
Mathematical Functions in Fortran

IMSL Fortran Library User’s Guide
MATH/LIBRARY Volume 2 of 2

Trusted For Over Years30

Mathematical Functions in Fortran

IMSL Fortran Library User’s Guide
MATH/LIBRARY Volume 2 of 2

P/N 7694 [w w w . v n i . c o m]

Visual Numerics, Inc. – United States
Corporate Headquarters
2000 Crow Canyon Place, Suite 270
San Ramon, CA 94583
PHONE: 925-807-0138
FAX: 925-807-0145
e-mail: info@vni.com
Westminster, CO
PHONE: 303-379-3040

Houston, TX
PHONE: 713-784-3131

Visual Numerics International Ltd.
Sussex House
6 The Forbury
Reading, Berkshire RGI 3EJ
UNITED KINGDOM

PHONE: +44-1-189 25-3370
FAX: +44 –1-189-25-3371
e-mail: info@vniuk.co.uk
Support: support@vniuk.co.uk

Visual Numerics SARL
Immeuble le Wilson 1
70, avenue due General de Gaulle
F-92058 PARIS LA DEFENSE, Cedex
FRANCE

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C. V.
Florencia 57 Piso 10-01
Col. Juarez
Mexico D. F. C. P. 06600
MEXICO

PHONE: +52-55-514-9730 or 9628
FAX: +52-55-514-4873

Visual Numerics International GmbH
Zettachring 10
D-70567Stuttgart
GERMANY

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc.
GOBANCHO HIKARI BLDG. 4TH Floor
14 GOBAN-CHO CHIYODA-KU
TOKYO, JAPAN 102

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Sect. 5
Chung Hsiao E. Road
Taipei, Taiwan 110
ROC

PHONE: +(886) 2-2727-2255
FAX: +(886) 2-2727-6798
e-mail: info@vni.com.tw

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-1, MAPO-DONG, MAPO-GU
SEOUL, 121-050
KOREA SOUTH

PHONE: +82-2-3273-2632 or 2633
FAX: +82-2-3273--2634
e-mail: info@vni.co.kr

World Wide Web site: http://www.vni.com

COPYRIGHT NOTICE: Copyright 1994-2003 by Visual Numerics, Inc. All rights reserved. Unpublished–rights reserved under the
copyright laws of the United States.
Printed in the USA.

The information contained in this document is subject to change without notice.

This document is provided AS IS, with NO WARRANTY. VISUAL NUMERICS, INC., SHALL NOT BE LIABLE FOR ANY
ERRORS WHICH MAY BE CONTAINED HEREIN OR FOR INCIDENTAL, CONSEQUENTIAL, OR OTHER INDIRECT
DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE OR USE OF THIS MATERIAL. [Carol: note case
change]

IMSL, PV- WAVE, and Visual Numerics are registered in the U.S. Patent and Trademark Office by, and PV- WAVE Advantage is a
trademark of, Visual Numerics, Inc.

TRADEMARK NOTICE: The following are trademarks or registered trademarks of their respective owners, as follows: Microsoft,
Windows, Windows 95, Windows NT, Internet Explorer — Microsoft Corporation; Motif — The Open Systems Foundation, Inc.;
PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts Institute of
Technology; RISC System/6000 and IBM — International Business Machines Corporation; Sun, Java, JavaBeans — Sun
Microsystems, Inc.; JavaScript, Netscape Communicator — Netscape, Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC,
VAX, VMS, OpenVMS — Compaq Information Technologies Group, L.P./Hewlett Packard Corporation; Tektronix 4510 Rasterizer —
Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; SPARCstation — SPARC International, licensed exclusively to Sun
Microsystems, Inc.; HyperHelp — Bristol Technology, Inc. Other products and company names mentioned herein are trademarks of
their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and
proprietary information. No part of this document may be reproduced or transmitted in any form without the prior written consent of
Visual Numerics.

RESTRICTED RIGHTS NOTICE: This documentation is provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the
US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer software — Restricted Rights clause
at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is Visual
Numerics, Inc., 2500 Wilcrest Drive, Suite 200, Houston, TX 77042-2759.

