double precision name is DCHJAC. 

Example 
The user-supplied Jacobian of 

� �
1 1

2
2 2 1

1

10

f x

f x x

� �

� �

 

at (�1.2, 1.0) is checked. 
      USE CHJAC_INT 
      USE WRIRN_INT 
      INTEGER    LDINFO, N 
      PARAMETER  (M=2,N=2,LDINFO=M) 
! 
      INTEGER    INFO(LDINFO,N) 
      REAL       X(N) 
      EXTERNAL   FCN, JAC 
! 
!                                 Input value for X 
!                                    X = (-1.2, 1.0) 
! 
      DATA X/-1.2, 1.0/ 
! 
      CALL CHJAC (FCN, JAC, X, INFO) 
      CALL WRIRN (’The information matrix’, INFO) 
! 
      END 
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! 
      SUBROUTINE FCN (M, N, X, F) 
      INTEGER    M, N 
      REAL       X(N), F(M) 
! 
      F(1) = 1.0 - X(1) 
      F(2) = 10.0*(X(2)-X(1)*X(1)) 
      RETURN 
      END 
! 
      SUBROUTINE JAC (M, N, X, FJAC, LDFJAC) 
      INTEGER    M, N, LDFJAC 
      REAL       X(N), FJAC(LDFJAC,N) 
! 
      FJAC(1,1) = -1.0 
      FJAC(1,2) = 0.0 
      FJAC(2,1) = -20.0*X(1) 
      FJAC(2,2) = 10.0 
      RETURN 
      END 

Output 
*** WARNING  ERROR 2 from C2JAC.  The numerical value of the Jacobian 
***          evaluation for function 1 at the point X(2) = 1.000000E+00 and 
***          the user-supplied value are both zero.  The Jacobian for this 
***          function should probably be re-checked at another value for 
***          this point. 
 
The information matrix 
    1   2 
1   1   3 
2   1   1 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2JAC/DC2JAC. The 

reference is: 

CALL C2JAC (FCN, JAC, N, X, INFO, LDINFO, FX, FJAC,  
     GRAD, XSCALE, EPSFCN, INFT, NEWX) 

The additional arguments are as follows: 

FX — Vector of length M containing the value of each function in FCN at X. 

FJAC — Real matrix of dimension M by N containing the Jacobian of FCN evaluated at 
X. 

GRAD — Real work vector of length N used to store the gradient of each function in 
FCN. 

XSCALE — Vector of length N used to store the diagonal scaling matrix for the 
variables. 
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EPSFCN — Estimate of the relative noise in the function. 

INFT — Vector of length N. For I = 1 through N, INFT contains information about the 
Jacobian. 

NEWX — Real work array of length N. 

2. Informational errors 

Type Code 
   4    1 The user-supplied Jacobian is a poor estimate of the numerical 

Jacobian. 

Description 
The routine CHJAC uses the following finite-difference formula to estimate the gradient of the i-
th function of n variables at x: 

gij(x) = (fi(x + hjej) � fi(x))/hj for j = 1, �, n 

where hj = ����max{|xj|, 1/sj} sign(xj), � is the machine epsilon, ej is the j-th unit vector, and sj is 
the scaling factor of the j-th variable. 

Next, CHJAC checks the user-supplied Jacobian J(x) by comparing it with the finite difference 
gradient gi(x). If 

|gij(x) � Jij(x)| < � |Jij(x)| 

where � = ����, then Jij(x) is declared correct; otherwise, CHJAC computes the bounds of 
calculation error and approximation error. When both bounds are too small to account for the 
difference, Jij(x) is reported as incorrect. In the case of a large error bound, CHJAC uses a nearly 
optimal stepsize to recompute gij(x) and reports that Jij(x) is correct if 

|gij(x) � Jij(x)| < 2� |Jij(x)| 

Otherwise, Jij(x) is considered incorrect unless the error bound for the optimal step is greater 
than � |Jij(x)|. In this case, the numeric gradient may be impossible to compute correctly. For 
more details, see Schnabel (1985). 

GGUES 
Generates points in an N-dimensional space. 

Required Arguments 
A — Vector of length N.   (Input) 

See B. 
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B — Real vector of length N.   (Input)  
A and B define the rectangular region in which the points will be generated, i.e.,  
A(I) < S(I) < B(I) for I = 1, 2, �, N. Note that if B(I) < A(I), then B(I) < S(I) < A(I). 

K — The number of points to be generated.   (Input) 

IDO — Initialization parameter.   (Input/Output)  
IDO must be set to zero for the first call. GGUES resets IDO to 1 and returns the first 
generated point in S. Subsequent calls should be made with IDO = 1. 

S — Vector of length N containing the generated point.   (Output)  
Each call results in the next generated point being stored in S. 

Optional Arguments 
N — Dimension of the space.   (Input) 

Default: N = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL GGUES (A, B, K, IDO, S [,…]) 

Specific: The specific interface names are S_GGUES and D_GGUES. 

FORTRAN 77 Interface 
Single: CALL GGUES (N, A, B, K, IDO, S) 

Double: The double precision name is DGGUES. 

Example 
We want to search the rectangle with vertices at coordinates (1, 1), (3, 1), (3, 2), and (1, 2) ten 
times for a global optimum of a nonlinear function. To do this, we need to generate starting 
points. The following example illustrates the use of GGUES in this process: 

      USE GGUES_INT 
      USE UMACH_INT 
!                             Variable Declarations 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IDO, J, K, NOUT 
      REAL       A(N), B(N), S(N) 
!                             Initializations 
! 
!                             A   = ( 1.0, 1.0) 
!                             B   = ( 3.0, 2.0) 
! 
      DATA A/1.0, 1.0/ 
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      DATA B/3.0, 2.0/ 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99998) 
99998 FORMAT (’  Point Number’, 7X, ’Generated Point’) 
! 
      K = 10 
      IDO = 0 
      DO 10  J=1, K 
         CALL GGUES (A, B, K, IDO, S) 
! 
         WRITE (NOUT,99999) J, S(1), S(2) 
99999    FORMAT (1X, I7, 14X, ’(’, F4.1, ’,’, F6.3, ’)’) 
! 
   10 CONTINUE 
! 
      END 

Output 
Point Number       Generated Point 

 1              ( 1.5, 1.125) 
 2              ( 2.0, 1.500) 
 3              ( 2.5, 1.750) 
 4              ( 1.5, 1.375) 
 5              ( 2.0, 1.750) 
 6              ( 1.5, 1.625) 
 7              ( 2.5, 1.250) 
 8              ( 1.5, 1.875) 
 9              ( 2.0, 1.250) 
10              ( 2.5, 1.500) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G2UES/DG2UES. The 

reference is: 

CALL G2UES (N, A, B, K, IDO, S, WK, IWK) 

The additional arguments are: 

WK — Work vector of length N. WK must be preserved between calls to G2UES. 

IWK — Work vector of length 10. IWK must be preserved between calls to G2UES. 

2. Informational error 

Type Code 
   4    1 Attempt to generate more than K points. 

3. The routine GGUES may be used with any nonlinear optimization routine that requires 
starting points. The rectangle to be searched (defined by A, B, and N) must be 
determined; and the number of starting points, K, must be chosen. One possible use for 
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GGUES would be to call GGUES to generate a point in the chosen rectangle. Then, call 
the nonlinear optimization routine using this point as an initial guess for the solution. 
Repeat this process K times. The number of iterations that the optimization routine is 
allowed to perform should be quite small (5 to 10) during this search process. The best 
(or best several) point(s) found during the search may be used as an initial guess to 
allow the optimization routine to determine the optimum more accurately. In this 
manner, an N dimensional rectangle may be effectively searched for a global optimum 
of a nonlinear function. The choice of K depends upon the nonlinearity of the function 
being optimized. A function with many local optima requires a larger value than a 
function with only a few local optima. 

Description 
The routine GGUES generates starting points for algorithms that optimize functions of several 
variables�or, almost equivalently�algorithms that solve simultaneous nonlinear equations. 

The routine GGUES is based on systematic placement of points to optimize the dispersion of the 
set. For more details, see Aird and Rice (1977). 
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Chapter 9: Basic Matrix/Vector 
Operations 

Routines 
9.1. Basic Linear Algebra Subprograms (BLAS) 

Set a vector to a constant value, xi � a..................................SSET 1369 
Copy a vector, yi � xi ......................................................... SCOPY 1369 
Scale a vector by a constant, xi � axi ................................. SSCAL 1369 
Set a vector to a constant multiple of a vector, yi � axi ...... SVCAL 1369 
Add a constant to a vector, xi �xi + a....................................SADD 1370 
Subtract a vector from a constant, xi � a � xi........................ SSUB 1370 
Add a multiple of one vector to another, yi � axi + yi ..........SAXPY 1370 
Swap two vectors, yi� xi ....................................................SSWAP 1370 

Compute xTy or xHy ...............................................................SDOT 1370 
Compute extended precision xTy or xHy............................. DSDOT 1371 
Compute extended precision a + xTy or a + xHy...............SDSDOT 1371 
Compute ACC + b + xTy  
with extended precision accumulator ................................ SDDOTI 1372 
Compute zi � xiyi ............................................................. SHPROD 1372 
Compute � xiyizi ......................................................................SXYZ 1372 
Compute � xi ..........................................................................SSUM 1372 
Compute � |xi| ..................................................................... SASUM 1373 
Compute ||x||�....................................................................... SNRM2 1373 
Compute � xi .................................................................... SPRDCT 1373 
Find the index i such that xi = minj xj...................................... ISMIN 1374 
Find the index i such that xi= maxj xj .....................................ISMAX 1374 
Find the index i such that |xi| = minj |xj| ................................ISAMIN 1374 
Find the index i such that |xi| = maxj |xj| ............................. ISAMAX 1374 
Construct a Givens rotation ................................................ SROTG 1374 
Apply a Givens rotation..........................................................SROT 1375 
Construct a modified Givens rotation .............................. SROTMG 1376 
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Apply a modified Givens rotation ....................................... SROTM 1377 
Matrix-vector multiply, general ........................................... SGEMV 1381 
Matrix-vector multiply, banded ........................................... SGBMV 1381 
Matrix-vector multiply, Hermitian........................................ CHEMV 1381 
Matrix-vector multiply, Hermitian and banded.................... CHBMV 1381 
Matrix-vector multiply, symmetric and real..........................SSYMV 1382 
Matrix-vector multiply, symmetric and banded....................SSBMV 1382 
Matrix-vector multiply, triangular .........................................STRMV 1382 
Matrix-vector multiply, triangular and banded .....................STBMV 1382 
Matrix-vector solve, triangular ............................................. STRSV 1383 
Matrix-vector solve, triangular and banded..........................STBSV 1383 
Rank-one matrix update, general and real............................ SGER 1383 
Rank-one matrix update, general, complex, 
and transpose..................................................................... CGERU 1384 
Rank-one matrix update, general, complex,  
and conjugate transpose.................................................... CGERC 1384 
Rank-one matrix update,  
Hermitian and conjugate transpose ...................................... CHER 1384 
Rank-two matrix update,  
Hermitian and conjugate transpose .................................... CHER2 1384 
Rank-one matrix update, symmetric and real ........................SSYR 1384 
Rank-two matrix update, symmetric and real.......................SSYR2 1384 
Matrix-matrix multiply, general ...........................................SGEMM 1385 
Matrix-matrix multiply, symmetric....................................... SSYMM 1385 
Matrix-matrix multiply, Hermitian........................................CHEMM 1385 
Rank-k update, symmetric................................................... SSYRK 1386 
Rank-k update, Hermitian....................................................CHERK 1386 
Rank-2k update, symmetric............................................... SSYR2K 1386 
Rank-2k update, Hermitian................................................CHER2K 1387 
Matrix-matrix multiply, triangular ........................................ STRMM 1387 
Matrix-matrix solve, triangular .............................................STRSM 1387 

9.2. Other Matrix/Vector Operations 
9.2.1 Matrix Copy 

Real general .......................................................................CRGRG 1389 
Complex general ................................................................CCGCG 1390 
Real band ............................................................................CRBRB 1392 
Complex band .....................................................................CCBCB 1393 

9.2.2 Matrix Conversion 
Real general to real band................................................... CRGRB 1395 
Real band to real general ................................................... CRBRG 1397 
Complex general to complex band..................................... CCGCB 1398 
Complex band to complex general..................................... CCBCG 1400 
Real general to complex general .......................................CRGCG 1402 
Real rectangular to complex rectangular ........................... CRRCR 1403 
Real band to complex band ................................................CRBCB 1405 
Real symmetric to real general ...........................................CSFRG 1406 
Complex Hermitian to complex general ..............................CHFCG 1408 
Real symmetric band to real band ......................................CSBRB 1409 
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Complex Hermitian band to complex band......................... CHBCB 1411 
Real rectangular matrix to its transpose ............................. TRNRR 1413 

9.2.3 Matrix Multiplication 
Compute XT X ......................................................................MXTXF 1415 
Compute XT Y ......................................................................MXTYF 1416 
Compute XYT .......................................................................MXYTF 1418 
Multiply two real rectangular matrices ................................MRRRR 1421 
Multiply two complex rectangular matrices.........................MCRCR 1423 
Compute matrix Hadamard product....................................HRRRR 1425 
Compute the bilinear form xTAy .............................................BLINF 1427 
Compute the matrix polynomial p(A)................................... POLRG 1429 

9.2.4 Matrix-Vector Multiplication 
Real rectangular matrix times a real vector ........................MURRV 1431 
Real band matrix times a real vector ..................................MURBV 1433 
Complex rectangular matrix times a complex vector..........MUCRV 1435 
Complex band matrix times a complex vector....................MUCBV 1436 

9.2.5 Matrix Addition 
Real band matrix plus a real band matrix ............................ARBRB 1438 
Complex band matrix plus a complex band matrix..............ACBCB 1441 

9.2.6 Matrix Norm 
�-norm of a real rectangular matrix ......................................NRIRR 1443 
1-norm of a real rectangular matrix .....................................NR1RR 1444 
Frobenius norm of a real rectangular matrix........................NR2RR 1446 
1-norm of a real band matrix................................................NR1RB 1447 
1-norm of a complex band matrix ........................................NR1CB 1449 

9.2.7 Distance Between Two Points 
Euclidean distance.................................................................DISL2 1450 
1-norm distance .....................................................................DISL1 1452 
�-norm distance......................................................................DISLI 1454 

9.2.8 Vector Convolutions 
Convolution of real vectors .................................................VCONR 1455 
Convolution of complex vectors..........................................VCONC 1457 

9.3. Extended Precision Arithmetic 
Initialize a real accumulator, ACC � a ....................................DQINI 1460 
Store a real accumulator, a � ACC ..................................... DQSTO 1460 
Add to a real accumulator, ACC � ACC + a..........................DQADD 1460 
Add a product to a real accumulator, ACC � ACC + ab ........DQMUL 1460 
Initialize a complex accumulator, ACC � a ............................ ZQINI 1460 
Store a complex accumulator, a � ACC ...............................ZQSTO 1460 
Add to a complex accumulator, ACC �ACC + a ................... ZQADD 1460 
Add a product to a complex accumulator,  
ACC � ACC + ab ................................................................... ZQMUL 1460 
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Basic Linear Algebra Subprograms 
The basic linear algebra subprograms, normally referred to as the BLAS, are routines for low-level 
operations such as dot products, matrix times vector, and matrix times matrix. Lawson et al. 
(1979) published the original set of 38 BLAS. The IMSL BLAS collection includes these 38 
subprograms plus additional ones that extend their functionality. Since Dongarra et al. (1988 and 
1990) published extensions to this set, it is customary to refer to the original 38 as Level 1 BLAS. 
The Level 1 operations are performed on one or two vectors of data. An extended set of 
subprograms perform operations involving a matrix and one or two vectors. These are called the 
Level 2 BLAS (page 1377). An additional extended set of operations on matrices is called the 
Level 3 BLAS (page 1377). 

Users of the BLAS will often benefit from using versions of the BLAS supplied by hardware 
vendors, if available. This can provide for more efficient execution of many application programs. 
The BLAS provided by IMSL are written in FORTRAN. Those supplied by vendors may be 
written in other languages, such as assembler. The documentation given below for the BLAS is 
compatible with a vendor’s version of the BLAS that conforms to the published specifications. 

Programming Notes for Level 1 BLAS 
The Level 1 BLAS do not follow the usual IMSL naming conventions. Instead, the names consist 
of a prefix of one or more of the letters “I,” “S,” “D,” “C” and “Z;” a root name; and sometimes a 
suffix. For subprograms involving a mixture of data types, the output type is indicated by the first 
prefix letter. The suffix denotes a variant algorithm. The prefix denotes the type of the operation 
according to the following table: 

I Integer  

S Real C Complex 
D Double Z Double complex 
SD Single and Double CZ Single and double complex 
DQ Double and Quadruple ZQ Double and quadruple complex 

Vector arguments have an increment parameter that specifies the storage space or stride between 
elements. The correspondence between the vectors x and y and the arguments SX and SY, and 
INCX and INCY is  

� �� �

� �� �

� �� �

� �� �

SX I-1 INCX 1 if INCX  0

SX I-N INCX 1 if INCX  0

SY I-1 INCY 1 if INCY  0

SY I-N INCY 1 if INCY  0

i

i

x

y

� � �

� � �

� � �

� � �

��
� �
��

��
� �
��

 

Function subprograms SXYZ, DXYZ, page 1372, refer to a third vector argument z. The storage 
increment INCZ for z is defined like INCX, INCY. In the Level 1 BLAS, only positive values of 
INCX are allowed for operations that have a single vector argument. The loops in all of the Level 1 
BLAS process the vector arguments in order of increasing i. For INCX, INCY, INCZ < 0, this 
implies processing in reverse storage order. 
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The function subprograms in the Level 1 BLAS are all illustrated by means of an assignment 
statement. For example, see SDOT (page 1370). Any value of a function subprogram can be used in 
an expression or as a parameter passed to a subprogram as long as the data types agree. 

Descriptions of the Level 1 BLAS Subprograms 
The set of Level 1 BLAS are summarized in Table 9.1. This table also lists the page numbers 
where the subprograms are described in more detail. 

Specification of the Level 1 BLAS 
With the definitions, 

MX = max {1, 1 + (N � 1)|INCX|} 

MY = max {1, 1 + (N � 1)|INCY|} 

MZ = max {1, 1 + (N � 1)|INCZ|} 

the subprogram descriptions assume the following FORTRAN declarations: 
IMPLICIT INTEGER          (I-N) 
IMPLICIT REAL             S 
IMPLICIT DOUBLE PRECISION D 
IMPLICIT COMPLEX          C 
IMPLICIT DOUBLE COMPLEX   Z 
 
INTEGER                   IX(MX) 
REAL                      SX(MX), SY(MY), SZ(MZ), 
                          SPARAM(5) 
DOUBLE PRECISION          DX(MX), DY(MY), DZ(MZ), 
                          DPARAM(5) 

DOUBLE PRECISION          DACC(2), DZACC(4) 
COMPLEX                   CX(MX), CY(MY) 
DOUBLE COMPLEX            ZX(MX), ZY(MY) 

Since FORTRAN 77 does not include the type DOUBLE COMPLEX, subprograms with DOUBLE 
COMPLEX arguments are not available for all systems. Some systems use the declaration COMPLEX 
* 16 instead of DOUBLE COMPLEX. 

In the following descriptions, the original BLAS are marked with an * in the left column. 
Table 9.1: Level 1 Basic Linear Algebra Subprograms 

 
Operation 

 
Integer 

 
Real 

 
Double 

 
Complex 

Double 
Complex 

 
Pg. 

xi � a ISET SSET DSET CSET ZSET 1369 

yi � xi ICOPY SCOPY DCOPY CCOPY ZCOPY 1369 

xi � axi 

a � R 

 SSCAL DSCAL CSCAL 

CSSCAL 

ZSCAL 

ZDSCAL 

1369 
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Operation 

 
Integer 

 
Real 

 
Double 

 
Complex 

Double 
Complex

 
Pg. 

yi � axi 

a � R 

 SVCAL DVCAL CVCAL 

CSVCAL 

ZVCAL 

ZDVCAL 

1369 

xi � xi + a IADD SADD DADD CADD ZADD 1370 

xi � a � xi ISUB SSUB DSUB CSUB ZSUB 1370 

yi � axi + yi  SAXPY DAXPY CAXPY ZAXPY 1370 

yi � xi ISWAP SSWAP DSWAP CSWAP ZSWAP 1370 

x � y 

x  � y 

 SDOT DDOT CDOTU 

CDOTC 

ZDOTU 

ZDOTC 

1370 

x � y † 

x  � y † 

 DSDOT  CZDOTU 

CZDOTC 

ZQDOTU 

ZQDOTC 

1371 

a + x � y † 

a + x  � y † 

 SDSDOT DQDDOT CZUDOT 

CZCDOT 

ZQUDOT 

ZQCDOT 

1371 

b + x � y † 

ACC + b + x � y † 

 SDDOTI 

SDDOTA 

DQDOTI

DQDOTA

CZDOTI 

CZDOTA 

ZQDOTI 

ZQDOTA 

1372 

zi � xiyi  SHPROD DHPROD   1372 

	 xiyizi  SXYZ DXYZ   1372 

	 xi ISUM SSUM DSUM   1372 

	 |xi|  SASUM DASUM SCASUM DZASUM 1373 

||x||�  SNRM2 DNRM2 SCNRM2 DZNRM2 1373 

� xi  SPRDCT DPRDCT   1373 

i :  xi = minj xj IIMIN ISMIN IDMIN   1374 

i :  xi = maxj xj IIMAX ISMAX IDMAX   1374 

i :  |xi| = minj |xj|  ISAMIN IDAMIN ICAMIN IZAMIN 1374 

 
 
Operation 

 
Integer 

 
Real 

 
Double 

 
Complex 

Double 
Complex

 
Pg. 

i :  |xi| = maxj |xj|  ISAMAX IDAMAX ICAMAX IZAMAX 1374 

Construct Givens 
rotation 

 SROTG DROTG   1374 

Apply Givens 
rotation 

 SROT DROT CSROT ZDROT 1375 
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Operation 

 
Integer 

 
Real 

 
Double 

 
Complex 

Double 
Complex 

 
Pg. 

Construct 
modified Givens 
transform 

 SROTMG DROTMG   1376 

Apply modified 
Givens transform 

 SROTM DROTM CSROTM ZDROTM 1377 

†Higher precision accumulation used 

Set a Vector to a Constant Value 
CALL ISET (N, IA, IX, INCX) 
CALL SSET (N, SA, SX, INCX) 
CALL DSET (N, DA, DX, INCX) 
CALL CSET (N, CA, CX, INCX) 
CALL ZSET (N, ZA, ZX, INCX) 

These subprograms set xi � a for i = 1, 2, 
, N. If N � 0, then the subprograms return 
immediately. 

Copy a Vector 
 CALL ICOPY (N, IX, INCX, IY, INCY) 
*CALL SCOPY (N, SX, INCX, SY, INCY) 
*CALL DCOPY (N, DX, INCX, DY, INCY) 
*CALL CCOPY (N, CX, INCX, CY, INCY) 
 CALL ZCOPY (N, ZX, INCX, ZY, INCY) 

These subprograms set yi � xi for i = 1, 2, 
, N. If N � 0, then the subprograms return 
immediately. 

Scale a Vector 
*CALL SSCAL (N, SA, SX, INCX) 
*CALL DSCAL (N, DA, DX, INCX) 
*CALL CSCAL (N, CA, CX, INCX) 
 CALL ZSCAL (N, ZA, ZX, INCX) 
*CALL CSSCAL (N, SA, CX, INCX) 
 CALL ZDSCAL (N, DA, ZX, INCX) 

These subprograms set xi � axi for i = 1, 2, 
, N. If N � 0, then the subprograms return 
immediately. CAUTION: For CSSCAL and ZDSCAL, the scalar quantity a is real and the vector x is 
complex. 

Multiply a Vector by a Constant 
CALL SVCAL (N, SA, SX, INCX, SY, INCY) 
CALL DVCAL (N, DA, DX, INCX, DY, INCY) 
CALL CVCAL (N, CA, CX, INCX, CY, INCY) 
CALL ZVCAL (N, ZA, ZX, INCX, ZY, INCY) 
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CALL CSVCAL (N, SA, CX, INCX, CY, INCY) 
CALL ZDVCAL (N, DA, ZX, INCX, ZY, INCY) 

These subprograms set yi � axi for i = 1, 2, 
, N. If N � 0, then the subprograms return 
immediately. CAUTION: For CSVCAL and ZDVCAL, the scalar quantity a is real and the vector x is 
complex. 

Add a Constant to a Vector 
CALL IADD (N, IA, IX, INCX) 
CALL SADD (N, SA, SX, INCX) 
CALL DADD (N, DA, DX, INCX) 
CALL CADD (N, CA, CX, INCX) 
CALL ZADD (N, ZA, ZX, INCX) 

These subprograms set xi � xi + a for i = 1, 2, 
, N. If N � 0, then the subprograms return 
immediately. 

Subtract a Vector from a Constant 
CALL ISUB (N, IA, IX, INCX)  
CALL SSUB (N, SA, SX, INCX) 
CALL DSUB (N, DA, DX, INCX) 
CALL CSUB (N, CA, CX, INCX) 
CALL ZSUB (N, ZA, ZX, INCX) 

These subprograms set xi � a � xi for i = 1, 2, 
, N. If N � 0, then the subprograms return 
immediately. 

Constant Times a Vector Plus a Vector 
*CALL SAXPY (N, SA, SX, INCX, SY, INCY) 
*CALL DAXPY (N, DA, DX, INCX, DY, INCY) 
*CALL CAXPY (N, CA, CX, INCX, CY, INCY) 
 CALL ZAXPY (N, ZA, ZX, INCX, ZY, INCY) 

These subprograms set yi � axi + yi for i = 1, 2, 
, N. If N � 0, then the subprograms return 
immediately. 

Swap Two Vectors 
 CALL ISWAP (N, IX, INCX, IY, INCY) 
*CALL SSWAP (N, SX, INCX, SY, INCY) 
*CALL DSWAP (N, DX, INCX, DY, INCY) 
*CALL CSWAP (N, CX, INCX, CY, INCY) 
 CALL ZSWAP (N, ZX, INCX, ZY, INCY) 

These subprograms perform the exchange yi � xi for i = 1, 2, 
, N. If N � 0, then the 
subprograms return immediately. 

Dot Product 
*SW =  SDOT  (N, SX, INCX, SY, INCY) 
*DW =  DDOT  (N, DX, INCX, DY, INCY) 
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*CW =  CDOTU (N, CX, INCX, CY, INCY) 
*CW =  CDOTC (N, CX, INCX, CY, INCY) 
 ZW =  ZDOTU (N, ZX, INCX, ZY, INCY) 
 ZW =  ZDOTC (N, ZX, INCX, ZY, INCY) 

The function subprograms SDOT, DDOT, CDOTU, and ZDOTU compute 

1

N
i ii

x y
�

�  

The function subprograms CDOTC and ZDOTC compute  

1

N
i ii

x y
�

�  

The suffix C indicates that the complex conjugates of xi are used. The suffix U indicates that the 
unconjugated values of xi are used. If N � 0, then the subprograms return zero. 

Dot Product with Higher Precision Accumulation 
*DW =  DSDOT  (N, SX, INCX, SY, INCY) 
 CW =  CZDOTC (N, CX, INCX, CY, INCY) 
 CW =  CZDOTU (N, CX, INCX, CY, INCY) 
 ZW =  ZQDOTC (N, ZX, INCX, ZY, INCY) 
 ZW =  ZQDOTU (N, ZX, INCX, ZY, INCY) 

The function subprogram DSDOT computes  

1

N
i ii

x y
�

�  

using double precision accumulation. The function subprograms CZDOTU and ZQDOTU compute  

1

N
i ii

x y
�

�  

using double and quadruple complex accumulation, respectively. The function subprograms 
CZDOTC and ZQDOTC compute  

1

N
i ii

x y
�

�  

using double and quadruple complex accumulation, respectively. If N � 0, then the subprograms 
return zero. 

Constant Plus Dot Product with Higher Precision Accumulation 
*SW = SDSDOT (N, SA, SX, INCX, SY, INCY) 
 DW = DQDDOT (N, DA, DX, INCX, DY, INCY) 
 CW = CZCDOT (N, CA, CX, INCX, CY, INCY) 
 CW = CZUDOT (N, CA, CX, INCX, CY, INCY) 
 ZW = ZQCDOT (N, ZA, ZX, INCX, ZY, INCY) 
 ZW = ZQUDOT (N, ZA, ZX, INCX, ZY, INCY) 

The function subprograms SDSDOT, DQDDOT, CZUDOT, and ZQUDOT compute  

1

N
i ii

a x y
�

��  
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using higher precision accumulation where SDSDOT uses double precision accumulation, DQDDOT 
uses quadruple precision accumulation, CZUDOT uses double complex accumulation, and ZQUDOT 
uses quadruple complex accumulation. The function subprograms CZCDOT and ZQCDOT compute  

1

N
i ii

a x y
�

��  

using double complex and quadruple complex accumulation, respectively. If N � 0, then the 
subprograms return zero. 

Dot Product Using the Accumulator 
 SW =  SDDOTI (N, SB,  DACC, SX, INCX, SY, INCY) 
 SW =  SDDOTA (N, SB,  DACC, SX, INCX, SY, INCY) 
 CW =  CZDOTI (N, CB,  DACC, CX, INCX, CY, INCY) 
 CW =  CZDOTA (N, CB,  DACC, CX, INCX, CY, INCY) 
*DW =  DQDOTI (N, DB,  DACC, DX, INCX, DY, INCY) 
*DW =  DQDOTA (N, DB,  DACC, DX, INCX, DY, INCY) 
 ZW =  ZQDOTI (N, ZB, DZACC, ZX, INCX, ZY, INCY) 
 ZW =  ZQDOTA (N, ZB, DZACC, ZX, INCX, ZY, INCY) 

The variable DACC, a double precision array of length two, is used as a quadruple precision 
accumulator. DZACC, a double precision array of length four, is its complex analog. The function 
subprograms, with a name ending in I, initialize DACC to zero. All of the function subprograms 
then compute  

1
DACC N

i ii
b x y

�

� ��  

and store the result in DACC. The result, converted to the precision of the function, is also returned 
as the function value. If N � 0, then the function subprograms return zero. 

Hadamard Product 
CALL SHPROD (N, SX, INCX, SY, INCY, SZ, INCZ) 
CALL DHPROD (N, DX, INCX, DY, INCY, DZ, INCZ) 

These subprograms set zi � xiyi for i = 1, 2, 
, N. If N � 0, then the subprograms return 
immediately. 

Triple Inner Product 
SW = SXYZ (N, SX, INCX, SY, INCY, SZ, INCZ) 
DW = DXYZ (N, DX, INCX, DY, INCY, DZ, INCZ) 

These function subprograms compute  

1

N
i i ii

x y z
�

�  

If N � 0 then the subprograms return zero. 

Sum of the Elements of a Vector 
IW = ISUM (N, IX, INCX) 
SW = SSUM (N, SX, INCX) 
DW = DSUM (N, DX, INCX) 
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These function subprograms compute 

1

N
ii

x
�

�  

If N � 0, then the subprograms return zero. 

Sum of the Absolute Values of the Elements of a Vector 
*SW = SASUM (N, SX, INCX) 
*DW = DASUM (N, DX, INCX) 
*SW = SCASUM (N, CX, INCX) 
 DW = DZASUM (N, ZX, INCX) 

The function subprograms SASUM and DASUM compute  

1

N
ii

x
�

�  

The function subprograms SCASUM and DZASUM compute  

1

N
i ii

x x
�

� � � � �� ��  

If N � 0, then the subprograms return zero. CAUTION: For SCASUM and DZASUM, the function 
subprogram returns a real value. 

Euclidean or � � Norm of a Vector 
*SW = SNRM2  (N, SX, INCX) 
*DW = DNRM2  (N, DX, INCX) 
*SW = SCNRM2 (N, CX, INCX) 
 DW = DZNRM2 (N, ZX, INCX) 

 

These function subprograms compute  
1 22

1

N
ii

x
�

� �
� ��  

If N � 0, then the subprograms return zero. CAUTION: For SCNRM2 and DZNRM2, the function 
subprogram returns a real value. 

Product of the Elements of a Vector 
SW = SPRDCT (N, SX, INCX) 
DW = DPRDCT (N, DX, INCX) 

These function subprograms compute  

1

N
ii

x
�

�  

If N � 0, then the subprograms return zero. 



 

 
 

1374 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY 

 

 

 

Index of Element Having Minimum Value 
IW = IIMIN (N, IX, INCX) 
IW = ISMIN (N, SX, INCX) 
IW = IDMIN (N, DX, INCX) 

These function subprograms compute the smallest index i such that xi = min��j�N xj. If N � 0, then 
the subprograms return zero. 

Index of Element Having Maximum Value 
IW = IIMAX (N, IX, INCX) 
IW = ISMAX (N, SX, INCX) 
IW = IDMAX (N, DX, INCX) 

These function subprograms compute the smallest index i such thatxi = max��j�N xj. If N � 0, then 
the subprograms return zero. 

Index of Element Having Minimum Absolute Value 
IW = ISAMIN (N, SX, INCX) 
IW = IDAMIN (N, DX, INCX) 
IW = ICAMIN (N, CX, INCX) 
IW = IZAMIN (N, ZX, INCX) 

The function subprograms ISAMIN and IDAMIN compute the smallest index i such that |xi| = 
min��j�N |xj|. The function subprograms ICAMIN and IZAMIN compute the smallest index i such 
that  

1
mini i j jj N

x x x x
� �

� �� � � � � � �� �  

If N � 0, then the subprograms return zero. 

Index of Element Having Maximum Absolute Value 
*IW = ISAMAX (N, SX, INCX) 
*IW = IDAMAX (N, DX, INCX) 
*IW = ICAMAX (N, CX, INCX) 
 IW = IZAMAX (N, ZX, INCX) 

The function subprograms ISAMAX and IDAMAX compute the smallest index i such that |xi| = 
max��j�N |xj|. The function subprograms ICAMAX and IZAMAX compute the smallest index i such 
that  

1
maxi i j jj N

x x x x
� �

� �� � � � � � �� �  

If N � 0, then the subprograms return zero. 

Construct a Givens Plane Rotation 
*CALL SROTG (SA, SB, SC, SS) 
*CALL DROTG (SA, SB, SC, SS) 
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Given the values a and b, these subprograms compute 

/ if 0
1 if 0
a r r

c
r
��

� �
��

 

and 

/ if 0
1 if 0
b r r

s
r
��

� �
��

 

where r = �(a� + b�)��� and 

sign( ) if 
sign( )  otherwise

a a b
b

�

� ��
� �
��

 

Then, the values c, s and r satisfy the matrix equation 

0
c s a r
s c b

� � � � � �
�� � � � � ��� � � � � �

 

The introduction of � is not essential to the computation of the Givens rotation matrix; but its use 
permits later stable reconstruction of c and s from just one stored number, an idea due to Stewart 
(1976). For this purpose, the subprogram also computes 

if  or 0

1/ if 0   

s s c c
z

c c s

� � ��
� �

� ���
 

In addition to returning c and s, the subprograms return r overwriting a, and z overwriting b. 

Reconstruction of c and s from z can be done as follows: 

If z = 1, then set c = 0 and s = 1 

If |z| < 1, then set  

21   and  c z s z� � �  

If |z| > 1, then set  

21/   and  = 1-c z s c�  

Apply a Plane Rotation 
*CALL SROT (N, SX, INCX, SY, INCY, SC, SS) 
*CALL DROT (N, DX, INCX, DY, INCY, DC, DS) 
 CALL CSROT (N, CX, INCX, CY, INCY, SC, SS) 
 CALL ZDROT (N, ZX, INCX, ZY, INCY, DC, DS) 

These subprograms compute  

for 1, ,i i

i i

x xc s
i N

y s c y
� � � �� �

� � �� � � �� ��� 	� 	 � 	
�  



 

 
 

1376 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY 

 

 

 

If N � 0, then the subprograms return immediately. CAUTION: For CSROT and ZDROT, the scalar 
quantities c and s are real, and x and y are complex. 

Construct a Modified Givens Transformation 
*CALL SROTMG (SD1, SD2, SX1, SY1, SPARAM) 
*CALL DROTMG (DD1, DD2, DX1, DY1, DPARAM) 

The input quantities d�, d�, x� and y� define a 2-vector [w�, z�]T by the following: 

1

2

0

0
i i

i i

dw x
z yd

� �� � � �
� ��� � � �
� �� � � �� �

 

The subprograms determine the modified Givens rotation matrix H that transforms y�, and thus, z� 
to zero. They also replace d�, d� and x� with  

1 2 1,   and  d d x� � �  

respectively. That is, 

1 11 11 1

1 1
2 2

0 0
0 00 0

d dx xw x
H

y yd d

� � � �� � � �� � � �� � � �� � �� � � �� � � �� � � �� � � �� � � �� � � �

� �
� �

� �

 

A representation of this matrix is stored in the array SPARAM or DPARAM. The form of the matrix H 
is flagged by PARAM(1). 

PARAM(1) = 1. In this case,  
2 2

1 1 2 1d x d y�  

and 

PARAM(2) 1
1 PARAM(5)

H
� �

� � ��� �
 

The elements PARAM(3) and PARAM(4) are not changed. 

PARAM(1) = 0. In this case, 
2 2

1 1 2 1d x d y�  

and 

1 PARAM(4)
PARAM(3) 1

H
� �

� � �
� �

 

The elements PARAM(2) and PARAM(5) are not changed. 

PARAM(1) = �1. In this case, rescaling was done and 
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PARAM(2) PARAM(4)
PARAM(3) PARAM(5)

H
� �

� � �
� �

 

PARAM(1) = �2. In this case, H = I where I is the identity matrix. The elements PARAM(2), 
PARAM(3), PARAM(4) and PARAM(5) are not changed. 

The values of d�, d� and x� are changed to represent the effect of the transformation. The quantity 
y�, which would be zeroed by the transformation, is left unchanged. 

The input value of d� should be nonnegative, but d� can be negative for the purpose of removing 
data from a least-squares problem. 

See Lawson et al. (1979) for further details. 

Apply a Modified Givens Transformation 
*CALL SROTM (N, SX, INCX, SY, INCY, SPARAM) 
*CALL DROTM (N, DX, INCX, DY, INCY, DPARAM) 
 CALL CSROTM (N, CX, INCX, CY, INCY, SPARAM) 
 CALL ZDROTM (N, ZX, INCX, ZY, INCY, DPARAM) 

If PARAM(1) = 1.0, then these subprograms compute 

PARAM(2) 1
for 1, ,

1 PARAM(5)
i i

i i

x x
i N

y y
� � � �� �

� �� � � �� ��� 	� 	 � 	
�  

If PARAM(1) = 0.0, then the subprograms compute 

1 PARAM(4)
for 1, ,

PARAM(3) 1
i i

i i

x x
i N

y y
� � � �� �

� �� � � �� �
� 	� 	 � 	

�  

If PARAM(1) = �1.0, then the subprograms compute 

PARAM(2) PARAM(4)
for 1, ,

PARAM(3) PARAM(5)
i i

i i

x x
i N

y y
� � � �� �

� �� � � �� �
� �� � � �

�  

If N � 0 or if PARAM(1) = �2.0, then the subprograms return immediately. CAUTION: For CSROTM 
and ZDROTM, the scalar quantities PARAM(*) are real and x and y are complex. 

Programming Notes for Level 2 and Level 3 BLAS 
For definitions of the matrix data structures used in the discussion below, see Reference Material. 
The Level 2 and Level 3 BLAS, like the Level 1 BLAS, do not follow the IMSL naming 
conventions. Instead, the names consist of a prefix of one of the letters “S,” “D,” “C” or “Z.” Next 
is a root name denoting the kind of matrix. This is followed by a suffix indicating the type of the 
operation.� The prefix denotes the type of operation according to the following table: 

 
S Real C Complex 

D Double Z Double        Complex 
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The root names for the kind of matrix: 
GE General GB General Band 

SY Symmetric SB Symmetric Band 

HE Hermitian HB Hermitian Band 

TR Triangular TB Triangular Band 

The suffixes for the type of operation: 
MV Matrix-Vector Product SV Solve for Vector 
R Rank-One Update   
RU Rank-One Update,  

Unconjugated 
RC Rank-One Update,  

Conjugated 
R2 Rank-Two Update   
MM Matrix-Multiply SM Symmetric Matrix Multiply 
RK Rank-K Update R2K Rank 2K Update 

�IMSL does not support the Packed Symmetric, Packed-Hermitian, or Packed-Triangular data 
structures, with respective root names SP, HP or TP, nor any extended precision versions of the 
Level 2 BLAS. 

The specifications of the operations are provided by subprogram arguments of CHARACTER*1 data 
type. Both lower and upper case of the letter have the same meaning: 

TRANS, TRANSA, TRANSB 'N' No Transpose 
 'T' Transpose 
 'C' Conjugage and Transpose 
UPLO 'L' Lower Triangular 
 'U' Upper Triangular 
DIAGNL 'N' Non-unit Triangular 
 'U' Unit Triangular 
SIDE 'L' Multiply “A” Matrix on Left side or 
 'R' Right side of the “B” matrix 

Note: See the “Triangular Mode” section in the Reference Material for definitions of these terms. 

Descriptions of the Level 2 and Level 3 BLAS 
The subprograms for Level 2 and Level 3 BLAS that perform operations involving the expression 

y or 
C do not require that the contents of y or C be defined when 
 = 0. In that case, the 
expression 
y or 
C is defined to be zero. Note that for the _GEMV and _GBMV subprograms, the 
dimensions of the vectors x and y are implied by the specification of the operation. If TRANS = ’N’ 
, the dimension of y is m; if TRANS = ’T’ or = ’C’, the dimension of y is n. The Level 2 and Level 
3 BLAS are summarized in Table 9.2. This table also lists the page numbers where the 
subprograms are described in more detail. 
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Specification of the Level 2 BLAS 
Type and dimension for variables occurring in the subprogram specifications are 

INTEGER           INCX, INCY, NCODA, NLCA, NUCA, LDA, M, N 
CHARACTER*1       DIAGNL, TRANS, UPLO 
 
REAL              SALPHA, SBETA, SX(*), SY(*), SA(LDA,*) 
DOUBLE PRECISION  DALPHA, DBETA, DX(*), DY(*), DA(LDA,*) 
COMPLEX           CALPHA, CBETA, CX(*), CY(*), CA(LDA,*) 
DOUBLE COMPLEX    ZALPHA, ZBETA, ZX(*), ZY(*), ZA(LDA,*) 

There is a lower bound on the leading dimension LDA. It must be � the number of rows in the 
matrix that is contained in this array. Vector arguments have an increment parameter that specifies 
the storage space or stride between elements. The correspondence between the vector x, y and the 
arguments SX, SY and INCX, INCY is 

� �� �

� �� �

� �� �

� �� �

SX I-1 INCX 1 if INCX  0

SX I-N INCX 1 if INCX  0

SY I-1 INCY 1 if INCY  0

SY I-N INCY 1 if INCY  0

i

i

x

y

� � � ��
� �

� � ��	

� � � ��
� �

� � ��	

 

In the Level 2 BLAS, only nonzero values of INCX, INCY are allowed for operations that have 
vector arguments. The Level 3 BLAS do not refer to INCX, INCY. 

Specification of the Level 3 BLAS 
Type and dimension for variables occurring in the subprogram specifications are 

INTEGER           K, LDA, LDB, LDC, M, N 
CHARACTER*1       DIAGNL, TRANS, TRANSA, TRANSB, SIDE, UPLO 
REAL              SALPHA, SBETA, SA(LDA,*), SB(LDB,*),  
                  SC(LDC,*) 
DOUBLE PRECISION  DALPHA, DBETA, DA(LDA,*), DB(LDB,*),  
                  DC(LDC,*) 
COMPLEX           CALPHA, CBETA, CA(LDA,*), CB(LDB,*),  
                  CC(LDC,*) 
DOUBLE COMPLEX    ZALPHA, ZBETA, ZA(LDA,*), ZB(LDB,*),  
                  ZC(LDC,*) 

Each of the integers K, M, N must be � 0. It is an error if any of them are < 0. If any of them are = 0, 
the subprograms return immediately. There are lower bounds on the leading dimensions LDA, LDB, 
LDC. Each must be � the number of rows in the matrix that is contained in this array. 
Table 9.2: Level 2 and 3 Basic Linear Algebra Subprograms 

 
Operation 

 
Real 

 
Double 

 
Complex 

Double 
Complex 

 
Pg. 

Matrix-Vector Multiply, General SGEMV DGEMV CGEMV ZGEMV 1381 

Matrix-Vector Multiply, Banded SGBMV DGBMV CGBMV ZGBMV 1381 

Matrix-Vector Multiply, Hermitian   CHEMV ZHEMV 1381 
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Operation 

 
Real 

 
Double 

 
Complex 

Double 
Complex 

 
Pg. 

Matrix-Vector Multiply, 
Hermitian and Banded 

  CHBMV ZHBMV 1381 

Matrix-Vector Multiply 
Symmetric and Real 

SSYMV DSYMV   1382 

Matrix-Vector Multiply, 
Symmetric and Banded 

SSBMV DSBMV   1382 

Matrix-Vector Multiply, Triangular STRMV DTRMV CTRMV ZTRMV 1382 

Matrix-Vector Multiply, 
Triangular and Banded 

STBMV DTBMV CTBMV ZTBMV 1382 

Matrix-Vector Solve, Triangular STRSV DTRSV CTRSV ZTRSV 1383 

Matrix-Vector Solve, 
Triangular and Banded 

STBSV DTBSV CTBSV ZTBSV 1383 

Rank-One Matrix Update, 
General and Real 

SGER DGER   1383 

Rank-One Matrix Update, 
General, Complex and Transpose 

  CGERU ZGERU 1384 

Rank-One Matrix Update, 
General, Complex, and Conjugate 
Transpose 

  CGERC ZGERC 1384 

Rank-One Matrix Update, 
Hermitian and Conjugate Transpose 

  CHER ZHER 1384 

Rank-Two Matrix Update, 
Hermitian and Conjugate Transpose 

  CHER2 ZHER2 1384 

Rank-One Matrix Update, 
Symmetric and Real 

SSYR DSYR   1384 

 
 
Operation 

 
Real 

 
Double 

 
Complex 

Double 
Complex 

 
Pg. 

Rank-Two Matrix Update, 
Symmetric and Real 

SSYR2 DSYR2   1384 

Matrix--Matrix Multiply, General SGEMM DGEMM CGEMM ZGEMM 1385 

Matrix-Matrix Multiply, Symmetric SSYMM DSYMM CSYMM ZSYMM 1385 

Matrix-Matrix Multiply, Hermitian   CHEMM ZHEMM 1385 

Rank - k Update, Symmetric SSYRK DSYRK CSYRK ZSYRK 1386 

Rank - k Update, Hermitian   CHERK ZHERK 1386 

Rank - 2k Update, Symmetric SSYR2K DSYR2K CSYR2K ZSYR2K 1386 

Rank - 2k Update, Hermitian   CHER2K ZHER2K 1386 

Matrix-Matrix Multiply, Triangular STRMM DTRMM CTRMM ZTRMM 1387 

Matrix-Matrix solve, Triangular STRSM DTRSM CTRSM ZTRSM 1387 
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Matrix–Vector Multiply, General 
CALL SGEMV (TRANS, M, N, SALPHA, SA, LDA, SX, INCX,  
            SBETA,SY, INCY) 
CALL DGEMV (TRANS, M, N, DALPHA, DA, LDA, DX, INCX, DBETA,   
            DY, INCY) 
CALL CGEMV (TRANS, M, N, CALPHA, CA, LDA, CX, INCX, CBETA,   
            CY, INCY) 
CALL ZGEMV (TRANS, M, N, ZALPHA, ZA, LDA, ZX, INCX, ZBETA,   
            ZY, INCY) 

For all data types, A is an M � N matrix. These subprograms set y to one of the expressions: y � �
Ax + 
y, y � �ATx + 
y, or for complex data,  

Ty A y� �� �  

The character flag TRANS determines the operation. 

Matrix–Vector Multiply, Banded 
CALL SGBMV (TRANS, M, N, NLCA, NUCA SALPHA, SA, LDA, SX,  
            INCX, SBETA,SY, INCY) 
CALL DGBMV (TRANS, M, N, NLCA, NUCA DALPHA, DA, LDA, DX,  
            INCX, DBETA,DY, INCY) 
CALL CGBMV (TRANS, M, N, NLCA, NUCA CALPHA, CA, LDA, CX,  
            INCX, CBETA,CY, INCY) 
CALL ZGBMV (TRANS, M, N, NLCA, NUCA ZALPHA, ZA, LDA, ZX,  
            INCX, ZBETA,ZY, INCY) 

For all data types, A is an M � N matrix with NLCA lower codiagonals and NUCA upper 
codiagonals. The matrix is stored in band storage mode. These subprograms set y to one of the 
expressions: y � �Ax + 
y, y � �ATx + 
y, or for complex data,  

Ty A x y� �� �  

The character flag TRANS determines the operation. 

Matrix-Vector Multiply, Hermitian 
CALL CHEMV (UPLO, N, CALPHA, CA, LDA, CX, INCX, CBETA,  
            CY,INCY) 
CALL ZHEMV (UPLO, N, ZALPHA, ZA, LDA, ZX, INCX, ZBETA, ZY,  
            INCY) 

For all data types, A is an N � N matrix. These subprograms set y � �Ax + 
y where A is an 
Hermitian matrix. The matrix A is either referenced using its upper or lower triangular part. The 
character flag UPLO determines the part used. 

Matrix-Vector Multiply, Hermitian and Banded 
CALL CHBMV (UPLO, N, NCODA, CALPHA, CA, LDA, CX, INCX,  
            CBETA, CY,INCY) 
CALL ZHBMV (UPLO, N, NCODA, ZALPHA, ZA, LDA, ZX, INCX,  
            ZBETA, ZY,INCY) 
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For all data types, A is an N � N matrix with NCODA codiagonals. The matrix is stored in band 
Hermitian storage mode. These subprograms set y � �Ax + 
y. The matrix A is either referenced 
using its upper or lower triangular part. The character flag UPLO determines the part used. 

Matrix-Vector Multiply, Symmetric and Real 
CALL SSYMV (UPLO, N, SALPHA, SA, LDA, SX, INCX, SBETA, SY,  
            INCY) 
CALL DSYMV (UPLO, N, DALPHA, DA, LDA, DX, INCX, DBETA, DY,  
            INCY) 

For all data types, A is an N � N matrix. These subprograms set y � �Ax + 
y where A is a 
symmetric matrix. The matrix A is either referenced using its upper or lower triangular part. The 
character flag UPLO determines the part used. 

Matrix-Vector Multiply, Symmetric and Banded 
CALL SSBMV (UPLO, N, NCODA, SALPHA, SA, LDA, SX, INCX,  
            SBETA, SY,INCY) 
CALL DSBMV (UPLO, N, NCODA, DALPHA, DA, LDA, DX, INCX,  
            DBETA, DY,INCY) 

For all data types, A is an N � N matrix with NCODA codiagonals. The matrix is stored in band 
symmetric storage mode. These subprograms set y � �Ax + 
y. The matrix A is either referenced 
using its upper or lower triangular part. The character flag UPLO determines the part used. 

Matrix-Vector Multiply, Triangular 
CALL STRMV (UPLO, TRANS, DIAGNL, N, SA, LDA, SX, INCX) 
CALL DTRMV (UPLO, TRANS, DIAGNL, N, DA, LDA, DX, INCX) 
CALL CTRMV (UPLO, TRANS, DIAGNL, N, CA, LDA, CX, INCX) 
CALL ZTRMV (UPLO, TRANS, DIAGNL, N, ZA, LDA, ZX, INCX) 

For all data types, A is an N � N triangular matrix. These subprograms set x to one of the 
expressions: x � Ax, x �ATx, or for complex data, 

Tx A x�  

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit 
triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used 
and the operation performed. 

Matrix-Vector Multiply, Triangular and Banded 
CALL STBMV (UPLO, TRANS, DIAGNL, N, NCODA, SA, LDA, SX, 
INCX) 
CALL DTBMV (UPLO, TRANS, DIAGNL, N, NCODA, DA, LDA, DX, 
INCX) 
CALL CTBMV (UPLO, TRANS, DIAGNL, N, NCODA, CA, LDA, CX, 
INCX) 
CALL ZTBMV (UPLO, TRANS, DIAGNL, N, NCODA, ZA, LDA, ZX, 
INCX) 
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For all data types, A is an N � N matrix with NCODA codiagonals. The matrix is stored in band 
triangular storage mode. These subprograms set x to one of the expressions: x � Ax, x � ATx, or 
for complex data,  

Tx A x�  

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit 
triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used 
and the operation performed. 

Matrix-Vector Solve, Triangular 
CALL STRSV (UPLO, TRANS, DIAGNL, N, SA, LDA, SX, INCX) 
CALL DTRSV (UPLO, TRANS, DIAGNL, N, DA, LDA, DX, INCX) 
CALL CTRSV (UPLO, TRANS, DIAGNL, N, CA, LDA, CX, INCX) 
CALL ZTRSV (UPLO, TRANS, DIAGNL, N, ZA, LDA, ZX, INCX) 

For all data types, A is an N � N triangular matrix. These subprograms solve x for one of the 
expressions: x � A���x, x � (A���)Tx, or for complex data,  

� �
1Tx A x

�

�  

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit 
triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used 
and the operation performed. 

Matrix-Vector Solve, Triangular and Banded 
CALL STBSV (UPLO, TRANS, DIAGNL, N, NCODA, SA, LDA, SX, 
INCX) 
CALL DTBSV (UPLO, TRANS, DIAGNL, N, NCODA, DA, LDA, DX, 
INCX) 
CALL CTBSV (UPLO, TRANS, DIAGNL, N, NCODA, CA, LDA, CX, 
INCX) 
CALL ZTBSV (UPLO, TRANS, DIAGNL, N, NCODA, ZA, LDA, ZX, 
INCX) 

For all data types, A is an N � N triangular matrix with NCODA codiagonals. The matrix is stored in 
band triangular storage mode. These subprograms solve x for one of the expressions: x � A���x,  
x � (A��)��x, or for complex data, 

� �
1Tx A x

�

�  

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit 
triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used 
and the operation performed. 

Rank-One Matrix Update, General and Real 
CALL SGER (M, N, SALPHA, SX, INCX, SY, INCY, SA, LDA) 
CALL DGER (M, N, DALPHA, DX, INCX, DY, INCY, DA, LDA 

For all data types, A is an M � N matrix. These subprograms set A � A + �xyT. 
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Rank-One Matrix Update, General, Complex, and Transpose 
CALL CGERU (M, N, CALPHA, CX, INCX, CY, INCY, CA, LDA) 
CALL ZGERU (M, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA) 

For all data types, A is an M � N matrix. These subprograms set A � A + �xyT. 

Rank-One Matrix Update, General, Complex, and Conjugate Transpose 
CALL CGERC (M, N, CALPHA, CX, INCX, CY, INCY, CA, LDA) 
CALL ZGERC (M, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA) 

For all data types, A is an M � N matrix. These subprograms set  
TA A xy�� �  

Rank-One Matrix Update, Hermitian and Conjugate Transpose 
CALL CHER (UPLO, N, SALPHA, CX, INCX, CA, LDA) 
CALL ZHER (UPLO, N, DALPHA, ZX, INCX, ZA, LDA) 

For all data types, A is an N � N matrix. These subprograms set  
TA A xx�� �  

where A is Hermitian. The matrix A is either referenced by its upper or lower triangular part. The 
character flag UPLO determines the part used. CAUTION: Notice the scalar parameter � is real, 
and the data in the matrix and vector are complex. 

Rank-Two Matrix Update, Hermitian and Conjugate Transpose 
CALL CHER2 (UPLO, N, CALPHA, CX, INCX, CY, INCY, CA, LDA) 
CALL ZHER2 (UPLO, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA) 

For all data types, A is an N � N matrix. These subprograms set 
T TA A xy yx� �� � �  

where A is an Hermitian matrix. The matrix A is either referenced by its upper or lower triangular 
part. The character flag UPLO determines the part used. 

Rank-One Matrix Update, Symmetric and Real 
CALL SSYR (UPLO, N, SALPHA, SX, INCX, SA, LDA) 
CALL DSYR (UPLO, N, DALPHA, DX, INCX, DA, LDA) 

For all data types, A is an N � N matrix. These subprograms set A � A + �xxT where A is a 
symmetric matrix. The matrix A is either referenced by its upper or lower triangular part. The 
character flag UPLO determines the part used. 

Rank-Two Matrix Update, Symmetric and Real 
CALL SSYR2 (UPLO, N, SALPHA, SX, INCX, SY, INCY, SA, LDA) 
CALL DSYR2 (UPLO, N, DALPHA, DX, INCX, DY, INCY, DA, LDA) 
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For all data types, A is an N � N matrix. These subprograms set A � A + �xyT + �yxT where A is 
a symmetric matrix. The matrix A is referenced by its upper or lower triangular part. The character 
flag UPLO determines the part used. 

Matrix-Matrix Multiply, General 
CALL SGEMM (TRANSA, TRANSB, M, N, K, SALPHA, SA, LDA, SB,  
            LDB, SBETA, SC, LDC) 
CALL DGEMM (TRANSA, TRANSB, M, N, K, DALPHA, DA, LDA, DB,  
            LDB, DBETA, DC, LDC) 
CALL CGEMM (TRANSA, TRANSB, M, N, K, CALPHA, CA, LDA, CB,  
            LDB, CBETA, CC, LDC) 
CALL ZGEMM (TRANSA, TRANSB, M, N, K, ZALPHA, ZA, LDA, ZB,  
            LDB, ZBETA, ZC, LDC) 

For all data types, these subprograms set CM ��N to one of the expressions: 

, , , ,
or for complex data, , , ,

,

T T T T

T T T T

T T T T

C AB C C A B C C AB C C A B C
C AB C C A B C C A B C

C A B C C A B C

� � � � � � � �

� � � � � �

� � � �

� � � � � � � �

� � � � � �

� � � �

 

The character flags TRANSA and TRANSB determine the operation to be performed. Each matrix 
product has dimensions that follow from the fact that C has dimension M � N. 

Matrix-Matrix Multiply, Symmetric 
CALL SSYMM (SIDE, UPLO, M, N, SALPHA, SA, LDA, SB, LDB,  
            SBETA, SC, LDC) 
CALL DSYMM (SIDE, UPLO, M, N, DALPHA, DA, LDA, DB, LDB,  
            DBETA, DC, LDC) 
CALL CSYMM (SIDE, UPLO, M, N, CALPHA, CA, LDA, CB, LDB,  
            CBETA, CC, LDC) 
CALL ZSYMM (SIDE, UPLO, M, N, ZALPHA, ZA, LDA, ZB, LDB,  
            ZBETA, ZC, LDC) 

For all data types, these subprograms set CM ��N to one of the expressions: C � �AB + 
C or  
C � �BA + 
C, where A is a symmetric matrix. The matrix A is referenced either by its upper or 
lower triangular part. The character flags SIDE and UPLO determine the part of the matrix used 
and the operation performed. 

Matrix-Matrix Multiply, Hermitian 
CALL CHEMM (SIDE, UPLO, M, N, CALPHA, CA, LDA, CB, LDB,  
            CBETA, CC, LDC) 
CALL ZHEMM (SIDE, UPLO, M, N, ZALPHA, ZA, LDA, ZB, LDB,  
            ZBETA, ZC, LDC) 

For all data types, these subprograms set CM���N to one of the expressions: C � �AB + 
C or  
C � �BA + 
C, where A is an Hermitian matrix. The matrix A is referenced either by its upper or 
lower triangular part. The character flags SIDE and UPLO determine the part of the matrix used 
and the operation performed. 



 

 
 

1386 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY 

 

 

 

Rank-k Update, Symmetric 
CALL SSYRK (UPLO, TRANS, N, K, SALPHA, SA, LDA, SBETA, SC,  
            LDC) 
CALL DSYRK (UPLO, TRANS, N, K, DALPHA, DA, LDA, DBETA, DC,  
            LDC) 
CALL CSYRK (UPLO, TRANS, N, K, CALPHA, CA, LDA, CBETA, CC,  
            LDC) 
CALL ZSYRK (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZBETA, ZC,  
            LDC) 

For all data types, these subprograms set CM ��N to one of the expressions: C � �AAT + 
C or  

C � �ATA + 
C. The matrix C is referenced either by its upper or lower triangular part. The 
character flags UPLO and TRANS determine the part of the matrix used and the operation 
performed. In subprogram CSYRK and ZSYRK, only values ’N’ or ’T’ are allowed for TRANS; 
’C’is not acceptable. 

Rank-k Update, Hermitian 
CALL CHERK (UPLO, TRANS, N, K, SALPHA, CA, LDA, SBETA, CC,  
            LDC) 
CALL ZHERK (UPLO, TRANS, N, K, DALPHA, ZA, LDA, DBETA, ZC,  
            LDC) 

For all data types, these subprograms set CN � N to one of the expressions: 

 or T TC AA C C A A C� � � �� � � �  

The matrix C is referenced either by its upper or lower triangular part. The character flags UPLO 
and TRANS determine the part of the matrix used and the operation performed. CAUTION: Notice 
the scalar parameters � and 
 are real, and the data in the matrices are complex. Only values 
’N’or ’C’are allowed for TRANS; ’T’is not acceptable. 

Rank-2k Update, Symmetric 
CALL SSYR2K (UPLO, TRANS, N, K, SALPHA, SA, LDA, SB, LDB,  
             SBETA, SC, LDC) 

CALL DSYR2K (UPLO, TRANS, N, K, DALPHA, DA, LDA, DB, LDB,  
             DBETA, DC, LDC) 

CALL CSYR2K (UPLO, TRANS, N, K, CALPHA, CA, LDA, CB, LDB,  
             CBETA, CC, LDC) 

CALL ZSYR2K (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZB, LDB,  
             ZBETA, ZC, LDC) 

For all data types, these subprograms set CN � N to one of the expressions: 

+ C or T T T TC AB A C A B B A C� �� � � � �� � � � �  

The matrix C is referenced either by its upper or lower triangular part. The character flags UPLO 
and TRANS determine the part of the matrix used and the operation performed. In subprogram 
CSYR2K and ZSYR2K, only values ’N’or ’T’ are allowed for TRANS; ’C’is not acceptable. 
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Rank-2k Update, Hermitian 
CALL CHER2K (UPLO, TRANS, N, K, CALPHA, CA, LDA, CB, LDB,  
             SBETA, CC, LDC) 
CALL ZHER2K (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZB, LDB,  
             DBETA, ZC, LDC) 

For all data types, these subprograms set CN � N to one of the expressions: 

+ C or T T T TC AB BA C A B B A C� � � � � �� � � � �  

The matrix C is referenced either by its upper or lower triangular part. The character flags UPLO 
and TRANS determine the part of the matrix used and the operation performed. CAUTION: Notice 
the scalar parameter 
 is real, and the data in the matrices are complex. In subprogram CHER2K 
and ZHER2K, only values ’N’ or ’C’are allowed for TRANS; ’T’is not acceptable. 

Matrix-Matrix Multiply, Triangular 
CALL STRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, SALPHA, SA,  
            LDA, SB, LDB) 
CALL DTRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, DALPHA, DA,  
            LDA, DB, LDB) 
CALL CTRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, CALPHA, CA,  
            LDA, CB,LDB) 
CALL ZTRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, ZALPHA, ZA,  
            LDA, ZB, LDB) 

For all data types, these subprograms set BM ��N to one of the_expressions: 

, , , ,
or for complex data, , or 

T T

T T

B AB B A B B BA B BA
B A B B BA

� � � �

� �

� � � �

� �
 

where A is a triangular matrix. The matrix A is either referenced using its upper or lower triangular 
part and is unit or nonunit triangular. The character flags SIDE, UPLO, TRANSA, and DIAGNL 
determine the part of the matrix used and the operation performed. 

Matrix-Matrix Solve, Triangular 
CALL STRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, SALPHA, SA,  
            LDA, SB, LDB) 
CALL DTRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, DALPHA, DA,  
            LDA, DB, LDB) 
CALL CTRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, CALPHA, CA,  
            LDA, CB, LDB) 
CALL ZTRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, ZALPHA, ZA,  
            LDA, ZB, LDB) 

For all data types, these subprograms set BM ��N to one of the expressions: 

� � � �

� � � �

T1 1 1 1

1 1

, , , ,

or for complex data, , or 

T

T T

B A B B BA B A B B B A

B A B B B A

� � � �

� �

� � � �

� �

� � � �

� �
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where A is a triangular matrix. The matrix A is either referenced using its upper or lower triangular 
part and is unit or nonunit triangular. The character flags SIDE, UPLO, TRANSA, and DIAGNL 
determine the part of the matrix used and the operation performed. 

Other Matrix/Vector Operations 
This section describes a set of routines for matrix/vector operations. The matrix copy and 
conversion routines are summarized by the following table: 

 To 
From Real 

General 
Complex
General 

Real 
Band 

Complex 
Band 

Real General CRGRG 
p. 1389 

CRGCG 
p. 1402 

CRGRB 
p. 1395 

 

Complex General  CCGCG 
p. 1390 

 CCGCB 
p. 1398 

Real Band CRBRG 
p. 1397 

 CRBRB 
p. 1392 

CRBCB 
p. 1405 

Complex Band  CCBCG 
p. 1400 

 CCBCB 
p. 1393 

Symmetric Full CSFRG 
p. 1406 

   

Hermitian Full  CHFCG 
p. 1408 

  

Symmetric Band   CSBRB 
p. 1409 

 

Hermitian Band    CHBCB 
p. 1411 

The matrix multiplication routines are summarized as follows: 

 
AB A 
B Real 

Rect. 
Complex
Rect. 

Real 
Band 

Complex 
Band 

Real Rectangular MRRRR 
p. 1421 

   

Complex Rect.  MCRCR 
p. 1423 

  

Vector MURRV 
p. 1431 

MUCRV 
p. 1435 

MURBV 
p. 1433 

MUCBV 
p. 1436 

The matrix norm routines are summarized as follows: 
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||A|| Real 
Rectangular 

Real 
Band 

Complex 
Band 

�-norm NRIRR 
p. 1443 

  

1-norm NR1RR 
p. 1444 

NR1RB 
p. 1447 

NR1CB 
p. 1449 

Frobenius NR2RR 
p. 1446 

  

CRGRG 
Copies a real general matrix. 

Required Arguments 
A — Matrix of order N.   (Input) 

B — Matrix of order N containing a copy of A.   (Output) 

Optional Arguments 
N — Order of the matrices.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL CRGRG (A, B [,…]) 

Specific:  The specific interface names are S_CRGRG and D_CRGRG. 

FORTRAN 77 Interface 
Single: CALL CRGRG (N, A, LDA, B, LDB) 

Double: The double precision name is DCRGRG. 
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Example 
A real 3 � 3 general matrix is copied into another real 3 � 3 general matrix. 

      USE CRGRG_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, N 
      PARAMETER  (LDA=3, LDB=3, N=3) 
! 
      REAL       A(LDA,N), B(LDB,N) 
!                                 Set values for  A 
!                                 A = (   0.0   1.0   1.0  ) 
!                                     (  -1.0   0.0   1.0  ) 
!                                     (  -1.0  -1.0   0.0  ) 
! 
      DATA A/0.0, 2* - 1.0, 1.0, 0.0, -1.0, 2*1.0, 0.0/ 
!                                 Copy real matrix A to real matrix B 
      CALL CRGRG (A, B) 
!                                 Print results 
      CALL WRRRN (’B’, B) 
      END 

Output 
            B 
        1       2       3 
1   0.000   1.000   1.000 
2  -1.000   0.000   1.000 
3  -1.000  -1.000   0.000 

Description 
The routine CRGRG copies the real N � N general matrix A into the real N � N general matrix B. 

CCGCG 
Copies a complex general matrix. 

Required Arguments 
A — Complex matrix of order N.   (Input) 

B — Complex matrix of order N containing a copy of A.   (Output) 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL CCGCG (A, B [,…]) 

Specific:  The specific interface names are S_CCGCG and D_CCGCG. 

FORTRAN 77 Interface 
Single: CALL CCGCG (N, A, LDA, B, LDB) 

Double: The double precision name is DCCGCG. 

Example 
A complex 3 � 3 general matrix is copied into another complex 3 � 3 general matrix. 

      USE CCGCG_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, N 
      PARAMETER  (LDA=3, LDB=3, N=3) 
! 
      COMPLEX    A(LDA,N), B(LDB,N) 
!                           Set values for  A 
!                           A = (  0.0+0.0i  1.0+1.0i  1.0+1.0i  ) 
!                               ( -1.0-1.0i  0.0+0.0i  1.0+1.0i  ) 
!                               ( -1.0-1.0i -1.0-1.0i  0.0+0.0i  ) 
! 
      DATA A/(0.0,0.0), 2*(-1.0,-1.0), (1.0,1.0), (0.0,0.0), & 
          (-1.0,-1.0), 2*(1.0,1.0), (0.0,0.0)/ 
!                                 Copy matrix A to matrix B 
      CALL CCGCG (A, B) 
!                                 Print results 
      CALL WRCRN (’B’, B) 
      END 

Output 
                          B 
                1                2                3 
1  ( 0.000, 0.000)  ( 1.000, 1.000)  ( 1.000, 1.000) 
2  (-1.000,-1.000)  ( 0.000, 0.000)  ( 1.000, 1.000) 
3  (-1.000,-1.000)  (-1.000,-1.000)  ( 0.000, 0.000) 
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Description 
The routine CCGCG copies the complex N � N general matrix A into the complex N � N general 
matrix B. 

CRBRB 
Copies a real band matrix stored in band storage mode. 

Required Arguments 
A — Real band matrix of order N.   (Input) 

NLCA — Number of lower codiagonals in A.   (Input) 

NUCA — Number of upper codiagonals in A.   (Input) 

B — Real band matrix of order N containing a copy of A.   (Output) 

NLCB — Number of lower codiagonals in B.   (Input)  
NLCB must be at least as large as NLCA. 

NUCB — Number of upper codiagonals in B.   (Input)  
NUCB must be at least as large as NUCA. 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL CRBRB (A, NLCA, NUCA, B, NLCB, NUCB [,…]) 

Specific:  The specific interface names are S_CRBRB and D_CRBRB. 

FORTRAN 77 Interface 
Single: CALL CRBRB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB) 
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Double: The double precision name is DCRBRB. 

Example 
A real band matrix of order 3, in band storage mode with one upper codiagonal, and one lower 
codiagonal is copied into another real band matrix also in band storage mode. 

      USE CRBRB_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, N, NLCA, NLCB, NUCA, NUCB 
      PARAMETER  (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1) 
! 
      REAL       A(LDA,N), B(LDB,N) 
!                                 Set values for  A (in band mode) 
!                                 A = (  0.0  1.0   1.0  ) 
!                                     (  1.0  1.0   1.0  ) 
!                                     (  1.0  1.0   0.0  ) 
! 
      DATA A/0.0, 7*1.0, 0.0/ 
!                                 Copy A to B 
      CALL CRBRB (A, NLCA, NUCA, B, NLCB, NUCB) 
!                                 Print results 
      CALL WRRRN (’B’, B) 
      END 

Output 
             B 
        1       2       3 
1   0.000   1.000   1.000 
2   1.000   1.000   1.000 
3   1.000   1.000   0.000 

Description 
The routine CRBRB copies the real band matrix A in band storage mode into the real band matrix 
B in band storage mode. 

CCBCB 
Copies a complex band matrix stored in complex band storage mode. 

Required Arguments 
A — Complex band matrix of order N.   (Input) 

NLCA — Number of lower codiagonals in A.   (Input) 

NUCA — Number of upper codiagonals in A.   (Input) 

B — Complex matrix of order N containing a copy of A.   (Output) 
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NLCB — Number of lower codiagonals in B.   (Input)  
NLCB must be at least as large as NLCA. 

NUCB — Number of upper codiagonals in B.   (Input)  
NUCB must be at least as large as NUCA. 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL CCBCB (A, NLCA, NUCA, B, NLCB, NUCB [,…]) 

Specific:  The specific interface names are S_CCBCB and D_CCBCB. 

FORTRAN 77 Interface 
Single: CALL CCBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB) 

Double: The double precision name is DCCBCB. 

Example 
A complex band matrix of order 3 in band storage mode with one upper codiagonal and one lower 
codiagonal is copied into another complex band matrix in band storage mode. 

      USE CCBCB_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, N, NLCA, NLCB, NUCA, NUCB 
      PARAMETER  (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1) 
! 
      COMPLEX    A(LDA,N), B(LDB,N) 
!                        Set values for  A (in band mode) 
!                        A = (  0.0+0.0i  1.0+1.0i  1.0+1.0i  ) 
!                            (  1.0+1.0i  1.0+1.0i  1.0+1.0i  ) 
!                            (  1.0+1.0i  1.0+1.0i  0.0+0.0i  ) 
! 
      DATA A/(0.0,0.0), 7*(1.0,1.0), (0.0,0.0)/ 
!                                 Copy A to B 
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      CALL CCBCB (A, NLCA, NUCA, B, NLCB, NUCB) 
!                                 Print results 
      CALL WRCRN (’B’, B) 
      END 

Output 
                          B 
                1                2                3 
1  ( 0.000, 0.000)  ( 1.000, 1.000)  ( 1.000, 1.000) 
2  ( 1.000, 1.000)  ( 1.000, 1.000)  ( 1.000, 1.000) 
3  ( 1.000, 1.000)  ( 1.000, 1.000)  ( 0.000, 0.000) 

Description 
The routine CCBCB copies the complex band matrix A in band storage mode into the complex 
band matrix B in band storage mode. 

CRGRB 
Converts a real general matrix to a matrix in band storage mode. 

Required Arguments 
A — Real N by N matrix.   (Input) 

NLC — Number of lower codiagonals in B.   (Input) 

NUC — Number of upper codiagonals in B.   (Input) 

B — Real (NUC + 1 + NLC) by N array containing the band matrix in band storage mode.   
(Output) 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL CRGRB (A, NLC, NUC, B [,…]) 
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Specific:  The specific interface names are S_CRGRB and D_CRGRB. 

FORTRAN 77 Interface 
Single: CALL CRGRB (N, A, LDA, NLC, NUC, B, LDB) 

Double: The double precision name is DCRGRB. 

Example 
A real 4 � 4 matrix with one upper codiagonal and three lower codiagonals is copied to a real 
band matrix of order 4 in band storage mode. 

      USE CRGRB_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, N, NLC, NUC 
      PARAMETER  (LDA=4, LDB=5, N=4, NLC=3, NUC=1) 
! 
      REAL       A(LDA,N), B(LDB,N) 
!                                 Set values for  A 
!                                 A = (  1.0     2.0    0.0    0.0) 
!                                     ( -2.0     1.0    3.0    0.0) 
!                                     (  0.0    -3.0    1.0    4.0) 
!                                     ( -7.0     0.0   -4.0    1.0) 
! 
      DATA A/1.0, -2.0, 0.0, -7.0, 2.0, 1.0, -3.0, 0.0, 0.0, 3.0, 1.0, & 
          -4.0, 0.0, 0.0, 4.0, 1.0/ 
!                                 Convert A to band matrix B 
      CALL CRGRB (A, NLC, NUC, B) 
!                                 Print results 
      CALL WRRRN (’B’, B) 
      END 

Output 
                B 
        1       2       3       4 
1   0.000   2.000   3.000   4.000 
2   1.000   1.000   1.000   1.000 
3  -2.000  -3.000  -4.000   0.000 
4   0.000   0.000   0.000   0.000 
5  -7.000   0.000   0.000   0.000 

Description 
The routine CRGRB converts the real general N � N matrix A with mu = NUC upper codiagonals 
and ml = NLC lower codiagonals into the real band matrix B of order N. The first mu rows of B 
then contain the upper codiagonals of A, the next row contains the main diagonal of A, and the 
last ml rows of B contain the lower codiagonals of A. 
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CRBRG 
Converts a real matrix in band storage mode to a real general matrix. 

Required Arguments 
A — Real (NUC + 1 + NLC) by N array containing the band matrix in band storage mode.   

(Input) 

NLC — Number of lower codiagonals in A.   (Input) 

NUC — Number of upper codiagonals in A.   (Input) 

B — Real N by N array containing the matrix.   (Output) 

Optional Arguments  
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL CRBRG (A, NLC, NUC, B [,…]) 

Specific:  The specific interface names are S_CRBRG and D_CRBRG. 

FORTRAN 77 Interface 
Single: CALL CRBRG (N, A, LDA, NLC, NUC, B, LDB) 

Double: The double precision name is DCRBRG. 

Example 
A real band matrix of order 3 in band storage mode with one upper codiagonal and one lower 
codiagonal is copied to a 3 � 3 real general matrix. 

      USE CRBRG_INT 
      USE WRRRN_INT 
!                                 Declare variables 
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      INTEGER    LDA, LDB, N, NLC, NUC 
      PARAMETER  (LDA=3, LDB=3, N=3, NLC=1, NUC=1) 
! 
      REAL       A(LDA,N), B(LDB,N) 
!                                 Set values for  A (in band mode) 
!                                 A = (  0.0     1.0    1.0) 
!                                     (  4.0     3.0    2.0) 
!                                     (  2.0     2.0    0.0) 
! 
      DATA A/0.0, 4.0, 2.0, 1.0, 3.0, 2.0, 1.0, 2.0, 0.0/ 
!                                 Convert band matrix A to matrix B 
      CALL CRBRG (A, NLC, NUC, B) 
!                                 Print results 
      CALL WRRRN (’B’, B) 
      END 

Output 
             B 
        1       2       3 
1   4.000   1.000   0.000 
2   2.000   3.000   1.000 
3   0.000   2.000   2.000 

Description 
The routine CRBRG converts the real band matrix A of order N in band storage mode into the real 
N � N general matrix B with mu = NUC upper codiagonals and ml = NLC lower codiagonals. The 
first mu rows of A are copied to the upper codiagonals of B, the next row of A is copied to the 
diagonal of B, and the last ml rows of A are copied to the lower codiagonals of B. 

CCGCB 
Converts a complex general matrix to a matrix in complex band storage mode. 

Required Arguments 
A — Complex N by N array containing the matrix.   (Input) 

NLC — Number of lower codiagonals in B.   (Input) 

NUC — Number of upper codiagonals in B.   (Input) 

B — Complex (NUC + 1 + NLC) by N array containing the band matrix in band storage mode.   
(Output) 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL CCGCB (A, NLC, NUC, B [,…]) 

Specific:  The specific interface names are S_CCGCB and D_CCGCB. 

FORTRAN 77 Interface 
Single: CALL CCGCB (N, A, LDA, NLC, NUC, B, LDB) 

Double: The double precision name is DCCGCB. 

Example 
A complex general matrix of order 4 with one upper codiagonal and three lower codiagonals is 
copied to a complex band matrix of order 4 in band storage mode. 

      USE CCGCB_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, N, NLC, NUC 
      PARAMETER  (LDA=4, LDB=5, N=4, NLC=3, NUC=1) 
! 
      COMPLEX    A(LDA,N), B(LDB,N) 
!                     Set values for  A 
!                     A = (  1.0+0.0i   2.0+1.0i  0.0+0.0i  0.0+0.0i ) 
!                         ( -2.0+1.0i   1.0+0.0i  3.0+2.0i  0.0+0.0i ) 
!                         (  0.0+0.0i  -3.0+2.0i  1.0+0.0i  4.0+3.0i ) 
!                         ( -7.0+1.0i   0.0+0.0i -4.0+3.0i  1.0+0.0i ) 
! 
      DATA A/(1.0,0.0), (-2.0,1.0), (0.0,0.0), (-7.0,1.0), (2.0,1.0), & 
          (1.0,0.0), (-3.0,2.0), (0.0,0.0), (0.0,0.0), (3.0,2.0), & 
          (1.0,0.0), (-4.0,3.0), (0.0,0.0), (0.0,0.0), (4.0,3.0), & 
          (1.0,0.0)/ 
!                                 Convert A to band matrix B 
      CALL CCGCB (A, NLC, NUC, B) 
!                                 Print results 
      CALL WRCRN (’B’, B) 
      END 

Output 
                                 B 
                 1                2                3                4 
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1  ( 0.000, 0.000)  ( 2.000, 1.000)  ( 3.000, 2.000)  ( 4.000, 3.000) 
2  ( 1.000, 0.000)  ( 1.000, 0.000)  ( 1.000, 0.000)  ( 1.000, 0.000) 
3  (-2.000, 1.000)  (-3.000, 2.000)  (-4.000, 3.000)  ( 0.000, 0.000) 
4  ( 0.000, 0.000)  ( 0.000, 0.000)  ( 0.000, 0.000)  ( 0.000, 0.000) 
5  (-7.000, 1.000)  ( 0.000, 0.000)  ( 0.000, 0.000)  ( 0.000, 0.000) 

Description 
The routine CCGCB converts the complex general matrix A of order N with mu = NUC upper 
codiagonals and ml = NLC lower codiagonals into the complex band matrix B of order N in band 
storage mode. The first mu rows of B then contain the upper codiagonals of A, the next row 
contains the main diagonal of A, and the last ml rows of B contain the lower codiagonals of A. 

CCBCG 
Converts a complex matrix in band storage mode to a complex matrix in full storage mode. 

Required Arguments 
A — Complex (NUC + 1 + NLC) by N matrix containing the band matrix in band mode.   

(Input) 

NLC — Number of lower codiagonals in A.   (Input) 

NUC — Number of upper codiagonals in A.   (Input) 

B — Complex N by N matrix containing the band matrix in full mode.   (Output) 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL CCBCG (A, NLC, NUC, B [,…]) 

Specific:  The specific interface names are S_CCBCG and D_CCBCG. 
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FORTRAN 77 Interface 
Single: CALL CCBCG (N, A, LDA, NLC, NUC, B, LDB) 

Double: The double precision name is DCCBCG. 

Example 
A complex band matrix of order 4 in band storage mode with one upper codiagonal and three 
lower codiagonals is copied into a 4 � 4 complex general matrix. 

      USE CCBCG_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, N, NLC, NUC 
      PARAMETER  (LDA=5, LDB=4, N=4, NLC=3, NUC=1) 
! 
      COMPLEX    A(LDA,N), B(LDB,N) 
!                     Set values for  A (in band mode) 
!                     A = (  0.0+0.0i  2.0+1.0i  3.0+2.0i  4.0+3.0i  ) 
!                         (  1.0+0.0i  1.0+0.0i  1.0+0.0i  1.0+0.0i  ) 
!                         ( -2.0+1.0i -3.0+2.0i -4.0+3.0i  0.0+0.0i  ) 
!                         (  0.0+0.0i  0.0+0.0i  0.0+0.0i  0.0+0.0i  ) 
!                         ( -7.0+1.0i  0.0+0.0i  0.0+0.0i  0.0+0.0i  ) 
! 
      DATA A/(0.0,0.0), (1.0,0.0), (-2.0,1.0), (0.0,0.0), (-7.0,1.0), & 
          (2.0,1.0), (1.0,0.0), (-3.0,2.0), 2*(0.0,0.0), (3.0,2.0), & 
          (1.0,0.0), (-4.0,3.0), 2*(0.0,0.0), (4.0,3.0), (1.0,0.0), & 
          3*(0.0,0.0)/ 
!                                 Convert band matrix A to matrix B 
      CALL CCBCG (A, NLC, NUC, B) 
!                                 Print results 
      CALL WRCRN (’B’, B) 
      END 

Output 
                                 B 
                 1                2                3                4 
1  ( 1.000, 0.000)  ( 2.000, 1.000)  ( 0.000, 0.000)  ( 0.000, 0.000) 
2  (-2.000, 1.000)  ( 1.000, 0.000)  ( 3.000, 2.000)  ( 0.000, 0.000) 
3  ( 0.000, 0.000)  (-3.000, 2.000)  ( 1.000, 0.000)  ( 4.000, 3.000) 
4  (-7.000, 1.000)  ( 0.000, 0.000)  (-4.000, 3.000)  ( 1.000, 0.000) 

Description 
The routine CCBCG converts the complex band matrix A of order N with mu = NUC upper 
codiagonals and ml = NLC lower codiagonals into the N � N complex general matrix B. The first 
mu rows of A are copied to the upper codiagonals of B, the next row of A is copied to the 
diagonal of B, and the last ml rows of A are copied to the lower codiagonals of B. 
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CRGCG 
Copies a real general matrix to a complex general matrix. 

Required Arguments 
A — Real matrix of order N.   (Input) 

B — Complex matrix of order N containing a copy of A.   (Output) 

Optional Arguments 
N — Order of the matrices A and B.   (Input)  

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL CRGCG (A, B [,…]) 

Specific:  The specific interface names are S_CRGCG and D_CRGCG. 

FORTRAN 77 Interface 
Single: CALL CRGCG (N, A, LDA, B, LDB) 

Double: The double precision name is DCRGCG. 

Example 
A 3 � 3 real matrix is copied to a 3 � 3 complex matrix. 

      USE CRGCG_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, N 
      PARAMETER  (LDA=3, LDB=3, N=3) 
! 
      REAL       A(LDA,N) 
      COMPLEX    B(LDB,N) 
!                                 Set values for  A 
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!                                 A = (  2.0     1.0    3.0 ) 
!                                     (  4.0     1.0    0.0 ) 
!                                     ( -1.0     2.0    0.0 ) 
! 
      DATA A/2.0, 4.0, -1.0, 1.0, 1.0, 2.0, 3.0, 0.0, 0.0/ 
!                                 Convert real A to complex B 
      CALL CRGCG (A, B) 
!                                 Print results 
      CALL WRCRN (’B’, B) 
      END 

Output 
                           B 
                 1                2                3 
1  ( 2.000, 0.000)  ( 1.000, 0.000)  ( 3.000, 0.000) 
2  ( 4.000, 0.000)  ( 1.000, 0.000)  ( 0.000, 0.000) 
3  (-1.000, 0.000)  ( 2.000, 0.000)  ( 0.000, 0.000) 

Description 
The routine CRGCG copies a real N � N matrix to a complex N � N matrix. 

CRRCR 
Copies a real rectangular matrix to a complex rectangular matrix. 

Required Arguments 
A — Real NRA by NCA rectangular matrix.   (Input) 

B — Complex NRB by NCB rectangular matrix containing a copy of A.   (Output) 

Optional Arguments 
NRA — Number of rows in A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns in A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NRB — Number of rows in B.   (Input)  
It must be the same as NRA. 
Default: NRB = size (B,1). 
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NCB — Number of columns in B.   (Input)  
It must be the same as NCA. 
Default: NCB = size (B,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL CRRCR (A, B [,…]) 

Specific:  The specific interface names are S_CRRCR and D_CRRCR. 

FORTRAN 77 Interface 
Single: CALL CRRCR (NRA, NCA, A, LDA, NRB, NCB, B, LDB) 

Double: The double precision name is DCRRCR. 

Example 
A 3 � 2 real matrix is copied to a 3 � 2 complex matrix. 

      USE CRRCR_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, NCA, NCB, NRA, NRB 
      PARAMETER  (LDA=3, LDB=3, NCA=2, NCB=2, NRA=3, NRB=3) 
! 
      REAL       A(LDA,NCA) 
      COMPLEX    B(LDB,NCB) 
!                                 Set values for  A 
!                                 A = (  1.0     4.0  ) 
!                                     (  2.0     5.0  ) 
!                                     (  3.0     6.0  ) 
! 
      DATA A/1.0, 2.0, 3.0, 4.0, 5.0, 6.0/ 
!                                 Convert real A to complex B 
      CALL CRRCR (A, B) 
!                                 Print results 
      CALL WRCRN (’B’, B) 
      END 

Output 
                B 
                 1                2 
1  ( 1.000, 0.000)  ( 4.000, 0.000) 
2  ( 2.000, 0.000)  ( 5.000, 0.000) 
3  ( 3.000, 0.000)  ( 6.000, 0.000) 
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Description 
The routine CRRCR copies a real rectangular matrix to a complex rectangular matrix. 

CRBCB 
Converts a real matrix in band storage mode to a complex matrix in band storage mode. 

Required Arguments 
A — Real band matrix of order N.   (Input) 

NLCA — Number of lower codiagonals in A.   (Input) 

NUCA — Number of upper codiagonals in A.   (Input) 

B — Complex matrix of order N containing a copy of A.   (Output) 

NLCB — Number of lower codiagonals in B.   (Input)  
NLCB must be at least as large as NLCA. 

NUCB — Number of upper codiagonals in B.   (Input)  
NUCB must be at least as large as NUCA. 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL CRBCB (A, NLCA, NUCA, B, NLCB, NUCB [,…]) 

Specific:  The specific interface names are S_CRBCB and D_CRBCB. 

FORTRAN 77 Interface 
Single: CALL CRBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB) 
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Double: The double precision name is DCRBCB. 

Example 
A real band matrix of order 3 in band storage mode with one upper codiagonal and one lower 
codiagonal is copied into another complex band matrix in band storage mode. 

      USE CRBCB_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, N, NLCA, NLCB, NUCA, NUCB 
      PARAMETER  (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1) 
! 
      REAL       A(LDA,N) 
      COMPLEX    B(LDB,N) 
!                                 Set values for  A (in band mode) 
!                                 A = (  0.0     1.0    1.0) 
!                                     (  1.0     1.0    1.0) 
!                                     (  1.0     1.0    0.0) 
! 
      DATA A/0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0/ 
!                                 Convert real band matrix A 
!                                 to complex band matrix B 
      CALL CRBCB (A, NLCA, NUCA, B, NLCB, NUCB) 
!                                 Print results 
      CALL WRCRN (’B’, B) 
      END 

Output 
                            B 
                 1                2                3 
1  ( 0.000, 0.000)  ( 1.000, 0.000)  ( 1.000, 0.000) 
2  ( 1.000, 0.000)  ( 1.000, 0.000)  ( 1.000, 0.000) 
3  ( 1.000, 0.000)  ( 1.000, 0.000)  ( 0.000, 0.000) 

Description 
The routine CRBCB converts a real band matrix in band storage mode with NUCA upper 
codiagonals and NLCA lower codiagonals into a complex band matrix in band storage mode with 
NUCB upper codiagonals and NLCB lower codiagonals. 

CSFRG 
Extends a real symmetric matrix defined in its upper triangle to its lower triangle. 

Required Arguments 
A — N by N symmetric matrix of order N to be filled out.   (Input/Output) 
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Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL CSFRG (A [,…]) 

Specific:  The specific interface names are S_CSFRG and D_CSFRG. 

FORTRAN 77 Interface 
Single: CALL CSFRG (N, A, LDA) 

Double: The double precision name is DCSFRG. 

Example 
The lower triangular portion of a real 3 � 3 symmetric matrix is filled with the values defined in 
its upper triangular portion. 

      USE CSFRG_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
! 
      REAL       A(LDA,N) 
!                                 Set values for  A 
!                                 A = (   0.0   3.0   4.0  ) 
!                                     (         1.0   5.0  ) 
!                                     (               2.0  ) 
! 
      DATA A/3*0.0, 3.0, 1.0, 0.0, 4.0, 5.0, 2.0/ 
!                                 Fill the lower portion of A 
      CALL CSFRG (A) 
!                                 Print results 
      CALL WRRRN (’A’, A) 
      END 

Output 
            A 
        1       2       3 
1   0.000   3.000   4.000 
2   3.000   1.000   5.000 
3   4.000   5.000   2.000 
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Description 
The routine CSFRG converts an N � N matrix A in symmetric mode into a general matrix by 
filling in the lower triangular portion of A using the values defined in its upper triangular 
portion. 

CHFCG 
Extends a complex Hermitian matrix defined in its upper triangle to its lower triangle. 

Required Arguments 
A — Complex Hermitian matrix of order N.   (Input/Output)  
On input, the upper triangle of A defines a Hermitian matrix. On output, the lower triangle of A 
is defined so that A is Hermitian. 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL CHFCG (A [,…]) 

Specific:  The specific interface names are S_CHFCG and D_CHFCG. 

FORTRAN 77 Interface 
Single: CALL CHFCG (N, A, LDA) 

Double: The double precision name is DCHFCG. 

Comments 
Informational errors 

Type  Code  

   3    1 The matrix is not Hermitian. It has a diagonal entry with a small 
 imaginary part. 

   4     2  The matrix is not Hermitian. It has a diagonal entry with an imaginary 
 part. 
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Example 
A complex 3 � 3 Hermitian matrix defined in its upper triangle is extended to its lower triangle. 

      USE CHFCG_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
! 
      COMPLEX    A(LDA,N) 
!                                 Set values for  A 
!                           A = (  1.0+0.0i  1.0+1.0i  1.0+2.0i  ) 
!                               (            2.0+0.0i  2.0+2.0i  ) 
!                               (                      3.0+0.0i  ) 
! 
      DATA A/(1.0,0.0), 2*(0.0,0.0), (1.0,1.0), (2.0,0.0), (0.0,0.0), & 
          (1.0,2.0), (2.0,2.0), (3.0,0.0)/ 
!                                 Fill in lower Hermitian matrix 
      CALL CHFCG (A) 
!                                 Print results 
      CALL WRCRN (’A’, A) 
      END 

Output 
                            A 
                 1                2                3 
1  ( 1.000, 0.000)  ( 1.000, 1.000)  ( 1.000, 2.000) 
2  ( 1.000,-1.000)  ( 2.000, 0.000)  ( 2.000, 2.000) 
3  ( 1.000,-2.000)  ( 2.000,-2.000)  ( 3.000, 0.000) 

Description 
The routine CHFCG converts an N � N complex matrix A in Hermitian mode into a complex 
general matrix by filling in the lower triangular portion of A using the values defined in its upper 
triangular portion. 

CSBRB 
Copies a real symmetric band matrix stored in band symmetric storage mode to a real band matrix 
stored in band storage mode. 

Required Arguments 
A — Real band symmetric matrix of order N.   (Input) 

NUCA — Number of codiagonals in A.   (Input) 

B — Real band matrix of order N containing a copy of A.   (Output) 

NLCB — Number of lower codiagonals in B.   (Input)  
NLCB must be at least as large as NUCA. 



 

 
 

1410 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY 

 

 

 

NUCB — Number of upper codiagonals in B.   (Input)  
NUCB must be at least as large as NUCA. 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL CSBRB (A, NUCA, B, NLCB, NUCB [,…]) 

Specific:  The specific interface names are S_CSBRB and D_CSBRB. 

FORTRAN 77 Interface 
Single: CALL CSBRB (N, A, LDA, NUCA, B, LDB, NLCB, NUCB) 

Double: The double precision name is DCSBRB. 

Example 
A real matrix of order 4 in band symmetric storage mode with 2 upper codiagonals is copied to 
a real matrix in band storage mode with 2 upper codiagonals and 2 lower codiagonals. 

      USE CSBRB_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, N, NLCB, NUCA, NUCB 
      PARAMETER  (N=4, NUCA=2, LDA=NUCA+1, NLCB=NUCA, NUCB=NUCA, & 
                LDB=NLCB+NUCB+1) 
! 
      REAL       A(LDA,N), B(LDB,N) 
!                          Set values for  A, in band mode 
!                          A = (  0.0  0.0  2.0  1.0 ) 
!                              (  0.0  2.0  3.0  1.0 ) 
!                              (  1.0  2.0  3.0  4.0 ) 
! 
      DATA A/2*0.0, 1.0, 0.0, 2.0, 2.0, 2.0, 3.0, 3.0, 1.0, 1.0, 4.0/ 
!                                 Copy A to B 
      CALL CSBRB (A, NUCA, B, NLCB, NUCB) 
!                                 Print results 
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      CALL WRRRN (’B’, B) 
      END 

Output 
               B 
        1       2       3       4 
1   0.000   0.000   2.000   1.000 
2   0.000   2.000   3.000   1.000 
3   1.000   2.000   3.000   4.000 
4   2.000   3.000   1.000   0.000 
5   2.000   1.000   0.000   0.000 

Description 
The routine CSBRB copies a real matrix A stored in symmetric band mode to a matrix B stored in 
band mode. The lower codiagonals of B are set using the values from the upper codiagonals of 
A. 

CHBCB 
Copies a complex Hermitian band matrix stored in band Hermitian storage mode to a complex 
band matrix stored in band storage mode. 

Required Arguments 
A — Complex band Hermitian matrix of order N.   (Input) 

NUCA — Number of codiagonals in A.   (Input) 

B — Complex band matrix of order N containing a copy of A.   (Output) 

NLCB — Number of lower codiagonals in B.   (Input)  
NLCB must be at least as large as NUCA. 

NUCB — Number of upper codiagonals in B.   (Input)  
NUCB must be at least as large as NUCA. 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 
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FORTRAN 90 Interface 
Generic: CALL CHBCB (A, NUCA, B, NLCB, NUCB [,…]) 

Specific:  The specific interface names are S_CHBCB and D_CHBCB. 

FORTRAN 77 Interface 
Single: CALL CHBCB (N, A, LDA, NUCA, B, LDB, NLCB, NUCB) 

Double: The double precision name is DCHBCB. 

Comments 
Informational errors 

Type  Code  

   3    1  An element on the diagonal has a complex part that is near zero, the complex 
 part is set to zero. 

   4    1  An element on the diagonal has a complex part that is not zero. 

Example 
A complex Hermitian matrix of order 3 in band Hermitian storage mode with one upper 
codiagonal is copied to a complex matrix in band storage mode. 

      USE CHBCB_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, N, NLCB, NUCA, NUCB 
      PARAMETER  (N=3, NUCA=1, LDA=NUCA+1, NLCB=NUCA, NUCB=NUCA, & 
                LDB=NLCB+NUCB+1) 
! 
      COMPLEX    A(LDA,N), B(LDB,N) 
!                                 Set values for  A (in band mode) 
!                           A = (  0.0+0.0i -1.0+1.0i -2.0+2.0i  ) 
!                               (  1.0+0.0i  1.0+0.0i  1.0+0.0i  ) 
! 
      DATA A/(0.0,0.0), (1.0,0.0), (-1.0,1.0), (1.0,0.0), (-2.0,2.0), & 
          (1.0,0.0)/ 
!                                 Copy a complex Hermitian band matrix 
!                                 to a complex band matrix 
      CALL CHBCB (A, NUCA, B, NLCB, NUCB) 
!                                 Print results 
      CALL WRCRN (’B’, B) 
      END 
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Output 
                            B 
                 1                2                3 
1  ( 0.000, 0.000)  (-1.000, 1.000)  (-2.000, 2.000) 
2  ( 1.000, 0.000)  ( 1.000, 0.000)  ( 1.000, 0.000) 
3  (-1.000,-1.000)  (-2.000,-2.000)  ( 0.000, 0.000) 

Description 
The routine CSBRB copies a complex matrix A stored in Hermitian band mode to a matrix B 
stored in complex band mode. The lower codiagonals of B are filled using the values in the 
upper codiagonals of A. 

TRNRR 
Transposes a rectangular matrix. 

Required Arguments 
A — Real NRA by NCA matrix in full storage mode.   (Input) 

B — Real NRB by NCB matrix in full storage mode containing the transpose of A.   (Output) 

Optional Arguments 
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NRB — Number of rows of B.   (Input)  
NRB must be equal to NCA. 
Default: NRB = size (B,1). 

NCB — Number of columns of B.   (Input)  
NCB must be equal to NRA. 
Default: NCB = size (B,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL TRNRR (A, B [,…]) 

Specific:  The specific interface names are S_TRNRR and D_TRNRR. 
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FORTRAN 77 Interface 
Single: CALL TRNRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB) 

Double: The double precision name is DTRNRR. 

Example 
Transpose the 5 � 3 real rectangular matrix A into the 3 � 5 real rectangular matrix B. 

      USE TRNRR_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    NCA, NCB, NRA, NRB 
      PARAMETER  (NCA=3, NCB=5, NRA=5, NRB=3) 
! 
      REAL       A(NRA,NCA), B(NRB,NCB) 
!                                 Set values for A 
!                                 A = ( 11.0  12.0  13.0 ) 
!                                     ( 21.0  22.0  23.0 ) 
!                                     ( 31.0  32.0  33.0 ) 
!                                     ( 41.0  42.0  43.0 ) 
!                                     ( 51.0  52.0  53.0 ) 
! 
      DATA A/11.0, 21.0, 31.0, 41.0, 51.0, 12.0, 22.0, 32.0, 42.0,& 
          52.0, 13.0, 23.0, 33.0, 43.0, 53.0/ 
!                                 B = transpose(A) 
      CALL TRNRR (A, B) 
!                                 Print results 
      CALL WRRRN (’B = trans(A)’, B) 
      END 

Output 
              B = trans(A) 
        1       2       3       4       5 
1   11.00   21.00   31.00   41.00   51.00 
2   12.00   22.00   32.00   42.00   52.00 
3   13.00   23.00   33.00   43.00   53.00 

Comments 
If LDA = LDB and NRA = NCA, then A and B can occupy the same storage locations; otherwise, A 
and B must be stored separately. 

Description 

The routine TRNRR computes the transpose B = AT of a real rectangular matrix A. 
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MXTXF 
Computes the transpose product of a matrix, ATA. 

Required Arguments 
A — Real NRA by NCA rectangular matrix.   (Input)  

The transpose product of A is to be computed. 

B — Real NB by NB symmetric matrix containing the transpose product ATA.   (Output) 

Optional Arguments 
NRA — Number of rows in A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns in A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NB — Order of the matrix B.   (Input)  
NB must be equal to NCA. 
Default: NB = size (B,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL MXTXF (A, B [,…]) 

Specific:  The specific interface names are S_MXTXF and D_MXTXF. 

FORTRAN 77 Interface 
Single: CALL MXTXF (NRA, NCA, A, LDA, NB, B, LDB) 

Double: The double precision name is DMXTXF. 



 

 
 

1416 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY 

 

 

 

Example 
Multiply the transpose of a 3 � 4 real matrix by itself. The output matrix will be a 4 � 4 real 
symmetric matrix. 

      USE MXTXF_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    NB, NCA, NRA 
      PARAMETER  (NB=4, NCA=4, NRA=3) 
! 
      REAL       A(NRA,NCA), B(NB,NB) 
!                                 Set values for A 
!                                 A = ( 3.0  1.0  4.0  2.0 ) 
!                                     ( 0.0  2.0  1.0 -1.0 ) 
!                                     ( 6.0  1.0  3.0  2.0 ) 
! 
      DATA A/3.0, 0.0, 6.0, 1.0, 2.0, 1.0, 4.0, 1.0, 3.0, 2.0, -1.0, & 
          2.0/ 
!                                 Compute B = trans(A)*A 
      CALL MXTXF (A, B) 
!                                 Print results 
      CALL WRRRN (’B = trans(A)*A’, B) 
      END 

Output 
         B = trans(A)*A 
        1       2       3       4 
1   45.00    9.00   30.00   18.00 
2    9.00    6.00    9.00    2.00 
3   30.00    9.00   26.00   13.00 
4   18.00    2.00   13.00    9.00 

Description 

The routine MXTXF computes the real general matrix B = ATA given the real rectangular matrix 
A. 

MXTYF 
Multiplies the transpose of matrix A by matrix B, ATB. 

Required Arguments 
A — Real NRA by NCA matrix.   (Input) 

B — Real NRB by NCB matrix.   (Input) 

C — Real NCA by NCB matrix containing the transpose product ATB.   (Output) 
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Optional Arguments 
NRA — Number of rows in A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns in A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NRB — Number of rows in B.   (Input)  
NRB must be the same as NRA. 
Default: NRB = size (B,1). 

NCB — Number of columns in B.   (Input) 
Default: NCB = size (B,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

NRC — Number of rows of C.   (Input)  
NRC must be equal to NCA. 
Default: NRC = size (C,1). 

NCC — Number of columns of C.   (Input)  
NCC must be equal to NCB. 
Default: NCC = size (C,2). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDC = size (C,1). 

FORTRAN 90 Interface 
Generic: CALL MXTYF (A, B, C [,…]) 

Specific:  The specific interface names are S_MXTYF and D_MXTYF. 

FORTRAN 77 Interface 
Single: CALL MXTYF (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,  

                 C, LDC) 

Double: The double precision name is DMXTYF. 
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Example 
Multiply the transpose of a 3 � 4 real matrix by a 3 � 3 real matrix. The output matrix will be a  
4 � 3 real matrix. 

      USE MXTYF_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    NCA, NCB, NCC, NRA, NRB, NRC 
      PARAMETER  (NCA=4, NCB=3, NCC=3, NRA=3, NRB=3, NRC=4) 
! 
      REAL       A(NRA,NCA), B(NRB,NCB), C(NRC,NCC) 
!                                 Set values for A 
!                                 A = ( 1.0  0.0  2.0  0.0 ) 
!                                     ( 3.0  4.0 -1.0  0.0 ) 
!                                     ( 2.0  1.0  2.0  1.0 ) 
! 
!                                 Set values for B 
!                                 B = ( -1.0  2.0  0.0 ) 
!                                     (  3.0  0.0 -1.0 ) 
!                                     (  0.0  5.0  2.0 ) 
! 
      DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, & 
          1.0/ 
      DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0/ 
!                                 Compute C = trans(A)*B 
      CALL MXTYF (A, B, C) 
!                                 Print results 
      CALL WRRRN (’C = trans(A)*B’, C) 
      END 

Output 
      C = trans(A)*B 
        1       2       3 
1    8.00   12.00    1.00 
2   12.00    5.00   -2.00 
3   -5.00   14.00    5.00 
4    0.00    5.00    2.00 

Description 

The routine MXTYF computes the real general matrix C = ATB given the real rectangular 
matrices A and B. 

MXYTF 
Multiplies a matrix A by the transpose of a matrix B, ABT. 

Required Arguments 
A — Real NRA by NCA rectangular matrix.   (Input) 
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B — Real NRB by NCB rectangular matrix.   (Input) 

C — Real NRC by NCC rectangular matrix containing the transpose product ABT.   (Output) 

Optional Arguments 
NRA — Number of rows in A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns in A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NRB — Number of rows in B.   (Input) 
Default: NRB = size (B,1). 

NCB — Number of columns in B.   (Input)  
NCB must be the same as NCA. 
Default: NCB = size (B,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

NRC — Number of rows of C.   (Input)  
NRC must be equal to NRA. 
Default: NRC = size (C,1). 

NCC — Number of columns of C.   (Input)  
NCC must be equal to NRB. 
Default: NCC = size (C,2). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDC = size (C,1). 

FORTRAN 90 Interface 
Generic: CALL MXYTF (A, B, C [,…]) 

Specific:  The specific interface names are S_MXYTF and D_MXYTF. 
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FORTRAN 77 Interface 
Single: CALL MXYTF (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,  

                 C, LDC) 

Double: The double precision name is DMXYTF. 

Example 
Multiply a 3 � 4 real matrix by the transpose of a 3 � 4 real matrix. The output matrix will be a  
3 � 3 real matrix. 

      USE MXYTF_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    NCA, NCB, NCC, NRA, NRB, NRC 
      PARAMETER  (NCA=4, NCB=4, NCC=3, NRA=3, NRB=3, NRC=3) 
! 
      REAL       A(NRA,NCA), B(NRB,NCB), C(NRC,NCC) 
!                                 Set values for A 
!                                 A = ( 1.0  0.0  2.0  0.0 ) 
!                                     ( 3.0  4.0 -1.0  0.0 ) 
!                                     ( 2.0  1.0  2.0  1.0 ) 
! 
!                                 Set values for B 
!                                 B = ( -1.0  2.0  0.0  2.0 ) 
!                                     (  3.0  0.0 -1.0 -1.0 ) 
!                                     (  0.0  5.0  2.0  5.0 ) 
! 
      DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, & 
          1.0/ 
      DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0, 2.0, -1.0, & 
          5.0/ 
!                                 Compute C = A*trans(B) 
      CALL MXYTF (A, B, C) 
!                                 Print results 
      CALL WRRRN (’C = A*trans(B)’, C) 
      END 

Output 
      C = A*trans(B) 
        1       2       3 
1   -1.00    1.00    4.00 
2    5.00   10.00   18.00 
3    2.00    3.00   14.00 

Description 

The routine MXYTF computes the real general matrix C = ABT given the real rectangular 
matrices A and B. 
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MRRRR 
Multiplies two real rectangular matrices, AB. 

Required Arguments 
A — Real NRA by NCA matrix in full storage mode.   (Input) 

B — Real NRB by NCB matrix in full storage mode.   (Input) 

C — Real NRC by NCC matrix containing the product AB in full storage mode.   (Output) 

Optional Arguments 
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NRB — Number of rows of B.   (Input) 
NRB must be equal to NCA. 
Default: NRB = size (B,1). 

NCB — Number of columns of B.   (Input) 
Default: NCB = size (B,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

NRC — Number of rows of C.   (Input)  
NRC must be equal to NRA. 
Default: NRC = size (C,1). 

NCC — Number of columns of C.   (Input)  
NCC must be equal to NCB. 
Default: NCC = size (C,2). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDC = size (C,1). 
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FORTRAN 90 Interface 
Generic: CALL MRRRR (A, B, C [,…]) 

Specific:  The specific interface names are S_MRRRR and D_MRRRR. 

FORTRAN 77 Interface 
Single: CALL MRRRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,  

C, LDC) 

Double: The double precision name is DMRRRR. 

Example 
Multiply a 3 � 4 real matrix by a 4 � 3 real matrix. The output matrix will be a 3 � 3 real matrix. 

      USE MRRRR_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    NCA, NCB, NCC, NRA, NRB, NRC 
      PARAMETER  (NCA=4, NCB=3, NCC=3, NRA=3, NRB=4, NRC=3) 
! 
      REAL       A(NRA,NCA), B(NRB,NCB), C(NRC,NCC) 
!                                 Set values for A 
!                                 A = ( 1.0  0.0  2.0  0.0 ) 
!                                     ( 3.0  4.0 -1.0  0.0 ) 
!                                     ( 2.0  1.0  2.0  1.0 ) 
! 
!                                 Set values for B 
!                                 B = ( -1.0  0.0  2.0 ) 
!                                     (  3.0  5.0  2.0 ) 
!                                     (  0.0  0.0 -1.0 ) 
!                                     (  2.0 -1.0  5.0 ) 
! 
      DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, & 
          1.0/ 
      DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0, 2.0, -1.0, & 
          5.0/ 
!                                 Compute C = A*B 
      CALL MRRRR (A, B, C) 
!                                 Print results 
      CALL WRRRN (’C = A*B’, C) 
      END 

Output 
          C = A*B 
        1       2       3 
1   -1.00    0.00    0.00 
2    9.00   20.00   15.00 
3    3.00    4.00    9.00 
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Description 
Given the real rectangular matrices A and B, MRRRR computes the real rectangular matrix C = 
AB. 

MCRCR 
Multiplies two complex rectangular matrices, AB. 

Required Arguments 
A — Complex NRA by NCA rectangular matrix.   (Input) 

B — Complex NRB by NCB rectangular matrix.   (Input) 

C — Complex NRC by NCC rectangular matrix containing the product A * B.   (Output) 

Optional Arguments 
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NRB — Number of rows of B.   (Input)  
NRB must be equal to NCA. 
Default: NRB = size (B,1). 

NCB — Number of columns of B.   (Input) 
Default: NCB = size (B,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

NRC — Number of rows of C.   (Input)  
NRC must be equal to NRA. 
Default: NRC = size (C,1). 

NCC — Number of columns of C.   (Input)  
NCC must be equal to NCB. 
Default: NCC = size (C,2). 
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LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDC = size (C,1). 

FORTRAN 90 Interface 
Generic: CALL MCRCR (A, B, C [,…]) 

Specific:  The specific interface names are S_MCRCR and D_MCRCR. 

FORTRAN 77 Interface 
Single: CALL MCRCR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,  

     C, LDC) 

Double: The double precision name is DMCRCR. 

Example 
Multiply a 3 � 4 complex matrix by a 4 � 3 complex matrix. The output matrix will be a 3 � 3 
complex matrix. 

      USE MCRCR_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    NCA, NCB, NCC, NRA, NRB, NRC 
      PARAMETER  (NCA=4, NCB=3, NCC=3, NRA=3, NRB=4, NRC=3) 
! 
      COMPLEX    A(NRA,NCA), B(NRB,NCB), C(NRC,NCC) 
!                                 Set values for A 
!            A = ( 1.0 + 1.0i  -1.0+ 2.0i  0.0 + 1.0i  0.0 - 2.0i ) 
!                ( 3.0 + 7.0i  6.0 - 4.0i  2.0 - 1.0i  0.0 + 1.0i ) 
!                ( 1.0 + 0.0i  1.0 - 2.0i  -2.0+ 0.0i  0.0 + 0.0i ) 
! 
!                                 Set values for B 
!            B = ( 2.0 + 1.0i  3.0 + 2.0i  3.0 + 1.0i ) 
!                ( 2.0 - 1.0i  4.0 - 2.0i  5.0 - 3.0i ) 
!                ( 1.0 + 0.0i  0.0 - 1.0i  0.0 + 1.0i ) 
!                ( 2.0 + 1.0i  1.0 + 2.0i  0.0 - 1.0i ) 
! 
      DATA A/(1.0,1.0), (3.0,7.0), (1.0,0.0), (-1.0,2.0), (6.0,-4.0), & 
          (1.0,-2.0), (0.0,1.0), (2.0,-1.0), (-2.0,0.0), (0.0,-2.0), & 
          (0.0,1.0), (0.0,0.0)/ 
      DATA B/(2.0,1.0), (2.0,-1.0), (1.0,0.0), (2.0,1.0), (3.0,2.0), &  
          (4.0,-2.0), (0.0,-1.0), (1.0,2.0), (3.0,1.0), (5.0,-3.0), & 
          (0.0,1.0), (0.0,-1.0)/ 
!                                 Compute C = A*B 
      CALL MCRCR (A, B, C) 
!                                 Print results 
      CALL WRCRN (’C = A*B’, C) 
      END 
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Output 
                     C = A*B 
                 1                2                3 
1  (  3.00,  5.00)  (  6.00, 13.00)  (  0.00, 17.00) 
2  (  8.00,  4.00)  (  8.00, -2.00)  ( 22.00,-12.00) 
3  (  0.00, -4.00)  (  3.00, -6.00)  (  2.00,-14.00) 

Description 
Given the complex rectangular matrices A and B, MCRCR computes the complex rectangular 
matrix C = AB. 

HRRRR 
Computes the Hadamard product of two real rectangular matrices. 

Required Arguments 
A — Real NRA by NCA rectangular matrix.   (Input) 

B — Real NRB by NCB rectangular matrix.   (Input) 

C — Real NRC by NCC rectangular matrix containing the Hadamard product of A and B.   
(Output)  
If A is not needed, then C can share the same storage locations as A. Similarly, if B is 
not needed, then C can share the same storage locations as B. 

Optional Arguments 
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NRB — Number of rows of B.   (Input) 
NRB must be equal to NRA. 
Default: NRB = size (B,1). 

NCB — Number of columns of B.   (Input) 
NCB must be equal to NCA. 
Default: NCB = size (B,2). 
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LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

NRC — Number of rows of C.   (Input)  
NRC must be equal to NRA. 
Default: NRC = size (C,1). 

NCC — Number of columns of C.   (Input)  
NCC must be equal to NCA. 
Default: NCC = size (C,2). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDC = size (C,1). 

FORTRAN 90 Interface 
Generic: CALL HRRRR (A, B, C [,…]) 

Specific:  The specific interface names are S_HRRRR and D_HRRRR. 

FORTRAN 77 Interface 
Single: CALL HRRRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,  

     C, LDC) 

Double: The double precision name is DHRRRR. 

Example 
Compute the Hadamard product of two 4 � 4 real matrices. The output matrix will be a 4 � 4 
real matrix. 

      USE HRRRR_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    NCA, NCB, NCC, NRA, NRB, NRC 
      PARAMETER  (NCA=4, NCB=4, NCC=4, NRA=4, NRB=4, NRC=4) 
! 
      REAL       A(NRA,NCA), B(NRB,NCB), C(NRC,NCC) 
!                                 Set values for A 
!                                 A = ( -1.0  0.0 -3.0  8.0 ) 
!                                     (  2.0  1.0  7.0  2.0 ) 
!                                     (  3.0 -2.0  2.0 -6.0 ) 
!                                     (  4.0  1.0 -5.0 -8.0 ) 
! 
!                                 Set values for B 
!                                 B = (  2.0  3.0  0.0 -10.0 ) 
!                                     (  1.0 -1.0  4.0   2.0 ) 
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!                                     ( -1.0 -2.0  7.0   1.0 ) 
!                                     (  2.0  1.0  9.0   0.0 ) 
! 
      DATA A/-1.0, 2.0, 3.0, 4.0, 0.0, 1.0, -2.0, 1.0, -3.0, 7.0, 2.0, & 
          -5.0, 8.0, 2.0, -6.0, -8.0/ 
      DATA B/2.0, 1.0, -1.0, 2.0, 3.0, -1.0, -2.0, 1.0, 0.0, 4.0, 7.0, & 
          9.0, -10.0, 2.0, 1.0, 0.0/ 
!                                 Compute Hadamard product of A and B 
      CALL HRRRR (A, B, C) 
!                                 Print results 
      CALL WRRRN (’C = A (*) B’, C) 
      END 

Output 
            C = A (*) B 
        1       2       3       4 
1   -2.00    0.00    0.00  -80.00 
2    2.00   -1.00   28.00    4.00 
3   -3.00    4.00   14.00   -6.00 
4    8.00    1.00  -45.00    0.00 

Description 
The routine HRRRR computes the Hadamard product of two real matrices A and B and returns a 
real matrix C, where Cij = AijBij. 

BLINF 
This function computes the bilinear form xTAy. 

Function Return Value 

BLINF — The value of xTAy is returned in BLINF.   (Output) 

Required Arguments 
A — Real NRA by NCA matrix.   (Input) 

X — Real vector of length NRA.   (Input) 

Y — Real vector of length NCA.   (Input) 

Optional Arguments 
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: BLINF (A, X, Y [,…]) 

Specific:  The specific interface names are S_BLINF and D_BLINF. 

FORTRAN 77 Interface 
Single: BLINF(NRA, NCA, A, LDA, X, Y) 

Double: The double precision name is DBLINF. 

Example 

Compute the bilinear form xTAy, where x is a vector of length 5, A is a 5 � 2 matrix and y is a 
vector of length 2. 

      USE BLINF_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NCA, NRA 
      PARAMETER  (NCA=2, NRA=5) 
! 
      INTEGER    NOUT 
      REAL       A(NRA,NCA), VALUE, X(NRA), Y(NCA) 
!                                 Set values for A 
!                                 A = ( -2.0  2.0 ) 
!                                     (  3.0 -6.0 ) 
!                                     ( -4.0  7.0 ) 
!                                     (  1.0 -8.0 ) 
!                                     (  0.0 10.0 ) 
!                                 Set values for X 
!                                 X = (  1.0 -2.0  3.0 -4.0 -5.0 ) 
!                                 Set values for Y 
!                                 Y = ( -6.0  3.0 ) 
! 
      DATA A/-2.0, 3.0, -4.0, 1.0, 0.0, 2.0, -6.0, 7.0, -8.0, 10.0/ 
      DATA X/1.0, -2.0, 3.0, -4.0, -5.0/ 
      DATA Y/-6.0, 3.0/ 
!                                 Compute bilinear form 
      VALUE = BLINF(A,X,Y) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’ The bilinear form trans(x)*A*y = ’, VALUE 
      END 
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Output 
The bilinear form trans(x)*A*y =     195.000 

Comments 
The quadratic form can be computed by calling BLINF with the vector X in place of the vector Y. 

Description 
Given the real rectangular matrix A and two vectors x and y, BLINF computes the bilinear form 
xTAy. 

POLRG 
Evaluates a real general matrix polynomial. 

Required Arguments 
A — N by N matrix for which the polynomial is to be computed.   (Input) 

COEF — Vector of length NCOEF containing the coefficients of the polynomial in order of 
increasing power.   (Input) 

B — N by N matrix containing the value of the polynomial evaluated at A.   (Output) 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,1). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NCOEF — Number of coefficients.   (Input) 
Default: NCOEF = size (COEF,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL POLRG (A, COEF, B [,…]) 

Specific:  The specific interface names are S_POLRG and D_POLRG. 
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FORTRAN 77 Interface 
Single: CALL POLRG (N, A, LDA, NCOEF, COEF, B, LDB) 

Double: The double precision name is DPOLRG. 

Example 
This example evaluates the matrix polynomial 3I + A + 2A�, where A is a 3 � 3 matrix. 

      USE POLRG_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, N, NCOEF 
      PARAMETER  (N=3, NCOEF=3, LDA=N, LDB=N) 
! 
      REAL       A(LDA,N), B(LDB,N), COEF(NCOEF) 
!                                 Set values of A and COEF 
! 
!                                 A = (  1.0    3.0    2.0  ) 
!                                     ( -5.0    1.0    7.0  ) 
!                                     (  1.0    5.0   -4.0  ) 
! 
!                                 COEF = (3.0, 1.0, 2.0) 
! 
      DATA A/1.0, -5.0, 1.0, 3.0, 1.0, 5.0, 2.0, 7.0, -4.0/ 
      DATA COEF/3.0, 1.0, 2.0/ 
! 
!                                 Evaluate B = 3I + A + 2*A**2 
      CALL POLRG (A, COEF, B) 
!                                 Print B 
      CALL WRRRN (’B = 3I + A + 2*A**2’, B) 
      END 

Output 
    B = 3I + A + 2*A**2 
        1       2       3 
1   -20.0    35.0    32.0 
2   -11.0    46.0   -55.0 
3   -55.0   -19.0   105.0 

Comments 
Workspace may be explicitly provided, if desired, by use of P2LRG/DP2LRG. The reference is 

CALL P2LRG (N, A, LDA, NCOEF, COEF, B, LDB, WORK) 

The additional argument is 

WORK — Work vector of length N * N. 

Description 
Let m = NCOEF and c = COEF. 
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The routine POLRG computes the matrix polynomial 
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using Horner’s scheme 
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where I is the N � N identity matrix. 

MURRV 
Multiplies a real rectangular matrix by a vector. 

Required Arguments 
A — Real NRA by NCA rectangular matrix.   (Input) 

X — Real vector of length NX.   (Input) 

Y — Real vector of length NY containing the product A * X if IPATH is equal to 1 and the 
product trans(A) * X if IPATH is equal to 2.   (Output) 

Optional Arguments 
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NX — Length of the vector X.   (Input)  
NX must be equal to NCA if IPATH is equal to 1. NX must be equal to NRA if IPATH is 
equal to 2. 
Default: NX = size (X,1). 

IPATH — Integer flag.   (Input)  
IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product  
Y = trans(A) * X is computed, where trans(A) is the transpose of A. 
Default: IPATH =1. 

NY — Length of the vector Y.   (Input)  
NY must be equal to NRA if IPATH is equal to 1. NY must be equal to NCA if IPATH is 
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equal to 2. 
Default: NY = size (Y,1). 

FORTRAN 90 Interface 
Generic: CALL MURRV (A, X, Y [,…]) 

Specific:  The specific interface names are S_MURRV and D_MURRV. 

FORTRAN 77 Interface 
Single: CALL MURRV (NRA, NCA, A, LDA, NX, X, IPATH, NY, Y) 

Double: The double precision name is DMURRV. 

Example 
Multiply a 3 � 3 real matrix by a real vector of length 3. The output vector will be a real vector 
of length 3. 

      USE MURRV_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, NCA, NRA, NX, NY 
      PARAMETER  (NCA=3, NRA=3, NX=3, NY=3) 
! 
      INTEGER    IPATH 
      REAL       A(NRA,NCA), X(NX), Y(NY) 
!                                 Set values for A and X 
!                                 A = ( 1.0  0.0  2.0 ) 
!                                     ( 0.0  3.0  0.0 ) 
!                                     ( 4.0  1.0  2.0 ) 
! 
!                                 X = ( 1.0  2.0  1.0 ) 
! 
! 
      DATA A/1.0, 0.0, 4.0, 0.0, 3.0, 1.0, 2.0, 0.0, 2.0/ 
      DATA X/1.0, 2.0, 1.0/ 
!                                 Compute y = Ax 
      IPATH = 1 
      CALL MURRV (A, X, Y) 
!                                 Print results 
      CALL WRRRN (’y = Ax’, Y, 1, NY, 1) 
      END 

Output 
        y = Ax 
    1       2       3 
3.000   6.000   8.000 
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Description 
If IPATH = 1, MURRV computes y = Ax, where A is a real general matrix and x and y are real 
vectors. If IPATH = 2, MURRV computes y = ATx. 

MURBV 
Multiplies a real band matrix in band storage mode by a real vector. 

Required Arguments 
A — Real NLCA + NUCA + 1 by N band matrix stored in band mode.   (Input) 

NLCA — Number of lower codiagonals in A.   (Input) 

NUCA — Number of upper codiagonals in A.   (Input) 

X — Real vector of length NX.   (Input) 

Y — Real vector of length NY containing the product A * X if IPATH is equal to 1 and the 
product trans(A) * X if IPATH is equal to 2.   (Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NX — Length of the vector X.   (Input)  
NX must be equal to N. 
Default: NX = size (X,1). 

IPATH — Integer flag.   (Input)  
IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product Y = 
trans(A) * X is computed, where trans(A) is the transpose of A. 
Default: IPATH = 1. 

NY — Length of vector Y.   (Input)  
NY must be equal to N. 
Default: NY = size (Y,1). 

FORTRAN 90 Interface 
Generic: CALL MURBV (A, NLCA, NUCA, X, Y [,…]) 
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Specific:  The specific interface names are S_MURBV and D_MURBV. 

FORTRAN 77 Interface 
Single: CALL MURBV (N, A, LDA, NLCA, NUCA, NX, X, IPATH, NY, Y) 

Double: The double precision name is DMURBV. 

Example 
Multiply a real band matrix of order 6, with two upper codiagonals and two lower codiagonals 
stored in band mode, by a real vector of length 6. The output vector will be a real vector of 
length 6. 

      USE MURBV_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, N, NLCA, NUCA, NX, NY 
      PARAMETER  (LDA=5, N=6, NLCA=2, NUCA=2, NX=6, NY=6) 
! 
      INTEGER    IPATH 
      REAL       A(LDA,N), X(NX), Y(NY) 
!                                 Set values for A (in band mode) 
!                                 A = ( 0.0  0.0  1.0  2.0  3.0  4.0 ) 
!                                     ( 0.0  1.0  2.0  3.0  4.0  5.0 ) 
!                                     ( 1.0  2.0  3.0  4.0  5.0  6.0 ) 
!                                     (-1.0 -2.0 -3.0 -4.0 -5.0  0.0 ) 
!                                     (-5.0 -6.0 -7.0 -8.0  0.0  0.0 ) 
! 
!                                 Set values for X 
!                                 X = (-1.0  2.0 -3.0  4.0 -5.0  6.0 ) 
! 
      DATA A/0.0, 0.0, 1.0, -1.0, -5.0, 0.0, 1.0, 2.0, -2.0, -6.0, & 
          1.0, 2.0, 3.0, -3.0, -7.0, 2.0, 3.0, 4.0, -4.0, -8.0, 3.0, & 
          4.0, 5.0, -5.0, 0.0, 4.0, 5.0, 6.0, 0.0, 0.0/ 
      DATA X/-1.0, 2.0, -3.0, 4.0, -5.0, 6.0/ 
!                                 Compute y = Ax 
      IPATH = 1 
      CALL MURBV (A, NLCA, NUCA, X, Y) 
!                                 Print results 
      CALL WRRRN (’y = Ax’, Y, 1, NY, 1) 
      END 

Output 
                     y = Ax 
    1       2       3       4       5       6 
-2.00    7.00  -11.00   17.00   10.00   29.00 

Description 
If IPATH = 1, MURBV computes y = Ax, where A is a real band matrix and x and y are real 
vectors. If IPATH = 2, MURBV computes y = ATx. 
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MUCRV 
Multiplies a complex rectangular matrix by a complex vector. 

Required Arguments 
A — Complex NRA by NCA rectangular matrix.   (Input) 

X — Complex vector of length NX.   (Input) 

Y — Complex vector of length NY containing the product A * X if IPATH is equal to 1 and the 
product trans(A) * X if IPATH is equal to 2.   (Output) 

Optional Arguments 
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NX — Length of the vector X.   (Input)  
NX must be equal to NCA if IPATH is equal to 1. NX must be equal to NRA if IPATH is 
equal to 2. 
Default: NX = size (X,1). 

IPATH — Integer flag.   (Input)  
IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product Y = 
trans(A) * X is computed, where trans(A) is the transpose of A. 
Default: IPATH =1. 

NY — Length of the vector Y.   (Input)  
NY must be equal to NRA if IPATH is equal to 1. NY must be equal to NCA if IPATH is 
equal to 2. 
Default: NY = size (Y,1). 

FORTRAN 90 Interface 
Generic: CALL MUCRV (A, X, Y [,…]) 

Specific:  The specific interface names are S_MUCRV and D_MUCRV. 
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FORTRAN 77 Interface 
Single: CALL MUCRV (NRA, NCA, A, LDA, NX, X, IPATH, NY, Y) 

Double: The double precision name is DMUCRV. 

Example 
Multiply a 3 � 3 complex matrix by a complex vector of length 3. The output vector will be a 
complex vector of length 3. 

      USE MUCRV_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    NCA, NRA, NX, NY 
      PARAMETER  (NCA=3, NRA=3, NX=3, NY=3) 
! 
      INTEGER    IPATH 
      COMPLEX    A(NRA,NCA), X(NX), Y(NY) 
! 
!                                 Set values for A and X 
!            A = ( 1.0 + 2.0i  3.0 + 4.0i  1.0 + 0.0i ) 
!                ( 2.0 + 1.0i  3.0 + 2.0i  0.0 - 1.0i ) 
!                ( 2.0 - 1.0i  1.0 + 0.0i  0.0 + 1.0i ) 
! 
!            X = ( 1.0 - 1.0i  2.0 - 2.0i  0.0 - 1.0i ) 
! 
      DATA A/(1.0,2.0), (2.0,1.0), (2.0,-1.0), (3.0,4.0), (3.0,2.0), & 
          (1.0,0.0), (1.0,0.0), (0.0,-1.0), (0.0,1.0)/ 
      DATA X/(1.0,-1.0), (2.0,-2.0), (0.0,-1.0)/ 
!                                 Compute y = Ax 
      IPATH = 1 
      CALL MUCRV (A, X, Y) 
!                                 Print results 
      CALL WRCRN (’y = Ax’, Y, 1, NY, 1) 
      END 

Output 
                     y = Ax 
              1                2                3 
( 17.00,  2.00)  ( 12.00, -3.00)  (  4.00, -5.00) 

Description 
If IPATH = 1, MUCRV computes y = Ax, where A is a complex general matrix and x and y are 
complex vectors. If IPATH = 2, MUCRV computes y = ATx. 

MUCBV 
Multiplies a complex band matrix in band storage mode by a complex vector. 
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Required Arguments 
A — Complex NLCA + NUCA + 1 by N band matrix stored in band mode.   (Input) 

NLCA — Number of lower codiagonals in A.   (Input) 

NUCA — Number of upper codiagonals in A.   (Input) 

X — Complex vector of length NX.   (Input) 

Y — Complex vector of length NY containing the product A * X if IPATH is equal to 1 and the 
product trans(A) * X if IPATH is equal to 2.   (Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

NX — Length of the vector X.   (Input)  
NX must be equal to N. 
Default: NX = size (X,1). 

IPATH — Integer flag.   (Input)  
IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product  
Y = trans(A) * X is computed, where trans(A) is the transpose of A. 
Default: IPATH = 1. 

NY — Length of vector Y.   (Input)  
NY must be equal to N. 
Default: NY = size (Y,1). 

FORTRAN 90 Interface 
Generic: CALL MUCBV (A, NLCA, NUCA, X, Y [,…]) 

Specific:  The specific interface names are S_MUCBV and D_MUCBV. 

FORTRAN 77 Interface 
Single: CALL MUCBV (N, A, LDA, NLCA, NUCA, NX, X, IPATH, NY, Y) 

Double: The double precision name is DMUCBV. 
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Example 
Multiply the transpose of a complex band matrix of order 4, with one upper codiagonal and two 
lower codiagonals stored in band mode, by a complex vector of length 3. The output vector will 
be a complex vector of length 3. 

      USE MUCBV_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, N, NLCA, NUCA, NX, NY 
      PARAMETER  (LDA=4, N=4, NLCA=2, NUCA=1, NX=4, NY=4) 
! 
      INTEGER    IPATH 
      COMPLEX    A(LDA,N), X(NX), Y(NY) 
!                                   Set values for A (in band mode) 
!            A = (  0.0+ 0.0i   1.0+ 2.0i   3.0+ 4.0i   5.0+ 6.0i ) 
!                ( -1.0- 1.0i  -1.0- 1.0i  -1.0- 1.0i  -1.0- 1.0i ) 
!                ( -1.0+ 2.0i  -1.0+ 3.0i  -2.0+ 1.0i   0.0+ 0.0i ) 
!                (  2.0+ 0.0i   0.0+ 2.0i   0.0+ 0.0i   0.0+ 0.0i ) 
! 
!                                  Set values for X 
!            X = ( 3.0 + 4.0i  0.0 + 0.0i  1.0 + 2.0i  -2.0 - 1.0i ) 
! 
      DATA A/(0.0,0.0), (-1.0,-1.0), (-1.0,2.0), (2.0,0.0), (1.0,2.0), & 
          (-1.0,-1.0), (-1.0,3.0), (0.0,2.0), (3.0,4.0), (-1.0,-1.0), & 
          (-2.0,1.0), (0.0,0.0), (5.0,6.0), (-1.0,-1.0), (0.0,0.0), & 
          (0.0,0.0)/ 
      DATA X/(3.0,4.0), (0.0,0.0), (1.0,2.0), (-2.0,-1.0)/ 
!                                 Compute y = Ax 
      IPATH = 2 
      CALL MUCBV (A, NLCA, NUCA, X, Y, IPATH=IPATH) 
!                                 Print results 
      CALL WRCRN (’y = Ax’, Y, 1, NY, 1) 
      END 

Output 
                             y = Ax 
              1                2                3                4 
(  3.00, -3.00)  (-10.00,  7.00)  (  6.00, -3.00)  ( -6.00, 19.00) 

Description 
If IPATH = 1, MUCBV computes y = Ax, where A is a complex band matrix and x and y are 
complex vectors. If IPATH = 2, MUCBV computes y = ATx. 

ARBRB 
Adds two band matrices, both in band storage mode. 

Required Arguments 
A — N by N band matrix with NLCA lower codiagonals and NUCA upper codiagonals stored in 

band mode with dimension (NLCA + NUCA + 1) by N.   (Input) 
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NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

B — N by N band matrix with NLCB lower codiagonals and NUCB upper codiagonals stored in 
band mode with dimension (NLCB + NUCB + 1) by N.   (Input) 

NLCB — Number of lower codiagonals of B.   (Input) 

NUCB — Number of upper codiagonals of B.   (Input) 

C — N by N band matrix with NLCC lower codiagonals and NUCC upper codiagonals 
containing the sum A + B in band mode with dimension (NLCC + NUCC + 1) by N.   
(Output) 

NLCC — Number of lower codiagonals of C.   (Input)  
NLCC must be at least as large as max(NLCA, NLCB). 

NUCC — Number of upper codiagonals of C.   (Input)  
NUCC must be at least as large as max(NUCA, NUCB). 

Optional Arguments  
N — Order of the matrices A, B and C.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDC = size (C,1). 

FORTRAN 90 Interface 
Generic: CALL ARBRB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC,        

            NUCC [,…]) 

Specific:  The specific interface names are S_ARBRB and D_ARBRB. 
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FORTRAN 77 Interface 
Single: CALL ARBRB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C,  

     LDC, NLCC, NUCC) 

Double: The double precision name is DARBRB. 

Example 
Add two real matrices of order 4 stored in band mode. Matrix A has one upper codiagonal and 
one lower codiagonal. Matrix B has no upper codiagonals and two lower codiagonals. The 
output matrix C, has one upper codiagonal and two lower codiagonals. 

      USE ARBRB_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, LDC, N, NLCA, NLCB, NLCC, NUCA, NUCB, NUCC 
      PARAMETER  (LDA=3, LDB=3, LDC=4, N=4, NLCA=1, NLCB=2, NLCC=2, & 
                NUCA=1, NUCB=0, NUCC=1) 
! 
      REAL       A(LDA,N), B(LDB,N), C(LDC,N) 
!                                 Set values for  A (in band mode) 
!                                 A = (  0.0     2.0    3.0   -1.0) 
!                                     (  1.0     1.0    1.0    1.0) 
!                                     (  0.0     3.0    4.0    0.0) 
! 
!                                 Set values for  B (in band mode) 
!                                 B = (  3.0     3.0    3.0    3.0) 
!                                     (  1.0    -2.0    1.0    0.0) 
!                                     ( -1.0     2.0    0.0    0.0) 
! 
      DATA A/0.0, 1.0, 0.0, 2.0, 1.0, 3.0, 3.0, 1.0, 4.0, -1.0, 1.0, & 
          0.0/ 
      DATA B/3.0, 1.0, -1.0, 3.0, -2.0, 2.0, 3.0, 1.0, 0.0, 3.0, 0.0, & 
          0.0/ 
!                                 Add A and B to obtain C (in band 
!                                                          mode) 
      CALL ARBRB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC) 
!                                 Print results 
      CALL WRRRN (’C = A+B’, C) 
      END 

Output 
             C = A+B 
        1       2       3       4 
1   0.000   2.000   3.000  -1.000 
2   4.000   4.000   4.000   4.000 
3   1.000   1.000   5.000   0.000 
4  -1.000   2.000   0.000   0.000 

Description 
The routine ARBRB adds two real matrices stored in band mode, returning a real matrix stored in 
band mode. 
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ACBCB 
Adds two complex band matrices, both in band storage mode. 

Required Arguments 
A — N by N complex band matrix with NLCA lower codiagonals and NUCA upper codiagonals 

stored in band mode with dimension (NLCA + NUCA + 1) by N.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

B — N by N complex band matrix with NLCB lower codiagonals and NUCB upper codiagonals 
stored in band mode with dimension (NLCB + NUCB + 1) by N.   (Input) 

NLCB — Number of lower codiagonals of B.   (Input) 

NUCB — Number of upper codiagonals of B.   (Input) 

C — N by N complex band matrix with NLCC lower codiagonals and NUCC upper codiagonals 
containing the sum A + B in band mode with dimension (NLCC + NUCC + 1) by N.   
(Output) 

NLCC — Number of lower codiagonals of C.   (Input)  
NLCC must be at least as large as max(NLCA, NLCB). 

NUCC — Number of upper codiagonals of C.   (Input)  
NUCC must be at least as large as max(NUCA, NUCB). 

Optional Arguments 
N — Order of the matrices A, B and C.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDC = size (C,1). 
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FORTRAN 90 Interface 
Generic: CALL ACBCB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC,         

            NUCC [,…]) 

Specific:  The specific interface names are S_ACBCB and D_ACBCB. 

FORTRAN 77 Interface 
Single: CALL ACBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C,  

                 LDC, NLCC, NUCC) 

Double: The double precision name is DACBCB. 

Example 
Add two complex matrices of order 4 stored in band mode. Matrix A has two upper codiagonals 
and no lower codiagonals. Matrix B has no upper codiagonals and two lower codiagonals. The 
output matrix C has two upper codiagonals and two lower codiagonals. 

      USE ACBCB_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDB, LDC, N, NLCA, NLCB, NLCC, NUCA, NUCB, NUCC 
      PARAMETER  (LDA=3, LDB=3, LDC=5, N=3, NLCA=0, NLCB=2, NLCC=2, & 
                NUCA=2, NUCB=0, NUCC=2) 
! 
      COMPLEX    A(LDA,N), B(LDB,N), C(LDC,N) 
!                                 Set values for A (in band mode) 
!                 A = ( 0.0 + 0.0i  0.0 + 0.0i  3.0 - 2.0i ) 
!                     ( 0.0 + 0.0i  -1.0+ 3.0i  6.0 + 0.0i ) 
!                     ( 1.0 + 4.0i  5.0 - 2.0i  3.0 + 1.0i ) 
! 
!                                 Set values for B (in band mode) 
!                 B = ( 3.0 + 1.0i  4.0 + 1.0i  7.0 - 1.0i ) 
!                     ( -1.0- 4.0i  9.0 + 3.0i  0.0 + 0.0i ) 
!                     ( 2.0 - 1.0i  0.0 + 0.0i  0.0 + 0.0i ) 
! 
      DATA A/(0.0,0.0), (0.0,0.0), (1.0,4.0), (0.0,0.0), (-1.0,3.0), & 
          (5.0,-2.0), (3.0,-2.0), (6.0,0.0), (3.0,1.0)/ 
      DATA B/(3.0,1.0), (-1.0,-4.0), (2.0,-1.0), (4.0,1.0), (9.0,3.0), & 
          (0.0,0.0), (7.0,-1.0), (0.0,0.0), (0.0,0.0)/ 
!                                 Compute C = A+B 
      CALL ACBCB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC) 
!                                 Print results 
      CALL WRCRN (’C = A+B’, C) 
      END 

Output 
                        C = A+B 
                 1                2                3 
1  (  0.00,  0.00)  (  0.00,  0.00)  (  3.00, -2.00) 
2  (  0.00,  0.00)  ( -1.00,  3.00)  (  6.00,  0.00) 
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3  (  4.00,  5.00)  (  9.00, -1.00)  ( 10.00,  0.00) 
4  ( -1.00, -4.00)  (  9.00,  3.00)  (  0.00,  0.00) 
5  (  2.00, -1.00)  (  0.00,  0.00)  (  0.00,  0.00) 

Description 
The routine ACBCB adds two complex matrices stored in band mode, returning a complex matrix 
stored in band mode. 

NRIRR 
Computes the infinity norm of a real matrix. 

Required Arguments 
A — Real NRA by NCA matrix whose infinity norm is to be computed.   (Input) 

ANORM — Real scalar containing the infinity norm of A.   (Output) 

Optional Arguments  
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL NRIRR (A, ANORM [,…]) 

Specific:  The specific interface names are S_NRIRR and D_NRIRR. 

FORTRAN 77 Interface 
Single: CALL NRIRR (NRA, NCA, A, LDA, ANORM) 

Double: The double precision name is DNRIRR. 

Example 
Compute the infinity norm of a 3 � 4 real rectangular matrix. 
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      USE NRIRR_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NCA, NRA 
      PARAMETER  (NCA=4, NRA=3) 
! 
      INTEGER    NOUT 
      REAL       A(NRA,NCA), ANORM 
! 
!                                 Set values for A 
!                                 A = ( 1.0  0.0  2.0  0.0 ) 
!                                     ( 3.0  4.0 -1.0  0.0 ) 
!                                     ( 2.0  1.0  2.0  1.0 ) 
! 
      DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, & 
          1.0/ 
!                                 Compute the infinity norm of A 
      CALL NRIRR (A, ANORM) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’ The infinity norm of A is ’, ANORM 
      END 

Output 
The infinity norm of A is     8.00000 

Description 
The routine NRIRR computes the infinity norm of a real rectangular matrix A. If m = NRA and  
n = NCA, then the �-norm of A is 

1 1

max
n

iji m j

A A
�

� �
�

� �  

This is the maximum of the sums of the absolute values of the row elements. 

NR1RR 
Computes the 1-norm of a real matrix. 

Required Arguments 
A — Real NRA by NCA matrix whose 1-norm is to be computed.   (Input) 

ANORM — Real scalar containing the 1-norm of A.   (Output) 

Optional Arguments 
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 
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NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL NR1RR (A, ANORM [,…]) 

Specific:  The specific interface names are S_NR1RR and D_NR1RR. 

FORTRAN 77 Interface 
Single: CALL NR1RR (NRA, NCA, A, LDA, ANORM) 

Double: The double precision name is DNR1RR. 

Example 
Compute the 1-norm of a 3 � 4 real rectangular matrix. 

      USE NR1RR_INT 
      USE UMACH_INT 
!                             Declare variables 
      INTEGER    NCA, NRA 
      PARAMETER  (NCA=4, NRA=3) 
! 
      INTEGER    NOUT 
      REAL       A(NRA,NCA), ANORM 
! 
!                 Set values for A 
!                         A = ( 1.0  0.0  2.0  0.0 ) 
!                             ( 3.0  4.0 -1.0  0.0 ) 
!                             ( 2.0  1.0  2.0  1.0 ) 
! 
      DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, & 
          1.0/ 
!                                 Compute the L1 norm of A 
      CALL NR1RR (A, ANORM) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’ The 1-norm of A is ’, ANORM 
      END 

Output 
The 1-norm of A is     6.00000 
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Description 
The routine NR1RR computes the 1-norm of a real rectangular matrix A. If m = NRA and n = NCA, 
then the 1-norm of A is 

1 1 1
max

m

ijj n i
A A

� �
�

� �  

This is the maximum of the sums of the absolute values of the column elements. 

NR2RR 
Computes the Frobenius norm of a real rectangular matrix. 

Required Arguments 
A — Real NRA by NCA rectangular matrix.   (Input) 

ANORM — Frobenius norm of A.   (Output) 

Optional Arguments 
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL NR2RR (A, ANORM [,…]) 

Specific:  The specific interface names are S_NR2RR and D_NR2RR. 

FORTRAN 77 Interface 
Single: CALL NR2RR (NRA, NCA, A, LDA, ANORM) 

Double: The double precision name is DNR2RR. 

Example 
Compute the Frobenius norm of a 3 � 4 real rectangular matrix. 
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      USE NR2RR_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    LDA, NCA, NRA 
      PARAMETER  (LDA=3, NCA=4, NRA=3) 
! 
      INTEGER    NOUT 
      REAL       A(LDA,NCA), ANORM 
! 
!                                 Set values for A 
!                                 A = ( 1.0  0.0  2.0  0.0 ) 
!                                     ( 3.0  4.0 -1.0  0.0 ) 
!                                     ( 2.0  1.0  2.0  1.0 ) 
! 
      DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, & 
          1.0/ 
! 
!                                 Compute Frobenius norm of A 
      CALL NR2RR (A, ANORM) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’ The Frobenius norm of A is ’, ANORM 
      END 

Output 
The Frobenius norm of A is     6.40312 

Description 
The routine NR2RR computes the Frobenius norm of a real rectangular matrix A. If m = NRA and 
n = NCA, then the Frobenius norm of A is 

1 2

2
2

1 1

m n

ij
i j

A A
� �

� �
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� �
��  

NR1RB 
Computes the 1-norm of a real band matrix in band storage mode. 

Required Arguments 
A — Real (NUCA + NLCA + 1) by N array containing the N by N band matrix in band storage 

mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

ANORM — Real scalar containing the 1-norm of A.   (Output) 
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Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL NR1RB (A, NLCA, NUCA, ANORM [,…]) 

Specific:  The specific interface names are S_NR1RB and D_NR1RB. 

FORTRAN 77 Interface 
Single: CALL NR1RB (N, A, LDA, NLCA, NUCA, ANORM) 

Double: The double precision name is DNR1RB. 

Example 
Compute the 1-norm of a 4 � 4 real band matrix stored in band mode. 

      USE NR1RB_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    LDA, N, NLCA, NUCA 
      PARAMETER  (LDA=4, N=4, NLCA=2, NUCA=1) 
! 
      INTEGER    NOUT 
      REAL       A(LDA,N), ANORM 
! 
!                                 Set values for A (in band mode) 
!                                 A = (  0.0  2.0  2.0  3.0  ) 
!                                     ( -2.0 -3.0 -4.0 -1.0  ) 
!                                     (  2.0  1.0  0.0  0.0  ) 
!                                     (  0.0  1.0  0.0  0.0  ) 
! 
      DATA A/0.0, -2.0, 2.0, 0.0, 2.0, -3.0, 1.0, 1.0, 2.0, -4.0, 0.0, & 
          0.0, 3.0, -1.0, 2*0.0/ 
!                                 Compute the L1 norm of A 
      CALL NR1RB (A, NLCA, NUCA, ANORM) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’ The 1-norm of A is ’, ANORM 
      END 

Output 
The 1-norm of A is     7.00000 
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Description 
The routine NR1RB computes the 1-norm of a real band matrix A. The 1-norm of a matrix A is  

1 1 1
max

N

ijj N i
A A

� �
�

� �  

This is the maximum of the sums of the absolute values of the column elements. 

NR1CB 
Computes the 1-norm of a complex band matrix in band storage mode. 

Required Arguments 
A — Complex (NUCA + NLCA + 1) by N array containing the N by N band matrix in band 

storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

ANORM — Real scalar containing the 1-norm of A.   (Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL NR1CB (A, NLCA, NUCA, ANORM [,…]) 

Specific:  The specific interface names are S_NR1CB and D_NR1CB. 

FORTRAN 77 Interface 
Single: CALL NR1CB (N, A, LDA, NLCA, NUCA, ANORM) 

Double: The double precision name is DNR1CB. 
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Example 
Compute the 1-norm of a complex matrix of order 4 in band storage mode. 

      USE NR1CB_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    LDA, N, NLCA, NUCA 
      PARAMETER  (LDA=4, N=4, NLCA=2, NUCA=1) 
! 
      INTEGER    NOUT 
      REAL       ANORM 
      COMPLEX    A(LDA,N) 
! 
!                                 Set values for A (in band mode) 
!                     A = (  0.0+0.0i  2.0+3.0i -1.0+1.0i -2.0-1.0i ) 
!                         ( -2.0+3.0i  1.0+0.0i -4.0-1.0i  0.0-4.0i ) 
!                         (  2.0+2.0i  4.0+6.0i  3.0+2.0i  0.0+0.0i ) 
!                         (  0.0-1.0i  2.0+1.0i  0.0+0.0i  0.0+0.0i ) 
! 
      DATA A/(0.0,0.0), (-2.0,3.0), (2.0,2.0), (0.0,-1.0), (2.0,3.0), & 
          (1.0,0.0), (4.0,6.0), (2.0,1.0), (-1.0,1.0), (-4.0,-1.0), & 
          (3.0,2.0), (0.0,0.0), (-2.0,-1.0), (0.0,-4.0), (0.0,0.0), & 
          (0.0,0.0)/ 
!                                 Compute the L1 norm of A 
      CALL NR1CB (A, NLCA, NUCA, ANORM) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’ The 1-norm of A is ’, ANORM 
      END 

Output 
The 1-norm of A is     19.0000 

Description 
The routine NR1CB computes the 1-norm of a complex band matrix A. The 1-norm of a complex 
matrix A is  

1 1 1
max

N

ij ijj N i
A A A

� �
�
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DISL2 
This function computes the Euclidean (2-norm) distance between two points. 

Function Return Value 
DISL2 — Euclidean (2-norm) distance between the points X and Y.   (Output) 
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Required Arguments 
X — Vector of length max(N * |INCX|, 1).   (Input) 

Y — Vector of length max(N * |INCY|, 1).   (Input) 

Optional Arguments 
N — Length of the vectors X and Y.   (Input) 

Default: N = size (X,1). 

INCX — Displacement between elements of X.   (Input)  
The I-th element of X is X(1 + (I � 1) * INCX) if INCX is greater than or equal to zero 
or X(1 + (I � N) * INCX) if INCX is less than zero. 
Default: INCX = 1. 

INCY — Displacement between elements of Y.   (Input)  
The I-th element of Y is Y(1 + (I � 1) * INCY) if INCY is greater than or equal to zero 
or Y(1 + (I � N) * INCY) if INCY is less than zero. 
Default: INCY = 1. 

FORTRAN 90 Interface 
Generic: DISL2 (X, Y [,…]) 

Specific:  The specific interface names are S_DISL2 and D_DISL2. 

FORTRAN 77 Interface 
Single: DISL2(N, X, INCX, Y, INCY) 

Double: The double precision function name is DDISL2. 

Example 
Compute the Euclidean (2-norm) distance between two vectors of length 4. 

      USE DISL2_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    INCX, INCY, N 
      PARAMETER  (N=4) 
! 
      INTEGER    NOUT 
      REAL       VAL, X(N), Y(N) 
! 
!                                 Set values for X and Y 
!                                 X = ( 1.0 -1.0  0.0  2.0 ) 
! 
!                                 Y = ( 4.0  2.0  1.0 -3.0 ) 
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! 
      DATA X/1.0, -1.0, 0.0, 2.0/ 
      DATA Y/4.0, 2.0, 1.0, -3.0/ 
!                                 Compute L2 distance 
      VAL = DISL2(X,Y) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’ The 2-norm distance is ’, VAL 
      END 

Output 
The 2-norm distance is     6.63325  

Description 
The function DISL2 computes the Euclidean (2-norm) distance between two points x and y. The 
Euclidean distance is defined to be 

� �
1 2

2
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N

i i
i

x y
�

� �
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� �
�  

DISL1 
This function computes the 1-norm distance between two points. 

Function Return Value 
DISL1 — 1-norm distance between the points X and Y.   (Output) 

Required Arguments 
X — Vector of length max(N * |INCX|, 1).   (Input) 

Y — Vector of length max(N * |INCY|, 1).   (Input) 

Optional Arguments 
N — Length of the vectors X and Y.   (Input) 

Default: N = size (X,1). 

INCX — Displacement between elements of X.   (Input)  
The I-th element of X is X(1 + (I � 1) * INCX) if INCX is greater than or equal to zero 
or X(1 + (I � N) * INCX) if INCX is less than zero. 
Default: INCX = 1. 

INCY — Displacement between elements of Y.   (Input)  
The I-th element of Y is Y(1 + (I � 1) * INCY) if INCY is greater than or equal to zero 
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or Y(1 + (I � N) * INCY) if INCY is less than zero. 
Default: INCY = 1. 

FORTRAN 90 Interface 
Generic: DISL1 (X, Y [,…]) 

Specific:  The specific interface names are S_DISL1 and D_DISL1. 

FORTRAN 77 Interface 
Single: DISL1(N, X, INCX, Y, INCY) 

Double: The double precision function name is DDISL1. 

Example 
Compute the 1-norm distance between two vectors of length 4. 

      USE DISL1_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    INCX, INCY, N 
      PARAMETER  (N=4) 
! 
      INTEGER    NOUT 
      REAL       VAL, X(N), Y(N) 
! 
!                                 Set values for X and Y 
!                                 X = ( 1.0 -1.0  0.0  2.0 ) 
! 
!                                 Y = ( 4.0  2.0  1.0 -3.0 ) 
! 
      DATA X/1.0, -1.0, 0.0, 2.0/ 
      DATA Y/4.0, 2.0, 1.0, -3.0/ 
!                                 Compute L1 distance 
      VAL = DISL1(X,Y) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’ The 1-norm distance is ’, VAL 
      END 

Output 
The 1-norm distance is     12.0000 

Description 
The function DISL1 computes the 1-norm distance between two points x and y. The 1-norm 
distance is defined to be  
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DISLI 
This function computes the infinity norm distance between two points. 

Function Return Value 
DISLI — Infinity norm distance between the points X and Y.   (Output) 

Required Arguments 
X — Vector of length max(N * |INCX|, 1).   (Input) 

Y — Vector of length max(N * |INCY|, 1).   (Input) 

Optional Arguments 
N — Length of the vectors X and Y.   (Input) 

Default: N = size (X,1). 

INCX — Displacement between elements of X.   (Input)  
The I-th element of X is X(1 + (I � 1) *INCX) if INCX is greater than or equal to zero 
or X(1 + (I � N) * INCX) if INCX is less than zero. 
Default: INCX = 1. 

INCY — Displacement between elements of Y.   (Input)  
The I-th element of Y is Y(1 + (I � 1) * INCY) if INCY is greater than or equal to zero 
or Y(1 + (I � N) * INCY) if INCY is less than zero. 
Default: INCY = 1. 

FORTRAN 90 Interface 
Generic: DISLI (X, Y [,…]) 

Specific:  The specific interface names are S_DISLI and D_DISLI. 

FORTRAN 77 Interface 
Single: DISLI(N, X, INCX, Y, INCY) 

Double: The double precision function function name is DDISLI. 
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Example 
Compute the �-norm distance between two vectors of length 4. 

      USE DISLI_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    INCX, INCY, N 
      PARAMETER  (N=4) 
! 
      INTEGER    NOUT 
      REAL       VAL, X(N), Y(N) 
! 
!                                 Set values for X and Y 
!                                 X = ( 1.0 -1.0  0.0  2.0 ) 
! 
!                                 Y = ( 4.0  2.0  1.0 -3.0 ) 
! 
      DATA X/1.0, -1.0, 0.0, 2.0/ 
      DATA Y/4.0, 2.0, 1.0, -3.0/ 
!                                 Compute L-infinity distance 
      VAL = DISLI(X,Y) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’ The infinity-norm distance is ’, VAL 
      END 

Output 
The infinity-norm distance is     5.00000 

Description 
The function DISLI computes the 1-norm distance between two points x and y. The 1norm 
distance is defined to be  

1
max i ii N

x y
� �

�  

VCONR 
Computes the convolution of two real vectors. 

Required Arguments 
X — Vector of length NX.   (Input) 

Y — Vector of length NY.   (Input) 

Z — Vector of length NZ containing the convolution Z = X * Y.   (Output) 
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Optional Arguments 
NX — Length of the vector X.   (Input) 

Default: NX = size (X,1). 

NY — Length of the vector Y.   (Input) 
Default: NY = size (Y,1). 

NZ — Length of the vector Z.   (Input) 
NZ must be at least NX + NY � 1. 
Default: NZ = size (Z,1). 

FORTRAN 90 Interface 
Generic: CALL VCONR (X, Y, Z [,…]) 

Specific:  The specific interface names are S_VCONR and D_VCONR. 

FORTRAN 77 Interface 
Single: CALL VCONR (NX, X, NY, Y, NZ, Z) 

Double: The double precision name is DVCONR. 

Example 
In this example, the convolution of a vector x of length 8 and a vector y of length 3 is computed. 
The resulting vector z is of length 8 + 3 � 1 = 10. (The vector y is sometimes called a filter.) 

      USE VCONR_INT 
      USE WRRRN_INT 
      INTEGER    NX, NY, NZ 
      PARAMETER  (NX=8, NY=3, NZ=NX+NY-1) 
! 
      REAL       X(NX), Y(NY), Z(NZ) 
!                                 Set values for X 
!                       X = (1.0  2.0  3.0  4.0  5.0  6.0  7.0  8.0) 
!                                 Set values for Y 
!                       Y = (0.0  0.0  1.0) 
! 
      DATA X/1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0/ 
      DATA Y/0.0, 0.0, 1.0/ 
!                                 Compute vector convolution 
!                                 Z = X * Y 
      CALL VCONR (X,Y,Z) 
!                                 Print results 
      CALL WRRRN (’Z = X (*) Y’, Z, 1, NZ, 1) 
      END 
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Output 
                                  Z = X (*) Y 
    1      2      3       4       5       6       7       8       9      10 
0.000  0.000  1.000   2.000   3.000   4.000   5.000   6.000   7.000   8.000 

Comments 
Workspace may be explicitly provided, if desired, by use of V2ONR/DV2ONR. The reference is 

CALL V2ONR (NX, X, NY, Y, NZ, Z, XWK, YWK, ZWK, WK) 

The additional arguments are as follows: 

XWK — Complex work array of length NX + NY � 1. 

YWK — Complex work array of length NX + NY � 1. 

ZWK — Complex work array of length NX + NY � 1. 

WK — Real work array of length 6 * (NX + NY � 1) + 15. 

Description 
The routine VCONR computes the convolution z of two real vectors x and y. Let nx = NX, ny = NY 
and nz = NZ. The vector z is defined to be 

1
1

for  = 1, 2, , 
xn

j j k k z
k

z x y j n
� �

�

�� �  

where nz = nx + ny � 1. If the index j � k + 1 is outside the range 1, 2, 
, nx, then xj � k � 1 is 
taken to be zero. 

The fast Fourier transform is used to compute the convolution. Define the complex vector u of 
length nz = nx + ny � 1 to be 

� �1 2, , , , 0, , 0
xnu x x x� � �  

The complex vector v, also of length nz, is defined similarly using y. Then, by the Fourier 
convolution theorem, 

ˆ ˆ ˆ for  = 1, 2, , i i i zw u v i n� �  

where the û  indicates the Fourier transform of u computed via IMSL routine FFTCF (see 
Chapter 6, Transforms) IMSL routine FFTCB (see Chapter 6, Transforms) is used to compute the 
complex vector w from ŵ . The vector z is then found by taking the real part of the vector w. 

VCONC 
Computes the convolution of two complex vectors. 
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Required Arguments 
X — Complex vector of length NX.   (Input) 

Y — Complex vector of length NY.   (Input) 

Z — Complex vector of length NZ containing the convolution Z = X * Y.   (Output) 

Optional Arguments 
NX — Length of the vector X.   (Input) 

Default: NX = size (X,1). 

NY — Length of the vector Y.   (Input) 
Default: NY = size (Y,1). 

NZ — Length of the vector Z.   (Input) 
NZ must be at least NX + NY � 1. 
Default: NZ = size (Z,1). 

FORTRAN 90 Interface 
Generic: CALL VCONC (X, Y, Z [,…]) 

Specific:  The specific interface names are S_VCONC and D_VCONC. 

FORTRAN 77 Interface 
Single: CALL VCONC (NX, X, NY, Y, NZ, Z) 

Double: The double precision name is DVCONC. 

Example 
In this example, the convolution of a vector x of length 4 and a vector y of length 3 is computed. 
The resulting vector z is of length 4 + 3 �y is sometimes called a filter.) 

      USE VCONC_INT 
      USE WRCRN_INT 
      INTEGER    NX, NY, NZ 
      PARAMETER  (NX=4, NY=3, NZ=NX+NY-1) 
! 
      COMPLEX    X(NX), Y(NY), Z(NZ) 
!                                 Set values for X 
!                X = ( 1.0+2.0i 3.0+4.0i 5.0+6.0i 7.0+8.0i ) 
!                                 Set values for Y 
!                Y = (0.0+0i 0.0+0i 1.0+0i ) 
! 
      DATA X/(1.0,2.0), (3.0,4.0), (5.0,6.0), (7.0,8.0)/ 
      DATA Y/(0.0,0.0), (0.0,0.0), (1.0,1.0)/ 
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!                                 Compute vector convolution 
!                                 Z = X * Y 
      CALL VCONC (X,Y,Z) 
!                                 Print results 
      CALL WRCRN (’Z = X (*) Y’, Z, 1, NZ, 1) 
      END 

Output 
                           Z = X (*) Y 
              1                2                3                4 
(  0.00,  0.00)  (  0.00,  0.00)  ( -1.00,  3.00)  ( -1.00,  7.00) 
 
              5                6 
( -1.00, 11.00)  ( -1.00, 15.00) 

Comments 
Workspace may be explicitly provided, if desired, by use of V2ONC/DV2ONC. The reference is 
CALL V2ONC (NX, X, NY, Y, NZ, Z, XWK, YWK, WK) 

The additional arguments are as follows: 

XWK — Complex work array of length NX + NY � 1. 

YWK — Complex work array of length NX + NY � 1. 

WK — Real work arrary of length 6 * (NX + NY  �1) + 15. 

Description 
The routine VCONC computes the convolution z of two complex vectors x and y. Let nx = NX, then 
ny = NY and nz = NZ. The vector z is defined to be 

1
1

for  = 1, 2, , 
xn

j j k k z
k

z x y j n
� �

�

�� �  

where nz = nx + ny � 1. If the index j � k + 1 is outside the range 1, 2, 
, nx, then xj � k � 1 is taken 
to be zero. 

The fast Fourier transform is used to compute the convolution. Define the complex vector u of 
length nz = nx + ny � 1 to be 

� �1 2, , , , 0, , 0
znu x x x� � �  

The complex vector v, also of length nz, is defined similarly using y. Then, by the Fourier 
convolution theorem, 

ˆ ˆˆ for  = 1, 2, ,i i i zz u v i n� �  

where the û indicates the Fourier transform of u computed using IMSL routine FFTCF (see 
Chapter 6, Transforms). The complex vector z is computed from ŵ  via IMSL routine FFTCB (see 
Chapter 6, Transforms). 
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Extended Precision Arithmetic 
This section describes a set of routines for mixed precision arithmetic. The routines are designed 
to allow the computation and use of the full quadruple precision result from the multiplication of 
two double precision numbers. An array called the accumulator stores the result of this 
multiplication. The result of the multiplication is added to the current contents of the accumulator. 
It is also possible to add a double precision number to the accumulator or to store a double 
precision approximation in the accumulator. 

The mixed double precision arithmetic routines are described below. The accumulator array, 
QACC, is a double precision array of length 2. Double precision variables are denoted by DA and 
DB. Available operations are: 

Initialize a real accumulator, QACC � DA. 
CALL DQINI (DA, QACC) 

Store a real accumulator, DA � QACC. 
CALL DQSTO (QACC, DA) 

Add to a real accumulator, QACC � QACC + DA. 
CALL DQADD (DA, QACC) 

Add a product to a real accumulator, QACC � QACC + DA*DB. 
CALL DQMUL (DA, DB, QACC) 

There are also mixed double complex arithmetic versions of the above routines. The accumulator, 
ZACC, is a double precision array of length 4. Double complex variables are denoted by ZA and ZB. 
Available operations are: 

Initialize a complex accumulator, ZACC � ZA. 
CALL ZQINI (ZA, ZACC) 

Store a complex accumulator, ZA � ZACC. 
CALL ZQSTO (ZACC, ZA) 

Add to a complex accumulator, ZACC � ZACC + ZA. 
CALL ZQADD (ZA, ZACC) 

Add a product to a complex accumulator, ZACC � ZACC + ZA * ZB. 
CALL ZQMUL (ZA, ZB, ZACC) 

Example 
In this example, the value of 1.0D0/3.0D0 is computed in quadruple precision using Newton’s 
method. Four iterations of 

� �2
1k k k kx x x ax

�
� � �  

with a = 3 are taken. The error ax � 1 is then computed. The results are accurate to approximately 
twice the usual double precision accuracy, as given by the IMSL routine DMACH(4), in the 



 

 
 

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1461 

 

 

 

Reference Material section of this manual. Since DMACH is machine dependent, the actual accuracy 
obtained is also machine dependent. 

      USE IMSL_LIBRARIES 
      INTEGER    I, NOUT 
      DOUBLE PRECISION A, DACC(2), DMACH, ERROR, SACC(2), X(2), X1, X2, EPSQ 
! 
      CALL UMACH (2, NOUT) 
      A = 3.0D0 
      CALL DQINI (1.0001D0/A, X) 
!                                 Compute X(K+1) = X(K) - A*X(K)*X(K) 
!                                 + X(K) 
      DO 10  I=1, 4 
         X1 = X(1) 
         X2 = X(2) 
!                                 Compute X + X 
         CALL DQADD (X1, X) 
         CALL DQADD (X2, X) 
!                                 Compute X*X 
         CALL DQINI (0.0D0, DACC) 
         CALL DQMUL (X1, X1, DACC) 
         CALL DQMUL (X1, X2, DACC) 
         CALL DQMUL (X1, X2, DACC) 
         CALL DQMUL (X2, X2, DACC) 
!                                 Compute -A*(X*X) 
         CALL DQINI (0.0D0, SACC) 
         CALL DQMUL (-A, DACC(1), SACC) 
         CALL DQMUL (-A, DACC(2), SACC) 
!                                 Compute -A*(X*X) + (X + X) 
         CALL DQADD (SACC(1), X) 
         CALL DQADD (SACC(2), X) 
   10 CONTINUE 
!                                 Compute A*X - 1 
      CALL DQINI (0.0D0, SACC) 
      CALL DQMUL (A, X(1), SACC) 
      CALL DQMUL (A, X(2), SACC) 
      CALL DQADD (-1.0D0, SACC) 
      CALL DQSTO (SACC, ERROR) 
!                                 ERROR should be less than MACHEPS**2 
      EPSQ = AMACH(4) 
      EPSQ = EPSQ * EPSQ 
      WRITE (NOUT,99999) ERROR, ERROR/EPSQ  
! 
99999 FORMAT (’  A*X - 1 = ’, D15.7, ’ = ’, F10.5, ’*MACHEPS**2’) 
      END 

Output 
A*X - 1 =   0.6162976D-32 =    0.12500*MACHEPS**2 
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Introduction 

MPI REQUIRED

 

This chapter describes numerical linear algebra software packaged as operations 
that are executed with a function notation similar to standard mathematics. The 
resulting interface is a great simplification. It alters the way libraries are 
presented to the user. Many computations of numerical linear algebra are 
documented here as operators and generic functions. A notation is developed 
reminiscent of matrix algebra. This allows the Fortran 90 user to express 
mathematical formulas in terms of operators. Thus, important aspects of “object-
oriented” programming are provided as a part of this chapter's design. 

A comprehensive Fortran 90 module, linear_operators, defines the operators and 
functions. Its use provides this simplification. Subroutine calls and the use of 
type-dependent procedure names are largely avoided. This makes a rapid 
development cycle possible, at least for the purposes of experiments and proof-
of-concept. The goal is to provide the Fortran 90 programmer with an interface, 
operators, and functions that are useful and succinct. The modules can be used 
with existing Fortran programs, but the operators provide a more readable 
program. Frequently this approach requires more hidden working storage. The 
size of the executable program may be larger than alternatives using subroutines. 
There are applications wherein the operator and function interface does not have 
the functionality that is available using subroutine libraries. To retain greater 
flexibility, some users will continue to require the traditional techniques of 
calling subroutines. 

A parallel computation for many of the defined operators and functions has been 
implemented.  Most of the detailed communication is hidden from the user. 
Those functions having this data type computed in parallel are marked in bold 
type. The section “Parallelism Using MPI” (in this chapter) gives an 
introduction on how users should write their codes to use other machines on a 
network.  

 

Matrix Algebra Operations 
Consider a Fortran 90 code fragment that solves a linear system of algebraic equations, Ay = b, then 
computes the residual r = b � Ay. A standard mathematical notation is often used to write the 
solution,  

 1y A b�

�  

A user thinks: “matrix and right-hand side yields solution.” The code shows the computation of this 
mathematical solution using a defined Fortran operator “.ix.”, and random data obtained with the 
function, rand. This operator is read “inverse matrix times.” The residuals are computed with 
another defined Fortran operator “.x.”, read “matrix times vector.” Once a user understands the 
equivalence of a mathematical formula with the corresponding Fortran operator, it is possible to 
write this program with little effort. The last line of the example before end is discussed below. 
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USE linear_operators  

   integer,parameter :: n=3; real A(n,n), y(n), b(n), r(n)  

   A=rand(A); b=rand(b); y = A .ix. b  

   r = b - (A .x. y )  

end  

The IMSL Fortran Library provides additional lower-level software that implements the operation 
“.ix.”, the function rand, matrix multiply  “.x.”, and others not used in this example. Standard 
matrix products and inverse operations of matrix algebra are shown in the following table: 

 

Defined Array Operation Matrix Operation Alternative in Fortran 90 

A .x. B AB  matmul(A, B) 

.i. A 1A�  lin_sol_gen  

lin_sol_lsq 

.t. A, .h. A ,T HA A  transpose(A)  

conjg(transpose(A)) 

A .ix. B 1A B�  lin_sol_gen  

lin_sol_lsq 

B .xi. A 1BA�  lin_sol_gen  

lin_sol_lsq 

A .tx. B, or (.t. A) .x. B  

A .hx. B, or (.h. A) .x. B 
,T HA B A B  matmul(transpose (A), B)  

matmul(conjg(transpose(A)), B) 

B .xt. A, or B .x. (.t. A)  

B .xh. A, or B .x. (.h. A) 
,T HBA BA  matmul(B, transpose(A))  

matmul(B, conjg(transpose(A))) 

 
 

Operators apply generically to all precisions and floating-point data types and to objects that are 
broader in scope than arrays. For example, the matrix product “.x..” applies to matrix times vector and 
matrix times matrix represented as Fortran 90 arrays. It also applies to “independent matrix products.”  
For this, use the notion: a box of problems to refer to independent linear algebra computations, of the 
same kind and dimension, but different data. The racks of the box are the distinct problems. In terms of 
Fortran 90 arrays, a rank-3, assumed-shape array is the data structure used for a box. The first two 
dimensions are the data for a matrix problem; the third dimension is the rack number. Each problem is 
independent of other problems in consecutive racks of the box. We use parallelism of an underlying 
network of processors when computing these disjoint problems.  

In addition to the operators .ix., .xi., .i., and .x., additional operators .t., .h., .tx., .hx., 
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.xt., and .xh. are provided for complex matrices. Since the transpose matrix is defined for 
complex matrices, this meaning is kept for the defined operations. In order to write one defined opera-
tion for both real and complex matrices, use the conjugate-transpose in all cases. This will result in 
only real operations when the data arrays are real. 

For sums and differences of vectors and matrices, the intrinsic array operations “+” and “�” are 
available. It is not necessary to have separate defined operations. A parsing rule in Fortran 90 states 
that the result of a defined operation involving two quantities has a lower precedence than any intrinsic 
operation. This explains the parentheses around the next-to-last line containing the sub-expression “A 
.x. y” found in the example. Users are advised to always include parentheses around array 
expressions that are mixed with defined operations, or whenever there is possible confusion without 
them. The next-to-last line of the example results in computing the residual associated with the 
solution, namely r = b � Ay. Ideally, this residual is zero when the system has a unique solution. It will 
be computed as a non-zero vector due to rounding errors and conditioning of the problem. 

Matrix and Utility Functions 
Several decompositions and functions required for numerical linear algebra follow. The 
convention of enclosing optional quantities in brackets, “[ ]” is used. The functions that use MPI 
for parallel execution of the box data type are marked in bold.  

 
Defined Array Functions Matrix Operation 

S=SVD(A [,U=U, V=V]) TA USV�  

E=EIG(A [[,B=B, D=D],  
V=V, W=W]) 

(AV = VE), AVD = BVE 
(AW = WE), AWD = BWE 

R=CHOL(A) TA R R�  
Q=ORTH(A [,R=R]) � � , TA QR Q Q I� �  

U=UNIT(A) � �1 1 1, / ,u a a� � �� �� �  

F=DET(A) det(A) = determinant 
K=RANK(A) rank(A) = rank 
P=NORM(A[,[type=]i]) 

� �

1
1

12

1
=1

max ( )

largest singular value

max ( )

m

j ij
i

n

i ijhuge
j

p A a

p A s

p A a

�

��

� �

� � �

� �

�

�

 

C=COND(A) 
� �1 / rank As s  

Z=EYE(N) 
NZ I�  

A=DIAG(X) � �1,A diag x� �  
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Defined Array Functions Matrix Operation 

X=DIAGONALS(A) � �11,x a� �  

Y=FFT (X,[WORK=W]); 
X=IFFT(Y,[WORK=W]) 

Discrete Fourier Transform, Inverse 

Y=FFT_BOX (X,[WORK=W]); 
X=IFFT_BOX(Y,[WORK=W]) 

Discrete Fourier Transform for Boxes, Inverse 

A=RAND(A) random numbers, 0 < A < 1 
L=isNaN(A) test for NaN, if (l) then� 

In certain functions, the optional arguments are inputs while other optional arguments are outputs. 
To illustrate the example of the box SVD function, a code is given that computes the singular 
value decomposition and the reconstruction of the random matrix box, A. Using the computed 
factors, R = USVT. Mathematically R = A, but this will be true, only approximately, due to 
rounding errors. The value units_of_error = ||A � R||/(||A||�), shows the merit of this 
approximation. 

USE linear_operators  

USE mpi_setup_int 

   integer,parameter :: n=3, k=16  

   real, dimension(n,n,k) :: A,U,V,R,S(n,k), units_of_error(k) 

   MP_NPROCS=MP_SETUP()       ! Set up MPI. 

   A=rand(A); S=SVD(A, U=U, V=V)  

   R = U .x. diag(S) .xt. V; units_of_error =  
      norm(A-R)/S(1,1:k)/epsilon(A)  

   MP_NPROCS=MP_SETUP(‘Final’) ! Shut down MPI. 

   end  

Parallelism Using MPI 

MPI REQUIRED

 

General Remarks 
The central theme we use for the computing functions of the box data type is 
that of delivering results to a distinguished node of the machine.  One of the 
design goals was to shield much of the complexity of distributed computing 
from the user.   

The nodes are numbered by their “ranks.”  Each node has rank value 
MP_RANK.  There are MP_NPROCS nodes, so MP_RANK = 0, 
1,...,MP_NPROCS-1.  The root node has MP_RANK = 0.   Most of the 
elementary MPI material is found in Gropp, Lusk, and Skjellum (1994) and 
Snir, Otto, Huss-Lederman, Walker, and Dongarra (1996).  Although Fortran 
Library users are for the most part shielded from the complexity of MPI, it is 
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desirable for some users to learn this important topic.  Users should  become 
familiar with any referenced MPI routines and the documentation of their 
usage.  MPI routines are not discussed here, because that is best found in the 
above references. 

The Fortran Library algorithm for allocating the racks of the box to the 
processors consists of creating a schedule for the processors, followed by 
communication and execution of this schedule.  The efficiency may be 
improved by using the nodes according to a specific priority order.  This order 
can reflect information such as a powerful machine on the network other than 
the user’s work station, or even complex or transient network behavior.  The 
Fortran Library allows users to define this order, including using a default.  
A setup function establishes an order based on timing matrix products of a size 
given by the user.  Parallel Example 4 illustrates this usage. 

Getting Started with Modules MPI_setup_int and 
MPI_node_int 
The MPI_setup_int and MPI_node_int modules are part of the 
Fortran Library and not part of MPI itself.  Following a call to the function 
MP_SETUP(),  the module MPI_node_int will contain information about 
the number of processors, the rank of a processor, the communicator for 
Fortran Library, and the usage priority order of the node machines.  Since 
MPI_node_int is used by MPI_setup_int, it is not necessary to 
explicitly use this module.  If neither MP_SETUP() nor MPI_Init() is 
called, then the box data type will compute entirely on one node.  No routine 
from MPI will be called.  
MODULE MPI_NODE_INT 

  INTEGER, ALLOCATABLE :: MPI_NODE_PRIORITY(:) 

  INTEGER, SAVE :: MP_LIBRARY_WORLD = huge(1) 

  LOGICAL, SAVE :: MPI_ROOT_WORKS = .TRUE. 

  INTEGER, SAVE :: MP_RANK = 0, MP_NPROCS = 1 

END MODULE 

When the function MP_SETUP() is called with no arguments, the following 
events occur: 

�� If MPI has not been initialized, it is first initialized.  This step uses the 
routines MPI_Initialized() and possibly MPI_Init(). Users 
who choose not to call MP_SETUP() must make the required 
initialization call before using any Fortran Library code that relies on MPI 
for its execution. If the user’s code calls a Fortran Library function 
utilizing the box data type and MPI has not been initialized, then the 
computations are performed on the root node.   The only MPI routine 
always called in this context is MPI_Initialized().  The name 
MP_SETUP is pushed onto the subprogram or call stack. 
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�� If MP_LIBRARY_WORLD equals its initial value (=huge(1)) then 
MPI_COMM_WORLD, the default MPI communicator, is duplicated  and 
becomes its handle.  This uses the routine MPI_Comm_dup(). Users can 
change the handle of MP_LIBRARY_WORLD as required by their 
application code.  Often this issue can be ignored. 

�� The integers MP_RANK and MP_NPROCS are respectively the node’s 
rank and the number of nodes in the communicator, 
MP_LIBRARY_WORLD.  Their values require the routines 
MPI_Comm_size() and MPI_Comm_rank(). The default values are 
important when MPI is not initialized and a box data type is computed.   In 
this case the root node is the only node and it will do all the work.  No 
calls to MPI communication routines are made when MP_NPROCS = 1 
when computing the box data type functions.  A program can temporarily 
assign this value to force box data type computation entirely at the root 
node.  This is desirable for problems where using many nodes would be 
less efficient than using the root node exclusively. 