IMSL Fortran, C, and Java
Application Development Tools

IMSL MATH/LIBRARY Contents � i

Contents

Volume I

Introduction xiii

Chapter 1: Linear Systems 1

Chapter 2: Eigensystem Analysis 427

Chapter 3: Interpolation and Approximation 553

Chapter 4: Integration and Differentiation 769

Appendix A: GAMS Index A-1

Appendix B: Alphabetical Summary of Routines B-1

Appendix C: References C-1

Product Support i

Index iii

Volume II

Chapter 5: Differential Equations 833

Chapter 6: Transforms 989

ii � Contents IMSL MATH/LIBRARY

Chapter 7: Nonlinear Equations 1147

Chapter 8: Optimization 1181

Chapter 9: Basic Matrix/Vector Operations 1363

Chapter 10: Linear Algebra Operators and Generic Functions 1463

Chapter 11: Utilities 1553

Reference Material 1677

Appendix A: GAMS Index A-1

Appendix B: Alphabetical Summary of Routines B-1

Appendix C: References C-1

Product Support i

Index iii

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 833

Chapter 5: Differential Equations

Routines
5.1. First-Order Ordinary Differential Equations
5.1.1 Solution of the Initial-Value Problem for ODEs

Runge-Kutta method... IVPRK 837
Runge-Kutta method, various orders....................................IVMRK 844
Adams or Gear method .. IVPAG 854

5.1.2 Solution of the Boundary-Value Problem for ODEs
Finite-difference method ..BVPFD 870
Multiple-shooting method.. BVPMS 882

5.1.3 Solution of Differential-Algebraic Systems
Petzold-Gear method.. DASPG 889

5.2 Partial Differential Equations

5.2.1 Solution of Systems of PDEs in One Dimension

Method of lines with Variable GriddingsPDE_1D_MG 913
 Method of lines with a Hermite cubic basisMOLCH 946
5.2.2 Solution of a PDE in Two and Three Dimensions

Two-dimensional fast Poisson solver FPS2H 961
Three-dimensional fast Poisson solver................................ FPS3H 967

5.3. Sturm-Liouville Problems
Eigenvalues, eigenfunctions,
and spectral density functions .. SLEIG 973
Indices of eigenvalues ... SLCNT 986

Usage Notes
A differential equation is an equation involving one or more dependent variables (called yi or ui),
their derivatives, and one or more independent variables (called t, x, and y). Users will typically
need to relabel their own model variables so that they correspond to the variables used in the
solvers described here. A differential equation with one independent variable is called an ordinary
differential equation (ODE). A system of equations involving derivatives in one independent

834 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

variable and other dependent variables is called a differential-algebraic system. A differential
equation with more than one independent variable is called a partial differential equation (PDE).
The order of a differential equation is the highest order of any of the derivatives in the equation.
Some of the routines in this chapter require the user to reduce higher-order problems to systems of
first-order differential equations.

Ordinary Differential Equations
It is convenient to use the vector notation below. We denote the number of equations as the value
N. The problem statement is abbreviated by writing it as a system of first-order ODEs

� � � � � � � � � � � �1 1, , , , , , , ,
T T

N Ny t y t y t f t y f t y f t y� �� � � �� � � �� �

The problem becomes

� �
� �,

dy t
y f t y

dt
� � �

with initial values y (t�). Values of y(t) for t > t� or t < t��are required. The routines IVPRK, page
837, IVMRK, page 844, and IVPAG, page 854, solve the IVP for systems of ODEs of the form y� = f
(t, y) with y(t = t�) specified. Here, f is a user supplied function that must be evaluated at any set of
values (t, y�, �, yN); i = 1, �, N. The routines IVPAG, page 854, and DASPG, page 889, will also
solve implicit systems of the form Ay� = f (t, y) where A is a user supplied matrix. For IVPAG, the
matrix A must be nonsingular.

The system y� = f (t, y) is said to be stiff if some of the eigenvalues of the Jacobian matrix
{� fi�� yj} have large, negative real parts. This is often the case for differential equations
representing the behavior of physical systems such as chemical reactions proceeding to
equilibrium where subspecies effectively complete their reaction in different epochs. An alternate
model concerns discharging capacitors such that different parts of the system have widely varying
decay rates (or time constants). This definition of stiffness, based on the eigenvalues of the
Jacobian matrix, is not satisfactory. Users typically identify stiff systems by the fact that numerical
differential equation solvers such as IVPRK, page 837, are inefficient, or else they fail. The most
common inefficiency is that a large number of evaluations of the functions fi are required. In such
cases, use routine IVPAG, page 854, or DASPG, page 889. For more about stiff systems, see Gear
(1971, Chapter 11) or Shampine and Gear (1979).

In the boundary value problem (BVP) for ODEs, constraints on the dependent variables are given
at the endpoints of the interval of interest, [a, b]. The routines BVPFD, page 889, and BVPMS, page
882, solve the BVP for systems of the form y�(t) = f (t, y), subject to the conditions

hi(y�(a), �, yN(a), y�(b), �, yN(b)) = 0 i = 1, �, N

Here, f and h = [h�, �, hN]T are user-supplied functions.