�� The array MPI_NODE_PRIORITY(:) is unallocated unless the user 
allocates it. The Fortran Library codes use this array for assigning tasks to 
processors, if it is allocated.  If it is not allocated, the default priority of the 
nodes is (0,1,...,MP_NPROCS-1).  Use of the function call 
MP_SETUP(N) allocates the array, as explained below. Once the array is 
allocated its size is MP_NPROCS. The contents of the array is a 
permutation of the integers 0,...,MP_NPROCS-1. Nodes appearing at 
the start of the list are used first for parallel computing.  A node other than 
the root can avoid any computing, except receiving the schedule, by setting 
the value MPI_NODE_PRIORITY(I) < 0. This means that node 
|MPI_NODE_PRIORITY(I)| will be sent the task schedule but will 
not perform any significant work as part of  box data type function 
evaluations. 

�� The LOGICAL flag MPI_ROOT_WORKS designates whether or not the 
root node participates in the major computation of  the tasks.  The root 
node communicates with the other nodes to complete the tasks but can be 
designated to do no other work.  Since there may be only one processor, 
this flag has the default value .TRUE., assuring that one node exists to do 
work.  When more than one processor is available users can consider 
assigning MPI_ROOT_WORKS=.FALSE. This is desirable when the 
alternate nodes have equal or greater computational resources compared 
with the root node.  Example 4 illustrates this usage.  A single problem is 
given a box data type, with one rack.  The computing is done at the node, 
other than the root, with highest priority.  This example requires more than 
one processor since the root does not work.  

When the generic function MP_SETUP(N) is called, where N is a positive 
integer, a call to MP_SETUP() is first made, using no argument.  Use just one 
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of these calls to MP_SETUP().  This initializes the MPI system and the other 
parameters described above.  The array MPI_NODE_PRIORITY(:) is 
allocated with size MP_NPROCS.  Then DOUBLE PRECISION matrix 
products C = AB, where A and B are N by N matrices, are computed at each 
node and the elapsed time is recorded.  These elapsed times are sorted and the 
contents of MPI_NODE_PRIORITY(:) permuted  in accordance with the 
shortest times yielding the highest priority.  All the nodes in the communicator 
MP_LIBRARY_WORLD are timed.  The array MPI_NODE_PRIORITY(:) is 
then broadcast from the root to the remaining nodes of MP_LIBRARY_WORLD  
using the routine MPI_Bcast(). Timing matrix products to define the node 
priority is relevant because the effort to compute C is comparable to that of 
many linear algebra computations of similar size.  Users are free to define their 
own node priority and broadcast the array MPI_NODE_PRIORITY(:) to 
the alternate nodes in the communicator.  

To print any IMSL Fortran Library error messages that have occurred at any 
node, and to finalize MPI, use the function call MP_SETUP(‘Final’). Case 
of the string ‘Final’ is not important. Any error messages pending will be 
discarded after printing on the root node.  This is triggered by popping the 
name ‘MP_SETUP’ from the subprogram stack or returning to Level 1 in the 
stack. Users can obtain error messages by popping the stack to Level 1 and still 
continuing with MPI calls.  This requires executing call e1pop (‘MP_SETUP’). 
To continue on after summarizing errors execute call e1psh (‘MP_SETUP’). 
More details about the error processor are found in Reference Material chapter 
of this manual. 

Messages are printed by nodes from largest rank to smallest, which is the root 
node.  Use of the routine MPI_Finalize() is made within 
MP_SETUP(‘Final’),  which shuts down MPI.  After MPI_Finalize() 
is called, the value of MP_NPROCS = 0. This flags that MPI has been 
initialized and terminated.  It cannot be initialized again in the same program 
unit execution.  No MPI routine is defined when MP_NPROCS has this value. 

Using Processors 
There are certain pitfalls to avoid when using Fortran Library and box data 
types as implemented with MPI.  A fundamental requirement is to allow all 
processors to participate in parts of the program where their presence is needed 
for correctness.  It is incorrect to have a program unit that restricts nodes from 
executing a block of code required when computing with the box data type.   
On the other hand it is appropriate to restrict computations with rank-2 arrays 
to the root node.  This is not required, but the results for the alternate nodes are 
normally discarded.  This will avoid gratuitous error messages that may appear 
at alternate nodes. 

Observe that only the root has a correct result for a box data type function.  
Alternate nodes have the constant value one as the result. The reason for this is 
that during the computation of the functions, sub-problems are allocated to the 
alternate nodes by the root, but for only the root to utilize the result.  If a user 
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needs a value at the other nodes, then the root must send it to the nodes.  This 
principle is illustrated in Parallel Example 3:  Convergence information is 
computed at the root node and broadcast to the others.  Without this step some 
nodes would not terminate the loop even when corrections at the root become 
small.  This would cause the program to be incorrect. 

Optional Data Changes 
To reset tolerances for determining singularity and to allow for other data changes, non-allocated 
“hidden” variables are defined within the modules.  These variables can be allocated first, then 
assigned values which result in the use of different tolerances or greater efficiency in the execut-
able program.  The non-allocated variables, whose scope is limited to the module, are hidden from 
the casual user.  Default values or rules are applied if these arrays are not allocated.  In more 
detail, the inverse matrix operator “.i.” applied to a square matrix first uses the LU factorization 
code lin_sol_gen and row pivoting.  The default value for a small diagonal term is defined to 
be: 

sqrt(epsilon(A))*sum(abs(A))/(n*n+1)  

If the system is singular, a generalized matrix inverse is computed with the QR factorization code 
lin_sol_lsq using this same tolerance.  Both row and column pivoting are used.  If the system 
is singular, an error message will be printed and a Fortran 90 STOP is executed.  Users may want 
to change this rule.  This is illustrated by continuing and not printing the error message.  The 
following is an additional source to accomplish this, for all following invocations of the operator 
“.i.”: 

allocate(inverse_options(1))  

inverse_options(1)=skip_error_processing  

B=.i. A  

There are additional self-documenting integer parameters, packaged in the module 
linear_operators, that allow users other choices, such as changing the value of the tolerance, as 
noted above.  Included will be the ability to have the option apply for just the next invocation of 
the operator.  Options are available that allow optional data to be passed to supporting Fortran 90 
subroutines.  This is illustrated with an example in operator_ex36 in this chapter. 

Operators: .x., .tx., .xt., .hx., .xh. 
Computes matrix-vector and matrix-matrix products. The results are in a precision and data type 
that ascends to the most accurate or complex operand. The operators apply when one or both 
operands are rank-1, rank-2 or rank-3 arrays. 

Required Operands 
Each of these operators requires two operands. Mixing of intrinsic floating-point data types arrays 
is permitted. There is no distinction made between a rank-1 array, considered a slim matrix, and 
the transpose of this matrix. Defined operations have lower precedence than any intrinsic 
operation, so the liberal use of parentheses is suggested when mixing them. 
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Optional Variables, Reserved Names 
These operators have neither packaged optional variables nor reserved names. 

Modules 
Use the appropriate one of the modules: 

operation_x  

operation_tx  

operation_xt  

operation_hx  

operation_xh  

or linear_operators  

Examples 
Compute the matrix times vector y = Ax: y = A .x. x 

Compute the vector times matrix Ty x A� : y = x .x.A; y = A .tx. x 

Compute the matrix expression D = B � AC: D = B � (A .x. C) 

Operators: .t., .h. 
Computes transpose and conjugate transpose of a matrix. The operation may be read transpose or 
adjoint, and the results are the mathematical objects in a precision and data type that matches the 
operand. The operators apply when the single operand is a rank-2 or rank-3 array. 

Required Operand 
Each of these operators requires a single operand. Since these are unary operations, they have 
higher Fortran 90 precedence than any other intrinsic unary array operation. 

Optional Variables, Reserved Names 
These operators have neither packaged optional variables nor reserved names. 

Modules 
Use the appropriate one of the modules: 

operation_t  

operation_h  

or linear_operators  
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Examples 
Compute the matrix times vector  

Ty A x� : y = .t.A .x. x; y = A .tx. x 

Compute the vector times matrix  
Ty x A� : y = x .x. A; y = A .tx. x 

Compute the matrix expression  
HD B A C� � : D = B � (A .hx. C); D = B � (.h.A .x. C) 

Operator: .i. 
Computes the inverse matrix, for square non-singular matrices, or the Moore-Penrose generalized 
inverse matrix for singular square matrices or rectangular matrices. The operation may be read in-
verse or generalized inverse, and the results are in a precision and data type that matches the 
operand. The operator can be applied to any rank-2 or rank-3 array. 

Required Operand 
This operator requires a single operand. Since this is a unary operation, it has higher Fortran 90 
precedence than any other intrinsic array operation. 

Optional Variables, Reserved Names 
This operator uses the routines lin_sol_gen or lin_sol_lsq (See Chapter 1, “Linear 
Solvers” lin_sol_gen and lin_sol_lsq). 

 

The option and derived type names are given in the following tables: 

Option Names for .i. Option Value 

use_lin_sol_gen_only 1 
use_lin_sol_lsq_only 2 
i_options_for_lin_sol_gen 3 
i_options_for_lin_sol_lsq 4 
skip_error_processing 5 

 
 

Derived Type Name of Unallocated Array 
s_options s_inv_options(:) 

s_options s_inv_iptions_once(:) 

d_options d_inv_options(:) 

d_options d_inv_options_once(:) 
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Modules 
Use the appropriate one of the modules: 

operation_i  

or linear_operators  

Examples 
Compute the matrix times vector  
y = A-1x: y = .i.A .x. x ; y = A .ix. x 

Compute the vector times matrix  
y = xTA-1: y = x .x. .i.A; y = x .xi. A 

Compute the matrix expression  
D = B - A-1C: D = B � (.i.A .x. C); D = B � (A .ix. C) 

Operators: .ix., .xi. 
Computes the inverse matrix times a vector or matrix for square non-singular matrices or the cor-
responding Moore-Penrose generalized inverse matrix for singular square matrices or rectangular 
matrices. The operation may be read generalized inverse times or times generalized inverse. The 
results are in a precision and data type that matches the most accurate or complex operand.  

Required Operand 
This operator requires two operands. In the template for usage, y = A .ix. b, the first operand 
A can be rank-2 or rank-3. The second operand b can be rank-1, rank-2 or rank-3. For the alternate 
usage template, y = b .xi. A, the first operand b can be rank-1, rank-2 or rank-3. The second 
operand A can be rank-2 or rank-3. 

Optional Variables, Reserved Names 
This operator uses the routines lin_sol_gen or lin_sol_lsq  
(See Chapter 1, “Linear Solvers”, lin_sol_gen and lin_sol_lsq). 

The option and derived type names are given in the following tables: 

Option Names for .ix., .xi. Option Value 
use_lin_sol_gen_only 1 
use_lin_sol_lsq_only 2 
xi_, ix_options_for_lin_sol_gen 3 
xi_, ix_options_for_lin_sol_lsq 4 
skip_error_processing 5 
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Derived Type Name of Unallocated Array 
s_options s_invx_options(:) 

s_options s_invx_options_once(:) 

d_options d_invx_options(:) 

d_options d_invx_options_once(:) 

s_options s_xinv_options(:) 

s_options s_xinv_options_once(:) 

d_options d_xinv_options(:) 

d_options d_xinv_options_once(:) 

Modules 
Use the appropriate one of the modules: 

operation_ix  

operation_xi  

or linear_operators  

Examples 

Compute the matrix times vector y = A-1x: y = A .ix. x 

Compute the vector times matrix y = xTA-1: y = x .xi. A 

Compute the matrix expression D = B - A-1C: D = B - (A .ix. C) 

CHOL 
Computes the Cholesky factorization of a positive-definite, symmetric or self-adjoint matrix, A. 
The factor is upper triangular, RTR = A. 

Required Argument 
This function requires one argument. This argument must be a rank-2 or rank-3 array that contains 
a positive-definite, symmetric or self-adjoint matrix. For rank-3 arrays each rank-2 array, (for 
fixed third subscript), is a positive-definite, symmetric or self-adjoint matrix. In this case, the 
output is a rank-3 array of Cholesky factors for the individual problems. 

Optional Variables, Reserved Names 
This function uses lin_sol_self (See Chapter 1, “Linear Solvers,” lin_sol_self), using the 
appropriate options to obtain the Cholesky factorization. 
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The option and derived type names are given in the following tables: 

 
Option Name for CHOL Option Value 
use_lin_sol_gen_only 4 
use_lin_sol_lsq_only 5 

 
Derived Type Name of Unallocated Array 
s_options s_chol_options(:) 

s_options s_chol_options_once(:) 

d_options d_chol_options(:) 

d_options d_chol_options_once(:) 

Modules 
Use the appropriate one of the modules: 

chol_int  

or linear_operators 

Example 
Compute the Cholesky factor of a positive-definite symmetric matrix: 
B = A .tx. A; R = CHOL(B); B = R .tx. R  

COND 
Computes the condition number of a rectangular matrix, A. The condition number is the ratio of 
the largest and the smallest positive singular values,  

� �
/1s s

rank A
 

or huge(A), whichever is smaller. 

Required Argument 
This function requires one argument. This argument must be a rank-2 or rank-3 array. For rank-3 
arrays, each rank-2 array section, (for fixed third subscript), is a separate problem. In this case, the 
output is a rank-1 array of condition numbers for each problem. 

Optional Variables, Reserved Names 
This function uses lin_sol_svd (see Chapter 1, “Linear Solvers,” lin_sol_svd), to compute 
the singular values of A. 
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The option and derived type names are given in the following tables: 

 
Option Name for COND Option Value 
s_cond_set_small 1 
s_cond_for_lin_sol_svd 2 
d_cond_set_small 1 
d_cond_for_lin_sol_svd 2 
c_cond_set_small 1 
c_cond_for_lin_sol_svd 2 
z_cond_set_small 1 
z_cond_for_lin_sol_svd 2 

 
Derived Type Name of Unallocated Array 
s_options s_cond_options(:) 

s_options s_cond_options_once(:) 

d_options d_cond_options(:) 

d_options d_cond_options_once(:) 

Modules 
Use the appropriate one of the modules: 

cond_int 

or linear_operators 

Example 
Compute the condition number: 
B = A .tx. A; c = COND(B); c = COND(A)**2  

DET 
Computes the determinant of a rectangular matrix, A. The evaluation is based on the QR decompo-
sition, 

0
0 0
k kR

QAP �
� �

� � �
� �

 

and k = rank(A). Thus det(A) = s � det(R) where s = det(Q) � det(P) = �1. 

Required Argument 
This function requires one argument. This argument must be a rank-2 or rank-3 array that contains 
a rectangular matrix. For rank-3 arrays, each rank-2 array (for fixed third subscript), is a separate 
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matrix. In this case, the output is a rank-1 array of determinant values for each problem. Even 
well-conditioned matrices can have determinants with values that have very large or very tiny 
magnitudes. The values may overflow or underflow. For this class of problems, the use of the 
logarithmic representation of the determinant found in lin_sol_gen or lin_sol_lsq is 
required. 

Optional Variables, Reserved Names 
This function uses lin_sol_lsq (see Chapter 1, “Linear Solvers” lin_sol_lsq) to compute 
the QR decomposition of A, and the logarithmic value of det(A), which is exponentiated for the 
result. 

The option and derived type names are given in the following tables: 

Option Name for DET Option Value 
s_det_for_lin_sol_lsq 1 
d_det_for_lin_sol_lsq 1 

c_det_for_lin_sol_lsq 1 
z_det_for_lin_sol_lsq 1 

 
 

Derived Type Name of Unallocated Array 
S_options s_det_options(:) 

S_options s_det_options_once(:) 

D_options d_det_options(:) 

D_options d_det_options_once(:) 

Modules 
Use the appropriate one of the modules: 

det_int 

or linear_operators 

Example 
Compute the determinant of a matrix and its inverse: 
b = DET(A); c = DET(.i.A); b=1./c  
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DIAG 
Constructs a square diagonal matrix from a rank-1 array or several diagonal matrices from a rank-
2 array. The dimension of the matrix is the value of the size of the rank-1 array. 

Required Argument 
This function requires one argument, and the argument must be a rank-1 or rank-2 array. The 
output is a rank-2 or rank-3 array, respectively. The use of DIAG may be obviated by observing 
that the defined operations C = diag(x) .x. A or D = B .x. diag(x) are respectively the 
array operations C = spread(x, DIM=1,NCOPIES=size(A,1))*A, and 
D = B*spread(x,DIM=2,NCOPIES=size(B,2)). These array products are not as easy to read 
as the defined operations using DIAG and matrix multiply, but their use results in a more efficient 
code. 

Optional Variables, Reserved Names 
This function has neither packaged optional variables nor reserved names. 

Modules 
Use the appropriate module: 

diag_int 

or linear_operators 

Example 
Compute the singular value decomposition of a square matrix A: 
S = SVD(A,U=U,V=V)  

Then reconstruct TA USV� : 
A = U .x.diag(S) .xt. V  

DIAGONALS 
Extracts a rank-1 array whose values are the diagonal terms of a rank-2 array argument. The size 
of the array is the smaller of the two dimensions of the rank-2 array. When the argument is a rank-
3 array, the result is a rank-2 array consisting of each separate set of diagonals. 

Required Argument 
This function requires one argument, and the argument must be a rank-2 or rank-3 array. The 
output is a rank-1 or rank-2 array, respectively.  

Optional Variables, Reserved Names 
This function has neither packaged optional variables nor reserved names. 
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Modules 
Use the appropriate one of the modules: 

diagonals_int 

or linear_operators 

Example 

Compute the diagonals of the matrix product RRT: 
x = DIAGONALS(R .xt. R)  

EIG 
Computes the eigenvalue-eigenvector decomposition of an ordinary or generalized eigenvalue 
problem. 

For the ordinary eigenvalue problem, Ax = ex, the optional input “B=” is not used. With the 
generalized problem, Ax = eBx, the matrix B is passed as the array in the right-side of “B=”. The 
optional output  “D=” is an array required only for the generalized problem and then only when 
the matrix B is singular. 

The array of real eigenvectors is an optional output for both the ordinary and the generalized 
problem. It is used as “V=” where the right-side array will contain the eigenvectors. If any 
eigenvectors are complex, the optional output “W=” must be present. In that case “V=” should not 
be used. 

Required Argument 
This function requires one argument, and the argument must be a square rank-2 array or a rank-3 
array with square first rank-2 sections. The output is a rank-1 or rank-2 complex array of eigenval-
ues. 

Optional Variables, Reserved Names 
This function uses lin_eig_self, lin_eig_gen, and lin_geig_gen, to compute the 
decompositions. See Chapter 1, “Linear Solvers” lin_eig_self, lin_eig_gen, and 
lin_geig_gen. 

The option and derived type names are given in the following tables: 

Option Name for EIG Option Value 
options_for_lin_eig_self 1 
options_for_lin_eig_gen 2 
options_for_lin_geig_gen 3 
Skip_error_processing 5 
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Derived Type Name of Unallocated Array 
s_options s_eig_options(:) 

s_options s_eig_options_once(:) 

d_options d_eig_options(:) 

d_options d_eig_options_once(:) 

Modules 
Use the appropriate module: 

eig_int 

or linear_operators 

Example 
Compute the maximum magnitude eigenvalue of a square matrix A. (The values are sorted by 
EIG() to be non-increasing in magnitude). 
E = EIG(A); max_magnitude = abs(E(1))  

Compute the eigenexpansion of a square matrix B: 
E = EIG(B, W = W); B = W .x. diag(E) .xi. W  

EYE 
Creates a rank-2 square array whose diagonals are all the value one. The off-diagonals all have 
value zero. 

Required Argument 
This function requires one integer argument, the dimension of the rank-2 array. The output array is 
of type and kind REAL(KIND(1E0)).  

Optional Variables, Reserved Names 
This function has neither packaged optional variables nor reserved names. 

Modules 
Use the appropriate module: 

eye_int 

or linear_operators 

Example 
Check the orthogonality of a set of n vectors, Q: 

e = norm(EYE(n) � (Q .hx. Q))  
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FFT 
The Discrete Fourier Transform of a complex sequence and its inverse transform. 

Required Argument 
The function requires one argument, x. If x is an assumed shape complex array of rank 1, 2 or 3, 
the result is the complex array of the same shape and rank consisting of the DFT. 

Optional Variables, Reserved Names 
The optional argument is “WORK=,”3 a COMPLEX array of the same precision as the data.  For 
rank-1 transforms the size of WORK is n+15.  To define this array for each problem, set WORK(1) 
= 0. Each additional rank adds the dimension of the transform plus 15.  Using the optional 
argument WORK increases the efficiency of the transform.  This function uses fast_dft, 
fast_2dft, and fast_3dft from Chapter 3. 

The option and derived type names are given in the following tables: 

Option Name for FFT Option Value 
options_for_fast_dft            1 

 

Derived Type Name of Unallocated Array 
s_options s_fft_options(:) 

s_options s_fft_options_once(:) 

d_options d_fft_options(:) 

d_options d_fft_options_once(:) 

Modules 
Use the appropriate module: 

fft_int 

or linear_operators 

Example 
Compute the DFT of a random complex array: 
x=rand(x); y=fft(x)  

FFT_BOX 
The Discrete Fourier Transform of several complex or real sequences. 
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Required Argument 
The function requires one argument, x.  If x is an assumed shape complex array of rank 2, 3 or 4, 
the result is the complex array of the same shape and rank consisting of the DFT for each of the 
last rank’s indices. 

Optional Variables, Reserved Names 
The optional argument is “WORK=,” a COMPLEX array of the same precision as the data.  For 
rank-1 transforms the size of WORK is n+15.  To define this array for each problem, set  
WORK(1) = 0. Each additional rank adds the dimension of the transform plus 15.  Using the 
optional argument WORK increases the efficiency of the transform.  This function uses routines 
fast_dft, fast_2dft, and fast_3dft from this chapter. 

The option and derived type names are given in the following tables: 

Option Name for FFT Option Value 
options_for_fast_dft 1 

 
 

Derived Type Name of Unallocated Array 
S_options s_fft_box_options(:) 

S_options s_fft_box_options_once(:) 

D_options d_fft_box_options(:) 

D_options d_fft_box_options_once(:) 

Modules 
Use the appropriate module: 

fft_box_int 

or linear_operators 

Example 
Compute the DFT of a random complex array: 
x=rand(x); y=fft_box(x)  

IFFT 
The inverse of the Discrete Fourier Transform of a complex sequence. 

Required Argument 
The function requires one argument, x.  If x is an assumed shape complex array of rank 1, 2 or 3, 
the result is the complex array of the same shape and rank consisting of the inverse DFT. 
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Optional Variables, Reserved Names 
The optional argument is “WORK=,” a COMPLEX array of the same precision as the data.  For 
rank-1 transforms the size of WORK is n+15.  To define this array for each problem, set  
WORK(1) = 0. Each additional rank adds the dimension of the transform plus 15.  Using the 
optional argument WORK increases the efficiency of the transform.  This function uses routines 
fast_dft, fast_2dft, and fast_3dft from Chapter 3. 

The option and derived type names are given in the following tables: 

 
Option Name for IFFT Option Value 
options_for_fast_dft 1 

 
 

Derived Type Name of Unallocated Array 
s_options s_ifft_options(:) 

s_options S_ifft_options_once(:) 

d_options D_ifft_options(:) 

d_options D_ifft_options_once(:) 

Modules 
Use the appropriate module: 

ifft_int 

or linear_operators 

Example 
Computes the DFT of a random complex array and its inverse transform: 
x=rand(x); y=fft(x); x=ifft(y)  

IFFT_BOX 
The inverse Discrete Fourier Transform of several complex or real sequences. 

Required Argument 
The function requires one argument, x. If x is an assumed shape complex array of rank 2, 3 or 4, 
the result is the complex array of the same shape and rank consisting of the inverse DFT. 

Optional Variables, Reserved Names 
The optional argument is “WORK=,” a COMPLEX array of the same precision as the data.  For 
rank-1 transforms the size of  WORK is n+15.  To define this array for each problem, set WORK(1) 
= 0. Each additional rank adds the dimension of the transform plus 15. Using the optional 
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argument WORK increases the efficiency of the transform. This function uses routines fast_dft, 
fast_2dft, and fast_3dft from Chapter 3. 

The option and derived type names are given in the following tables: 

Option Name for IFFT Option Value 

Options_for_fast_dft 1 

 
Derived Type Name of Unallocated Array 

S_options s_ifft_box_options(:) 

S_options s_ifft_box_options_once(:) 

D_options d_ifft_box_options(:) 

D_options d_ifft_box_options_once(:) 

Modules 
Use the appropriate module: 

ifft_box_int 

or linear_operators 

Example 
Computes the inverse DFT of a random complex array: 
x=rand(x); x=ifft_box(y)  

isNaN 
This is a generic logical function used to test scalars or arrays for occurrence of an IEEE 754 
Standard format of floating point (ANSI/IEEE 1985) NaN, or not-a-number. Either quiet or 
signaling NaNs are detected without an exception occurring in the test itself. The individual array 
entries are each examined, with bit manipulation, until the first NaN is located. For non-IEEE 
formats, the bit pattern tested for single precision is transfer(not(0),1). For double 
precision numbers x, the bit pattern tested is equivalent to assigning the integer array  
i(1:2) = not(0), then testing this array with the bit pattern of the integer array 
transfer(x,i). This function is likely to be required whenever there is the possibility that a 
subroutine blocked the output with NaNs in the presence of an error condition. 

Required Arguments 
The argument can be a scalar or array of rank-1, rank-2 or rank-3. The output value tests .true. 
only if there is at least one NaN in the scalar or array. The values can be any of the four intrinsic 
floating-point types. 
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Optional Variables, Reserved Names 
This function has neither packaged optional variables nor reserved names. 

Modules 
Use one of the modules: 

isNaN_int 

or linear_operators 

Example 
If there is not a NaN in an array A it is used to solve a linear system: 
if(.not. isNaN(A)) x = A .ix. b  

NaN 
Returns, as a scalar function, a value corresponding to the IEEE 754 Standard format of floating 
point (ANSI/IEEE 1985) for NaN. For other floating point formats a special pattern is returned 
that tests .true. using the function isNaN(). 

Required Arguments 
X   (Input) 

Scalar value of the same type and precision as the desired result, NaN. This input value 
is used only to match the type of output. 

Optional Arguments 
There are no optional arguments for this routine. 

Example:  Blocking Output 
Arrays are assigned all NaN values, using single and double-precision formats. These are tested 
using the logical function routine, isNaN. 

 
      use isnan_int  
  
      implicit none  
  
! This is Example 1 for NaN.  
      integer, parameter :: n=3  
      real(kind(1e0)) A(n,n); real(kind(1d0)) B(n,n)  
      real(kind(1e0)), external :: s_NaN  
      real(kind(1d0)), external :: d_NaN  
  
! Assign NaNs to both A and B:  
      A = s_Nan(1e0); B = d_Nan(1d0)  
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! Check that NaNs are noted in both A and B:  
      if (isNan(A) .and. isNan(B)) then  
 
 
         write (*,*) 'Example 1 for NaN is correct.'  
      end if  
  
      end   

Description 
The bit pattern used for single precision is transfer (not(0),1).  For double precision, the bit 
pattern for single precision is replicated by assigning the temporary integer array  
i(1:2) = not(0), and then using the double-precision bit pattern transfer(i,x) for the 
output value. 

Fatal and Terminal Error Messages 
This routine has no error messages. 

NORM 
Computes the norm of a rank-1 or rank-2 array. For rank-3 arrays, the norms of each rank-2 array, 
in dimension 3, are computed. 

Required Arguments 
The first argument must be an array of rank-1, rank-2, or rank-3. An optional, second position 
argument can be used that provides a choice between the norms  

1 2, ,  and l l l
�

 

If this optional argument, with keyword “ type=” is not present, the 2l  norm is computed. The 

1  and l l
�

 norms are likely to be less expensive to compute than the l2 norm. Use of the option 
number ?_reset_default_norm will switch the default from the 2l  to the 1  or l l

�
 norms. 

Optional Variables, Reserved Names 
If the 2l  norm is required, this function uses lin_sol_svd (see Chapter 1, “Linear Solvers,” 
lin_sol_svd), to compute the largest singular value of A. For the other norms, Fortran 90 
intrinsics are used. 

The option and derived type names are given in the following tables: 

Option Name for NORM Option Value 
s_norm_for_lin_sol_svd 1 
s_reset_default_norm 2 
d_norm_for_lin_sol_svd 1 
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Option Name for NORM Option Value 
d_reset_default_norm 2 
c_norm_for_lin_sol_svd 1 
c_reset_default_norm 2 
z_norm_for_lin_sol_svd 1 
z_reset_default_norm 2 

 
 

Derived Type Name of Unallocated Array 
s_options s_norm_options(:) 

s_options s_norm_options_once(:) 

d_options d_norm_options(:) 

d_options d_norm_options_once(:) 

Modules 
Use the appropriate modules: 

norm_int 

or linear_operators 

Example 

Compute three norms of an array. (Both assignments of n_2 yield the same value). 
A: n_1 = norm(A,1); n_2 = norm(A,type=2); n_2=norm(A);  
n_inf = norm(A,huge(1))  

ORTH 
Orthogonalizes the columns of a rank-2 or rank-3 array. The decomposition A = QR is computed 
using a forward and backward sweep of the Modified Gram-Schmidt algorithm. 

Required Arguments 
The first argument must be an array of rank-2 or rank-3. An optional argument can be used to 
obtain the upper-triangular or upper trapezoidal matrix R. If this optional argument, with keyword 
“R=”, is present, the decomposition is complete. The array output contains the matrix Q. If the 
first argument is rank-3, the output array and the optional argument are rank-3. 
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Optional Variables, Reserved Names 

The option and derived type names are given in the following tables: 

Option Name for ORTH Option Value 
skip_error_processing 5 

 
Derived Type Name of Unallocated Array 
s_options s_orth_options(:) 

s_options s_orth_options_once(:) 

d_options d_orth_options(:) 

d_options d_orth_options_once(:) 

Modules 
Use the appropriate one of the modules: 
  orth_int 

  or linear_operators 

Example 
Compute the scaled sample variances, v, of an m � n linear least squares system, (m > n), Ax � b 
: Q = ORTH(A,R=R); G=.i. R; x = G .x. (Q .hx. b); v=DIAGONALS(G .xh. G); 
v=v*sum((b-(A .x. x))**2)/(m�n) 

RAND 
Computes a scalar, rank-1, rank-2 or rank-3 array of random numbers. Each component number is 
positive and strictly less than one in value. 

Required Arguments 
The argument must be a scalar, rank-1, rank-2, or rank-3 array of any intrinsic floating-point type. 
The output function value matches the required argument in type, kind and rank. For complex 
arguments, the output values will be real and imaginary parts with random values of the same 
type, kind, and rank. 

Optional Variables, Reserved Names 
This function uses rand_gen to obtain the number of values required by the argument. The 
values are then copied using the RESHAPE intrinsic. 

Note: If any of the arrays s_rand_options(:), s_rand_options_once(:), 
d_rand_options(:), or d_rand_options_once(:) are allocated, they are passed as 
arguments to rand_gen using the keyword “iopt=”. 
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The option and derived type names are given in the following table: 

Derived Type Name of Unallocated Array 

S_options s_rand_options(:) 

S_options s_rand_options_once(:) 

D_options d_rand_options(:) 

D_options d_rand_options_once(:) 

Modules 
Use the appropriate modules: 

rand_int 

or linear_operators 

Examples 
Compute a random digit: 

1 � i � n : i=rand(1e0)*n+1  

Compute a random vector: 

x : x=rand(x)  

RANK 
Computes the mathematical rank of a rank-2 or rank-3 array. 

Required Arguments 
The argument must be rank-2 or rank-3 array of any intrinsic floating-point type. The output 
function value is an integer with a value equal to the number of singular values that are greater 
than a tolerance. The default value for this tolerance is 1/ 2

1s� , where �  is machine precision and 

1s is the largest singular value of the matrix. 

Optional Variables, Reserved Names 
This function uses lin_sol_svd to compute the singular values of the argument. The singular 
values are then compared with the value of the tolerance to compute the rank. 

The option and derived type names are given in the following tables: 

Option Name for RANK Option Value 
S_rank_set_small 1 

S_rank_for_lin_sol_svd 2 
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Option Name for RANK Option Value 
D_rank_set_small 1 
D_rank_for_lin_sol_svd 2 
C_rank_set_small 1 
C_rank_for_lin_sol_svd 2 
Z_rank_set_small 1 
Z_rank_for_lin_sol_svd 2 

 

Derived Type Name of Unallocated Array 
S_options s_rank_options(:) 

S_options s_rank_options_once(:) 

D_options d_rank_options(:) 

d_options d_rank_options_once(:) 

Modules 
Use the appropriate one of the modules: 

rank_int 

or linear_operators 

Example 
Compute the rank of an array of random numbers and then the rank of an array where each entry 
is the value one: 
A=rand(A); k=rank(A); A=1; k=rank(A)  

SVD 
Computes the singular value decomposition of a rank-2 or rank-3 array, TA USV� . 

Required Arguments 
The argument must be rank-2 or rank-3 array of any intrinsic floating-point type. The keyword 
arguments “U=” and “V=” are optional. The output array names used on the right-hand side must 
have sizes that are large enough to contain the right and left singular vectors, U and V. 

Optional Variables, Reserved Names  
This function uses one of the routines lin_svd and lin_sol_svd. If a complete decomposition 
is required, lin_svd is used. If singular values only, or singular values and one of the right and 
left singular vectors are required, then lin_sol_svd is called. 
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The option and derived type names are given in the following tables: 

Option Name for SVD Option Value 

options_for_lin_svd 1 
options_for_lin_sol_svd 2 
skip_error_processing 5 

 
Derived Type Name of Unallocated Array 
s_options s_svd_options(:) 

s_options s_svd_options_once(:) 

d_options d_svd_options(:) 

d_options d_svd_options_once(:) 

Modules 
Use the appropriate module: 

svd_int 

or linear_operators 

Example 
Compute the singular value decomposition of a random square matrix: 
A=rand(A); S=SVD(A,U=U,V=V); A=U .x. diag(S) .xt. V  

UNIT 
 Normalizes the columns of a rank-2 or rank-3 array so each has  Euclidean length of value one. 

Required Arguments 
The argument must be a rank-2 or rank-3 array of any intrinsic floating-point type. The output 
function value is an array of the same type and kind, where each column of each rank-2 principal 
section has Euclidean length of value one. 

Optional Variables, Reserved Names 
This function uses a rank-2 Euclidean length subroutine to compute the lengths of the nonzero 
columns, which are then normalized to have lengths of value one. The subroutine carefully avoids 
overflow or damaging underflow by rescaling the sums of squares as required. There are no 
reserved names. 
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Modules 
Use the appropriate one of the modules: 

unit_int 

or linear_operators 

Example 
Normalizes a set of random vectors: A=UNIT(RAND(A)). 

Overloaded =, /=, etc., for Derived Types 
To assist users in writing compact and readable code, the IMSL Fortran Library provides 
overloaded assignment and logical operations for the derived types s_options, d_options, 
s_error, and d_error. Each of these derived types has an individual record consisting of an 
integer and a floating-point number. The components of the derived types, in all cases, are named 
idummy followed by rdummy. In many cases, the item referenced is the component idummy. This 
integer value can be used exactly as any integer by use of the component selector character 
(%). Thus, a program could assign a value and test after calling a routine: 

s_epack(1)%idummy = 0 
call lin_sol_gen(A,b,x,epack=s_epack) 
if (s_epack(1)%idummy > 0) call error_post(s_epack)  

Using the overloaded assignment and logical operations, this code fragment can be written in the 
more readable form: 

s_epack(1) = 0 
call lin_sol_gen(A,b,x,epack=s_epack) 
if (s_epack(1) > 0) call error_post(s_epack)  

Generally the assignments and logical operations refer only to component idummy. The 
assignment “s_epack(1)=0” is equivalent to “s_epack(1)=s_error(0,0E0)”. Thus, the 
floating-point component rdummy is assigned the value 0E0. The assignment statement 
“I=s_epack(1)”, for I an integer type, is equivalent to “I=s_epack(1)%idummy”. The value 
of component rdummy is ignored in this assignment. For the logical operators, a single element of 
any of the IMSL Fortran Library derived types can be in either the first or second operand. 

Derived Type Overloaded Assignments and Tests 
s_options I=s_options(1);s_options(1)=I = = /= < <= > >= 

s_options I=d_options(1);d_options(1)=I = = /= < <= > >= 

d_epack I=s_epack(1);s_epack(1)=I = = /= < <= > >= 

d_epack I=d_epack(1);d_epack(1)=I = = /= < <= > >= 

In the examples, operator_ex01, 	, _ex37, the overloaded assignments and tests have been 
used whenever they improve the readability of the code. 
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Operator Examples 
This section presents an equivalent implementation of the examples in “Linear Solvers, “Singular 
Value and Eigenvalue Decomposition,” and a single example from “Fourier Tranforms Chapters 1 
and 2, and a single example from Chapter 3.” In all cases, the examples have been tested for 
correctness using equivalent mathematical criteria. On the other hand, these criteria are not 
identical to the corresponding examples in all cases. In Example 1 for lin_sol_gen,  
err = maxval(abs(res))/sum(abs(A) + abs(b))is computed. In the operator revision of 
this example, operator_ex01, err = norm(b �  
(A .x. x))/(norm(A)*norm(x) + norm(b)) is computed. 

Both formulas for err yield values that are about epsilon(A). To be safe, the larger value 
sqrt(epsilon(A)) is used as the tolerance. 

The operator version of the examples are shorter and intended to be easier to read. 

To match the corresponding examples in Chapters 1, 2, and 10 to those using the operators, 
consult the following table: 

Chapters 1, 2 and 3 Examples Corresponding Operators 
Lin_sol_gen_ex1,_ex2,_ex3,_ex4 operator_ex01,_ex02,_ex03,_ex04 

Lin_sol_self_ex1,_ex2,_ex3,_ex4 operator_ex05,_ex06,_ex07,_ex08 

Lin_sol_lsq_ex1,_ex2,_ex3,_ex4 operator_ex09,_ex10,_ex11,_ex12 

Lin_sol_svd_ex1,_ex2,_ex3,_ex4 operator_ex13,_ex14,_ex15,_ex16 

Lin_sol_tri_ex1,_ex2,_ex3,_ex4 operator_ex17,_ex18,_ex19,_ex20 

Lin_svd_ex1,_ex2,_ex3,_ex4 operator_ex21,_ex22,_ex23,_ex24 

Lin_eig_self_ex1,_ex2,_ex3,_ex4 operator_ex25,_ex26,_ex27,_ex28 

Lin_eig_gen_ex1,_ex2,_ex3,_ex4 operator_ex29,_ex30,_ex31,_ex32 

Lin_geig_gen_ex1,_ex2,_ex3,_ex4 operator_ex33,_ex34,_ex35,_ex36 

fast_dft_ex4 operator_ex37 

Table A: Examples and Corresponding Operators 

Operator_ex01 
 
      use linear_operators  
      implicit none  
  
! This is Example 1 for LIN_SOL_GEN, with operators and functions.  
  
      integer, parameter :: n=32  
      real(kind(1e0)) :: one=1.0e0, err  
      real(kind(1e0)), dimension(n,n) :: A, b, x  
  
! Generate random matrices for A and b:  
      A = rand(A); b=rand(b)  
  
! Compute the solution matrix of Ax = b.  
      x = A .ix. b  
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! Check the results.  
      err = norm(b - (A .x. x))/(norm(A)*norm(x)+norm(b))  
      if (err <= sqrt(epsilon(one))) &  
         write (*,*) 'Example 1 for LIN_SOL_GEN (operators) is correct.'  
      end   

Operator_ex02 
 
      use linear_operators  
      implicit none  
  
! This is Example 2 for LIN_SOL_GEN using operators and functions.  
  
      integer, parameter :: n=32  
      real(kind(1e0)) :: one=1e0, err, det_A, det_i  
      real(kind(1e0)), dimension(n,n) :: A, inv  
  
! Generate a random matrix.  
      A = rand(A)  
! Compute the matrix inverse and its determinant.  
      inv = .i.A; det_A = det(A)  
! Compute the determinant for the inverse matrix.  
      det_i = det(inv)  
! Check the quality of both left and right inverses.  
      err = (norm(EYE(n)-(A .x. inv))+norm(EYE(n)-(inv.x.A)))/cond(A)  
      if (err <= sqrt(epsilon(one)) .and. abs(det_A*det_i - one) <= &  
                 sqrt(epsilon(one))) &  
      write (*,*) 'Example 2 for LIN_SOL_GEN (operators) is correct.'  
      end   

Operator_ex03 
 
      use linear_operators  
      implicit none  
  
! This is Example 3 for LIN_SOL_GEN using operators.  
      integer, parameter :: n=32  
      real(kind(1e0)) :: one=1e0, zero=0e0, A(n,n), b(n), x(n)  
      real(kind(1e0)) change_new, change_old  
      real(kind(1d0)) :: d_zero=0d0, c(n), d(n,n), y(n)  
  
! Generate a random matrix and right-hand side.  
      A = rand(A); b= rand(b)  
  
! Save double precision copies of the matrix and right-hand side.  
      D = A  
      c = b  
! Compute single precision inverse to compute the iterative refinement.  
      A = .i. A  
  
! Start solution at zero.  Update it to an accurate solution  
! with each iteration.  
      y = d_zero  



 

 
 

1496 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY 

 

 

 

      change_old = huge(one)  
  
      iterative_refinement: do  
! Compute the residual with higher accuracy than the data.  
         b = c - (D .x. y)  
  
! Compute the update in single precision.  
         x = A .x. b  
         y = x + y  
         change_new = norm(x)  
  
! Exit when changes are no longer decreasing.  
         if (change_new >= change_old) exit iterative_refinement  
         change_old = change_new  
      end do iterative_refinement  
  
      write (*,*) 'Example 3 for LIN_SOL_GEN (operators) is correct.'  
      end   

Operator_ex04 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 4 for LIN_SOL_GEN using operators.  
         
      integer, parameter :: n=32, k=128  
      integer i  
      real(kind(1e0)), parameter :: one=1e0, t_max=1, delta_t=t_max/(k-1)  
      real(kind(1e0)) err, A(n,n)  
      real(kind(1e0)) t(k), y(n,k), y_prime(n,k)  
      complex(kind(1e0)) x(n,n), z_0(n), y_0(n), d(n)  
  
! Generate a random coefficient matrix.  
      A = rand(A)  
  
! Compute the eigenvalue-eigenvector decomposition  
! of the system coefficient matrix.  
      D = EIG(A, W=X)  
  
! Generate a random initial value for the ODE system.  
      y_0 = rand(y_0)  
  
! Solve complex data system that transforms the initial   
! values, X z_0=y_0.  
      z_0 = X .ix. y_0  
  
! The grid of points where a solution is computed:  
      t = (/(i*delta_t,i=0,k-1)/)  
  
! Compute y and y' at the values t(1:k).  
! With the eigenvalue-eigenvector decomposition AX = XD, this  
! is an evaluation of EXP(A t)y_0 = y(t).  
      y = X .x. exp(spread(d,2,k)*spread(t,1,n))*spread(z_0,2,k)  
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! This is y', derived by differentiating y(t).  
      y_prime  = X .x. spread(d,2,k)*exp(spread(d,2,k)*spread(t,1,n))* &  
                       spread(z_0,2,k)  
  
! Check results. Is  y' - Ay = 0?  
      err = norm(y_prime-(A .x. y))/(norm(y_prime)+norm(A)*norm(y))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 4 for LIN_SOL_GEN (operators) is correct.'  
      end if  
  
      end   

Operator_ex05 
 
      use linear_operators  
      implicit none  
  
! This is Example 1 for LIN_SOL_SELF using operators and functions.  
      integer, parameter :: m=64, n=32  
      real(kind(1e0)) :: one=1.0e0, err  
      real(kind(1e0)) A(n,n), b(n,n), C(m,n), d(m,n), x(n,n)  
  
! Generate two rectangular random matrices.  
      C = rand(C); d=rand(d)  
  
! Form the normal equations for the rectangular system.  
      A = C .tx. C; b = C .tx. d  
  
! Compute the solution for Ax = b, A is symmetric.  
      x = A .ix. b  
  
! Check the results.  
      err = norm(b - (A .x. x))/(norm(A)+norm(b))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for LIN_SOL_SELF (operators) is correct.'  
      end if  
  
      end   

Operator_ex06 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 2 for LIN_SOL_SELF using operators and functions.  
  
      integer, parameter :: m=64, n=32  
      real(kind(1e0)) :: one=1e0, zero=0e0, err  
      real(kind(1e0)) A(n,n), b(n), C(m,n), d(m), cov(n,n), x(n)  
             
! Generate a random rectangular matrix and right-hand side.  
      C = rand(C); d=rand(d)  
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! Form the normal equations for the rectangular system.  
      A = C .tx. C; b = C .tx. d  
      COV = .i. CHOL(A); COV = COV .xt. COV  
  
! Compute the least-squares solution.  
       x = C .ix. d  
  
! Compare with solution obtained using the inverse matrix.  
      err = norm(x - (COV .x. b))/norm(cov)  
  
! Scale the inverse to obtain the sample covariance matrix.  
      COV = sum((d - (C .x. x))**2)/(m-n) * COV  
! Check the results.  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 2 for LIN_SOL_SELF (operators) is correct.'  
      end if  
  
      end   

Operator_ex07 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 3 (using operators) for LIN_SOL_SELF.  
  
      integer tries  
      integer, parameter :: m=8, n=4, k=2  
      integer ipivots(n+1)  
      real(kind(1d0)) :: one=1.0d0, err  
      real(kind(1d0)) a(n,n), b(n,1), c(m,n), x(n,1), &  
             e(n), ATEMP(n,n)  
      type(d_options) :: iopti(4)  
  
! Generate a random rectangular matrix.  
      C = rand(C)  
  
! Generate a random right hand side for use in the inverse   
! iteration.  
      b = rand(b)  
  
! Compute the positive definite matrix.  
      A = C .tx. C; A = (A+.t.A)/2  
  
! Obtain just the eigenvalues.  
      E = EIG(A)  
  
! Use packaged option to reset the value of a small diagonal.  
      iopti(4) = 0  
      iopti(1) = d_options(d_lin_sol_self_set_small,&  
                 epsilon(one)*abs(E(1)))  
  
! Use packaged option to save the factorization.  
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      iopti(2) = d_lin_sol_self_save_factors  
  
! Suppress error messages and stopping due to singularity   
! of the matrix, which is expected.  
      iopti(3) = d_lin_sol_self_no_sing_mess  
  
      ATEMP = A  
  
! Compute A-eigenvalue*I as the coefficient matrix.  
! Use eigenvalue number k.  
      A = A - e(k)*EYE(n)       
  
      do tries=1,2  
         call lin_sol_self(A, b, x, &  
                     pivots=ipivots, iopt=iopti)  
! When code is re-entered, the already computed factorization   
! is used.  
         iopti(4) = d_lin_sol_self_solve_A  
  
! Reset right-hand side in the direction of the eigenvector.  
         B = UNIT(x)  
      end do  
  
! Normalize the eigenvector.  
      x = UNIT(x)  
  
! Check the results.  
      b=ATEMP .x. x  
      err =  dot_product(x(1:n,1), b(1:n,1)) - e(k)  
  
! If any result is not accurate, quit with no printing.  
      if (abs(err) <= sqrt(epsilon(one))*E(1)) then  
        write (*,*) 'Example 3 for LIN_SOL_SELF (operators) is correct.'  
      end if  
  
      end   

Operator_ex08 
 
      use linear_operators  
      implicit none  
  
! This is Example 4 for LIN_SOL_SELF using operators and functions.  
  
      integer, parameter :: m=8, n=4  
      real(kind(1e0)) :: one=1e0, zero=0e0  
      real(kind(1d0)) :: d_zero=0d0  
      integer ipivots((n+m)+1)  
      real(kind(1e0)) A(m,n), b(m,1), F(n+m,n+m),&  
            g(n+m,1), h(n+m,1)  
      real(kind(1e0)) change_new, change_old  
      real(kind(1d0)) c(m,1), D(m,n), y(n+m,1)  
      type(s_options) ::  iopti(2)  
  
! Generate a random matrix and right-hand side.  
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      A = rand(A); b = rand(b)  
  
! Save double precision copies of the matrix and right hand side.  
      D = A; c = b  
  
! Fill in augmented matrix for accurately solving the least-squares  
! problem using iterative refinement.  
      F = zero; F(1:m,1:m)=EYE(m)  
      F(1:m,m+1:) = A; F(m+1:,1:m) = .t. A  
  
! Start solution at zero.  
      y = d_zero  
      change_old = huge(one)  
  
! Use packaged option to save the factorization.  
      iopti(1) = s_lin_sol_self_save_factors  
      iopti(2) = 0  
  
      iterative_refinement: do  
         g(1:m,1) = c(1:m,1) - y(1:m,1) - (D .x. y(m+1:m+n,1))  
         g(m+1:m+n,1) = - D .tx. y(1:m,1)  
         call lin_sol_self(F, g, h, &  
                   pivots=ipivots, iopt=iopti)  
         y = h + y  
         change_new = norm(h)  
  
! Exit when changes are no longer decreasing.  
         if (change_new >= change_old)&  
                    exit iterative_refinement  
         change_old = change_new  
  
! Use option to re-enter code with factorization saved; solve only.  
         iopti(2) = s_lin_sol_self_solve_A  
      end do iterative_refinement  
      write (*,*) 'Example 4 for LIN_SOL_SELF (operators) is correct.'  
      end   

Operator_ex09 
 
      use linear_operators  
      use Numerical_Libraries  
      implicit none  
  
! This is Example 1 for LIN_SOL_LSQ using operators and functions.  
  
      integer i  
      integer, parameter :: m=128, n=8  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      real(kind(1d0)) A(m,0:n), c(0:n), pi_over_2, x(m), y(m), &  
              u(m), v(m), w(m), delta_x  
       CHARACTER(2) :: PI(1)   
  
! Generate a random grid of points and transform  
! to the interval -1,1.  
      x = rand(x); x = x*2 - one  
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! Get the constant 'PI/2' from IMSL Numerical Libraries.  
      PI='pi'; pi_over_2 = DCONST(PI)/2  
  
! Generate function data on the grid.  
      y = exp(x) + cos(pi_over_2*x)  
  
! Fill in the least-squares matrix for the Chebyshev polynomials.  
      A(:,0) = one; A(:,1) = x  
  
      do i=2, n  
         A(:,i) = 2*x*A(:,i-1) - A(:,i-2)  
      end do  
  
! Solve for the series coefficients.  
      c = A .ix. y  
  
! Generate an equally spaced grid on the interval.  
      delta_x = 2/real(m-1,kind(one))  
      x = (/(-one + i*delta_x,i=0,m-1)/)  
  
! Evaluate residuals using backward recurrence formulas.  
      u = zero; v = zero  
      do i=n, 0, -1  
         w = 2*x*u - v + c(i)  
         v = u  
         u = w  
      end do  
  
! Compute residuals at the grid:  
      y = exp(x) + cos(pi_over_2*x) - (u-x*v)  
  
! Check that n+1 sign changes in the residual curve occur.  
! (This test will fail when n is larger.)  
      x = one  
      x = sign(x,y)  
  
      if (count(x(1:m-1) /= x(2:m)) >= n+1) then  
         write (*,*) 'Example 1 for LIN_SOL_LSQ (operators) is correct.'  
      end if  
  
      end   
  

Operator_ex10 
 
      use linear_operators  
      implicit none  
  
! This is Example 2 for LIN_SOL_LSQ using operators and functions.  
  
      integer i  
      integer, parameter :: m=128, n=8  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      real(kind(1d0)) A(m,0:n), c(0:n), pi_over_2, x(m), y(m), &  
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             u(m), v(m), w(m), delta_x, inv(0:n, m)  
      real(kind(1d0)), external :: DCONST  
  
! Generate an array of equally spaced points on the interval -1,1.  
      delta_x = 2/real(m-1,kind(one))  
      x = (/(-one + i*delta_x,i=0,m-1)/)  
  
! Get the constant 'PI/2' from IMSL Numerical Libraries.  
      pi_over_2 = DCONST('PI')/2  
  
! Compute data values on the grid.  
      y = exp(x) + cos(pi_over_2*x)  
  
! Fill in the least-squares matrix for the Chebyshev polynomials.  
      A(:,0) = one  
      A(:,1) = x  
  
      do i=2, n  
         A(:,i) = 2*x*A(:,i-1) - A(:,i-2)  
      end do  
  
! Compute the generalized inverse of the least-squares matrix.  
! Compute the series coefficients using the generalized inverse  
! as 'smoothing formulas.'  
      inv = .i. A; c = inv .x. y  
  
! Evaluate residuals using backward recurrence formulas.  
  
      u = zero  
      v = zero  
      do i=n, 0, -1  
         w = 2*x*u - v + c(i)  
         v = u  
         u = w  
      end do  
  
! Compute residuals at the grid:  
      y = exp(x) + cos(pi_over_2*x) - (u-x*v)  
  
! Check that n+2 sign changes in the residual curve occur.  
! (This test will fail when n is larger.)  
  
      x = one; x = sign(x,y)  
  
      if (count(x(1:m-1) /= x(2:m)) == n+2) then  
         write (*,*) 'Example 2 for LIN_SOL_LSQ (operators) is correct.'  
      end if  
  
      end   

Operator_ex11 
 
      use operation_ix  
      use operation_tx  
      use operation_x  
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      use rand_int  
      use norm_int  
      implicit none  
  
! This is Example 3 for LIN_SOL_LSQ using operators and functions.  
      integer i, j  
      integer, parameter :: m=128, n=32, k=2, n_eval=16  
      real(kind(1d0)), parameter :: one=1d0, delta_sqr=1d0  
      real(kind(1d0)) A(m,n), b(m), c(n), p(k,m), q(k,n), &  
              res(n_eval,n_eval), w(n_eval), delta  
  
! Generate a random set of data and center points in k=2 space.  
      p = rand(p); q=rand(q)  
  
! Compute the coefficient matrix for the least-squares system.  
      A = sqrt(sum((spread(p,3,n) - spread(q,2,m))**2,dim=1) + delta_sqr)  
        
! Compute the right-hand side of function values.  
      b = exp(-sum(p**2,dim=1))  
  
! Compute the least-squares solution.  An error message due   
! to rank deficiency is ignored with the flags:  
    
      allocate (d_invx_options(1))  
      d_invx_options(1)=skip_error_processing  
      c = A .ix. b  
  
! Check the results.  
      if (norm(A .tx. (b - (A .x. c)))/(norm(A)+norm(c)) &  
          <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 3 for LIN_SOL_LSQ (operators) is correct.'  
      end if  
  
! Evaluate residuals, known function - approximation at a square   
! grid of points.  (This evaluation is only for k=2.)  
  
      delta = one/real(n_eval-1,kind(one))  
      w = (/(i*delta,i=0,n_eval-1)/)  
  
      res = exp(-(spread(w,1,n_eval)**2 + spread(w,2,n_eval)**2))  
      do j=1, n  
         res = res - c(j)*sqrt((spread(w,1,n_eval) - q(1,j))**2 + &  
                    (spread(w,2,n_eval) - q(2,j))**2 + delta_sqr)  
      end do  
! Unload option type for good housekeeping.  
      deallocate (d_invx_options)  
      end   

Operator_ex12 
 
      use linear_operators  
      implicit none  
  
! This is Example 4 for LIN_SOL_LSQ using operators and functions.  
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      integer, parameter :: m=64, n=32  
      real(kind(1e0)) :: one=1e0, A(m+1,n), b(m+1), x(n)  
  
! Generate a random matrix and right-hand side.  
      A=rand(A); b = rand(b)  
  
! Heavily weight desired constraint.  All variables sum to one.  
      A(m+1,:) = one/sqrt(epsilon(one))  
      b(m+1)   = one/sqrt(epsilon(one))  
  
! Compute the least-squares solution with this heavy weight.  
      x = A .ix. b  
  
! Check the constraint.  
      if (abs(sum(x) - one)/norm(x) <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 4 for LIN_SOL_LSQ (operators) is correct.'  
      end if  
  
      end  

Operator_ex13 
 
      use linear_operators  
      implicit none  
  
! This is Example 1 for LIN_SOL_SVD using operators and functions.  
      integer, parameter :: m=128, n=32  
      real(kind(1d0)) :: one=1d0, err  
      real(kind(1d0)) A(m,n), b(m), x(n), U(m,m), V(n,n), S(n), g(m)  
  
! Generate a random matrix and right-hand side.  
      A = rand(A); b = rand(b)  
  
! Compute the least-squares solution matrix of Ax=b.  
      S = SVD(A, U = U, V = V)  
      g = U .tx. b; x = V .x. diag(one/S) .x. g(1:n)  
  
! Check the results.  
      err = norm(A .tx. (b - (A .x. x)))/(norm(A)+norm(x))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for LIN_SOL_SVD (operators) is correct.'  
      end if  
  
      end   

Operator_ex14 
 
      use linear_operators  
      implicit none  
  
! This is Example 2 for LIN_SOL_SVD using operators and functions.  
      integer, parameter :: n=32  
      real(kind(1d0)) :: one=1d0, zero=0d0  
      real(kind(1d0)) A(n,n), P(n,n), Q(n,n), &  



 

 
 

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1505 

 

 

 

             S_D(n), U_D(n,n), V_D(n,n)  
  
! Generate a random matrix.  
      A = rand(A)  
  
! Compute the singular value decomposition.  
      S_D = SVD(A, U=U_D, V=V_D)  
  
! Compute the (left) orthogonal factor.  
      P = U_D .xt. V_D  
  
! Compute the (right) self-adjoint factor.  
      Q = V_D .x. diag(S_D) .xt. V_D  
  
! Check the results.  
      if (norm( EYE(n) - (P .xt. P)) &  
               <= sqrt(epsilon(one))) then  
         if (norm(A - (P .x. Q))/norm(A) &  
               <= sqrt(epsilon(one))) then  
            write (*,*) 'Example 2 for LIN_SOL_SVD (operators) is correct.'  
         end if  
      end if  
      end   

Operator_ex15 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 3 for LIN_SOL_SVD.  
      integer i, j, k  
      integer, parameter :: n=32  
      real(kind(1e0)), parameter :: half=0.5e0, one=1e0, zero=0e0  
      real(kind(1e0)), dimension(n,n) :: A, S(n), U, V, C  
  
! Fill in value one for points inside the circle,  
! zero on the outside.  
      A = zero  
      DO i=1, n  
         DO j=1, n  
            if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) A(i,j) = one  
         END DO  
      END DO  
  
! Compute the singular value decomposition.  
      S = SVD(A, U=U, V=V)  
  
! How many terms, to the nearest integer, match the circle?  
      k = count(S > half)  
      C = U(:,1:k) .x. diag(S(1:k)) .xt. V(:,1:k)  
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if (count(int(C-A) /= 0) == 0) then  
         write (*,*) 'Example 3 for LIN_SOL_SVD (operators) is correct.'  
      end if  
  
      end   

Operator_ex16 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 4 (operators) for LIN_SOL_SVD.  
  
      integer i, j, k  
      integer, parameter :: m=64, n=16  
      real(kind(1e0)), parameter :: one=1e0, zero=0e0  
      real(kind(1e0)) :: g(m), s(m), t(n+1), a(m,n), f(n), U_S(m,m), &  
              V_S(n,n), S_S(n)  
      real(kind(1e0)) :: delta_g, delta_t, rms, oldrms  
  
! Compute collocation equations to solve.  
      delta_g = one/real(m+1,kind(one))  
      g = (/(i*delta_g,i=1,m)/)  
  
! Compute equally spaced quadrature points.  
      delta_t =one/real(n,kind(one))  
      t=(/((j-1)*delta_t,j=1,n+1)/)  
  
! Compute collocation points with an array form of   
! Newton's method.  
      s=m  
      SOLVE_EQUATIONS: do  
        s=s-(exp(-s)-(one-s*g))/(g-exp(-s))  
        if (sum(abs((one-exp(-s))/s - g)) <= &  
            epsilon(one)*sum(g))exit SOLVE_EQUATIONS  
      end do SOLVE_EQUATIONS  
  
! Evaluate the integrals over the quadrature points.  
      A = (exp(-spread(t(1:n),1,m)  *spread(s,2,n)) &  
        -  exp(-spread(t(2:n+1),1,m)*spread(s,2,n))) / &  
           spread(s,2,n)  
  
! Compute the singular value decomposition.  
      S_S = SVD(A, U=U_S, V=V_S)  
  
! Singular values, larger than epsilon, determine   
! the rank, k.  
      k = count(S_S > epsilon(one))  
  
! Compute U_S**T times right-hand side, g.  
      g = U_S .tx. g  
  
! Use the minimum number of singular values that give a good   
! approximation to f(t) = 1.  
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      oldrms = huge(one)  
      do i=1,k  
         f = V_S(:,1:i) .x. (g(1:i)/S_S(1:i))  
         rms = sum((f-one)**2)/n  
         if (rms > oldrms) exit  
         oldrms = rms  
      end do  
  
      write (*,"( ' Using this number of singular values, ', &  
          &i4 / ' the approximate R.M.S. error is ', 1pe12.4)") &  
      i-1, oldrms  
  
      if (sqrt(oldrms) <= delta_t**2) then  
         write (*,*) 'Example 4 for LIN_SOL_SVD (operators) is correct.'  
      end if  
  
      end  

Operator_ex17 
 
      use linear_operators  
      use lin_sol_tri_int  
  
      implicit none  
! This is Example 1 (using operators) for LIN_SOL_TRI.  
integer, parameter :: n=128  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      real(kind(1d0)) err  
      real(kind(1d0)), dimension(2*n,n) :: d, b, c, x, y, t(n)  
      type(d_error) :: d_lin_sol_tri_epack(08) = d_error(0,zero)  
  
! Generate the upper, main, and lower diagonals of the   
! n matrices A_i.  For each system a random vector x is used   
! to construct the right-hand side, Ax = y.  The lower part  
! of each array remains zero as a result.  
  
      c = zero; d=zero; b=zero; x=zero  
            c(1:n,:)=rand(c(1:n,:)); d(1:n,:)=rand(d(1:n,:))  
            b(1:n,:)=rand(b(1:n,:)); x(1:n,:)=rand(x(1:n,:))  
  
! Add scalars to the main diagonal of each system so that   
! all systems are positive definite.  
      t = sum(c+d+b,DIM=1)  
      d(1:n,1:n) = d(1:n,1:n) + spread(t,DIM=1,NCOPIES=n)  
  
! Set Ax = y.  The vector x generates y.  Note the use  
! of EOSHIFT and array operations to compute the matrix  
! product, n distinct copies, as one array operation.  
  
     y(1:n,1:n)=d(1:n,1:n)*x(1:n,1:n) + &  
                c(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=+1,DIM=1) + &  
                b(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=-1,DIM=1)  
  
! Compute the solution returned in y.  (The input values of c,   
! d, b, and y are overwritten by lin_sol_tri.)  Check for any  
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! errors.  This is not recessary but illustrates control  
! returning to the calling program unit.  
      call lin_sol_tri (c, d, b, y, &  
           epack=d_lin_sol_tri_epack)  
      call error_post(d_lin_sol_tri_epack)  
  
! Check the size of the residuals, y-x.  They should be small,   
! relative to the size of values in x.  
  
      err = norm(x(1:n,1:n) - y(1:n,1:n),1)/norm(x(1:n,1:n),1)  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for LIN_SOL_TRI (operators) is correct.'  
      end if  
  
      end   

Operator_ex18 
 
      use linear_operators  
      use lin_sol_tri_int  
  
      implicit none  
  
! This is Example 2 (using operators) for LIN_SOL_TRI.  
      integer nopt  
      integer, parameter :: n=128  
      real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0  
      real(kind(1d0)), parameter :: d_one=1d0, d_zero=0d0  
      real(kind(1e0)), dimension(2*n,n) :: d, b, c, x, y  
      real(kind(1e0)) change_new, change_old, err  
      type(s_options) :: iopt(2) = s_options(0,s_zero)  
      real(kind(1d0)), dimension(n,n) :: d_save, b_save, c_save, &  
             x_save, y_save, x_sol  
      logical solve_only  
   
      c = s_zero; d=s_zero; b=s_zero; x=s_zero  
  
! Generate the upper, main, and lower diagonals of the   
! matrices A.  A random vector x is used to construct the   
! right-hand sides: y=A*x.  
      c(1:n,:)=rand(c(1:n,:)); d(1:n,:)=rand(d(1:n,:))  
      d(1:n,:)=rand(c(1:n,:)); x(1:n,:)=rand(d(1:n,:))  
  
! Save double precision copies of the diagonals and the   
! right-hand side.  
      c_save = c(1:n,1:n); d_save = d(1:n,1:n)   
      b_save = b(1:n,1:n); x_save = x(1:n,1:n)  
      y_save(1:n,1:n) = d(1:n,1:n)*x_save + &  
               c(1:n,1:n)*EOSHIFT(x_save,SHIFT=+1,DIM=1) + &  
               b(1:n,1:n)*EOSHIFT(x_save,SHIFT=-1,DIM=1)  
  
  
! Iterative refinement loop.  
      factorization_choice:  do nopt=0, 1  
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! Set the logical to flag the first time through.  
  
         solve_only = .false.  
         x_sol = d_zero  
         change_old = huge(s_one)  
  
         iterative_refinement:  do  
  
! This flag causes a copy of data to be moved to work arrays   
! and a factorization and solve step to be performed.  
            if (.not. solve_only) then  
               c(1:n,1:n)=c_save; d(1:n,1:n)=d_save  
               b(1:n,1:n)=b_save  
            end if  
  
! Compute current residuals, y - A*x, using current x.  
            y(1:n,1:n) = -y_save + &  
             d_save*x_sol + &  
             c_save*EOSHIFT(x_sol,SHIFT=+1,DIM=1) + &  
             b_save*EOSHIFT(x_sol,SHIFT=-1,DIM=1)  
  
            call lin_sol_tri (c, d, b, y, iopt=iopt)    
  
            x_sol = x_sol + y(1:n,1:n)  
  
            change_new = sum(abs(y(1:n,1:n)))  
  
! If size of change is not decreasing, stop the iteration.  
            if (change_new >= change_old) exit iterative_refinement  
  
            change_old = change_new  
            iopt(nopt+1) = s_lin_sol_tri_solve_only  
            solve_only = .true.  
  
         end do iterative_refinement  
  
! Use Gaussian Elimination if Cyclic Reduction did not get an   
! accurate solution.  
! It is an exceptional event when Gaussian Elimination is required.  
         if (norm(x_sol - x_save,1) / norm(x_save,1) &  
           <= sqrt(epsilon(d_one))) exit factorization_choice  
  
         iopt(nopt+1) = s_lin_sol_tri_use_Gauss_elim  
  
      end do factorization_choice  
  
! Check on accuracy of solution.   
  
      err = norm(x(1:n,1:n)- x_save,1)/norm(x_save,1)  
      if (err <= sqrt(epsilon(d_one))) then  
         write (*,*) 'Example 2 for LIN_SOL_TRI (operators) is correct.'  
      end if  
  
      end   
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Operator_ex19 
 
      use linear_operators  
      use lin_sol_tri_int  
      use rand_int   
      use Numerical_Libraries  
  
      implicit none  
  
! This is Example 3 (using operators) for LIN_SOL_TRI.  
  
      integer i, nopt  
      integer, parameter :: n=128, k=n/4, ncoda=1, lda=2  
      real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0  
      real(kind(1e0)) A(lda,n), EVAL(k)  
      type(s_options) :: iopt(2)  
      real(kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &  
           b_t(2*n,k), y_t(2*n,k), eval_t(k), res(n,k)  
      logical small  
  
! This flag is used to get the k largest eigenvalues.  
      small = .false.  
  
! Generate the main diagonal and the co-diagonal of the   
! tridiagonal matrix.    
      b=rand(b); d=rand(d)  
      A(1,1:)=b; A(2,1:)=d  
  
! Use Numerical Libraries routine for the calculation of k   
! largest eigenvalues.  
      CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)  
      EVAL_T = EVAL  
  
! Use Fortran Librarytridiagonal solver for inverse iteration   
! calculation of eigenvectors.  
      factorization_choice:  do nopt=0,1   
        
! Create k tridiagonal problems, one for each inverse   
! iteration system.  
         b_t(1:n,1:k) = spread(b,DIM=2,NCOPIES=k)  
         c_t(1:n,1:k) = EOSHIFT(b_t(1:n,1:k),SHIFT=1,DIM=1)  
         d_t(1:n,1:k) = spread(d,DIM=2,NCOPIES=k) - &  
                        spread(EVAL_T,DIM=1,NCOPIES=n)  
  
! Start the right-hand side at random values, scaled downward   
! to account for the expected 'blowup' in the solution.  
         y_t=rand(y_t)   
  
! Do two iterations for the eigenvectors.     
         do i=1, 2  
            y_t(1:n,1:k) = y_t(1:n,1:k)*epsilon(s_one)  
            call lin_sol_tri(c_t, d_t, b_t, y_t, &  
                        iopt=iopt)  
            iopt(nopt+1) = s_lin_sol_tri_solve_only  
         end do  
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! Orthogonalize the eigenvectors.  (This is the most   
! intensive part of the computing.)  
         y_t(1:n,1:k) = ORTH(y_t(1:n,1:k))  
              
  
! See if the performance ratio is smaller than the value one.  
! If it is not the code will re-solve the systems using Gaussian  
! Elimination.  This is an exceptional event.  It is a necessary  
! complication for achieving reliable results.    
  
         res(1:n,1:k) = spread(d,DIM=2,NCOPIES=k)*y_t(1:n,1:k) + &  
          spread(b,DIM=2,NCOPIES=k)* &  
          EOSHIFT(y_t(1:n,1:k),SHIFT=-1,DIM=1) + &  
          EOSHIFT(spread(b,DIM=2,NCOPIES=k)*y_t(1:n,1:k),SHIFT=1) &  
            -   y_t(1:n,1:k)*spread(EVAL_T(1:k),DIM=1,NCOPIES=n)  
  
! If the factorization method is Cyclic Reduction and perf_ratio is   
! larger than one, re-solve using Gaussian Elimination.  If the   
! method is already Gaussian Elimination, the loop exits  
! and perf_ratio is checked at the end.     
         perf_ratio = norm(res(1:n,1:k),1) / &  
                      norm(EVAL_T(1:k),1) / &  
                         epsilon(s_one) / (5*n)  
         if (perf_ratio <= s_one) exit factorization_choice  
         iopt(nopt+1) = s_lin_sol_tri_use_Gauss_elim  
     
      end do factorization_choice  
  
      if (perf_ratio <= s_one) then  
         write (*,*) 'Example 3 for LIN_SOL_TRI (operators) is correct.'  
      end if  
  
      end   

Operator_ex20 
  
      use lin_sol_tri_int  
      use Numerical_Libraries  
  
      implicit none  
  
! This is Example 4 (using operators) for LIN_SOL_TRI.  
  
      integer, parameter :: n=1000, ichap=5, iget=1, iput=2, &  
         inum=6, irnum=7  
      real(kind(1e0)), parameter :: zero=0e0, one = 1e0  
      integer    i, ido, in(50), inr(20), iopt(6), ival(7), &  
                iwk(35+n)  
      real(kind(1e0))      hx, pi_value, t, u_0, u_1, atol, rtol, sval(2), &  
                tend, wk(41+11*n), y(n), ypr(n), a_diag(n), &  
                a_off(n), r_diag(n), r_off(n), t_y(n), t_ypr(n), &  
                t_g(n), t_diag(2*n,1), t_upper(2*n,1), &  
                t_lower(2*n,1), t_sol(2*n,1)  
      type(s_options) :: iopti(1)=s_options(0,zero)  
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! Define initial data.  
      t = 0e0; u_0 = one  
      u_1 = 0.5; tend = one  
  
! Initial values for the variational equation.  
      y = -one; ypr= zero  
      pi_value = const((/'pi'/))  
      hx = pi_value/(n+1)  
  
      a_diag = 2*hx/3  
      a_off  = hx/6  
      r_diag = -2/hx  
      r_off  = 1/hx  
        
! Get integer and floating point option numbers.  
      iopt(1) = inum  
      call iumag ('math', ichap, iget, 1, iopt, in)  
      iopt(1) = irnum  
      call iumag ('math', ichap, iget, 1, iopt, inr)  
  
! Set for reverse communication evaluation of the DAE.  
      iopt(1) = in(26)  
      ival(1) = 0  
! Set for use of explicit partial derivatives.  
      iopt(2) = in(5)  
      ival(2) = 1  
! Set for reverse communication evaluation of partials.  
      iopt(3) = in(29)  
      ival(3) = 0  
! Set for reverse communication solution of linear equations.  
      iopt(4) = in(31)  
      ival(4) = 0  
! Storage for the partial derivative array are not allocated or   
! required in the integrator.  
      iopt(5) = in(34)  
      ival(5) = 1  
! Set the sizes of iwk, wk for internal checking.  
      iopt(6) = in(35)  
      ival(6) = 35 + n  
      ival(7) = 41 + 11*n  
! Set integer options:  
      call iumag ('math', ichap, iput, 6, iopt, ival)  
! Reset tolerances for integrator:  
      atol = 1e-3; rtol= 1e-3  
      sval(1) = atol; sval(2) = rtol  
      iopt(1) = inr(5)  
! Set floating point options:  
      call sumag ('math', ichap, iput, 1, iopt, sval)  
! Integrate ODE/DAE.  Use dummy external names for g(y,y')  
! and partials: DGSPG, DJSPG.  
      ido = 1  
      Integration_Loop: do  
  
          call d2spg (n, t, tend, ido, y, ypr, dgspg, djspg, iwk, wk)  
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! Find where g(y,y') goes.  (It only goes in one place here, but can  
! vary where divided differences are used for partial derivatives.)  
          iopt(1) = in(27)  
          call iumag ('math', ichap, iget, 1, iopt, ival)  
! Direct user response:  
        select case(ido)  
  
        case(1,4)  
! This should not occur.  
          write (*,*) ' Unexpected return with ido = ', ido  
          stop  
  
        case(3)  
! Reset options to defaults.  (This is good housekeeping but not   
! required for this problem.)  
          in = -in  
          call iumag ('math', ichap, iput, 50, in, ival)  
          inr = -inr  
          call sumag ('math', ichap, iput, 20, inr, sval)  
          exit Integration_Loop  
        case(5)  
! Evaluate partials of g(y,y').  
          t_y = y; t_ypr = ypr  
  
          t_g = r_diag*t_y + r_off*EOSHIFT(t_y,SHIFT=+1) &  
                          + EOSHIFT(r_off*t_y,SHIFT=-1) &  
            -  (a_diag*t_ypr + a_off*EOSHIFT(t_ypr,SHIFT=+1) &  
                             + EOSHIFT(a_off*t_ypr,SHIFT=-1))  
! Move data from assumed size to assumed shape arrays.  
          do i=1, n  
             wk(ival(1)+i-1) = t_g(i)  
          end do  
          cycle Integration_Loop  
  
        case(6)  
! Evaluate partials of g(y,y').  
! Get value of c_j for partials.  
          iopt(1) = inr(9)  
          call sumag ('math', ichap, iget, 1, iopt, sval)  
  
! Subtract c_j from diagonals to compute (partials for y')*c_j.  
! The linear system is tridiagonal.  
          t_diag(1:n,1) = r_diag - sval(1)*a_diag  
          t_upper(1:n,1) = r_off - sval(1)*a_off  
          t_lower = EOSHIFT(t_upper,SHIFT=+1,DIM=1)  
  
          cycle Integration_Loop  
  
        case(7)  
! Compute the factorization.  
          iopti(1) = s_lin_sol_tri_factor_only  
          call lin_sol_tri (t_upper, t_diag, t_lower, &  
                  t_sol, iopt=iopti)  
          cycle Integration_Loop  
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        case(8)  
! Solve the system.  
          iopti(1) = s_lin_sol_tri_solve_only  
! Move data from the assumed size to assumed shape arrays.  
          t_sol(1:n,1)=wk(ival(1):ival(1)+n-1)  
  
          call lin_sol_tri (t_upper, t_diag, t_lower, &  
                    t_sol, iopt=iopti)  
  
! Move data from the assumed shape to assumed size arrays.  
          wk(ival(1):ival(1)+n-1)=t_sol(1:n,1)  
  
          cycle Integration_Loop  
  
        case(2)  
! Correct initial value to reach u_1 at t=tend.  
          u_0 = u_0 - (u_0*y(n/2) - (u_1-u_0)) / (y(n/2) + 1)  
  
! Finish up internally in the integrator.  
          ido = 3  
          cycle Integration_Loop  
      end select  
      end do Integration_Loop  
  

      write (*,*) 'The equation u_t = u_xx, with u(0,t) = ', u_0  
      write (*,*) 'reaches the value ',u_1, ' at time = ', tend, '.'  
      write (*,*) 'Example 4 for LIN_SOL_TRI (operators) is correct.'  

  
   end  

Operator_ex21 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 1 (using operators) for LIN_SVD.  
  
      integer, parameter :: n=32  
      real(kind(1d0)), parameter :: one=1d0  
      real(kind(1d0)) err  
      real(kind(1d0)), dimension(n,n) :: A, U, V, S(n)  
  
  
! Generate a random n by n matrix.  
      A = rand(A)  
  
! Compute the singular value decomposition.   
      S=SVD(A, U=U, V=V)  
  
! Check for small residuals of the expression A*V - U*S.  
      err = norm((A .x. V) - (U .x. diag(S)))/norm(S)  
      if (err  <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for LIN_SVD (operators) is correct.'  
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      end if  
  
      end   

Operator_ex22 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 2 (using operators) for LIN_SVD.  
  
      integer, parameter :: m=64, n=32, k=4  
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  
      real(kind(1d0)) a(m,n), s(n), u(m,m), v(n,n), &  
             b(m,k), x(n,k), g(m,k), alpha(k), lamda(k), &   
             delta_lamda(k), t_g(n,k), s_sq(n), phi(n,k), &  
             phi_dot(n,k), move(k), err  
  
! Generate a random matrix for both A and B.  
      A=rand(A); b=rand(b)  
  
! Compute the singular value decomposition.  
      S = SVD(A, U=u, V=v)  
  
! Choose alpha so that the lengths of the regularized solutions  
! are 0.25 times lengths of the non-regularized solutions.  
  
      g =  u .tx. b; x = v .x. diag(one/S) .x. g(1:n,:)  
      alpha = 0.25*sqrt(sum(x**2,DIM=1))  
      t_g = diag(S) .x. g(1:n,:); s_sq = s**2; lamda = zero  
  
      solve_for_lamda:  do  
         x = one/(spread(s_sq,DIM=2,NCOPIES=k)+ &  
                  spread(lamda,DIM=1,NCOPIES=n))  
  
         phi = (t_g*x)**2; phi_dot = -2*phi*x  
         delta_lamda = (sum(phi,DIM=1)-alpha**2)/sum(phi_dot,DIM=1)  
  
! Make Newton method correction to solve the secular equations for  
! lamda.  
         lamda = lamda - delta_lamda  
  
! Test for convergence and quit when it happens.  
          if (norm(delta_lamda) <= &  
          sqrt(epsilon(one))*norm(lamda)) EXIT solve_for_lamda  
  
! Correct any bad moves to a positive restart.  
         move = rand(move); where (lamda < 0) lamda = s(1) * move  
  
      end do solve_for_lamda  
  
! Compute solutions and check lengths.  
      x = v .x. (t_g/(spread(s_sq, DIM=2,NCOPIES=k)+ &  
                      spread(lamda,DIM=1,NCOPIES=n)))  
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      err = norm(sum(x**2,DIM=1) - alpha**2)/norm(alpha)**2  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 2 for LIN_SVD (operators) is correct.'  
      end if  
  
      end   
 

Operator_ex23 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 3 (using operators) for LIN_SVD.  
  
      integer, parameter :: n=32  
      integer i  
      real(kind(1d0)), parameter :: one=1d0  
      real(kind(1d0)), dimension(n,n) :: d(2*n,n), x, u_d(2*n,2*n), &  
             v_d, v_c, u_c, v_s, u_s, &  
             s_d(n), c(n), s(n), sc_c(n), sc_s(n)  
      real(kind(1d0)) err1, err2  
  
! Generate random square matrices for both A and B.  
! Construct D; A is on the top; B is on the bottom.  
      D = rand(D)!   D(1:n,:) = A; D(n+1:,:) = B  
   
! Compute the singular value decompositions used for the GSVD.  
      S_D= SVD(D,U=u_d,V=v_d)  
      C  = SVD(u_d(1:n, 1:n), u=u_c,v=v_c)  
      S  = SVD(u_d(n+1:,1:n), u=u_s,v=v_s)  
  
! Rearrange c(:) so it is non-increasing.  Move singular   
! vectors accordingly.  (The use of temporary objects sc_c and  
! x is required.)  
      sc_c = c(n:1:-1); c = sc_c  
      x = u_c(1:n,n:1:-1); u_c = x; x = v_c(1:n,n:1:-1); v_c = x  
  
! The columns of v_c and v_s have the same span.  They are   
! equivalent by taking the signs of the largest magnitude values  
! positive.  
      do i=1, n  
         sc_c(i) = sign(one,v_c(sum(maxloc(abs(v_c(1:n,i)))),i))  
         sc_s(i) = sign(one,v_s(sum(maxloc(abs(v_s(1:n,i)))),i))  
      end do  
  
      v_c = v_c .x. diag(sc_c); u_c =  u_c .x. diag(sc_c)  
      v_s = v_s .x. diag(sc_s); u_s =  u_s .x. diag(sc_s)  
  
  
! In this form of the GSVD, the matrix X can be unstable if D  
! is ill-conditioned.  
      X = v_d .x. diag(one/s_d) .x. v_c  
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! Check residuals for GSVD, A*X = u_c*diag(c_1, ..., c_n), and  
! B*X = u_s*diag(s_1, ..., s_n).  
  
      err1 = norm((D(1:n, :) .x. X) - (u_c .x. diag(C)))/s_d(1)  
      err2 = norm((D(n+1:,:) .x. X) - (u_s .x. diag(S)))/s_d(1)  
  
      if (err1 <= sqrt(epsilon(one)) .and. &  
          err2 <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 3 for LIN_SVD (operators) is correct.'  
      end if  
  
      end   

Operator_ex24 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 4 (using operators) for LIN_SVD.  
  
      integer i  
      integer, parameter :: m=32, n=16, p=10, k=4  
      real(kind(1d0)), parameter :: one=1d0  
      real(kind(1d0)) log_lamda, log_lamda_t, delta_log_lamda  
      real(kind(1d0)) a(m,n), b(m,k), w(m,k), g(m,k), t(n), s(n), &  
              s_sq(n), u(m,m), v(n,n), c_lamda(p,k), &  
              lamda(k), x(n,k), res(n,k)  
  
! Generate random rectangular matrices for A and right-hand  
! sides, b.  Generate random weights for each of the   
! right-hand sides.  
      A=rand(A); b=rand(b); w=rand(w)  
  
! Compute the singular value decomposition.  
      S = SVD(A, U=U, V=V)  
      g = U .tx. b; s_sq = s**2  
  
      log_lamda = log(10.*s(1)); log_lamda_t=log_lamda  
      delta_log_lamda = (log_lamda - log(0.1*s(n))) / (p-1)  
  
! Choose lamda to minimize the "cross-validation" weighted  
! square error.  First evaluate the error at a grid of points,  
! uniform in log_scale.  
  
      cross_validation_error:  do i=1, p  
         t = s_sq/(s_sq+exp(log_lamda))  
         c_lamda(i,:) = sum(w*((b-(U(1:m,1:n) .x. g(1:n,1:k)* &  
                        spread(t,DIM=2,NCOPIES=k)))/ &  
         (one-(u(1:m,1:n)**2 .x. spread(t,DIM=2,NCOPIES=k))))**2,DIM=1)  
         log_lamda = log_lamda - delta_log_lamda  
      end do cross_validation_error  
  
! Compute the grid value and lamda corresponding to the minimum.  
      do i=1, k  
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         lamda(i) = exp(log_lamda_t -  delta_log_lamda* &  
                       (sum(minloc(c_lamda(1:p,i)))-1))  
      end do  
  
! Compute the solution using the optimum "cross-validation"   
! parameters.  
      x = V .x. g(1:n,1:k)*spread(s,DIM=2,NCOPIES=k)/ &  
                     (spread(s_sq,DIM=2,NCOPIES=k)+ &  
                      spread(lamda,DIM=1,NCOPIES=n))  
! Check the residuals, using normal equations.  
      res = (A .tx. (b - (A .x. x))) - &  
            spread(lamda,DIM=1,NCOPIES=n)*x  
      if (norm(res)/s_sq(1) <=  sqrt(epsilon(one))) then  
         write (*,*) 'Example 4 for LIN_SVD (operators) is correct.'  
      end if  
  
      end   

Operator_ex25 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 1 (using operators) for LIN_EIG_SELF.  
  
      integer, parameter :: n=64  
      real(kind(1e0)), parameter :: one=1e0  
      real(kind(1e0)) :: A(n,n), D(n), S(n)  
 
 
! Generate a random matrix and from it   
! a self-adjoint matrix.  
      A = rand(A); A = A + .t.A  
  
! Compute the eigenvalues of the matrix.  
      D = EIG(A)  
  
! For comparison, compute the singular values and check for  
! any error messages for either decomposition.  
      S = SVD(A)  
  
! Check the results:  Magnitude of eigenvalues should equal  
! the singular values.  
  
      if (norm(abs(D) - S) <= sqrt(epsilon(one))*S(1)) then  
         write (*,*) 'Example 1 for LIN_EIG_SELF (operators) is correct.'  
      end if  
  
      end  
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Operator_ex26 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 2 (using operators) for LIN_EIG_SELF.  
  
      integer, parameter :: n=8  
      real(kind(1e0)), parameter :: one=1e0  
      real(kind(1e0)), dimension(n,n) :: A, d(n), v_s  
  
! Generate a random self-adjoint matrix.  
      A = rand(A); A = A + .t.A  
  
! Compute the eigenvalues and eigenvectors.  
      D = EIG(A,V=v_s)  
  
! Check the results for small residuals.  
      if (norm((A .x. v_s) - (v_s .x. diag(D)))/abs(d(1)) <= &  
             sqrt(epsilon(one))) then  
         write (*,*) 'Example 2 for LIN_EIG_SELF (operators) is correct.'  
      end if  
  
      end  

Operator_ex27 
  
      use linear_operators  
  
      implicit none  
  
! This is Example 3 (using operators) for LIN_EIG_SELF.  
  
      integer i  
      integer, parameter :: n=64, k=08  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      real(kind(1d0)) err  
      real(kind(1d0)), dimension(n,n) :: A, D(n),&  
               res(n,k), v(n,k)  
  
! Generate a random self-adjoint matrix.  
      A = rand(A); A = A + .t.A   
  
! Compute just the eigenvalues.  
      D = EIG(A); V = rand(V)  
  
! Ready options to skip error processing and reset   
! tolerance for linear solver.  
      allocate (d_invx_options(5))  
  
      do i=1, k  
  
! Use packaged option to reset the value of a small diagonal.  
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      d_invx_options(1) = skip_error_processing  
      d_invx_options(2) = ix_options_for_lin_sol_gen  
        d_invx_options(3) = 2  
        d_invx_options(4) = d_options&  
        (d_lin_sol_gen_set_small, epsilon(one)*abs(d(i)))  
        d_invx_options(5) = d_lin_sol_gen_no_sing_mess  
  
! Compute the eigenvectors with inverse iteration.  
         V(1:,i)= (A - EYE(n)*d(i)).ix. V(1:,i)  
      end do  
      deallocate (d_invx_options)  
  
! Orthogonalize the eigenvectors.  
      V = ORTH(V)  
  
! Check the results for both orthogonality of vectors and small   
! residuals.  
                       
      res(1:k,1:k) = (V .tx. V) - EYE(k)  
      err = norm(res(1:k,1:k)); res= (A .x. V) - (V .x. diag(D(1:k)))  
      if (err <= sqrt(epsilon(one)) .and. &  
         norm(res)/abs(d(1)) <= sqrt(epsilon(one))) then  
           write (*,*) 'Example 3 for LIN_EIG_SELF (operators) is correct.'  
      end if  
      end  

Operator_ex28 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 4 (using operators) for LIN_EIG_SELF.  
  
      integer, parameter :: n=64  
      real(kind(1e0)), parameter :: one=1d0  
      real(kind(1e0)), dimension(n,n) :: A, B, C, D(n), lambda(n), &  
               S(n), vb_d, X, res  
  
! Generate random self-adjoint matrices.  
      A = rand(A); A = A + .t.A  
      B = rand(B); B = B + .t.B  
  
! Add a scalar matrix so B is positive definite.  
      B = B + norm(B)*EYE(n)  
  
! Get the eigenvalues and eigenvectors for B.  
      S = EIG(B,V=vb_d)  
  
! For full rank problems, convert to an ordinary self-adjoint   
! problem.  (All of these examples are full rank.)  
      if (S(n) > epsilon(one)) then  
         D = one/sqrt(S)  
         C = diag(D) .x. (vb_d .tx. A .x. vb_d) .x. diag(D)  
         C = (C + .t.C)/2  



 

 
 

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1521 

 

 

 

  
! Get the eigenvalues and eigenvectors for C.  
         lambda = EIG(C,v=X)  
  
! Compute and normalize the generalized eigenvectors.  
         X = UNIT(vb_d .x. diag(D) .x. X)  
         res = (A .x. X) - (B .x. X .x. diag(lambda))  
  
! Check the results.  
         if(norm(res)/(norm(A)+norm(B)) <= &  
            sqrt(epsilon(one))) then  
            write (*,*) 'Example 4 for LIN_EIG_SELF (operators) is correct.'  
         end if  
  
      end if  
  
      end  

Operator_ex29 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 1 (using operators) for LIN_EIG_GEN.  
  
      integer, parameter :: n=32  
      real(kind(1d0)), parameter :: one=1d0  
      real(kind(1d0)) err  
      real(kind(1d0)), dimension(n,n) :: A  
      complex(kind(1d0)), dimension(n) :: E, E_T, V(n,n)  
  
! Generate a random matrix.  
      A = rand(A)  
  
! Compute only the eigenvalues.  
      E = EIG(A)  
  
! Compute the decomposition, A*V = V*values,   
! obtaining eigenvectors.  
      E_T = EIG(A, W = V)  
  
! Use values from the first decomposition, vectors from the   
! second decomposition, and check for small residuals.  
      err = norm((A .x. V) - (V .x. diag(E)))/&  
            (norm(A)+norm(E))  
  
      if (err  <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for LIN_EIG_GEN (operators) is correct.'  
      end if  
  
      end   



 

 
 

1522 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY 

 

 

 

Operator_ex30 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 2 (using operators) for LIN_EIG_GEN.  
  
      integer i  
      integer, parameter :: n=12  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      complex(kind(1d0)), dimension(n) :: a(n,n), b, e, f, fg  
  
      b = rand(b)  
  
! Define the companion matrix with polynomial coefficients   
! in the first row.  
      A = zero; A = EOSHIFT(EYE(n),SHIFT=1,DIM=2); a(1,1:) = - b  
  
! Compute complex eigenvalues of the companion matrix.  
      E = EIG(A)  
        
! Use Horner's method for evaluation of the complex polynomial   
! and size gauge at all roots.  
      f=one; fg=one  
      do i=1, n  
         f = f*E + b(i)  
         fg = fg*abs(E) + abs(b(i))  
      end do  
  
! Check for small errors at all roots.  
      if (norm(f/fg) <= sqrt(epsilon(one))) then   
         write (*,*) 'Example 2 for LIN_EIG_GEN (operators) is correct.'  
      end if  
  
      end   

Operator_ex31 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 3 (using operators) for LIN_EIG_GEN.  
  
      integer, parameter :: n=32, k=2  
      real(kind(1e0)), parameter :: one=1e0, zero=0e0  
      real(kind(1e0)) a(n,n), b(n,k), x(n,k), h  
      complex(kind(1e0)),dimension(n,n) :: W, T, e(n), z(n,k)  
      type(s_options) :: iopti(2)  
        
      A = rand(A); b=rand(b)  
  
      iopti(1) = s_lin_eig_gen_out_tri_form  
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      iopti(2) = s_lin_eig_gen_no_balance  
  
! Compute the Schur decomposition of the matrix.  
      call lin_eig_gen(a, e, v=w, &  
           tri=t,iopt=iopti)  
  
! Choose a value so that A+h*I is non-singular.  
      h = one  
  
! Solve for (A+h*I)x=b using the Schur decomposition.  
      z = W .hx. b  
  
! Solve intermediate upper-triangular system with implicit   
! additive diagonal, h*I.  This is the only dependence on   
! h in the solution process.  
      z = (T + h*EYE(n)) .ix. z  

! Compute the solution.  It should be the same as x, but will not be   
! exact due to rounding errors.  (The quantity real(z,kind(one)) is  
! the real-valued answer when the Schur decomposition method is used.)  
      z = W .x. z  
  
! Compute the solution by solving for x directly.  
      x = (A + EYE(n)*h) .ix. b  
  
! Check that x and z agree approximately.  
      if (norm(x-z)/norm(z) <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 3 for LIN_EIG_GEN (operators) is correct.'  
      end if  
  
      end   

Operator_ex32 
 
      use linear_operators   

      implicit none  
! This is Example 4 (using operators) for LIN_EIG_GEN.  
  
      integer, parameter :: n=17  
      real(kind(1d0)), parameter :: one=1d0  
      real(kind(1d0)), dimension(n,n) :: A, C  
      real(kind(1d0)) variation(n), eta  
      complex(kind(1d0)), dimension(n,n) :: U, V, e(n), d(n)  
  
! Generate a random matrix.  
      A = rand(A)  
  
! Compute the eigenvalues, left- and right- eigenvectors.  
      D = EIG(A, W=V); E = EIG(.t.A, W=U)  
  
! Compute condition numbers and variations of eigenvalues.  
      variation = norm(A)/abs(diagonals( U .hx. V))  
  
! Now perturb the data in the matrix by the relative factors   
! eta=sqrt(epsilon) and solve for values again.  Check the   
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! differences compared to the estimates.  They should not exceed   
! the bounds.  
      eta = sqrt(epsilon(one))  
      C = A + eta*(2*rand(A)-1)*A  
      D = EIG(C)  
  
! Looking at the differences of absolute values accounts for   
! switching signs on the imaginary parts.  
      if (count(abs(d)-abs(e) > eta*variation) == 0) then  
         write (*,*) 'Example 4 for LIN_EIG_GEN (operators) is correct.'  
      end if  

      end   
 

Operator_ex33 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 1 (using operators) for LIN_GEIG_GEN.  
  
      integer, parameter :: n=32  
      real(kind(1d0)), parameter :: one=1d0  
      real(kind(1d0)) A(n,n), B(n,n), bta(n), beta_t(n), err  
      complex(kind(1d0)) alpha(n), alpha_t(n), V(n,n)  
  
! Generate random matrices for both A and B.  
      A = rand(A); B = rand(B)  
  
! Compute the generalized eigenvalues.  
      alpha = EIG(A, B=B, D=bta)  
  
! Compute the full decomposition once again, A*V = B*V*values,  
! and check for any error messages.  
      alpha_t = EIG(A, B=B, D=beta_t, W = V)  
  
! Use values from the first decomposition, vectors from the   
! second decomposition, and check for small residuals.  
      err = norm((A .x. V .x. diag(bta)) - (B .x. V .x. diag(alpha)),1)/&  
            (norm(A,1)*norm(bta,1) + norm(B,1)*norm(alpha,1))  
      if (err  <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for LIN_GEIG_GEN (operators) is correct.'  
      end if  
  
      end   

Operator_ex34 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 2 (using operators) for LIN_GEIG_GEN.  
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      integer, parameter :: n=32  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      real(kind(1d0)) err, alpha(n)  
      complex(kind(1d0)), dimension(n,n) :: A, B, C, D, V  
  
  
! Generate random matrices for both A and B.  
      C = rand(C); D = rand(D)  
      A = C + .h.C; B = D .hx. D; B = (B + .h.B)/2  
  
      ALPHA = EIG(A, B=B, W=V)  
  
! Check that residuals are small.  Use a real array for  alpha   
! since the eigenvalues are known to be real.  
      err= norm((A .x. V) - (B .x. V .x. diag(alpha)),1)/&  
           (norm(A,1)+norm(B,1)*norm(alpha,1))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 2 for LIN_GEIG_GEN (operators) is correct.'  
      end if  
  
      end   

Operator_ex35 
 
      use rand_int  
      use eig_int  
      use isnan_int  
      use norm_int  
      use lin_sol_lsq_int  
  
      implicit none  
  
! This is Example 3 (using operators) for LIN_GEIG_GEN.  
  
      integer, parameter :: n=6  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      real(kind(1d0)), dimension(n,n) :: A, B, d_beta(n)  
      complex(kind(1d0)) alpha(n)  
  
! Generate random matrices for both A and B.  
      A = rand(A); B = rand(B)  
  
! Make columns of A and B zero, so both are singular.  
      A(1:n,n) = 0; B(1:n,n) = 0  
  
! Set the option, a larger tolerance than default for lin_sol_lsq.  
! Skip showing any error messages.  
      allocate(d_eig_options(6))  
      d_eig_options(1) = skip_error_processing  
      d_eig_options(2) = options_for_lin_geig_gen  
      d_eig_options(3) = 3  
        d_eig_options(4) = d_lin_geig_gen_for_lin_sol_lsq  
        d_eig_options(5) = 1  
        d_eig_options(6) = d_options(d_lin_sol_lsq_set_small,&  
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                           sqrt(epsilon(one))*norm(B,1))  
  
! Compute the generalized eigenvalues.  
      ALPHA = EIG(A, B=B, D=d_beta)  
  
! See if singular DAE system is detected.  
      if (isNaN(ALPHA)) then   
         write (*,*) 'Example 3 for LIN_GEIG_GEN (operators) is correct.'  
      end if  
! Clean up allocated option arrays for good housekeeping.  
      deallocate(d_eig_options)  
      end   

Operator_ex36 
 
      use linear_operators  
  
      implicit none  
  
! This is Example 4 for LIN_GEIG_GEN (using operators).  
  
      integer, parameter :: n=32  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      real(kind(1d0)) a(n,n), b(n,n), bta(n), err  
      complex(kind(1d0)) alpha(n), v(n,n)  
  
! Generate random matrices for both A and B.  
      A = rand(A); B = rand(B)  
  
  
! Set the option, a larger tolerance than default for lin_sol_lsq.  
      allocate(d_eig_options(6))  
      d_eig_options(1) = options_for_lin_geig_gen  
      d_eig_options(2) = 4  
        d_eig_options(3) = d_lin_geig_gen_for_lin_sol_lsq  
        d_eig_options(4) = 2  
        d_eig_options(5) = d_options(d_lin_sol_lsq_set_small,&  
                           sqrt(epsilon(one))*norm(B,1))  
        d_eig_options(6) = d_lin_sol_lsq_no_sing_mess  
  
! Compute the generalized eigenvalues.  
      alpha = EIG(A, B=B, D=bta, W=V)  
  
! Check the residuals.  
      err = norm((A .x. V .x. diag(bta)) - (B .x. V .x. diag(alpha)),1)/&  
            (norm(A,1)*norm(bta,1)+norm(B,1)*norm(alpha,1))  
  
      if (err  <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 4 for LIN_GEIG_GEN (operators) is correct.'  
      end if  
! Clean up the allocated array.  This is good housekeeping.  
      deallocate(d_eig_options)  
      end   
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Operator_ex37 
 
      use rand_gen_int  
      use fft_int  
      use ifft_int  
      use linear_operators  
  
      implicit none  
  
! This is Example 4 for FAST_DFT (using operators).  
  
      integer j  
      integer, parameter :: n=40  
      real(kind(1e0)) :: err, one=1e0  
      real(kind(1e0)), dimension(n) :: a, b, c, yy(n,n)  
      complex(kind(1e0)), dimension(n) ::  f  
   
! Generate two random periodic sequences 'a' and 'b'.  
      a=rand(a); b=rand(b)  
   
! Compute the convolution 'c' of 'a' and 'b'.   
      yy(1:,1)=b  
      do j=2,n  
        yy(2:,j)=yy(1:n-1,j-1)  
        yy(1,j)=yy(n,j-1)  
      end do  
  
      c=yy .x. a  
  
! Compute f=inverse(transform(a)*transform(b)).  
      f=ifft(fft(a)*fft(b))  
   
! Check the Convolution Theorem:  
! inverse(transform(a)*transform(b)) = convolution(a,b).  
      err = norm(c-f)/norm(c)  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 4 for FAST_DFT (operators) is correct.'  
      end if  
  
      end  
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Parallel Examples 

MPI REQUIRED

 

This section presents a variation of  key examples listed above or in other parts 
of the document. In all cases the examples appear to be simple, use  parallel 
computing, deliver results to the root,  and have been tested for correctness by 
validating small residuals or other first principles. Program names are 
parallel_exnn, where nn=01,02,...  The numerical digit part of the 
name matches the example number. 

Parallel Examples 1-2 comments 
These show the box data type used for solving several systems and then 
checking the results using matrix products and norms or other mathematical 
relationships.  Note the first call to the function MP_SETUP() that initiates 
MPI.  The call to the function MP_SETUP('Final') shuts down MPI and 
retrieves any error messages from the nodes.  It is only here that error messages 
will print, in reverse node order, at the root node.  Note that the results are 
checked for correctness at the root node.  (This is common to all the parallel 
examples.)  

Parallel Example 1 
      use linear_operators 
      use mpi_setup_int 
       
      implicit none 
 
! This is Parallel Example 1 for .ix., with box data types 
! and functions. 
 
      integer, parameter :: n=32, nr=4 
      real(kind(1e0)) :: one=1e0 
      real(kind(1e0)), dimension(n,n,nr) :: A, b, x, err(nr) 
 
! Setup for MPI. 
      MP_NPROCS=MP_SETUP() 
      
! Generate random matrices for A and b: 
      A = rand(A); b=rand(b) 
 
! Compute the box solution matrix of Ax = b. 
      x = A .ix. b 
 
! Check the results. 
      err = norm(b - (A .x. x))/(norm(A)*norm(x)+norm(b)) 
      if (ALL(err <= sqrt(epsilon(one))) .and. MP_RANK == 0) & 
        write (*,*) 'Parallel Example 1 is correct.' 
 
! See to any error messages and quit MPI. 
      MP_NPROCS=MP_SETUP('Final') 
  
      end  
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Parallel Example 2 
      use linear_operators 
      use mpi_setup_int 
       
      implicit none 
 
! This is Parallel Example 2 for .i. and det() with box  
! data types, operators and functions. 
 
      integer, parameter :: n=32, nr=4 
      integer J 
      real(kind(1e0)) :: one=1e0 
      real(kind(1e0)), dimension(nr) :: err, det_A, det_i 
      real(kind(1e0)), dimension(n,n,nr) :: A, inv, R, S 
 
! Setup for MPI. 
      MP_NPROCS=MP_SETUP() 
! Generate a random matrix. 
      A = rand(A) 
! Compute the matrix inverse and its determinant. 
      inv = .i.A; det_A = det(A) 
! Compute the determinant for the inverse matrix. 
      det_i = det(inv) 
! Check the quality of both left and right inverses. 
      DO J=1,nr; R(:,:,J)=EYE(N); END DO 
  
      S=R; R=R-(A .x. inv); S=S-(inv .x. A) 
      err = (norm(R)+norm(S))/cond(A) 
      if (ALL(err <= sqrt(epsilon(one)) .and. & 
        abs(det_A*det_i - one) <= sqrt(epsilon(one)))& 
       .and. MP_RANK == 0) & 
        write (*,*) 'Parallel Example 2 is correct.' 
 
! See to any error messages and quit MPI. 
      MP_NPROCS=MP_SETUP('Final') 
 
      end  

 

 Parallel Example 3 
This example shows the box data type used while obtaining an accurate 
solution of several systems.  Important in this example is the fact that only the 
root will achieve convergence, which controls program flow out of the loop.  
Therefore the nodes must share the root’s view of convergence, and that is the 
reason for the broadcast of the update from root to the nodes.  Note that when 
writing an explicit call to an MPI routine there must be the line INCLUDE 
‘mpif.h’, placed just after the IMPLICIT NONE statement.  Any number of 
nodes can be used. 

      use linear_operators 
      use mpi_setup_int 
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      implicit none 
      INCLUDE 'mpif.h' 
 
! This is Parallel Example 3 for .i. and iterative  
! refinement with box date types, operators and functions. 
      integer, parameter :: n=32, nr=4 
      integer IERROR 
      real(kind(1e0)) :: one=1e0, zero=0e0 
      real(kind(1e0)) :: A(n,n,nr), b(n,1,nr), x(n,1,nr) 
      real(kind(1e0)) change_old(nr), change_new(nr) 
      real(kind(1d0)) :: d_zero=0d0, c(n,1,nr), D(n,n,nr), y(n,1,nr) 
 
! Setup for MPI. 
      MP_NPROCS=MP_SETUP() 
      
! Generate a random matrix and right-hand side. 
      A = rand(A); b= rand(b) 
 
! Save double precision copies of the matrix and right-hand side. 
      D = A 
      c = b 
 
! Get single precision inverse to compute the iterative refinement. 
      A = .i. A 
 
! Start solution at zero.  Update it to a more accurate solution 
! with each iteration. 
      y = d_zero 
      change_old = huge(one) 
 
      ITERATIVE_REFINEMENT: DO 
 
! Compute the residual with higher accuracy than the data. 
         b = c - (D .x. y) 
 
! Compute the update in single precision. 
         x = A .x. b 
         y = x + y 
         change_new = norm(x) 
 
! All processors must share the root's test of convergence. 
         CALL MPI_BCAST(change_new, nr, MPI_REAL, 0, & 
           MP_LIBRARY_WORLD, IERROR) 
 
! Exit when changes are no longer decreasing. 
         if (ALL(change_new >= change_old)) exit iterative_refinement 
         change_old = change_new 
      end DO ITERATIVE_REFINEMENT 
 
        IF(MP_RANK == 0) write (*,*) 'Parallel Example 3 is correct.' 
 
! See to any error messages and quit MPI. 
      MP_NPROCS=MP_SETUP('Final') 
      end  
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 Parallel Example 4 
Here an alternate node is used to compute the majority of a single application, 
and the user does not need to make any explicit calls to MPI routines.  The 
time-consuming parts are the evaluation of  the eigenvalue-eigenvector 
expansion, the solving step, and the residuals.  To do this, the rank-2 arrays are 
changed to a box data type with a unit third dimension.  This uses parallel 
computing.  The node priority order is established by the initial function call, 
MP_SETUP(n). The root is restricted from working on the box data type by 
assigning MPI_ROOT_WORKS=.false. This example anticipates that the 
most efficient node, other than the root, will perform the heavy computing.  
Two nodes are required to execute. 

      use linear_operators 
      use mpi_setup_int 
 
      implicit none 
 
! This is Parallel Example 4 for matrix exponential. 
! The box dimension has a single rack.        
      integer, parameter :: n=32, k=128, nr=1 
      integer i 
      real(kind(1e0)), parameter :: one=1e0, t_max=one, delta_t=t_max/(k-1) 
      real(kind(1e0)) err(nr), sizes(nr), A(n,n,nr) 
      real(kind(1e0)) t(k), y(n,k,nr), y_prime(n,k,nr) 
      complex(kind(1e0)), dimension(n,nr) :: x(n,n,nr), z_0, & 
        Z_1(n,nr,nr), y_0, d 
 
! Setup for MPI.  Establish a node priority order. 
! Restrict the root from significant computing. 
! Illustrates using the 'best' performing node that 
! is not the root for a single task. 
      MP_NPROCS=MP_SETUP(n) 
 
      MPI_ROOT_WORKS=.false. 
 
! Generate a random coefficient matrix. 
      A = rand(A) 
 
! Compute the eigenvalue-eigenvector decomposition 
! of the system coefficient matrix on an alternate node. 
      D = EIG(A, W=X) 
 
! Generate a random initial value for the ODE system. 
      y_0 = rand(y_0) 
 
! Solve complex data system that transforms the initial  
! values, X z_0=y_0.   
 
      z_1= X .ix. y_0 ; z_0(:,nr) = z_1(:,nr,nr) 
 
! The grid of points where a solution is computed: 
      t = (/(i*delta_t,i=0,k-1)/) 
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! Compute y and y' at the values t(1:k). 
! With the eigenvalue-eigenvector decomposition AX = XD, this 
! is an evaluation of EXP(A t)y_0 = y(t). 
      y = X .x.exp(spread(d(:,nr),2,k)*spread(t,1,n))*spread(z_0(:,nr),2,k) 
 
! This is y', derived by differentiating y(t). 
      y_prime  = X .x. & 
spread(d(:,nr),2,k)*exp(spread(d(:,nr),2,k)*spread(t,1,n))* & 
                spread(z_0(:,nr),2,k) 
 
! Check results. Is  y' - Ay = 0? 
      err = norm(y_prime-(A .x. y)) 
      sizes=norm(y_prime)+norm(A)*norm(y) 
      if (ALL(err <= sqrt(epsilon(one))*sizes) .and. MP_RANK == 0) & 
        write (*,*) 'Parallel Example 4 is correct.' 
      
! See to any error messages and quit MPI. 
      MP_NPROCS=MP_SETUP('Final') 
       
      end  

 

 

 Parallel Example 5-6 comments 
The computations performed in these examples are for linear least-squares 
solutions.  There is use of the box data type and MPI.  Otherwise these are 
similar to Parallel Examples 1-2 except they use alternate operators and 
functions.  Any number of nodes can be used. 

Parallel Example 5 
 

      use linear_operators 
      use mpi_setup_int 
 
      implicit none 
 
! This is Parallel Example 5 using box data types, operators  
! and functions. 
 
      integer, parameter :: m=64, n=32, nr=4 
      real(kind(1e0)) :: one=1e0, err(nr) 
      real(kind(1e0)), dimension(n,n,nr) :: A, b, x 
      real(kind(1e0)), dimension(m,n,nr) :: C, d 
 
! Setup for MPI. 
      mp_nprocs = mp_setup() 
 
! Generate two rectangular random matrices, only 
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! at the root node. 
      if (mp_rank == 0) then 
       C = rand(C); d=rand(d) 
      endif 
 
! Form the normal equations for the rectangular system. 
      A = C .tx. C; b = C .tx. d 
 
! Compute the solution for Ax = b. 
      x = A .ix. b 
 
! Check the results. 
      err = norm(b - (A .x. x))/(norm(A)+norm(b)) 
      if (ALL(err <= sqrt(epsilon(one))) .AND. MP_RANK == 0) & 
         write (*,*) 'Parallel Example 5 is correct.' 
       
! See to any error messages and quit MPI. 
      mp_nprocs = mp_setup('Final') 
 
      end  

Parallel Example 6 
 

      use linear_operators 
      use mpi_setup_int 
 
      implicit none 
 
! This is Parallel Example 6 for box data types, operators and 
! functions. 
 
      integer, parameter :: m=64, n=32, nr=4 
      real(kind(1e0)) :: one=1e0, zero=0e0, err(nr) 
      real(kind(1e0)), dimension(m,n,nr) :: C, d(m,1,nr)  
      real(kind(1e0)), dimension(n,n,nr) :: A, cov 
      real(kind(1e0)), dimension(n,1,nr) :: b, x 
 
! Setup for MPI: 
      mp_nprocs=mp_setup() 
            
! Generate a random rectangular matrix and right-hand side. 
      if(mp_rank == 0) then 
         C = rand(C); d=rand(d) 
      endif 
 
! Form the normal equations for the rectangular system. 
      A = C .tx. C; b = C .tx. d 
      COV = .i. CHOL(A); COV = COV .xt. COV 
 
! Compute the least-squares solution. 
       x = C .ix. d 
 
! Compare with solution obtained using the inverse matrix. 
      err = norm(x - (COV .x. b))/norm(cov) 
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! Check the results. 
      if (ALL(err <= sqrt(epsilon(one))) .and. mp_rank == 0) & 
         write (*,*) 'Parallel Example 6 is correct.' 
       
! See to any eror messages and quit MPI 
      mp_nprocs=mp_setup('Final') 
 
      end 

 

 Parallel Example 7 
In this example alternate nodes are used for computing with the EIG() 
function.  Inverse iteration is used to obtain eigenvectors for the second most 
dominant eigenvalue for each rack of the box. The factorization and solving 
steps for the eigenvectors are executed only at the root node.   

      use linear_operators 
      use mpi_setup_int 
 
      implicit none 
 
! This is Parallel Example 7 for box data types, operators 
! and functions. 
 
      integer tries, nrack 
      integer, parameter :: m=8, n=4, k=2, nr=4 
      integer ipivots(n+1) 
      real(kind(1d0)) :: one=1D0, err(nr), E(n,nr) 
      real(kind(1d0)), dimension(m,n,nr) ::  C 
      real(kind(1d0)), dimension(n,n,nr) ::  A, ATEMP 
      real(kind(1d0)), dimension(n,1,nr) ::  b, x 
      type(d_options) :: iopti(4) 
      logical, dimension(nr) :: results_are_true 
 
! Setup for MPI: 
      mp_nprocs = mp_setup() 
 
! Generate a random rectangular matrix. 
      if (mp_rank == 0) C = rand(C) 
 
! Generate a random right hand side for use in the  
! inverse iteration. 
      if (mp_rank == 0) b = rand(b) 
 
! Compute a positive definite matrix. 
      A = C .tx. C; A = (A + .t.A)/2 
 
! Obtain just the eigenvalues. 
      E = EIG(A) 
 
      ATEMP = A 
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! Compute A-eigenvalue*I as the coefficient matrix. 
! Use eigenvalue number k. 
 
      do nrack = 1,nr 
         IF(MP_RANK > 0) EXIT 
! Use packaged option to reset the value of a small diagonal. 
          
         iopti(1) = d_options(d_lin_sol_self_set_small,& 
                 epsilon(one)*abs(E(1,nrack))) 
 
! Use packaged option to save the factorization. 
         iopti(2) = d_lin_sol_self_save_factors 
 
! Suppress error messages and stopping due to singularity  
! of the matrix, which is expected. 
         iopti(3) = d_lin_sol_self_no_sing_mess 
         iopti(4) = 0 
         A(:,:,nrack) = A(:,:,nrack) - E(k,nrack)*EYE(n)      
 
         do tries=1,2 
            call lin_sol_self(A(:,:,nrack), & 
                     b(:,:,nrack), x(:,:,nrack), & 
                     pivots=ipivots, iopt=iopti) 
! When code is re-entered, the already computed factorization  
! is used. 
            iopti(4) = d_lin_sol_self_solve_A 
 
! Reset right-hand side in the direction of the eigenvector. 
            B(:,:,nrack) = UNIT(x(:,:,nrack)) 
         end do 
 
         end do 
 
! Normalize the eigenvector. 
       
      IF(MP_RANK == 0) x = UNIT(x) 
 
 
! Check the results. 
      b = ATEMP .x. x 
 
      do nrack = 1,nr 
         err(nrack) =  & 
           dot_product(x(1:n,1,nrack), b(1:n,1,nrack)) - E(k,nrack) 
         results_are_true(nrack) = & 
           (abs(err(nrack)) <= sqrt(epsilon(one))*E(1,nrack)) 
      enddo 
 
! Check the results. 
      if (ALL(results_are_true) .and. MP_RANK == 0) & 
        write (*,*) 'Parallel Example 7 is correct.' 
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! See to any error messages and quit MPI. 
      mp_nprocs = mp_setup('Final') 
      end  
 
 

 Parallel Example 8 
This example, similar to Parallel Example 3,  shows the box data type used 
while obtaining an accurate solution of several linear least-squares systems.  
Computation of the residuals for the box data type is executed in parallel. Only 
the root node performs the factorization and update step during iterative 
refinement. 

      use linear_operators 
      use mpi_setup_int 
 
      implicit none 
 
      INCLUDE 'mpif.h' 
 
! This is Parallel Example 8.  All nodes share in 
! just part of the work. 
 
      integer, parameter :: m=8, n=4 , nr=4 
      real(kind(1e0)) :: one=1e0, zero=0e0 
      real(kind(1d0)) :: d_zero=0d0 
      integer ipivots((n+m)+1), ierror, nrack 
      real(kind(1e0)) A(m,n,nr), b(m,1,nr), F(n+m,n+m,nr),& 
            g(n+m,1,nr), h(n+m,1,nr) 
      real(kind(1e0)) change_new(nr), change_old(nr) 
      real(kind(1d0)) c(m,1,nr), D(m,n,nr), y(n+m,1,nr) 
      type(s_options) ::  iopti(2) 
 
! Setup for MPI: 
      mp_nprocs=mp_setup() 
  
! Generate a random matrix and right-hand side. 
      if(mp_rank == 0) then 
         A = rand(A); b = rand(b) 
      endif 
 
! Save double precision copies of the matrix and right hand side. 
      D = A; c = b 
 
! Fill in augmented matrix for accurately solving the least-squares 
! problem using iterative refinement. 
      F = zero 
      do nrack = 1,nr 
         F(1:m,1:m,nrack)=EYE(m) 
      enddo 
      F(1:m,m+1:,:) = A; F(m+1:,1:m,:) = .t. A 
      
 



 

 
 

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1537 

 

 

 

! Start solution at zero. 
      y = d_zero 
      change_old = huge(one) 
 
! Use packaged option to save the factorization. 
      iopti(1) = s_lin_sol_self_save_factors 
      iopti(2) = 0    
      h = zero 
 
         ITERATIVE_REFINEMENT: DO 
            g(1:m,:,:) = c(1:m,:,:) - y(1:m,:,:) & 
                            - (D .x.  y(m+1:m+n,:,:)) 
            g(m+1:m+n,:,:) = - D .tx. y(1:m,:,:) 
            if(mp_rank == 0) then 
               do nrack = 1,nr 
                  call lin_sol_self(F(:,:,nrack), & 
               g(:,:,nrack), h(:,:,nrack), pivots=ipivots, iopt=iopti) 
               enddo 
               y = h + y 
            endif 
          
            change_new = norm(h) 
 
! All processors share the root's test for convergence 
            call mpi_bcast(change_new, nr, MPI_REAL,0, MP_LIBRARY_WORLD, 
IERROR) 
 
! Exit when changes are no longer decreasing. 
            if (ALL(change_new >= change_old) )& 
                    exit iterative_refinement 
            change_old = change_new 
 
! Use option to re-enter code with factorization saved; solve only. 
            iopti(2) = s_lin_sol_self_solve_A 
         end do iterative_refinement 
 
      if(mp_rank == 0)& 
        write (*,*) 'Parallel Example 8 is correct.' 
 
! See to any error message and quit MPI. 
      mp_nprocs=mp_setup('Final') 
 
      end  
 
 
 

 Parallel Example 9 
This is a variation of Parallel Example 8.  A single problem is converted to a 
box data type with one rack.  The use of the function call MP_SETUP(M+N) 
allocates and defines the array MPI_NODE_PRIORITY(:), the node priority 
order.  By setting MPI_ROOT_WORKS=.false., the computation of the 
residual is off-loaded to the node with highest priority, wherein we expect the 
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results to be computed the fastest.  The remainder of the computation, 
including the factorization and solve step, are executed at the root node. This 
example requires  two nodes to execute. 

Use linear_operators 
      use mpi_setup_int 
      implicit none 
 
      INCLUDE 'mpif.h' 
 
! This is Parallel Example 9, showing iterative  
! refinement with only one non-root node working. 
! There is only one problem in this example. 
      integer, parameter :: m=8, n=4, nr=1 
      real(kind(1e0)) :: one=1e0, zero=0e0 
      real(kind(1d0)) :: d_zero=0d0 
      integer ipivots((n+m)+1), nrack, ierror 
      real(kind(1e0)) A(m,n,nr), b(m,1,nr), F(n+m,n+m,nr),& 
            g(n+m,1,nr), h(n+m,1,nr) 
      real(kind(1e0)) change_new(nr), change_old(nr) 
      real(kind(1d0)) c(m,1,nr), D(m,n,nr), y(n+m,1,nr) 
      type(s_options) ::  iopti(2) 
! 
! Setup for MPI.  Establish a node priority order. 
! Restrict the root from significant computing. 
! Illustrates the "best" performing non-root node 
! computing a single task. 
      mp_nprocs=mp_setup(m+n) 
 
      MPI_ROOT_WORKS = .false. 
 
! Generate a random matrix and right-hand side. 
      A = rand(A); b = rand(b) 
 
! Save double precision copies of the matrix and right hand side. 
      D = A; c = b 
 
! Fill in augmented matrix for accurately solving the least-squares 
! problem using iterative refinement. 
      F = zero;  
 
      do nrack = 1,nr; F(1:m,1:m,nrack)=EYE(m); end do 
          
      F(1:m,m+1:,:) = A; F(m+1:,1:m,:) = .t. A 
 
! Start solution at zero. 
      y = d_zero 
      change_old = huge(one) 
 
! Use packaged option to save the factorization. 
      iopti(1) = s_lin_sol_self_save_factors 
      iopti(2) = 0 
 
      h = zero 
      ITERATIVE_REFINEMENT: DO 
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         g(1:m,:,:) = c(1:m,:,:) - y(1:m,:,:) - (D .x. y(m+1:m+n,:,:)) 
         g(m+1:m+n,:,:) = - D .tx. y(1:m,:,:) 
         IF (MP_RANK == 0) THEN 
          
           call lin_sol_self(F(:,:,nr), g(:,:,nr), & 
             h(:,:,nr), pivots=ipivots, iopt=iopti) 
         
         y = h + y 
         END IF 
 
         change_new = norm(h) 
! 
! All processors share the root's test for convergence 
         call mpi_bcast(change_new, nr, mpi_real, 0, mp_library_world, 
ierror) 
 
! Exit when changes are no longer decreasing. 
         if (ALL(change_new >= change_old))& 
                    exit ITERATIVE_REFINEMENT 
         change_old = change_new 
 
! Use option to re-enter code with factorization saved; solve only. 
         iopti(2) = s_lin_sol_self_solve_A 
      end do ITERATIVE_REFINEMENT 
 
      if(mp_rank == 0) & 
      write (*,*) 'Parallel Example 9 is correct.' 
! See to any error messages and quit MPI. 
      mp_nprocs = mp_setup('Final') 
      end  
 

 Parallel Example 10 
This illustrates the computation of a box data type least-squares 
polynomial data fitting problem.   The problem is generated at 
the root node.  The alternate nodes are used to solve the least-
squares problems.  Results are checked at the root node.  Any 
number of nodes can be used. 

      use linear_operators 
      use mpi_setup_int 
      use Numerical_Libraries, only : DCONST 
      implicit none 
 
! This is Parallel Example 10 for .ix.. 
      integer i, nrack 
      integer, parameter :: m=128, n=8, nr=4 
      real(kind(1d0)), parameter :: one=1d0, zero=0d0 
      real(kind(1d0)) A(m,0:n,nr), c(0:n,1,nr), pi_over_2, & 
        x(m,1,nr), y(m,1,nr), u(m,1,nr), v(m,1,nr), & 
        w(m,1,nr), delta_x 
   
! Setup for MPI: 
      mp_nprocs = mp_setup() 
 
! Generate a random grid of points and transform 
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! to the interval (-1,1). 
      if(mp_rank == 0) x = rand(x) 
      x = x*2 - one 
 
! Get the constant 'PI'/2 from IMSL Numerical Libraries. 
      pi_over_2 = DCONST((/'PI'/))/2 
 
! Generate function data on the grid. 
      y = exp(x) + cos(pi_over_2*x) 
 
! Fill in the least-squares matrix for the Chebyshev polynomials. 
      A(:,0,:) = one; A(:,1,:) = x(:,1,:) 
 
      do i=2, n 
         A(:,i,:) = 2*x(:,1,:)*A(:,i-1,:) - A(:,i-2,:) 
      end do 
 
! Solve for the series coefficients. 
      c = A .ix. y 
 
! Generate an equally spaced grid on the interval. 
      delta_x = 2/real(m-1,kind(one)) 
      do nrack = 1,nr 
         x(:,1,nrack) = (/(-one + i*delta_x,i=0,m-1)/) 
      enddo 
 
! Evaluate residuals using backward recurrence formulas. 
      u = zero; v = zero 
      do nrack =1,nr 
         do i=n, 0, -1 
            w(:,:,nrack) = 2*x(:,:,nrack)*u(:,:,nrack) - & 
              v(:,:,nrack) + c(i,1,nrack) 
            v(:,:,nrack) = u(:,:,nrack) 
            u(:,:,nrack) = w(:,:,nrack) 
         end do 
      enddo 
 
! Compute residuals at the grid: 
      y = exp(x) + cos(pi_over_2*x) - (u-x*v) 
 
! Check that n+1 sign changes in the residual curve occur. 
      x = one 
      x = sign(x,y) 
 
      if (count(x(1:m-1,1,:) /= x(2:m,1,:)) >= n+1) then 
         if(mp_rank == 0)& 
         write (*,*) 'Parallel Example 10 is correct.' 
      end if 
 
! See to any error messages and exit MPI. 
      MP_NPROCS = MP_SETUP('Final') 
      end  
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 Parallel Example 11 
In this example a single problem is elevated by using the box data type with one 
rack.  The function call MP_SETUP(M) may take longer to compute than the 
computation of the generalized inverse, which follows.  Other methods for 
determining the node priority order, perhaps based on specific knowledge of the 
network environment, may be better suited for this application. This example 
requires two nodes to execute. 

      use linear_operators 
      use mpi_setup_int 
      use Numerical_Libraries, only : DCONST 
      implicit none 
 
! This is Parallel Example 11 using a priority order with 
! only the fastest alternate node working. 
 
      integer i 
      integer, parameter :: m=128, n=8, nr=1 
      real(kind(1d0)), parameter :: one=1d0, zero=0d0 
      real(kind(1d0)) A(m,0:n,nr), c(0:n,1,nr), pi_over_2, x(m), & 
        y(m,1,nr), u(m), v(m), w(m), delta_x, inv(0:n, m, nr) 
  
! Setup for MPI.  Create a priority order list.  Force the 
! problem to work on the fastest non-root machine. 
      mp_nprocs = mp_setup(m) 
      MPI_ROOT_WORKS = .false. 
 
! Generate an array of equally spaced points on the interval (-1,1). 
      delta_x = 2/real(m-1,kind(one)) 
      x = (/(-one + i*delta_x,i=0,m-1)/) 
 
! Get the constant 'PI'/2 from IMSL Numerical Libraries. 
      pi_over_2 = DCONST((/'PI'/))/2 
 
! Compute data values on the grid. 
      y(:,1,1) = exp(x) + cos(pi_over_2*x) 
 
! Fill in the least-squares matrix for the Chebyshev polynomials. 
      A(:,0,1) = one 
      A(:,1,1) = x 
 
      do i=2, n 
         A(:,i,1) = 2*x*A(:,i-1,1) - A(:,i-2,1) 
      end do 
 
! Compute the generalized inverse of the least-squares matrix. 
! Compute the series coefficients using the generalized inverse 
! as 'smoothing formulas.' 
      inv = .i. A; c = inv .x. y 
! Evaluate residuals using backward recurrence formulas. 
 
      u = zero 
      v = zero 
      do i=n, 0, -1 
         w = 2*x*u - v + c(i,1,1) 
         v = u 
         u = w 
      end do 
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! Compute residuals at the grid: 
      y(:,1,1) = exp(x) + cos(pi_over_2*x) - (u-x*v) 
 
! Check that n+2 sign changes in the residual curve occur. 
      x = one; x = sign(x,y(:,1,1)) 
 
      if (count(x(1:m-1) /= x(2:m)) == n+2) then 
         if(mp_rank == 0)& 
         write (*,*) 'Parallel Example 11 is correct.' 
      end if 
 
! See to any error messages and exit MPI 
      mp_nprocs = mp_setup('Final') 
      end  
 
 
 

 Parallel Example 12 
This illustrates a surface fitting problem using radial basis functions and a box data 
type.   It is of interest because this problem fits three component functions of the 
same form in a space of dimension two.  The racks of the box represent the 
separate problems for the three coordinate functions.  The coefficients are obtained 
with the .ix. operator.  When the least-squares fitting process requires more 
elaborate software, it may be necessary to send the data to the nodes, compute, and 
send the results back to the root.  See Parallel Example 18 for more details. Any 
number of nodes can be used. 

      use linear_operators 
      use mpi_setup_int 
      implicit none 
 
! This is Parallel Example 12 for  
! .ix. , NORM, .tx. and .x. operators. 
      integer i, j, nrack 
      integer, parameter :: m=128, n=32, k=2, n_eval=16, nr=3 
      real(kind(1d0)), parameter :: one=1d0, delta_sqr=1d0 
      real(kind(1d0)) A(m,n,nr), b(m,1,nr), c(n,1,nr), p(k,m,nr), q(k,n,nr) 
 
! Setup for MPI: 
      mp_nprocs = mp_setup() 
 
! Generate a random set of data and center points in k=2 space. 
      if( mp_rank == 0) then 
         p = rand(p); q=rand(q) 
 
! Compute the coefficient matrix for the least-squares system. 
         do nrack=1,nr 
            A(:,:,nrack) = sqrt(sum((spread(p(:,:,nrack),3,n) - & 
              spread(q(:,:,nrack),2,m))**2,dim=1) + delta_sqr) 
 
! Compute the right-hand side of function values. 
            b(:,1,nrack) = exp(-sum(p(:,:,nrack)**2,dim=1)) 
         enddo 
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      endif 
 
! Compute the least-squares solution.  An error message due  
! to rank deficiency is ignored with the flags: 
   
      allocate (d_invx_options(1)) 
      d_invx_options(1)=skip_error_processing 
      c = A .ix. b 
 
! Check the results. 
      if (ALL(norm(A .tx. (b - (A .x. c)))/(norm(A)+norm(c)) & 
          <= sqrt(epsilon(one)))) then 
         if(mp_rank == 0) & 
            write (*,*) 'Parallel Example 12 is correct.' 
      end if 
 
! Unload option type for good housekeeping. 
      deallocate (d_invx_options) 
 
! See to any error messages and quit MPI. 
 
      mp_nprocs = mp_setup('Final') 
 
      end  
 

 Parallel Example 13 
Here least-squares problems are solved, each with an equality constraint that 
the variables sum to the value one.  A box data type is used and the solution 
obtained with the .ix. operator. Any number of nodes can be used. 

     use linear_operators 
      use mpi_setup_int 
      implicit none 
 
! This is Parallel Example 13 for .ix. and NORM 
 
      integer, parameter :: m=64, n=32, nr=4 
      real(kind(1e0)) :: one=1e0, A(m+1,n,nr), b(m+1,1,nr), x(n,1,nr) 
 
 
! Setup for MPI: 
      mp_nprocs=mp_setup() 
 
      if(mp_rank == 0) then 
! Generate a random matrix and right-hand side. 
         A=rand(A); b = rand(b) 
 
! Heavily weight desired constraint.  All variables sum to one. 
         A(m+1,:,:) =   one/sqrt(epsilon(one)) 
         b(m+1,:,:) =   one/sqrt(epsilon(one)) 
 
      endif 



 

 
 

1544 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY 

 

 

 

 
! Compute the least-squares solution with this heavy weight. 
      x = A .ix. b 
 
! Check the constraint. 
      if (ALL(abs(sum(x(:,1,:),dim=1) - one)/norm(x) & 
            <= sqrt(epsilon(one)))) then 
         if(mp_rank == 0) & 
         write (*,*) 'Parallel Example 13 is correct.' 
      endif 
     
! See to any error messages and exit MPI 
      mp_nprocs=mp_setup('Final') 
 
      end 
 

 
 

 Parallel Example 14 
Systems of  least-squares problems are solved, but now using the SVD() 
function.  A box data type is used.  This is an example which uses optional 
arguments and a generic function overloaded for parallel execution of a box 
data type.  Any number of nodes can be used. 

      use linear_operators 
      use mpi_setup_int 
      implicit none 
 
! This is Parallel Example 14 
! for SVD, .tx. , .x. and NORM. 
      integer, parameter :: m=128, n=32, nr=4 
      real(kind(1d0)) :: one=1d0, err(nr) 
      real(kind(1d0)) A(m,n,nr), b(m,1,nr), x(n,1,nr), U(m,m,nr), & 
        V(n,n,nr), S(n,nr), g(m,1,nr) 
 
! Setup for MPI: 
      mp_nprocs=mp_setup() 
 
      if(mp_rank == 0) then 
! Generate a random matrix and right-hand side. 
         A = rand(A); b = rand(b) 
      endif 
 
! Compute the least-squares solution matrix of Ax=b. 
      S = SVD(A, U = U, V = V) 
      g = U .tx. b 
      x = V .x. (diag(one/S) .x. g(1:n,:,:)) 
 
! Check the results. 
      err = norm(A .tx. (b - (A .x. x)))/(norm(A)+norm(x)) 
      if (ALL(err <= sqrt(epsilon(one)))) then 
         if(mp_rank == 0) & 
         write (*,*) 'Parallel Example 14 is correct.' 
      end if 
 
! See to any error messages and quit MPI 
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      mp_nprocs = mp_setup('Final') 
 
      end  
 
 

 Parallel Example 15 
A “Polar Decomposition” of several matrices are computed.  The box data type 
and the SVD() function are used.  Orthogonality and small residuals are 
checked to verify that the results are correct. 

      use linear_operators 
      use mpi_setup_int 
      implicit none 
 
! This is Parallel Example 15 using operators and  
! functions for a polar decomposition. 
      integer, parameter :: n=33, nr=3 
      real(kind(1d0)) :: one=1d0, zero=0d0 
      real(kind(1d0)),dimension(n,n,nr) :: A, P, Q, & 
             S_D(n,nr), U_D, V_D 
      real(kind(1d0)) TEMP1(nr), TEMP2(nr) 
 
! Setup for MPI: 
      mp_nprocs = mp_setup() 
 
! Generate a random matrix. 
      if(mp_rank == 0) A = rand(A) 
 
! Compute the singular value decomposition. 
      S_D = SVD(A, U=U_D, V=V_D) 
 
! Compute the (left) orthogonal factor. 
      P = U_D .xt. V_D 
 
! Compute the (right) self-adjoint factor. 
      Q = V_D .x. diag(S_D) .xt. V_D 
! Check the results for orthogonality and  
! small residuals. 
      TEMP1 = NORM(spread(EYE(n),3,nr) - (p .xt. p)) 
      TEMP2 = NORM(A -(P .X. Q)) / NORM(A) 
      if (ALL(TEMP1 <= sqrt(epsilon(one))) .and. & 
          ALL(TEMP2 <= sqrt(epsilon(one)))) then 
            if(mp_rank == 0)& 
            write (*,*) 'Parallel Example 15 is correct.' 
      end if 
  
! See to any error messages and exit MPI. 
      mp_nprocs = mp_setup('Final') 
 
      end  
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 Parallel Example 16 
A compute-intensive single task, in this case the singular values decomposition  
of a matrix, is computed and partially reconstructed with matrix products.  This 
result is sent back to the root node.   The node of highest priority, not the root, is 
used for the computation except when only the root is available. 

      use linear_operators 
      use mpi_setup_int 
      implicit none 
      INCLUDE 'mpif.h' 
 
! This is Parallel Example 16 for SVD. 
      integer i, j, IERROR, BEST 
      integer, parameter :: n=32 
      real(kind(1e0)), parameter :: half=5e-1, one=1e0, zero=0e0 
      real(kind(1e0)), dimension(n,n) :: A, S(n), U, V, C 
      integer k, STATUS(MPI_STATUS_SIZE) 

 
! Setup for MPI: 
      mp_nprocs = mp_setup(n) 
 
BEST=1   
BLOCK: DO 
 
! Fill in value one for points inside the circle, 
! zero on the outside. 
      A = zero 
      DO i=1, n 
         DO j=1, n 
            if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) A(i,j) = one 
         END DO 
      END DO 
IF(MP_NPROCS > 1 .and. MPI_NODE_PRIORITY(1) == 0) BEST=2 
 
! Only the most effective node does this job. 
! The rest set idle. 
   IF(MP_RANK /= MPI_NODE_PRIORITY(BEST)) EXIT BLOCK 
 
! Compute the singular value decomposition. 
      S = SVD(A, U=U, V=V) 
 
! How many terms, to the nearest integer, match the circle? 
      k = count(S > half) 
      C = U(:,1:k) .x. diag(S(1:k)) .xt. V(:,1:k) 
 
! If root is not the most efficient node, send C back. 
      IF(MPI_NODE_PRIORITY(BEST) > 0) & 
      CALL MPI_SEND(C, N**2, MPI_REAL, 0, MP_RANK, MP_LIBRARY_WORLD, IERROR) 
      EXIT BLOCK           
END DO BLOCK 
 
! There may be a matrix to receive from the "best" node. 
      IF(MPI_NODE_PRIORITY(BEST) > 0 .and. MP_RANK == 0) & 
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        CALL MPI_RECV (C, N**2, MPI_REAL, MPI_ANY_SOURCE, MPI_ANY_TAG, & 
          MP_LIBRARY_WORLD, STATUS, IERROR) 
 
       if (count(int(C-A) /= 0) == 0 .and. MP_RANK == 0) & 
         write (*,*) 'Parallel Example 16 is correct.' 
        
! See to any error messages and exit MPI. 
      mp_nprocs = mp_setup('Final') 
      end  
 
 

 Parallel Example 17 
Occasionally it is necessary to print output from all nodes of a communicator.  
This example has each non-root node prepare the output it will print in a 
character buffer.  Then, each node in turn, the character buffer is transmitted to 
the root.  The root prints the buffer, line-by-line, which contains an indication 
of where the output originated.  Note that the root directs the order of results by 
broadcasting an integer value (BATON) giving the index of the node to 
transmit.  The random numbers generated at the nodes and then listed are not 
checked. There is a final printed line indicating that the example is completed. 

use show_int 
 use rand_int 
       use mpi_setup_int 
         
 implicit none   
        INCLUDE 'mpif.h' 
  
! This is Parallel Example 17.  Each non-root node transmits 
! the contents of an array that is the output of SHOW. 
! The root receives the characters and prints the lines from 
! alternate nodes. 
  integer, parameter :: n=7, BSIZE=(72+2)*4 
        integer k, p, q, ierror, status(MPI_STATUS_SIZE) 
        integer I, BATON 
  real(kind(1e0)) s_x(-1:n) 
        type (s_options) options(7) 
        CHARACTER (LEN=BSIZE) BUFFER 
        character (LEN=12) PROC_NUM 
 
! Setup for MPI: 
        mp_nprocs = mp_setup() 
if (mp_rank > 0) then 
! The data types printed are real(kind(1e0)) random numbers. 
 s_x=rand(s_x) 
 
! Convert node rank to CHARACTER data. 
  write(proc_num,'(I3)') mp_rank 
 
! Show 7 digits per number and  according to the 
! natural or declared size of the array. 
! Prepare the output lines in array BUFFER. 
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! End each line with ASCII sequence CR-NL. 
        options(1)=show_significant_digits_is_7 
 
        options(2)=show_starting_index_is 
        options(3)= -1 ! The starting  value. 
 
        options(4)=show_end_of_line_sequence_is 
        options(5)=  2 ! Use 2 EOL characters. 
        options(6)= 10 ! The ASCII code for CR. 
        options(7)= 13 ! The ASCII code for NL. 
 
        BUFFER= ' '    ! Blank out the buffer. 
 
! Prepare the output in BUFFER. 
 call show (s_x, & 
   'Rank-1, REAL with 7 digits, natural indexing from rank # '//& 
   trim(adjustl(PROC_NUM)), IMAGE=BUFFER,  IOPT=options) 
 
 do i=1,mp_nprocs-1 
! A handle or baton is received by the non-root nodes. 
    call mpi_bcast(BATON, 1, MPI_INTEGER, 0, & 
      MP_LIBRARY_WORLD, ierror) 
 
! If this node has the baton, it transmits its buffer. 
    if(BATON == mp_rank)& 
      call mpi_send(buffer, BSIZE, MPI_CHARACTER, 0, mp_rank, & 
        MP_LIBRARY_WORLD, ierror) 
 end do 
 
else 
    DO I=1,MP_NPROCS-1 
 
! The root sends out a handle to a node.  It is received as 
! the value BATON. 
      call mpi_bcast(I, 1, MPI_INTEGER, 0, & 
        MP_LIBRARY_WORLD, ierror) 
 
! A buffer of data arrives from a node. 
      call mpi_recv(buffer, BSIZE, MPI_CHARACTER, MPI_ANY_SOURCE, & 
        MPI_ANY_TAG, MP_LIBRARY_WORLD, STATUS, IERROR) 
 
! Display BUFFER as a CHARACTER array. Discard blanks 
! on the ends.  Look for non-printable characters as limits. 
        p=0 
        k=LEN(TRIM(BUFFER)) 
        DISPLAY:DO 
          DO 
            IF (p >= k) EXIT DISPLAY 
            p=p+1 
            IF(ICHAR(BUFFER(p:p)) >= ICHAR(' ')) EXIT 
          END DO 
          q=p-1 
          DO 
            q=q+1 
            IF (ICHAR(BUFFER(q:q)) < ICHAR(' ')) EXIT 
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          END DO 
          WRITE(*,'(1x,A)') BUFFER(p:q-1) 
          p=q 
        END DO DISPLAY 
    END DO 
end if 
  IF(MP_RANK ==0 ) & 
    write(*,*) 'Parallel Example 17 is finished.' 
 
! See to any error messages and quit MPI 
    mp_nprocs = mp_setup('Final') 
 
        end 
 
 

 Parallel Example 18 
Here we illustrate a surface fitting problem implemented using tensor product 
B-splines with constraints.  There are three functions, each depending on two 
parametric variables, for the spatial coordinates.  Fitting each coordinate 
function to the data is a natural example of parallel computing in the sense that 
there are three separate problems of the same type.  The approach is to break 
the problem into three data fitting computations.  Each of these computations 
are allocated to nodes.  Note that the data is sent from the root to the nodes.  
 
Every node completes the least-squares fitting, and sends the spline coefficients 
back to the root node.  This example requires four nodes to execute. 

      USE surface_fitting_int 
      USE rand_int 
      USE norm_int 
      USE Numerical_Libraries, only : DCONST 
      USE mpi_setup_int 
      implicit none 
 
      INCLUDE 'mpif.h' 
 
! This is a Parallel Example 18 for SURFACE_FITTING, or 
! tensor product B-splines approximation.  Fit x, y, z parametric 
! functions for points on the surface of a sphere of radius "A". 
! Random values of latitude and longitude are used to generate 
! data.  The functions are evaluated at a rectangular grid 
! in latitude and longitude and checked so they lie on the  
! surface of the sphere.  
 
      integer :: i, j, ierror, status(MPI_STATUS_SIZE) 
      integer, parameter :: ngrid=5, nord=8, ndegree=nord-1, & 
        nbkpt=ngrid+2*ndegree, ndata =400, nvalues=50, NOPT=4 
      real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0 
      real(kind(1d0)), parameter :: TOLERANCE=1d-3 
      real(kind(1d0)), target :: spline_data (4, ndata, 3), bkpt(nbkpt), & 
         coeff(ngrid+ndegree-1,ngrid+ndegree-1, 3), delta, sizev, & 
         pi, A, x(nvalues), y(nvalues), values(nvalues, nvalues), & 
         data(4,ndata) 
 
      real(kind(1d0)), pointer :: pointer_bkpt(:) 
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      type (d_surface_constraints), allocatable :: C(:) 
      type (d_spline_knots) knotsx, knotsy 
      type (d_options) OPTIONS(NOPT) 
 
! Setup for MPI: 
      MP_NPROCS = MP_SETUP() 
BLOCK: DO 
! This program needs at least three nodes plus a root to execute. 
! As many as three error messages may print.  
      if(mp_nprocs < 4) then 
        call e1sti (1, MP_NPROCS) 
        call e1mes (5, 1, "Parallel Example 18 requires FOUR nodes"//& 
          ' to execute. Number of nodes is now %(I1).') 
        EXIT BLOCK 
      endif 
 
! Get the constant "pi" and a random radius, > 1. 
      pi = DCONST((/'pi'/)); A=one+rand(A) 
 
! Generate random (latitude, longitude) pairs and evaluate the 
! surface parameters at these points. 
      spline_data(1:2,:,1)=pi*(two*rand(spline_data(1:2,:,1))-one) 
      spline_data(1:2,:,2)=spline_data(1:2,:,1) 
      spline_data(1:2,:,3)=spline_data(1:2,:,1) 
 
! Evaluate x, y, z parametric points. 
      spline_data(3,:,1)=A*cos(spline_data(1,:,1))*cos(spline_data(2,:,1)) 
      spline_data(3,:,2)=A*cos(spline_data(1,:,2))*sin(spline_data(2,:,2)) 
      spline_data(3,:,3)=A*sin(spline_data(1,:,3)) 
 
! The values are equally uncertain. 
      spline_data(4,:,:)=one 
 
! Define the knots for the tensor product data fitting problem. 
         delta = two*pi/(ngrid-1) 
         bkpt(1:ndegree) = -pi 
         bkpt(nbkpt-ndegree+1:nbkpt) =  pi 
         bkpt(nord:nbkpt-ndegree)=(/(-pi+i*delta,i=0,ngrid-1)/) 
 
! Assign the degree of the polynomial and the knots. 
      pointer_bkpt => bkpt 
      knotsx=d_spline_knots(ndegree, pointer_bkpt) 
      knotsy=knotsx 
  
! Fit a data surface for each coordinate. 
! Set default regularization parameters to zero and compute  
! residuals of the individual points. These are returned 
! in DATA(4,:). 
      allocate (C(2*ngrid)) 
! "Sew" the ends of the parametric surfaces together: 
      do i=0,ngrid-1 
        C(i+1)=surface_constraints(point=(/-pi,-pi+i*delta/),& 
          type='.=.', periodic=(/pi,-pi+i*delta/)) 
      end do 
      do i=0,ngrid-1 
        C(ngrid+i+1)=surface_constraints(point=(/-pi+i*delta,-pi/),& 
          type='.=.', periodic=(/-pi+i*delta,pi/)) 
      end do 
 
      if (mp_rank == 0) then 
! Send the data to a node. 
         do j=1,3 
           call mpi_send(spline_data(:,:,j), 4*ndata, & 
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            MPI_DOUBLE_PRECISION, j, j, MP_LIBRARY_WORLD, ierror) 
         enddo 
         do i=1,3 
! Receive the coefficients back. 
    call mpi_recv(coeff(:,:,i), (ngrid+ndegree-1)**2, & 
             MPI_DOUBLE_PRECISION, i, i, MP_LIBRARY_WORLD, & 
             status, ierror) 
         enddo 
      else if (mp_rank < 4) then 
 
! Receive the data from the root. 
        call mpi_recv(data, 4*ndata, MPI_DOUBLE_PRECISION, 0, & 
          mp_rank, MP_LIBRARY_WORLD, status, ierror) 
        OPTIONS(1)=d_options(surface_fitting_thinness,zero) 
        OPTIONS(2)=d_options(surface_fitting_flatness,zero) 
        OPTIONS(3)=d_options(surface_fitting_smallness,zero) 
        OPTIONS(4)=surface_fitting_residuals 
 
! Compute the coefficients at this node. 
        coeff(:,:,mp_rank) = surface_fitting(data, knotsx, knotsy,& 
          CONSTRAINTS=C, IOPT=OPTIONS) 
 
! Send the coefficients back to the root. 
 call mpi_send(coeff(:,:,mp_rank),(ngrid+ndegree-1)**2,& 
          MPI_DOUBLE_PRECISION, 0, mp_rank, MP_LIBRARY_WORLD,IERROR) 
      end if 
 
! Evaluate the function at a grid of points inside the rectangle of  
! latitude and longitude covering the sphere just once.  Add the  
! sum of squares. They should equal "A**2" but will not due to 
! truncation and rounding errors. 
      delta=pi/(nvalues+1) 
      x=(/(-pi/two+i*delta,i=1,nvalues)/); y=two*x 
      values=zero 
      do j=1,3 
        values=values + surface_values((/0,0/), x, y, knotsx, knotsy,& 
          coeff(:,:,j))**2 
      end do 
      values=values-A**2 
 
! Compute the R.M.S. error: 
      sizev=norm(pack(values, (values == values)))/nvalues 
      if (sizev <= TOLERANCE) then 
        if(mp_rank == 0) & 
        write(*,*) "Parallel Example 18 is correct." 
      end if 
     EXIT BLOCK 
END DO BLOCK 
 
! See to any error messages and exit MPI. 
      mp_nprocs = mp_setup('Final') 
      end 
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Chapter 11: Utilities 

Routines 
11.1. ScaLAPACK Utilities   

Reads matrix data from a file and transmits it into the  
two-dimensional block-cyclic form ................. ScaLAPACK_READ 1557 
Writes the matrix data to a file .......................ScaLAPACK_WRITE 1559 

11.2. Print 
Prints error messages ............................................ ERROR_POST 1568 
Prints rank-1 or rank-2 arrays of numbers in a  
readable format.....................................................................SHOW 1571 
Real rectangular matrix  
with integer row and column labels.................................... WRRRN 1575 
Real rectangular matrix with given format and labels.........WRRRL 1577 
Integer rectangular matrix  
with integer row and column labels......................................WRIRN 1581 
Integer rectangular matrix with given format and labels...... WRIRL 1583 
Complex rectangular matrix  
with row and column labels................................................ WRCRN 1586 
Complex rectangular matrix 
with given format and labels ...............................................WRCRL 1588 
Sets or retrieves options for printing a matrix .....................WROPT 1591 
Sets or retrieves page width and length ............................. PGOPT 1599 

11.3. Permute 
Elements of a vector ...........................................................PERMU 1600 
Rows/columns of a matrix................................................... PERMA 1602 

11.4. Sort 
Sorts a rank-1 array of real numbers x so the y results  
are algebraically nondecreasing, y1 � y2 � � yn ........ SORT_REAL 1604 
Real vector by algebraic value............................................ SVRGN 1607 
Real vector by algebraic value 
and permutations returned.................................................. SVRGP 1608 
Integer vector by algebraic value..........................................SVIGN 1610 
Integer vector by algebraic value 
and permutations returned....................................................SVIGP 1611 
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Real vector by absolute value .............................................SVRBN 1612 
Real vector by absolute value  
and permutations returned .................................................. SVRBP 1614 
Integer vector by absolute value ...........................................SVIBN 1615 
Integer vector by absolute value 
and permutations returned ....................................................SVIBP 1617 

11.5. Search 
Sorted real vector for a number ............................................ SRCH 1618 
Sorted integer vector for a number ...................................... ISRCH 1620 
Sorted character vector for a string.....................................SSRCH 1622 

11.6. Character String Manipulation 
Gets the character corresponding to a  
given ASCII value................................................................ACHAR 1624 
Get the integer ASCII value for a given character .............IACHAR 1625 
Gets upper case integer ASCII value for a character ...........ICASE 1626 
Case-insensitive version comparing two strings .................... IICSR 1627 
Case-insensitive version of intrinsic function INDEX ............. IIDEX 1629 
Converts a character string with digits to an integer .............CVTSI 1630 

11.7. Time, Date, and Version 
CPU time .............................................................................CPSEC 1631 
Time of day........................................................................... TIMDY 1632 
Today’s date.........................................................................TDATE 1633 
Number of days from January 1, 1900, to the given date ...NDAYS 1634 
Date for the number of days from January 1, 1900 ............. NDYIN 1636 
Day of week for given date...................................................IDYWK 1637 
Version, system, and serial numbers ..................................VERML 1638 

11.8. Random Number Generation 
Generates a rank-1 array of random numbers............ RAND_GEN 1639 
Retrieves the current value of the seed ..............................RNGET 1648 
Initializes a random seed..................................................... RNSET 1649 
Selects the uniform (0,1) generator.....................................RNOPT 1650 
Generates pseudorandom numbers (function form) ...........RNUNF 1651 
Generates pseudorandom numbers .....................................RNUN 1653 

11.9 Low Discrepancy Sequences  
Shuffled Faure sequence initialization ....................... FAURE_INIT 1655 
Frees the structure containing information  
about the Faure sequence .......................................FAURE_FREE 1655  
Computes a shuffled Faure sequence .....................FAURE_NEXT 1656 

11.10. Options Manager 
Gets and puts type INTEGER options....................................IUMAG 1658 
Gets and puts type REAL options...........................................UMAG 1661 
Gets and puts type DOUBLE PRECISION options .................DUMAG 1664 

11.11. Line Printer Graphics 
Prints plot of up to 10 sets of points .....................................PLOTP 1664 
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11.12. Miscellaneous 
Decomposes an integer into its prime factors ......................PRIME 1668 
Returns mathematical and physical constants ................... CONST 1669 
Converts a quantity to different units ....................................CUNIT 1672 
Computes 2 2

�a b  without underflow or overflow .............HYPOT 1675 

Usage Notes for ScaLAPACK Utilities 
 

MPI REQUIRED

 

This section describes the use of ScaLAPACK, a suite of dense linear algebra solvers, 
applicable when a single problem size is large. We have integrated usage of IMSL Fortran 
Library with ScaLAPACK.  However, the ScaLAPACK library, including libraries for 
BLACS and PBLAS, are not part of this Library.  To use ScaLAPACK software, the required 
libraries must be installed on the user’s computer system.  We adhered to the specification 
of Blackford, et al. (1997), but use only MPI for communication.  The ScaLAPACK library 
includes certain LAPACK routines, Anderson, et al. (1995),  redesigned for distributed 
memory parallel computers. It is written in a Single Program, Multiple Data (SPMD) style 
using explicit message passing for communication.  Matrices are laid out in a two-
dimensional block-cyclic decomposition.  Using High Performance Fortran (HPF) 
directives, Koelbel, et al. (1994), and a static p q�  processor array, and following 
declaration of the array, A(*,*), this is illustrated by: 

INTEGER, PARAMETER :: N=500, P= 2, Q=3, MB=32, NB=32  

!HPF$ PROCESSORS PROC(P,Q) 

!HPF$ DISTRIBUTE A(cyclic(MB), cyclic(NB)) ONTO PROC 

Our integration work provides modules that describe the interface to the ScaLAPACK 
library.  We recommend that users include these modules when using ScaLAPACK or 
ancillary packages, including BLACS and PBLAS.  For the job of distributing data within a 
user’s application to the block-cyclic decomposition required by ScaLAPACK solvers, we 
provide a utility that reads data from an external file and arranges the data within the 
distributed machines for a computational step.  Another utility writes the results into an 
external file.   
The data types supported for these utilities are integer; single 
precision, real; double precision, real; single precision, 
complex, and double precision, complex. 

A ScaLAPACK library normally includes routines for: 

�� the solution of full-rank linear systems of equations, 

�� general and symmetric, positive-definite, banded linear systems of 
equations,  

�� general and symmetric, positive-definite, tri-diagonal, linear systems of 
equations,  

�� condition number estimation and iterative refinement for LU and 
Cholesky factorization,  

�� matrix inversion,  
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�� full-rank linear least-squares problems,  

�� orthogonal and generalized orthogonal factorizations,  

�� orthogonal transformation routines,  

�� reductions to upper Hessenberg, bidiagonal and tridiagonal form,  

�� reduction of a symmetric-definite, generalized eigenproblem to 
standard form,  

�� the self-adjoint or Hermitian eigenproblem,  

�� the generalized self-adjoint or Hermitian eigenproblem, and 

�� the non-symmetric eigenproblem  

ScaLAPACK routines are available in four data types: single precision, 
real; double precision; real, single precision, complex, and double 
precision, complex. At present, the non-symmetric eigenproblem is only 
available in single and double precision.  More background information and 
user documentation is available on the World Wide Web at location 
http://www.netlib.org/scalapack/slug/scalapack_slug.html 

�� For users with rank deficiency or simple constraints in their linear 
systems or least-squares problem, we have routines for: 

�� full or deficient rank least-squares problems with non-negativity 
constraints 

�� full or deficient rank least-squares problems with simple upper and 
lower bound constraints 

These are available in two data types: single precision, real, and double 
precision, real, and they are not part of ScaLAPACK. The matrices are 
distributed  in a general block-column layout. 

ScaLAPACK Supporting Modules 

MPI REQUIRED

 

We recommend that users needing routines from ScaLAPACK, PBLAS or 
BLACS, Version 1.4, use modules that describe the interface to individual 
codes.  This practice, including use of the declaration directive, IMPLICIT 
NONE, is a reliable way of writing ScaLAPACK application code, since the 
routines may have lengthy lists of arguments.  Using the modules is helpful 
to avoid the mistakes such as missing arguments or mismatches involving 
Type, Kind or Rank (TKR).  The modules are part of the Fortran Library 
product. There is a comprehensive module, ScaLAPACK_Support, that 
includes use of all the modules in the table below.  This module decreases 
the number of lines of code for checking the interface, but at the cost of 
increasing source compilation time compared with using individual 
modules. 
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Module Name Contents of the Module 
ScaLAPACK_Support All of the following modules 
ScaLAPACK_Int All interfaces to ScaLAPACK routines 
PBLAS_Int All interfaces to parallel BLAS, or PBLAS 
BLACS_Int All interfaces to basic linear algebra communication routines, or BLACS 
TOOLS_Int Interfaces to ancillary routines used by ScaLAPACK, but not in other 

packages 
LAPACK_Int All interfaces to LAPACK routines required by ScaLAPACK 
ScaLAPACK_IO_Int All interfaces to ScaLAPACK_Read, ScaLAPACK_Write utility routines.  

See this Chapter. 
MPI_Node_Int The module holding data describing the MPI communicator, 

MP_LIBRARY_WORLD.  See Chapter 10. 

ScaLAPACK_READ 

MPI REQUIRED

 

This routine reads matrix data from a file and transmits it into the two-dimensional 
block-cyclic form required by ScaLAPACK routines.  This routine contains a call to a 
barrier routine so that if one process is writing the file and an alternate process is to 
read it, the results will be synchronized.   
All processors in the BLACS context call the routine. 

Required Arguments 
File_Name—(Input) 

A character variable naming the file containing the matrix data.  This file is opened 
with STATUS=“OLD.”  If the name is misspelled or the file does not exist, or any 
access violation happens, a type = terminal error message will occur.  After the 
contents are read, the file is closed. This file is read with a loop logically equivalent 
to groups of reads: 

READ() ((BUFFER(I,J), I=1,M), J=1, NB) 
or (optionally): 

READ() ((BUFFER(I,J), J=1,N), I=1, MB) 

DESC_A(*)—(Input) 
The nine integer parameters associated with the ScaLAPACK matrix descriptor.  
Values for NB,MB,LDA are contained in this array. 

A(LDA,*)—(Output) 
This is an assumed-size array, with leading dimension LDA, that will contain 
this processor’s piece of the block-cyclic matrix.  The data type for A(*,*) is any 
of five Fortran intrinsic types, integer, single precision, real; double 
precision, real; single precision, complex, and double precision-complex. 
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Optional Arguments 
Format—(Input) 

A character variable containing a format to be used for reading the file containing 
matrix data.  If this argument is not present, an unformatted, or list-directed read is 
used. 

iopt—(Input) 
Derived type array with the same precision as the array A(*,*), used for passing 
optional data to ScaLAPACK_READ. The options are as follows: 

 

Packaged Options for ScaLAPACK_READ 
Option Prefix = ? Option Name Option Value 

s_, d_ ScaLAPACK_READ_UNIT 1 
s_, d_ ScaLAPACK_READ_FROM_PROCESS 2 
s_, d_ ScaLAPACK_READ_BY_ROWS 3 

 
 

MPI REQUIRED

 

 
iopt(IO) = ScaLAPACK_READ_UNIT 

Sets the unit number to the value in iopt(IO + 1)%idummy.  The default unit 
number is the value 11. 

 
iopt(IO) = ScaLAPACK_READ_FROM_PROCESS 

Sets the process number that reads the named file to the value in  
iopt(IO + 1)%idummy.  The default process number is the value 0. 

iopt(IO) = ScaLAPACK_READ_BY_ROWS 
Read the matrix by rows from the named file.  By default the matrix is read by 
columns. 

FORTRAN 90 Interface 
Generic: CALL ScaLAPACK_READ (File_Name, DESC_A, A [,…]) 

Specific: The specific interface names are S_ScaLAPACK_READ and 
D_ScaLAPACK_READ.  

Description 
Subroutine ScaLAPACK_READ reads columns or rows of a problem matrix so that it 
is usable by a ScaLAPACK routine.  It uses the two-dimensional block-cyclic array 
descriptor for the matrix to place the data in the desired assumed-size arrays on the 
processors.  The blocks of data are read, then transmitted and received.  The block 
sizes, contained in the array descriptor, determines the data set size for each blocking 
send and receive pair.  The number of these synchronization points is proportional to 

/( )M N MB NB� �� �� � .  A temporary local buffer is allocated for staging the matrix 
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data.  It is of size M by NB, when reading by columns, or N by MB, when reading by 
rows. 

 

ScaLAPACK_WRITE 
 

MPI REQUIRED

 

This routine writes the matrix data to a file.  The data is transmitted from the two-
dimensional block-cyclic form used by ScaLAPACK.  This routine contains a call to 
a barrier routine so that if one process is writing the file  
and an alternate process is to read it, the results will be synchronized. All processors 
in the BLACS context call the routine. 

Required Arguments 
File_Name—(Input) 

A character variable naming the file to receive the matrix data.  This file is 
opened with “STATUS=”UNKNOWN.”  If any access violation happens, a 
type = terminal error message will occur.  If the file already exists it will be 
overwritten.  After the contents are written, the file is closed. This file is 
written with a loop logically equivalent to groups of writes: 

WRITE() ((BUFFER(I,J), I=1,M), J=1, NB) 
or (optionally): 

WRITE() ((BUFFER(I,J), J=1,N), I=1, MB) 

DESC_A(*)—(Input) 
The nine integer parameters associated with the ScaLAPACK matrix 
descriptor. Values for NB,MB,LDA are contained in this array. 

A(LDA,*) —(Input) 
This is an assumed-size array, with leading dimension LDA, containing 
this processor’s piece of the block-cyclic matrix.  The data type for 
A(*,*) is any of five Fortran intrinsic types, integer, single precision, 
real, double precision, real, single precision, complex, and double 
precision-complex. 

Optional Arguments 
Format—(Input) 

A character variable containing a format to be used for writing the file that 
receives matrix data.  If this argument is not present, an unformatted, or list-
directed write is used. 

iopt—(Input) 
Derived type array with the same precision as the array A(*,*), used for 
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passing optional data to ScaLAPACK_WRITE. Use single precision when 
A(*,*) is type INTEGER.  The options are as follows: 

 
Packaged Options for ScaLAPACK_WRITE 

Option Prefix = ? Option Name Option Value 
S_, d_ ScaLAPACK_WRITE_UNIT 1 
S_, d_ ScaLAPACK_WRITE_FROM_PROCESS 2 
S_, d_ ScaLAPACK_WRITE_BY_ROWS 3 

 

MPI REQUIRED

 

iopt(IO) =ScaLAPACK_WRITE_UNIT 
Sets the unit number to the integer component of  
iopt(IO + 1)%idummy.  The default unit number is the value 11. 

iopt(IO) = ScaLAPACK_WRITE_FROM_PROCESS 
Sets the process number that writes the named file to the integer component of 
iopt(IO + 1)%idummy.  The default process number is the value 0. 

iopt(IO) = ScaLAPACK_WRITE_BY_ROWS 
Write the matrix by rows to the named file.  By default the matrix is written by 
columns. 

FORTRAN 90 Interface 
Generic:         CALL ScaLAPACK_WRITE (File_Name, DESC_A, A [,…]) 

Specific:         The specific interface names are S_ScaLAPACK_WRITE and  
D_ScaLAPACK_WRITE. 

Description 
Subroutine ScaLAPACK_WRITE writes columns or rows of a problem matrix output 
by a ScaLAPACK routine.  It uses the two-dimensional block-cyclic array descriptor 
for the matrix to extract the data from the assumed-size arrays on the processors.  
The blocks of data are transmitted and received, then written.  The block sizes, 
contained in the array descriptor, determines the data set size for each blocking send 
and receive pair. The number of these synchronization points is proportional to 

/( )M N MB NB� �� �� � .  A temporary local buffer is allocated for staging the matrix 
data.  It is of size M by NB, when writing by columns, or N by MB, when writing by 
rows. 

Example 1:  Distributed Transpose of a Matrix, In Place 
The program SCPK_EX1 illustrates an in-situ transposition of a matrix.  An m n� matrix, A , is written to a 
file, by rows.  The n m� matrix, TB A� , overwrites storage for A .  Two temporary files are created and 
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deleted.  There is usage of the BLACS to define the process grid and provide further information identifying 
each process.  This algorithm for transposing a matrix is not efficient.  We use it to illustrate the read and 
write routines and optional arguments for writing of data by matrix rows. 
 
  program scpk_ex1 
! This is Example 1 for ScaLAPACK_READ and ScaLAPACK_WRITE. 
! It shows in-situ or in-place transposition of a 
! block-cyclic matrix. 
USE ScaLAPACK_SUPPORT 
USE ERROR_OPTION_PACKET 
USE MPI_SETUP_INT 
 
IMPLICIT NONE 
INCLUDE "mpif.h" 
 
INTEGER, PARAMETER :: M=6, N=6, MB=2, NB=2, NIN=10 
INTEGER CONTXT, DESC_A(9), NPROW, NPCOL, MYROW, & 
  MYCOL, IERROR, I, J, K, L, LDA, TDA 
real(kind(1d0)), allocatable :: A(:,:), d_A(:,:) 
real(kind(1d0)) ERROR 
TYPE(d_OPTIONS) IOPT(1) 
   MP_NPROCS=MP_SETUP() 
              
   CALL BLACS_PINFO(MP_RANK, MP_NPROCS) 
! Make initialization for BLACS. 
   CALL BLACS_GET(0,0, CONTXT) 
 
! Approximate processor grid to be nearly square. 
   NPROW=sqrt(real(MP_NPROCS)); NPCOL=MP_NPROCS/NPROW 
   IF(NPROW*NPCOL < MP_NPROCS) THEN 
     NPROW=1; NPCOL=MP_NPROCS 
   END IF 
   CALL BLACS_GRIDINIT(CONTXT, 'Rows', NPROW, NPCOL) 
! Get this processor's role in the process grid. 
   CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYROW, MYCOL) 
BLOCK: DO 
 
LDA=NUMROC(M, MB, MYROW, 0, NPROW) 
TDA=NUMROC(N, NB, MYCOL, 0, NPCOL) 
  ALLOCATE(d_A(LDA,TDA)) 
 
! A root process is used to create the matrix data for the test. 
IF(MP_RANK == 0) THEN 
  ALLOCATE(A(M,N)) 
! Fill array with a pattern that is easy to recognize. 
  K=0 
  DO  
   K=K+1; IF(10**K > N) EXIT 
  END DO 
 
  DO J=1,N 
    DO I=1,M 
! The values will appear, as decimals I.J, where I is 
! the row and J is the column. 
      A(I,J)=REAL(I)+REAL(J)*10d0**(-K) 
    END DO 
  END DO 
 
  OPEN(UNIT=NIN, FILE='test.dat', STATUS='UNKNOWN') 
! Write the data by columns. 
  DO J=1,N,NB 
    WRITE(NIN,*) ((A(I,L),I=1,M),L=J,min(N,J+NB-1)) 
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  END DO 
  CLOSE(NIN) 
END IF 
 
IF(MP_RANK == 0) THEN 
  DEALLOCATE(A) 
  ALLOCATE(A(N,M)) 
END IF 
 
! Define the descriptor for the global matrix. 
DESC_A=(/1, CONTXT, M, N, MB, NB, 0, 0, LDA/) 
 
! Read the matrix into the local arrays. 
CALL ScaLAPACK_READ('test.dat', DESC_A, d_A) 
 
! To transpose, write the matrix by rows as the first step. 
! This requires an option since the default is to write  
! by columns. 
IOPT(1)=ScaLAPACK_WRITE_BY_ROWS 
CALL ScaLAPACK_WRITE("TEST.DAT", DESC_A, & 
  d_A, IOPT=IOPT) 
 
! Resize the local storage and read the transpose matrix. 
  DEALLOCATE(d_A) 
  LDA=NUMROC(N, MB, MYROW, 0, NPROW) 
  TDA=NUMROC(M, NB, MYCOL, 0, NPCOL) 
  ALLOCATE(d_A(LDA,TDA)) 
 
! Reshape the descriptor for the transpose of the matrix. 
! The number of rows and columns are swapped. 
DESC_A=(/1, CONTXT, N, M, MB, NB, 0, 0, LDA/) 
 
CALL ScaLAPACK_READ("TEST.DAT", DESC_A, d_A) 
 
IF(MP_RANK == 0) THEN 
 
! Open the used files and delete when closed. 
  OPEN(UNIT=NIN, FILE='test.dat', STATUS='OLD') 
  CLOSE(NIN,STATUS='DELETE') 
  OPEN(UNIT=NIN, FILE='TEST.DAT', STATUS='OLD') 
  DO J=1,M,MB 
    READ(NIN,*) ((A(I,L), I=1,N),L=J,min(M,J+MB-1)) 
  END DO 
  CLOSE(NIN,STATUS='DELETE') 
  DO I=1,N 
    DO J=1,M 
! The values will appear, as decimals I.J, where I is the row 
!  and J is the column. 
      A(I,J)=REAL(J)+REAL(I)*10d0**(-K) - A(I,J)  
    END DO 
  END DO 
  ERROR=SUM(ABS(A)) 
 END IF 
 
! The processors in use now exit the loop. 
  EXIT BLOCK 
END DO BLOCK 
 
! See to any error messages. 
  call e1pop("Mp_setup") 
 
! Check results on just one process. 
IF(ERROR <= SQRT(EPSILON(ERROR)) .and. & 
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  MP_RANK == 0) THEN 
  write(*,*) " Example 1 for BLACS is correct." 
END IF 
 
! Deallocate storage arrays and exit from BLACS. 
IF(ALLOCATED(A)) DEALLOCATE(A) 
IF(ALLOCATED(d_A)) DEALLOCATE(d_A) 
 
! Exit from using this process grid. 
  CALL BLACS_GRIDEXIT( CONTXT ) 
  CALL BLACS_EXIT(0) 
END 

Output 
Example 1 for BLACS is correct. 

 

Example 2:  Distributed Matrix Product with PBLAS 

The program SCPK_EX2 illustrates computation of the matrix product m n m k k nC A B
� � �

� .  The 
matrices on the right-hand side are random.  Three temporary files are created and deleted.  There 
is usage of the BLACS and PBLAS.  The problem sizes is such that the results are checked on one 
process. 
  program scpk_ex2 
! This is Example 2 for ScaLAPACK_READ and ScaLAPACK_WRITE. 
! The product of two matrices is computed with PBLAS 
! and checked for correctness. 
 
USE ScaLAPACK_SUPPORT 
USE MPI_SETUP_INT 
 
IMPLICIT NONE 
INCLUDE "mpif.h" 
 
INTEGER, PARAMETER :: & 
  K=32, M=33, N=34, MB=16, NB=16, NIN=10 
INTEGER CONTXT, NPROW, NPCOL, MYROW, MYCOL, & 
  INFO, IA, JA, IB, JB, IC, JC, LDA_A, TDA_A,& 
  LDA_B, TDA_B, LDA_C, TDA_C, IERROR, I, J, L,& 
  DESC_A(9), DESC_B(9), DESC_C(9) 
 
real(kind(1d0)) :: ALPHA, BETA, ERROR=1d0, SIZE_C 
real(kind(1d0)), allocatable, dimension(:,:) :: A,B,C,X(:),& 
d_A, d_B, d_C 
 
   MP_NPROCS=MP_SETUP() 
! Routines with the "BLACS_" prefix are from the BLACS library. 
! This is an adjunct library to the ScaLAPACK library. 
   CALL BLACS_PINFO(MP_RANK, MP_NPROCS) 
 
! Make initialization for BLACS. 
   CALL BLACS_GET(0,0, CONTXT) 
 
! Approximate processor grid to be nearly square. 
   NPROW=sqrt(real(MP_NPROCS)); NPCOL=MP_NPROCS/NPROW 
   IF(NPROW*NPCOL < MP_NPROCS) THEN 
     NPROW=1; NPCOL=MP_NPROCS 
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   END IF 
   CALL BLACS_GRIDINIT(CONTXT, 'Rows', NPROW, NPCOL) 
 
! Get this processor's role in the process grid. 
   CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYROW, MYCOL) 
 
! Associate context (BLACS) with IMSL communicator: 
   CALL BLACS_GET(CONTXT, 10, MP_LIBRARY_WORLD) 
 
BLOCK: DO 
 
! Allocate local space for each array. 
LDA_A=NUMROC(M, MB, MYROW, 0, NPROW) 
TDA_A=NUMROC(K, NB, MYCOL, 0, NPCOL) 
LDA_B=NUMROC(K, NB, MYROW, 0, NPROW) 
TDA_B=NUMROC(N, NB, MYCOL, 0, NPCOL) 
LDA_C=NUMROC(M, MB, MYROW, 0, NPROW) 
TDA_C=NUMROC(N, NB, MYCOL, 0, NPCOL) 
 
ALLOCATE(d_A(LDA_A,TDA_A), d_B(LDA_B,TDA_B),& 
  d_C(LDA_C,TDA_C)) 
 
! A root process is used to create the matrix data for the test. 
IF(MP_RANK == 0) THEN 
  ALLOCATE(A(M,K), B(K,N), C(M,N), X(M)) 
  CALL RANDOM_NUMBER(A); CALL RANDOM_NUMBER(B) 
 
  OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN') 
! Write the data by columns. 
  DO J=1,K,NB 
    WRITE(NIN,*) ((A(I,L),I=1,M),L=J,min(K,J+NB-1)) 
  END DO 
  CLOSE(NIN) 
 
  OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='UNKNOWN') 
! Write the data by columns. 
  DO J=1,N,NB 
    WRITE(NIN,*) ((B(I,L),I=1,K),L=J,min(N,J+NB-1)) 
  END DO 
  CLOSE(NIN) 
END IF 
  
! Define the descriptor for the global matrices. 
DESC_A=(/1, CONTXT, M, K, MB, NB, 0, 0, LDA_A/) 
DESC_B=(/1, CONTXT, K, N, NB, NB, 0, 0, LDA_B/) 
DESC_C=(/1, CONTXT, M, N, MB, NB, 0, 0, LDA_C/) 
 
! Read the factors into the local arrays. 
CALL ScaLAPACK_READ('Atest.dat', DESC_A, d_A) 
CALL ScaLAPACK_READ('Btest.dat', DESC_B, d_B) 
 
! Compute the distributed product C = A x B. 
ALPHA=1d0; BETA=0d0 
IA=1; JA=1; IB=1; JB=1; IC=1; JC=1 
d_C=0 
CALL pdGEMM & 
  ("No", "No", M, N, K, ALPHA, d_A, IA, JA,& 
  DESC_A, d_B, IB, JB, DESC_B, BETA,& 
  d_C, IC, JC, DESC_C ) 
 
! Put the product back on the root node. 
Call ScaLAPACK_WRITE('Ctest.dat', DESC_C, d_C) 
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IF(MP_RANK == 0) THEN 
 
! Read the residuals and check them for size. 
  OPEN(UNIT=NIN, FILE='Ctest.dat', STATUS='OLD') 
 
! Read the data by columns. 
  DO J=1,N,NB 
    READ(NIN,*) ((C(I,L),I=1,M),L=J,min(N,J+NB-1)) 
  END DO 
 
  CLOSE(NIN,STATUS='DELETE')  
  SIZE_C=SUM(ABS(C)); C=C-matmul(A,B) 
  ERROR=SUM(ABS(C))/SIZE_C 
 
! Open other temporary files and delete them. 
  OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='OLD') 
  CLOSE(NIN,STATUS='DELETE') 
  OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='OLD') 
  CLOSE(NIN,STATUS='DELETE') 
     
END IF 
 
! The processors in use now exit the loop. 
  EXIT BLOCK 
END DO BLOCK 
 
! See to any error messages. 
   call e1pop("Mp_Setup") 
! Deallocate storage arrays and exit from BLACS. 
IF(ALLOCATED(A)) DEALLOCATE(A) 
IF(ALLOCATED(B)) DEALLOCATE(B) 
IF(ALLOCATED(C)) DEALLOCATE(C) 
IF(ALLOCATED(X)) DEALLOCATE(X) 
IF(ALLOCATED(d_A)) DEALLOCATE(d_A) 
IF(ALLOCATED(d_B)) DEALLOCATE(d_B) 
IF(ALLOCATED(d_C)) DEALLOCATE(d_C) 
 
! Check the results. 
IF(ERROR <= SQRT(EPSILON(ALPHA)) .and. & 
  MP_RANK == 0) THEN 
  write(*,*) " Example 2 for BLACS and PBLAS is correct." 
END IF 
 
! Exit from using this process grid. 
  CALL BLACS_GRIDEXIT( CONTXT ) 
  CALL BLACS_EXIT(0) 
END 

Output 
Example 2 for BLACS and PBLAS is correct. 