Differential-algebraic Equations
Frequently, it is not possible or not convenient to express the model of a dynamical system as a set
of ODEs. Rather, an implicit equation is available in the form

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 835

� �1, , , , , , 0 1, ,i N Ng t y y y y i N� � � �� � �

The gi are user-supplied functions. The system is abbreviated as

� � � � � �1, , , , , , , , 0
T

Ng t y y g t y y g t y y� � �� �� �� ��

With initial value y(t�). Any system of ODEs can be trivially written as a differential-algebraic
system by defining

� � � �, , ,g t y y f t y y� �� �

The routine DASPG, page 889, solves differential-algebraic systems of index 1 or index 0. For a
definition of index of a differential-algebraic system, see (Brenan et al. 1989). Also, see Gear and
Petzold (1984) for an outline of the computing methods used.

Partial Differential Equations
The routine MOLCH, page 946, solves the IVP problem for systems of the form

22
1 1

1 2 2, , , , , , , , , ,i N N
i N

u u uu u
f x t u u

t x x x x
� � �� �

� � � � �

� �
� � �

� �
� � �

subject to the boundary conditions

� � � � � � � � � �

� � � � � � � � � �

1 1 1

2 2 2

i i i
i

i i i
i

u
u a a t

x
u

u b b t
x

�
� � �

�

�
� � �

�

� �

� �

and subject to the initial conditions

ui(x, t = t�) = gi(x)

for i = 1, �, N. Here, fi, gi,

� � � �, andi i
j j� �

are user-supplied, j = 1, 2.

The routines FPS2H, page 961, and FPS3H, page 967, solve Laplace’s, Poisson’s, or Helmholtz’s
equation in two or three dimensions. FPS2H uses a fast Poisson method to solve a PDE of the form

� �
2 2

2 2 ,u u cu f x y
x y

� �

� �
� � �

over a rectangle, subject to boundary conditions on each of the four sides. The scalar constant c
and the function f are user specified. FPS3H solves the three-dimensional analogue of this
problem.

Users wishing to solve more general PDE’s, in more general 2-d and 3-d regions are referred to
Visual Numerics’ partner PDE2D (www.pde2d.com).

836 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

Summary
The following table summarizes the types of problems handled by the routines in this chapter.
With the exception of FPS2H and FPS3H, the routines can handle more than one differential
equation.

Problem Consideration Routine
Ay�= f(t, y)
y(t�) = y�

A is a general, symmetric positive
definite, band or symmetric positive
definite band matrix.

IVPAG
page 854

 Stiff or expensive to evaluate
f (t, y), banded Jacobian or finely
spaced output needed.

IVPAG
page 854

y� = f(t, y),
y (t�) = y�

High accuracy needed and not stiff.
(Uses Adams methods)

IVPAG
page 854

 Moderate accuracy needed and not
stiff.

IVPRK
page 837

y� = f(t, y)
h(y(a), y(b)) = 0

BVP solver using finite differences BVPFD
page 870

 BVP solver using multiple shooting BVPMS
page 882

g(t, y, y�) = 0
y(t�), y�(t�) given

Stiff, differential-algebraic solver
for systems of index 1 or 0.
Note: DASPG uses the user-supplied
y�(t�) only as an initial guess to help
it find the correct initial y�(t�) to get
started.

DASPG
page 889

ut = f(x, t, u, ux, uxx)
��u(a) + ��ux(a) = ��(t)
��u(b) + ��ux(b) = ��(t)

Method of lines using cubic splines
and ODEs.

MOLCH
page 946

uxx + uyy + cu = f(x, y) on a
rectangle, given u or un on
each edge.

Fast Poisson solver FPS2H
page 961

uxx + uyy + uzz + cu = f(x, y, z)
on a box, given u or un on
each face

Fast Poisson solver FPS3H
page 967

� �

� � � �� �

� � � �� �� �
� � � �� �

,

1 2

1 2
01 2

pu qu ru

u a pu a

u a pu a

u b pu b

�

� �

� � �

� �

�
�� � �

��

� � �� �

�� �

Sturm-Liouville problems SLEIG
page 973

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 837

IVPRK
Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner
fifth-order and sixth-order method.

Required Arguments
IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal re-entry

3 Final call to release workspace

4 Return because of interrupt 1

5 Return because of interrupt 2 with step accepted

6 Return because of interrupt 2 with step rejected

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this
value is used for all but the last call that is made with IDO = 3. This final call is used to
release workspace, which was automatically allocated by the initial call with IDO = 1.
No integration is performed on this final call. See Comment 3 for a description of the
other interrupts.