 
 



 

 
 

1566 � Chapter 11: Utilities IMSL MATH/LIBRARY 

 

 

 

Example 3:  Distributed Linear Solver with ScaLAPACK 

The program SCPK_EX3 illustrates solving a system of linear-algebraic equations, Ax b� .  
The right-hand side is produced by defining A  and y  to have random values.  Then the 
matrix-vector product b Ay�  is computed.  The problem size is such that the residuals, 

0x y� �  are checked on one process.  Three temporary files are created and deleted.  There 
is usage of the BLACS to define the process grid and provide further information identifying 
each process.  Then ScaLAPACK is used to compute the approximate solution, x . 
  program scpk_ex3 
! This is Example 3 for ScaLAPACK_READ and ScaLAPACK_WRITE. 
! A linear system is solved with ScaLAPACK and checked. 
USE ScaLAPACK_SUPPORT 
USE ERROR_OPTION_PACKET 
USE MPI_SETUP_INT 
 
IMPLICIT NONE 
 
INCLUDE "mpif.h" 
INTEGER, PARAMETER :: N=9, MB=3, NB=3, NIN=10 
INTEGER CONTXT, NPROW, NPCOL, MYROW, MYCOL, & 
  INFO, IA, JA, IB, JB, LDA_A, TDA_A,& 
  LDA_B, TDA_B, IERROR, I, J, L, DESC_A(9),& 
  DESC_B(9), DESC_X(9), BUFF(3), RBUF(3) 
 
LOGICAL :: COMMUTE = .true. 
INTEGER, ALLOCATABLE :: IPIV(:)   
real(kind(1d0)) :: ERROR=0d0, SIZE_X 
real(kind(1d0)), allocatable, dimension(:,:) :: A, B(:), & 
  X(:), d_A, d_B 
 
   MP_NPROCS=MP_SETUP() 
! Routines with the "BLACS_" prefix are from the BLACS library. 
   CALL BLACS_PINFO(MP_RANK, MP_NPROCS) 
! Make initialization for BLACS. 
   CALL BLACS_GET(0,0, CONTXT) 
 
! Approximate processor grid to be nearly square. 
   NPROW=sqrt(real(MP_NPROCS)); NPCOL=MP_NPROCS/NPROW 
   IF(NPROW*NPCOL < MP_NPROCS) THEN 
     NPROW=1; NPCOL=MP_NPROCS 
   END IF 
   CALL BLACS_GRIDINIT(CONTXT, 'Rows', NPROW, NPCOL) 
 
! Get this processor's role in the process grid. 
   CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYROW, MYCOL) 
 
! Associate context (BLACS) with DNFL communicator: 
   CALL BLACS_GET(CONTXT, 10, MP_LIBRARY_WORLD) 
 
BLOCK: DO 
 
! Allocate local space for each array. 
LDA_A=NUMROC(N, MB, MYROW, 0, NPROW) 
TDA_A=NUMROC(N, NB, MYCOL, 0, NPCOL) 
LDA_B=NUMROC(N, MB, MYROW, 0, NPROW) 
TDA_B=1 
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ALLOCATE(d_A(LDA_A,TDA_A), d_B(LDA_B,TDA_B),& 
  IPIV(LDA_A+MB)) 
 
! A root process is used to create the matrix data for the test. 
IF(MP_RANK == 0) THEN 
  ALLOCATE(A(N,N), B(N), X(N)) 
  CALL RANDOM_NUMBER(A); CALL RANDOM_NUMBER(X) 
 
! Compute the correct result. 
  B=MATMUL(A,X); SIZE_X=SUM(ABS(X)) 
  OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN') 
 
! Write the data by columns. 
  DO J=1,N,NB 
    WRITE(NIN,*) ((A(I,L),I=1,N),L=J,min(N,J+NB-1)) 
  END DO 
  CLOSE(NIN) 
 
  OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='UNKNOWN') 
! Write the data by columns. 
  WRITE(NIN,*) (B(I),I=1,N) 
  CLOSE(NIN) 
END IF 
  
! Define the descriptor for the global matrices. 
DESC_A=(/1, CONTXT, N, N, MB, NB, 0, 0, LDA_A/) 
DESC_B=(/1, CONTXT, N, 1, MB, NB, 0, 0, LDA_B/) 
DESC_X=DESC_B 
 
! Read the factors into the local arrays. 
CALL ScaLAPACK_READ('Atest.dat', DESC_A, d_A) 
CALL ScaLAPACK_READ('Btest.dat', DESC_B, d_B) 
 
! Compute the distributed product solution to A x = b. 
IA=1; JA=1; IB=1; JB=1 
 
CALL pdGESV & 
  (N, 1, d_A, IA, JA, DESC_A, IPIV, & 
  d_B, IB, JB, DESC_B, INFO) 
   
 
! Put the result on the root node. 
Call ScaLAPACK_WRITE('Xtest.dat', DESC_B, d_B) 
 
IF(MP_RANK == 0) THEN 
 
! Read the residuals and check them for size. 
  OPEN(UNIT=NIN, FILE='Xtest.dat', STATUS='OLD') 
 
! Read the approximate solution data. 
      READ(NIN,*) B 
      B=B-X 
   
  CLOSE(NIN,STATUS='DELETE')  
  ERROR=SUM(ABS(B))/SIZE_X  
 
! Delete temporary files. 
  OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='OLD') 
  CLOSE(NIN,STATUS='DELETE') 
  OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='OLD') 
  CLOSE(NIN,STATUS='DELETE') 
     
END IF 
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! The processors in use now exit the loop. 
  EXIT BLOCK 
END DO BLOCK 
 
! See to any error messages. 
  call e1pop("Mp_Setup") 
 
! Deallocate storage arrays and exit from BLACS. 
IF(ALLOCATED(A)) DEALLOCATE(A) 
IF(ALLOCATED(B)) DEALLOCATE(B) 
IF(ALLOCATED(X)) DEALLOCATE(X) 
IF(ALLOCATED(d_A)) DEALLOCATE(d_A) 
IF(ALLOCATED(d_B)) DEALLOCATE(d_B) 
IF(ALLOCATED(IPIV)) DEALLOCATE(IPIV) 
 
IF(ERROR <= SQRT(EPSILON(ERROR)) .and.& 
  MP_RANK == 0) THEN 
  write(*,*) & 
  " Example 3 for BLACS and ScaLAPACK solver is correct." 
END IF 
 
! Exit from using this process grid. 
  CALL BLACS_GRIDEXIT( CONTXT ) 
  CALL BLACS_EXIT(0) 
END 

Output 
Example 3 for BLACS and ScaLAPACK is correct. 

 

ERROR_POST 
Prints error messages that are generated by IMSL routines using EPACK. 

Required Argument 
EPACK — (Input [/Output]) 

Derived type array of size p containing the array of message numbers and associated 
data for the messages. The definition of this derived type is packaged within the 
modules used as interfaces for each suite of routines. The declaration is: 
type ?_error 

integer idummy; real(kind(?_)) rdummy 
end type  

The choice of  “?_” is either “s_” or “d_” depending on the accuracy of the data. This 
array gets additional messages and data from each routine that uses the “epack=” optional 
argument, provided p is large enough to hold data for a new message. The value p = 8 is 
sufficient to hold the longest single terminal, fatal, or warning message that an IMSL Fortran 
Library routine generates. 

The location at entry epack (1)%idummy contains the number of data items for all messages. 
When the error_post routine exits, this value is set to zero. Locations in array positions 
(2:) %idummy contain groups of integers consisting of a message number, the error severity 
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level, then the required integer data for the message. Floating-point data, if required in the 
message, is passed in locations(:)%rdummy matched with the starting point for integer data. 
The extent of the data for each message is determined by the requirements of the larger of 
each group of integer or floating-point values. 

Optional Arguments 
new_unit = nunit   (Input) 

Unit number, of type integer, associated for reading the direct-access file of error 
messages for the IMSL Fortran 90 routines. 
Default: nunit = 4 

new_path = path   (Input) 
Pathname in the local file space, of type character*64, needed for reading the direct-
access file of error messages. Default string for path is defined during the installation 
procedure for certain  IMSL Fortran Library routines.   

FORTRAN 90 Interface 
Generic: CALL ERROR_POST (EPACK [,…]) 

Specific:  The specific interface names are S_ERROR_POST and D_ERROR_POST. 

Description 
A default direct-access error message file (.daf file) is supplied with this product. This file is read 
by error_post using the contents of the derived type argument epack, containing the message 
number, error severity level, and associated data. The message is converted into character strings 
accepted by the error processor and then printed. The number of pending messages that print 
depends on the settings of the parameters PRINT and STOP IMSL MATH/LIBRARY User's 
Manual (IMSL 1994, pp. 1194�1195). These values are initialized to defaults such that any Level 
5 or Level 4 message causes a STOP within the error processor after a print of the text. To change 
these defaults so that more than one error message prints, use the routine ERSET documented and 
illustrated with examples in IMSL MATH/LIBRARY User's Manual (IMSL 1994, pp. 1196�1198).  
The method of using a message file to store the messages is required to support “shared-memory 
parallelism.”          

Managing the Message File 
For most applications of this product, there will be no need to manage this file.  However, there 
are a few situations which may require changing or adding messages: 

�� New system-wide messages have been developed for applications using this Library.  

�� All or some of the existing messages need to be translated to another language 

�� A subset of users need to add a specific message file for their applications using this Library. 

Following is information on changing the contents of the message file, and information on how to 
create and access a message file for a private application. 
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Changing Messages 
In order to change messages, two files are required: 

�� An editable message glossary, messages.gls, supplied with this product.  

�� A source program, prepmess.f, used to generate an executable which builds messages.daf 
from messages.gls.   

To change messages, first make a backup copy of messages.gls. Use a text editor to edit  
messages.gls. The format of this file is a series of pairs of statements: 

�� message_number=<nnnn>  

�� message='message string'  

(Note that neither of these lines should begin with a tab.) 

The variable <nnnn> is an integer message number (see below for ranges and reserved message 
numbers). 

The 'message string' is any valid message string not to exceed 255 characters. If a message 
line is too long for a screen, the standard Fortran 90 concatenation operator // with the line 
continuation character & may be used to wrap the text. 

Most strings have substitution parameters embedded within them.  These may be in the following 
forms: 

�� %(i<n>) for an integer substitution, where n is the nth integer output in this message. 

�� %(r<n>) for single precision real number substitution, where n is the nth real number output 
in this message. 

�� %(d<n>) for double precision real number substitution, where n is the nth double precision 
number output in this message. 

New messages added to the system-wide error message file should be placed at the end of the file. 
Message numbers 5000 through 10000 have been reserved for user-added messages.  Currently, 
messages 1 through 1400 are used by IMSL.  Gaps in message number ranges are permitted; 
however, the message numbers must be in ascending order within the file.  The message numbers 
used for each IMSL Fortran Library subroutine are documented in this manual and in online help. 

If existing messages are being edited or translated, make sure not to alter the message_number 
lines. (This prevents conflicts with any new messages.gls file supplied with future versions of this 
Library.) 

Building a New Direct-access Message File 
The prepmess executable must be available to complete the message changing process. For 
information on building the prepmess executable from prepmess.f , consult the installation 
guide for this product.  

Once new messages have been placed in the messages.gls file, make a backup copy of the 
messages.daf file.  Then remove messages.daf from the current directory.  Now enter the 
following command: 

prepmess > prepmess_output 
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A new messages.daf file is created.  Edit the prepmess_output file and look near the end of 
the file for the new error messages.  The prepmess program processes each message through the 
error message system as a validity check.  There should be no FATAL error announcement within 
the prepmess_output file. 

Private Message Files 
Users can create a private message file within their own messages.  This file would generally be 
used by an application that calls this Library.  Follow the steps outlined above to created a private 
messages.gls file.  The user should then be given a copy of the prepmess executable.  In the 
application code, call the error_post subprogram with the new_unit/new_path optional 
arguments.  The new path should point to the directory in which the private messages.daf file 
resides. 

SHOW 
Prints rank-1 or rank-2 arrays of numbers in a readable format. 

Required Arguments 
X — Rank-1 or rank-2 array containing the numbers to be printed.   (Input) 

Optional Arguments 
text = CHARACTER   (Input) 

CHARACTER(LEN=*) string used for labeling the array. 

image = buffer  (Output) 
CHARACTER(LEN=*) string used for an internal write buffer.  With this argument 
present the output is converted to characters and packed.  The lines are separated by an 
end-of-line sequence.  The length of buffer is estimated by the line width in effect, 
time the number of lines for the array. 

iopt = iopt(:)   (Input) 
Derived type array with the same precision as the input array; used for passing optional 
data to the routine. Use the REAL(KIND(1E0)) precision for output of INTEGER 
arrays.  The options are as follows: 

Packaged Options for SHOW 
Prefix is blank Option Name Option Value 

 show_significant_digits_is_4 1 

 show_significant_digits_is_7 2 

 show_significant_digits_is_16 3 

 show_line_width_is_44 4 

 show_line_width_is_72 5 

 show_line_width_is_128 6 



 

 
 

1572 � Chapter 11: Utilities IMSL MATH/LIBRARY 

 

 

 

Packaged Options for SHOW 
 show_end_of_line_sequence_is 7 

 show_starting_index_is 8 

 show_starting_row_index_is 9 

 show_starting_col_index_is 10 

iopt(IO) = show_significant_digits_is_4  

iopt(IO) = show_significant_digits_is_7  

iopt(IO) = show_significant_digits_is_16  

These options allow more precision to be displayed.  The default is 4D for each 
value. The other possible choices display 7D or 16D. 

iopt(IO) = show_line_width_is_44  

iopt(IO) = show_line_width_is_72  

iopt(IO) = show_line_width_is_128  

These options allow varying the output line width.  The default is 72 characters per 
line.  This allows output on many work stations or terminals to be read without 
wrapping of lines. 

iopt(IO) = show_end-of_line_sequence_is  

The sequence of characters ending a line when it is placed into the internal 
character buffer corresponding to the optional argument  ‘IMAGE = buffer‘. 
The value of iopt(IO+1)%idummy is the number of characters.  These are 
followed, starting at iopt(IO+2)%idummy, by the ASCII codes of the characters 
themselves.  The default is the single character, ASCII value 10 or New Line. 

iopt(IO) = show_starting_index_is  

This are used to reset the starting index for a rank-1 array to a value different from 
the default value, which is 1. 

iopt(IO) = show_starting_row_index_is  

iopt(IO) = show_starting_col_index_is  

These are used to reset the starting row and column indices to values different from 
their defaults, each 1. 

FORTRAN 90 Interface 
Generic: CALL SHOW (X [,…]) 

Specific:  The specific interface names are S_SHOW and D_SHOW. 
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Example 1: Printing an Array 
Array of random numbers for all the intrinsic data types are printed.  For REAL(KIND(1E0)) 
rank-1 arrays, the number of displayed digits is reset from the default value of  4 to the value 7 and 
the subscripts for the array are reset so they match their declared extent when printed.  The output 
is not shown. 

  
 use show_int  
 use rand_int  
  
 implicit none  
   
! This is Example 1 for SHOW.  
  
 integer, parameter :: n=7, m=3  
 real(kind(1e0)) s_x(-1:n), s_m(m,n)  
 real(kind(1d0)) d_x(n), d_m(m,n)  
 complex(kind(1e0)) c_x(n), c_m(m,n)  
 complex(kind(1d0)) z_x(n),z_m(m,n)  
 integer i_x(n), i_m(m,n)  
        type (s_options) options(3)  
  
! The data types printed are real(kind(1e0)), real(kind(1d0)), complex(kind(1e0)),   
!complex(kind(1d0)), and INTEGER. Fill with randsom numbers  
! and then print the contents, in each case with a label.   
 s_x=rand(s_x); s_m=rand(s_m)  
 d_x=rand(d_x); d_m=rand(d_m)  
 c_x=rand(c_x); c_m=rand(c_m)  
 z_x=rand(z_x); z_m=rand(z_m)  
 i_x=100*rand(s_x(1:n)); i_m=100*rand(s_m)  
  
 call show (s_x, 'Rank-1, REAL')  
 call show (s_m, 'Rank-2, REAL')  
 call show (d_x, 'Rank-1, DOUBLE')  
 call show (d_m, 'Rank-2, DOUBLE')  
 call show (c_x, 'Rank-1, COMPLEX')  
 call show (c_m, 'Rank-2, COMPLEX')  
 call show (z_x, 'Rank-1, DOUBLE COMPLEX')  
 call show (z_m, 'Rank-2, DOUBLE COMPLEX')  
 call show (i_x, 'Rank-1, INTEGER')  
 call show (i_m, 'Rank-2, INTEGER')  
  
! Show 7 digits per number and  according to the  
! natural or declared size of the array.  
        options(1)=show_significant_digits_is_7  
        options(2)=show_starting_index_is  
        options(3)= -1 ! The starting  value.  
        call show (s_x, &  
'Rank-1, REAL with 7 digits, natural indexing', IOPT=options)  
        end  

Output 
Example 1 for SHOW is correct. 
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Description 
The show routine is a generic subroutine interface to separate low-level subroutines for each data 
type and array shape.  Output is directed to the unit number IUNIT.  That number is obtained with 
the subroutine UMACH, IMSL MATH/LIBRARY User's Manual (IMSL 1994, pp. 1204�1205.  Thus 
the user must open this unit in the calling program if it desired to be different from the standard 
output unit.  If the optional argument ‘IMAGE = buffer‘ is present, the output is not sent to a 
file but to a character string within buffer. These characters are available to output or be used in 
the application. 

Additional Examples 

Example 2: Writing an Array to a Character Variable 
This example prepares a rank-1 array for further processing, in this case delayed writing to the 
standard output unit.  The indices and the amount of precision are reset from their defaults, as in 
Example 1.  An end-of-line sequence of the characters CR-NL (ASCII 10,13) is used in place of 
the standard ASCII 10. This is not required for writing this array, but is included for an illustration 
of the option. 

 
 use show_int  
 use rand_int  
  
 implicit none  
   
! This is Example 2 for SHOW.  
 integer, parameter :: n=7  
 real(kind(1e0)) s_x(-1:n)  
        type (s_options) options(7)  
        CHARACTER (LEN=(72+2)*4) BUFFER  
! The data types printed are real(kind(1e0)) random numbers.  
 s_x=rand(s_x)  
  
  
! Show 7 digits per number and  according to the  
! natural or declared size of the array.  
! Prepare the output lines in array BUFFER.  
! End each line with ASCII sequence CR-NL.  
        options(1)=show_significant_digits_is_7  
  
        options(2)=show_starting_index_is  
        options(3)= -1 ! The starting  value.  
  
        options(4)=show_end_of_line_sequence_is  
        options(5)=  2 ! Use 2 EOL characters.  
        options(6)= 10 ! The ASCII code for CR.  
        options(7)= 13 ! The ASCII code for NL.  
  
        BUFFER= ' '    ! Blank out the buffer.  
  
! Prepare the output in BUFFER.  
 call show (s_x, &  
 'Rank-1, REAL with 7 digits, natural indexing '//&  
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 'internal BUFFER, CR-NL EOLs.',&  
 IMAGE=BUFFER,  IOPT=options)  
  
! Display BUFFER as a CHARACTER array. Discard blanks  
! on the ends.  
        WRITE(*,'(1x,A)') TRIM(BUFFER)  
          
        end  

Output 
Example 2 for SHOW is correct. 
 

Fatal and Terminal Error Messages 
See the messages.gls file for error messages for show. These error messages are numbered 
601�606; 611�617; 621�627; 631�636; 641�646. 

WRRRN 
Prints a real rectangular matrix with integer row and column labels. 

Required Arguments 
TITLE — Character string specifying the title.   (Input)  

TITLE set equal to a blank character(s) suppresses printing of the title. Use “% /” 
within the title to create a new line. Long titles are automatically wrapped. 

A — NRA by NCA matrix to be printed.   (Input) 

Optional Arguments 
NRA — Number of rows.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

ITRING — Triangle option.   (Input)  
Default: ITRING = 0. 
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ITRING Action 

0  Full matrix is printed. 

1  Upper triangle of A is printed, including the diagonal. 

2  Upper triangle of A excluding the diagonal of A is printed. 

�1  Lower triangle of A is printed, including the diagonal. 

�2  Lower triangle of A excluding the diagonal of A is printed. 

FORTRAN 90 Interface 
Generic: CALL WRRRN (TITLE, A [,…]) 

Specific:  The specific interface names are S_WRRRN and D_WRRRN for two dimensional 
arrays, and S_WRRRN1D and D_WRRRN1D for one dimensional arrays. 

FORTRAN 77 Interface 
Single: CALL WRRRN (TITLE, NRA, NCA, A, LDA, ITRING) 

Double: The double precision name is DWRRRN. 

Example 
The following example prints all of a 3 � 4 matrix A where aij= i + j/10. 

      USE WRRRN_INT 

      INTEGER    ITRING, LDA, NCA, NRA 
      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3) 
! 
      INTEGER    I, J 
      REAL       A(LDA,NCA) 
! 
      DO 20  I=1, NRA 
         DO 10  J=1, NCA 
            A(I,J) = I + J*0.1 
   10    CONTINUE 
   20 CONTINUE 
!                                 Write A matrix. 
      CALL WRRRN (’A’, A, NRA=NRA) 
      END 

Output 
                  A 
        1       2       3       4 
1   1.100   1.200   1.300   1.400 
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2   2.100   2.200   2.300   2.400 
3   3.100   3.200   3.300   3.400 

Comments 
1. A single D, E, or F format is chosen automatically in order to print 4 significant digits 

for the largest element of A in absolute value. Routine WROPT (page 1591) can be used 
to change the default format. 

2. Horizontal centering, a method for printing large matrices, paging, printing a title on 
each page, and many other options can be selected by invoking WROPT. 

3. A page width of 78 characters is used. Page width and page length can be reset by 
invoking PGOPT (page 1599). 

4. Output is written to the unit specified by UMACH (see the Reference Material). 

Description 
Routine WRRRN prints a real rectangular matrix with the rows and columns labeled 1, 2, 3, and so 
on. WRRRN can restrict printing to the elements of the upper or lower triangles of matrices via the 
ITRING option. Generally, ITRING � 0 is used with symmetric matrices. 

In addition, one-dimensional arrays can be printed as column or row vectors. For a column 
vector, set NRA to the length of the array and set NCA = 1. For a row vector, set NRA = 1 and set 
NCA to the length of the array. In both cases, set LDA = NRA and set ITRING = 0. 

WRRRL 
Print a real rectangular matrix with a given format and labels. 

Required Arguments 
TITLE — Character string specifying the title.   (Input)  

TITLE set equal to a blank character(s) suppresses printing of the title. 

A — NRA by NCA matrix to be printed.   (Input) 

RLABEL — CHARACTER * (*) vector of labels for rows of A.   (Input)  
If rows are to be numbered consecutively 1, 2, �, NRA, use RLABEL(1) = ’NUMBER’. If 
no row labels are desired, use RLABEL(1) = ’NONE’. Otherwise, RLABEL is a vector of 
length NRA containing the labels. 

CLABEL — CHARACTER * (*) vector of labels for columns of A.   (Input)  
If columns are to be numbered consecutively 1, 2, �, NCA, use 
CLABEL(1) = ’NUMBER’. If no column labels are desired, use CLABEL(1) = ’NONE’. 
Otherwise, CLABEL(1) is the heading for the row labels, and either CLABEL(2) must be 
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’NUMBER’or ’NONE’, or CLABEL must be a vector of length NCA + 1 with  
CLABEL(1 + j) containing the column heading for the j-th column. 

Optional Arguments 
NRA — Number of rows.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

ITRING — Triangle option.   (Input) 
Default: ITRING = 0. 

ITRING Action 

0  Full matrix is printed. 

1  Upper triangle of A is printed, including the diagonal. 

2  Upper triangle of A excluding the diagonal of A is printed. 

�1  Lower triangle of A is printed, including the diagonal. 

�2  Lower triangle of A excluding the diagonal of A is printed. 

FMT — Character string containing formats.   (Input)  
If FMT is set to a blank character(s), the format used is specified by WROPT (page 1591). 
Otherwise, FMT must contain exactly one set of parentheses and one or more edit 
descriptors. For example, FMT = ’(F10.3)’ specifies this F format for the entire 
matrix. FMT = ’(2E10.3, 3F10.3)’ specifies an E format for columns 1 and 2 and an 
F format for columns 3, 4 and 5. If the end of FMT is encountered and if some columns 
of the matrix remain, format control continues with the first format in FMT. Even 
though the matrix A is real, an I format can be used to print the integer part of matrix 
elements of A. The most useful formats are special formats, called the “V and W 
formats,” that can be used to specify pretty formats automatically. Set FMT = 
’(V10.4)’ if you want a single D, E, or F format selected automatically with field 
width 10 and with 4 significant digits. Set FMT = ’(W10.4)’ if you want a single D, E, 
F, or I format selected automatically with field width 10 and with 4 significant digits. 
While the V format prints trailing zeroes and a trailing decimal point, the W format does 
not. See Comment 4 for general descriptions of the V and W formats. FMT may contain 
only D, E, F, G, I, V, or W edit descriptors, e.g., the X descriptor is not allowed.  
Default: FMT = ‘ ‘. 
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FORTRAN 90 Interface 
Generic: CALL WRRRL (TITLE, A, RLABEL, CLABEL [,…]) 

Specific:  The specific interface names are S_WRRRL and D_WRRRL for two dimensional 
arrays, and S_WRRRL1D and D_WRRRL1D for one dimensional arrays.  

FORTRAN 77 Interface 
Single: CALL WRRRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL,  

     CLABEL) 

Double: The double precision name is DWRRRL. 

Example 

The following example prints all of a 3 � 4 matrix A where aij = (i + j/10)10j��. 
      USE WRRRL_INT 
      INTEGER    ITRING, LDA, NCA, NRA 
      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3) 
! 
      INTEGER    I, J 
      REAL       A(LDA,NCA) 
      CHARACTER  CLABEL(5)*5, FMT*8, RLABEL(3)*5 
! 
      DATA FMT/’(W10.6)’/ 
      DATA CLABEL/’   ’, ’Col 1’, ’Col 2’, ’Col 3’, ’Col 4’/ 
      DATA RLABEL/’Row 1’, ’Row 2’, ’Row 3’/ 
! 
      DO 20  I=1, NRA 
         DO 10  J=1, NCA 
            A(I,J) = (I+J*0.1)*10.0**(J-3) 
   10    CONTINUE 
   20 CONTINUE 
!                                 Write A matrix. 
      CALL WRRRL (’A’, A, RLABEL, CLABEL, NRA=NRA, FMT=FMT) 
      END 

Output 
                             A 
            Col 1       Col 2       Col 3       Col 4 
Row 1       0.011       0.120       1.300      14.000 
Row 2       0.021       0.220       2.300      24.000 
Row 3       0.031       0.320       3.300      34.000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of W2RRL/DW2RRL. The 

reference is: 
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CALL W2RRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT,  
     RLABEL, CLABEL, CHWK) 

The additional argument is: 

CHWK — CHARACTER * 10 work vector of length NCA. This workspace is referenced 
only if all three conditions indicated at the beginning of this comment are met. 
Otherwise, CHWK is not referenced and can be a CHARACTER * 10 vector of 
length one. 

2. The output appears in the following form: 

TITLE 
CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4) 

RLABEL(1) Xxxxx Xxxxx Xxxxx 

RLABEL(2) Xxxxx Xxxxx Xxxxx 

3. Use “% /” within titles or labels to create a new line. Long titles or labels are 
automatically wrapped. 

4. For printing numbers whose magnitudes are unknown, the G format in FORTRAN is 
useful; however, the decimal points will generally not be aligned when printing a 
column of numbers. The V and W formats are special formats used by this routine to 
select a D, E, F, or I format so that the decimal points will be aligned. The V and W 
formats are specified as Vn.d and Wn.d. Here, n is the field width and d is the number 
of significant digits generally printed. Valid values for n are 3, 4,�, 40. Valid values 
for d are 1, 2, �, n � 2. If FMT specifies one format and that format is a V or W format, 
all elements of the matrix A are examined to determine one FORTRAN format for 
printing. If FMT specifies more than one format, FORTRAN formats are generated 
separately from each V or W format. 

5. A page width of 78 characters is used. Page width and page length can be reset by 
invoking PGOPT (page 1599). 

6. Horizontal centering, method for printing large matrices, paging, method for printing 
NaN (not a number), printing a title on each page, and many other options can be 
selected by invoking WROPT (page 1591). 

7. Output is written to the unit specified by UMACH (see Reference Material). 

Description 
Routine WRRRL prints a real rectangular matrix (stored in A) with row and column labels 
(specified by RLABEL and CLABEL, respectively) according to a given format (stored in FMT). 
WRRRL can restrict printing to the elements of upper or lower triangles of matrices via the 
ITRING option. Generally, ITRING � 0 is used with symmetric matrices. 



 

 
 

IMSL MATH/LIBRARY Chapter 11: Utilities � 1581 

 

 

 

In addition, one-dimensional arrays can be printed as column or row vectors. For a column 
vector, set NRA to the length of the array and set NCA = 1. For a row vector, set NRA = 1 and set 
NCA to the length of the array. In both cases, set LDA = NRA, and set ITRING = 0. 

WRIRN 
Prints an integer rectangular matrix with integer row and column labels. 

Required Arguments 
TITLE — Character string specifying the title.   (Input)  

TITLE set equal to a blank character(s) suppresses printing of the title. Use “% /” 
within the title to create a new line. Long titles are automatically wrapped. 

MAT — NRMAT by NCMAT matrix to be printed.   (Input) 

Optional Arguments 
NRMAT — Number of rows.   (Input) 

Default: NRMAT = size (MAT,1). 

NCMAT — Number of columns.   (Input) 
Default: NCMAT = size (MAT,2). 

LDMAT — Leading dimension of MAT exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDMAT = size (MAT,1). 

ITRING — Triangle option.   (Input) 
Default: ITRING = 0.  

ITRING Action 

0  Full matrix is printed. 

1  Upper triangle of MAT is printed, including the diagonal. 

2  Upper triangle of MAT excluding the diagonal of MAT is printed. 

�1  Lower triangle of MAT is printed, including the diagonal. 

�2  Lower triangle of MAT excluding the diagonal of MAT is printed. 

FORTRAN 90 Interface 
Generic: CALL WRIRN (TITLE, MAT [,…]) 
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Specific:  The specific interface name is S_WRIRN. 

FORTRAN 77 Interface 
Single: CALL WRIRN (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING) 

Example 
The following example prints all of a 3 � 4 matrix A = MAT where aij = 10i + j. 

      USE WRIRN_INT 
      INTEGER    ITRING, LDMAT, NCMAT, NRMAT 
      PARAMETER  (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3) 
! 
      INTEGER    I, J, MAT(LDMAT,NCMAT) 
! 
      DO 20  I=1, NRMAT 
         DO 10  J=1, NCMAT 
            MAT(I,J) = I*10 + J 
   10    CONTINUE 
   20 CONTINUE 
!                                 Write MAT matrix. 
      CALL WRIRN (’MAT’, MAT, NRMAT=NRMAT) 
      END 

Output 
         MAT 
     1    2    3    4 
1   11   12   13   14 
2   21   22   23   24 
3   31   32   33   34 

Comments 
1. All the entries in MAT are printed using a single I format. The field width is determined 

by the largest absolute entry. 

2. Horizontal centering, a method for printing large matrices, paging, printing a title on 
each page, and many other options can be selected by invoking WROPT (page 1591). 

3. A page width of 78 characters is used. Page width and page length can be reset by 
invoking PGOPT (page 1599). 

4. Output is written to the unit specified by UMACH (see Reference Material). 

Description 
Routine WRIRN prints an integer rectangular matrix with the rows and columns labeled 1, 2, 3, 
and so on. WRIRN can restrict printing to elements of the upper and lower triangles of matrices 
via the ITRING option. Generally, ITRING � 0 is used with symmetric matrices. 
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In addition, one-dimensional arrays can be printed as column or row vectors. For a column 
vector, set NRMAT to the length of the array and set NCMAT = 1. For a row vector, set NRMAT = 1 
and set NCMAT to the length of the array. In both cases, set LDMAT = NRMAT and set ITRING = 0: 

WRIRL 
Print an integer rectangular matrix with a given format and labels. 

Required Arguments 
TITLE — Character string specifying the title.   (Input)  

TITLE set equal to a blank character(s) suppresses printing of the title. 

MAT — NRMAT by NCMAT matrix to be printed.   (Input) 

RLABEL — CHARACTER * (*) vector of labels for rows of MAT.   (Input)  
If rows are to be numbered consecutively 1, 2, �, NRMAT, use  
RLABEL(1) = ’NUMBER’. If no row labels are desired, use RLABEL(1) = ’NONE’. 
Otherwise, RLABEL is a vector of length NRMAT containing the labels. 

CLABEL — CHARACTER * (*) vector of labels for columns of MAT.   (Input)  
If columns are to be numbered consecutively 1, 2, �, NCMAT, use 
CLABEL(1) = ’NUMBER’. If no column labels are desired, use CLABEL(1) = ’NONE’. 
Otherwise, CLABEL(1) is the heading for the row labels, and either CLABEL(2) must be 
’NUMBER’ or ’NONE’, or CLABEL must be a vector of length 

NCMAT + 1 with CLABEL(1 + j) containing the column heading for the j-th column. 

Optional Arguments 
NRMAT — Number of rows.   (Input) 

Default: NRMAT = size (MAT,1). 

NCMAT — Number of columns.   (Input) 
Default: NCMAT = size (MAT,2). 

LDMAT — Leading dimension of MAT exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDMAT = size (MAT,1). 

ITRING — Triangle option.   (Input) 
Default: ITRING = 0. 
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ITRING Action 

0  Full matrix is printed. 

1  Upper triangle of MAT is printed, including the diagonal. 

2  Upper triangle of MAT excluding the diagonal of MAT is printed. 

�1  Lower triangle of MAT is printed, including the diagonal. 

�2  Lower triangle of MAT excluding the diagonal of MAT is printed. 

FMT — Character string containing formats.   (Input)  
 If FMT is set to a blank character(s), the format used is a single I format with field 
width determined by the largest absolute entry. Otherwise, FMT must contain exactly 
one set of parentheses and one or more I edit descriptors. For example, FMT = 
’(I10)’ specifies this I format for the entire matrix. FMT = ’(2I10, 3I5)’ 
specifies an I10 format for columns 1 and 2 and an I5 format for columns 3, 4 and 5. 
If the end of FMT is encountered and if some columns of the matrix remain, format 
control continues with the first format in FMT. FMT may only contain the I edit 
descriptor, e.g., the X edit descriptor is not allowed.  
Default: FMT = ‘ ‘. 

FORTRAN 90 Interface 
Generic: CALL WRIRL (TITLE, MAT, RLABEL, CLABEL [,…]) 

Specific:  The specific interface name is S_WRIRL. 

FORTRAN 77 Interface 
Single: CALL WRIRL (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING, FMT,  

     RLABEL, CLABEL) 

Example 
The following example prints all of a 3 � 4 matrix A = MAT where aij= 10i + j. 

      USE WRIRL_INT 
      INTEGER    ITRING, LDMAT, NCMAT, NRMAT 

 
      PARAMETER  (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3) 
! 
      INTEGER    I, J, MAT(LDMAT,NCMAT) 
      CHARACTER  CLABEL(5)*5, FMT*8, RLABEL(3)*5 
! 
      DATA FMT/’(I2)’/ 
      DATA CLABEL/’     ’, ’Col 1’, ’Col 2’, ’Col 3’, ’Col 4’/ 
      DATA RLABEL/’Row 1’, ’Row 2’, ’Row 3’/ 
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! 
      DO 20  I=1, NRMAT 
         DO 10  J=1, NCMAT 
            MAT(I,J) = I*10 + J 
   10    CONTINUE 
   20 CONTINUE 
!                                 Write MAT matrix. 
      CALL WRIRL (’MAT’, MAT, RLABEL, CLABEL, NRMAT=NRMAT) 
      END 

Output 
                   MAT 
        Col 1  Col 2  Col 3  Col 4 
Row 1     11     12     13     14 
Row 2     21     22     23     24 
Row 3     31     32     33     34 

Comments 
1. The output appears in the following form: 

TITLE 
CLABEL(1) CLABEL(2) CALBEL(3) CLABEL 4) 
RLABEL(1) Xxxxx xxxxx xxxxx 
RLABEL(2) Xxxxx xxxxx xxxxx 

2. Use “% /” within titles or labels to create a new line. Long titles or labels are 
automatically wrapped. 

3. A page width of 78 characters is used. Page width and page length can be reset by 
invoking PGOPT (page 1599). 

4. Horizontal centering, a method for printing large matrices, paging, printing a title on 
each page, and many other options can be selected by invoking WROPT (page 1591). 

5. Output is written to the unit specified by UMACH (see  the Reference Material). 

Description 
Routine WRIRL prints an integer rectangular matrix (stored in MAT) with row and column labels 
(specified by RLABEL and CLABEL, respectively), according to a given format (stored in FMT). 
WRIRL can restrict printing to the elements of upper or lower triangles of matrices via the 
ITRING option. Generally, ITRING � 0 is used with symmetric matrices. In addition, one-
dimensional arrays can be printed as column or row vectors. For a column vector, set NRMAT to 
the length of the array and set NCMAT = 1. For a row vector, set NRMAT = 1 and set NCMAT to the 
length of the array. In both cases, set LDMAT = NRMAT, and set ITRING = 0. 
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WRCRN 
Prints a complex rectangular matrix with integer row and column labels. 

Required Arguments 
TITLE — Character string specifying the title.   (Input)  

TITLE set equal to a blank character(s) suppresses printing of the title. Use “% /” 
within the title to create a new line. Long titles are automatically wrapped. 

A — Complex NRA by NCA matrix to be printed.   (Input) 

Optional Arguments 
NRA — Number of rows.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

ITRING — Triangle option.   (Input) 
Default: ITRING = 0. 

ITRING Action 

 0  Full matrix is printed. 

 1  Upper triangle of A is printed, including the diagonal. 

 2  Upper triangle of A excluding the diagonal of A is printed. 

�1  Lower triangle of A is printed, including the diagonal. 

�2  Lower triangle of A excluding the diagonal of A is printed. 

FORTRAN 90 Interface 
Generic: CALL WRCRN (TITLE, A [,…]) 

Specific:  The specific interface names are S_WRCRN and D_WRCRN for two dimensional 
arrays, and S_WRCRN1D and D_WRCRN1D for one dimensional arrays. 
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FORTRAN 77 Interface 
Single: CALL WRCRN (TITLE, NRA, NCA, A, LDA, ITRING) 

Double: The double precision name is DWRCRN. 

Example 
This example prints all of a 3 � 4 complex matrix A with elements 

,  where  = 1mna m ni i� � �  

      USE WRCRN_INT 
      INTEGER    ITRING, LDA, NCA, NRA 
      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3) 
! 
      INTEGER    I, J 
      COMPLEX    A(LDA,NCA), CMPLX 
      INTRINSIC  CMPLX 
! 
      DO 20  I=1, NRA 
         DO 10  J=1, NCA 
            A(I,J) = CMPLX(I,J) 
   10    CONTINUE 
   20 CONTINUE 
!                                 Write A matrix. 
      CALL WRCRN (’A’, A, NRA=NRA) 
      END 

Output 
                                  A 
                 1                2                3                4 
1  ( 1.000, 1.000)  ( 1.000, 2.000)  ( 1.000, 3.000)  ( 1.000, 4.000) 
2  ( 2.000, 1.000)  ( 2.000, 2.000)  ( 2.000, 3.000)  ( 2.000, 4.000) 
3  ( 3.000, 1.000)  ( 3.000, 2.000)  ( 3.000, 3.000)  ( 3.000, 4.000) 

Comments 
1. A single D, E, or F format is chosen automatically in order to print 4 significant digits 

for the largest real or imaginary part in absolute value of all the complex numbers in A. 
Routine WROPT (page 1591) can be used to change the default format. 

2. Horizontal centering, a method for printing large matrices, paging, method for printing 
NaN (not a number), and printing a title on each page can be selected by invoking 
WROPT. 

3. A page width of 78 characters is used. Page width and page length can be reset by 
invoking subroutine PGOPT (page 1599). 

4. Output is written to the unit specified by UMACH (see Reference Material). 
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Description 
Routine WRCRN prints a complex rectangular matrix with the rows and columns labeled 1, 2, 3, 
and so on. WRCRN can restrict printing to the elements of the upper or lower triangles of matrices 
via the ITRING option. Generally, ITRING � 0 is used with Hermitian matrices. 

In addition, one-dimensional arrays can be printed as column or row vectors. For a column 
vector, set NRA to the length of the array, and set NCA = 1. For a row vector, set NRA = 1, and set 
NCA to the length of the array. In both cases, set LDA = NRA, and set ITRING = 0. 

WRCRL 
Prints a complex rectangular matrix with a given format and labels. 

Required Arguments 
TITLE — Character string specifying the title.   (Input)  

TITLE set equal to a blank character(s) suppresses printing of the title. 

A — Complex NRA by NCA matrix to be printed.   (Input) 

RLABEL — CHARACTER * (*) vector of labels for rows of A.   (Input)  
If rows are to be numbered consecutively 1, 2, �, NRA, use RLABEL(1) = ’NUMBER’. If 
no row labels are desired, use RLABEL(1) = ’NONE’. Otherwise, RLABEL is a vector of 
length NRA containing the labels. 

CLABEL — CHARACTER * (*) vector of labels for columns of A.   (Input)  
If columns are to be numbered consecutively 1, 2, �, NCA, use CLABEL(1) = 
’NUMBER’. If no column labels are desired, use CLABEL(1) = ’NONE’. Otherwise, 
CLABEL(1) is the heading for the row labels, and either CLABEL(2) must be ’NUMBER’ 
or ’NONE’, or CLABEL must be a vector of length NCA + 1 with CLABEL(1 + j) 
containing the column heading for the j-th column. 

Optional Arguments 
NRA — Number of rows.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

ITRING — Triangle option.   (Input) 
Default: ITRING = 0. 
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ITRING  Action 

0    Full matrix is printed. 

1    Upper triangle of A is printed, including the diagonal. 

2    Upper triangle of A excluding the diagonal of A is printed. 

�1    Lower triangle of A is printed, including the diagonal. 

�2    Lower triangle of A excluding the diagonal of A is printed. 

FMT — Character string containing formats.   (Input)  
 If FMT is set to a blank character(s), the format used is specified by WROPT 
(page 1591). Otherwise, FMT must contain exactly one set of parentheses and  
one or more edit descriptors. Because a complex number consists of two parts (a real 
and an imaginary part), two edit descriptors are used for printing a single complex 
number. FMT = ’(E10.3, F10.3)’ specifies an E format for the real part and an  
F format for the imaginary part. FMT = ’(F10.3)’ uses an F  
format for both the real and imaginary parts. If the end of FMT is encountered  
and if all columns of the matrix have not been printed, format control continues with 
the first format in FMT. Even though the matrix A is complex, an I format can be used 
to print the integer parts of the real and imaginary components of each complex 
number. The most useful formats are special formats, called the  
“V and W formats,” that can be used to specify pretty formats automatically. Set  
FMT = ’(V10.4)’ if you want a single D, E, or F format selected automatially with 
field width 10 and with 4 significant digits. Set FMT = ’(W10.4)’ if you want a single 
D, E, F, or I format selected automatically with field width 10 and with 4 significant 
digits. While the V format prints trailing zeroes and a trailing decimal point, the W 
format does not. See Comment 4 for general descriptions of the V and W formats. FMT 
may contain only D, E, F, G, I, V, or W edit descriptors, e.g., the X descriptor is not 
allowed.  
Default: FMT = ‘ ‘. 

FORTRAN 90 Interface 
Generic: CALL WRCRL (TITLE, A, RLABEL, CLABEL[,…]) 

Specific:  The specific interface names are S_WRCRL and D_WRCRL for two dimensional 
arrays, and S_WRCRL1D and D_WRCRL1D for one dimensional arrays. 

FORTRAN 77 Interface 
Single: CALL WRCRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL,  

     CLABEL) 

Double: The double precision name is DWRCRL. 
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Example 
The following example prints all of a 3 � 4 matrix A with elements 

� �.123456 ,  where  = 1mna m ni i� � � �  

      USE WRCRL_INT 
      INTEGER    ITRING, LDA, NCA, NRA 
      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3) 
! 
      INTEGER    I, J 
      COMPLEX    A(LDA,NCA), CMPLX 
      CHARACTER  CLABEL(5)*5, FMT*8, RLABEL(3)*5 
      INTRINSIC  CMPLX 
! 
      DATA FMT/’(W12.6)’/ 
      DATA CLABEL/’    ’, ’Col 1’, ’Col 2’, ’Col 3’, ’Col 4’/ 
      DATA RLABEL/’Row 1’, ’Row 2’, ’Row 3’/ 
! 
      DO 20  I=1, NRA 
         DO 10  J=1, NCA 
            A(I,J) = CMPLX(I,J) + 0.123456 
   10    CONTINUE 
   20 CONTINUE 
!                                 Write A matrix. 
      CALL WRCRL (’A’, A, RLABEL, CLABEL, NRA=NRA, FMT=FMT) 
      END 

Output 
                               A 
                             Col 1                        Col 2 
Row 1  (     1.12346,     1.00000)  (     1.12346,     2.00000) 
Row 2  (     2.12346,     1.00000)  (     2.12346,     2.00000) 
Row 3  (     3.12346,     1.00000)  (     3.12346,     2.00000) 
 
                             Col 3                        Col 4 
Row 1  (     1.12346,     3.00000)  (     1.12346,     4.00000) 
Row 2  (     2.12346,     3.00000)  (     2.12346,     4.00000) 
Row 3  (     3.12346,     3.00000)  (     3.12346,     4.00000) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of W2CRL/DW2CRL. The 

reference is: 

CALL W2CRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT,  
     RLABEL, CLABEL, CHWK) 

The additional argument is: 

CHWK — CHARACTER * 10 work vector of length 2 * NCA. This workspace is 
referenced only if all three conditions indicated at the beginning of this comment 
are met. Otherwise, CHWK is not referenced and can be a CHARACTER * 10 vector 
of length one. 
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2. The output appears in the following form: 

                                       TITLE 
CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4) 

RLABEL(1) (xxxxx,xxxxx) (xxxxx,xxxxx) (xxxxx,xxxxx) 

RLABEL(2) (xxxxx,xxxxx) (xxxxx,xxxxx) (xxxxx,xxxxx) 

3. Use “% /” within titles or labels to create a new line. Long titles or labels are 
automatically wrapped. 

4. For printing numbers whose magnitudes are unknown, the G format in FORTRAN is 
useful; however, the decimal points will generally not be aligned when printing a 
column of numbers. The V and W formats are special formats used by this routine to 
select a D, E, F, or I format so that the decimal points will be aligned. The V and W 
formats are specified as Vn.d and Wn.d. Here, n is the field width, and d is the number 
of significant digits generally printed. Valid values for n are 3, 4, �, 40. Valid values 
for d are 1, 2, �, n � 2. If FMT specifies one format and that format is a V or W format, 
all elements of the matrix A are examined to determine one FORTRAN format for 
printing. If FMT specifies more than one format, FORTRAN formats are generated 
separately from each V or W format. 

5. A page width of 78 characters is used. Page width and page length can be reset by 
invoking PGOPT (page 1599). 

6. Horizontal centering, a method for printing large matrices, paging, method for printing 
NaN (not a number), printing a title on each page, and may other options can be 
selected by invoking WROPT (page 1591). 

7. Output is written to the unit specified by UMACH (see the Reference Material). 

Description 
Routine WRCRL prints a complex rectangular matrix (stored in A) with row and column labels 
(specified by RLABEL and CLABEL, respectively) according to a given format (stored in FMT). 
Routine WRCRL can restrict printing to the elements of upper or lower triangles of matrices via 
the ITRING option. Generally, the ITRING � 0 is used with Hermitian matrices. 

In addition, one-dimensional arrays can be printed as column or row vectors. For a column 
vector, set NRA to the length of the array, and set NCA = 1. For a row vector, set NRA = 1, and set 
NCA to the length of the array. In both cases, set LDA = NRA, and set ITRING = 0. 

WROPT 
Sets or retrieves an option for printing a matrix. 

Required Arguments 
IOPT — Indicator of option type.   (Input) 
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IOPT  Description of Option Type 

�1, 1  Horizontal centering or left justification of matrix to be printed 

�2, 2  Method for printing large matrices 

�3, 3  Paging 

�4, 4  Method for printing NaN (not a number), and negative and positive 
 machine infinity. 

�5, 5  Title option  

�6, 6  Default format for real and complex numbers 

�7, 7  Spacing between columns 

�8, 8  Maximum horizontal space reserved for row labels 

�9, 9  Indentation of continuation lines for row labels 

�10, 10 Hot zone option for determining line breaks for row labels 

�11, 11 Maximum horizontal space reserved for column labels 

�12, 12 Hot zone option for determining line breaks for column labels 

�13, 13 Hot zone option for determining line breaks for titles 

�14, 14 Option for the label that appears in the upper left hand corner that can be 
 used as a heading for the row numbers or a label for the column headings 
 for WR**N routines 

�15, 15 Option for skipping a line between invocations of WR**N routines, provided 
 a new page is not to be issued 

�16, 16 Option for vertical alignment of the matrix values relative to the associated 
 row labels that occupy more than one line 

0  Reset all the current settings saved in internal variables back to their last 
 setting made with an invocation of WROPT with ISCOPE = 1. (This option is 
 used internally by routines printing a matrix and is not useful otherwise.) 

If IOPT is negative, ISETNG and ISCOPE are input and are saved in internal variables. If IOPT 
is positive, ISETNG is output and receives the currently active setting for the option  
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(if ISCOPE = 0) or the last global setting for the option (if ISCOPE = 1). If IOPT = 0, ISETNG 
and ISCOPE are not referenced. 

ISETNG — Setting for option selected by IOPT.   (Input, if IOPT is negative; output, if IOPT 
is positive; not referenced if IOPT = 0)  

 

IOPT ISETNG Meaning 
�1, 1 0 Matrix is left justified 
 1 Matrix is centered horizontally on page 
�2, 2 0 A complete row is printed before the next row is 

printed. Wrapping is used if necessary. 
 M Here, m is a positive integer. Let n be the 

maximum number of columns beginning with 
column 1 that fit across the page (as determined by 
the widths of the printing formats). First, columns 
1 through n are printed for rows 1 through m. Let 
n� be the maximum number of columns 
beginning with column n + 1 that fit across the 
page. Second, columns n + 1 through n + n� are 
printed for rows 1 through m. This continues until 
the last columns are printed for rows 1 through m. 
Printing continues in this fashion for the next m 
rows, etc. 

�3, 3 �2 Printing begins on the next line, and no paging 
occurs. 

 �1 Paging is on. Every invocation of a WR*** routine 
begins on a new page, and paging occurs within 
each invocation as is needed 

 0 Paging is on. The first invocation of a WR*** 
routine begins on a new page, and subsequent 
paging occurs as is needed. With this option, every 
invocation of a WR*** routine ends with a call to 
WROPT to reset this option to k, a positive integer 
giving the number of lines printed on the current 
page. 
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 K Here, k is a positive integer. Paging is on, and k 
lines have been printed on the current page. If k is 
less than the page length IPAGE (see PGOPT, 
page 1599), then IPAGE � k lines are printed 
before a new page instruction is issued. If k is 
greater than or equal to IPAGE, then the first 
invocation of a WR*** routine begins on a new 
page. In any case, subsequent paging occurs as is 
needed. With this option, every invocation of a 
WR*** routine ends with a call to WROPT to reset 
the value of k. 

�4, 4 0 NaN is printed as a series of decimal points, 
negative machine infinity is printed as a series of 
minus signs, and positive machine infinity is 
printed as a series of plus signs. 

 1 NaN is printed as a series of blank characters, 
negative machine infinity is printed as a series of 
minus signs, and positive machine infinity is 
printed as a series of plus signs. 

 2 NaN is printed as “NaN,” negative machine 
infinity is printed as “-Inf” and positive machine 
infinity is printed as “Inf.” 

 3 NaN is printed as a series of blank characters, 
negative machine infinity is printed as “-Inf,” and 
positive machine infinity is printed as “Inf.” 

�5, 5 0 Title appears only on first page. 
 1 Title appears on the first page and all continuation 

pages. 
�6, 6 0 Format is (W10.4). See Comment 2. 
 1 Format is (W12.6). See Comment 2. 
 2 Format is (1PE12.5 ). 
 3 Format is Vn.4 where the field width n is 

determined. See Comment 2. 
 4 Format is Vn.6 where the field width n is determined. 

Comment 2. 
 5 Format is 1PEn.d where n = d + 7, and d + 1 is the 

maximum number of significant digits. 
�7, 7 K Number of characters left blank between columns. 

k must be between 0 and 5, inclusively. 
�8, 8 K� Maximum width (in characters) reserved for row 

labels. K� = 0 means use the default. 
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�9, 9 K� Number of characters used to indent continuation 
lines for row labels. k� must be between 0 and 10, 
inclusively. 

�10, 10 K� Width (in characters) of the hot zone where line 
breaks in row labels can occur. k� = 0 means use 
the default. k� must not exceed 50. 

�11, 11 K� Maximum width (in characters) reserved for 
column labels. k� = 0 means use the default. 

�12, 12 K� Width (in characters) of the hot zone where line 
breaks in column labels can occur. k� = 0 means 
use the default. k� must not exceed 50. 

�13, 13 K� Width (in characters) of the hot zone where line 
breaks in titles can occur. k� must be between 1 
and 50, inclusively. 

�14 0 There is no label in the upper left hand corner. 
 1 The label in the upper left hand corner is 

“Component” if a row vector or column vector is 
printed; the label is “Row/Column” if both the 
number of rows and columns are greater than one; 
otherwise, there is no label. 

�15 0 A blank line is printed on each invocation of a 
WR**N routine before the matrix title provided a 
new page is not to be issued. 

 1 A blank line is not printed on each invocation of a 
WR**N routine before the matrix title. 

�16, 16 0 The matrix values are aligned vertically with the 
last line of the associated row label for the case 
IOPT = 2 and ISET is positive. 

 1 The matrix values are aligned vertically with the 
first line of the associated row label. 

ISCOPE — Indicator of the scope of the option.   (Input if IOPT is nonzero; not referenced if 
IOPT = 0) 

ISCOPE Action 

0  Setting is temporarily active for the next invocation of a WR*** matrix 
 printing routine. 

1  Setting is active until it is changed by another invocation of WROPT. 

FORTRAN 90 Interface 
Generic: CALL WROPT (IOPT, ISETNG, ISCOPE) 
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Specific:  The specific interface name is WROPT. 

FORTRAN 77 Interface 
Single: CALL WROPT (IOPT, ISETNG, ISCOPE) 

Example 
The following example illustrates the effect of WROPT when printing a 3 � 4 real matrix A with 
WRRRN (page 1553) where aij = i + j/10. The first call to WROPT sets horizontal printing so that 
the matrix is first printed horizontally centered on the page. In the next invocation of WRRRN, the 
left-justification option has been set via routine WROPT so the matrix is left justified when 
printed. Finally, because the scope of left justification was only for the next call to a printing 
routine, the last call to WRRRN results in horizontally centered printing. 

      USE WROPT_INT 
      USE WRRRN_INT 
      INTEGER    ITRING, LDA, NCA, NRA 
      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3) 
! 
      INTEGER    I, IOPT, ISCOPE, ISETNG, J 
      REAL       A(LDA,NCA) 
! 
      DO 20  I=1, NRA 
         DO 10  J=1, NCA 
            A(I,J) = I + J*0.1 
   10    CONTINUE 
   20 CONTINUE 
!                                 Activate centering option. 
!                                 Scope is global. 
      IOPT   = -1 
      ISETNG = 1 
      ISCOPE = 1 
! 
      CALL WROPT (IOPT, ISETNG, ISCOPE) 
!                                 Write A matrix. 
      CALL WRRRN (’A’, A, NRA=NRA) 
!                                 Activate left justification. 
!                                 Scope is local. 
      IOPT   = -1 
      ISETNG   = 0 
      ISCOPE = 0 
      CALL WROPT (IOPT, ISETNG, ISCOPE) 
      CALL WRRRN (’A’, A, NRA=NRA) 
      CALL WRRRN (’A’, A, NRA=NRA) 
      END 

Output 
                                       A 
                               1       2       3       4 
                       1   1.100   1.200   1.300   1.400 
                       2   2.100   2.200   2.300   2.400 
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                       3   3.100   3.200   3.300   3.400 
 
                A 
        1       2       3       4 
1   1.100   1.200   1.300   1.400 
2   2.100   2.200   2.300   2.400 
3   3.100   3.200   3.300   3.400 
 
                                       A 
                               1       2       3       4 
                       1   1.100   1.200   1.300   1.400 
                       2   2.100   2.200   2.300   2.400 
                       3   3.100   3.200   3.300   3.400 

Comments 
1. This program can be invoked repeatedly before using a WR*** routine to print a matrix. 

The matrix printing routines retrieve these settings to determine the printing options. It 
is not necessary to call WROPT if a default value of a printing option is desired. The 
defaults are as follows. 

IOPT Default 
Value for 
ISET 

Meaning 

1 0 Left justified 
2 1000000 Number lines before wrapping 
3 �2 No paging 
4 2 NaN is printed as “NaN,” negative machine 

infinity is printed as “-Inf” and positive 
machine infinity is printed as “Inf.” 

5 0 Title only on first page. 
6 3 Default format is Vn.4. 
7 2 2 spaces between columns. 
8 0 Maximum row label width MAXRLW = 2 * 

IPAGEW/3 if matrix has one column; 
MAXRLW = IPAGEW/4 otherwise. 

9 3 3 character indentation of row labels 
continued beyond one line. 

10 0 Width of row label hot zone is MAXRLW/3 
characters. 
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11 0 Maximum column label width 
MAXCLW = min{max (NW + NW/2, 15), 40} 
for integer and real matrices, where NW is 
the field width for the format corresponding 
to the particular column. 
MAXCLW = min{max(NW + NW/2, 15), 83} for 
complex matrices, where NW is the sum of 
the two field widths for the formats 
corresponding to the particular column plus 
3. 

12 0 Width of column label hot zone is 
MAXCLW/3 characters. 

13 10 Width of hot zone for titles is 10 characters. 
14 0 There is no label in the upper left hand 

corner. 
15 0 Blank line is printed. 
16 0 The matrix values are aligned vertically 

with the last line of the associated row label. 

For IOPT = 8, the default depends on the current value for the page width, IPAGEW (see 
PGOPT, page 1599). 

2. The V and W formats are special formats that can be used to select a D, E, F, or I format 
so that the decimal points will be aligned. The V and W formats are specified as Vn.d 
and Wn.d. Here, n is the field width and d is the number of significant digits generally 
printed. Valid values for n are 3, 4, �, 40. Valid values for d are 1, 2, �,  
n � 2. While the V format prints trailing zeroes and a trailing decimal point, the W 
format does not. 

Description 
Routine WROPT allows the user to set or retrieve an option for printing a matrix. The options 
controlled by WROPT include the following: horizontal centering, a method for printing large 
matrices, paging, method for printing NaN (not a number) and positive and negative machine 
infinities, printing titles, default formats for numbers, spacing between columns, maximum 
widths reserved for row and column labels, indentation of row labels that continue beyond one 
line, widths of hot zones for breaking of labels and titles, the default heading for row labels, 
whether to print a blank line between invocations of routines, and vertical alignment of matrix 
entries with respect to row labels continued beyond one  
line. (NaN and positive and negative machine infinities can be retrieved by AMACH and DMACH 
that are documented in the section “Machine-Dependent Constants” in the Reference Material.) 
Options can be set globally  

(ISCOPE = 1) or temporarily for the next call to a printing routine  
(ISCOPE = 0). 
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PGOPT 
Sets or retrieves page width and length for printing. 

Required Arguments 
IOPT — Page attribute option.   (Input)  

IOPT  Description of Attribute 

�1, 1  Page width. 

�2, 2  Page length.  

Negative values of IOPT indicate the setting IPAGE is input. Positive values  

of IOPT indicate the setting IPAGE is output. 

IPAGE — Value of page attribute.   (Input, if IOPT is negative; output, if IOPT is positive.)  

IOPT Description of Attribute Settings for IPAGE 

�1, 1 Page width (in characters) 10, 11, � 

�2, 2 Page length (in lines)    10, 11, � 

FORTRAN 90 Interface 
Generic: CALL PGOPT (IOPT, IPAGE) 

Specific:  The specific interface name is PGOPT. 

FORTRAN 77 Interface 
Single: CALL PGOPT (IOPT, IPAGE) 

Example 
The following example illustrates the use of PGOPT to set the page width at 20 characters. 
Routine WRRRN (page 1553) is then used to print a 3 � 4 matrix A where aij= i + j/10. 

      USE PGOPT_INT 
      USE WRRRN_INT 
      INTEGER    ITRING, LDA, NCA, NRA 
      PARAMETER  (ITRING=0, LDA=3, NCA=4, NRA=3) 
! 
      INTEGER    I, IOPT, IPAGE, J 
      REAL       A(LDA,NCA) 
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! 
      DO 20  I=1, NRA 
         DO 10  J=1, NCA 
            A(I,J) = I + J*0.1 
   10    CONTINUE 
   20 CONTINUE 
!                                 Set page width. 
      IOPT  = -1 
      IPAGE = 20 
      CALL PGOPT (IOPT, IPAGE) 
!                                 Print the matrix A. 
      CALL WRRRN (’A’, A) 
      END 

Output 
         A 
        1       2 
1   1.100   1.200 
2   2.100   2.200 
3   3.100   3.200 
 
        3       4 
1   1.300   1.400 
2   2.300   2.400 
3   3.300   3.400   

Description 
Routine PGOPT is used to set or retrieve the page width or the page length for routines that 
perform printing. 

PERMU 
Rearranges the elements of an array as specified by a permutation. 

Required Arguments 
X — Real vector of length N containing the array to be permuted.   (Input) 

IPERMU — Integer vector of length N containing a permutation 
IPERMU(1), �, IPERMU(N) of the integers 1, �, N.   (Input) 

XPERMU — Real vector of length N containing the array X permuted.   (Output)  
If X is not needed, X and XPERMU can share the same storage locations. 

Optional Arguments 
N — Length of the arrays X and XPERMU.   (Input) 

Default: N = size (IPERMU,1). 
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IPATH — Integer flag.   (Input)  
Default: IPATH = 1. 
IPATH = 1 means IPERMU represents a forward permutation, i.e., X(IPERMU(I)) is 
moved to XPERMU(I). IPATH = 2 means IPERMU represents a backward permutation, 
i.e., X(I) is moved to XPERMU(IPERMU(I)). 

FORTRAN 90 Interface 
Generic: CALL PERMU (X, IPERMU, XPERMU [,…]) 

Specific:  The specific interface names are S_PERMU and D_PERMU. 

FORTRAN 77 Interface 
Single: CALL PERMU (N, X, IPERMU, IPATH, XPERMU) 

Double: The double precision name is DPERMU. 

Example 
This example rearranges the array X using IPERMU; forward permutation is performed. 

      USE PERMU_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    IPATH, N 
      PARAMETER  (IPATH=1, N=4) 
! 
      INTEGER    IPERMU(N), J, NOUT 
      REAL       X(N), XPERMU(N) 
!                                 Set values for  X, IPERMU 
! 
!                           X = ( 5.0  6.0  1.0  4.0 ) 
!                           IPERMU = ( 3 1 4 2 ) 
! 
      DATA X/5.0, 6.0, 1.0, 4.0/, IPERMU/3, 1, 4, 2/ 
!                                 Permute X into XPERMU 
      CALL PERMU (X, IPERMU, XPERMU) 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Print results 
      WRITE (NOUT,99999) (XPERMU(J),J=1,N) 
! 
99999 FORMAT (’  The output vector is:’, /, 10(1X,F10.2)) 
      END 

Output 
The Output vector is: 
1.00       5.00       4.00       6.00 
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Description 
Routine PERMU rearranges the elements of an array according to a permutation vector. It has the 
option to do both forward and backward permutations. 

PERMA 
Permutes the rows or columns of a matrix. 

Required Arguments 
A — NRA by NCA matrix to be permuted.   (Input) 

IPERMU — Vector of length K containing a permutation IPERMU(1), �, IPERMU(K) of the 
integers 1, �, K where K = NRA if the rows of A are to be permuted and K = NCA if the 
columns of A are to be permuted.   (Input) 

APER — NRA by NCA matrix containing the permuted matrix.   (Output)  
If A is not needed, A and APER can share the same storage locations. 

Optional Arguments 
NRA — Number of rows.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Option parameter.   (Input)  
IPATH = 1 means the rows of A will be permuted. IPATH = 2 means the columns of A 
will be permuted. 
Default: IPATH = 1. 

LDAPER — Leading dimension of APER exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDAPER = size (APER,1). 

FORTRAN 90 Interface 
Generic: CALL PERMA (A, IPERMU, APER [,…]) 

Specific:  The specific interface names are S_PERMA and D_PERMA. 
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FORTRAN 77 Interface 
Single: CALL PERMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER) 

Double: The double precision name is DPERMA. 

Example 
This example permutes the columns of a matrix A. 

      USE PERMA_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    IPATH, LDA, LDAPER, NCA, NRA 
      PARAMETER  (IPATH=2, LDA=3, LDAPER=3, NCA=5, NRA=3) 
! 
      INTEGER    I, IPERMU(5), J, NOUT 
      REAL       A(LDA,NCA), APER(LDAPER,NCA) 
!                                 Set values for  A, IPERMU 
!                                 A = ( 3.0  5.0  1.0  2.0  4.0 ) 
!                                     ( 3.0  5.0  1.0  2.0  4.0 ) 
!                                     ( 3.0  5.0  1.0  2.0  4.0 ) 
! 
!                                 IPERMU = ( 3 4 1 5 2 ) 
! 
      DATA A/3*3.0, 3*5.0, 3*1.0, 3*2.0, 3*4.0/, IPERMU/3, 4, 1, 5, 2/ 
!                                 Perform column permutation on A, 
!                                 giving APER 
      CALL PERMA (A, IPERMU, APER, IPATH=IPATH) 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Print results 
      WRITE (NOUT,99999) ((APER(I,J),J=1,NCA),I=1,NRA) 
! 
99999 FORMAT (’  The output matrix is:’, /, 3(5F8.1,/)) 
      END 

Output 
The Output matrix is: 
1.0     2.0     3.0     4.0     5.0 
1.0     2.0     3.0     4.0     5.0 
1.0     2.0     3.0     4.0     5.0 

Comments 
1. Workspace may be explicitly provided, if desired, by use of P2RMA/DP2RMA. The 

reference is: 

 CALL P2RMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER, WORK) 

The additional argument is: 

WORK — Real work vector of length NCA. 
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Description 
Routine PERMA interchanges the rows or columns of a matrix using a permutation vector such as 
the one obtained from routines SVRBP (page 1614) or SVRGP (page 1608). 

The routine PERMA permutes a column (row) at a time by calling PERMU (page 1600). This 
process is continued until all the columns (rows) are permuted. On completion, let B = APER and  
pi = IPERMU(I), then 

iij p jB A�  

for all i, j. 

SORT_REAL 
Sorts a rank-1 array of real numbers x so the y results are algebraically nondecreasing,  
y1 � y2 � � yn. 

Required Arguments 
X — Rank-1 array containing the numbers to be sorted.   (Output) 

Y — Rank-1 array containing the sorted numbers.   (Output) 

Optional Arguments 
NSIZE = n   (Input) 

Uses the sub-array of size n for the numbers.  
Default value: n = size(x) 

IPERM = iperm   (Input/Output) 
Applies interchanges of elements that occur to the entries of iperm(:). If the values 
iperm(i)=i,i=1,n are assigned prior to call, then the output array is moved to its 
proper order by the subscripted array assignment y = x(iperm(1:n)). 

ICYCLE = icycle   (Output) 
Permutations applied to the input data are converted to cyclic interchanges. Thus, the 
output array y is given by the following elementary interchanges, where :=: denotes a 
swap: 

j = icycle(i) 
y(j) :=: y(i), i = 1,n  

IOPT = iopt(:)   (Input) 
Derived type array with the same precision as the input matrix; used for passing 
optional data to the routine. The options are as follows: 
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Packaged Options for SORT_REAL 

Option Prefix = ? Option Name Option Value 

s_, d_ Sort_real_scan_for_NaN 1 

iopt(IO) = ?_options(?_sort_real_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that 

isNaN(x(i)) == .true.  
See the isNaN() function, Chapter 10. 
Default: Does not scan for NaNs. 

FORTRAN 90 Interface 
Generic: CALL SORT_REAL (X, Y [,…]) 

Specific:  The specific interface names are S_SORT_REAL and D_SORT_REAL. 

Example 1: Sorting an Array 
An array of random numbers is obtained. The values are sorted so they are nondecreasing. 

 
      use sort_real_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 1 for SORT_REAL.  
  
      integer, parameter :: n=100  
      real(kind(1e0)), dimension(n) :: x, y  
  
! Generate random data to sort.  
      call rand_gen(x)  
  
! Sort the data so it is non-decreasing.  
      call sort_real(x, y)  
  
! Check that the sorted array is not decreasing.  
      if (count(y(1:n-1) > y(2:n)) == 0) then  
         write (*,*) 'Example 1 for SORT_REAL is correct.'  
      end if  
  
      end  

Output 
Example 1 for SORT_REAL is correct. 
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Description 
For a detailed description, see the “Description” section of routine SVRGN on page 1607, which 
appears later in this chapter.  

Additional Examples 

Example 2: Sort and Final Move with a Permutation 
A set of n random numbers is sorted so the results are nonincreasing. The columns of an n � n 
random matrix are moved to the order given by the permutation defined by the interchange of the 
entries. Since the routine sorts the results to be algebraically nondecreasing, the array of negative 
values is used as input. Thus, the negative value of the sorted output order is nonincreasing. The 
optional argument “iperm=” records the final order and is used to move the matrix columns to 
that order. This example illustrates the principle of sorting record keys, followed by direct 
movement of the records to sorted order. 

  
      use sort_real_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 2 for SORT_REAL.  
  
      integer i  
      integer, parameter :: n=100  
      integer ip(n)  
      real(kind(1e0)) a(n,n), x(n), y(n), temp(n*n)  
  
! Generate a random array and matrix of values.  
      call rand_gen(x)  
      call rand_gen(temp)  
      a = reshape(temp,(/n,n/))  
  
! Initialize permutation to the identity.  
      do i=1, n  
         ip(i) = i  
      end do  
  
! Sort using negative values so the final order is   
! non-increasing.  
      call sort_real(-x, y, iperm=ip)  
  
! Final movement of keys and matrix columns.  
      y = x(ip(1:n))  
      a = a(:,ip(1:n))  
  
! Check the results.  
      if (count(y(1:n-1) < y(2:n)) == 0) then  
         write (*,*) 'Example 2 for SORT_REAL is correct.'  
      end if  
  
      end  
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Output 
Example 2 for SORT_REAL is correct. 

Fatal and Terminal Error Messages 
See the messages.gls file for error messages for sort_real. These error messages are numbered 
561�567; 581�587. 

SVRGN 
Sorts a real array by algebraically increasing value. 

Required Arguments 
RA — Vector of length N containing the array to be sorted.   (Input) 

RB — Vector of length N containing the sorted array.   (Output)  
If RA is not needed, RA and RB can share the same storage locations. 

Optional Arguments 
N — Number of elements in the array to be sorted.   (Input) 

Default: N = size (RA,1). 

FORTRAN 90 Interface 
Generic: CALL SVRGN (RA, RB [,…]) 

Specific:  The specific interface names are S_SVRGN and D_SVRGN. 

FORTRAN 77 Interface 
Single: CALL SVRGN (N, RA, RB) 

Double: The double precision name is DSVRGN. 

Example 
This example sorts the 10-element array RA algebraically. 

      USE SVRGN_INT 
      USE UMACH_INT 
!                                 Declare variables 
      PARAMETER  (N=10) 
      REAL       RA(N), RB(N) 
!                                 Set values for  RA 
!     RA = ( -1.0  2.0  -3.0  4.0  -5.0  6.0  -7.0  8.0  -9.0  10.0 ) 
! 
      DATA RA/-1.0, 2.0, -3.0, 4.0, -5.0, 6.0, -7.0, 8.0, -9.0, 10.0/ 
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!                                 Sort RA by algebraic value into RB 
      CALL SVRGN (RA, RB) 
!                                 Print results 
      CALL UMACH (2,NOUT) 
      WRITE (NOUT, 99999) (RB(J),J=1,N) 
! 
99999 FORMAT (’  The output vector is:’, /, 10(1X,F5.1)) 
      END 

Output 
The Output vector is: 
-9.0  -7.0  -5.0  -3.0  -1.0   2.0   4.0   6.0   8.0  10.0 

Description 
Routine SVRGN sorts the elements of an array, A, into ascending order by algebraic value. The 
array A is divided into two parts by picking a central element T of the array. The first and last 
elements of A are compared with T and exchanged until the three values appear in the array in 
ascending order. The elements of the array are rearranged until all elements greater than or 
equal to the central element appear in the second part of the array and all those less than or equal 
to the central element appear in the first part. The upper and lower subscripts of one of the 
segments are saved, and the process continues iteratively on the other segment. When one 
segment is finally sorted, the process begins again by retrieving the subscripts of another 
unsorted portion of the array. On completion, Aj � Ai for j < i. For more details, see Singleton 
(1969), Griffin and Redish (1970), and Petro (1970). 

SVRGP 
Sorts a real array by algebraically increasing value and return the permutation that rearranges the 
array. 

Required Arguments 
RA — Vector of length N containing the array to be sorted.   (Input) 

RB — Vector of length N containing the sorted array.   (Output)  
If RA is not needed, RA and RB can share the same storage locations. 

IPERM — Vector of length N.   (Input/Output)  
On input, IPERM should be initialized to the values 1, 2, �, N. On output, IPERM 
contains a record of permutations made on the vector RA. 

Optional Arguments 
N — Number of elements in the array to be sorted.   (Input) 

Default: N = size (IPERM,1). 
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FORTRAN 90 Interface 
Generic: CALL SVRGP (RA, RB, IPERM [,…]) 

Specific:  The specific interface names are S_SVRGP and D_SVRGP. 

FORTRAN 77 Interface 
Single: CALL SVRGP (N, RA, RB, IPERM) 

Double: The double precision name is DSVRGP. 

Example 
This example sorts the 10-element array RA algebraically. 

      USE SVRGP_INT 
      USE UMACH_INT 
!                                 Declare variables 
      PARAMETER  (N=10) 
      REAL       RA(N), RB(N) 
      INTEGER    IPERM(N) 
!                                 Set values for  RA and IPERM 
!     RA    = ( 10.0  -9.0  8.0  -7.0  6.0  5.0  4.0  -3.0  -2.0  -1.0 ) 
! 
!     IPERM = ( 1  2  3  4  5  6  7  8  9  10) 
! 
      DATA RA/10.0, -9.0, 8.0, -7.0, 6.0, 5.0, 4.0, -3.0, -2.0, -1.0/ 
      DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/ 
!                                 Sort RA by algebraic value into RB 
      CALL SVRGP (RA, RB, IPERM) 
!                                 Print results 
      CALL UMACH (2,NOUT) 
      WRITE (NOUT, 99998) (RB(J),J=1,N) 
      WRITE (NOUT, 99999) (IPERM(J),J=1,N) 
! 
99998 FORMAT (’  The output vector is:’, /, 10(1X,F5.1)) 
99999 FORMAT (’  The permutation vector is:’, /, 10(1X,I5)) 
      END 

Output 
The output vector is: 
-9.0  -7.0  -3.0  -2.0  -1.0   4.0   5.0   6.0   8.0  10.0 
 
The permutation vector is: 
2     4     8     9    10     7     6     5     3     1 

Comments 
For wider applicability, integers (1, 2, �, N) that are to be associated with RA(I) for I = 1, 2, �, 
N may be entered into IPERM(I) in any order. Note that these integers must be unique. 
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Description 
Routine SVRGP sorts the elements of an array, A, into ascending order by algebraic value, 
keeping a record in P of the permutations to the array A. That is, the elements of P are moved in 
the same manner as are the elements in A as A is being sorted. The routine SVRGP uses the 
algorithm discussed in SVRGN (page 1604). On completion, Aj � Ai for j < i. 

SVIGN 
Sorts an integer array by algebraically increasing value. 

Required Arguments 
IA — Integer vector of length N containing the array to be sorted.   (Input) 

IB — Integer vector of length N containing the sorted array.   (Output)  
If IA is not needed, IA and IB can share the same storage locations. 

Optional Arguments 
N — Number of elements in the array to be sorted.   (Input) 

Default: N = size (IA,1). 

FORTRAN 90 Interface 
Generic: CALL SVIGN (IA, IB [,…]) 

Specific:  The specific interface name is S_SVIGN . 

FORTRAN 77 Interface 
Single: CALL SVIGN (N, IA, IB) 

Example 
This example sorts the 10-element array IA algebraically. 

      USE SVIGN_INT 
      USE UMACH_INT 
!                                 Declare variables 
      PARAMETER  (N=10) 
      INTEGER    IA(N), IB(N) 
!                                 Set values for  IA 
!     IA = ( -1  2  -3  4  -5  6  -7  8  -9  10 ) 
! 
      DATA IA/-1, 2, -3, 4, -5, 6, -7, 8, -9, 10/ 
!                                 Sort IA by algebraic value into IB 
      CALL SVIGN (IA, IB) 
!                                 Print results 
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      CALL UMACH (2,NOUT) 
      WRITE (NOUT, 99999) (IB(J),J=1,N) 
! 
99999 FORMAT (’  The output vector is:’, /, 10(1X,I5)) 
      END 

Output 
The Output vector is: 
-9    -7    -5    -3    -1     2     4     6     8    10 

Description 
Routine SVIGN sorts the elements of an integer array, A, into ascending order by algebraic 
value. The routine SVIGN uses the algorithm discussed in SVRGN (page 1604). On completion,  
Aj � Ai for j < i. 

SVIGP 
Sorts an integer array by algebraically increasing value and return the permutation that rearranges 
the array. 

Required Arguments 
IA — Integer vector of length N containing the array to be sorted.   (Input) 

IB — Integer vector of length N containing the sorted array.   (Output)  
If IA is not needed, IA and IB can share the same storage locations. 

IPERM — Vector of length N.   (Input/Output)  
On input, IPERM should be initialized to the values 1, 2, �, N. On output, IPERM 
contains a record of permutations made on the vector IA. 

Optional Arguments 
N — Number of elements in the array to be sorted.   (Input) 

Default: N = size (IPERM,1). 

FORTRAN 90 Interface 
Generic: CALL SVIGP (IA, IB, IPERM [,…]) 

Specific:  The specific interface name is S_SVIGP. 

FORTRAN 77 Interface 
Single: CALL SVIGP (N, IA, IB, IPERM) 
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Example 
This example sorts the 10-element array IA algebraically. 

      USE SVIGP_INT 
      USE UMACH_INT 
!                                 Declare variables 
      PARAMETER  (N=10) 
      INTEGER    IA(N), IB(N), IPERM(N) 
!                                 Set values for  IA and IPERM 
!     IA    = ( 10  -9  8  -7  6  5  4  -3  -2  -1 ) 
! 
!     IPERM = ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) 
! 
      DATA IA/10, -9, 8, -7, 6, 5, 4, -3, -2, -1/ 
      DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/ 
!                                 Sort IA by algebraic value into IB 
      CALL SVIGP (IA, IB, IPERM) 
!                                 Print results 
      CALL UMACH (2,NOUT) 
      WRITE (NOUT, 99998) (IB(J),J=1,N) 
      WRITE (NOUT, 99999) (IPERM(J),J=1,N) 
! 
99998 FORMAT (’ The output vector is:’, /, 10(1X,I5)) 
99999 FORMAT (’ The permutation vector is:’, /, 10(1X,I5)) 
      END 

Output 
The Output vector is: 
-9    -7    -3    -2    -1     4     5     6     8    10 
 
The permutation vector is: 
2     4     8     9    10     7     6     5     3     1 

Comments 
For wider applicability, integers (1, 2, �, N) that are to be associated with IA(I) for I = 1, 2, �, 
N may be entered into IPERM(I) in any order. Note that these integers must be unique. 

Description 
Routine SVIGP sorts the elements of an integer array, A, into ascending order by algebraic 
value, keeping a record in P of the permutations to the array A. That is, the elements of P are 
moved in the same manner as are the elements in A as A is being sorted. The routine SVIGP uses 
the algorithm discussed in SVRGN (page 1604). On completion, Aj � Ai for j < i. 

SVRBN 
Sorts a real array by nondecreasing absolute value. 
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Required Arguments 
RA — Vector of length N containing the array to be sorted.   (Input) 

RB — Vector of length N containing the sorted array.   (Output)  
If RA is not needed, RA and RB can share the same storage locations. 

Optional Arguments 
N — Number of elements in the array to be sorted.   (Input) 

Default: N = size (RA,1). 

FORTRAN 90 Interface 
Generic: CALL SVRBN (RA, RB [,…]) 

Specific:  The specific interface names are S_SVRBN and D_SVRBN. 

FORTRAN 77 Interface 
Single: CALL SVRBN (N, RA, RB) 

Double: The double precision name is DSVRBN. 

Example 
This example sorts the 10-element array RA by absolute value. 

      USE SVRBN_INT 
      USE UMACH_INT 
!                                 Declare variables 
      PARAMETER  (N=10) 
      REAL       RA(N), RB(N) 
!                                 Set values for  RA 
!       RA = ( -1.0  3.0  -4.0  2.0  -1.0  0.0  -7.0  6.0  10.0  -7.0 ) 
! 
      DATA RA/-1.0, 3.0, -4.0, 2.0, -1.0, 0.0, -7.0, 6.0, 10.0, -7.0/ 
!                                 Sort RA by absolute value into RB 
      CALL SVRBN (RA, RB) 
!                                 Print results 
      CALL UMACH (2,NOUT) 
      WRITE (NOUT, 99999) (RB(J),J=1,N) 
! 
99999 FORMAT (’  The output vector is :’, /, 10(1X,F5.1)) 
      END 

Output 
The Output vector is : 
0.0  -1.0  -1.0   2.0   3.0  -4.0   6.0  -7.0  -7.0  10.0 
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Description 
Routine SVRBN sorts the elements of an array, A, into ascending order by absolute value. The 
routine SVRBN uses the algorithm discussed in SVRGN (page 1604). On completion, |Aj| � |Ai| for  
j < i. 

SVRBP 
Sorts a real array by nondecreasing absolute value and return the permutation that rearranges the 
array. 

Required Arguments 
RA — Vector of length N containing the array to be sorted.   (Input) 

RB — Vector of length N containing the sorted array.   (Output)  
If RA is not needed, RA and RB can share the same storage locations. 

IPERM — Vector of length N.   (Input/Output)  
On input, IPERM should be initialized to the values 1, 2, �, N. On output, IPERM 
contains a record of permutations made on the vector IA. 

Optional Arguments 
N — Number of elements in the array to be sorted.   (Input) 

Default: N = size (IPERM,1). 

FORTRAN 90 Interface 
Generic: CALL SVRBP (RA, RB, IPERM[,…]) 

Specific:  The specific interface names are S_SVRBP and D_SVRBP. 

FORTRAN 77 Interface 
Single: CALL SVRBP (N, RA, RB, IPERM) 

Double: The double precision name is DSVRBP. 

Example 
This example sorts the 10-element array RA by absolute value. 

      USE SVRBP_INT 
      USE UMACH_INT 
!                                 Declare variables 
      PARAMETER  (N=10) 
      REAL       RA(N), RB(N) 
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      INTEGER    IPERM(N) 
!                                 Set values for  RA and IPERM 
!    RA     = ( 10.0  9.0  8.0  7.0  6.0  5.0  -4.0  3.0  -2.0  1.0 ) 
! 
!    IPERM = ( 1  2  3  4  5  6  7  8  9  10 ) 
! 
      DATA RA/10.0, 9.0, 8.0, 7.0, 6.0, 5.0, -4.0, 3.0, -2.0, 1.0/ 
      DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/ 
!                                 Sort RA by absolute value into RB 
      CALL SVRBP (RA, RB, IPERM) 
!                                 Print results 
      CALL UMACH (2,NOUT) 
      WRITE (NOUT, 99998) (RB(J),J=1,N) 
      WRITE (NOUT, 99999) (IPERM(I),I=1,N) 
! 
99998 FORMAT (’  The output vector is:’, /, 10(1X,F5.1)) 
99999 FORMAT (’  The permutation vector is:’, /, 10(1X,I5)) 
      END 

Output 
The output vector is: 
1.0  -2.0   3.0  -4.0   5.0   6.0   7.0   8.0   9.0  10.0 
The permutation vector is: 
10     9     8     7     6     5     4     3     2     1 

Comments 
For wider applicability, integers (1, 2, �, N) that are to be associated with RA(I) for I = 1, 2, �, 
N may be entered into IPERM(I) in any order. Note that these integers must be unique. 

Description 
Routine SVRBP sorts the elements of an array, A, into ascending order by absolute value, 
keeping a record in P of the permutations to the array A. That is, the elements of P are moved in 
the same manner as are the elements in A as A is being sorted. The routine SVRBP uses the 
algorithm discussed in SVRGN (page 1604). On completion, Aj � Ai for j < i. 

SVIBN 
Sorts an integer array by nondecreasing absolute value. 

Required Arguments 
IA — Integer vector of length N containing the array to be sorted.   (Input) 

IB — Integer vector of length N containing the sorted array.   (Output)  
If IA is not needed, IA and IB can share the same storage locations. 
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Optional Arguments 
N — Number of elements in the array to be sorted.   (Input) 

Default: N = size (IA,1). 

FORTRAN 90 Interface 
Generic: CALL SVIBN (IA, IB [,…]) 

Specific:  The specific interface name is S_SVIBN. 

FORTRAN 77 Interface 
Single: CALL SVIBN (N, IA, IB) 

Example 
This example sorts the 10-element array IA by absolute value. 

      USE SVIBN_INT 
      USE UMACH_INT 
!                                 Declare variables 
      PARAMETER  (N=10) 
      INTEGER    IA(N), IB(N) 
!                                 Set values for  IA 
!     IA = ( -1  3  -4  2  -1  0  -7  6  10  -7) 
! 
      DATA IA/-1, 3, -4, 2, -1, 0, -7, 6, 10, -7/ 
!                                 Sort IA by absolute value into IB 
      CALL SVIBN (IA, IB) 
!                                 Print results 
      CALL UMACH (2,NOUT) 
      WRITE (NOUT, 99999) (IB(J),J=1,N) 
! 
99999 FORMAT (’  The output vector is:’, /, 10(1X,I5)) 
      END 

Output 
The Output vector is: 
0    -1    -1     2     3    -4     6    -7    -7    10 

Description 
Routine SVIBN sorts the elements of an integer array, A, into ascending order by absolute value. 
This routine SVIBN uses the algorithm discussed in SVRGN (page 1604). On completion, 
 Aj � Ai for j < i. 
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SVIBP 
Sorts an integer array by nondecreasing absolute value and return the permutation that rearranges 
the array. 

Required Arguments 
IA — Integer vector of length N containing the array to be sorted.   (Input) 

IB — Integer vector of length N containing the sorted array.   (Output)  
If IA is not needed, IA and IB can share the same storage locations. 

IPERM — Vector of length N.   (Input/Output)  
On input, IPERM should be initialized to the values 1, 2, �, N. On output, IPERM 
contains a record of permutations made on the vector IA. 

Optional Arguments 
N — Number of elements in the array to be sorted.   (Input) 

Default: N = size (IA,1). 

FORTRAN 90 Interface 
Generic: CALL SVIBP (IA, IB, IPERM [,…]) 

Specific:  The specific interface name is S_SVIBP. 

FORTRAN 77 Interface 
Single: CALL SVIBP (N, IA, IB, IPERM) 

Example 
This example sorts the 10-element array IA by absolute value. 

      USE SVIBP_INT 
      USE UMACH_INT 
!                                 Declare variables 
      PARAMETER  (N=10) 
      INTEGER    IA(N), IB(N), IPERM(N) 
!                                 Set values for  IA 
!     IA    = ( 10  9  8  7  6  5  -4  3  -2  1 ) 
! 
!     IPERM = ( 1  2  3  4  5  6  7  8  9  10 ) 
! 
      DATA IA/10, 9, 8, 7, 6, 5, -4, 3, -2, 1/ 
      DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/ 
!                                 Sort IA by absolute value into IB 
      CALL SVIBP (IA, IB, IPERM) 
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!                                 Print results 
      CALL UMACH (2,NOUT) 
      WRITE (NOUT, 99998) (IB(J),J=1,N) 
      WRITE (NOUT, 99999) (IPERM(J),J=1,N) 
! 
99998 FORMAT (’  The output vector is:’, /, 10(1X,I5)) 
99999 FORMAT (’  The permutation vector is:’, /, 10(1X,I5)) 
      END 

Output 
The Output vector is: 
1    -2     3    -4     5     6     7     8     9    10 
 
The permutation vector is: 
10     9     8     7     6     5     4     3     2     1 

Comments 
For wider applicability, integers (1, 2, �, N) that are to be associated with IA(I) for I = 1, 2, �, 
N may be entered into IPERM(I) in any order. Note that these integers must be unique. 

Description 
Routine SVIBP sorts the elements of an integer array, A, into ascending order by absolute value, 
keeping a record in P of the permutations to the array A. That is, the elements of P are moved in 
the same manner as are the elements in A as A is being sorted. The routine SVIBP uses the 
algorithm discussed in SVRGN (page 1604). On completion, Aj � Ai for j < i. 

SRCH 
Searches a sorted vector for a given scalar and return its index. 

Required Arguments 
VALUE — Scalar to be searched for in Y.   (Input) 

X — Vector of length N * INCX.   (Input) 
Y is obtained from X for I = 1, 2, �, N by Y(I) = X(1 + (I � 1) * INCX). Y(1), Y(2), �, 
Y(N) must be in ascending order. 

INDEX — Index of Y pointing to VALUE.   (Output)  
If INDEX is positive, VALUE is found in Y. If INDEX is negative, VALUE is not found in 
Y.  

 

INDEX      Location of VALUE 

1 thru N      VALUE = Y(INDEX) 



 

 
 

IMSL MATH/LIBRARY Chapter 11: Utilities � 1619 

 

 

 

�1          VALUE < Y(1) or N = 0 

�N thru �2    Y(�INDEX � 1) < VALUE < Y(INDEX) 

�(N + 1)     VALUE > Y(N) 

Optional Arguments 
N — Length of vector Y.   (Input) 

Default: N = (size (X,1)) / INCX. 

INCX — Displacement between elements of X.   (Input)  
INCX must be greater than zero. 
Default: INCX = 1. 

FORTRAN 90 Interface 
Generic: CALL SRCH (VALUE, X, INDEX [,…]) 

Specific:  The specific interface names are S_SRCH and D_SRCH. 

FORTRAN 77 Interface 
Single: CALL SRCH (N, VALUE, X, INCX, INDEX) 

Double: The double precision name is DSRCH. 

Example 
This example searches a real vector sorted in ascending order for the value 653.0. The problem 
is discussed by Knuth (1973, pages 407�409). 

      USE SRCH_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=16) 
! 
      INTEGER    INDEX, NOUT 
      REAL       VALUE, X(N) 
! 
      DATA X/61.0, 87.0, 154.0, 170.0, 275.0, 426.0, 503.0, 509.0, & 
          512.0, 612.0, 653.0, 677.0, 703.0, 765.0, 897.0, 908.0/ 
! 
      VALUE = 653.0 
      CALL SRCH (VALUE, X, INDEX) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’INDEX = ’, INDEX 
      END 
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Output 
INDEX =   11 

Description 
Routine SRCH searches a real vector x (stored in X), whose n elements are sorted in ascending 
order for a real number c (stored in VALUE). If c is found in x, its index i (stored in INDEX) is 
returned so that xi = c. Otherwise, a negative number i is returned for the index. Specifically, 

 
if 1 � i � n then xi = c 

if i = �1 then c < x� or n = 0 

if � n � I � � 2 then x�i�� < c < x�i 

if i = �(n + 1) then c > xn 

The argument INCX is useful if a row of a matrix, for example, row number I of a matrix X, 
must be searched. The elements of row I are assumed to be in ascending order. In this case, set 
INCX equal to the leading dimension of X exactly as specified in the dimension statement in the 
calling program. With X declared 

REAL X(LDX,N) 

the invocation 
CALL SRCH (N, VALUE, X(I,1), LDX, INDEX) 

returns an index that will reference a column number of X. 

Routine SRCH performs a binary search. The routine is an implementation of algorithm B 
discussed by Knuth (1973, pages 407�411). 

ISRCH 
Searches a sorted integer vector for a given integer and return its index. 

Required Arguments 
IVALUE — Scalar to be searched for in IY.   (Input) 

IX — Vector of length N * INCX.   (Input)  
IY is obtained from IX for I = 1, 2, �, N by IY(I) = IX(1 + (I � 1) * INCX). IY(1), 
IY(2), �, IY(N) must be in ascending order. 

INDEX — Index of IY pointing to IVALUE.   (Output)  
If INDEX is positive, IVALUE is found in IY. If INDEX is negative, IVALUE is not found 
in IY. 

INDEX      Location of VALUE 
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1 thru N      IVALUE = IY(INDEX ) 

�1          IVALUE < IY(1) or N = 0 

�N thru �2    IY( �INDEX � 1) < IVALUE < IY(�INDEX) 

�(N + 1)     IVALUE > Y(N) 

Optional Arguments 
N — Length of vector IY.   (Input) 

Default: N = size (IX,1) / INCX. 

INCX — Displacement between elements of IX.   (Input)  
INCX must be greater than zero. 
Default: INCX = 1. 

FORTRAN 90 Interface 
Generic: CALL ISRCH (IVALUE, IX, INDEX [,…]) 

Specific:  The specific interface name is S_ISRCH. 

FORTRAN 77 Interface 
Single: CALL ISRCH (N, IVALUE, IX, INCX, INDEX) 

Example 
This example searches an integer vector sorted in ascending order for the value 653. The 
problem is discussed by Knuth (1973, pages 407�409). 

      USE ISRCH_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=16) 
! 
      INTEGER    INDEX, NOUT 
      INTEGER    IVALUE, IX(N) 
! 
      DATA IX/61, 87, 154, 170, 275, 426, 503, 509, 512, 612, 653, 677, & 
             703, 765, 897, 908/ 
! 
      IVALUE = 653 
      CALL ISRCH (IVALUE, IX, INDEX) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’INDEX = ’, INDEX 
      END 



 

 
 

1622 � Chapter 11: Utilities IMSL MATH/LIBRARY 

 

 

 

Output 
INDEX =   11 

Description 
Routine ISRCH searches an integer vector x (stored in IX), whose n elements are sorted in 
ascending order for an integer c (stored in IVALUE). If c is found in x, its index i (stored in 
INDEX) is returned so that xi = c. Otherwise, a negative number i is returned for the index. 
Specifically, 

if 1 � i � n Then xi = c 

if i = �1 Then c < x� or n = 0 

if �n � i � �2 Then x�i��< c < x�i 

if i = �(n + 1) Then c > xn 

The argument INCX is useful if a row of a matrix, for example, row number I of a matrix IX, 
must be searched. The elements of row I are assumed to be in ascending order. Here, set INCX 
equal to the leading dimension of IX exactly as specified in the dimension statement in the 
calling program. With IX declared 
INTEGER IX(LDIX,N) 

the invocation 
CALL ISRCH (N, IVALUE, IX(I,1), LDIX, INDEX) 

returns an index that will reference a column number of IX. 

The routine ISRCH performs a binary search. The routine is an implementation of algorithm B 
discussed by Knuth (1973, pages 407�411). 

SSRCH 
Searches a character vector, sorted in ascending ASCII order, for a given string and return its 
index. 

Required Arguments 
N — Length of vector CHY.   (Input) 

Default: N = size (CHX,1) / INCX. 

STRING — Character string to be searched for in CHY.   (Input) 

CHX — Vector of length N * INCX containing character strings.   (Input)  
CHY is obtained from CHX for I = 1, 2, �, N by CHY(I) = CHX(1 + (I � 1) * INCX). 
CHY(1), CHY(2), �, CHY(N) must be in ascending ASCII order. 

INCX — Displacement between elements of CHX.   (Input)  
INCX must be greater than zero. 
Default: INCX = 1. 
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INDEX — Index of CHY pointing to STRING.   (Output)  
If INDEX is positive, STRING is found in CHY. If INDEX is negative, STRING is not 
found in CHY. 

INDEX      Location of STRING 

1 thru N      STRING = CHY(INDEX) 

�1          STRING < CHY(1) or N = 0 

�N thru �2    CHY(�INDEX � 1) < STRING < CHY(�INDEX) 

�(N + 1)     STRING > CHY(N) 

FORTRAN 90 Interface 
Generic: CALL SSRCH (N, STRING, CHX, INCX, INDEX) 

Specific:  The specific interface name is SSRCH. 

FORTRAN 77 Interface 
Single: CALL SSRCH (N, STRING, CHX, INCX, INDEX) 

Example 
This example searches a CHARACTER * 2 vector containing 9 character strings, sorted in 
ascending ASCII order, for the value ’CC’. 

      USE SSRCH_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=9) 
 
! 
      INTEGER    INDEX, NOUT 
      CHARACTER  CHX(N)*2, STRING*2 
! 
      DATA CHX/’AA’, ’BB’, ’CC’, ’DD’, ’EE’, ’FF’, ’GG’, ’HH’, & 
          ’II’/ 
! 
      INCX   = 1 
      STRING = ’CC’ 
      CALL SSRCH (N, STRING, CHX, INCX, INDEX) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’INDEX = ’, INDEX 
      END 
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Output 
INDEX =   3 

Description 
Routine SSRCH searches a vector of character strings x (stored in CHX), whose n elements are 
sorted in ascending ASCII order, for a character string c (stored in STRING). If c is found in x, 
its index i (stored in INDEX) is returned so that xi = c. Otherwise, a negative number i is returned 
for the index. Specifically, 

if 1 � i � n Then xi = c 

if i = �1 Then c < x� or n = 0 

if �n � I � � 2 Then x�i��< c < x�i 

if i = �(n + 1) Then c > xn 

Here, “<“ and “>” are in reference to the ASCII collating sequence. For comparisons made 
between character strings c and xi with different lengths, the shorter string is considered as if it 
were extended on the right with blanks to the length of the longer string. (SSRCH uses 
FORTRAN intrinsic functions LLT and LGT.) 

The argument INCX is useful if a row of a matrix, for example, row number I of a matrix CHX, 
must be searched. The elements of row I are assumed to be in ascending ASCII order. In this 
case, set INCX equal to the leading dimension of CHX exactly as specified in the dimension 
statement in the calling program. With CHX declared 
CHARACTER * 7 CHX(LDCHX,N) 

the invocation 
CALL SSRCH (N, STRING, CHX(I,1), LDCHX, INDEX) 

returns an index that will reference a column number of CHX. 

Routine SSRCH performs a binary search. The routine is an implementation of algorithm B 
discussed by Knuth (1973, pages 407�411). 

ACHAR 
This function returns a character given its ASCII value. 

Function Return Value 
ACHAR — CHARACTER * 1 string containing the character in the I-th position of the ASCII 

collating sequence.   (Output) 

Required Arguments 
I — Integer ASCII value of the character desired.   (Input)  

I must be greater than or equal to zero and less than or equal to 127. 
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FORTRAN 90 Interface 
Generic: ACHAR (I) 

Specific:  The specific interface name is ACHAR. 

FORTRAN 77 Interface 
Single: ACHAR (I) 

Example 
This example returns the character of the ASCII value 65. 

      USE ACHAR_INT 
      USE UMACH_INT 
      INTEGER    I, NOUT 
! 
      CALL UMACH (2, NOUT) 
!                                 Get character for ASCII value 
!                                 of 65 (’A’) 
      I = 65 
      WRITE (NOUT,99999) I, ACHAR(I) 
! 
99999 FORMAT (’ For the ASCII value of ’, I2, ’, the character is : ’, & 
            A1) 
      END 

Output 
For the ASCII value of 65, the character is : A 

Description 
Routine ACHAR returns the character of the input ASCII value. The input value should be 
between 0 and 127. If the input value is out of range, the value returned in ACHAR is machine 
dependent. 

IACHAR 
This function returns the integer ASCII value of a character argument. 

Function Return Value 
IACHAR — Integer ASCII value for CH.   (Output)  

The character CH is in the IACHAR-th position of the ASCII collating sequence. 

Required Arguments 
CH — Character argument for which the integer ASCII value is desired.   (Input) 
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FORTRAN 90 Interface 
Generic: IACHAR(CH) 

Specific:  The specific interface name is IACHAR. 

FORTRAN 77 Interface 
Single: IACHAR(CH) 

Example 
This example gives the ASCII value of character A. 

      USE IACHAR_INT 
      INTEGER    NOUT 
      CHARACTER  CH 
! 
      CALL UMACH (2, NOUT) 
!                                 Get ASCII value for the character 
!                                 ’A’. 
      CH = ’A’ 
      WRITE (NOUT,99999) CH, IACHAR(CH) 
! 
99999 FORMAT (’ For the character  ’, A1, ’  the ASCII value is : ’, & 
            I3) 
      END 

Output 
For the character  A  the ASCII value is :  65 

Description 
Routine IACHAR returns the ASCII value of the input character. 

ICASE 
This function returns the ASCII value of a character converted to uppercase. 

Function Return Value 
ICASE — Integer ASCII value for CH without regard to the case of CH.   (Output)  

Routine ICASE returns the same value as IACHAR (page 1625) for all but lowercase 
letters. For these, it returns the IACHAR value for the corresponding uppercase letter. 

Required Arguments 
CH — Character to be converted.   (Input) 
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FORTRAN 90 Interface 
Generic: ICASE(CH) 

Specific:  The specific interface name is ICASE. 

FORTRAN 77 Interface 
Single: ICASE(CH) 

Example 
This example shows the case insensitive conversion. 

      USE ICASE_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      CHARACTER  CHR 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Get ASCII value for the character 
!                                 ’a’. 
      CHR = ’a’ 
      WRITE (NOUT,99999) CHR, ICASE(CHR) 
! 
99999 FORMAT (’ For the character  ’, A1, ’  the ICASE value is : ’, & 
            I3) 
      END 

Output 
For the character  a  the ICASE value is :  65 

Description 
Routine ICASE converts a character to its integer ASCII value. The conversion is case 
insensitive; that is, it returns the ASCII value of the corresponding uppercase letter for a 
lowercase letter. 

IICSR 
This function compares two character strings using the ASCII collating sequence but without 
regard to case. 

Function Return Value 
IICSR — Comparison indicator.   (Output)  

Let USTR1 and USTR2 be the uppercase versions of STR1 and STR2, respectively. The 
following table indicates the relationship between USTR1 and USTR2 as determined by 
the ASCII collating sequence.  
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IICSR Meaning 

�1   USTR1 precedes USTR2 

0   USTR1 equals USTR2 

1  USTR1 follows USTR2 

Required Arguments 
STR1 — First character string.   (Input) 

STR2 — Second character string.   (Input) 

FORTRAN 90 Interface 
Generic: IICSR(STR1, STR2) 

Specific:  The specific interface name is IICSR. 

FORTRAN 77 Interface 
Single: IICSR(STR1, STR2) 

Example 
This example shows different cases on comparing two strings. 

      USE IICSR_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      CHARACTER  STR1*6, STR2*6 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Compare String1 and String2 
!                                 String1 is ’bigger’ than String2 
      STR1 = ’ABc 1’ 
      STR2 = ’ ’ 
      WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2) 
! 
!                                 String1 is ’equal’ to String2 
      STR1 = ’AbC’ 
      STR2 = ’ABc’ 
      WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2) 
! 
!                                 String1 is ’smaller’ than String2 
      STR1 = ’ABc’ 
      STR2 = ’aBC 1’ 
      WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2) 
! 
99999 FORMAT (’ For String1 = ’, A6, ’and String2 = ’, A6, & 
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            ’ IICSR = ’, I2, /) 
      END 

Output 
For String1 = ABc 1 and String2 =        IICSR =  1 
 
For String1 = AbC   and String2 = ABc    IICSR =  0 
 
For String1 = ABc   and String2 = aBC 1  IICSR = -1 

Comments 
If the two strings, STR1 and STR2, are of unequal length, the shorter string is considered as if it 
were extended with blanks to the length of the longer string. 

Description 
Routine IICSR compares two character strings. It returns �1 if the first string is less than the 
second string, 0 if they are equal, and 1 if the first string is greater than the second string. The 
comparison is case insensitive. 

IIDEX 
This funcion determines the position in a string at which a given character sequence begins 
without regard to case. 

Function Return Value 
IIDEX — Position in CHRSTR where KEY begins.   (Output)  

If KEY occurs more than once in CHRSTR, the starting position of the first occurrence is 
returned. If KEY does not occur in CHRSTR, then IIDEX returns a zero. 

Required Arguments 
CHRSTR — Character string to be searched.   (Input) 

KEY — Character string that contains the key sequence.   (Input) 

FORTRAN 90 Interface 
Generic: IIDEX(CHRSTR, KEY) 

Specific:  The specific interface name is IIDEX. 

FORTRAN 77 Interface 
Single: IIDEX(CHRSTR, KEY) 
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Example 
This example locates a key string. 

      USE IIDEX_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      CHARACTER  KEY*5, STRING*10 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Locate KEY in STRING 
      STRING = ’a1b2c3d4e5’ 
      KEY    = ’C3d4E’ 
      WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY) 
! 
      KEY = ’F’ 
      WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY) 
! 
99999 FORMAT (’ For STRING = ’, A10, ’ and KEY = ’, A5, ’ IIDEX = ’, I2, & 
            /) 
      END 

Output 
For STRING = a1b2c3d4e5 and KEY = C3d4E IIDEX =  5 
 
For STRING = a1b2c3d4e5 and KEY = F     IIDEX =  0 

Comments 
If the length of KEY is greater than the length CHRSTR, IIDEX returns a zero. 

Description 
Routine IIDEX searches for a key string in a given string and returns the index of the starting 
element at which the key character string begins. It returns 0 if there is no match. The 
comparison is case insensitive. For a case-sensitive version, use the FORTRAN 77 intrinsic 
function INDEX. 

CVTSI  
Converts a character string containing an integer number into the corresponding integer form. 

Required Arguments 
STRING — Character string containing an integer number.   (Input) 

NUMBER — The integer equivalent of STRING.   (Output) 

FORTRAN 90 Interface 
Generic: CALL CVTSI (STRING, NUMBER) 
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Specific:  The specific interface name is CVTSI. 

FORTRAN 77 Interface 
Single: CALL CVTSI (STRING, NUMBER) 

Example 
The string “12345” is converted to an INTEGER variable. 

      USE CVTSI_INT 
      USE UMACH_INT 
      INTEGER    NOUT, NUMBER 
      CHARACTER  STRING*10 
! 
      DATA STRING/’12345’/ 
! 
      CALL CVTSI (STRING, NUMBER) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’NUMBER = ’, NUMBER 
      END 

Output 
NUMBER =   12345 

Description 
Routine CVTSI converts a character string containing an integer to an INTEGER variable. 
Leading and trailing blanks in the string are ignored. If the string contains something other than 
an integer, a terminal error is issued. If the string contains an integer larger than can be 
represented by an INTEGER variable as determined from routine IMACH (see the Reference 
Material), a terminal error is issued. 

CPSEC 
This fuction returns CPU time used in seconds. 

Function Return Value 
CPSEC — CPU time used (in seconds) since first call to CPSEC.   (Output) 

Required Arguments 
None 

FORTRAN 90 Interface 
Generic: CPSEC () 
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Specific:  The specific interface name is CPSEC. 

FORTRAN 77 Interface 
Single: CPSEC (1) 

Comments 
1. The first call to CPSEC returns 0.0. 

2. The accuracy of this routine depends on the hardware and the operating system. On some 
systems, identical runs can produce timings differing by more than 10 percent. 

 
 
 

TIMDY 
Gets time of day. 

Required Arguments 
IHOUR — Hour of the day.   (Output)  

IHOUR is between 0 and 23 inclusive. 

MINUTE — Minute within the hour.   (Output)  
MINUTE is between 0 and 59 inclusive. 

ISEC — Second within the minute.   (Output)  
ISEC is between 0 and 59 inclusive. 

FORTRAN 90 Interface 
Generic: CALL TIMDY (IHOUR, MINUTE, ISEC) 

Specific:  The specific interface name is TIMDY. 

FORTRAN 77 Interface 
Single: CALL TIMDY (IHOUR, MINUTE, ISEC) 

Example 
The following example uses TIMDY to return the current time. Obviously, the output is 
dependent upon the time at which the program is run. 
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      USE TIMDY_INT 
      USE UMACH_INT 
      INTEGER    IHOUR, IMIN, ISEC, NOUT 
! 
      CALL TIMDY (IHOUR, IMIN, ISEC) 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’Hour:Minute:Second = ’, IHOUR, ’:’, IMIN, & 
                   ’:’, ISEC 
      IF (IHOUR .EQ. 0) THEN 
         WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC, & 
                      ’ second(s) past midnight.’ 
      ELSE IF (IHOUR .LT. 12) THEN 
         WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC, & 
                      ’ second(s) past ’, IHOUR, ’ am.’ 
      ELSE IF (IHOUR .EQ. 12) THEN 
         WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC, & 
                      ’ second(s) past noon.’ 
      ELSE 
         WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC, & 
                      ’ second(s) past ’, IHOUR-12, ’ pm.’ 
      END IF 
      END 

Output 
Hour:Minute:Second =   16:  52:  29 
The time is   52 minute(s),   29 second(s) past   4 pm. 

Description 
Routine TIMDY is used to retrieve the time of day. 

TDATE 
Gets today’s date. 

Required Arguments 
IDAY — Day of the month.   (Output)  

IDAY is between 1 and 31 inclusive. 

MONTH — Month of the year.   (Output)  
MONTH is between 1 and 12 inclusive. 

IYEAR — Year.   (Output)  
For example, IYEAR = 1985. 

FORTRAN 90 Interface 
Generic: CALL TDATE (IDAY, MONTH, IYEAR) 

Specific:  The specific interface name is TDATE. 
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FORTRAN 77 Interface 
Single: CALL TDATE (IDAY, MONTH, IYEAR) 

Example 
The following example uses TDATE to return today’s date. 

      USE TDATE_INT 
      USE UMACH_INT 
      INTEGER    IDAY, IYEAR, MONTH, NOUT 
! 
      CALL TDATE (IDAY, MONTH, IYEAR) 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’Day-Month-Year = ’, IDAY, ’-’, MONTH, & 
                   ’-’, IYEAR 
      END 

Output 
 Day-Month-Year =  3 - 12 - 2002 

Description 
Routine TDATE is used to retrieve today’s date. Obviously, the output is dependent upon the date 
the program is run. 

 

NDAYS 
This function computes the number of days from January 1, 1900, to the given date. 

Function Return Value 
NDAYS — Function value.   (Output)  

If NDAYS is negative, it indicates the number of days prior to January 1, 1900. 

Required Arguments 
IDAY — Day of the input date.   (Input) 

MONTH — Month of the input date.   (Input) 

IYEAR — Year of the input date.   (Input)  
1950 would correspond to the year 1950 A.D. and 50 would correspond to year 50 
A.D. 

FORTRAN 90 Interface 
Generic: NDAYS(IDAY, MONTH, IYEAR) 
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Specific:  The specific interface name is NDAYS. 

FORTRAN 77 Interface 
Single: NDAYS(IDAY, MONTH, IYEAR) 

Example 
The following example uses NDAYS to compute the number of days from January 15, 1986, to 
February 28, 1986: 

      USE NDAYS_INT 
      USE UMACH_INT 
      INTEGER    IDAY, IYEAR, MONTH, NDAY0, NDAY1, NOUT 
! 
      IDAY  = 15 
      MONTH = 1 
      IYEAR = 1986 
      NDAY0 = NDAYS(IDAY,MONTH,IYEAR) 
      IDAY  = 28 
      MONTH = 2 
      IYEAR = 1986 
      NDAY1 = NDAYS(IDAY,MONTH,IYEAR) 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’Number of days = ’, NDAY1 - NDAY0 
      END 

Output 
Number of days =   44 

Comments 
1. Informational error 

Type Code 
   1    1 The Julian calendar, the first modern calendar, went into use in 45 

B.C. No calendar prior to 45 B.C. was as universally used nor as 
accurate as the Julian. Therefore, it is assumed that the Julian 
calendar was in use prior to 45 B.C. 

2. The number of days from one date to a second date can be computed by two references 
to NDAYS and then calculating the difference. 

3. The beginning of the Gregorian calendar was the first day after October 4, 1582, which 
became October 15, 1582. Prior to that, the Julian calendar was in use. NDAYS makes 
the proper adjustment for the change in calendars. 

Description 
Function NDAYS returns the number of days from January 1, 1900, to the given date. The 
function NDAYS returns negative values for days prior to January 1, 1900. A negative IYEAR 
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can be used to specify B.C. Input dates in year 0 and for October 5, 1582, through October 14, 
1582, inclusive, do not exist; consequently, in these cases, NDAYS issues a terminal error. 

NDYIN 
Gives the date corresponding to the number of days since January 1, 1900. 

Required Arguments 
NDAYS — Number of days since January 1, 1900.   (Input) 

IDAY — Day of the input date.   (Output) 

MONTH — Month of the input date.   (Output) 

IYEAR — Year of the input date.   (Output)  
1950 would correspond to the year 195 A.D. and �50 would correspond to year 50 
B.C. 

FORTRAN 90 Interface 
Generic: CALL NDYIN (NDAYS, IDAY, MONTH, IYEAR) 

Specific:  The specific interface name is NDYIN. 

FORTRAN 77 Interface 
Single: CALL NDYIN (NDAYS, IDAY, MONTH, IYEAR) 

Example 
The following example uses NDYIN to compute the date for the 100th day of 1986. This is 
accomplished by first using NDAYS (page 1634) to get the “day number” for December 31, 1985. 

      USE NDYIN_INT 
      USE NDAYS_INT 
      USE UMACH_INT 
      INTEGER    IDAY, IYEAR, MONTH, NDAYO, NOUT 
! 
      NDAY0 = NDAYS(31,12,1985) 
      CALL NDYIN (NDAY0+100, IDAY, MONTH, IYEAR) 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’Day 100 of 1986 is (day-month-year) ’, IDAY, & 
                   ’-’, MONTH, ’-’, IYEAR 
      END 

Output 
Day 100 of 1986 is (day-month-year)   10-  4-  1986 
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Comments 
The beginning of the Gregorian calendar was the first day after October 4, 1582, which became 
October 15, 1582. Prior to that, the Julian calendar was in use. Routine NDYIN makes the proper 
adjustment for the change in calendars. 

Description 
Routine NDYIN computes the date corresponding to the number of days since January 1, 1900. 
For an input value of NDAYS that is negative, the date  
computed is prior to January 1, 1900. The routine NDYIN is the inverse of NDAYS (page 1634). 

IDYWK 
This function computes the day of the week for a given date. 

Function Return Value 
IDYWK — Function value.   (Output)  

The value of IDYWK ranges from 1 to 7, where 1 corresponds to Sunday and 7 
corresponds to Saturday. 

Required Arguments 
IDAY — Day of the input date.   (Input) 

MONTH — Month of the input date.   (Input) 

IYEAR — Year of the input date.   (Input)  
1950 would correspond to the year 1950 A.D. and 50 would correspond to year 50 
A.D. 

FORTRAN 90 Interface 
Generic: IDYWK(IDAY, MONTH, IYEAR) 

Specific:  The specific interface name is IDYWK. 

FORTRAN 77 Interface 
Single: IDYWK(IDAY, MONTH, IYEAR) 

Example 
The following example uses IDYWK to return the day of the week for February 24, 1963. 

      USE IDYWK_INT 
      USE UMACH_INT 
      INTEGER    IDAY, IYEAR, MONTH, NOUT 
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! 
      IDAY  = 24 
      MONTH = 2 
      IYEAR = 1963 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’IDYWK (index for day of week) = ’, & 
                    IDYWK(IDAY,MONTH,IYEAR) 
      END 

Output 
IDYWK (index for day of week) =   1 

Comments 
1. Informational error 

Type Code 
   1    1 The Julian calendar, the first modern calendar, went into use in 45 

B.C. No calendar prior to 45 B.C. was as universally used nor as 
accurate as the Julian. Therefore, it is assumed that the Julian 
calendar was in use prior to 45 B.C. 

2. The beginning of the Gregorian calendar was the first day after October 4, 1582, which 
became October 15, 1582. Prior to that, the Julian calendar was in use. Function IDYWK 
makes the proper adjustment for the change in calendars. 

Description 
Function IDYWK returns an integer code that specifies the day of week for a given date. Sunday 
corresponds to 1, Monday corresponds to 2, and so forth. 

A negative IYEAR can be used to specify B.C. Input dates in year 0 and for October 5, 1582, 
through October 14, 1582, inclusive, do not exist; consequently, in these cases, IDYWK issues a 
terminal error. 

VERML 
This function obtains IMSL MATH/LIBRARY-related version, system and serial numbers. 

Function Return Value 
VERML — CHARACTER string containing information.   (Output) 

Required Arguments 
ISELCT — Option for the information to retrieve.   (Input)  

ISELCT VERML 

1  IMSL MATH/LIBRARY version number 
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2  Operating system (and version number) for which the library was produced. 

3  Fortran compiler (and version number) for which the library was produced. 

4  IMSL MATH/LIBRARY serial number 

FORTRAN 90 Interface 
Generic: VERML(ISELCT) 

Specific:  The specific interface name is VERML. 

FORTRAN 77 Interface 
Single: VERML(ISELCT) 

Example 
In this example, we print all of the information returned by VERML on a particular machine. The 
output is omitted because the results are system dependent. 

      USE UMACH_INT 
      USE VERML_INT 
      INTEGER    ISELCT, NOUT 
      CHARACTER  STRING(4)*50, TEMP*32 
! 
      STRING(1) = ’(’’ IMSL MATH/LIBRARY Version Number:  ’’, A)’ 
      STRING(2) = ’(’’ Operating System ID Number:  ’’, A)’ 
      STRING(3) = ’(’’ Fortran Compiler Version Number:  ’’, A)’ 
      STRING(4) = ’(’’ IMSL MATH/LIBRARY Serial Number:  ’’, A)’ 
!                                 Print the versions and numbers. 
      CALL UMACH (2, NOUT) 
      DO 10  ISELCT=1, 4 
         TEMP = VERML(ISELCT) 
         WRITE (NOUT,STRING(ISELCT)) TEMP 
   10 CONTINUE 
      END 

Output 
IMSL MATH/LIBRARY Version Number:  IMSL MATH/LIBRARY Version 2.0 
Operating System ID Number:  SunOS 4.1.1 
Fortran Compiler Version Number:  f77 Sun FORTRAN 1.3.1 
IMSL MATH/LIBRARY Serial Number:  123456 

RAND_GEN 
Generates a rank-1 array of random numbers. The output array entries are positive and less than 1 
in value. 
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Required Argument 
X — Rank-1 array containing the random numbers.   (Output) 

Optional Arguments 
irnd = irnd   (Output) 

Rank-1 integer array. These integers are the internal results of the Generalized 
Feedback Shift Register (GFSR) algorithm. The values are scaled to yield the floating-
point array X. The output array entries are between 1 and 231 � 1 in value. 

istate_in = istate_in   (Input) 
Rank-1 integer array of size 3p + 2, where p = 521, that defines the ensuing state of the 
GFSR generator. It is used to reset the internal tables to a previously defined state. It is 
the result of a previous use of the “istate_out=” optional argument. 

istate_out = istate_out   (Output) 
Rank-1 integer array of size 3p + 2 that describes the current state of the GFSR 
generator. It is normally used to later reset the internal tables to the state defined 
following a return from the GFSR generator. It is the result of a use of the generator 
without a user initialization, or it is the result of a previous use of the optional 
argument “istate_in=” followed by updates to the internal tables from newly generated 
values. Example 2 illustrates use of istate_in and istate_out for setting and then 
resetting rand_gen so that the sequence of integers, irnd, is repeatable. 

iopt = iopt(:)   (Input[/Output]) 
Derived type array with the same precision as the array x; used for passing optional 
data to rand_gen. The options are as follows: 

Packaged Options for RAND_GEN 

Option Prefix = ? Option Name Option Value 

s_, d_ Rand_gen_generator_seed 1 

s_, d_ Rand_gen_LCM_modulus 2 

s_, d_ Rand_gen_use_Fushimi_start 3 

iopt(IO) = ?_options(?_rand_gen_generator_seed, ?_dummy) 
Sets the initial values for the GFSR. The present value of the seed, obtained by default 
from the real-time clock as described below, swaps places with  
iopt(IO + 1)%idummy. If the seed is set before any current usage of rand_gen, the 
exchanged value will be zero.  

iopt(IO) = ?_options(?_rand_gen_LCM_modulus, ?_dummy)  

iopt(IO+1) = ?_options(modulus, ?_dummy) 
Sets the initial values for the GFSR. The present value of the LCM, with default value 
k = 16807, swaps places with iopt(IO+1)%idummy. 
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iopt(IO) = ?_options(?_rand_gen_use_Fushimi_start, ?_dummy) 
Starts the GFSR sequence as suggested by Fushimi (1990). The default starting 
sequence is with the LCM recurrence described below. 

FORTRAN 90 Interface 
Generic: CALL RAND_GEN (X [,…]) 

Specific:  The specific interface names are S_RAND_GEN and D_RAND_GEN. 

Example 1: Running Mean and Variance 
An array of random numbers is obtained. The sample mean and variance are computed. These val-
ues are compared with the same quantities computed using a stable method for the running means 
and variances, sequentially moving through the data. Details about the running mean and variance 
are found in Henrici (1982, pp. 21�23). 

 
use rand_gen_int  
  
      implicit none  
  
! This is Example 1 for RAND_GEN.  
  
      integer i  
      integer, parameter :: n=1000  
      real(kind(1e0)), parameter :: one=1e0, zero=0e0  
      real(kind(1e0)) x(n), mean_1(0:n), mean_2(0:n), s_1(0:n), s_2(0:n)  
  
! Obtain random numbers.  
      call rand_gen(x)  
  
! Calculate each partial mean.  
      do i=1,n  
        mean_1(i) = sum(x(1:i))/i  
      end do  
  
! Calculate each partial variance.  
      do i=1,n  
        s_1(i)=sum((x(1:i)-mean_1(i))**2)/i  
      end do  
  
      mean_2(0)=zero  
      mean_2(1)=x(1)  
      s_2(0:1)=zero  
  
! Alternately calculate each running mean and variance,  
! handling the random numbers once.  
      do i=2,n  
       mean_2(i)=((i-1)*mean_2(i-1)+x(i))/i  
       s_2(i)   = (i-1)*s_2(i-1)/i+(mean_2(i)-x(i))**2/(i-1)  
      end do  
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! Check that the two sets of means and variances agree.  
      if (maxval(abs(mean_1(1:)-mean_2(1:))/mean_1(1:)) <= &  
              sqrt(epsilon(one))) then  
         if (maxval(abs(s_1(2:)-s_2(2:))/s_1(2:)) <= &  
              sqrt(epsilon(one))) then  
            write (*,*) 'Example 1 for RAND_GEN is correct.'  
         end if  
      end if  
  
      end  

Output 
Example 1 for RAND_GEN is correct. 

Description 
This GFSR algorithm is based on the recurrence 

3 3t t p t px x x
� �

� �  

where a � b is the exclusive OR operation on two integers a and b. This operation is performed 
until size(x) numbers have been generated. The subscripts in the recurrence formula are 
computed modulo 3p. These numbers are converted to floating point by effectively multiplying 
the positive integer quantity  

1tx �  

by a scale factor slightly smaller than 1./(huge(1)). The values p = 521 and  
q = 32 yield a sequence with a period approximately 

156.82 10p
�  

The default initial values for the sequence of integers {xt} are created by a congruential generator 
starting with an odd integer seed  

� �_ (1)| 2 1 | 1bit sizem v count� � � � �  

obtained by the Fortran 90 real-time clock routine: 
CALL SYSTEM_CLOCK(COUNT=count,CLOCK_RATE=CLRATE)  

An error condition is noted if the value of CLRATE=0. This indicates that the processor does not 
have a functioning real-time clock. In this exceptional case a starting seed must be provided by the 
user with the optional argument “iopt=” and option number ?_rand_generator_seed. The 
value v is the current clock for this day, in milliseconds.  This value is obtained using the date 
routine: 

CALL DATE_AND_TIME(VALUES=values)  

and converting values(5:8) to milliseconds. 

The LCM generator initializes the sequence {xt} using the following recurrence: 

� �� �, mod 1 / 2m m k huge� �  
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The default value of k = 16807. Using the optional argument “iopt=” and the packaged option 
number ?_rand_gen_LCM_modulus, k can be given an alternate value. The option number 
?_rand_gen_generator_seed can be used to set the initial value of m instead of using the 
asynchronous value given by the system clock. This is illustrated in Example 2. If the default 
choice of m results in an unsatisfactory starting sequence or it is necessary to duplicate the 
sequence, then it is recommended that users set the initial seed value to one of their own choosing. 
Resetting the seed complicates the usage of the routine. 

This software is based on Fushimi (1990), who gives a more elaborate starting sequence for the 
{xt} .  The starting sequence suggested by Fushimi can be used with the option number 
?_rand_gen_use_Fushimi_start. Fushimi’s starting process is more expensive than the 
default method, and it is equivalent to starting in another place of the sequence with period 2p. 

Additional Examples 

Example 2: Seeding, Using, and Restoring the Generator 
 
     use rand_gen_int  
  
      implicit none  
  
! This is Example 2 for RAND_GEN.  
  
      integer i  
      integer, parameter :: n=34, p=521  
      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0  
      integer irndi(n), i_out(3*p+2), hidden_message(n)  
      real(kind(1e0)) x(n), y(n)  
      type(s_options) :: iopti(2)=s_options(0,zero)  
      character*34 message, returned_message  
  
! This is the message to be hidden.  
      message = 'SAVE YOURSELF.  WE ARE DISCOVERED!'  
  
! Start the generator with a known seed.  
      iopti(1) = s_options(s_rand_gen_generator_seed,zero)  
      iopti(2) = s_options(123,zero)  
      call rand_gen(x, iopt=iopti)  
  
! Save the state of the generator.  
      call rand_gen(x, istate_out=i_out)  
  
! Get random integers.  
      call rand_gen(y, irnd=irndi)       
  
! Hide text using collating sequence subtracted from integers.  
      do i=1, n  
         hidden_message(i) = irndi(i) - ichar(message(i:i))  
      end do  
  
! Reset generator to previous state and generate the previous  
! random integers.  
      call rand_gen(x, irnd=irndi, istate_in=i_out)  
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! Subtract hidden text from integers and convert to character.  
      do i=1, n  
         returned_message(i:i) = char(irndi(i) - hidden_message(i))  
      end do  
  
! Check the results.  
      if (returned_message == message) then  
 
 
 
         write (*,*) 'Example 2 for RAND_GEN is correct.'  
      end if  
  
      end  

Output 
Example 2 for RAND_GEN is correct. 

Example 3: Generating Strategy with a Histogram 
We generate random integers but with the frequency as in a histogram with nbins slots.  The 
generator is initially used a large number of times to demonstrate that it is making choices with the 
same shape as the histogram.  This is not required to generate samples.  The program next 
generates a summary set of integers according to the histogram.  These are not repeatable and are 
representative of the histogram in the sense of looking at 20 integers during generation of a large 
number of samples. 

        use rand_gen_int  
        use show_int  
    
      implicit none  
  
! This is Example 3 for RAND_GEN.  
  
      integer i, i_bin, i_map, i_left, i_right  
      integer, parameter :: n_work=1000  
      integer, parameter :: n_bins=10  
      integer, parameter :: scale=1000  
      integer, parameter :: total_counts=100  
      integer, parameter :: n_samples=total_counts*scale  
      integer, dimension(n_bins) :: histogram=  &   
        (/4,  6,  8, 14, 20, 17, 12,  9,  7,  3 /)   
      integer, dimension(n_work) :: working=0  
      integer, dimension(n_bins) :: distribution=0  
      integer break_points(0:n_bins)  
      real(kind(1e0)) rn(n_samples)  
      real(kind(1e0)), parameter :: tolerance=0.005  
  
  
      integer, parameter :: n_samples_20=20  
      integer rand_num_20(n_samples_20)  
      real(kind(1e0)) rn_20(n_samples_20)  
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! Compute the normalized cumulative distribution.  
      break_points(0)=0  
      do i=1,n_bins  
        break_points(i)=break_points(i-1)+histogram(i)  
      end do  
  
      break_points=break_points*n_work/total_counts  
  
! Obtain uniform random numbers.   
        call rand_gen(rn)    
   
  
! Set up the secondary mapping array.  
      do i_bin=1,n_bins  
        i_left=break_points(i_bin-1)+1  
        i_right=break_points(i_bin)   
        do i=i_left, i_right  
          working(i)=i_bin  
        end do  
      end do  
  
! Map the random numbers into the 'distribution' array.   
! This is made approximately proportional to the histogram.  
      do i=1,n_samples  
        i_map=nint(rn(i)*(n_work-1)+1)  
        distribution(working(i_map))=  &  
          distribution(working(i_map))+1  
      end do  
  
! Check the agreement between the distribution of the   
! generated random numbers and the original histogram.  
       write (*, '(A)', advance='no') 'Original: '  
       write (*, '(10I6)') histogram*scale  
       write (*, '(A)', advance='no') 'Generated:'  
       write (*, '(10I6)') distribution  
  
      if (maxval(abs(histogram(1:)*scale-distribution(1:))) &  
            <= tolerance*n_samples) then  
        write(*, '(A/)') 'Example 3 for RAND_GEN is correct.'  
      end if  
  
! Generate 20 integers in 1, 10 according to the distribution  
! induced by the histogram.  
        call rand_gen(rn_20)   
   
! Map from the uniform distribution to the induced distribution.   
      do i=1,n_samples_20  
        i_map=nint(rn_20(i)*(n_work-1)+1)  
        rand_num_20(i)=working(i_map)  
      end do  
          
        call show(rand_num_20,&  
'Twenty integers generated according to the histogram:')  
      end 
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Output 
Example 3 for RAND_GEN is correct. 

Example 4: Generating with a Cosine Distribution 
We generate random numbers based on the continuous distribution function 

� � � �� �1 cos / 2 ,p x x x� � �� � � � �  

Using the cumulative  

� � � � � �� �1/ 2 sin / 2
x

q x p t dt x x
�

�
�

� � � ��  

we generate the samples by obtaining uniform samples u, 0 < u < 1 and solve the equation  

� � 0,q x u x� �� � � � �  

These are evaluated in vector form, that is all entries at one time, using Newton’s method: 

� �� � � �, /x x dx dx q x u p x� � � �  

An iteration counter forces the loop to terminate, but this is not often required although it is an 
important detail. 

 
      use rand_gen_int   
      use show_int  
      use Numerical_Libraries  
  
        IMPLICIT NONE  
  
! This is Example 4 for RAND_GEN.  
  
      integer i, i_map, k  
      integer, parameter :: n_bins=36  
      integer, parameter :: offset=18  
      integer, parameter :: n_samples=10000  
      integer, parameter :: n_samples_30=30  
      integer, parameter :: COUNT=15  
  
      real(kind(1e0)) probabilities(n_bins)  
      real(kind(1e0)), dimension(n_bins) :: counts=0.0  
      real(kind(1e0)), dimension(n_samples) :: rn, x, f, fprime, dx  
      real(kind(1e0)), dimension(n_samples_30) :: rn_30, &  
               x_30, f_30, fprime_30, dx_30  
      real(kind(1e0)), parameter :: one=1e0, zero=0e0, half=0.5e0  
      real(kind(1e0)), parameter :: tolerance=0.01  
      real(kind(1e0)) two_pi, omega  
         
! Initialize values of 'two_pi' and 'omega'.  
       two_pi=2.0*const((/'pi'/))  
       omega=two_pi/n_bins  
  
! Compute the probabilities for each bin according to  
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! the probability density (cos(x)+1)/(2*pi), -pi<x<pi.  
      do i=1,n_bins  
        probabilities(i)=(sin(omega*(i-offset))  &  
            -sin(omega*(i-offset-1))+omega)/two_pi  
      end do  
  
! Obtain uniform random numbers in (0,1).   
      call rand_gen(rn)    
   
! Use Newton's method to solve the nonlinear equation:  
! accumulated_distribution_function - random_number = 0.  
      x=zero; k=0  
      solve_equation: do  
        f=(sin(x)+x)/two_pi+half-rn  
        fprime=(one+cos(x))/two_pi  
        dx=f/fprime  
        x=x-dx; k=k+1  
        if (maxval(abs(dx)) <= sqrt(epsilon(one)) &  
              .or. k > COUNT) exit solve_equation  
      end do solve_equation  
  
! Map the random numbers 'x' array into the 'counts' array.   
        do i=1,n_samples  
          i_map=int(x(i)/omega+offset)+1  
          counts(i_map)=counts(i_map)+one  
        end do  
  
! Normalize the counts array.  
      counts=counts/n_samples  
  
! Check that the generated random numbers are indeed   
! based on the original distribution.  
      if (maxval(abs(counts(1:)-probabilities(1:))) &  
            <= tolerance) then  
        write (*,'(a/)') 'Example 4 for RAND_GEN is correct.'  
      end if  
  
! Generate 30 random numbers in (-pi,pi) according to   
! the probability density (cos(x)+1)/(2*pi), -pi<x<pi.  
        call rand_gen(rn_30)    
   
      x_30=0.0; k=0  
      solve_equation_30: do  
        f_30=(sin(x_30)+x_30)/two_pi+half-rn_30  
        fprime_30=(one+cos(x_30))/two_pi  
        dx_30=f_30/fprime_30  
        x_30=x_30-dx_30  
        if (maxval(abs(dx_30)) <= sqrt(epsilon(one))&  
             .or. k > COUNT) exit solve_equation_30  
      end do solve_equation_30  
  
        write(*,'(A)') 'Thirty random numbers generated ', &  
                   'according to the probability density ',&  
                   'pdf(x)=(cos(x)+1)/(2*pi), -pi<x<pi:'  
  



 

 
 

1648 � Chapter 11: Utilities IMSL MATH/LIBRARY 

 

 

 

        call show(x_30)  
        end  

 Output 
Example 4 for RAND_GEN is correct. 

Fatal and Terminal Error Messages 
See the messages.gls file for error messages for rand_gen. These error messages are numbered 
521�528; 541�548. 

 

 

RNGET 
Retrieves the current value of the seed used in the IMSL random number generators. 

Required Arguments 
ISEED — The seed of the random number generator.   (Output)  
ISEED is in the range (1, 2147483646). 

FORTRAN 90 Interface 
Generic: CALL RNGET (ISEED) 

Specific:  The specific interface name is RNGET. 

FORTRAN 77 Interface 
Single: CALL RNGET (ISEED) 

Example 
The following FORTRAN statements illustrate the use of RNGET: 

 

      INTEGER ISEED 
!                        Call RNSET to initialize the seed. 
      CALL RNSET(123457) 
!                        Do some simulations. 
         ... 
         ... 
      CALL RNGET(ISEED) 
!                        Save ISEED.  If the simulation is to be continued 
!                        in a different program, ISEED should be output, 
!                        possibly to a file. 
         ... 
         ... 



 

 
 

IMSL MATH/LIBRARY Chapter 11: Utilities � 1649 

 

 

 

!                        When the simulations begun above are to be 
!                        restarted, restore ISEED to the value obtained 
!                        above and use as input to RNSET. 
      CALL RNSET(ISEED) 
!                        Now continue the simulations. 
         ... 
         ... 

Description 
Routine RNGET retrieves the current value of the “seed” used in the IMSL random number 
generators. A reason for doing this would be to restart a simulation, using RNSET to reset the 
seed. 

 

RNSET 
Initializes a random seed for use in the IMSL random number generators. 

Required Arguments 
ISEED — The seed of the random number generator.   (Input)  

ISEED must be in the range (0, 2147483646). If ISEED is zero, a value is computed 
using the system clock; and, hence, the results of programs using the IMSL random 
number generators will be different at different times. 

FORTRAN 90 Interface 
Generic: CALL RNSET (ISEED) 

Specific:  The specific interface name is RNSET . 

FORTRAN 77 Interface 
Single: CALL RNSET (ISEED) 

Example 
The following FORTRAN statements illustrate the use of RNSET: 

 

        INTEGER ISEED 
!                          Call RNSET to initialize the seed via the 
!                          system clock. 
        CALL RNSET(0) 
!                          Do some simulations. 
            ... 
            ... 
!                          Obtain the current value of the seed. 
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        CALL RNGET(ISEED) 
!                          If the simulation is to be continued in a 
!                          different program, ISEED should be output, 
!                          possibly to a file. 
             ... 
             ... 
!                          When the simulations begun above are to be 
!                          restarted, restore ISEED to the value 
!                          obtained above, and use as input to RNSET. 
        CALL RNSET(ISEED) 
!                          Now continue the simulations. 
             ... 
             ... 

Description 
Routine RNSET is used to initialize the seed used in the IMSL random number generators. If the 
seed is not initialized prior to invocation of any of the routines for random number generation 
by calling RNSET, the seed is initialized via the system clock. The seed can be reinitialized to a 
clock-dependent value by calling RNSET with ISEED set to 0. 

The effect of RNSET is to set some values in a FORTRAN COMMON block that is used by the 
random number generators. 

A common use of RNSET is in conjunction with RNGET (page 1648) to restart a simulation. 

RNOPT 
Selects the uniform (0, 1) multiplicative congruential pseudorandom number generator. 

Required Arguments 
IOPT — Indicator of the generator.   (Input)  

The random number generator is either a multiplicative congruential generator with 
modulus 2�� � 1 or a GFSR generator. IOPT is used to choose the multiplier and 
whether or not shuffling is done, or else to choose the GFSR method. 

IOPT Generator 

1 The multiplier 16807 is used. 

2 The multiplier 16807 is used with shuffling. 

3 The multiplier 397204094 is used. 

4 The multiplier 397204094 is used with shuffling. 

5 The multiplier 950706376 is used. 

6 The multiplier 950706376 is used with shuffling. 
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7 GFSR, with the recursion Xt = Xt����� � Xt��� is used. 

FORTRAN 90 Interface 
Generic: CALL RNOPT (IOPT) 

Specific:  The specific interface name is RNOPT. 

FORTRAN 77 Interface 
Single: CALL RNOPT (IOPT) 

Description 
The IMSL uniform pseudorandom number generators use a multiplicative congruential method, 
with or without shuffling or else a GFSR method. Routine RNOPT determines which method is 
used; and in the case of a multiplicative congruential method, it determines the value of the 
multiplier and whether or not to use shuffling. The description of RNUN (page 1653) may 
provide some guidance in the choice of the form of the generator. If no selection is made 
explicitly, the generators use the multiplier 16807 without shuffling. This form of the generator 
has been in use for some time (see Lewis, Goodman, and Miller, 1969). This is the generator 
formerly known as GGUBS in the IMSL Library. It is the “minimal standard generator” discussed 
by Park and Miller (1988). 

Example 
The FORTRAN statement 

CALL RNOPT(1) 

would select the simple multiplicative congruential generator with multiplier 16807. Since this 
is the same as the default, this statement would have no effect unless RNOPT had previously 
been called in the same program to select a different generator. 

RNUNF 
This function generates a pseudorandom number from a uniform (0, 1) distribution. 

Function Return Value 
RNUNF — Function value, a random uniform (0, 1) deviate.   (Output) 

See Comment 1. 

Required Arguments 
None 



 

 
 

1652 � Chapter 11: Utilities IMSL MATH/LIBRARY 

 

 

 

FORTRAN 90 Interface 
Generic: RNUNF () 

Specific:  The specific interface names are S_RNUNF and D_RNUNF. 

FORTRAN 77 Interface 
Single: RNUNF () 

Double: The double precision name is DRNUNF.  

Example 
In this example, RNUNF is used to generate five pseudorandom uniform numbers. Since RNOPT 
(page 1650) is not called, the generator used is a simple multiplicative congruential one with a 
multiplier of 16807. 

      USE RNUNF_INT 
      USE RNSET_INT 
      USE UMACH_INT 
      INTEGER    I, ISEED, NOUT 
      REAL       R(5) 
! 
      CALL UMACH (2, NOUT) 
      ISEED = 123457 
      CALL RNSET (ISEED) 
      DO 10  I=1, 5 
         R(I) = RNUNF() 
   10 CONTINUE 
      WRITE (NOUT,99999) R 
99999 FORMAT (’      Uniform random deviates: ’, 5F8.4) 
      END 

Output 
Uniform random deviates:   0.9662  0.2607  0.7663  0.5693  0.8448 

Comments 
1. If the generic version of this function is used, the immediate result must be stored in a 

variable before use in an expression. For example: 

X = RNUNF(6) 
Y = SQRT(X) 
 
must be used rather than 

Y = SQRT(RNUNF(6)) 

 If this is too much of a restriction on the programmer, then the specific name can be 
used without this restriction. 



 

 
 

IMSL MATH/LIBRARY Chapter 11: Utilities � 1653 

 

 

 

2. Routine RNSET (page 1649) can be used to initialize the seed of the random number 
generator. The routine RNOPT (page 1650) can be used to select the form of the 
generator. 

3. This function has a side effect: it changes the value of the seed, which is passed 
through a common block. 

Description 
Routine RNUNF is the function form of RNUN (page 1653). The routine RNUNF generates 
pseudorandom numbers from a uniform (0, 1) distribution. The algorithm used is determined by 
RNOPT (page 1650). The values returned by RNUNF are positive and less than 1.0. 

If several uniform deviates are needed, it may be more efficient to obtain them all at once by a 
call to RNUN rather than by several references to RNUNF. 

RNUN 
Generates pseudorandom numbers from a uniform (0, 1) distribution. 

Required Arguments 
R — Vector of length NR containing the random uniform (0, 1) deviates.   (Output) 

Optional Arguments 
NR — Number of random numbers to generate.   (Input) 

Default: NR = size (R,1). 

FORTRAN 90 Interface 
Generic: CALL RNUN (R [,…]) 

Specific:  The specific interface names are S_RNUN and D_RNUN. 

FORTRAN 77 Interface 
Single: CALL RNUN (NR, R) 

Double: The double precision name is DRNUN. 

Example 
In this example, RNUN is used to generate five pseudorandom uniform numbers. Since RNOPT 
(page 1650) is not called, the generator used is a simple multiplicative congruential one with a 
multiplier of 16807. 
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      USE RNUN_INT 
      USE RNSET_INT 
      USE UMACH_INT 
      INTEGER    ISEED, NOUT, NR 
      REAL       R(5) 
! 
      CALL UMACH (2, NOUT) 
      NR    = 5 
      ISEED = 123457 
      CALL RNSET (ISEED) 
      CALL RNUN (R) 
      WRITE (NOUT,99999) R 
99999 FORMAT (’      Uniform random deviates: ’, 5F8.4) 
      END 

Output 
Uniform random deviates:    .9662   .2607   .7663   .5693   .8448 

Comments 
The routine RNSET (page 1649) can be used to initialize the seed of the random number 
generator. The routine RNOPT (page 1650) can be used to select the form of the generator. 

Description 
Routine RNUN generates pseudorandom numbers from a uniform (0,1) distribution using either a 
multiplicative congruential method or a generalized feedback shift register (GFSR) method. The 
form of the multiplicative congruential generator is 

� �31
1 mod 2 1i ix cx

�

� �  

Each xi is then scaled into the unit interval (0,1). The possible values for c in the IMSL 
generators are 16807, 397204094, and 950706376. The selection is made by the routine RNOPT 
(page 1650). The choice of 16807 will result in the fastest execution time. If no selection is 
made explicitly, the routines use the multiplier 16807. 

The user can also select a shuffled version of the multiplicative congruential generators. In this 
scheme, a table is filled with the first 128 uniform (0,1) numbers resulting from the simple 
multiplicative congruential generator. Then, for each xi from the simple generator, the low-order 
bits of xi are used to select a random integer, j, from 1 to 128. The j-th entry in the table is then 
delivered as the random number; and xi, after being scaled into the unit interval, is inserted into 
the j-th position in the table. 

The GFSR method is based on the recursion Xt = Xt����� � Xt���. This generator, which is 
different from earlier GFSR generators, was proposed by Fushimi (1990), who discusses the 
theory behind the generator and reports on several empirical tests of it. The values returned in R 
by RNUN are positive and less than 1.0. Values in R may be smaller than the smallest relative 
spacing, however. Hence, it may be the case that some value R(i) is such that 1.0 � R(i) = 1.0. 

Deviates from the distribution with uniform density over the interval (A, B) can be obtained by 
scaling the output from RNUN. The following statements (in single precision) would yield 
random deviates from a uniform (A, B) distribution: 
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       CALL RNUN (NR, R) 
       CALL SSCAL (NR, B-A, R, 1) 
       CALL SADD (NR, A, R, 1) 

FAURE_INIT 
Shuffled Faure sequence initialization. 

Required Arguments 
NDIM —   The dimension of the hyper-rectangle.   (Input) 

STATE —   An IMSL_FAURE pointer for the derived type created by the call to 
FAURE_INIT. The output contains information about the sequence. Use 
?_IMSL_FAURE as the type, where ?_ is S_ or D_ depending on precision.   (Output) 

Optional Arguments 
NBASE —  The base of the Faure sequence.   (Input) 

Default: The smallest prime number greater than or equal to NDIM. 

NSKIP — The number of points to be skipped at the beginning of the Faure sequence.   
(Input) 

Default: basem/2 1� , where m � log / log B base  and B is the largest machine 
representable integer.  

FORTRAN 90 Interface 
Generic: CALL FAURE_INIT (NDIM, STATE [,…]) 

Specific:  The specific interface names are S_FAURE_INIT and D_FAURE_INIT. 

FAURE_FREE 
Frees the structure containing information about the Faure sequence. 

Required Arguments 
STATE  —  An IMSL_FAURE pointer containing the structure created by the call to 

FAURE_INIT.   (Input/Output) 

FORTRAN 90 Interface 
Generic: CALL FAURE_FREE (STATE) 
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Specific: The specific interface names are S_FAURE_FREE and D_FAURE_FREE. 

FAURE_NEXT 
Computes a shuffled Faure sequence. 

Required Arguments 
STATE —  An IMSL_FAURE pointer containing the structure created by the call to 

FAURE_INIT.  The structure contains information about the sequence.  The structure 
should be freed using FAURE_FREE after it is no longer needed.   (Input/Output) 

NEXT_PT  —  Vector of length NDIM containing the next point in the shuffled Faure 
sequence, where NDIM is the dimension of the hyper-rectangle specified in 
FAURE_INIT.      (Output)  

Optional Arguments 
IMSL_RETURN_SKIP — Returns the current point in the sequence. The sequence can be 

restarted by calling FAURE_INIT using this value for NSKIP, and using the same value 
for NDIM.   (Input) 

FORTRAN 90 Interface 
Generic: CALL FAURE_NEXT (STATE, NEXT_PT [,…]) 

Specific:  The specific interface names are S_FAURE_NEXT and D_FAURE_NEXT. 

Example  
In this example, five points in the Faure sequence are computed. The points are in the three-
dimensional unit cube. 
Note that FAURE_INIT is used to create a structure that holds the state of the sequence. Each call 
to FAURE_NEXT returns the next point in the sequence and updates the IMSL_FAURE structure. The 
final call to FAURE_FREE frees data items, stored in the structure, that were allocated by 
FAURE_INIT. 

 
        use faure_int 
        implicit none 
        type (s_imsl_faure), pointer  :: state 
        real(kind(1e0))          :: x(3) 
        integer,parameter :: ndim=3 
        integer           :: k 
!                                  CREATE THE STRUCTURE THAT HOLDS 
!                                  THE STATE OF THE SEQUENCE. 
        call faure_init(ndim, state) 
!                                  GET THE NEXT POINT IN THE SEQUENCE 
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        do k=1,5 
           call faure_next(state, x) 
           write(*,'(3F15.3)') x(1), x(2) , x(3) 
        enddo 
!                                   FREE DATA ITEMS STORED IN 
!                                   state STRUCTURE 
        call faure_free(state) 

                     end  

Output 
     0.334      0.493       0.064 
     0.667      0.826       0.397 
     0.778      0.270       0.175 
     0.111      0.604       0.509 
     0.445      0.937       0.842 

Description 
The routines FAURE_INT and FAURE_NEXT are used to generate shuffled Faure sequence of low 
discrepancy n-dimensional points. Low discrepency series fill an n-dimensional cube more 
uniformly than psuedo-random sequences, and are used in multivariate quadrature, simulation, 
and global optimization.  Because of this uniformity, use of low discrepency series is generally 
more effiicient than psuedo-random series for multivariate Monte Carlo methods.  See the IMSL 
routine QMC (Chapter 4, Integration and Differentiation) for a discussion of quasi-Monte Carlo 
quadrature based on low discrepancy series. 

Discrepancy measures the deviation from uniformity of a point set.  

The discrepancy of the point set � �1,..., 0,1 , 1d
nx x d� � , is defined 

Dn
d A E n

n
E

E

b g b g b g� �sup
;

,�

 
where the supremum is over all subsets of [0, 1]d of the form 

� �1
0, 0 0 1, 1... , ,

d jE t t t j d� � � ���� � �� � ,  

� is the Lebesque measure, and A E n;b g is the number of the xj contained in E.  

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there exists a constant 
c(d), depending only on d, such that  

Dn
d c d

n d

n
b g b g b g�

log

 
for all n>1. 

Generalized Faure sequences can be defined for any prime base b�d. The lowest bound for the 
discrepancy is obtained for the smallest prime b�d, so the optional argument NBASE defaults to 
the smallest prime greater than or equal to the dimension. 

The generalized Faure sequence x1, x2, …, is computed as follows:  
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Write the positive integer n in its b-ary expansion,  

n a n bi
i

i

�

�

�

� ( )
0  

where ai(n) are integers, 0 � �a n bi b g . 

The j-th coordinate of xn is 
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The generator matrix for the series, ck d
j( ) ,  is defined to be 

c j ck d
j d k

k d
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�
�

 
and ck d  is an element of the Pascal matrix, 
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!
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0  
It is faster to compute a shuffled Faure sequence than to compute the Faure sequence itself. It 
can be shown that this shuffling preserves the low-discrepancy property. 

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer n into 
the integer given by its b-ary expansion. 

The sequence computed by this function is x(G(n)), where x is the generalized Faure sequence. 

IUMAG 
This routine handles MATH/LIBRARY and STAT/LIBRARY type INTEGER options. 

Required Arguments 
PRODNM — Product name. Use either “MATH” or “STAT.”    (Input) 

ICHP — Chapter number of the routine that uses the options.   (Input) 

IACT — 1 if user desires to “get” or read options, or 2 if user desires to “put” or write 
options.   (Input) 

NUMOPT — Size of IOPTS.   (Input) 

IOPTS — Integer array of size NUMOPT containing the option numbers to “get” or “put.”    
(Input) 
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IVALS — Integer array containing the option values. These values are arrays corresponding 
to the individual options in IOPTS in sequential order. The size of IVALS is the sum of 
the sizes of the individual options.   (Input/Output) 

FORTRAN 90 Interface 
Generic: CALL IUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, IVALS) 

Specific:  The specific interface name is IUMAG. 

FORTRAN 77 Interface 
Single: CALL IUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, IVALS) 

Example 
The number of iterations allowed for the constrained least squares solver LCLSQ that calls 
L2LSQ is changed from the default value of max(nra, nca) to the value 6. The default value is 
restored after the call to LCLSQ. This change has no effect on the solution. It is used only for 
illustration. The first two arguments required for the call to IUMAG are defined by the product 
name, “MATH,” and chapter number, 1, where LCLSQ is documented. The argument IACT 
denotes a write or “put” operation. There is one option to change so NUMOPT has the value 1. 
The arguments for the option number, 14, and the new value, 6, are defined by reading the 
documentation for LCLSQ. 

      USE IUMAG_INT 
      USE LCLSQ_INT 
      USE UMACH_INT 
      USE SNRM2_INT 
! 
!     Solve the following in the least squares sense: 
!           3x1 + 2x2 +  x3 = 3.3 
!           4x1 + 2x2 +  x3 = 2.3 
!           2x1 + 2x2 +  x3 = 1.3 
!            x1 +  x2 +  x3 = 1.0 
! 
!     Subject to:  x1 + x2 + x3 <= 1 
!                  0 <= x1 <= .5 
!                  0 <= x2 <= .5 
!                  0 <= x3 <= .5 
! 
! ---------------------------------------------------------------------- 
!                                 Declaration of variables 
! 
      INTEGER    ICHP, IPUT, LDA, LDC, MCON, NCA, NEWMAX, NRA, NUMOPT 
      PARAMETER  (ICHP=1, IPUT=2, MCON=1, NCA=3, NEWMAX=14, NRA=4, & 
                NUMOPT=1, LDA=NRA, LDC=MCON) 
! 
      INTEGER    IOPT(1), IRTYPE(MCON), IVAL(1), NOUT 
      REAL       A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA), & 
                RESNRM, XLB(NCA), XSOL(NCA), XUB(NCA) 



 

 
 

1660 � Chapter 11: Utilities IMSL MATH/LIBRARY 

 

 

 

!                                 Data initialization 
! 
      DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, 2.0E0, 2.0E0, 1.0E0, & 
          1.0E0, 1.0E0, 1.0E0, 1.0E0/, B/3.3E0, 2.3E0, 1.3E0, 1.0E0/, & 
          C/3*1.0E0/, BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/ 
! ---------------------------------------------------------------------- 
! 
!                                 Reset the maximum number of 
 
!                                 iterations to use in the solver. 
!                                 The value 14 is the option number. 
!                                 The value 6 is the new maximum. 
      IOPT(1) = NEWMAX 
      IVAL(1) = 6 
      CALL IUMAG (’math’, ICHP, IPUT, NUMOPT, IOPT, IVAL) 
!                                 ------------------------------------- 
!                                 --------------------------------- 
! 
!                                 Solve the bounded, constrained 
!                                 least squares problem. 
! 
      CALL LCLSQ (A, B, C, BC, B, IRTYPE, XLB, XUB, XSOL, RES=RES) 
 
!                                 Compute the 2-norm of the residuals. 
      RESNRM = SNRM2(NRA,RES,1) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) XSOL, RES, RESNRM 
!                                 ------------------------------------- 
!                                 --------------------------------- 
!                                 Reset the maximum number of 
!                                 iterations to its default value. 
!                                 This is not required but is 
!                                 recommended programming practice. 
      IOPT(1) = -IOPT(1) 
      CALL IUMAG (’math’, ICHP, IPUT, NUMOPT, IOPT, IVAL) 
!                                 ------------------------------------- 
!                                 --------------------------------- 
! 
99999 FORMAT (’  The solution is ’, 3F9.4, //, ’  The residuals ’, & 
             ’evaluated at the solution are ’, /, 18X, 4F9.4, //, & 
             ’  The norm of the residual vector is ’, F8.4) 
! 
      END 

Output 
The solution is    0.5000   0.3000   0.2000 
 
The residuals evaluated at the solution are 
-1.0000   0.5000   0.5000   0.0000 
 
The norm of the residual vector is   1.2247 
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Comments 
1. Users can normally avoid reading about options when first using a routine that calls 

IUMAG. 

2. Let I be any value between 1 and NUMOPT. A negative value of IOPTS(I) refers to 
option number �IOPTS(I) but with a different effect: For a “get” operation, the default 
values are returned in IVALS. For a “put” operation, the default values replace the 
current values. In the case of a “put,” entries of IVALS are not allocated by the user and 
are not used by IUMAG. 

3. Both positive and negative values of IOPTS can be used. 

4. INTEGER Options 

1 If the value is positive, print the next activity for any library routine that uses the 
Options Manager codes IUMAG, SUMAG, or DUMAG. Each printing step 
decrements the value if it is positive.  
Default value is 0. 

2 If the value is 2, perform error checking in IUMAG (page 1658), SUMAG (page 
1661), and DUMAG (page 1664) such as the verifying of valid option numbers and 
the validity of input data. If the value is 1, do not perform error checking.  
Default value is 2. 

3 This value is used for testing the installation of IUMAG by other IMSL software.  
Default value is 3. 

Description 
The Options Manager routine IUMAG reads or writes INTEGER data for some MATH/LIBRARY 
and STAT/LIBRARY codes. See Atchison and Hanson (1991) for more complete details. 

There are MATH/LIBRARY routines in Chapters 1, 2, and 5 that now use IUMAG to 
communicate optional data from the user. 

UMAG 
This routine handles MATH/LIBRARY and STAT/LIBRARY type REAL and double precision 
options. 

Required Arguments 
PRODNM — Product name. Use either “MATH” or “STAT.”    (Input) 

ICHP — Chapter number of the routine that uses the options.   (Input) 

IACT — 1 if user desires to “get” or read options, or 2 if user desires to “put” or write 
options.   (Input) 
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IOPTS — Integer array of size NUMOPT containing the option numbers to “get” or “put.”    
(Input) 

SVALS — Array containing the option values. These values are arrays corresponding to the 
individual options in IOPTS in sequential order. The size of SVALS is the sum of the 
sizes of the individual options.   (Input/Output) 

Optional Arguments 
NUMOPT — Size of IOPTS.   (Input) 

Default: NUMOPT = size (IOPTS,1). 

FORTRAN 90 Interface 
Generic: CALL UMAG (PRODNM, ICHP, IACT, IOPTS, SVALS [,…]) 

Specific:  The specific interface names are S_UMAG and D_UMAG. 

FORTRAN 77 Interface 
Single: CALL SUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, SVALS) 

Double: The double precision name is DUMAG. 

Example 
The rank determination tolerance for the constrained least squares solver LCLSQ that calls 
L2LSQ is changed from the default value of SQRT(AMACH(4)) to the value 0.01. The default 
value is restored after the call to LCLSQ. This change has no effect on the solution. It is used 
only for illustration. The first two arguments required for the call to SUMAG are defined by the 
product name, “MATH,” and chapter number, 1, where LCLSQ is documented. The argument 
IACT denotes a write or “put” operation. There is one option to change so NUMOPT has the value 
1. The arguments for the option number, 2, and the new value, 0.01E+0, are defined by reading 
the documentation for LCLSQ. 

      USE UMAG_INT 
      USE LCLSQ_INT 
      USE UMACH_INT 
      USE SNRM2_INT 
! 
!     Solve the following in the least squares sense: 
!           3x1 + 2x2 +  x3 = 3.3 
!           4x1 + 2x2 +  x3 = 2.3 
!           2x1 + 2x2 +  x3 = 1.3 
!            x1 +  x2 +  x3 = 1.0 
! 
!     Subject to:  x1 + x2 + x3 <= 1 
!                  0 <= x1 <= .5 
!                  0 <= x2 <= .5 
!                  0 <= x3 <= .5 
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! 
! ---------------------------------------------------------------------- 
!                                 Declaration of variables 
! 
      INTEGER    ICHP, IPUT, LDA, LDC, MCON, NCA, NEWTOL, NRA, NUMOPT 
      PARAMETER  (ICHP=1, IPUT=2, MCON=1, NCA=3, NEWTOL=2, NRA=4, & 
                NUMOPT=1, LDA=NRA, LDC=MCON) 
! 
      INTEGER    IOPT(1), IRTYPE(MCON), NOUT 
      REAL       A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA), & 
                RESNRM, SVAL(1), XLB(NCA), XSOL(NCA), XUB(NCA) 
!                                 Data initialization 
! 
      DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, 2.0E0, 2.0E0, 1.0E0, & 
          1.0E0, 1.0E0, 1.0E0, 1.0E0/, B/3.3E0, 2.3E0, 1.3E0, 1.0E0/, & 
          C/3*1.0E0/, BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/ 
! ---------------------------------------------------------------------- 
! 
!                                 Reset the rank determination 
!                                 tolerance used in the solver. 
!                                 The value 2 is the option number. 
!                                 The value 0.01 is the new tolerance. 
! 
      IOPT(1) = NEWTOL 
      SVAL(1) = 0.01E+0 
      CALL UMAG (’math’, ICHP, IPUT, IOPT, SVAL) 
!                                 ------------------------------------- 
!                                 --------------------------------- 
! 
!                                 Solve the bounded, constrained 
!                                 least squares problem. 
! 
      CALL LCLSQ (A, B, C, BC, BC, IRTYPE, XLB, XUB, XSOL, RES=RES) 
!                                 Compute the 2-norm of the residuals. 
      RESNRM = SNRM2(NRA,RES,1) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) XSOL, RES, RESNRM 
!                                 ------------------------------------- 
!                                 --------------------------------- 
 
!                                 Reset the rank determination 
!                                 tolerance to its default value. 
!                                 This is not required but is 
!                                 recommended programming practice. 
      IOPT(1) = -IOPT(1) 
      CALL UMAG (’math’, ICHP, IPUT, IOPT, SVAL) 
!                                 ------------------------------------- 
!                                 --------------------------------- 
! 
99999 FORMAT (’  The solution is ’, 3F9.4, //, ’  The residuals ’, & 
            ’evaluated at the solution are ’, /, 18X, 4F9.4, //, & 
            ’  The norm of the residual vector is ’, F8.4) 
! 
      END 
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Output 
The solution is    0.5000   0.3000   0.2000 
 
The residuals evaluated at the solution are 
-1.0000   0.5000   0.5000   0.0000 
 
The norm of the residual vector is   1.2247 

Comments 
1. Users can normally avoid reading about options when first using a routine that calls 

SUMAG. 

2. Let I be any value between 1 and NUMOPT. A negative value of IOPTS(I) refers to 
option number �IOPTS(I) but with a different effect: For a “get” operation, the default 
values are returned in SVALS. For a “put” operation, the default values replace the 
current values. In the case of a “put,” entries of SVALS are not allocated by the user and 
are not used by SUMAG. 

3. Both positive and negative values of IOPTS can be used. 

4. Floating Point Options 

1 This value is used for testing the installation of SUMAG by other IMSL software.  
Default value is 3.0E0. 

Description 
The Options Manager routine SUMAG reads or writes REAL data for some MATH/LIBRARY and 
STAT/LIBRARY codes. See Atchison and Hanson (1991) for more complete details. There are 
MATH/LIBRARY routines in Chapters 1 and 5 that now use SUMAG to communicate optional 
data from the user. 

SUMAG/DUMAG 
See UMAG.  

PLOTP 
Prints a plot of up to 10 sets of points. 

Required Arguments 
X — Vector of length NDATA containing the values of the independent variable.   (Input) 

A — Matrix of dimension NDATA by NFUN containing the NFUN sets of dependent variable 
values.   (Input) 
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SYMBOL — CHARACTER string of length NFUN.   (Input)  
SYMBOL(I : I) is the symbol used to plot function I. 

XTITLE — CHARACTER string used to label the x-axis.   (Input) 

YTITLE — CHARACTER string used to label the y-axis.   (Input) 

TITLE — CHARACTER string used to label the plot.   (Input) 

Optional Arguments 
NDATA — Number of independent variable data points.   (Input) 

Default: NDATA = size (X,1). 

NFUN — Number of sets of points.   (Input)  
NFUN must be less than or equal to 10. 
Default: NFUN = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

INC — Increment between elements of the data to be used.   (Input)  
PLOTP plots X(1 + (I � 1) * INC) for I = 1, 2, �, NDATA. 
Default: INC = 1. 

RANGE — Vector of length four specifying minimum x, maximum x, minimum y and 
maximum y.   (Input)  
PLOTP will calculate the range of the axis if the minimum and maximum of that range 
are equal. 
Default: RANGE = 1.e0. 

FORTRAN 90 Interface 
Generic: CALL PLOTP (X, A, SYMBOL, XTITLE, YTITLE, TITLE [,…]) 

Specific:  The specific interface names are S_PLOTP and D_PLOTP. 

FORTRAN 77 Interface 
Single: CALL PLOTP (NDATA, NFUN, X, A, LDA, INC, RANGE, SYMBOL,  

                 XTITLE, YTITLE, TITLE) 

Double: The double precision name is DPLOTP. 
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Example 
This example plots the sine and cosine functions from � 3.5 to + 3.5 and sets page width and 
length to 78 and 40, respectively, by calling PGOPT (page 1599) in advance. 

      USE PLOTP_INT 
      USE CONST_INT 
      USE PGOPT_INT 
      INTEGER    I, IPAGE 
      REAL       A(200,2), DELX, PI, RANGE(4), X(200) 
      CHARACTER  SYMBOL*2 
      INTRINSIC  COS, SIN 
! 
      DATA SYMBOL/’SC’/ 
      DATA RANGE/-3.5, 3.5, -1.2, 1.2/ 
! 
      PI     = 3.14159 
      DELX   = 2.*PI/199. 
      DO 10  I= 1, 200 
         X(I)   = -PI + FLOAT(I-1) * DELX 
         A(I,1) = SIN(X(I)) 
         A(I,2) = COS(X(I)) 
   10 CONTINUE 
!                                 Set page width and length 
      IPAGE = 78 
      CALL PGOPT (-1, IPAGE) 
      IPAGE = 40 
      CALL PGOPT (-2, IPAGE) 
      CALL PLOTP (X, A, SYMBOL, ’X AXIS’, ’Y AXIS’, ’ C = COS,   S = SIN’, & 
      RANGE=RANGE) 
! 
      END 
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Output 
                          C = COS,   S = SIN 
 
          1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+:::: 
              .                           I                           . 
              .                           I                           . 
              .                        CCCCCCC     SSSSSSSS           . 
              .                       CC  I  CC   SS      SS          . 
         0.8 +                      C    I    C SS        SS         + 
              .                     C     I     MS          SS        . 
              .                    C      I    SSC           SS       . 
              .                   CC      I   SS CC           SS      . 
              .                  CC       I   S   CC           S      . 
         0.4 +                  C        I  S     C            S     + 
              .                 C         I SS      C           SS    . 
 Y            .                CC         I S       CC           S    . 
              .                C          IS         C            S   . 
 A            .               C           SS          C           SS  . 
 X        0.0 +--S-----------CC-----------S-----------CC-----------S--+ 
 I            .  SS         CC           SS            CC             . 
 S            .   S         C            SI             C             . 
              .    S       CC           S I             CC            . 
              .    SS      C           SS I              C            . 
         -0.4 +     S     C            S  I               C           + 
              .      S   CC           S   I               CC          . 
              .      SS CC           SS   I                CC         . 
              .       SSC           SS    I                 C         . 
              .        MS          SS     I                  C        . 
         -0.8 +       C SS        SS      I                   C       + 
              .     CC   SS      SS       I                    CC     . 
              .  CCCC     SSSSSSSS        I                     CCCC  . 
              .  C                        I                        C  . 
              .                           I                           . 
         -1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+:::: 
                 -3              -1               1               3 
 
                                       X AXIS 

Comments 
1. Informational errors 

Type Code 
   3    7 NFUN is greater than 10. Only the first 10 functions are plotted. 
   3     8 TITLE is too long. TITLE is truncated from the right side. 
   3    9 YTITLE is too long. YTITLE is truncated from the right side. 
 
   3    10 XTITLE is too long. XTITLE is truncated from the right side. The 

maximum number of characters allowed depends on the page width 
and the page length. See Comment 5 below for more information. 

2. YTITLE and TITLE are automatically centered. 



 

 
 

1668 � Chapter 11: Utilities IMSL MATH/LIBRARY 

 

 

 

3. For multiple plots, the character M is used if the same print position is shared by two or 
more data sets. 

4. Output is written to the unit specified by UMACH (see Reference Material). 

5. Default page width is 78 and default page length is 60. They may be changed by 
calling PGOPT (page 1599) in advance. 

Description 
Routine PLOTP produces a line printer plot of up to ten sets of points superimposed upon the 
same plot. A character “M” is printed to indicate multiple points. The user may specify the x and 
y-axis plot ranges and plotting symbols. Plot width and length may be reset in advance by 
calling PGOPT (page 1599). 

PRIME 
Decomposes an integer into its prime factors. 

Required Arguments 
N — Integer to be decomposed.   (Input) 

NPF — Number of different prime factors of ABS(N).   (Output)  
If N is equal to �1, 0, or 1, NPF is set to 0. 

IPF — Integer vector of length 13.   (Output)  
IPF(I) contains the prime factors of the absolute value of N, for I = 1, �, NPF. The 
remaining 13 � NPF locations are not used. 

IEXP — Integer vector of length 13.   (Output)  
IEXP(I) is the exponent of IPF(I), for I = 1, �, NPF. The remaining 13 � NPF 
locations are not used. 

IPW — Integer vector of length 13.   (Output)  
IPW(I) contains the quantity IPF(I)**IEXP(I), for I = 1, �, NPF. The remaining 13 � 
NPF locations are not used. 

FORTRAN 90 Interface 
Generic: CALL PRIME (N, NPF, IPF, IPW) 

Specific:  The specific interface name is PRIME. 

FORTRAN 77 Interface 
Single: CALL PRIME (N, NPF, IPF, IEXP, IPW) 
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Example 
This example factors the integer 144 = 2�3�. 

      USE PRIME_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=144) 
! 
      INTEGER    IEXP(13), IPF(13), IPW(13), NOUT, NPF 
!                                 Get prime factors of 144 
      CALL PRIME (N, NPF, IPF, IEXP, IPW) 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Print results 
      WRITE (NOUT,99999) N, IPF(1), IPF(2), IEXP(1), IEXP(2), IPW(1), & 
                       IPW(2), NPF 
! 
99999 FORMAT (’  The prime factors for’, I5, ’ are: ’, /, 10X, 2I6, // & 
            , ’  IEXP =’, 2I6, /, ’  IPW  =’, 2I6, /, ’  NPF  =’, I6, & 
            /) 
      END 

Output 
The prime factors for  144 are: 
2     3 
 
IEXP =     4     2 
IPW  =    16     9 
NPF  =     2 

Comments 
The output from PRIME should be interpreted in the following way: ABS(N) = IPF(1)**IEXP(1) 
* �. * IPF(NPF)**IEXP(NPF). 

Description 
Routine PRIME decomposes an integer into its prime factors. The number to be factored, N, may 
not have more than 13 distinct factors. The smallest number with more than 13 factors is about 
1.3 � 10��. Most computers do not allow integers of this size. 

The routine PRIME is based on a routine by Brenner (1973). 

CONST 
This function returns the value of various mathematical and physical constants. 

Function Return Value 
CONST — Value of the constant.   (Output) 

See Comment 1.  
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Required Arguments 
NAME — Character string containing the name of the desired constant.   (Input)  

See Comment 3 for a list of valid constants. 

FORTRAN 90 Interface 
Generic: CONST(NAME) 

Specific:  The specific interface names are S_CONST and D_CONST. 

FORTRAN 77 Interface 
Single: CONST(NAME) 

Double: The double precision name is DCONST. 

Example 
In this example, Euler’s constant � is obtained and printed. Euler’s constant is defined to be 

1

1

1lim ln
n

n k

n
k

�

�

��

�

� �
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� �
�  

      USE CONST_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Get gamma 
      GAMA = CONST(’GAMMA’) 
!                                 Print gamma 
      WRITE (NOUT,*) ’GAMMA = ’, GAMA 
      END 

Output 
GAMMA =    0.577216 

For another example, see CUNIT, page 1672. 

Comments 
2. If the generic version of this function is used, the immediate result must be stored in a 

variable before use in an expression. For example: 

X = CONST(‘PI’) 
Y = COS(x) 
 
must be used rather than 

Y = COS(CONST(‘PI’)). 
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If this is too much of a restriction on the programmer, then the specific name can be used 
without this restriction. 

2. The case of the character string in NAME does not matter. The names “PI”, “Pi”, “Pi”, 
and “pi” are equivalent. 

3. The units of the physical constants are in SI units (meter kilogram-second). 

4. The names allowed are as follows: 

Name Description Value Ref. 
AMU Atomic mass unit 1.6605402E � 27 kg [1] 
ATM Standard atm pressure 1.01325E + 5N/m�E [2] 
AU Astronomical unit 1.496E + 11m [ ] 
Avogadro Avogadro's number 6.0221367E + 231/mole [1] 
Boltzman Boltzman's constant 1.380658E � 23J/K [1] 
C Speed of light 2.997924580E + 8m/sE [1] 
Catalan Catalan's constant 0.915965 � E [3] 
E Base of natural logs 2.718�E [3] 
    
ElectronCharge Electron change 1.60217733E �19C [1] 

ElectronMass Electron mass 9.1093897E � 31 kg [1] 
ElectronVolt Electron volt 1.60217733E � 19J [1] 
Euler Euler's constant gamma 0.577 � E [3] 
Faraday Faraday constant 9.6485309E + 4C/mole [1] 
FineStructure fine structure 7.29735308E � 3 [1] 
Gamma Euler's constant 0.577 � E [3] 
Gas Gas constant 8.314510J/mole/k [1] 
Gravity Gravitational constant 6.67259E � 11N * m�/kg� [1] 

Hbar Planck constant / 2 pi 1.05457266E � 34J * s [1] 

PerfectGasVolume Std vol ideal gas 2.241383E � 2m�/mole [*] 
Pi Pi 3.141 � E [3] 
Planck Planck's constant h 6.6260755E � 34J * s [1] 

ProtonMass Proton mass 1.6726231E � 27 kg [1] 
Rydberg Rydberg's constant 1.0973731534E + 7/m [1] 
SpeedLight Speed of light 2.997924580E + 8m/s E [1] 
StandardGravity Standard g 9.80665m/s�E [2] 
StandardPressure Standard atm pressure 1.01325E + 5N/m�E [2] 
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Name Description Value Ref. 
StefanBoltzmann Stefan-Boltzman 5.67051E � 8W/K�/m� [1] 
WaterTriple Triple point of water 2.7316E + 2K E [2] 

Description 
Routine CONST returns the value of various mathematical and physical quantities. For all of the 
physical values, the Systeme International d’Unites (SI) are used. 

The reference for constants are indicated by the code in [ ] Comment above. 

[1] Cohen and Taylor (1986) 

[2] Liepman (1964) 

[3] Precomputed mathematical constants 

The constants marked with an E before the [ ] are exact (to machine precision). 

To change the units of the values returned by CONST, see CUNIT, page 1672. 

CUNIT 
Converts X in units XUNITS to Y in units YUNITS. 

Required Arguments 
X — Value to be converted.   (Input) 

XUNITS — Character string containing the name of the units for X.   (Input)  
See comments for a description of units allowed. 

Y — Value in YUNITS corresponding to X in XUNITS.   (Output) 

YUNITS — Character string containing the name of the units for Y.   (Input)  
See comments for a description of units allowed. 

FORTRAN 90 Interface 
Generic: CALL CUNIT (X, XUNITS, Y, YUNITS[,…]) 

Specific:  The specific interface names are S_CUNIT and D_CUNIT. 

FORTRAN 77 Interface 
Single: CALL CUNIT (X, XUNITS, Y, YUNITS) 

Double: The double precision name is DCUNIT. 
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Example 
The routine CONST is used to obtain the speed on light, c, in SI units. CUNIT is then used to 
convert c to mile/second and to parsec/year. An example involving substitution of force for 
mass is required in conversion of Newtons/Meter� to Pound/Inch�. 

      USE CONST_INT 
      USE CUNIT_INT 
      USE UMACH_INT 
!      INTEGER    NOUT 
      REAL       CMH, CMS, CPY 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Get speed of light in SI (m/s) 
      CMS = CONST(’SpeedLight’) 
      WRITE (NOUT,*) ’Speed of Light = ’, CMS, ’ meter/second’ 
!                                 Get speed of light in mile/second 
      CALL CUNIT (CMS, ’SI’, CMH, ’Mile/Second’) 
      WRITE (NOUT,*) ’Speed of Light = ’, CMH, ’ mile/second’ 
!                                 Get speed of light in parsec/year 
      CALL CUNIT (CMS, ’SI’, CPY, ’Parsec/Year’) 
      WRITE (NOUT,*) ’Speed of Light = ’, CPY, ’ Parsec/Year’ 
!                                 Convert Newton/Meter**2 to 
!                                 Pound/Inch**2. 
      CALL CUNIT(1.E0, ’Newton/Meter**2’, CPSI, & 
                      ’Pound/Inch**2’) 
      WRITE(NOUT,*)’ Atmospheres, in Pound/Inch**2 = ’,CPSI 
      END 

Output 
Speed of Light =     2.99792E+08 meter/second 
Speed of Light =     186282. mile/second 
Speed of Light =    0.306387 Parsec/Year 
 
*** WARNING  ERROR 8 from CUNIT.  A conversion of units of mass to units of 
***          force was required for consistency. 
Atmospheres, in Pound/Inch**2 =     1.45038E-04 

Comments 
1. Strings XUNITS and YUNITS have the form U� * U� * � * Um/V� � Vn, where Ui and Vi 

are the names of basic units or are the names of basic units raised to a power. Examples 
are, “METER * KILOGRAM/SECOND”, “M * KG/S”, “METER”, or “M/KG�”. 

2. The case of the character string in XUNITS and YUNITS does not matter. The names 
“METER”, “Meter” and “meter” are equivalent. 

3. If XUNITS is “SI”, then X is assumed to be in the standard  
international units corresponding to YUNITS. Similarly, if YUNITS is  
 
“SI”, then Y is assumed to be in the standard international units corresponding to 
XUNITS. 
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4. The basic unit names allowed are as follows: 

Units of time 
day, hour = hr, min = minute, s = sec = second, year 

Units of frequency 
Hertz = Hz 

Units of mass 
AMU, g = gram, lb = pound, ounce = oz, slug 

Units of distance 
Angstrom, AU, feet = foot = ft, in = inch, m = meter = metre, micron, mile, mill, 
parsec, yard 

Units of area 
acre 

Units of volume 
l = liter = litre 

Units of force 
dyne, N = Newton, poundal 

Units of energy 
BTU(thermochemical), Erg, J = Joule 

Units of work 
W = watt 

Units of pressure 
ATM = atomosphere, bar, Pascal 

Units of temperature 
degC = Celsius, degF = Fahrenheit, degK = Kelvin 

Units of viscosity 
poise, stoke 

Units of charge 
Abcoulomb, C = Coulomb, statcoulomb 

Units of current 
A = ampere, abampere, statampere, 

Units of voltage 
Abvolt, V = volt 

Units of magnetic induction 
T = Tesla, Wb = Weber 

Other units 
1, farad, mole, Gauss, Henry, Maxwell, Ohm 
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The following metric prefixes may be used with the above units. Note that the one or two letter 
prefixes may only be used with one letter unit abbreviations. 

A Atto 1.E � 18 
F femto 1.E � 15 
P Pico 1.E � 12 
N nano 1.E � 9 
U micro 1.E � 6 
M milli 1.E � 3 
C centi 1.E � 2 
D Deci 1.E � 1 
DK Deca 1.E + 2 
K Kilo 1.E + 3 
 myria 1.E + 4 (no single letter prefix; M means milli 
 mega 1.E + 6 (no single letter prefix; M means milli 
G Giga 1.E + 9 
T Tera 1.E + 12 

5. Informational error 

Type Code 
   3     8 A conversion of units of mass to units of force was required for 

consistency. 

Description 
Routine CUNIT converts a value expressed in one set of units to a value expressed in another set 
of units. 

The input and output units are checked for consistency unless the input unit is “SI”. SI means 
the Systeme International d’Unites. This is the meter�kilogram�second form of the metric 
system. If the input units are “SI”, then the input is assumed to be expressed in the SI units 
consistent with the output units. 

HYPOT 
This functions computes SQRT(A**2 + B**2) without underflow or overflow. 

Function Return Value 
HYPOT — SQRT(A**2 + B**2).   (Output) 

Required Arguments 
A — First parameter.   (Input) 

B — Second parameter.   (Input) 
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FORTRAN 90 Interface 
Generic: HYPOT(A, B) 

Specific: The specific interface names are S_HYPOT and D_HYPOT. 

FORTRAN 77 Interface 
Single: HYPOT(A, B) 

Double: The double precision name is DHYPOT. 

Example 
Computes  

2 2c a b� �  

where a = 10�� and b = 2 � 10�� without overflow. 
 
      USE HYPOT_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       A, B, C 
! 
      A = 1.0E+20 
      B = 2.0E+20 
      C = HYPOT(A,B) 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Print the results 
      WRITE (NOUT,’(A,1PE10.4)’) ’ C = ’, C 
      END 

Output 
C = 2.2361E+20 

Description 
Routine HYPOT is based on the routine PYTHAG, used in EISPACK 3. This is an update of the 
work documented in Garbow et al. (1972). 
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User Errors 
IMSL routines attempt to detect user errors and handle them in a way that provides as much 
information to the user as possible. To do this, we recognize various levels of severity of errors, 
and we also consider the extent of the error in the context of the purpose of the routine; a trivial 
error in one situation may be serious in another. IMSL routines attempt to report as many errors as 
they can reasonably detect. Multiple errors present a difficult problem in error detection because 
input is interpreted in an uncertain context after the first error is detected. 

What Determines Error Severity 
In some cases, the user’s input may be mathematically correct, but because of limitations of the 
computer arithmetic and of the algorithm used, it is not possible to compute an answer accurately. 
In this case, the assessed degree of accuracy determines the severity of the error. In cases where 
the routine computes several output quantities, if some are not computable but most are, an error 
condition exists. The severity depends on an assessment of the overall impact of the error. 

Terminal errors 
If the user’s input is regarded as meaningless, such as N = �1 when “N” is the number of equations, 
the routine prints a message giving the value of the erroneous input argument(s) and the reason for 
the erroneous input. The routine will then cause the user’s program to stop. An error in which the 
user’s input is meaningless is the most severe error and is called a terminal error. Multiple 
terminal error messages may be printed from a single routine. 
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Informational errors 
In many cases, the best way to respond to an error condition is simply to correct the input and 
rerun the program. In other cases, the user may want to take actions in the program itself based on 
errors that occur. An error that may be used as the basis for corrective action within the program is 
called an informational error. If an informational error occurs, a user-retrievable code is set. A 
routine can return at most one informational error for a single reference to the routine. The codes 
for the informational error codes are printed in the error messages. 

Other errors 
In addition to informational errors, IMSL routines issue error messages for which no user- 
retrievable code is set. Multiple error messages for this kind of error may be printed. These errors, 
which generally are not described in the documentation, include terminal errors as well as less 
serious errors. Corrective action within the calling program is not possible for these errors. 

Kinds of Errors and Default Actions 
Five levels of severity of errors are defined in the MATH/LIBRARY. Each level has an associated 
PRINT attribute and a STOP attribute. These attributes have default settings (YES or NO), but 
they may also be set by the user. The purpose of having multiple error severity levels is to provide 
independent control of actions to be taken for errors of different severity. Upon return from an 
IMSL routine, exactly one error state exists. (A code 0 “error” is no informational error.) Even if 
more than one informational error occurs, only one message is printed (if the PRINT attribute is 
YES). Multiple errors for which no corrective action within the calling program is reasonable or 
necessary result in the printing of multiple messages (if the PRINT attribute for their severity level 
is YES). Errors of any of the severity levels except level 5 may be informational errors. 

Level 1: Note. A note is issued to indicate the possibility of a trivial error or simply to 
provide information about the computations. Default attributes: PRINT=NO, 
STOP=NO 

Level 2: Alert. An alert indicates that the user should be advised about events occurring 
in the software. Default attributes: PRINT=NO, STOP=NO 

Level 3: Warning. A warning indicates the existence of a condition that may require 
corrective action by the user or calling routine. A warning error may be issued because 
the results are accurate to only a few decimal places, because some of the output may 
be erroneous but most of the output is correct, or because some assumptions underlying 
the analysis technique are violated. Often no corrective action is necessary and the 
condition can be ignored. Default attributes: PRINT=YES, STOP=NO 

Level 4: Fatal.A fatal error indicates the existence of a condition that may be serious. In 
most cases, the user or calling routine must take corrective action to recover. Default 
attributes: PRINT=YES, STOP=YES 

Level 5: Terminal.A terminal error is serious. It usually is the result of an incorrect 
specification, such as specifying a negative number as the number of equations. These 
errors may also be caused by various programming errors impossible to diagnose 
correctly in FORTRAN. The resulting error message may be perplexing to the user. In 
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such cases, the user is advised to compare carefully the actual arguments passed to the 
routine with the dummy argument descriptions given in the documentation. Special 
attention should be given to checking argument order and data types. 

A terminal error is not an informational error because corrective action within the 
program is generally not reasonable. In normal usage, execution is terminated 
immediately when a terminal error occurs. Messages relating to more than one terminal 
error are printed if they occur. Default attributes: PRINT=YES, STOP=YES 

The user can set PRINT and STOP attributes by calling ERSET as described in “Routines for Error 
Handling.” 

Errors in Lower-Level Routines 
It is possible that a user’s program may call an IMSL routine that in turn calls a nested sequence of 
lower-level IMSL routines. If an error occurs at a lower level in such a nest of routines and if the 
lower-level routine cannot pass the information up to the original user-called routine, then a 
traceback of the routines is produced. The only common situation in which this can occur is when 
an IMSL routine calls a user-supplied routine that in turn calls another IMSL routine. 

Routines for Error Handling 
There are three ways in which the user may interact with the IMSL error handling system: (1) to 
change the default actions, (2) to retrieve the integer code of an informational error so as to take 
corrective action, and (3) to determine the severity level of an error. The routines to use are 
ERSET, IERCD, and N1RTY, respectively. 

ERSET 
Change the default printing or stopping actions when errors of a particular error severity level 
occur. 

Required Arguments 
IERSVR — Error severity level indicator.   (Input) 

If IERSVR = 0, actions are set for levels 1 to 5. If IERSVR is 1 to 5, actions are set for 
errors of the specified severity level. 

IPACT — Printing action.   (Input) 

 IPACT Action 

�1  Do not change current setting(s). 

  0  Do not print. 

  1  Print. 

  2  Restore the default setting(s). 
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ISACT — Stopping action.   (Input) 

 ISACT Action 

�1  Do not change current setting(s). 

  0  Do not stop. 

  1  Stop. 

  2  Restore the default setting(s). 

FORTRAN 90 Interface 
Generic: CALL ERSET (IERSVR, IPACT, ISACT) 

Specific:  The specific interface name is ERSET. 

FORTRAN 77 Interface 
Single: CALL ERSET (IERSVR, IPACT, ISACT) 

IERCD and N1RTY 
The last two routines for interacting with the error handling system, IERCD and N1RTY, are 
INTEGER functions and are described in the following material. 

IERCD retrieves the integer code for an informational error. Since it has no arguments, it may be 
used in the following way: 

ICODE = IERCD( ) 

The function retrieves the code set by the most recently called IMSL routine. 

N1RTY retrieves the error type set by the most recently called IMSL routine. It is used in the 
following way: 

ITYPE = N1RTY(1) 

ITYPE = 1, 2, 4, and 5 correspond to error severity levels 1, 2, 4, and 5, respectively. ITYPE = 3 
and ITYPE = 6 are both warning errors, error severity level 3. While ITYPE = 3 errors are 
informational errors (IERCD( ) � 0), ITYPE = 6 errors are not informational errors (IERCD( ) = 0). 

For software developers requiring additional interaction with the IMSL error handling system, see 
Aird and Howell (1991). 

Examples 

Changes to default actions 
Some possible changes to the default actions are illustrated below. The default actions remain in 
effect for the kinds of errors not included in the call to ERSET. 
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To turn off printing of warning error messages: 
CALL ERSET (3, 0, �1) 

To stop if warning errors occur: 
CALL ERSET (3, �1, 1) 

To print all error messages: 
CALL ERSET (0, 1, �1) 

To restore all default settings: 
CALL ERSET (0, 2, 2) 

Use of informational error to determine program action 
In the program segment below, the Cholesky factorization of a matrix is to be performed. If it is 
determined that the matrix is not nonnegative definite (and often this is not immediately obvious), 
the program is to take a different branch. 

                     . 
                     . 
                     . 
      CALL LFTDS (A, FACT) 
      IF (IERCD() .EQ. 2) THEN 
!                     Handle matrix that is not nonnegative definite 
                     . 
                     . 
                     . 
      END IF 

Examples of errors 
The program below illustrates each of the different types of errors detected by the 
MATH/LIBRARY routines. 

The error messages refer to the argument names that are used in the documentation for the routine, 
rather than the user’s name of the variable used for the argument. In the message generated by 
IMSL routine LINRG in this example, reference is made to N, whereas in the program a literal was 
used for this argument. 

      USE_IMSL_LIBRARIES 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      REAL       A(N,N), AINV(N,N), B(N), X(N) 
! 
      DATA A/2.0, -3.0, 2.0, -3.0/ 
      DATA B/1.0, 2.0/ 
!                                 Turn on printing and turn off 
!                                 stopping for all error types. 
      CALL ERSET (0, 1, 0) 
!                                 Generate level 4 informational error. 
      CALL LSARG (A, B, X) 
!                                 Generate level 5 terminal error. 
      CALL LINRG (A, AINV, N = -1) 
      END 
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Output 
*** FATAL    ERROR 2 from LSARG.  The input matrix is singular.  Some of  
***          the diagonal elements of the upper triangular matrix U of the  
***          LU factorization are close to zero. 
 
*** TERMINAL ERROR 1 from LINRG.  The order of the matrix must be positive 
***          while N = �1 is given. 

Example of traceback 
The next program illustrates a situation in which a traceback is produced. The program uses the 
IMSL quadrature routines QDAG and QDAGS to evaluate the double integral 

� � � �
1 1 1

0 0 0
x y dx dy g y dy� �� � �  

where 

� � � � � � � �
1 1

0 0
, with g y x y dx f x dx f x x y� � � � �� �  

Since both QDAG and QDAGS need 2500 numeric storage units of workspace, and since the 
workspace allocator uses some space to keep track of the allocations, 6000 numeric storage units 
of space are explicitly allocated for workspace. Although the traceback shows an error code 
associated with a terminal error, this code has no meaning to the user; the printed message 
contains all relevant information. It is not assumed that the user would take corrective action based 
on knowledge of the code. 

      USE QDAGS_INT 
!                                 Specifications for local variables 
      REAL       A, B, ERRABS, ERREST, ERRREL, G, RESULT 
      EXTERNAL   G 
!                                 Set quadrature parameters 
      A      = 0.0 
      B      = 1.0 
      ERRABS = 0.0 
      ERRREL = 0.001 
!                                 Do the outer integral 
      CALL QDAGS (G, A, B, RESULT, ERRABS, ERRREL, ERREST) 
! 
      WRITE (*,*) RESULT, ERREST 
      END 
! 
      REAL FUNCTION G (ARGY) 
      USE QDAG_INT 
      REAL       ARGY 
! 
      INTEGER    IRULE 
      REAL       C, D, ERRABS, ERREST, ERRREL, F, Y 
      COMMON     /COMY/ Y 
      EXTERNAL   F 
! 
      Y      = ARGY 
      C      = 0.0 
      D      = 1.0 
      ERRABS = 0.0 
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      ERRREL = -0.001 
      IRULE  = 1 
! 
      CALL QDAG (F, C, D, G, ERRABS, ERRREL, IRULE, ERREST) 
      RETURN 
      END 
! 
      REAL FUNCTION F (X) 
      REAL       X 
! 
      REAL       Y 
      COMMON     /COMY/ Y 
! 
      F = X + Y 
      RETURN 
      END 

Output 
*** TERMINAL ERROR 4 from Q2AG.  The relative error desired ERRREL = 
***          -1.000000E-03.  It must be at least zero. 
Here is a traceback of subprogram calls in reverse order: 
Routine name                    Error type  Error code 
------------                    ----------  ---------- 
Q2AG                                5           4    (Called internally) 
QDAG                                0           0 
Q2AGS                               0           0    (Called internally) 
QDAGS                               0           0 
USER                                0           0 

Machine-Dependent Constants 
The function subprograms in this section return machine-dependent information and can be used 
to enhance portability of programs between different computers. The routines IMACH, and AMACH 
describe the computer’s arithmetic. The routine UMACH describes the input, ouput, and error output 
unit numbers. 

IMACH 

This function retrieves machine integer constants that define the arithmetic used by the computer. 

Function Return Value 
IMACH(1) = Number of bits per integer storage unit. 

IMACH(2) = Number of characters per integer storage unit: 

Integers are represented in M-digit, base A form as 

0

M k
kk

x A�
�

�  
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where � is the sign and 0 � xk < A, k = 0, �, M. 

Then, 

IMACH(3) = A, the base. 

IMACH(4) = M, the number of base-A digits. 

IMACH(5) = AM � 1, the largest integer. 

The machine model assumes that floating-point numbers are represented in normalized 
N-digit, base B form as 

1

NE k
kk

B x B�
�

�
�  

where � is the sign, 0 < x� < B, 0 � xk < B, k = 2, �, N and E� � E � E�. Then, 

min

IMACH(6) = , the base.
IMACH(7) = , the number of base-  digits in single precision.
IMACH(8) = , the smallest single precision exponent.

s

s

B
N B
E

 

max

min

max

IMACH(9) = , the largest single precision exponent.

IMACH(10) = , the number of base-  digits in double precision.
IMACH(11) = , the smallest double precision exponent.

IMACH(12) = , the

s

d

d

d

E

N B
E

E number of base-  digits in double precisionB

 

Required Arguments 
I — Index of the desired constant. (Input)  

FORTRAN 90 Interface 
Generic: IMACH (I) 

Specific:  The specific interface name is IMACH. 

FORTRAN 77 Interface 
Single: IMACH (I) 
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AMACH 

The function subprogram AMACH retrieves machine constants that define the computer’s single-
precision or double precision arithmetic.  Such floating-point numbers are represented in 
normalized N-digit, base B form as 

1

NE k
kk

B x B�
�

�
�  

where � is the sign, 0 < x� < B, 0 � xk < B, k = 2, �, N and  

min maxE E E� �  

Function Return Value 

� �

min

max

1

1

AMACH(1) , the smallest normalized positive number.

AMACH(2)= 1 , the largest number.

AMACH(3)= , the smallest relative spacing.

AMACH(4)= ,  the largest relative spacing.

E

E N

N

N

B

B B

B

B

�

�

�

�

�

�

 

� �10AMACH(5) = log .
AMACH(6) NaN (  not a number).                              
AMACH(7)=positive machine infinity.
AMACH(8)= negative machine infinity.

B
quiet�  

See Comment 1 for a description of the use of the generic version of this function. 

See Comment 2 for a description of min, max, and N.  

Required Arguments 
I — Index of the desired constant. (Input)  

FORTRAN 90 Interface 
Generic: AMACH (I) 

Specific:  The specific interface names are S_AMACH and D_AMACH. 

FORTRAN 77 Interface 
Single: AMACH (I) 

Double: The double precision name is DMACH. 
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Comments 
1. If the generic version of this function is used, the immediate result must be stored in a 

variable before use in an expression. For example: 

X = AMACH(I) 
Y = SQRT(X) 
 
must be used rather than 

Y = SQRT(AMACH(I)). 

If this is too much of a restriction on the programmer, then the specific name can be 
used without this restriction. 

2. Note that for single precision B = IMACH(6),  N = IMACH(7). 
 Emin = IMACH(8), and Emax, = IMACH(9). 
For double precision B = IMACH(6),  N = IMACH(10). 
 Emin = IMACH(11), and Emax, = IMACH(12). 

3. The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN (not a 
number) as the result of various invalid or ambiguous operations, such as 0/0. The intent 
is that AMACH(6) return a quiet NaN. On IEEE format computers that do not support a 
quiet NaN, a special value near AMACH(2) is returned for AMACH(6). On computers that do 
not have a special representation for infinity, AMACH(7) returns the same value as 
AMACH(2). 

DMACH 

See AMACH.  

IFNAN(X) 
This logical function checks if the argument X is NaN (not a number).  

Function Return Value 
IFNAN - Logical function value.  True is returned if the input argument is a NAN. Otherwise,  

False is returned. (Output) 

Required Arguments 
X – Argument for which the test for NAN is desired. (Input)  

FORTRAN 90 Interface 
Generic: IFNAN(X) 
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Specific:  The specific interface names are S_IFNAN and D_IFNAN. 

FORTRAN 77 Interface 
Single: IFNAN (X) 

Double: The double precision name is DIFNAN. 

Example 
      USE IFNAN_INT 
      USE AMACH_INT 
      USE UMACH_INT 
      INTEGER      NOUT 
      REAL         X  
! 
      CALL UMACH (2, NOUT)  
! 
      X = AMACH(6) 
      IF (IFNAN(X)) THEN 
         WRITE (NOUT,*) ’ X is NaN (not a number).’ 
      ELSE  
         WRITE (NOUT,*) ’ X = ’, X  
      END IF  
! 
      END 

Output 
X is NaN (not a number). 

Description 
The logical function IFNAN checks if the single or double precision argument X is NAN (not a 
number). The function IFNAN is provided to facilitate the transfer of programs across computer 
systems. This is because the check for NaN can be tricky and not portable across computer 
systems that do not adhere to the IEEE standard. For example, on computers that support the IEEE 
standard for binary arithmetic (see IEEE 1985), NaN is specified as a bit format not equal to itself. 
Thus, the check is performed as 
IFNAN = X .NE. X 

On other computers that do not use IEEE floating-point format, the check can be performed as: 
IFNAN = X .EQ. AMACH(6) 

 

The function IFNAN is equivalent to the specification of the function Isnan listed in the Appendix, 
(IEEE 1985). The above following example illustrates the use of IFNAN. If X is NaN, a message is 
printed instead of X. (Routine UMACH, which is described in the following section, is used to 
retrieve the output unit number for printing the message.) 
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UMACH 
Routine UMACH sets or retrieves the input, output, or error output device unit numbers. 

Required Arguments 
N  —  Integer value indicating the action desired. If the value of N is negative, the input, output, or 
error output unit number is reset to NUNIT. If the value of N is positive, the input, output, or error 
output unit number is returned in NUNIT. See the table in argument NUNIT for legal values of N. 
(Input) 

NUNIT  —  The unit number that is either retrieved or set, depending on the value of input 
argument N. (Input/Output) 

The arguments are summarized by the following table: 

 
N Effect 
1 Retrieves input unit number in NUNIT. 
2 Retrieves output unit number in NUNIT. 
3 Retrieves error output unit number in NUNIT. 

�1 Sets the input unit number to NUNIT. 
�2 Sets the output unit number to NUNIT. 
�3 Sets the error output unit number to NUNIT. 

FORTRAN 90 Interface 
Generic: CALL UMACH (N, NUNIT) 

Specific:  The specific interface name is UMACH. 

FORTRAN 77 Interface 
Single: CALL UMACH (N, NUNIT) 

Example 
In the following example, a terminal error is issued from the MATH/LIBRARY AMACH function 
since the argument is invalid. With a call to UMACH, the error message will be written to a local 
file named “CHECKERR”. 

 
      USE AMACH_INT 
      USE UMACH_INT 

      INTEGER     N, NUNIT 
      REAL        X 
!                                      Set Parameter 
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      N = 0 
      NUNIT = 9 
! 
      CALL UMACH (-3, NUNIT) 
      OPEN (UNIT=NUNIT,FILE=’CHECKERR’) 
      X = AMACH(N) 
      END 

Output 
The output from this example, written to “CHECKERR” is: 

*** TERMINAL ERROR 5 from AMACH.  The argument must be between 1 and 8 
***           inclusive. N = 0 

Description 
Routine UMACH sets or retrieves the input, output, or error output device unit numbers. UMACH is 
set automatically so that the default FORTRAN unit numbers for standard input, standard output, 
and standard error are used. These unit numbers can be changed by inserting a call to UMACH at the 
beginning of the main program that calls MATH/LIBRARY routines. If these unit numbers are 
changed from the standard values, the user should insert an appropriate OPEN statement in the 
calling program. 

Matrix Storage Modes 
In this section, the word matrix will be used to refer to a mathematical object, and the word array 
will be used to refer to its representation as a FORTRAN data structure. 

General Mode 
A general matrix is an N � N matrix A. It is stored in a FORTRAN array that is declared by the 
following statement: 
DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL 
general matrix subprograms only refer to values Aij for i = 1, �, N and j = 1, �, N. The data type 
of a general array can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN 
compiler allows, the nonstandard data type DOUBLE COMPLEX can also be declared. 

Rectangular Mode 
A rectangular matrix is an M � N matrix A. It is stored in a FORTRAN array that is declared by 
the following statement: 
DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as M. IMSL 
rectangular matrix subprograms only refer to values Aij for i = 1, �, M and j = 1, �, N. The data 
type of a rectangular array can be REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN 
compiler allows, you can declare the nonstandard data type DOUBLE COMPLEX. 



 

 
 

1690 � Reference Material IMSL MATH/LIBRARY 

 

 

 

Symmetric Mode 

A symmetric matrix is a square N � N matrix A, such that AT = A. (AT is the transpose of A.) It is 
stored in a FORTRAN array that is declared by the following statement: 
DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL 
symmetric matrix subprograms only refer to the upper or to the lower half of A (i.e., to values Aij 
for i = 1, �, N and j = i, �, N, or Aij for j = 1, �, N and i = j, �, N). The data type of a 
symmetric array can be one of REAL or DOUBLE PRECISION. Use of the upper half of the array is 
denoted in the BLAS that compute with symmetric matrices, see Chapter 9, Programming Notes 
for BLAS, using the CHARACTER*1 flag UPLO = ’U’. Otherwise, UPLO = ’L’ denotes that the 
lower half of the array is used. 

Hermitian Mode 
A Hermitian matrix is a square N � N matrix A, such that 

TA A�  

The matrix 

A  

is the complex conjugate of A and  
 H TA A�  

is the conjugate transpose of A. For Hermitian matrices, AH = A. The matrix is stored in a 
FORTRAN array that is declared by the following statement: 
DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL 
Hermitian matrix subprograms only refer to the upper or to the lower half of A (i.e., to values Aij 
for i = 1, �, N and j = i, �, N., or Aij for j = 1, �, N and i = j, �, N). Use of the upper half of the 
array is denoted in the BLAS that compute with Hermitian matrices, see Chapter 9, Programming 
Notes for BLAS, using the CHARACTER*1 flag UPLO = ’U’. Otherwise, UPLO = ’L’ denotes that 
the lower half of the array is used. The data type of a Hermitian array can be COMPLEX or, if your 
FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX. 

Triangular Mode 
A triangular matrix is a square N � N matrix A such that values Aij = 0 for i < j or Aij = 0 for i > j. 
The first condition defines a lower triangular matrix while the second condition defines an upper 
triangular matrix. A lower triangular matrix A is stored in the lower triangular part of a 
FORTRAN array A. An upper triangular matrix is stored in the upper triangular part of a 
FORTRAN array. Triangular matrices are called unit triangular whenever Ajj = 1, j = 1, �, N. For 
unit triangular matrices, only the strictly lower or upper parts of the array are referenced. This is 
denoted in the BLAS that compute with triangular matrices, see Chapter 9, Programming Notes 
for BLAS, using the CHARACTER*1 flag DIAGNL = ’U’. Otherwise, DIAGNL = ’N’ denotes that 
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the diagonal array terms should be used. For unit triangular matrices, the diagonal terms are each 
used with the mathematical value 1. The array diagonal term does not need to be 1.0 in this usage. 
Use of the upper half of the array is denoted in the BLAS that compute with triangular matrices, 
see Chapter 9, Programming Notes for BLAS, using the CHARACTER*1 flag UPLO = ’U’. 
Otherwise, UPLO = ’L’ denotes that the lower half of the array is used. The data type of an array 
that contains a triangular matrix can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your 
FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX can also be declared. 

Band Storage Mode 
A band matrix is an M � N matrix A with all of its nonzero elements “close” to the main diagonal. 
Specifically, values Aij = 0 if i � j > NLCA or j � i > NUCA. The integers NLCA and NUCA are the 
lower and upper band widths. The integer m = NLCA + NUCA + 1 is the total band width. The 
diagonals, other than the main diagonal, are called codiagonals. While any M � N matrix is a band 
matrix, the band matrix mode is most useful only when the number of nonzero codiagonals is 
much less than m. 

In the band storage mode, the NLCA lower codiagonals and NUCA upper codiagonals are stored in 
the rows of a FORTRAN array of dimension m � N. The elements are stored in the same column 
of the array as they are in the matrix. The values Aij inside the band width are stored in array 
positions (i � j + NUCA + 1, j). This array is declared by the following statement: 
DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as m. The data 
type of a band matrix array can be one of REAL, DOUBLE PRECISION, COMPLEX or, if your 
FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX . Use of the 
CHARACTER*1 flag TRANS=’N’ in the BLAS, , see Chapter 9, Programming Notes for BLAS, 
specifies that the matrix A is used. The flag value 

TRANS =’T’ uses TA  

while 

TRANS =’C’ uses TA  

For example, consider a real 5 � 5 band matrix with 1 lower and 2 upper codiagonals, stored in the 
FORTRAN array declared by the following statements: 

PARAMETER (N=5, NLCA=1, NUCA=2) 
REAL A(NLCA+NUCA+1, N) 

The matrix A has the form 

11 12 13

21 22 23 24

32 33 34 35

43 44 45

54 55

0 0
0

0
0 0
0 0 0

A A A
A A A A

A A A A A
A A A

A A

� �
� �
� �
� ��
� �
� �
� �� �

 

As a FORTRAN array, it is 
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13 24 35

12 23 34 45

11 22 33 44 55

21 32 43 54

A A A
A A A A

A
A A A A A
A A A A

� �� �
� ��� ��
� �
� �

�� �� �

 

The entries marked with an x in the above array are not referenced by the IMSL band 
subprograms. 

Band Symmetric Storage Mode 
A band symmetric matrix is a band matrix that is also symmetric. The band symmetric storage 
mode is similar to the band mode except only the lower or upper codiagonals are stored.  

In the band symmetric storage mode, the NCODA upper codiagonals are stored in the rows of a 
FORTRAN array of dimension (NCODA + 1) � N. The elements are stored in the same column of 
the array as they are in the matrix. Specifically, values Aij, j � i inside the band are stored in array 
positions (i � j + NCODA + 1, j). This is the storage mode designated by using the CHARACTER*1 
flag UPLO = ’U’ in Level 2 BLAS that compute with band symmetric matrices, , see Chapter 9, 
Programming Notes for BLAS. Alternatively, Aij, j � i, inside the band, are stored in array 
positions (i � j + 1, j). This is the storage mode designated by using the CHARACTER*1 flag UPLO 
= ’L’ in these Level 2 BLAS, see Chapter 9, Programming Notes for BLAS. The array is 
declared by the following statement: 
DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as NCODA + 1. 
The data type of a band symmetric array can be REAL or DOUBLE PRECISION. 

For example, consider a real 5 � 5 band matrix with 2 codiagonals. Its FORTRAN declaration is 
PARAMETER (N=5, NCODA=2) 
REAL A(NCODA+1, N) 

The matrix A has the form 

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0
0

0
0 0

A A A
A A A A

A A A A A A
A A A A

A A A

� �
� �
� �
� ��
� �
� �
� �� �

 

Since A is symmetric, the values Aij = Aji. In the FORTRAN array, it is  

13 24 35

12 23 34 45

11 22 33 44 55

A A A
A A A A A

A A A A A

� �� �
� �� �� �
� �� �

 

The entries marked with an � in the above array are not referenced by the IMSL band symmetric 
subprograms. 
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An alternate storage mode for band symmetric matrices is designated using the CHARACTER*1 flag 
UPLO = ’L’ in Level 2 BLAS that compute with band symmetric matrices, see Chapter 9, 
Programming Notes for BLAS. In that case, the example matrix is represented as  

11 22 33 44 55

12 23 34 45

13 24 35

A A A A A
A A A A A

A A A

� �
� �� �� �
� �� �� �

 

Band Hermitian Storage Mode 
A band Hermitian matrix is a band matrix that is also Hermitian. The band Hermitian mode is a 
complex analogue of the band symmetric mode. 

In the band Hermitian storage mode, the NCODA upper codiagonals are stored in the rows of a 
FORTRAN array of dimension (NCODA + 1) � N. The elements are stored in the same column of 
the array as they are in the matrix. In the Level 2 BLAS, see Chapter 9, Programming Notes for 
BLAS, this is denoted by using the CHARACTER*1 flag UPLO =’U’. The array is declared by the 
following statement: 
DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as (NCODA + 1) 
. The data type of a band Hermitian array can be COMPLEX or, if your FORTRAN compiler allows, 
the nonstandard data type DOUBLE COMPLEX. 

For example, consider a complex 5 � 5 band matrix with 2 codiagonals. Its FORTRAN declaration 
is 

PARAMETER (N=5, NCODA = 2) 
COMPLEX A(NCODA + 1, N) 

The matrix A has the form 

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0
0

0
0 0

A A A
A A A A

A A A A A A
A A A A

A A A

� �
� �
� �
� ��
� �
� �
� �� �

 

where the value 

ijA  

is the complex conjugate of Aij. This matrix represented as a FORTRAN array is 

13 24 35

12 23 34 45

11 22 33 44 55

A A A
A A A A A

A A A A A

� �� �
� �� �� �
� �� �

 

The entries marked with an � in the above array are not referenced by the IMSL band Hermitian 
subprograms. 



 

 
 

1694 � Reference Material IMSL MATH/LIBRARY 

 

 

 

An alternate storage mode for band Hermitian matrices is designated using the CHARACTER*1 flag 
UPLO = ’L’ in Level 2 BLAS that compute with band Hermitian matrices, see Chapter 9, 
Programming Notes for BLAS. In that case, the example matrix is represented as 

11 22 33 44 55

12 23 34 45

13 24 35

A A A A A
A A A A A

A A A

� �
� �� �� �
� �� �� �

 

Band Triangular Storage Mode 
A band triangular matrix is a band matrix that is also triangular. In the band triangular storage 
mode, the NCODA codiagonals are stored in the rows of a FORTRAN array of dimension (NCODA + 
1) � N. The elements are stored in the same column of the array as they are in the matrix. For 
usage in the Level 2 BLAS, see Chapter 9, Programming Notes for BLAS, the CHARACTER*1 flag 
DIAGNL has the same meaning as used in section “Triangular Storage Mode”. The flag UPLO has 
the meaning analogous with its usage in the section “Banded Symmetric Storage Mode”. This 
array is declared by the following statement: 
DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as (NCODA + 
1). 

For example, consider a 5 �5 band upper triangular matrix with 2 codiagonals. Its FORTRAN 
declaration is 

PARAMETER (N = 5, NCODA = 2) 
COMPLEX A(NCODA + 1, N) 

The matrix A has the form 

11 12 13

22 23 24

33 34 35

44 45

55

0 0
0 0
0 0
0 0 0
0 0 0 0

A A A
A A A

A A A A
A A

A

� �
� �
� �
� ��
� �
� �
� �� �

 

This matrix represented as a FORTRAN array is 

13 24 35

12 23 34 45

11 22 33 44 55

A A A
A A A A A

A A A A A

� �� �
� �� �� �
� �� �

 

This corresponds to the CHARACTER*1 flags DIAGNL = ’N’ and UPLO = ’U’. The matrix AT is 
represented as the FORTRAN array 

11 22 33 44 55

12 23 34 45

13 24 35

A A A A A
A A A A A

A A A

� �
� �� �� �
� �� �� �
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This corresponds to the CHARACTER*1 flags DIAGNL = ’N’ and UPLO = ’L’. In both examples, 
the entries indicated with an � are not referenced by IMSL subprograms. 

Codiagonal Band Symmetric Storage Mode 
This is an alternate storage mode for band symmetric matrices. It is not used by any of the BLAS,  
see Chapter 9, Programming Notes for BLAS. Storing data in a form transposed from the Band 
Symmetric Storage Mode maintains unit spacing between consecutive referenced array elements. 
This data structure is used to get good performance in the Cholesky decomposition algorithm that 
solves positive definite symmetric systems of linear equations Ax = b. The data type can be REAL 
or DOUBLE PRECISION. In the codiagonal band symmetric storage mode, the NCODA upper 
codiagonals and right-hand-side are stored in columns of this FORTRAN array. This array is 
declared by the following statement: 
DIMENSION A(LDA, NCODA + 2) 

The parameter LDA is the leading positive dimension of A. It must be at least as large as  
N + NCODA. 

Consider a real symmetric 5 � 5 matrix with 2 codiagonals 

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0
0

0
0 0

A A A
A A A A

A A A A A A
A A A A

A A A

� �
� �
� �
� ��
� �
� �
� �� �

 

and a right-hand-side vector 

1

2

3

4

5

b
b

b b
b
b

� �
� �
� �
� ��
� �
� �
� �� �

 

A FORTRAN declaration for the array to hold this matrix and right-hand-side vector is 
PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA) 
REAL A(LDA, NCODA + 2) 

The matrix and right-hand-side entries are placed in the FORTRAN array A as follows: 

11 1

22 12 2

33 23 13 3

44 34 24 4

55 45 35 5

A b
A A A b

A A A b
A A A b
A A A b

� � � �� �
� �� � � �� �
� �� �
� �

� �� �
� �
� �
� �
� �� �� �
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Entries marked with an � do not need to be defined. Certain of the IMSL band symmetric 
subprograms will initialize and use these values during the solution process. When a solution is 
computed, the bi, i = 1, �, 5, are replaced by xi, i = 1, �, 5. 

The nonzero Aij, j � i, are stored in array locations A(j + NCODA, (j � i) + 1) . The right-hand-side 
entries bj are stored in locations A(j + NCODA, NCODA + 2). The solution entries xj are returned in 
A(j + NCODA, NCODA + 2). 

Codiagonal Band Hermitian Storage Mode 
This is an alternate storage mode for band Hermitian matrices. It is not used by any of the BLAS, 
see Chapter 9, Programming Notes for BLAS. In the codiagonal band Hermitian storage mode, the 
real and imaginary parts of the 2 * NCODA + 1 upper codiagonals and right-hand-side are stored in 
columns of a FORTRAN array. Note that there is no explicit use of the COMPLEX or the 
nonstandard data type DOUBLE COMPLEX data type in this storage mode. 

For Hermitian complex matrices, 

=  + 1A U V�  

where U and V are real matrices. They satisfy the conditions U = UT and V = �VT. The right-hand-
side 

1b c d� � �  

where c and d are real vectors. The solution vector is denoted as 

1x u v� � �  

where u and v are real. The storage is declared with the following statement 
DIMENSION A(LDA, 2*NCODA + 3) 

The parameter LDA is the leading positive dimension of A. It must be at least as large as N + 
NCODA. 

The diagonal terms Ujj are stored in array locations A (j + NCODA, 1). The diagonal Vjj are zero and 
are not stored. The nonzero Uij, j > i, are stored in locations A(j + NCODA, 2 * (j � i)). 

The nonzero Vij are stored in locations A(j + NCODA, 2*(j � i) + 1). The right side vector b is stored 
with cj and dj in locations A(j + NCODA, 2*NCODA + 2) and A(j + NCODA, 2*NCODA + 3) 
respectively. The real and imaginary parts of the solution, uj and vj, respectively overwrite cj and 
dj. 
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Consider a complex hermitian 5 � 5 matrix with 2 codiagonals 

11 12 13 12 13

12 22 23 24 12 23 24

13 23 33 34 35 13 23 34 35

24 34 44 45 24 34 45

35 45 55 35 45

0 0 0 0 0
0 0 0

1 0
0 0 0
0 0 0 0 0

U U U V V
U U U U V V V

A U U U U U V V V V
U U U U V V V

U U U V V

� � � �
� � � ��� � � �
� � � �� � � � �
� � � �

� �� � � �
� � � �� �� 	 � 	

 

and a right-hand-side vector 

1 1

2 2

3 3

4 4

5 5

1

c d
c d

b c d
c d
c d

� � � �
� � � �
� � � �
� � � �� � �
� � � �
� � � �
� � � �� 	 � 	

 

A FORTRAN declaration for the array to hold this matrix and right-hand-side vector is 
PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA) 
REAL A(LDA,2*NCODA + 3) 

The matrix and right-hand-side entries are placed in the FORTRAN array A as follows: 

11 1 1

22 12 12 2 2

33 23 23 13 13 3 3

44 34 34 24 24 4 4

55 45 45 35 35 5 5

U c d
A U U V c d

U U V U V c d
U U V U V c d
U U V U V c d

� � � � � � �� �
� �� � � � � � �� �
� �� � � �
� �

� � �� �
� �
� �
� �
� �� �� �

 

Entries marked with an � do not need to be defined. 

Sparse Matrix Storage Mode 
The sparse linear algebraic equation solvers in Chapter 1 accept the input matrix in sparse storage 
mode. This structure consists of INTEGER values N and NZ, the matrix dimension and the total 
number of nonzero entries in the matrix. In addition, there are two INTEGER arrays IROW(*) and 
JCOL(*) that contain unique matrix row and column coordinates where values are given. There is 
also an array A(*) of values. All other entries of the matrix are zero. Each of the arrays IROW(*), 
JCOL(*), A(*) must be of size NZ. The correspondence between matrix and array entries is given 
by 

� � � � � �IROW , JCOL , 1, , NZi iA A i i� � �  

The data type for A(*) can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN 
compiler allows, the nonstandard data type DOUBLE COMPLEX can also be declared. 
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For example, consider a real 5 � 5 sparse matrix with 11 nonzero entries. The matrix A has the 
form 

11 13 14

21 22

32 33 34

43

54 55

0 0
0 0 0

0 0
0 0 0 0
0 0 0

A A A
A A

A A A A
A

A A

� �
� �
� �
� ��
� �
� �
� �� �

 

Declarations of arrays and definitions of the values for this sparse matrix are 
       PARAMETER (NZ = 11, N = 5) 
       DIMENSION IROW(NZ), JCOL(NZ), A(NZ) 
       DATA IROW /1,1,1,2,2,3,3,3,4,5,5/ 
       DATA JCOL /1,3,4,1,2,2,3,4,3,4,5/ 
       DATA A    /A��,A��,A��,A��,A��,A��,A��,A��, & 
                 A��,A��,A��/ 

Reserved Names 
When writing programs accessing the MATH/LIBRARY, the user should choose FORTRAN 
names that do not conflict with names of IMSL subroutines, functions, or named common blocks, 
such as the workspace common block WORKSP (see page 1699). The user needs to be aware of two 
types of name conflicts that can arise. The first type of name conflict occurs when a name 
(technically a symbolic name) is not uniquely defined within a program unit (either a main 
program or a subprogram). For example, such a name conflict exists when the name RCURV is used 
to refer both to a type REAL variable and to the IMSL subroutine RCURV in a single program unit. 
Such errors are detected during compilation and are easy to correct. The second type of name 
conflict, which can be more serious, occurs when names of program units and named common 
blocks are not unique. For example, such a name conflict would be caused by the user defining a 
subroutine named WORKSP and also referencing an MATH/LIBRARY subroutine that uses the 
named common block WORKSP. Likewise, the user must not define a subprogram with the same 
name as a subprogram in the MATH/LIBRARY, that is referenced directly by the user’s program 
or is referenced indirectly by other MATH/LIBRARY subprograms. 

The MATH/LIBRARY consists of many routines, some that are described in the User’s Manual 
and others that are not intended to be called by the user and, hence, that are not documented. If the 
choice of names were completely random over the set of valid FORTRAN names, and if a 
program uses only a small subset of the MATH/LIBRARY, the probability of name conflicts is 
very small. Since names are usually chosen to be mnemonic, however, the user may wish to take 
some precautions in choosing FORTRAN names. 

Many IMSL names consist of a root name that may have a prefix to indicate the type of the 
routine. For example, the IMSL single precision subroutine for fitting a polynomial by least 
squares has the name RCURV, which is the root name, and the corresponding IMSL double 
precision routine has the name DRCURV. Associated with these two routines are R2URV and 
DR2URV. RCURV is listed in the Alphabetical Index of Routines, but DRCURV, R2URV, and 
DR2URV are not. The user of RCURV must consider both names RCURV and R2URV to be reserved; 
likewise, the user of DRCURV must consider both names DRCURV and DR2URV to be reserved. The 
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root names of all routines and named common blocks that are used by the MATH/LIBRARY and 
that do not have a numeral in the second position of the root name are listed in the Alphabetical 
Index of Routines. Some of the routines in this Index (such as the “Level 2 BLAS”) are not 
intended to be called by the user and so are not documented. 

The careful user can avoid any conflicts with IMSL names if the following rules are observed: 

� Do not choose a name that appears in the Alphabetical Summary of Routines in the User’s 
Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_. 

� Do not choose a name of three or more characters with a numeral in the second or third 
position. 

These simplified rules include many combinations that are, in fact, allowable. However, if the user 
selects names that conform to these rules, no conflict will be encountered. 

Deprecated Features and Renamed Routines 
Automatic Workspace Allocation 
FORTRAN subroutines that work with arrays as input and output often require extra arrays for use 
as workspace while doing computations or moving around data. IMSL routines generally do not 
require the user explicitly to allocate such arrays for use as workspace. On most systems the 
workspace allocation is handled transparently. The only limitation is the actual amount of memory 
available on the system. 

On some systems the workspace is allocated out of a stack that is passed as a FORTRAN array in 
a named common block WORKSP. A very similar use of a workspace stack is described by Fox et 
al. (1978, pages 116�121). (For compatiblity with older versions of the IMSL Libraries, space is 
allocated from the COMMON block, if possible.) 

The arrays for workspace appear as arguments in lower-level routines. For example, the IMSL 
routine LSARG (in Chapter 1, “Linear Systems”), which solves systems of linear equations, needs 
arrays for workspace. LSARG allocates arrays from the common area, and passes them to the 
lower-level routine L2ARG which does the computations. In the “Comments” section of the 
documentation for LSARG, the amount of workspace is noted and the call to L2ARG is described. 
This scheme for using lower-level routines is followed throughout the IMSL Libraries. The names 
of these routines have a “2” in the second position (or in the third position in double precision 
routines having a “D” prefix). The user can provide workspace explicitly and call directly the “2-
level” routine, which is documented along with the main routine. In a very few cases, the 2-level 
routine allows additional options that the main routine does not allow. 

Prior to returning to the calling program, a routine that allocates workspace generally deallocates 
that space so that it becomes available for use in other routines. 

Changing the Amount of Space Allocated 
This section is relevant only to those systems on which the transparent workspace allocator is not 
available. 
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By default, the total amount of space allocated in the common area for storage of numeric data is 
5000 numeric storage units. (A numeric storage unit is the amount of space required to store an 
integer or a real number. By comparison, a double precision unit is twice this amount. Therefore 
the total amount of space allocated in the common area for storage of numeric data is 2500 double 
precision units.) This space is allocated as needed for INTEGER, REAL, or other numeric data. For 
larger problems in which the default amount of workspace is insufficient, the user can change the 
allocation by supplying the FORTRAN statements to define the array in the named common block 
and by informing the IMSL workspace allocation system of the new size of the common array. To 
request 7000 units, the statements are 

      COMMON /WORKSP/ RWKSP 
      REAL RWKSP(7000) 
      CALL IWKIN(7000) 

If an IMSL routine attempts to allocate workspace in excess of the amount available in the 
common stack, the routine issues a fatal error message that indicates how much space is needed 
and prints statements like those above to guide the user in allocating the necessary amount. The 
program below uses IMSL routine PERMA (see the Reference Material in this manual) to permute 
rows or columns of a matrix. This routine requires workspace equal to the number of columns, 
which in this example is too large. (Note that the work vector RWKSP must also provide extra space 
for bookkeeping.) 

      USE_PERMA_INT 
!                                 Specifications for local variables 
      INTEGER    NRA, NCA, LDA, IPERMU(6000), IPATH 
      REAL       A(2,6000) 
!                                 Specifications for subroutines 
! 
      NRA = 2 
      NCA = 6000 
      LDA = 2 
!                                 Initialize permutation index 
      DO 10 I = 1, NCA 
         IPERMU(I) = NCA + 1 - I 
   10 CONTINUE 
      IPATH = 2 
      CALL PERMA (A, IPERMU, A, IPATH=IPATH) 
      END 

Output 
*** TERMINAL ERROR 10 from PERMA.  Insufficient workspace for current 
***          allocation(s). Correct by calling IWKIN from main program with 
***          the three following statements:  (REGARDLESS OF PRECISION) 
***                COMMON /WORKSP/  RWKSP 
***                REAL RWKSP(6018) 
***                CALL IWKIN(6018) 
 
*** TERMINAL ERROR 10 from PERMA.  Workspace allocation was based on NCA = 
***          6000. 

In most cases, the amount of workspace is dependent on the parameters of the problem so the 
amount needed is known exactly. In a few cases, however, the amount of workspace is dependent 
on the data (for example, if it is necessary to count all of the unique values in a vector), so the 
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IMSL routine cannot tell in advance exactly how much workspace is needed. In such cases the 
error message printed is an estimate of the amount of space required. 

Character Workspace 
Since character arrays cannot be equivalenced with numeric arrays, a separate named common 
block WKSPCH is provided for character workspace. In most respects this stack is managed in the 
same way as the numeric stack. The default size of the character workspace is 2000 character 
units. (A character unit is the amount of space required to store one character.) The routine 
analogous to IWKIN used to change the default allocation is IWKCIN. 

The routines in the following list are being deprecated in Version 2.0 of MATH/LIBRARY. A 
deprecated routine is one that is no longer used by anything in the library but is being included in 
the product for those users who may be currently referencing it in their application. However, any 
future versions of MATH/LIBRARY will not include these routines. If any of these routines are 
being called within an application, it is recommended that you change your code or retain the 
deprecated routine before replacing this library with the next version. Most of these routines were 
called by users only when they needed to set up their own workspace. Thus, the impact of these 
changes should be limited. 

CZADD DE2LRH DNCONF E3CRG 

CZINI DE2LSB DNCONG E4CRG 

CZMUL DE3CRG E2ASF E4ESF 

CZSTO DE3CRH E2AHF E5CRG 

DE2AHF DE3LSF E2BHF E7CRG 

DE2ASF DE4CRG E2BSB G2CCG 

DE2BHF DE4ESF E2BSF G2CRG 

DE2BSB DE5CRG E2CCG G2LCG 

DE2BSF DE7CRG E2CCH G2LRG 

DE2CCG DG2CCG E2CHF G3CCG 

DE2CCH DG2CRG E2CRG G4CCG 

DE2CHF DG2DF E2CRH G5CCG 

DE2CRG DG2IND E2CSB G7CRG 

DE2CRH DG2LCG E2EHF N0ONF 

DE2CSB DG2LRG E2ESB NCONF 

DE2EHF DG3CCG E2FHF  NCONG 

DE2ESB DG3DF E2FSB SDADD 

DE2FHF DG4CCG E2FSF SDINI 

DE2FSB DG5CCG E2LCG SDMUL 

DE2FSF DG7CRG E2LCH SDSTO 

DE2LCG DHOUAP E2LHF SHOUAP 

DE2LCH DHOUTR E2LRG SHOUTR 

DE2LHF DIVPBS E2LRH  

DE2LRG DN0ONF E2LSB  
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The following routines have been renamed due to naming conflicts with other software 
manufacturers. 

CTIME � replaced with CPSEC 
DTIME � replaced with TIMDY 
PAGE  � replaced with PGOPT 
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Appendix A: GAMS Index 

Description 
This index lists routines in MATH/LIBRARY by a tree-structured classification scheme known as 
GAMS Version 2.0 (Boisvert, Howe, Kahaner, and Springmann (1990). Only the GAMS classes 
that contain MATH/LIBRARY routines are included in the index. The page number for the 
documentation and the purpose of the routine appear alongside the routine name. 

The first level of the full classification scheme contains the following major subject areas: 
 
A. Arithmetic, Error Analysis  
B. Number Theory  
C. Elementary and Special Functions  
D. Linear Algebra 
E. Interpolation  
F. Solution of Nonlinear Equations  
G. Optimization  
H. Differentiation and Integration  
I. Differential and Integral Equations  
J. Integral Transforms  
K. Approximation  
L. Statistics, Probability  
M. Simulation, Stochastic Modeling  
N. Data Handling  
O. Symbolic Computation  
P. Computational Geometry  
Q. Graphics  
R. Service Routines  
S. Software Development Tools  
Z. Other 

 

There are seven levels in the classification scheme. Classes in the first level are identified by a 
capital letter as is given above. Classes in the remaining levels are identified by alternating letter-
and-number combinations. A single letter (a-z) is used with the odd-numbered levels. A number 
(1�26) is used within the even-numbered levels. 
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IMSL MATH/LIBRARY 
A...........ARITHMETIC, ERROR ANALYSIS 

A3.........Real 

A3c .......Extended precision 
DQADD Adds a double-precision scalar to the accumulator in 

extended precision. 
DQINI Initializes an extended-precision accumulator with a 

double-precision scalar. 
DQMUL Multiplies double-precision scalars in extended precision. 
DQSTO Stores a double-precision approximation to an extended-

precision scalar. 

A4.........Complex 

A4c .......Extended precision 
ZQADD Adds a double complex scalar to the accumulator in 

extended precision. 
ZQINI Initializes an extended-precision complex accumulator to a 

double complex scalar. 
ZQMUL Multiplies double complex scalars using extended 

precision. 
ZQSTO Stores a double complex approximation to an extended-

precision complex scalar. 

A6.........Change of representation 

A6c .......Decomposition, construction 
PRIME Decomposes an integer into its prime factors. 

B...........NUMBER THEORY 
PRIME Decomposes an integer into its prime factors. 

C...........ELEMENTARY AND SPECIAL FUNCTIONS 

C2.........Powers, roots, reciprocals 

HYPOT Computes a  without underflow or overflow. b2
�

2

C19.......Other special functions 
CONST Returns the value of various mathematical and physical 

constants. 
CUNIT Converts X in units XUNITS to Y in units YUNITS. 

D...........LINEAR ALGEBRA 

D1.........Elementary vector and matrix operations 

D1a.......Elementary vector operations 

D1a1.....Set to constant 
CSET Sets the components of a vector to a scalar, all complex. 
ISET Sets the components of a vector to a scalar, all integer. 
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SSET Sets the components of a vector to a scalar, all single 
precision. 

D1a2.....Minimum and maximum components 
ICAMAX Finds the smallest index of the component of a complex 

vector having maximum magnitude. 
ICAMIN Finds the smallest index of the component of a complex 

vector having minimum magnitude. 
IIMAX Finds the smallest index of the maximum component of a 

integer vector. 
IIMIN Finds the smallest index of the minimum of an integer 

vector. 
ISAMAX Finds the smallest index of the component of a single-

precision vector having maximum absolute value. 
ISAMIN Finds the smallest index of the component of a single-

precision vector having minimum absolute value. 
ISMAX Finds the smallest index of the component of a single-

precision vector having maximum value. 
ISMIN Finds the smallest index of the component of a single-

precision vector having minimum value. 

D1a3.....Norm 

D1a3a ...L� (sum of magnitudes) 
DISL1 Computes the 1-norm distance between two points. 
SASUM Sums the absolute values of the components of a single-

precision vector. 
SCASUM Sums the absolute values of the real part together with the 

absolute values of the imaginary part of the components of 
a complex vector. 

D1a3b...L� (Euclidean norm) 
DISL2 Computes the Euclidean (2-norm) distance between two 

points. 
NORM2,CNORM2 Computes the Euclidean length of a vector or matrix,  

avoiding out-of-scale intermediate subexpressions. 
MNORM2,CMNORM2 Computes the Euclidean length of a vector or matrix,  

avoiding out-of-scale intermediate subexpressions 
NRM2, CNRM2 Computes the Euclidean length of a vector or matrix,  

avoiding out-of-scale intermediate subexpressions. 
SCNRM2 Computes the Euclidean norm of a complex vector. 
SNRM2 Computes the Euclidean length or L� norm of a single-

precision vector. 

D1a3c ...L� (maximum magnitude) 
DISLI Computes the infinity norm distance between two points. 
ICAMAX Finds the smallest index of the component of a complex 

vector having maximum magnitude. 
ISAMAX Finds the smallest index of the component of a single-

precision vector having maximum absolute value. 
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D1a4.....Dot product (inner product) 
CDOTC Computes the complex conjugate dot product, x . yT

CDOTU Computes the complex dot product xTy. 
CZCDOT Computes the sum of a complex scalar plus a complex 

conjugate dot product, a x , using a double-precision 
accumulator. 

yT
�

CZDOTA Computes the sum of a complex scalar, a complex dot 
product and the double-complex accumulator, which is set 
to the result ACC � ACC + a + xTy. 

CZDOTC Computes the complex conjugate dot product, x , using 
a double-precision accumulator. 

yT

CZDOTI Computes the sum of a complex scalar plus a complex dot 
product using a double-complex accumulator, which is set 
to the result ACC � a + xTy. 

CZDOTU Computes the complex dot product xTy using a double-
precision accumulator. 

CZUDOT Computes the sum of a complex scalar plus a complex dot 
product, a + xTy, using a double-precision accumulator. 

DSDOT Computes the single-precision dot product xTy using a 
double precision accumulator. 

SDDOTA Computes the sum of a single-precision scalar, a single-
precision dot product and the double-precision 
accumulator, which is set to the result  
ACC � ACC + a + xTy. 

SDDOTI Computes the sum of a single-precision scalar plus a 
singleprecision dot product using a double-precision 
accumulator, which is set to the result ACC � a + xTy. 

SDOT Computes the single-precision dot product xTy. 
SDSDOT Computes the sum of a single-precision scalar and a single 

precision dot product, a + xTy, using a double-precision 
accumulator. 

D1a5.....Copy or exchange (swap) 
CCOPY Copies a vector x to a vector y, both complex. 
CSWAP Interchanges vectors x and y, both complex. 
ICOPY Copies a vector x to a vector y, both integer. 
ISWAP Interchanges vectors x and y, both integer. 
SCOPY Copies a vector x to a vector y, both single precision. 
SSWAP Interchanges vectors x and y, both single precision. 

D1a6.....Multiplication by scalar 
CSCAL Multiplies a vector by a scalar, y � ay, both complex. 
CSSCAL Multiplies a complex vector by a single-precision scalar, 

y � ay. 
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CSVCAL Multiplies a complex vector by a single-precision scalar 
and store the result in another complex vector, y � ax. 

CVCAL Multiplies a vector by a scalar and store the result in 
another vector, y � ax, all complex. 

SSCAL Multiplies a vector by a scalar, y � ay, both single 
precision. 

SVCAL Multiplies a vector by a scalar and store the result in 
another vector, y � ax, all single precision. 

D1a7.....Triad (ax + y for vectors x, y and scalar a) 
CAXPY Computes the scalar times a vector plus a vector,  

y � ax + y, all complex. 
SAXPY Computes the scalar times a vector plus a vector,  

y � ax + y, all single precision. 

D1a8.....Elementary rotation (Givens transformation) (search also class D1b10) 
CSROT Applies a complex Givens plane rotation. 
CSROTM Applies a complex modified Givens plane rotation. 
SROT Applies a Givens plane rotation in single precision. 
SROTM Applies a modified Givens plane rotation in single 

precision. 

D1a10...Convolutions 
RCONV Computes the convolution of two real vectors. 
VCONC Computes the convolution of two complex vectors. 
VCONR Computes the convolution of two real vectors. 

D1a11...Other vector operations 
CADD Adds a scalar to each component of a vector, x � x + a, all 

complex. 
CSUB Subtracts each component of a vector from a scalar,  

x � a � x, all complex. 
DISL1 Computes the 1-norm distance between two points. 
DISL2 Computes the Euclidean (2-norm) distance between two 

points. 
DISLI Computes the infinity norm distance between two points. 
IADD Adds a scalar to each component of a vector, x � x + a, all 

integer. 
ISUB Subtracts each component of a vector from a scalar,  

x � a � x, all integer. 
ISUM Sums the values of an integer vector. 
SADD Adds a scalar to each component of a vector, x � x + a, all 

single precision. 
SHPROD Computes the Hadamard product of two single-precision 

vectors. 
SPRDCT Multiplies the components of a single-precision vector. 
SSUB Subtracts each component of a vector from a scalar, 

x � a � x, all single precision. 
SSUM Sums the values of a single-precision vector. 
SXYZ Computes a single-precision xyz product. 
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D1b.......Elementary matrix operations 
CGERC Computes the rank-one update of a complex general 

matrix: 
A A xy T
� �� . 

CGERU Computes the rank-one update of a complex general 
matrix: 

. A A xyT
� ��

CHER Computes the rank-one update of an Hermitian matrix: 
A A xx T
� ��  with x complex and � real. 

CHER2 Computes a rank-two update of an Hermitian matrix: 
A A xy yxT T
� � �� � . 

CHER2K Computes one of the Hermitian rank 2k operations: 
C AB BA C C A B B AT T T T
� � � � � �� � � � � or C� , 

where C is an n by n Hermitian matrix and A and B are n 
by k matrices in the first case and k by n matrices in the 
second case. 

CHERK Computes one of the Hermitian rank k operations: 
C AA C C A AT T
� � � �� � � or C�

C�

C�

, 
where C is an n by n Hermitian matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

CSYR2K Computes one of the symmetric rank 2k operations: 
, 

where C is an n by n symmetric matrix and A and B are n 
by k matrices in the first case and k by n matrices in the 
second case. 

C AB BA C C A B B AT T T T
� � � � � �� � � � � or 

CSYRK Computes one of the symmetric rank k operations: 
, 

where C is an n by n symmetric matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

C AA C C A AT T
� � � �� � � or 

CTBSV Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x , 

where A is a triangular matrix in band storage mode. 
CTRSM Solves one of the complex matrix equations: 

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e j or 

�1 ,

where A is a triangular matrix. 
CTRSV Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x , 

where A is a triangular matrix. 
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HRRRR Computes the Hadamard product of two real rectangular 
matrices. 

SGER Computes the rank-one update of a real general matrix: 
. A A xyT

� ��

SSYR Computes the rank-one update of a real symmetric matrix: 
A A xxT
� �� . 

SSYR2 Computes the rank-two update of a real symmetric matrix: 
. A A xy yxT T

� � �� �

SSYR2K Computes one of the symmetric rank 2k operations: 
, 

where C is an n by n symmetric matrix and A and B are n 
by k matrices in the first case and k by n matrices in the 
second case. 

C AB BA C C A B B AT T T T
� � � � � �� � � � � or C�

C�

x

�1

x

SSYRK Computes one of the symmetric rank k operations: 
, 

where C is an n by n symmetric matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

C AA C C A AT T
� � � �� � � or 

STBSV Solves one of the triangular systems: 

, 

where A is a triangular matrix in band storage mode. 

x A x x A
T

� �
� �1 1 or e j

STRSM Solves one of the matrix equations: 

where B is an m by n matrix and A is a triangular matrix. 

B A B B BA B A B B B A
T T

� � � �
� � �

� � � �
1 1 1, , ,e j e jor 

STRSV Solves one of the triangular linear systems: 

, 

where A is a triangular matrix. 

x A x x A
T

� �
� �1 1 or e j

D1b2.....Norm 
NR1CB Computes the 1-norm of a complex band matrix in band 

storage mode. 
NR1RB Computes the 1-norm of a real band matrix in band storage 

mode. 
NR1RR Computes the 1-norm of a real matrix. 
NR2RR Computes the Frobenius norm of a real rectangular matrix. 
NRIRR Computes the infinity norm of a real matrix. 

D1b3.....Transpose 
TRNRR Transposes a rectangular matrix. 

D1b4 Multiplication by vector 
BLINF Computes the bilinear form xTAy. 
CGBMV Computes one of the matrix-vector operations: 

y Ax y y A x y y AT T
� � � � � �� � � � � �, ,  or y , 

where A is a matrix stored in band storage mode. 
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CGEMV Computes one of the matrix-vector operations: 
y Ax y y A x y y AT T
� � � � � �� � � � � �, ,  or y

y

y

, 
CHBMV Computes the matrix-vector operation 

, 
where A is an Hermitian band matrix in band Hermitian 
storage. 

y Ax� �� �

CHEMV Computes the matrix-vector operation 
, 

where A is an Hermitian matrix. 
y Ax� �� �

CTBMV Computes one of the matrix-vector operations: 
x Ax x A x x AT T
� � �, ,  or x , 

where A is a triangular matrix in band storage mode. 
CTRMV Computes one of the matrix-vector operations: 

x Ax x A x x AT T
� � �, ,  or x

y

y

y

y

x

x

, 
where A is a triangular matrix. 

MUCBV Multiplies a complex band matrix in band storage mode by 
a complex vector. 

MUCRV Multiplies a complex rectangular matrix by a complex 
vector. 

MURBV Multiplies a real band matrix in band storage mode by a 
real vector. 

MURRV Multiplies a real rectangular matrix by a vector. 
SGBMV Computes one of the matrix-vector operations: 

, 
where A is a matrix stored in band storage mode. 
y Ax y y A xT
� � � �� � � �,  or 

SGEMV Computes one of the matrix-vector operations: 
, y Ax y y A xT

� � � �� � � �,  or 
SSBMV Computes the matrix-vector operation  

, 
where A is a symmetric matrix in band symmetric storage 
mode. 

y Ax� �� �

SSYMV Computes the matrix-vector operation 
, 

where A is a symmetric matrix. 
y Ax� �� �

STBMV Computes one of the matrix-vector operations: 

where A is a triangular matrix in band storage mode. 
x Ax x AT
� �or , 

STRMV  Computes one of the matrix-vector operations: 

where A is a triangular matrix. 
x Ax x AT
� �or , 

D1b5.....Addition, subtraction 
ACBCB Adds two complex band matrices, both in band storage 

mode. 
ARBRB Adds two band matrices, both in band storage mode. 
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D1b6.....Multiplication 
CGEMM Computes one of the matrix-matrix operations: 

C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

T T

T T T

T T T

T T T T

� � � � �

� � � � �

� � � �

� � � �

� � � � �

� � � � �

� � � �

� � � �

, ,

, ,

, ,

,

 or 

 or 

,

C

C

 

CHEMM Computes one of the matrix-matrix operations: 
, 

where A is an Hermitian matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +

CSYMM Computes one of the matrix-matrix operations: 
, 

where A is a symmetric matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +

CTRMM Computes one of the matrix-matrix operations: 
B AB B A B B BA B BA

B A B B BA

T T

T T

� � � �

� �

� � � �

� �

, , ,

,or 

,

C

 

where B is an m by n matrix and A is a triangular matrix. 
MCRCR Multiplies two complex rectangular matrices, AB. 
MRRRR Multiplies two real rectangular matrices, AB. 
MXTXF Computes the transpose product of a matrix, ATA. 
MXTYF Multiplies the transpose of matrix A by matrix B, ATB. 
MXYTF Multiplies a matrix A by the transpose of a matrix B, ABT. 
SGEMM Compute one of the matrix-matrix operations: 

. 
C AB C C A B C C AB

C C A B C

T T

T T

� � � � �

� � �

� � � � �

� � �

, ,

, or 
SSYMM Computes one of the matrix-matrix operations: 

, 
where A is a symmetric matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +

STRMM Computes one of the matrix-matrix operations: 
, 

where B is an m by n matrix and A is a triangular matrix. 
B AB B A B B BA B BAT T
� � � �� � � �, , or 

D1b7.....Matrix polynomial 
POLRG 1207 Evaluates a real general matrix polynomial. 

D1b8.....Copy 
CCBCB Copies a complex band matrix stored in complex band 

storage mode. 
CCGCG Copies a complex general matrix. 
CRBRB Copies a real band matrix stored in band storage mode. 
CRGRG Copies a real general matrix. 
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D1b9.....Storage mode conversion 
CCBCG Converts a complex matrix in band storage mode to a 

complex matrix in full storage mode. 
CCGCB Converts a complex general matrix to a matrix in complex 

band storage mode. 
CHBCB Copies a complex Hermitian band matrix stored in band 

Hermitian storage mode to a complex band matrix stored 
in band storage mode. 

CHFCG Extends a complex Hermitian matrix defined in its upper 
triangle to its lower triangle. 

CRBCB Converts a real matrix in band storage mode to a complex 
matrix in band storage mode. 

CRBRG Converts a real matrix in band storage mode to a real 
general matrix. 

CRGCG Copies a real general matrix to a complex general matrix. 
CRGRB Converts a real general matrix to a matrix in band storage 

mode. 
CRRCR Copies a real rectangular matrix to a complex rectangular 

matrix. 
CSBRB Copies a real symmetric band matrix stored in band 

symmetric storage mode to a real band matrix stored in 
band storage mode. 

CSFRG Extends a real symmetric matrix defined in its upper 
triangle to its lower triangle. 

D1b10...Elementary rotation (Givens transformation) (search also class D1a8) 
SROTG Constructs a Givens plane rotation in single precision. 
SROTMG Constructs a modified Givens plane rotation in single 

precision. 

D2.........Solution of systems of linear equations (including inversion, LU and 
related decompositions) 

D2a.......Real nonsymmetric matrices 
LSLTO Solves a real Toeplitz linear system. 

D2a1.....General 
LFCRG Computes the LU factorization of a real general matrix and 

estimate its L� condition number. 
LFIRG Uses iterative refinement to improve the solution of a real 

general system of linear equations. 
LFSRG Solves a real general system of linear equations given the 

LU factorization of the coefficient matrix. 
LFTRG Computes the LU factorization of a real general matrix. 
LINRG Computes the inverse of a real general matrix. 
LSARG Solves a real general system of linear equations with 

iterative refinement. 
LSLRG Solves a real general system of linear equations without 

iterative refinement. 
LIN_SOL_GEN Solves a general system of linear equations Ax = b. Using 

optional arguments, any of several related computations 
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x

B1 ,

can be performed. These extra tasks include computing the 
LU factorization of A using partial pivoting, representing 
the determinant of A, computing the inverse matrix A-1, 
and solving ATx = b or Ax = b given the LU factorization 
of A. 

D2a2.....Banded 
LFCRB Computes the LU factorization of a real matrix in band 

storage mode and estimate its L� condition number. 
LFIRB Uses iterative refinement to improve the solution of a real 

system of linear equations in band storage mode. 
LFSRB Solves a real system of linear equations given the LU 

factorization of the coefficient matrix in band storage 
mode. 

LFTRB Computes the LU factorization of a real matrix in band 
storage mode. 

LSARB Solves a real system of linear equations in band storage 
mode with iterative refinement. 

LSLRB Solves a real system of linear equations in band storage 
mode without iterative refinement. 

STBSV Solves one of the triangular systems: 

, 

where A is a triangular matrix in band storage mode. 

x A x x A
T

� �
� �1 1 or e j

D2a2a ...Tridiagonal 
LSLCR Computes the LDU factorization of a real tridiagonal 

matrix A using a cyclic reduction algorithm. 
LSLTR Solves a real tridiagonal system of linear equations. 

LIN_SOL_TRI Solves multiple systems of linear equations Ajxj = yj, j = 1, 
�, k. Each matrix Aj is tridiagonal with the same 
dimension, n: The default solution method is based on LU 
factorization computed using cyclic reduction. An option 
is used to select Gaussian elimination with partial pivoting. 

TRI_SOLVE A real, tri-diagonal, multiple system solver. Uses both 
cyclic reduction and Gauss elimination. Similar in function 
to lin_sol_tri. 

D2a3.....Triangular 
LFCRT Estimates the condition number of a real triangular matrix. 
LINRT Computes the inverse of a real triangular matrix. 
LSLRT Solves a real triangular system of linear equations. 
STRSM Solves one of the matrix equations: 

 

where B is an m by n matrix and A is a triangular matrix. 

B A B B BA B A

B B A

T

T

� � �

�

� � �

�

� � �

�

1 1

1

, , e j

e jor 
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x

STRSV Solves one of the triangular linear systems: 

 

where A is a triangular matrix. 

x A x x A
T

� �
� �1 1 or e j

D2a4.....Sparse 
LFSXG Solves a sparse system of linear equations given the LU 

factorization of the coefficient matrix. 
LFTXG Computes the LU factorization of a real general sparse 

matrix. 
LSLXG Solves a sparse system of linear algebraic equations by 

Gaussian elimination. 
GMRES Uses restarted GMRES with reverse communication to 

generate an approximate solution of Ax = b. 

D2b.......Real symmetric matrices 

D2b1.....General 

D2b1a. ..Indefinite 
LCHRG Computes the Cholesky decomposition of a symmetric 

positive semidefinite matrix with optional column 
pivoting. 

LFCSF Computes the U DUT factorization of a real symmetric 
matrix and estimate its L� condition number. 

LFISF Uses iterative refinement to improve the solution of a real 
symmetric system of linear equations. 

LFSSF Solves a real symmetric system of linear equations given 
the U DUT factorization of the coefficient matrix. 

LFTSF Computes the U DUT factorization of a real symmetric 
matrix. 

LSASF Solves a real symmetric system of linear equations with 
iterative refinement. 

LSLSF Solves a real symmetric system of linear equations without 
iterative refinement. 

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a 
self-adjoint matrix. Using optional arguments, any of 
several related computations can be performed. These 
extra tasks include computing and saving the factorization 
of A using symmetric pivoting, representing the 
determinant of A, computing the inverse matrix A-1, or 
computing the solution of Ax = b given the factorization of 
A. An optional argument is provided indicating that A is 
positive definite so that the Cholesky decomposition can 
be used. 

D2b1b...Positive definite 
LCHRG Computes the Cholesky decomposition of a symmetric 

positive semidefinite matrix with optional column 
pivoting. 
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LFCDS Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix and estimate its 
L�condition number. 

LFIDS Uses iterative refinement to improve the solution of a real 
symmetric positive definite system of linear equations. 

LFSDS Solves a real symmetric positive definite system of linear 
equations given the RT R Choleksy factorization of the 
coefficient matrix. 

LFTDS Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix. 

LINDS Computes the inverse of a real symmetric positive definite 
matrix. 

LSADS Solves a real symmetric positive definite system of linear 
equations with iterative refinement. 

LSLDS Solves a real symmetric positive definite system of linear 
equations without iterative refinement. 

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a 
self-adjoint matrix. Using optional arguments, any of 
several related computations can be performed. These 
extra tasks include computing and saving the factorization 
of A using symmetric pivoting, representing the 
determinant of A, computing the inverse matrix A-1, or 
computing the solution of Ax = b given the factorization of 
A. An optional argument is provided indicating that A is 
positive definite so that the Cholesky decomposition can 
be used. 

D2b2.....Positive definite banded 
LFCQS Computes the RT R Cholesky factorization of a real 

symmetric positive definite matrix in band symmetric 
storage mode and estimate its L� condition number. 

LFDQS Computes the determinant of a real symmetric positive 
definite matrix given the RT R Cholesky factorization of 
the band symmetric storage mode. 

LFIQS Uses iterative refinement to improve the solution of a real 
symmetric positive definite system of linear equations in 
band symmetric storage mode. 

LFSQS Solves a real symmetric positive definite system of linear 
equations given the factorization of the coefficient matrix 
in band symmetric storage mode. 

LFTQS Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix in band symmetric 
storage mode. 

LSAQS Solves a real symmetric positive definite system of linear 
equations in band symmetric storage mode with iterative 
refinement. 
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LSLPB Computes the RT DR Cholesky factorization of a real 
symmetric positive definite matrix A in codiagonal band 
symmetric storage mode. Solve a system Ax = b. 

LSLQS Solves a real symmetric positive definite system of linear 
equations in band symmetric storage mode without 
iterative refinement. 

D2b4.....Sparse 
JCGRC Solves a real symmetric definite linear system using the 

Jacobi preconditioned conjugate gradient method with 
reverse communication. 

LFSXD Solves a real sparse symmetric positive definite system of 
linear equations, given the Cholesky factorization of the 
coefficient matrix. 

LNFXD Computes the numerical Cholesky factorization of a sparse 
symmetrical matrix A. 

LSCXD Performs the symbolic Cholesky factorization for a sparse 
symmetric matrix using a minimum degree ordering or a 
userspecified ordering, and set up the data structure for the 
numerical Cholesky factorization. 

LSLXD Solves a sparse system of symmetric positive definite 
linear algebraic equations by Gaussian elimination. 

PCGRC Solves a real symmetric definite linear system using a 
preconditioned conjugate gradient method with reverse 
communication. 

D2c. ......Complex non-Hermitian matrices 
LSLCC Solves a complex circulant linear system. 
LSLTC Solves a complex Toeplitz linear system. 

D2c1.....General 
LFCCG Computes the LU factorization of a complex general 

matrix and estimate its L� condition number. 
LFICG Uses iterative refinement to improve the solution of a 

complex general system of linear equations. 
LFSCG Solves a complex general system of linear equations given 

the LU factorization of the coefficient matrix. 
LFTCG Computes the LU factorization of a complex general 

matrix. 
LINCG Computes the inverse of a complex general matrix. 
LSACG Solves a complex general system of linear equations with 

iterative refinement. 
LSLCG Solves a complex general system of linear equations 

without iterative refinement. 
LIN_SOL_GEN Solves a general system of linear equations Ax = b. Using 

optional arguments, any of several related computations 
can be performed. These extra tasks include computing the 
LU factorization of A using partial pivoting, representing 
the determinant of A, computing the inverse matrix A-1, 
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and solving ATx = b or Ax = b given the LU factorization 
of A. 

D2c2.....Banded 
CTBSV Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
 ,   or e j e j, ,x  

where A is a triangular matrix in band storage mode. 
LFCCB Computes the LU factorization of a complex matrix in 

band storage mode and estimate its L� condition number. 
LFICB Uses iterative refinement to improve the solution of a 

complex system of linear equations in band storage mode. 
LFSCB Solves a complex system of linear equations given the LU 

factorization of the coefficient matrix in band storage 
mode. 

LFTCB Computes the LU factorization of a complex matrix in 
band storage mode. 

LSACB Solves a complex system of linear equations in band 
storage mode with iterative refinement. 

LSLCB Solves a complex system of linear equations in band 
storage mode without iterative refinement. 

D2c2a ...Tridiagonal 
LSLCQ Computes the LDU factorization of a complex tridiagonal 

matrix A using a cyclic reduction algorithm. 
LSLTQ Solves a complex tridiagonal system of linear equations. 

LIN_SOL_TRI Solves multiple systems of linear equations Ajxj = yj, j = 1, 
�, k. Each matrix Aj is tridiagonal with the same 
dimension, n: The default solution method is based on LU 
factorization computed using cyclic reduction. An option 
is used to select Gaussian elimination with partial pivoting. 

 

D2c3.....Triangular 
CTRSM Solves one of the complex matrix equations: 

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e jor 

�1 ,

where A is a traiangular matrix. 
CTRSV Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
 ,   or e j e j,  x

where A is a triangular matrix. 
LFCCT Estimates the condition number of a complex triangular 

matrix. 
LINCT Computes the inverse of a complex triangular matrix. 
LSLCT Solves a complex triangular system of linear equations. 



 

 
 

A-16 � Appendix A: GAMS Index IMSL MATH/LIBRARY 

 

 

 

D2c4.....Sparse 
LFSZG Solves a complex sparse system of linear equations given 

the LU factorization of the coefficient matrix. 
LFTZG Computes the LU factorization of a complex general 

sparse matrix. 
LSLZG Solves a complex sparse system of linear equations by 

Gaussian elimination. 

D2d.......Complex Hermitian matrices 

D2d1.....General 

D2d1a. ..Indefinite 
LFCHF Computes the U DUH factorization of a complex 

Hermitian matrix and estimate its L� condition number. 
LFDHF Computes the determinant of a complex Hermitian matrix 

given the U DUH factorization of the matrix. 
LFIHF Uses iterative refinement to improve the solution of a 

complex Hermitian system of linear equations. 
LFSHF Solves a complex Hermitian system of linear equations 

given the U DUH factorization of the coefficient matrix. 
LFTHF Computes the U DUH factorization of a complex 

Hermitian matrix. 
LSAHF Solves a complex Hermitian system of linear equations 

with iterative refinement. 
LSLHF Solves a complex Hermitian system of linear equations 

without iterative refinement. 
LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a 

self-adjoint matrix. Using optional arguments, any of 
several related computations can be performed. These 
extra tasks include computing and saving the factorization 
of A using symmetric pivoting, representing the 
determinant of A, computing the inverse matrix A-1, or 
computing the solution of Ax = b given the factorization of 
A. An optional argument is provided indicating that A is 
positive definite so that the Cholesky decomposition can 
be used. 

D2d1b...Positive definite 
LFCDH Computes the RH R factorization of a complex Hermitian 

positive definite matrix and estimate its L� condition 
number. 

LFIDH Uses iterative refinement to improve the solution of a 
complex Hermitian positive definite system of linear 
equations. 

LFSDH Solves a complex Hermitian positive definite system of 
linear equations given the RH R factorization of the 
coefficient matrix. 
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LFTDH Computes the RH R factorization of a complex Hermitian 
positive definite matrix. 

LSADH Solves a Hermitian positive definite system of linear 
equations with iterative refinement. 

LSLDH Solves a complex Hermitian positive definite system of 
linear equations without iterative refinement. 

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a 
self-adjoint matrix. Using optional arguments, any of 
several related computations can be performed. These 
extra tasks include computing and saving the factorization 
of A using symmetric pivoting, representing the 
determinant of A, computing the inverse matrix A-1, or 
computing the solution of Ax = b given the factorization of 
A. An optional argument is provided indicating that A is 
positive definite so that the Cholesky decomposition can 
be used. 

D2d2.....Positive definite banded 
LFCQH Computes the RH R factorization of a complex Hermitian 

positive definite matrix in band Hermitian storage mode 
and estimate its L� condition number. 

LFIQH Uses iterative refinement to improve the solution of a 
complex Hermitian positive definite system of linear 
equations in band Hermitian storage mode. 

LFSQH Solves a complex Hermitian positive definite system of 
linear equations given the factorization of the coefficient 
matrix in band Hermitian storage mode. 

LFTQH Computes the RH R factorization of a complex Hermitian 
positive definite matrix in band Hermitian storage mode. 

LSAQH Solves a complex Hermitian positive definite system of 
linear equations in band Hermitian storage mode with 
iterative refinement. 

LSLQB Computes the RH DR Cholesky factorization of a complex 
hermitian positive-definite matrix A in codiagonal band 
hermitian storage mode. Solve a system Ax = b. 

LSLQH Solves a complex Hermitian positive definite system of 
linearequations in band Hermitian storage mode without 
iterative refinement. 

D2d4.....Sparse 
LFSZD Solves a complex sparse Hermitian positive definite 

system of linear equations, given the Cholesky 
factorization of the coefficient matrix. 

LNFZD Computes the numerical Cholesky factorization of a sparse 
Hermitian matrix A. 

LSLZD Solves a complex sparse Hermitian positive definite 
system of linear equations by Gaussian elimination. 

D3.........Determinants 
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D3a. ......Real nonsymmetric matrices 

D3a1.....General 
LFDRG Computes the determinant of a real general matrix given 

the LU factorization of the matrix. 

D3a2.....Banded 
LFDRB Computes the determinant of a real matrix in band storage 

mode given the LU factorization of the matrix. 

D3a3.....Triangular 
LFDRT Computes the determinant of a real triangular matrix. 

D3b.......Real symmetric matrices 

D3b1.....General 

D3b1a. ..Indefinite 
LFDSF Computes the determinant of a real symmetric matrix 

given the U DUT factorization of the matrix. 

D3b1b...Positive definite 
LFDDS Computes the determinant of a real symmetric positive 

definite matrix given the RH R Cholesky factorization of 
the matrix. 

D3c. ......Complex non-Hermitian matrices 

D3c1.....General 
LFDCG Computes the determinant of a complex general matrix 

given the LU factorization of the matrix. 

D3c2.....Banded 
LFDCB Computes the determinant of a complex matrix given the 

LU factorization of the matrix in band storage mode. 

D3c3.....Triangular 
LFDCT Computes the determinant of a complex triangular matrix. 

D3d.......Complex Hermitian matrices 

D3d1.....General 

D3d1b...Positive definite 
LFDDH Computes the determinant of a complex Hermitian positive 

definite matrix given the RH R Cholesky factorization of 
the matrix. 

D3d2.....Positive definite banded 
LFDQH Computes the determinant of a complex Hermitian positive 

definite matrix given the RH R Cholesky factorization in 
band Hermitian storage mode. 

D4.........Eigenvalues, eigenvectors 

D4a. ......Ordinary eigenvalue problems (Ax = �x) 
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D4a1.....Real symmetric 
EVASF Computes the largest or smallest eigenvalues of a real 

symmetric matrix. 
EVBSF Computes selected eigenvalues of a real symmetric matrix. 
EVCSF Computes all of the eigenvalues and eigenvectors of a real 

symmetric matrix. 
EVESF Computes the largest or smallest eigenvalues and the 

corresponding eigenvectors of a real symmetric matrix. 
EVFSF Computes selected eigenvalues and eigenvectors of a real 

symmetric matrix. 
EVLSF Computes all of the eigenvalues of a real symmetric 

matrix. 
LIN_EIG_SELF Computes the eigenvalues of a self-adjoint matrix, A. 

Optionally, the eigenvectors can be computed. This gives 
the decomposition A = VDVT, where V is an n � n 
orthogonal matrix and D is a real diagonal matrix. 

D4a2.....Real nonsymmetric 
EVCRG Computes all of the eigenvalues and eigenvectors of a real 

matrix. 
EVLRG Computes all of the eigenvalues of a real matrix. 

LIN_EIG_GEN Computes the eigenvalues of an n � n matrix, A. 
Optionally, the eigenvectors of A or AT are computed. 
Using the eigenvectors of A gives the decomposition  
AV = VE, where V is an n � n complex matrix of 
eigenvectors, and E is the complex diagonal matrix of 
eigenvalues. Other options include the reduction of A to 
upper triangular or Schur form, reduction to block upper 
triangular form with 2 � 2 or unit sized diagonal block 
matrices, and reduction to upper Hessenberg form. 

D4a3.....Complex Hermitian 
EVAHF Computes the largest or smallest eigenvalues of a complex 

Hermitian matrix. 
EVBHF Computes the eigenvalues in a given range of a complex 

Hermitian matrix. 
EVCHF Computes all of the eigenvalues and eigenvectors of a 

complex Hermitian matrix. 
EVEHF Computes the largest or smallest eigenvalues and the 

corresponding eigenvectors of a complex Hermitian 
matrix. 

EVFHF Computes the eigenvalues in a given range and the 
corresponding eigenvectors of a complex Hermitian 
matrix. 

EVLHF Computes all of the eigenvalues of a complex Hermitian 
matrix. 

LIN_EIG_SELF Computes the eigenvalues of a self-adjoint matrix, A. 
Optionally, the eigenvectors can be computed. This gives 
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the decomposition A = VDVT, where V is an n � n 
orthogonal matrix and D is a real diagonal matrix. 

D4a4.....Complex non-Hermitian 
EVCCG Computes all of the eigenvalues and eigenvectors of a 

complex matrix. 
EVLCG Computes all of the eigenvalues of a complex matrix. 

LIN_EIG_GEN Computes the eigenvalues of an n � n matrix, A. 
Optionally, the eigenvectors of A or AT are computed. 
Using the eigenvectors of A gives the decomposition  
AV = VE, where V is an n � n complex matrix of 
eigenvectors, and E is the complex diagonal matrix of 
eigenvalues. Other options include the reduction of A to 
upper triangular or Schur form, reduction to block upper 
triangular form with 2 � 2 or unit sized diagonal block 
matrices, and reduction to upper Hessenberg form. 

D4a6.....Banded 
EVASB Computes the largest or smallest eigenvalues of a real 

symmetric matrix in band symmetric storage mode. 
EVBSB Computes the eigenvalues in a given interval of a real 

symmetric matrix stored in band symmetric storage mode. 
EVCSB Computes all of the eigenvalues and eigenvectors of a real 

symmetric matrix in band symmetric storage mode. 
EVESB Computes the largest or smallest eigenvalues and the 

corresponding eigenvectors of a real symmetric matrix in 
band symmetric storage mode. 

EVFSB Computes the eigenvalues in a given interval and the 
corresponding eigenvectors of a real symmetric matrix 
stored in band symmetric storage mode. 

EVLSB Computes all of the eigenvalues of a real symmetric matrix 
in band symmetric storage mode. 

D4b.......Generalized eigenvalue problems (e.g., Ax = �Bx) 

D4b1.....Real symmetric 
GVCSP Computes all of the eigenvalues and eigenvectors of the 

generalized real symmetric eigenvalue problem Az = �Bz, 
with B symmetric positive definite. 

GVLSP Computes all of the eigenvalues of the generalized real 
symmetric eigenvalue problem Az = �Bz, with B 
symmetric positive definite. 

LIN_GEIG_GEN Computes the generalized eigenvalues of an n � n matrix 
pencil, Av � �Bv. Optionally, the generalized eigenvectors 
are computed. If either of A or B is nonsingular, there are 
diagonal matrices � and � and a complex matrix V 
computed such that AV� = BV�. 

 

D4b2.....Real general 
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GVCRG Computes all of the eigenvalues and eigenvectors of a 
generalized real eigensystem Az = �Bz. 

GVLRG Computes all of the eigenvalues of a generalized real 
eigensystem Az = �Bz. 

LIN_GEIG_GEN Computes the generalized eigenvalues of an n � n matrix 
pencil, Av � �Bv. Optionally, the generalized eigenvectors 
are computed. If either of A or B is nonsingular, there are 
diagonal matrices � and � and a complex matrix V 
computed such that AV� = BV�. 

D4b4.....Complex general 
GVCCG Computes all of the eigenvalues and eigenvectors of a 

generalized complex eigensystem Az = �Bz. 
GVLCG Computes all of the eigenvalues of a generalized complex 

eigensystem Az = �Bz. 
LIN_GEIG_GEN Computes the generalized eigenvalues of an n � n matrix 

pencil, Av � �Bv. Optionally, the generalized eigenvectors 
are computed. If either of A or B is nonsingular, there are 
diagonal matrices � and � and a complex matrix V 
computed such that AV� = BV�. 

D4c.......Associated operations 
BALANC, CBSLANC Balances a general matrix before computing the 

eigenvalue-eigenvector decomposition. 
EPICG Computes the performance index for a complex 

eigensystem. 
EPIHF Computes the performance index for a complex Hermitian 

eigensystem. 
EPIRG Computes the performance index for a real eigensystem. 
EPISB Computes the performance index for a real symmetric 

eigensystem in band symmetric storage mode. 
EPISF Computes the performance index for a real symmetric 

eigensystem. 
GPICG Computes the performance index for a generalized 

complex eigensystem Az = �Bz. 
GPIRG Computes the performance index for a generalized real 

eigensystem Az = �Bz. 
GPISP Computes the performance index for a generalized real 

symmetric eigensystem problem. 
PERFECT_SHIFT Computes eigenvectors using actual eigenvalue as an 

explicit shift. Called by lin_eig_self. 
PWK A rational QR algorithm for computing eigenvalues of 

real, symmetric tri-diagonal matrices. Called by lin_svd 
and lin_eig_self. 

D4c2.....Compute eigenvalues of matrix in compact form 

D4c2b...Hessenberg 
EVCCH Computes all of the eigenvalues and eigenvectors of a 

complex upper Hessenberg matrix. 
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EVCRH Computes all of the eigenvalues and eigenvectors of a real 
upper Hessenberg matrix. 

EVLCH Computes all of the eigenvalues of a complex upper 
Hessenberg matrix. 

EVLRH Computes all of the eigenvalues of a real upper 
Hessenberg matrix. 

D5.........QR decomposition, Gram-Schmidt orthogonalization 
LQERR Accumulates the orthogonal matrix Q from its factored 

form given the QR factorization of a rectangular matrix A. 
LQRRR Computes the QR decomposition, AP = QR, using 

Householder transformations. 
LQRSL Computes the coordinate transformation, projection, and 

complete the solution of the least-squares problem Ax = b. 
LSBRR Solves a linear least-squares problem with iterative 

refinement. 
LSQRR Solves a linear least-squares problem without iterative 

refinement. 

D6.........Singular value decomposition 
LSVCR Computes the singular value decomposition of a complex 

matrix. 
LSVRR Computes the singular value decomposition of a real 

matrix. 
LIN_SOL_SVD Solves a rectangular least-squares system of linear 

equations Ax � b using singular value decomposition,  
A = USVT. Using optional arguments, any of several 
related computations can be performed. These extra tasks 
include computing the rank of A, the orthogonal m � m and 
n � n matrices U and V, and the m � n diagonal matrix of 
singular values, S. 

LIN_SVD Computes the singular value decomposition (SVD) of a 
rectangular matrix, A. This gives the decomposition  
A = USVT, where V is an n � n orthogonal matrix, U is an 
m � m orthogonal matrix, and S is a real, rectangular 
diagonal matrix. 

D7.........Update matrix decompositions 

D7b.......Cholesky 
LDNCH Downdates the RTR Cholesky factorization of a real 

symmetric positive definite matrix after a rank-one matrix 
is removed. 

LUPCH Updates the RTR Cholesky factorization of a real 
symmetric positive definite matrix after a rank-one matrix 
is added. 

D7c. ......QR 
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LUPQR Computes an updated QR factorization after the rank-one 
matrix �xyT is added. 

D9.........Singular, overdetermined or underdetermined systems of linear 
equations, generalized inverses 

D9a.......Unconstrained 

D9a1.....Least squares (L�) solution 
BAND_ 
ACCUMALATION Accumulatez and solves banded least-squares problem 
   using Householder transformations. 
BAND_SOLVE  Accumulatez and solves banded least-squares problem 
   using Householder transformations. 
HOUSE_HOLDER Accumulates and solves banded least-squares problem 
   using Householder transformations. 

 
LQRRR Computes the QR decomposition, AP = QR, using 

Householder transformations. 
LQRRV Computes the least-squares solution using Householder 

transformations applied in blocked form. 
LQRSL Computes the coordinate transformation, projection, and 

complete the solution of the least-squares problem Ax = b. 
LSBRR Solves a linear least-squares problem with iterative 

refinement. 
LSQRR Solves a linear least-squares problem without iterative 

refinement. 
LIN_SOL_LSQ Solves a rectangular system of linear equations Ax � b, in a 

least-squares sense. Using optional arguments, any of 
several related computations can be performed. These 
extra tasks include computing and saving the factorization 
of A using column and row pivoting, representing the 
determinant of A, computing the generalized inverse 
matrix A†, or computing the least-squares solution of  
Ax � b or ATy � d given the factorization of A. An optional 
argument is provided for computing the following 
unscaled covariance matrix: C = (ATA)-1. 

LIN_SOL_SVD Solves a rectangular least-squares system of linear 
equations Ax � b using singular value decomposition,  
A = USVT. Using optional arguments, any of several 
related computations can be performed. These extra tasks 
include computing the rank of A, the orthogonal m � m and 
n � n matrices U and V, and the m � n diagonal matrix of 
singular values, S. 

D9b.......Constrained 

D9b1.....Least squares (L�) solution 
LCLSQ Solves a linear least-squares problem with linear 

constraints. 
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D9c. ......Generalized inverses 
LSGRR Computes the generalized inverse of a real matrix. 

LIN_SOL_LSQ Solves a rectangular system of linear equations Ax � b, in a 
least-squares sense. Using optional arguments, any of 
several related computations can be performed. These 
extra tasks include computing and saving the factorization 
of A using column and row pivoting, representing the 
determinant of A, computing the generalized inverse 
matrix A†, or computing the least-squares solution of  
Ax � b or ATy � d given the factorization of A. An optional 
argument is provided for computing the following 
unscaled covariance matrix: C = (ATA)-1. 

E ...........INTERPOLATION 

E1 .........Univariate data (curve fitting) 

E1a .......Polynomial splines (piecewise polynomials) 
BSINT Computes the spline interpolant, returning the B-spline 

coefficients. 
CSAKM Computes the Akima cubic spline interpolant. 
CSCON Computes a cubic spline interpolant that is consistent with 

the concavity of the data. 
CSDEC Computes the cubic spline interpolant with specified 

derivative endpoint conditions. 
CSHER Computes the Hermite cubic spline interpolant. 
CSIEZ Computes the cubic spline interpolant with the ‘not-a-knot’ 

condition and return values of the interpolant at specified 
points. 

CSINT Computes the cubic spline interpolant with the ‘not-a-knot’ 
condition. 

CSPER Computes the cubic spline interpolant with periodic 
boundary conditions. 

QDVAL Evaluates a function defined on a set of points using 
quadratic interpolation. 

SPLEZ Computes the values of a spline that either interpolates or 
fits user-supplied data. 

SPLINE_FITTING Solves constrained least-squares fitting of one-dimensional 
data by B-splines. 

SPlINE_SUPPORT B-spline function and derivative evaluation package. 

E2 .........Multivariate data (surface fitting) 

E2a .......Gridded 
BS2IN Computes a two-dimensional tensor-product spline 

interpolant, returning the tensor-product B-spline 
coefficients. 

BS3IN Computes a three-dimensional tensor-product spline 
interpolant, returning the tensor-product B-spline 
coefficients. 
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QD2DR Evaluates the derivative of a function defined on a 
rectangular grid using quadratic interpolation. 

QD2VL Evaluates a function defined on a rectangular grid using 
quadratic interpolation. 

QD3DR Evaluates the derivative of a function defined on a 
rectangular three-dimensional grid using quadratic 
interpolation. 

QD3VL Evaluates a function defined on a rectangular three-
dimensional grid using quadratic interpolation. 

SURFACE_FITTING Solves constrained least-squares fitting of two-dimensional 
data by tensor products of B-splines. 

E2b .......Scattered 
SURF Computes a smooth bivariate interpolant to scattered data 

that is locally a quintic polynomial in two variables. 
SURFACE_FAIRING Constrained weighted least-squares fitting of tensor 

product B-splines to discrete data, with covariance matrix 
and constraints at points. 

E3 .........Service routines for interpolation 

E3a .......Evaluation of fitted functions, including quadrature 

E3a1 .....Function evaluation 
BS1GD Evaluates the derivative of a spline on a grid, given its B-

spline representation. 
BS2DR Evaluates the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline 
representation. 

BS2GD Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BS2VL Evaluates a two-dimensional tensor-product spline, given 
its tensor-product B-spline representation. 

BS3GD Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BS3VL Evaluates a three-dimensional tensor-product spline, given 
its tensor-product B-spline representation. 

BSVAL Evaluates a spline, given its B-spline representation. 
CSVAL Evaluates a cubic spline. 
PPVAL Evaluates a piecewise polynomial. 
QDDER Evaluates the derivative of a function defined on a set of 

points using quadratic interpolation. 

E3a2 .....Derivative evaluation 
BS1GD Evaluates the derivative of a spline on a grid, given its B-

spline representation. 
BS2DR Evaluates the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline 
representation. 
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BS2GD Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BS3DR Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline 
representation. 

BS3GD Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BSDER Evaluates the derivative of a spline, given its B-spline 
representation. 

CS1GD Evaluates the derivative of a cubic spline on a grid. 
CSDER Evaluates the derivative of a cubic spline. 
PP1GD Evaluates the derivative of a piecewise polynomial on a 

grid. 
PPDER Evaluates the derivative of a piecewise polynomial. 
QDDER Evaluates the derivative of a function defined on a set of 

points using quadratic interpolation. 

E3a3 .....Quadrature 
BS2IG Evaluates the integral of a tensor-product spline on a 

rectangular domain, given its tensor-product B-spline 
representation. 

BS3IG Evaluates the integral of a tensor-product spline in three 
dimensions over a three-dimensional rectangle, given its 
tensorproduct B-spline representation. 

BSITG Evaluates the integral of a spline, given its B-spline 
representation. 

CSITG Evaluates the integral of a cubic spline. 

E3b .......Grid or knot generation 
BSNAK Computes the ‘not-a-knot’ spline knot sequence. 
BSOPK Computes the ‘optimal’ spline knot sequence. 

E3c .......Manipulation of basis functions (e.g., evaluation, change of basis) 
BSCPP Converts a spline in B-spline representation to piecewise 

polynomial representation. 

F ...........SOLUTION OF NONLINEAR EQUATIONS 

F1 .........Single equation 

F1a........Polynomial 

F1a1......Real coefficients 
ZPLRC Finds the zeros of a polynomial with real coefficients using 

Laguerre’s method. 
ZPORC Finds the zeros of a polynomial with real coefficients using 

the Jenkins-Traub three-stage algorithm. 

F1a2......Complex coefficients 
ZPOCC Finds the zeros of a polynomial with complex coefficients 

using the Jenkins-Traub three-stage algorithm. 
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F1b .......Nonpolynomial 
ZANLY Finds the zeros of a univariate complex function using 

Müller’s method. 
ZBREN Finds a zero of a real function that changes sign in a given 

interval. 
ZREAL Finds the real zeros of a real function using Müller’s 

method. 

F2 .........System of equations 
NEQBF Solves a system of nonlinear equations using factored 

secant update with a finite-difference approximation to the 
Jacobian. 

NEQBJ Solves a system of nonlinear equations using factored 
secant update with a user-supplied Jacobian. 

NEQNF Solves a system of nonlinear equations using a modified 
Powell hybrid algorithm and a finite-difference 
approximation to the Jacobian. 

NEQNJ Solves a system of nonlinear equations using a modified 
Powell hybrid algorithm with a user-supplied Jacobian. 

G...........OPTIMIZATION (search also classes K, L8) 

G1.........Unconstrained 

G1a.......Univariate 

G1a1.....Smooth function 

G1a1a. ..User provides no derivatives 
UVMIF Finds the minimum point of a smooth function of a single 

variable using only function evaluations. 

G1a1b...User provides first derivatives 
UVMID Finds the minimum point of a smooth function of a single 

variable using both function evaluations and first 
derivative evaluations. 

G1a2.....General function (no smoothness assumed) 
UVMGS Finds the minimum point of a nonsmooth function of a 

single variable. 

G1b.......Multivariate 

G1b1.....Smooth function 

G1b1a...User provides no derivatives 
UMCGF Minimizes a function of N variables using a conjugate 

gradient algorithm and a finite-difference gradient. 
UMINF Minimizes a function of N variables using a quasi-New 

method and a finite-difference gradient. 
UNLSF Solves a nonlinear least squares problem using a modified 

Levenberg-Marquardt algorithm and a finite-difference 
Jacobian. 

G1b1b...User provides first derivatives 
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UMCGG Minimizes a function of N variables using a conjugate 
gradient algorithm and a user-supplied gradient. 

UMIDH Minimizes a function of N variables using a modified 
Newton method and a finite-difference Hessian. 

UMING Minimizes a function of N variables using a quasi-New 
method and a user-supplied gradient. 

UNLSJ Solves a nonlinear least squares problem using a modified 
Levenberg-Marquardt algorithm and a user-supplied 
Jacobian. 

G1b1c. ..User provides first and second derivatives 
UMIAH Minimizes a function of N variables using a modified 

Newton method and a user-supplied Hessian. 

G1b2.....General function (no smoothness assumed) 
UMPOL Minimizes a function of N variables using a direct search 

polytope algorithm. 

G2.........Constrained 

G2a. ......Linear programming 

G2a1.....Dense matrix of constraints 
DLPRS Solves a linear programming problem via the revised 

simplex algorithm. 

G2a2.....Sparse matrix of constraints 
SLPRS Solves a sparse linear programming problem via the 

revised simplex algorithm. 

G2e. ......Quadratic programming 

G2e1.....Positive definite Hessian (i.e., convex problem) 
QPROG Solves a quadratic programming problem subject to linear 

equality/inequality constraints. 

G2h.......General nonlinear programming 

G2h1.....Simple bounds 

G2h1a. ..Smooth function 

G2h1a1 .User provides no derivatives 
BCLSF Solves a nonlinear least squares problem subject to bounds 

on the variables using a modified Levenberg-Marquardt 
algorithm and a finite-difference Jacobian. 

BCONF Minimizes a function of N variables subject to bounds the 
variables using a quasi-Newton method and a finite-
difference gradient. 

G2h1a2 .User provides first derivatives 
BCLSJ Solves a nonlinear least squares problem subject to bounds 

on the variables using a modified Levenberg-Marquardt 
algorithm and a user-supplied Jacobian. 
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BCODH Minimizes a function of N variables subject to bounds the 
variables using a modified Newton method and a finite-
difference Hessian. 

BCONG Minimizes a function of N variables subject to bounds the 
variables using a quasi-Newton method and a user-
supplied gradient. 

G2h1a3.User provides first and second derivatives 
BCOAH Minimizes a function of N variables subject to bounds the 

variables using a modified Newton method and a user-
supplied Hessian. 

G2h1b...General function (no smoothness assumed) 
BCPOL Minimizes a function of N variables subject to bounds the 

variables using a direct search complex algorithm. 

G2h2.....Linear equality or inequality constraints 

G2h2a...Smooth function 

G2h2a1.User provides no derivatives 
LCONF Minimizes a general objective function subject to linear 

equality/inequality constraints. 

G2h2a2.User provides first derivatives 
LCONG Minimizes a general objective function subject to linear 

equality/inequality constraints. 

G2h3.....Nonlinear constraints 

G2h3b...Equality and inequality constraints 
NNLPG  Uses a sequential equality constrained QP method. 
NNLPF Uses a sequential equality constrained QP method. 

G2h3b1.Smooth function and constraints 

G2h3b1a. User provides no derivatives 

G2h3b1b User provides first derivatives of function and constraints 

 

G4.........Service routines 

G4c.......Check user-supplied derivatives 
CHGRD Checks a user-supplied gradient of a function. 
CHHES Checks a user-supplied Hessian of an analytic function. 
CHJAC Checks a user-supplied Jacobian of a system of equations 

with M functions in N unknowns. 

G4d.......Find feasible point 
GGUES Generates points in an N-dimensional space. 

G4f .......Other 
CDGRD Approximates the gradient using central differences. 
FDGRD Approximates the gradient using forward differences. 
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FDHES Approximates the Hessian using forward differences and 
function values. 

FDJAC Approximates the Jacobian of M functions in N unknowns 
using forward differences. 

GDHES Approximates the Hessian using forward differences and a 
user-supplied gradient. 

H...........DIFFERENTIATION, INTEGRATION 

H1.........Numerical differentiation 
DERIV Computes the first, second or third derivative of a user-

supplied function. 

H2.........Quadrature (numerical evaluation of definite integrals) 

H2a. ......One-dimensional integrals 

H2a1.....Finite interval (general integrand) 

H2a1a ...Integrand available via user-defined procedure 

H2a1a1. Automatic (user need only specify required accuracy) 
QDAG Integrates a function using a globally adaptive scheme 

based on Gauss-Kronrod rules. 
QDAGS Integrates a function (which may have endpoint 

singularities). 
QDNG Integrates a smooth function using a nonadaptive rule. 

H2a2.....Finite interval (specific or special type integrand including weight 
functions, oscillating and singular integrands, principal value integrals, 
splines, etc.) 

H2a2a ...Integrand available via user-defined procedure 

H2a2a1 .Automatic (user need only specify required accuracy) 
QDAGP Integrates a function with singularity points given. 
QDAWC Integrates a function F(X)/(X � C) in the Cauchy principal 

value sense. 
QDAWO Integrates a function containing a sine or a cosine. 
QDAWS Integrates a function with algebraic-logarithmic 

singularities. 

H2a2b...Integrand available only on grid 

H2a2b1.Automatic (user need only specify required accuracy) 
BSITG Evaluates the integral of a spline, given its B-spline 

representation. 

H2a3.....Semi-infinite interval (including e�x weight function) 

H2a3a. ..Integrand available via user-defined procedure 

H2a3a1. Automatic (user need only specify required accuracy) 
QDAGI Integrates a function over an infinite or semi-infinite 

interval. 
QDAWF Computes a Fourier integral. 
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H2b.......Multidimensional integrals 

H2b1.....One or more hyper-rectangular regions (including iterated integrals) 
QMC Integrates a function over a hyperrectangle using a  

quasi-Monte Carlo method. 

H2b1a... Integrand available via user-defined procedure 

H2b1a1.Automatic (user need only specify required accuracy) 
QAND Integrates a function on a hyper-rectangle. 
TWODQ Computes a two-dimensional iterated integral. 

H2b1b... Integrand available only on grid 

H2b1b2.Nonautomatic 
BS2IG Evaluates the integral of a tensor-product spline on a 

rectangular domain, given its tensor-product B-spline 
representation. 

BS3IG Evaluates the integral of a tensor-product spline in three 
dimensions over a three-dimensional rectangle, given its 
tensorproduct B-spline representation. 

H2c.......Service routines (compute weight and nodes for quadrature formulas) 
FQRUL Computes a Fejér quadrature rule with various classical 

weight functions. 
GQRCF Computes a Gauss, Gauss-Radau or Gauss-Lobatto 

quadrature rule given the recurrence coefficients for the 
monic polynomials orthogonal with respect to the weight 
function. 

GQRUL Computes a Gauss, Gauss-Radau, or Gauss-Lobatto 
quadrature rule with various classical weight functions. 

RECCF Computes recurrence coefficients for various monic 
polynomials. 

RECQR Computes recurrence coefficients for monic polynomials 
given a quadrature rule. 

I ............DIFFERENTIAL AND INTEGRAL EQUATIONS 

I1 ..........Ordinary differential equations (ODE’s) 

I1a. ....... Initial value problems 

I1a1 ......General, nonstiff or mildly stiff 

I1a1a.....One-step methods (e.g., Runge-Kutta) 
IVMRK Solves an initial-value problem y� = f(t, y) for ordinary 

differential equations using Runge-Kutta pairs of various 
orders. 

IVPRK Solves an initial-value problem for ordinary differential 
equations using the Runge-Kutta-Verner fifth-order and 
sixth-order method. 

I1a1b. ...Multistep methods (e.g., Adams predictor-corrector) 
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IVPAG Solves an initial-value problem for ordinary differential 
equations using either Adams-Moulton’s or Gear’s BDF 
method. 

I1a2 ......Stiff and mixed algebraic-differential equations 
DASPG Solves a first order differential-algebraic system of 

equations, g(t, y, y�) = 0, using Petzold�Gear BDF method. 

I1b ........Multipoint boundary value problems 

I1b2 ......Nonlinear 
BVPFD Solves a (parameterized) system of differential equations 

with boundary conditions at two points, using a variable 
order, variable step size finite-difference method with 
deferred corrections. 

BVPMS Solves a (parameterized) system of differential equations 
with boundary conditions at two points, using a multiple-
shooting method. 

I1b3 ......Eigenvalue (e.g., Sturm-Liouville) 
SLCNT Calculates the indices of eigenvalues of a Sturm-Liouville 

problem with boundary conditions (at regular points) in a 
specified subinterval of the real line, [�, �]. 

SLEIG Determines eigenvalues, eigenfunctions and/or spectral 
density functions for Sturm-Liouville problems in the form 
with boundary conditions (at regular points). 

I2 ..........Partial differential equations 

I2a. .......Initial boundary value problems 

I2a1 ......Parabolic 
PDE_1D_MG  Integrates an initial-value PDE   

 problem with one space variable. 

I2a1a.....One spatial dimension 
MOLCH Solves a system of partial differential equations of the 

form ut = f(x, t, u, ux, uxx) using the method of lines. The 
solution is represented with cubic Hermite polynomials. 

I2b ........Elliptic boundary value problems 

I2b1 ......Linear 

I2b1a. ...Second order 

I2b1a1...Poisson (Laplace) or Helmholtz equation 

I2b1a1a.Rectangular domain (or topologically rectangular in the coordinate 
system) 

FPS2H Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver based on 
the HODIE finite-difference scheme on a uni mesh. 
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FPS3H Solves Poisson’s or Helmholtz’s equation on a three-
dimensional box using a fast Poisson solver based on the 
HODIE finite-difference scheme on a uniform mesh. 

J............ INTEGRAL TRANSFORMS 

J1..........Trigonometric transforms including fast Fourier transforms 

J1a ........One-dimensional 

J1a1 ......Real 
FFTRB Computes the real periodic sequence from its Fourier 

coefficients. 
FFTRF Computes the Fourier coefficients of a real periodic 

sequence. 
FFTRI Computes parameters needed by FFTRF and FFTRB. 

J1a2 ......Complex 
FAST-DFT Computes the Discrete Fourier Transform (DFT) of a rank-

1 complex array, x. 
FFTCB Computes the complex periodic sequence from its Fourier 

coefficients. 
FFTCF Computes the Fourier coefficients of a complex periodic 

sequence. 
FFTCI Computes parameters needed by FFTCF and FFTCB. 

J1a3 ......Sine and cosine transforms 
FCOSI Computes parameters needed by FCOST. 
FCOST Computes the discrete Fourier cosine transformation of an 

even sequence. 
FSINI Computes parameters needed by FSINT. 
FSINT Computes the discrete Fourier sine transformation of an 

odd sequence. 
QCOSB Computes a sequence from its cosine Fourier coefficients 

with only odd wave numbers. 
QCOSF Computes the coefficients of the cosine Fourier transform 

with only odd wave numbers. 
QCOSI Computes parameters needed by QCOSF and QCOSB. 
QSINB Computes a sequence from its sine Fourier coefficients 

with only odd wave numbers. 
QSINF  Computes the coefficients of the sine Fourier transform 

with only odd wave numbers. 
QSINI Computes parameters needed by QSINF and QSINB. 

J1b........Multidimensional 
FFT2B Computes the inverse Fourier transform of a complex 

periodic two-dimensional array. 
FFT2D Computes Fourier coefficients of a complex periodic two-

dimensional array. 
FFT3B Computes the inverse Fourier transform of a complex 

periodic three-dimensional array. 
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FFT3F Computes Fourier coefficients of a complex periodic 
threedimensional array. 

FAST_2DFT Computes the Discrete Fourier Transform (DFT) of a rank-
2 complex array, x. 

FAST_3DFT Computes the Discrete Fourier Transform (DFT) of a rank-
3 complex array, x. 

J2 ..........Convolutions 
CCONV Computes the convolution of two complex vectors. 
RCONV Computes the convolution of two real vectors. 

J3 ..........Laplace transforms 
INLAP Computes the inverse Laplace transform of a complex 

function. 
SINLP Computes the inverse Laplace transform of a complex 

function. 

K...........APPROXIMATION (search also class L8) 

K1.........Least squares (L�) approximation 

K1a. ......Linear least squares (search also classes D5, D6, D9) 

K1a1.....Unconstrained 

K1a1a. ..Univariate data (curve fitting) 

K1a1a1 .Polynomial splines (piecewise polynomials) 
BSLSQ Computes the least-squares spline approximation, and 

return the B-spline coefficients. 
BSVLS Computes the variable knot B-spline least squares 

approximation to given data. 
CONFT Computes the least-squares constrained spline 

approximation, returning the B-spline coefficients. 
FRENCH_CURVE Constrained weighted least-squares fitting of B-splines to 

discrete data, with covariance matrix.and constraints at 
points. 

K1a1a2 .Polynomials 
RCURV Fits a polynomial curve using least squares. 

K1a1a3 .Other functions (e.g., trigonometric, user-specified) 

FNLSQ Compute a least-squares approximation with user-supplied basis functions. 

 

 

K1a1b...Multivariate data (surface fitting) 
BSLS2 Computes a two-dimensional tensor-product spline 

approximant using least squares, returning the tensor-
product B-spline coefficients. 



 

 
 

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-35 

 

 

 

BSLS3 Computes a three-dimensional tensor-product spline 
approximant using least squares, returning the tensor-
product B-spline coefficients. 

SURFACE_FAIRING Constrained weighted least-squares fitting of tensor 
product B-splines to discrete data, with covariance matrix 
and constraints at points. 

K1a2.....Constrained 
LIN_SOL_LSQ_CON  Routine for constrained linear-least squares based on a       
   least-distance, dual algorithm. 
LIN_SOL_LSQ_INQ Routine for constrained linear-least squares based on a       
   least-distance, dual algorithm. 
LEAST_PROJ_ 
DISTANCE  Routine for constrained linear-least squares based on a       
   least-distance, dual algorithm. 

 
PARALLEL_&  
NONONEGATIVE_LSQ Solves multiple systems of linear equations  
   Ajxj = yj, j = 1, �, k. Each matrix Aj is tridiagonal with 
   the same dimension, n: The default solution method is 
   based on LU factorization computed using cyclic  
   reduction. An option is used to select Gaussian  
   elimination with partial pivoting. 
PARALLEL_& BOUNDED_LSQ 

 Parallel routines for simple bounded constrained linear-
least squares based on a descent algorithm. 

K1a2a ...Linear constraints 
LCLSQ Solves a linear least-squares problem with linear 

constraints. 
PARALLEL_ 
NONNEGATIVE_LSQ Solves a large least-squares system with non-negative 
   constraints, using parallel computing.  
PARALLEL_ 
BOUNDED_LSQ Solves a large least-squares system with simple bounds, 
   using parallel computing. 

K1b.......Nonlinear least squares 

K1b1.....Unconstrained 

K1b1a...Smooth functions 

K1b1a1.User provides no derivatives 
UNLSF Solves a nonlinear least squares problem using a modified 

Levenberg-Marquardt algorithm and a finite-difference 
Jacobian. 

K1b1a2.User provides first derivatives 
UNLSJ Solves a nonlinear least squares problem using a modified 

Levenberg-Marquardt algorithm and a user-supplied 
Jacobian. 
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K1b2.....Constrained 

K1b2a...Linear constraints 
BCLSF Solves a nonlinear least squares problem subject to bounds 

on the variables using a modified Levenberg-Marquardt 
algorithm and a finite-difference Jacobian. 

BCLSJ Solves a nonlinear least squares problem subject to bounds 
on the variables using a modified Levenberg-Marquardt 
algorithm and a user-supplied Jacobian. 

BCNLS Solves a nonlinear least-squares problem subject to bounds 
on the variables and general linear constraints. 

K2.........Minimax (L�) approximation 
RATCH Computes a rational weighted Chebyshev approximation 

to a continuous function on an interval. 

K5.........Smoothing 
CSSCV Computes a smooth cubic spline approximation to noisy 

data using cross-validation to estimate the smoothing 
parameter. 

CSSED Smooths one-dimensional data by error detection. 
CSSMH Computes a smooth cubic spline approximation to noisy 

data. 

K6.........Service routines for approximation 

K6a. ......Evaluation of fitted functions, including quadrature 

K6a1.....Function evaluation 
BSVAL Evaluates a spline, given its B-spline representation. 
CSVAL Evaluates a cubic spline. 
PPVAL Evaluates a piecewise polynomial. 

K6a2.....Derivative evaluation 
BSDER Evaluates the derivative of a spline, given its B-spline 

representation. 
CS1GD Evaluates the derivative of a cubic spline on a grid. 
CSDER Evaluates the derivative of a cubic spline. 
PP1GD Evaluates the derivative of a piecewise polynomial on a 

grid. 
PPDER Evaluates the derivative of a piecewise polynomial. 

K6a3.....Quadrature 
CSITG Evaluates the integral of a cubic spline. 
PPITG Evaluates the integral of a piecewise polynomial. 

K6c. ......Manipulation of basis functions (e.g., evaluation, change of basis) 
BSCPP Converts a spline in B-spline representation to piecewise 

polynomial representation. 

L ...........STATISTICS, PROBABILITY 

L1 .........Data summarization 

L1c. ......Multi-dimensional data 
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L1c1 .....Raw data 

L1c1b. ..Covariance, correlation 
CCORL Computes the correlation of two complex vectors. 
RCORL Computes the correlation of two real vectors. 

L3 .........Elementary statistical graphics (search also class Q) 

L3e. ......Multi-dimensional data 

L3e3. ....Scatter diagrams 

L3e3a. ..Superimposed Y vs. X 
PLOTP Prints a plot of up to 10 sets of points. 

L6 .........Random number generation 

L6a. ......Univariate 
RAND_GEN Generates a rank-1 array of random numbers. The output 

array entries are positive and less than 1 in value. 

L6a21 ...Uniform (continuous, discrete), uniform order statistics 
RNUN Generates pseudorandom numbers from a uniform (0, 1) 

distribution. 
RNUNF Generates a pseudorandom number from a uniform (0, 1) 

distribution. 

L6b .......Mulitivariate 

L6b21 ...Linear L-1 (least absolute value) approximation random numbers 
FAURE_INIT Shuffles Faure sequence initialization. 
FAURE_FREE Frees the structure containing information about the Faure 

sequence. 
FAURE_NEXT Computes a shuffled Faure sequence. 

L6c. ......Service routines (e.g., seed) 
RNGET Retrieves the current value of the seed used in the IMSL 

random number generators. 
RNOPT Selects the uniform (0, 1) multiplicative congruential 

pseudorandom number generator. 
RNSET Initializes a random seed for use in the IMSL random 

number generators. 
RAND_GEN Generates a rank-1 array of random numbers. The output 

array entries are positive and less than 1 in value. 
 

L8 .........Regression (search also classes D5, D6, D9, G, K) 

L8a. ......Simple linear (e.g., y = �� + ��x + 	) (search also class L8h) 

L8a1. ....Ordinary least squares 
FNLSQ Computes a least-squares approximation with user-

supplied basis functions. 

L8a1a ...Parameter estimation 

L8a1a1. Unweighted data 
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RLINE Fits a line to a set of data points using least squares. 

L8b. ......Polynomial (e.g., y = �� + ��x + ��x
 + 	 ) (search also class L8c) 

L8b1 .....Ordinary least squares 

L8b1b ...Parameter estimation 

L8b1b2. Using orthogonal polynomials 
RCURV Fits a polynomial curve using least squares. 

L8c .......Multiple linear (e.g., y = �� + ��x� + � + �kxk + 	) 

L8c1 .....Ordinary least squares 

L8c1b ...Parameter estimation (search also class L8c1a) 

L8c1b1 .Using raw data 
LSBRR Solves a linear least-squares problem with iterative 

refinement. 
LSQRR Solves a linear least-squares problem without iterative 

refinement. 

N...........DATA HANDLING 

N1.........Input, output 
PGOPT Sets or retrieves page width and length for printing. 
WRCRL Prints a complex rectangular matrix with a given format 

and labels. 
WRCRN Prints a complex rectangular matrix with integer row and 

column labels. 
WRIRL Prints an integer rectangular matrix with a given format 

and labels. 
WRIRN Prints an integer rectangular matrix with integer row and 

column labels. 
WROPT Sets or retrieves an option for printing a matrix. 
WRRRL Prints a real rectangular matrix with a given format and 

labels. 
WRRRN Prints a real rectangular matrix with integer row and 

column labels. 
SCALAPACK_READ Reads matrix data from a file and place in a two-

dimensional block-cyclic form on a process grid. 
SCALAPACK_WRITE Writes matrix data to a file, starting with a two-

dimensional block-cyclic form on a process grid. 
SHOW Prints rank-1 and rank-2 arrays with indexing and text. 

 

N3.........Character manipulation 
ACHAR Returns a character given its ASCII value. 
CVTSI Converts a character string containing an integer number 

into the corresponding integer form. 
IACHAR Returns the integer ASCII value of a character argument. 
ICASE Returns the ASCII value of a character converted to 

uppercase. 
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IICSR Compares two character strings using the ASCII collating 
sequence but without regard to case. 

IIDEX Determines the position in a string at which a given 
character sequence begins without regard to case. 

N4.........Storage management (e.g., stacks, heaps, trees) 
IWKCIN Initializes bookkeeping locations describing the character 

workspace stack. 
IWKIN Initializes bookkeeping locations describing the workspace 

stack. 
ScaLAPACK_READ Moves data from a file to Block-Cyclic form, for use in 

ScaLAPACK. 
ScaLAPACK_WRITE Move data from Block-Cyclic form, following use in  

ScaLAPACK, to a file. 

N5.........Searching 

N5b....... Insertion position 
ISRCH Searches a sorted integer vector for a given integer and 

return its index. 
SRCH Searches a sorted vector for a given scalar and return its 

index. 
SSRCH Searches a character vector, sorted in ascending ASCII 

order, for a given string and return its index. 

N5c.......On a key 
IIDEX Determines the position in a string at which a given 

character sequence begins without regard to case. 
ISRCH Searches a sorted integer vector for a given integer and 

return its index. 
SRCH Searches a sorted vector for a given scalar and return its 

index. 
SSRCH Searches a character vector, sorted in ascending ASCII 

order, for a given string and return its index. 

N6.........Sorting 

N6a....... Internal 

N6a1.....Passive (i.e., construct pointer array, rank) 

N6a1a ... Integer 
SVIBP Sorts an integer array by nondecreasing absolute value and 

return the permutation that rearranges the array. 
SVIGP Sorts an integer array by algebraically increasing value and 

return the permutation that rearranges the array. 

N6a1b...Real 
SVRBP Sorts a real array by nondecreasing absolute value and 

return the permutation that rearranges the array. 
SVRGP Sorts a real array by algebraically increasing value and 

return the permutation that rearranges the array. 
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LIN_SOL_TRI Sorts a rank-1 array of real numbers x so the y results are 
algebraically nondecreasing,  y y . yn1 2� ��

N6a2.....Active 

N6a2a ...Integer 
SVIBN Sorts an integer array by nondecreasing absolute value. 
SVIBP Sorts an integer array by nondecreasing absolute value and 

return the permutation that rearranges the array. 
SVIGN Sorts an integer array by algebraically increasing value. 
SVIGP Sorts an integer array by algebraically increasing value and 

return the permutation that rearranges the array. 

N6a2b...Real 
SVRBN Sorts a real array by nondecreasing absolute value. 
SVRBP Sorts a real array by nondecreasing absolute value and 

return the permutation that rearranges the array. 
SVRGN Sorts a real array by algebraically increasing value. 
SVRGP Sorts a real array by algebraically increasing value and 

return the permutation that rearranges the array. 

N8.........Permuting 
PERMA Permutes the rows or columns of a matrix. 
PERMU Rearranges the elements of an array as specified by a 

permutation. 

Q...........GRAPHICS (search also classes L3) 
PLOTP Prints a plot of up to 10 sets of points. 

R...........SERVICE ROUTINES 
IDYWK Computes the day of the week for a given date. 
IUMAG Sets or retrieves MATH/LIBRARY integer options. 
NDAYS Computes the number of days from January 1, 1900, to the 

given date. 
NDYIN Gives the date corresponding to the number of days since 

January 1, 1900. 
SUMAG Sets or retrieves MATH/LIBRARY single-precision 

options. 
TDATE Get stoday’s date. 
TIMDY Gets time of day. 
VERML Obtains IMSL MATH/LIBRARY-related version, system 

and license numbers. 

R1.........Machine-dependent constants 
AMACH Retrieves single-precision machine constants. 
IFNAN Checks if a value is NaN (not a number). 
IMACH Retrieves integer machine constants. 
ISNAN Detects an IEEE NaN (not-a-number). 
NAN Returns, as a scalar function, a value corresponding to the 

IEEE 754 Standard format of floating point (ANSI/IEEE 
1985) for NaN. 

UMACH Sets or retrieves input or output device unit numbers. 
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R3.........Error handling 
BUILD_ERROR 
_STRUCTURE Fills in flags, values and update the data                            
 structure for error conditions that occur in Library routines. 
 Prepares the structure so that calls to routine 
 error_post will display the reason for the error. 

R3b.......Set unit number for error messages 
UMACH Sets or retrieves input or output device unit numbers. 

R3c .......Other utilities 
ERROR_POST Prints error messages that are generated by IMSL Library 

routines. 
ERSET Sets error handler default print and stop actions. 
IERCD Retrieves the code for an informational error. 
N1RTY Retrieves an error type for the most recently called IMSL 

routine. 

S. ..........SOFTWARE DEVELOPMENT TOOLS 

S3 .........Dynamic program analysis tools 
CPSEC Returns CPU time used in seconds. 
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Appendix B: Alphabetical Summary 
of Routines 

IMSL MATH/LIBRARY 
ACBCB 1441 Adds two complex band matrices, both in band storage 

mode. 

ACHAR 1624 Returns a character given its ASCII value. 

AMACH 1685 Retrieves single-precision machine constants. 

ARBRB 1438 Adds two band matrices, both in band storage mode. 

BCLSF 1274 Solves a nonlinear least squares problem subject to 
bounds on the variables using a modified Levenberg-
Marquardt algorithm and a finite-difference Jacobian. 

BCLSJ 1281 Solves a nonlinear least squares problem subject to 
bounds on the variables using a modified Levenberg-
Marquardt algorithm and a user-supplied Jacobian. 

BCNLS 1288 Solves a nonlinear least-squares problem subject to 
bounds on the variables and general linear constraints. 

BCOAH 1263 Minimizes a function of N variables subject to bounds the 
variables using a modified Newton method and a user-
supplied Hessian. 

BCODH 1257 Minimizes a function of N variables subject to bounds the 
variables using a modified Newton method and a finite-
difference Hessian. 

BCONF 1243 Minimizes a function of N variables subject to bounds the 
variables using a quasi-Newton method and a finite-
difference gradient. 

BCONG 1249 Minimizes a function of N variables subject to bounds the 
variables using a quasi-Newton method and a user-
supplied gradient. 

BCPOL 1271 Minimizes a function of N variables subject to bounds the 
variables using a direct search complex algorithm. 
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BLINF 1427 Computes the bilinear form xTAy. 

BS1GD 656 Evaluates the derivative of a spline on a grid, given its B-
spline representation. 

BS2DR 653 Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline 
representation. 

BS2GD 656 Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BS2IG 661 Evaluates the integral of a tensor-product spline on a 
rectangular domain, given its tensor-product B-spline 
representation. 

BS2IN 631 Computes a two-dimensional tensor-product spline 
interpolant, returning the tensor-product B-spline 
coefficients. 

BS2VL 651 Evaluates a two-dimensional tensor-product spline, given 
its tensor-product B-spline representation. 

BS3DR 666 Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline 
representation. 

BS3GD 670 Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BS3IG 676 Evaluates the integral of a tensor-product spline in three 
dimensions over a three-dimensional rectangle, given its 
tensorproduct B-spline representation. 

BS3IN 635 Computes a three-dimensional tensor-product spline 
interpolant, returning the tensor-product B-spline 
coefficients. 

BS3VL 664 Evaluates a three-dimensional tensor-product spline, 
given its tensor-product B-spline representation. 

BSCPP 680 Converts a spline in B-spline representation to piecewise 
polynomial representation. 

BSDER 643 Evaluates the derivative of a spline, given its B-spline 
representation. 

BSINT 622 Computes the spline interpolant, returning the B-spline 
coefficients. 

BSITG 649 Evaluates the integral of a spline, given its B-spline 
representation. 
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BSLS2 743 Computes a two-dimensional tensor-product spline 
approximant using least squares, returning the tensor-
product B-spline coefficients. 

BSLS3 748 Computes a three-dimensional tensor-product spline 
approximant using least squares, returning the tensor-
product B-spline coefficients. 

BSLSQ 725 Computes the least-squares spline approximation, and 
return the B-spline coefficients. 

BSNAK 625 Computes the ‘not-a-knot’ spline knot sequence. 

BSOPK 628 Computes the ‘optimal’ spline knot sequence. 

BSVAL 641 Evaluates a spline, given its B-spline representation. 

BSVLS 729 Computes the variable knot B-spline least squares 
approximation to given data. 

BVPFD 870 Solves a (parameterized) system of differential equations 
with boundary conditions at two points, using a variable 
order, variable step size finite-difference method with 
deferred corrections. 

BVPMS 882 Solves a (parameterized) system of differential equations 
with boundary conditions at two points, using a multiple-
shooting method. 

CADD 1319 Adds a scalar to each component of a vector, x � x + a, 
all complex. 

CAXPY 1320 Computes the scalar times a vector plus a vector, y � ax 
+ y, all complex. 

CCBCB 1393 Copies a complex band matrix stored in complex band 
storage mode. 

CCBCG 1400 Converts a complex matrix in band storage mode to a 
complex matrix in full storage mode. 

CCGCB 1398 Converts a complex general matrix to a matrix in 
complex band storage mode. 

CCGCG 1390 Copies a complex general matrix. 

CCONV 1064 Computes the convolution of two complex vectors. 

CCOPY 1319 Copies a vector x to a vector y, both complex. 

CCORL 1073 Computes the correlation of two complex vectors. 

CDGRD 1336 Approximates the gradient using central differences. 

CDOTC 1320 Computes the complex conjugate dot product, x . yT

CDOTU 1320 Computes the complex dot product xTy. 
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CGBMV 1330 Computes one of the matrix-vector operations: 
y Ax y y A x y y AT T
� � � � � �� � � � � �, ,  or y , 

where A is a matrix stored in band storage mode. 

CGEMM 1333 Computes one of the matrix-matrix operations: 
C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

T T

T T T

T T T

T T T T

� � � � �

� � � � �

� � � �

� � � �

� � � � �

� � � � �

� � � �

� � � �

, ,

, ,

, ,

,

 or 

 or 

,
 

CGEMV 1329 Computes one of the matrix-vector operations: 
y Ax y y A x y y AT T
� � � � � �� � � � � �, ,  or y , 

CGERC 1384 Computes the rank-one update of a complex general 
matrix: 
A A xy T
� �� . 

CGERU 1384 Computes the rank-one update of a complex general 
matrix: 

. A A xyT
� ��

CHBCB 1411 Copies a complex Hermitian band matrix stored in band 
Hermitian storage mode to a complex band matrix stored 
in band storage mode. 

CHBMV 1381 Computes the matrix-vector operation 
, 

where A is an Hermitian band matrix in band Hermitian 
storage. 

y Ax� �� �y

C

y

CHEMM 1385 Computes one of the matrix-matrix operations: 
, 

where A is an Hermitian matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +

CHEMV 1381 Computes the matrix-vector operation 
, 

where A is an Hermitian matrix. 
y Ax� �� �

CHER 1384 Computes the rank-one update of an Hermitian matrix: 
A A xx T
� ��  with x complex and � real. 

CHER2 1384 Computes a rank-two update of an Hermitian matrix: 
A A xy yxT T
� � �� � . 

CHER2K 1387 Computes one of the Hermitian rank 2k operations: 
C AB BA C C A B B AT T T T
� � � � � �� � � � � or C� , 

where C is an n by n Hermitian matrix and A and B are n 
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by k matrices in the first case and k by n matrices in the 
second case. 

CHERK 1386 Computes one of the Hermitian rank k operations: 
C AA C C A AT T
� � � �� � � or C� , 

where C is an n by n Hermitian matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

CHFCG 1408 Extends a complex Hermitian matrix defined in its upper 
triangle to its lower triangle. 

CHGRD 1349 Checks a user-supplied gradient of a function. 

CHHES 1352 Checks a user-supplied Hessian of an analytic function. 

CHJAC 1355 Checks a user-supplied Jacobian of a system of equations 
with M functions in N unknowns. 

CHOL 1475 Computes the Cholesky factorization of a positive-
definite, symmetric or self-adjoint matrix, A. 

COND 1476 Computes the condition number of a rectangular  
matrix, A. 

CONFT 734 Computes the least-squares constrained spline 
approximation, returning the B-spline coefficients. 

CONST 1669 Returns the value of various mathematical and physical 
constants. 

CPSEC 1631 Returns CPU time used in seconds. 

CRBCB 1405 Converts a real matrix in band storage mode to a complex 
matrix in band storage mode. 

CRBRB 1392 Copies a real band matrix stored in band storage mode. 

CRBRG 1397 Converts a real matrix in band storage mode to a real 
general matrix. 

CRGCG 1402 Copies a real general matrix to a complex general matrix. 

CRGRB 1395 Converts a real general matrix to a matrix in band storage 
mode. 

CRGRG 1389 Copies a real general matrix. 

CRRCR 1403 Copies a real rectangular matrix to a complex rectangular 
matrix. 

CS1GD 602 Evaluates the derivative of a cubic spline on a grid. 

CSAKM 500 Computes the Akima cubic spline interpolant. 

CSBRB 1409 Copies a real symmetric band matrix stored in band 
symmetric storage mode to a real band matrix stored in 
band storage mode. 
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C

CSCAL 1319 Multiplies a vector by a scalar, y � ay, both complex. 

CSCON 603 Computes a cubic spline interpolant that is consistent 
with the concavity of the data. 

CSDEC 593 Computes the cubic spline interpolant with specified 
derivative endpoint conditions. 

CSDER 610 Evaluates the derivative of a cubic spline. 

CSET 1318 Sets the components of a vector to a scalar, all complex. 

CSFRG 1406 Extends a real symmetric matrix defined in its upper 
triangle to its lower triangle. 

CSHER 597 Computes the Hermite cubic spline interpolant. 

CSIEZ 587 Computes the cubic spline interpolant with the ‘not-a-
knot’ condition and return values of the interpolant at 
specified points. 

CSINT 590 Computes the cubic spline interpolant with the ‘not-a-
knot’ condition. 

CSITG 616 Evaluates the integral of a cubic spline. 

CSPER 506 Computes the cubic spline interpolant with periodic 
boundary conditions. 

CSROT 1325 Applies a complex Givens plane rotation. 

CSROTM 1326 Applies a complex modified Givens plane rotation. 

CSSCAL 1319 Multiplies a complex vector by a single-precision scalar, 
y � ay. 

CSSCV 761 Computes a smooth cubic spline approximation to noisy 
data using cross-validation to estimate the smoothing 
parameter. 

CSSED 754 Smooths one-dimensional data by error detection. 

CSSMH 758 Computes a smooth cubic spline approximation to noisy 
data. 

CSUB 1319 Subtracts each component of a vector from a scalar,  
x � a � x, all complex. 

CSVAL 609 Evaluates a cubic spline. 

CSVCAL 1319 Multiplies a complex vector by a single-precision scalar 
and store the result in another complex vector, y � ax. 

CSWAP 1320 Interchanges vectors x and y, both complex. 

CSYMM 1334 Computes one of the matrix-matrix operations: 
, 

where A is a symmetric matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +
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C�

C�

CSYR2K 1335 Computes one of the symmetric rank 2k operations: 
, 

where C is an n by n symmetric matrix and A and B are n 
by k matrices in the first case and k by n matrices in the 
second case. 

C AB BA C C A B B AT T T T
� � � � � �� � � � � or 

CSYRK 1334 Computes one of the symmetric rank k operations: 
, 

where C is an n by n symmetric matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

C AA C C A AT T
� � � �� � � or 

CTBMV 1331 Computes one of the matrix-vector operations: 
x Ax x A x x AT T
� � �, ,  or x , 

where A is a triangular matrix in band storage mode. 

CTBSV 1332 Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
 ,   or e j e j, ,x  

where A is a triangular matrix in band storage mode. 

CTRMM 1335 Computes one of the matrix-matrix operations: 
B AB B A B B BA B BA

B A B B BA

T T

T T

� � � �

� �

� � � �

� �

, , ,

,or 

,
 

where B is an m by n matrix and A is a triangular matrix. 

CTRMV 1331 Computes one of the matrix-vector operations: 
x Ax x A x x AT T
� � �, ,  or x , 

where A is a triangular matrix. 

CTRSM 1336 Solves one of the complex matrix equations: 

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e jor 

�1 ,

where A is a traiangular matrix. 

CTRSV 1331 Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x , 

where A is a triangular matrix. 

CUNIT 1672 Converts X in units XUNITS to Y in units YUNITS. 

CVCAL 1319 Multiplies a vector by a scalar and store the result in 
another vector, y � ax, all complex. 

CVTSI 1630 Converts a character string containing an integer number 
into the corresponding integer form. 



 

 
 

B-8 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY 

 

 

 

CZCDOT 1321 Computes the sum of a complex scalar plus a complex 
conjugate dot product, a x , using a double-precision 
accumulator. 

yT
�

CZDOTA 1321 Computes the sum of a complex scalar, a complex dot 
product and the double-complex accumulator, which is 
set to the result ACC � ACC + a + xTy. 

CZDOTC 1320 Computes the complex conjugate dot product, x , using 
a double-precision accumulator. 

yT

CZDOTI 1321 Computes the sum of a complex scalar plus a complex 
dot product using a double-complex accumulator, which 
is set to the result ACC � a + xTy. 

CZDOTU 1320 Computes the complex dot product xTy using a double-
precision accumulator. 

CZUDOT 1321 Computes the sum of a complex scalar plus a complex 
dot product, a + xTy, using a double-precision 
accumulator. 

DASPG 889 Solves a first order differential-algebraic system of 
equations, g(t, y, y�) = 0, using Petzold�Gear BDF 
method. 

DERIV 827 Computes the first, second or third derivative of a user-
supplied function. 

DET 1477 Computes the determinant of a rectangular matrix, A. 

DIAG 1479 Constructs a square diagonal matrix from a rank-1 array 
or several diagonal matrices from a rank-2 array. 

DIAGONALS 1479 Extracts a rank-1 array whose values are the diagonal 
terms of a rank-2 array argument. 

DISL1 1452 Computes the 1-norm distance between two points. 

DISL2 1450 Computes the Euclidean (2-norm) distance between two 
points. 

DISLI 1454 Computes the infinity norm distance between two points. 

DLPRS 1297 Solves a linear programming problem via the revised 
simplex algorithm. 

DMACH 1686 See AMACH.  

DQADD 1460 Adds a double-precision scalar to the accumulator in 
extended precision. 

DQINI 1460 Initializes an extended-precision accumulator with a 
double-precision scalar. 
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DQMUL 1460 Multiplies double-precision scalars in extended precision. 

DQSTO 1460 Stores a double-precision approximation to an extended-
precision scalar. 

DSDOT 1371 Computes the single-precision dot product xTy using a 
double precision accumulator. 

DUMAG 1664 This routine handles MATH/LIBRARY and 
STAT/LIBRARY type DOUBLE PRECISION options. 

EIG 1480  Computes the eigenvalue-eigenvector decomposition of 
an ordinary or generalized eigenvalue problem. 

EPICG 467 Computes the performance index for a complex 
eigensystem. 

EPIHF 518 Computes the performance index for a complex 
Hermitian eigensystem. 

EPIRG 460 Computes the performance index for a real eigensystem. 

EPISB 501 Computes the performance index for a real symmetric 
eigensystem in band symmetric storage mode. 

EPISF 483 Computes the performance index for a real symmetric 
eigensystem. 

 ERROR_POST 1568 Prints error messages that are generated by IMSL routines 
using EPACK  

ERSET 1679 Sets error handler default print and stop actions. 

EVAHF 508 Computes the largest or smallest eigenvalues of a 
complex Hermitian matrix. 

EVASB 490 Computes the largest or smallest eigenvalues of a real 
symmetric matrix in band symmetric storage mode. 

EVASF 473 Computes the largest or smallest eigenvalues of a real 
symmetric matrix. 

EVBHF 513 Computes the eigenvalues in a given range of a complex 
Hermitian matrix. 

EVBSB 495 Computes the eigenvalues in a given interval of a real 
symmetric matrix stored in band symmetric storage 
mode. 

EVBSF 478 Computes selected eigenvalues of a real symmetric 
matrix. 

EVCCG 464 Computes all of the eigenvalues and eigenvectors of a 
complex matrix. 

EVCCH 526 Computes all of the eigenvalues and eigenvectors of a 
complex upper Hessenberg matrix. 



 

 
 

B-10 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY 

 

 

 

EVCHF 505 Computes all of the eigenvalues and eigenvectors of a 
complex Hermitian matrix. 

EVCRG 457 Computes all of the eigenvalues and eigenvectors of a 
real matrix. 

EVCRH 522 Computes all of the eigenvalues and eigenvectors of a 
real upper Hessenberg matrix. 

EVCSB 487 Computes all of the eigenvalues and eigenvectors of a 
real symmetric matrix in band symmetric storage mode. 

EVCSF 471 Computes all of the eigenvalues and eigenvectors of a 
real symmetric matrix. 

EVEHF 510 Computes the largest or smallest eigenvalues and the 
corresponding eigenvectors of a complex Hermitian 
matrix. 

EVESB 492 Computes the largest or smallest eigenvalues and the 
corresponding eigenvectors of a real symmetric matrix in 
band symmetric storage mode. 

EVESF 475 Computes the largest or smallest eigenvalues and the 
corresponding eigenvectors of a real symmetric matrix. 

EVFHF 515 Computes the eigenvalues in a given range and the 
corresponding eigenvectors of a complex Hermitian 
matrix. 

EVFSB 498 Computes the eigenvalues in a given interval and the 
corresponding eigenvectors of a real symmetric matrix 
stored in band symmetric storage mode. 

EVFSF 480 Computes selected eigenvalues and eigenvectors of a real 
symmetric matrix. 

EVLCG 462 Computes all of the eigenvalues of a complex matrix. 

EVLCH 525 Computes all of the eigenvalues of a complex upper 
Hessenberg matrix. 

EVLHF 502 Computes all of the eigenvalues of a complex Hermitian 
matrix. 

EVLRG 455 Computes all of the eigenvalues of a real matrix. 

EVLRH 520 Computes all of the eigenvalues of a real upper 
Hessenberg matrix. 

EVLSB 485 Computes all of the eigenvalues of a real symmetric 
matrix in band symmetric storage mode. 

EVLSF 469 Computes all of the eigenvalues of a real symmetric 
matrix. 

EYE 1481 Creates a rank-2 square array whose diagonals are all the 
value one. 
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FAURE_FREE 1655 Frees the structure containing information about the 
Faure sequence. 

FAURE_INIT 1655 Shuffled Faure sequence initialization. 

FAURE_NEXT 1656 Computes a shuffled Faure sequence. 

 FAST_DFT 992 Computes the Discrete Fourier Transform  
of a rank-1 complex array, x. 

 FAST_2DFT 1000 Computes the Discrete Fourier Transform (2DFT)  
of a rank-2 complex array, x. 

 FAST_3DFT 1006 Computes the Discrete Fourier Transform (2DFT)  
of a rank-3 complex array, x. 

FCOSI 1030 Computes parameters needed by FCOST. 

FCOST 1028 Computes the discrete Fourier cosine transformation of 
an even sequence. 

FDGRD 1338 Approximates the gradient using forward differences. 

FDHES 1340 Approximates the Hessian using forward differences and 
function values. 

FDJAC 1346 Approximates the Jacobian of M functions in N unknowns 
using forward differences. 

FFT 1482 The Discrete Fourier Transform of a complex sequence 
and its inverse transform. 

FFT_BOX 1482 The Discrete Fourier Transform of several complex or 
real sequences. 

FFT2B 1048 Computes the inverse Fourier transform of a complex 
periodic two-dimensional array. 

FFT2D 1045 Computes Fourier coefficients of a complex periodic two-
dimensional array. 

FFT3B 1055 Computes the inverse Fourier transform of a complex 
periodic three-dimensional array. 

FFT3F 1051 Computes Fourier coefficients of a complex periodic 
threedimensional array. 

FFTCB 1019 Computes the complex periodic sequence from its Fourier 
coefficients. 

FFTCF 1017 Computes the Fourier coefficients of a complex periodic 
sequence. 

FFTCI 1022 Computes parameters needed by FFTCF and FFTCB. 

FFTRB 1012 Computes the real periodic sequence from its Fourier 
coefficients. 
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FFTRF 1009 Computes the Fourier coefficients of a real periodic 
sequence. 

FFTRI 1015 Computes parameters needed by FFTRF and FFTRB. 

FNLSQ 720 Computes a least-squares approximation with user-
supplied basis functions. 

FPS2H 961 Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver based 
on the HODIE finite-difference scheme on a uni mesh. 

FPS3H 967 Solves Poisson’s or Helmholtz’s equation on a three-
dimensional box using a fast Poisson solver based on the 
HODIE finite-difference scheme on a uniform mesh. 

FQRUL 824 Computes a Fejér quadrature rule with various classical 
weight functions. 

FSINI 1026 Computes parameters needed by FSINT. 

FSINT 1024 Computes the discrete Fourier sine transformation of an 
odd sequence. 

GDHES 1343 Approximates the Hessian using forward differences and 
a user-supplied gradient. 

GGUES 1359 Generates points in an N-dimensional space. 

GMRES 368 Uses restarted GMRES with reverse communication to 
generate an approximate solution of Ax = b. 

GPICG 542 Computes the performance index for a generalized 
complex eigensystem Az = �Bz. 

GPIRG 535 Computes the performance index for a generalized real 
eigensystem Az = �Bz. 

GPISP 549 Computes the performance index for a generalized real 
symmetric eigensystem problem. 

GQRCF 815 Computes a Gauss, Gauss-Radau or Gauss-Lobatto 
quadrature rule given the recurrence coefficients for the 
monic polynomials orthogonal with respect to the weight 
function. 

GQRUL 811 Computes a Gauss, Gauss-Radau, or Gauss-Lobatto 
quadrature rule with various classical weight functions. 

GVCCG 540 Computes all of the eigenvalues and eigenvectors of a 
generalized complex eigensystem Az = �Bz. 

GVCRG 531 Computes all of the eigenvalues and eigenvectors of a 
generalized real eigensystem Az = �Bz. 
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GVCSP 547 Computes all of the eigenvalues and eigenvectors of the 
generalized real symmetric eigenvalue problem Az = �Bz, 
with B symmetric positive definite. 

GVLCG 537 Computes all of the eigenvalues of a generalized complex 
eigensystem Az = �Bz. 

GVLRG 529 Computes all of the eigenvalues of a generalized real 
eigensystem Az = �Bz. 

GVLSP 544 Computes all of the eigenvalues of the generalized real 
symmetric eigenvalue problem Az = �Bz, with B 
symmetric positive definite. 

HRRRR 1425 Computes the Hadamard product of two real rectangular 
matrices. 

HYPOT 1675 Computes a  without underflow or overflow. b2
�

2

IACHAR 1625 Returns the integer ASCII value of a character argument. 

IADD 1319 Adds a scalar to each component of a vector, x � x + a, 
all integer. 

ICAMAX 1324 Finds the smallest index of the component of a complex 
vector having maximum magnitude. 

ICAMIN 1323 Finds the smallest index of the component of a complex 
vector having minimum magnitude. 

ICASE 1626 Returns the ASCII value of a character converted to 
uppercase. 

ICOPY 1319 Copies a vector x to a vector y, both integer. 

IDYWK 1637 Computes the day of the week for a given date. 

IERCD 1680 Retrieves the code for an informational error. 

IFFT 1483 The inverse of the Discrete Fourier Transform of a 
complex sequence. 

IFFT_BOX 1484 The inverse Discrete Fourier Transform of several 
complex or real sequences.  

IFNAN(X) 1686 Checks if a value is NaN (not a number). 

IICSR 1627 Compares two character strings using the ASCII collating 
sequence but without regard to case. 

IIDEX 1629 Determines the position in a string at which a given 
character sequence begins without regard to case. 

IIMAX 1323 Finds the smallest index of the maximum component of a 
integer vector. 

IIMIN 1323 Finds the smallest index of the minimum of an integer 
vector. 
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IMACH 1683 Retrieves integer machine constants. 

INLAP 1078 Computes the inverse Laplace transform of a complex 
function. 

ISAMAX 1374 Finds the smallest index of the component of a single-
precision vector having maximum absolute value. 

ISAMIN 1374 Finds the smallest index of the component of a single-
precision vector having minimum absolute value. 

ISET 1318 Sets the components of a vector to a scalar, all integer. 

ISMAX 1374 Finds the smallest index of the component of a single-
precision vector having maximum value. 

ISMIN 1374 Finds the smallest index of the component of a single-
precision vector having minimum value. 

ISNAN 1485 This is a generic logical function used to test scalars or 
arrays for occurrence of an IEEE 754 Standard format of 
floating point (ANSI/IEEE 1985) NaN, or not-a-number. 

ISRCH 1620 Searches a sorted integer vector for a given integer and 
return its index. 

ISUB 1319 Subtracts each component of a vector from a scalar,  
x � a � x, all integer. 

ISUM 1322 Sums the values of an integer vector. 

ISWAP 1320 Interchanges vectors x and y, both integer. 

IUMAG 1658 Sets or retrieves MATH/LIBRARY integer options. 

IVMRK 844 Solves an initial-value problem y� = f(t, y) for ordinary 
differential equations using Runge-Kutta pairs of various 
orders. 

IVPAG 854 Solves an initial-value problem for ordinary differential 
equations using either Adams-Moulton’s or Gear’s BDF 
method. 

IVPRK 837 Solves an initial-value problem for ordinary differential 
equations using the Runge-Kutta-Verner fifth-order and 
sixth-order method. 

IWKCIN 1701 Initializes bookkeeping locations describing the character 
workspace stack. 

IWKIN 1700 Initializes bookkeeping locations describing the 
workspace stack. 

JCGRC 365 Solves a real symmetric definite linear system using the 
Jacobi preconditioned conjugate gradient method with 
reverse communication. 
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LCHRG 406 Computes the Cholesky decomposition of a symmetric 
positive semidefinite matrix with optional column 
pivoting. 

LCLSQ 388 Solves a linear least-squares problem with linear 
constraints. 

LCONF 1310 Minimizes a general objective function subject to linear 
equality/inequality constraints. 

LCONG 1316 Minimizes a general objective function subject to linear 
equality/inequality constraints. 

LDNCH 412 Downdates the RTR Cholesky factorization of a real 
symmetric positive definite matrix after a rank-one matrix 
is removed. 

LFCCB 262 Computes the LU factorization of a complex matrix in 
band storage mode and estimate its L� condition number. 

LFCCG 108 Computes the LU factorization of a complex general 
matrix and estimate its L� condition number. 

LFCCT 132 Estimates the condition number of a complex triangular 
matrix. 

LFCDH 179 Computes the RH R factorization of a complex Hermitian 
positive definite matrix and estimate its L� condition 
number. 

LFCDS 143 Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix and estimate its 
L�condition number. 

LFCHF 197 Computes the U DUH factorization of a complex 
Hermitian matrix and estimate its L� condition number. 

LFCQH 284 Computes the RH R factorization of a complex Hermitian 
positive definite matrix in band Hermitian storage mode 
and estimate its L� condition number. 

LFCQS 240 Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix in band symmetric 
storage mode and estimate its L� condition number. 

LFCRB 219 Computes the LU factorization of a real matrix in band 
storage mode and estimate its L� condition number. 

LFCRG 89 Computes the LU factorization of a real general matrix 
and estimate its L� condition number. 

LFCRT 125 Estimates the condition number of a real triangular 
matrix. 
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LFCSF 162 Computes the U DUT factorization of a real symmetric 
matrix and estimate its L� condition number. 

LFDCB 274 Computes the determinant of a complex matrix given the 
LU factorization of the matrix in band storage mode. 

LFDCG 119 Computes the determinant of a complex general matrix 
given the LU factorization of the matrix. 

LFDCT 134 Computes the determinant of a complex triangular matrix. 

LFDDH 190 Computes the determinant of a complex Hermitian 
positive definite matrix given the RH R Cholesky 
factorization of the matrix. 

LFDDS 153 Computes the determinant of a real symmetric positive 
definite matrix given the RH R Cholesky factorization of 
the matrix. 

LFDHF 207 Computes the determinant of a complex Hermitian matrix 
given the U DUH factorization of the matrix. 

LFDQH 295 Computes the determinant of a complex Hermitian 
positive definite matrix given the RH R Cholesky 
factorization in band Hermitian storage mode. 

LFDQS 250 Computes the determinant of a real symmetric positive 
definite matrix given the RT R Cholesky factorization of 
the band symmetric storage mode. 

LFDRB 230 Computes the determinant of a real matrix in band 
storage mode given the LU factorization of the matrix. 

LFDRG 99 Computes the determinant of a real general matrix given 
the LU factorization of the matrix. 

LFDRT 127 Computes the determinant of a real triangular matrix. 

LFDSF 172 Computes the determinant of a real symmetric matrix 
given the U DUT factorization of the matrix. 

LFICB 270 Uses iterative refinement to improve the solution of a 
complex system of linear equations in band storage mode. 

LFICG 116 Uses iterative refinement to improve the solution of a 
complex general system of linear equations. 

LFIDH 187 Uses iterative refinement to improve the solution of a 
complex Hermitian positive definite system of linear 
equations. 

LFIDS 150 Uses iterative refinement to improve the solution of a real 
symmetric positive definite system of linear equations. 
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LFIHF 204 Uses iterative refinement to improve the solution of a 
complex Hermitian system of linear equations. 

LFIQH 292 Uses iterative refinement to improve the solution of a 
complex Hermitian positive definite system of linear 
equations in band Hermitian storage mode. 

LFIQS 247 Uses iterative refinement to improve the solution of a real 
symmetric positive definite system of linear equations in 
band symmetric storage mode. 

LFIRB 227 Uses iterative refinement to improve the solution of a real 
system of linear equations in band storage mode. 

LFIRG 96 Uses iterative refinement to improve the solution of a real 
general system of linear equations. 

LFISF 169 Uses iterative refinement to improve the solution of a real 
symmetric system of linear equations. 

LFSCB 268 Solves a complex system of linear equations given the LU 
factorization of the coefficient matrix in band storage 
mode. 

LFSCG 114 Solves a complex general system of linear equations 
given the LU factorization of the coefficient matrix. 

LFSDH 184 Solves a complex Hermitian positive definite system of 
linear equations given the RH R factorization of the 
coefficient matrix. 

LFSDS 148 Solves a real symmetric positive definite system of linear 
equations given the RT R Choleksy factorization of the 
coefficient matrix. 

LFSHF 202 Solves a complex Hermitian system of linear equations 
given the U DUH factorization of the coefficient matrix. 

LFSQH 290 Solves a complex Hermitian positive definite system of 
linear equations given the factorization of the coefficient 
matrix in band Hermitian storage mode. 

LFSQS 245 Solves a real symmetric positive definite system of linear 
equations given the factorization of the coefficient matrix 
in band symmetric storage mode. 

LFSRB 225 Solves a real system of linear equations given the LU 
factorization of the coefficient matrix in band storage 
mode. 

LFSRG 94 Solves a real general system of linear equations given the 
LU factorization of the coefficient matrix. 

LFSSF 167 Solves a real symmetric system of linear equations given 
the U DUT factorization of the coefficient matrix. 



 

 
 

B-18 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY 

 

 

 

LFSXD 336 Solves a real sparse symmetric positive definite system of 
linear equations, given the Cholesky factorization of the 
coefficient matrix. 

LFSXG 306 Solves a sparse system of linear equations given the LU 
factorization of the coefficient matrix. 

LFSZD 349 Solves a complex sparse Hermitian positive definite 
system of linear equations, given the Cholesky 
factorization of the coefficient matrix. 

LFSZG 319 Solves a complex sparse system of linear equations given 
the LU factorization of the coefficient matrix. 

LFTCB 265 Computes the LU factorization of a complex matrix in 
band storage mode. 

LFTCG 111 Computes the LU factorization of a complex general 
matrix. 

LFTDH 182 Computes the RH R factorization of a complex Hermitian 
positive definite matrix. 

LFTDS 146 Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix. 

LFTHF 200 Computes the U DUH factorization of a complex 
Hermitian matrix. 

LFTQH 288 Computes the RH R factorization of a complex Hermitian 
positive definite matrix in band Hermitian storage mode. 

LFTQS 243 Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix in band symmetric 
storage mode. 

LFTRB 222 Computes the LU factorization of a real matrix in band 
storage mode. 

LFTRG 92 Computes the LU factorization of a real general matrix. 

LFTSF 164 Computes the U DUT factorization of a real symmetric 
matrix. 

LFTXG 301 Computes the LU factorization of a real general sparse 
matrix. 

LFTZG 314 Computes the LU factorization of a complex general 
sparse matrix. 

LINCG 121 Computes the inverse of a complex general matrix. 

LINCT 136 Computes the inverse of a complex triangular matrix. 

LINDS 154 Computes the inverse of a real symmetric positive 
definite matrix. 
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LINRG 101 Computes the inverse of a real general matrix. 

LINRT 128 Computes the inverse of a real triangular matrix. 

 LIN_EIG_GEN 439 Computes the eigenvalues of a self-adjoint  
matrix, A. 

 LIN_EIG_SELF 432 Computes the eigenvalues of a self-adjoint  
matrix, A. 

 LIN_GEIG_SELF 448 Computes the generalized eigenvalues of an n � n  
matrix pencil, Av = �Bv. 

 LIN_SOL_GEN 9 Solves a general system of linear equations Ax = b.  

 LIN_SOL_LSQ 27 Solves a rectangular system of linear equations Ax � b,  
in a least-squares sense. 

 LIN_SOL_SELF 17 Solves a system of linear equations Ax = b, where A is a 
self-adjoint matrix. 

 LIN_SOL_SVD  36 Solves a rectangular least-squares system of linear 
equations Ax � b using singular value decomposition. 

 LIN_SOL_TRI 44 Solves multiple systems of linear equations.  

 LIN_SVD 57 Computes the singular value decomposition (SVD) of a 
rectangular matrix, A. 

LNFXD 331 Computes the numerical Cholesky factorization of a 
sparse symmetrical matrix A. 

LNFZD 344 Computes the numerical Cholesky factorization of a 
sparse Hermitian matrix A. 

LQERR 396 Accumulates the orthogonal matrix Q from its factored 
form given the QR factorization of a rectangular matrix A. 

LQRRR 392 Computes the QR decomposition, AP = QR, using 
Householder transformations. 

LQRRV 381 Computes the least-squares solution using Householder 
transformations applied in blocked form. 

LQRSL 398 Computes the coordinate transformation, projection, and 
complete the solution of the least-squares problem Ax = b. 

LSACB 257 Solves a complex system of linear equations in band 
storage mode with iterative refinement. 

LSACG 103 Solves a complex general system of linear equations with 
iterative refinement. 

LSADH 173 Solves a Hermitian positive definite system of linear 
equations with iterative refinement. 

LSADS 138 Solves a real symmetric positive definite system of linear 
equations with iterative refinement. 
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LSAHF 191 Solves a complex Hermitian system of linear equations 
with iterative refinement. 

LSAQH 276 Solves a complex Hermitian positive definite system of 
linear equations in band Hermitian storage mode with 
iterative refinement. 

LSAQS 232 Solves a real symmetric positive definite system of linear 
equations in band symmetric storage mode with iterative 
refinement. 

LSARB 213 Solves a real system of linear equations in band storage 
mode with iterative refinement. 

LSARG 83 Solves a real general system of linear equations with 
iterative refinement. 

LSASF 156 Solves a real symmetric system of linear equations with 
iterative refinement. 

LSBRR 385 Solves a linear least-squares problem with iterative 
refinement. 

LSCXD 327 Performs the symbolic Cholesky factorization for a sparse 
symmetric matrix using a minimum degree ordering or a 
userspecified ordering, and set up the data structure for 
the numerical Cholesky factorization. 

LSGRR 424 Computes the generalized inverse of a real matrix. 

LSLCB 259 Solves a complex system of linear equations in band 
storage mode without iterative refinement. 

LSLCC 356 Solves a complex circulant linear system. 

LSLCG 106 Solves a complex general system of linear equations 
without iterative refinement. 

LSLCQ 253 Computes the LDU factorization of a complex tridiagonal 
matrix A using a cyclic reduction algorithm. 

LSLCR 211 Computes the LDU factorization of a real tridiagonal 
matrix A using a cyclic reduction algorithm. 

LSLCT 130 Solves a complex triangular system of linear equations. 

LSLDH 176 Solves a complex Hermitian positive definite system of 
linear equations without iterative refinement. 

LSLDS 140 Solves a real symmetric positive definite system of linear 
equations without iterative refinement. 

LSLHF 194 Solves a complex Hermitian system of linear equations 
without iterative refinement. 
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LSLPB 237 Computes the RT DR Cholesky factorization of a real 
symmetric positive definite matrix A in codiagonal band 
symmetric storage mode. Solve a system Ax = b. 

LSLQB 281 Computes the RH DR Cholesky factorization of a 
complex hermitian positive-definite matrix A in 
codiagonal band hermitian storage mode. Solve a system 
Ax = b. 

LSLQH 279 Solves a complex Hermitian positive definite system of 
linearequations in band Hermitian storage mode without 
iterative refinement. 

LSLQS 234 Solves a real symmetric positive definite system of linear 
equations in band symmetric storage mode without 
iterative refinement. 

LSLRB 216 Solves a real system of linear equations in band storage 
mode without iterative refinement. 

LSLRG 85 Solves a real general system of linear equations without 
iterative refinement. 

LSLRT 123 Solves a real triangular system of linear equations. 

LSLSF 159 Solves a real symmetric system of linear equations 
without iterative refinement. 

LSLTC 354 Solves a complex Toeplitz linear system. 

LSLTO 352 Solves a real Toeplitz linear system. 

LSLTQ 252 Solves a complex tridiagonal system of linear equations. 

LSLTR 209 Solves a real tridiagonal system of linear equations. 

LSLXD 323 Solves a sparse system of symmetric positive definite 
linear algebraic equations by Gaussian elimination. 

LSLXG 297 Solves a sparse system of linear algebraic equations by 
Gaussian elimination. 

LSLZD 340 Solves a complex sparse Hermitian positive definite 
system of linear equations by Gaussian elimination. 

LSLZG 309 Solves a complex sparse system of linear equations by 
Gaussian elimination. 

LSQRR 378 Solves a linear least-squares problem without iterative 
refinement. 

LSVCR 419 Computes the singular value decomposition of a complex 
matrix. 

LSVRR 415 Computes the singular value decomposition of a real 
matrix. 
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LUPCH 409 Updates the RTR Cholesky factorization of a real 
symmetric positive definite matrix after a rank-one matrix 
is added. 

LUPQR 402 Computes an updated QR factorization after the rank-one 
matrix �xyT is added. 

MCRCR 1423 Multiplies two complex rectangular matrices, AB. 

MOLCH 946 Solves a system of partial differential equations of the 
form ut = f(x, t, u, ux, uxx) using the method of lines. The 
solution is represented with cubic Hermite polynomials. 

MRRRR 1421 Multiplies two real rectangular matrices, AB. 

MUCBV 1436 Multiplies a complex band matrix in band storage mode 
by a complex vector. 

MUCRV 1435 Multiplies a complex rectangular matrix by a complex 
vector. 

MURBV 1433 Multiplies a real band matrix in band storage mode by a 
real vector. 

MURRV 1431 Multiplies a real rectangular matrix by a vector. 

MXTXF 1415 Computes the transpose product of a matrix, ATA. 

MXTYF 1416 Multiplies the transpose of matrix A by matrix B, ATB. 

MXYTF 1418 Multiplies a matrx A by the transpose of a matrix B, ABT. 

NAN 1486 Returns, as a scalar function, a value corresponding to the 
IEEE 754 Standard format of floating point (ANSI/IEEE 
1985) for NaN. . 

N1RTY 1680 Retrieves an error type for the most recently called IMSL 
routine. 

NDAYS 1634 Computes the number of days from January 1, 1900, to 
the given date. 

NDYIN 1636 Gives the date corresponding to the number of days since 
January 1, 1900. 

NEQBF 1169 Solves a system of nonlinear equations using factored 
secant update with a finite-difference approximation to 
the Jacobian. 

NEQBJ 1174 Solves a system of nonlinear equations using factored 
secant update with a user-supplied Jacobian. 

NEQNF 1162 Solves a system of nonlinear equations using a modified 
Powell hybrid algorithm and a finite-difference 
approximation to the Jacobian. 
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NEQNJ 1165 Solves a system of nonlinear equations using a modified 
Powell hybrid algorithm with a user-supplied Jacobian. 

NNLPF 1323 Uses a sequential equality constrained QP method. 

NNLPG 1329 Uses a sequential equality constrained QP method. 

NORM 1487 Computes the norm of a rank-1 or rank-2 array. For rank-
3 arrays, the norms of each rank-2 array, in dimension 3, 
are computed. 

NR1CB 1449 Computes the 1-norm of a complex band matrix in band 
storage mode. 

NR1RB 1447 Computes the 1-norm of a real band matrix in band 
storage mode. 

NR1RR 1444 Computes the 1-norm of a real matrix. 

NR2RR 1446 Computes the Frobenius norm of a real rectangular 
matrix. 

NRIRR 1443 Computes the infinity norm of a real matrix. 

 OPERATOR: .h. 1472 Computes transpose and conjugate transpose of a matrix. 

OPERATOR: .hx. 1471 Computes matrix-vector and matrix-matrix products.  

OPERATOR:.i. 1473 Computes the inverse matrix, for square non-singular 
matrices. 

  OPERATOR:.ix. 1474 Computes the inverse matrix times a vector or matrix for 
square non-singular matrices. 

 OPERATOR:..t. 1472 Computes transpose and conjugate transpose of a matrix. 

 OPERATOR:.tx. 1471 Computes matrix-vector and matrix-matrix products.  

 OPERATOR:.x. 1471 Computes matrix-vector and matrix-matrix products.. 

 OPERATOR:..xh. 1471 Computes matrix-vector and matrix-matrix products.   

 OPERATOR:..xi. 1474 Computes the inverse matrix times a vector or matrix for 
square non-singular matrices. 

 OPERATORS:.xt. 1471 Computes matrix-vector and matrix-matrix products.  

ORTH 1488 Orthogonalizes the columns of a rank-2 or rank-3 array. 

PCGRC 359 Solves a real symmetric definite linear system using a 
preconditioned conjugate gradient method with reverse 
communication. 

PARALLEL_NONNEGATIVE_LSQ 67 Solves a linear, non-negative constrained least-squares  
system.  

 PARALLEL_BOUNDED_LSQ 75 Solves a linear least-squares system with bounds on  
the unknowns. 

 PDE_1D_MG 913 Method of lines with Variable Griddings.  
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PERMA 1602 Permutes the rows or columns of a matrix. 

PERMU 1600 Rearranges the elements of an array as specified by a 
permutation. 

PGOPT 1599 Sets or retrieves page width and length for printing. 

PLOTP 1664 Prints a plot of up to 10 sets of points. 

POLRG 1429 Evaluates a real general matrix polynomial. 

PP1GD 687 Evaluates the derivative of a piecewise polynomial on a 
grid. 

PPDER 684 Evaluates the derivative of a piecewise polynomial. 

PPITG 690 Evaluates the integral of a piecewise polynomial. 

PPVAL 681 Evaluates a piecewise polynomial. 

PRIME 1668 Decomposes an integer into its prime factors. 

QAND 806 Integrates a function on a hyper-rectangle. 

QCOSB 1041 Computes a sequence from its cosine Fourier coefficients 
with only odd wave numbers. 

QCOSF 1039 Computes the coefficients of the cosine Fourier transform 
with only odd wave numbers. 

QCOSI 1043 Computes parameters needed by QCOSF and QCOSB. 

QD2DR 699 Evaluates the derivative of a function defined on a 
rectangular grid using quadratic interpolation. 

QD2VL 696 Evaluates a function defined on a rectangular grid using 
quadratic interpolation. 

QD3DR 705 Evaluates the derivative of a function defined on a 
rectangular three-dimensional grid using quadratic 
interpolation. 

QD3VL 702 Evaluates a function defined on a rectangular three-
dimensional grid using quadratic interpolation. 

QDAG 775 Integrates a function using a globally adaptive scheme 
based on Gauss-Kronrod rules. 

QDAGI 782 Integrates a function over an infinite or semi-infinite 
interval. 

QDAGP 779 Integrates a function with singularity points given. 

QDAGS 772 Integrates a function (which may have endpoint 
singularities). 

QDAWC 796 Integrates a function F(X)/(X � C) in the Cauchy principal 
value sense. 

QDAWF 789 Computes a Fourier integral. 
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QDAWO 785 Integrates a function containing a sine or a cosine. 

QDAWS 793 Integrates a function with algebraic-logarithmic 
singularities. 

QDDER 694 Evaluates the derivative of a function defined on a set of 
points using quadratic interpolation. 

QDNG  799 Integrates a smooth function using a nonadaptive rule. 

QDVAL   692 Evaluates a function defined on a set of points using 
quadratic interpolation. 

QMC 809 Integrates a function over a hyperrectangle using a  
quasi-Monte Carlo method. 

 QPROG 1307 Solves a quadratic programming problem subject to linear 
equality/inequality constraints. 

 QSINB 1034 Computes a sequence from its sine Fourier coefficients 
with only odd wave numbers. 

 QSINF 1032  Computes the coefficients of the sine Fourier transform 
with only odd wave numbers. 

 QSINI 1037 Computes parameters needed by QSINF and QSINB. 

 RAND 1489 Computes a scalar, rank-1, rank-2 or rank-3 array of 
random numbers. 

 RAND_GEN 1639 Generates a rank-1 array of random numbers. 

 RANK 1490 Computes the mathematical rank of a rank-2 or rank-3 
array. 

RATCH 764 Computes a rational weighted Chebyshev approximation 
to a continuous function on an interval. 

RCONV 1059 Computes the convolution of two real vectors. 

RCORL 1068 Computes the correlation of two real vectors. 

RCURV 716 Fits a polynomial curve using least squares. 

RECCF 818 Computes recurrence coefficients for various monic 
polynomials. 

RECQR 821 Computes recurrence coefficients for monic polynomials 
given a quadrature rule. 

RLINE 713 Fits a line to a set of data points using least squares. 

RNGET 1648 Retrieves the current value of the seed used in the IMSL 
random number generators. 

RNOPT 1650 Selects the uniform (0, 1) multiplicative congruential 
pseudorandom number generator. 

RNSET 1649 Initializes a random seed for use in the IMSL random 
number generators. 
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RNUN 1653 Generates pseudorandom numbers from a uniform (0, 1) 
distribution. 

RNUNF 1651 Generates a pseudorandom number from a uniform (0, 1) 
distribution. 

SADD 1370 Adds a scalar to each component of a vector, x � x + a, 
all single precision. 

SASUM 1373 Sums the absolute values of the components of a single-
precision vector. 

SAXPY 1370 Computes the scalar times a vector plus a vector,  
y � ax + y, all single precision. 

ScaLaPACK_READ 1545 Reads matrix data from a file and transmits it into the 
two-dimensional block-cyclic form required by 
ScaLAPACK routines. 

ScaLaPACK_WRITE 1547 Writes the matrix data to a file. 

SCASUM 1322 Sums the absolute values of the real part together with the 
absolute values of the imaginary part of the components 
of a complex vector. 

SCNRM2 1322 Computes the Euclidean norm of a complex vector. 

SCOPY 1369 Copies a vector x to a vector y, both single precision. 

SDDOTA 1321 Computes the sum of a single-precision scalar, a single-
precision dot product and the double-precision 
accumulator, which is set to the result ACC � ACC + a + 
xTy. 

SDDOTI 1372 Computes the sum of a single-precision scalar plus a 
singleprecision dot product using a double-precision 
accumulator, which is set to the result ACC � a + xTy. 

SDOT 1370 Computes the single-precision dot product xTy. 

SDSDOT 1371 Computes the sum of a single-precision scalar and a 
single precision dot product, a + xTy, using a double-
precision accumulator. 

SGBMV 1381 Computes one of the matrix-vector operations: 
, 

where A is a matrix stored in band storage mode. 
y Ax y y A xT
� � � �� � � �,  or 

SGEMM 1385 Computes one of the matrix-matrix operations: 

. 
C AB C C A B C C AB

C C A B C

T T

T T

� � � � �

� � �

� � � � �

� � �

, ,

, or 
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SGEMV 1381 Computes one of the matrix-vector operations: 

, y Ax y y A xT
� � � �� � � �,  or 

SGER 1383 Computes the rank-one update of a real general matrix: 
. A A xyT

� ��

SHOW 1571 Prints rank-1 or rank-2 arrays of numbers in a readable 
format. 

SHPROD 1372 Computes the Hadamard product of two single-precision 
vectors. 

SINLP 1081 Computes the inverse Laplace transform of a complex 
function. 

SLCNT 986 Calculates the indices of eigenvalues of a Sturm-Liouville 
problem with boundary conditions (at regular points) in a 
specified subinterval of the real line, [�, �]. 

SLEIG 973 Determines eigenvalues, eigenfunctions and/or spectral 
density functions for Sturm-Liouville problems in the 
form with boundary conditions (at regular points). 

SLPRS 1301 Solves a sparse linear programming problem via the 
revised simplex algorithm. 

SNRM2 1373 Computes the Euclidean length or L� norm of a single-
precision vector. 

 SORT_REAL 1604 Sorts a rank-1 array of real numbers x so the y results are 
algebraically nondecreasing, y1 � y2 � � yn. 

SPLEZ  618 Computes the values of a spline that either interpolates or 
fits user-supplied data. 

 SPLINE_CONSTRAINTS  562 Returns the derived type array result. 

 SPLINE_FITTING  564 Weighted least-squares fitting by B-splines to discrete 
One-Dimensional data is performed.  

 SPLINE_VALUES  563 Returns an array result, given an array  
of input 

SPRDCT 1373 Multiplies the components of a single-precision vector. 

 SRCH 1618 Searches a sorted vector for a given scalar and return its 
index. 

 SROT 1375 Applies a Givens plane rotation in single precision. 

SROTG 1374 Constructs a Givens plane rotation in single precision. 

SROTM 1377 Applies a modified Givens plane rotation in single 
precision. 

SROTMG 1376 Constructs a modified Givens plane rotation in single 
precision. 
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SSBMV 1382 Computes the matrix-vector operation  
, 

where A is a symmetric matrix in band symmetric storage 
mode. 

y Ax� �� �

SSCAL 1369 Multiplies a vector by a scalar, y � ay, both single 
precision. 

 SSET 1369 Sets the components of a vector to a scalar, all single 
precision. 

 SSRCH 1622 Searches a character vector, sorted in ascending ASCII 
order, for a given string and return its index. 

SSUB 1370 Subtracts each component of a vector from a scalar,  
x � a � x, all single precision. 

SSUM 1372 Sums the values of a single-precision vector. 

SSWAP 1370 Interchanges vectors x and y, both single precision. 

SSYMM 1385 Computes one of the matrix-matrix operations: 
, 

where A is a symmetric matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +

SSYMV 1382 Computes the matrix-vector operation 
, 

where A is a symmetric matrix. 
y Ax� �� �

SSYR 1384 Computes the rank-one update of a real symmetric 
matrix: 
A A xxT
� �� . 

SSYR2 1384 Computes the rank-two update of a real symmetric 
matrix: 

. A A xy yxT T
� � �� �

SSYR2K 1386 Computes one of the symmetric rank 2k operations: 
, 

where C is an n by n symmetric matrix and A and B are n 
by k matrices in the first case and k by n matrices in the 
second case. 

C AB BA C C A B B AT T T T
� � � � � �� � � � � or C�

C�

x

SSYRK 1386 Computes one of the symmetric rank k operations: 
, 

where C is an n by n symmetric matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

C AA C C A AT T
� � � �� � � or 

STBMV 1382 Computes one of the matrix-vector operations: 

where A is a triangular matrix in band storage mode. 
x Ax x AT
� �or , 
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B1 ,

x

STBSV 1383 Solves one of the triangular systems: 

, 

where A is a triangular matrix in band storage mode. 

x A x x A
T

� �
� �1 1 or e j

STRMM 1387 Computes one of the matrix-matrix operations: 
, 

where B is an m by n matrix and A is a triangular matrix. 
B AB B A B B BA B BAT T
� � � �� � � �, , or 

STRMV 1382 Computes one of the matrix-vector operations: 

where A is a triangular matrix. 
x Ax x AT
� �or , 

STRSM 1387 Solves one of the matrix equations: 

 

where B is an m by n matrix and A is a triangular matrix. 

B A B B BA B A

B B A

T

T

� � �

�

� � �

�

� � �

�

1 1

1

, , e j

e jor 

STRSV 1383 Solves one of the triangular linear systems: 

 

where A is a triangular matrix. 

x A x x A
T

� �
� �1 1 or e j

SUMAG 1664 Sets or retrieves MATH/LIBRARY single-precision 
options. 

 SURF   710 Computes a smooth bivariate interpolant to scattered data 
that is locally a quintic polynomial in two variables. 

SURFACE_CONSTRAINTS   574 Returns the derived type array result given  
optional input.  

 SURFACE_FITTING  577 Weighted least-squares fitting by tensor product  
B-splines to discrete two-dimensional data  
is performed.  

 SURFACE_VALUES  575 Returns a tensor product array result, given two arrays of  
independent variable values. 

SVCAL 1369 Multiplies a vector by a scalar and store the result in 
another vector, y � ax, all single precision. 

SVD 1491 Computes the singular value decomposition of a rank-2 or 
rank-3 array, TA USV� . 

SVIBN 1615 Sorts an integer array by nondecreasing absolute value. 

SVIBP 1617 Sorts an integer array by nondecreasing absolute value 
and returns the permutation that rearranges the array. 

SVIGN 1610 Sorts an integer array by algebraically increasing value. 
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SVIGP 1611 Sorts an integer array by algebraically increasing value 
and returns the permutation that rearranges the array. 

SVRBN 1612 Sorts a real array by nondecreasing absolute value. 

SVRBP 1614 Sorts a real array by nondecreasing absolute value and 
returns the permutation that rearranges the array. 

SVRGN 1607 Sorts a real array by algebraically increasing value. 

SVRGP 1608 Sorts a real array by algebraically increasing value and 
returns the permutation that rearranges the array. 

SXYZ 1372 Computes a single-precision xyz product. 

TDATE 1633 Gets today’s date. 

TIMDY 1632 Gets time of day. 

TRNRR 1413 Transposes a rectangular matrix. 

TWODQ 801 Computes a two-dimensional iterated integral. 

UMACH 1688 Sets or retrieves input or output device unit numbers. 

UMAG 1661 Handles MATH/LIBRARY and STAT/LIBRARY type 
REAL and double precision options. 

UMCGF 1219 Minimizes a function of N variables using a conjugate 
gradient algorithm and a finite-difference gradient. 

UMCGG 1223 Minimizes a function of N variables using a conjugate 
gradient algorithm and a user-supplied gradient. 

UMIAH 1213 Minimizes a function of N variables using a modified 
Newton method and a user-supplied Hessian. 

UMIDH 1208 Minimizes a function of N variables using a modified 
Newton method and a finite-difference Hessian. 

UMINF 1196 Minimizes a function of N variables using a quasi-New 
method and a finite-difference gradient. 

UMING 1202 Minimizes a function of N variables using a quasi-New 
method and a user-supplied gradient. 

UMPOL 1227 Minimizes a function of N variables using a direct search 
polytope algorithm. 

UNIT 1492  Normalizes the columns of a rank-2 or rank-3 array so 
each has Euclidean length of value one. 

UNLSF 1231 Solves a nonlinear least squares problem using a modified 
Levenberg-Marquardt algorithm and a finite-difference 
Jacobian. 

UNLSJ 1237 Solves a nonlinear least squares problem using a modified 
Levenberg-Marquardt algorithm and a user-supplied 
Jacobian. 



 

 
 

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-31 

 

 

 

UVMGS 1193 Finds the minimum point of a nonsmooth function of a 
single variable. 

UVMID 1189 Finds the minimum point of a smooth function of a single 
variable using both function evaluations and first 
derivative evaluations. 

UVMIF 1186 Finds the minimum point of a smooth function of a single 
variable using only function evaluations. 

VCONC 1457 Computes the convolution of two complex vectors. 

VCONR 1455 Computes the convolution of two real vectors. 

VERML 1638 Obtains IMSL MATH/LIBRARY-related version, system 
and license numbers. 

WRCRL 1588 Prints a complex rectangular matrix with a given format 
and labels. 

WRCRN 1586 Prints a complex rectangular matrix with integer row and 
column labels. 

WRIRL 1583 Prints an integer rectangular matrix with a given format 
and labels. 

WRIRN 1581 Prints an integer rectangular matrix with integer row and 
column labels. 

WROPT 1591 Sets or retrieves an option for printing a matrix. 

WRRRL 1577 Prints a real rectangular matrix with a given format and 
labels. 

WRRRN 1575 Prints a real rectangular matrix with integer row and 
column labels. 

ZANLY 1153 Finds the zeros of a univariate complex function using 
Müller’s method. 

ZBREN 1156 Finds a zero of a real function that changes sign in a 
given interval. 

ZPLRC 1148 Finds the zeros of a polynomial with real coefficients 
using Laguerre’s method. 

ZPOCC 1152 Finds the zeros of a polynomial with complex coefficients 
using the Jenkins-Traub three-stage algorithm. 

ZPORC 1150 Finds the zeros of a polynomial with real coefficients 
using the Jenkins-Traub three-stage algorithm. 

ZQADD 1460 Adds a double complex scalar to the accumulator in 
extended precision. 

ZQINI 1460 Initializes an extended-precision complex accumulator to 
a double complex scalar. 
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ZQMUL 1460 Multiplies double complex scalars using extended 
precision. 

ZQSTO 1460 Stores a double complex approximation to an extended-
precision complex scalar. 

ZREAL 1159 Finds the real zeros of a real function using Müller’s 
method. 
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Product Support 

Contacting Visual Numerics Support 
Users within support warranty may contact Visual Numerics regarding the use of the IMSL 
Libraries. Visual Numerics can consult on the following topics: 


 Clarity of documentation 


 Possible Visual Numerics-related programming problems 


 Choice of IMSL Libraries functions or procedures for a particular problem 


 Evolution of the IMSL Libraries 

Not included in these consultation topics are mathematical/statistical consulting and debugging of 
your program.  

Consultation 
Contact Visual Numerics Product Support by faxing 713/781-9260 or by emailing: 

  support@houston.vni.com. 

The following describes the procedure for consultation with Visual Numerics. 

1. Include your serial (or license) number 

2. Include the product name and version number: IMSL Fortran Library Version 5.0 

3. Include compiler and operating system version numbers 

4. Include the name of the routine for which assistance is needed and a description of the 
problem 
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Laplace transform solution 41 
larger data uncertainty 453 
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least-squares solution of a 
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567 
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permutation 1606 
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eigenvector 23 
examples list 

operator 1494 
parallel 1528 

exclusive OR 1642 
extended precision arithmetic 1460 

F 

factored secant update 1169, 1174 
factorization, LU 9 

Fast Fourier Transforms 990 
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finite-difference approximation 

1162, 1169 
finite-difference gradient 1196, 

1219, 1243 
finite-difference Hessian 1208 
finite-difference Jacobian 1231 
first derivative 827 
first derivative evaluations 1189 
first order differential 889 
FORTRAN 77 

combining with Fortran 90 xiii 
Fortran 90 

language xiii 
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real-time clock 1642 
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1343, 1346 
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Fourier transform 1048, 1055 
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Gauss-Lobatto quadrature rule 811, 

815 
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Gear’s BDF method 854 
generalized 

eigenvalue 437, 450, 1480, 9 
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1640 
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Helmholtz’s equation 961 
Helmholtz's equation 967 
Hermite interpolant 597 
Hermite polynomials 946 
Hermitian positive definite system 

173, 176, 185, 187, 190, 276, 
279, 290, 292 

Hermitian system 191, 194, 202, 204 
Hessenberg matrix, upper 439, 443 
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Householder 451 
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infinity norm 1443 
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initial-value problem 837, 844, 854 
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integrals 616 
integration 772, 775, 779, 782, 785, 
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internal write 1574 
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quadratic 559 
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Laguerre’s method 1148 
Laplace transform 1078, 1081 
Laplace transform solution 41 
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least-squares approximation 720, 729 
least-squares problem 398 
least-squares solution 381 
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Level 1 BLAS 1366, 1367 
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Level 3 BLAS 1377, 1378, 1379 
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