FCN — User-supplied SUBROUTINE to evaluate functions. The usage is CALL FCN(N, T,
Y, YPRIME), where
 N – Number of equations. (Input)
 T – Independent variable, t. (Input)
 Y – Array of size N containing the dependent variable values, y.
 (Input)
 YPRIME – Array of size N containing the values of the vector y�
 evaluated at (t, y). (Output)
FCN must be declared EXTERNAL in the calling program.

T — Independent variable. (Input/Output)
On input, T contains the initial value. On output, T is replaced by TEND unless error
conditions have occurred. See IDO for details.

TEND — Value of t where the solution is required. (Input)
The value TEND may be less than the initial value of t.

838 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

Y — Array of size NEQ of dependent variables. (Input/Output)
On input, Y contains the initial values. On output, Y contains the approximate solution.

Optional Arguments
NEQ — Number of differential equations. (Input)

Default: NEQ = size (Y,1).

TOL — Tolerance for error control. (Input)
An attempt is made to control the norm of the local error such that the global error is
proportional to TOL.
Default: TOL = machine precision.

PARAM — A floating-point array of size 50 containing optional parameters. (Input/ Output)
If a parameter is zero, then a default value is used. These default values are given
below. Parameters that concern values of step size are applied in the direction of
integration. The following parameters may be set by the user:

 PARAM Meaning
1 HINIT Initial value of the step size. Default: 10.0 * MAX (AMACH (1),

AMACH(4) * MAX(ABS(TEND), ABS(T)))
2 HMIN Minimum value of the step size. Default: 0.0
3 HMAX Maximum value of the step size. Default: 2.0
4 MXSTEP Maximum number of steps allowed. Default: 500
5 MXFCN Maximum number of function evaluations allowed. Default:

No enforced limit.
6 Not used.
7 INTRP1 If nonzero, then return with IDO = 4 before each step. See

Comment 3. Default: 0.
8 INTRP2 If nonzero, then return with IDO = 5 after every successful

step and with IDO = 6 after every unsuccessful step. See
Comment 3. Default: 0.

9 SCALE A measure of the scale of the problem, such as an
approximation to the average value of a norm of the Jacobian
matrix along the solution. Default: 1.0

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 839

 PARAM Meaning
10 INORM Switch determining error norm. In the following, ei is the

absolute value of an estimate of the error in yi(t).
Default: 0.0 � min(absolute error, relative error) = max(ei/wi);
i = 1, �, NEQ, where wi = max(|yi(t)|, 1.0).

1 � absolute error = max(ei), i = 1 �, NEQ.

2� max(ei/wi), i = 1 �, NEQ where wi = max(|yi (t)|, FLOOR),
and FLOOR is PARAM(11).

3 � Scaled Euclidean norm defined as
where wi = max(|yi (t)|, 1.0). Other definitions of YMAX can be
specified by the user, as explained in Comment 1.

11 FLOOR Used in the norm computation associated with parameter
INORM. Default: 1.0.

12�30 Not used.

The following entries in PARAM are set by the program.

 PARAM Meaning
31 HTRIAL Current trial step size.
32 HMINC Computed minimum step size allowed.
33 HMAXC Computed maximum step size allowed.
34 NSTEP Number of steps taken.
35 NFCN Number of function evaluations used.
36�50 Not used.

FORTRAN 90 Interface
Generic: CALL IVPRK (IDO, FCN, T, TEND, Y [,…])

Specific: The specific interface names are S_IVPRK and D_IVPRK.

FORTRAN 77 Interface
Single: CALL IVPRK (IDO, NEQ, FCN, T, TEND, TOL, PARAM, Y)

Double: The double precision name is DIVPRK.

Example 1
Consider a predator-prey problem with rabbits and foxes. Let r be the density of rabbits and let
f be the density of foxes. In the absence of any predator-prey interaction, the rabbits would

840 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

increase at a rate proportional to their number, and the foxes would die of starvation at a rate
proportional to their number. Mathematically,

r � = 2r

f � = � f

The rate at which the rabbits are eaten by the foxes is 2r f, and the rate at which the foxes
increase, because they are eating the rabbits, is r f. So, the model to be solved is

r � = 2r � 2r f

f � = � f + r f

The initial conditions are r(0) = 1 and f(0) = 3 over the interval 0 	 t 	 10.

In the program Y(1) = r and Y(2) = f. Note that the parameter vector PARAM is first set to zero
with IMSL routine SSET (Chapter 9, Basic Matrix/Vector Operations). Then, absolute error
control is selected by setting PARAM(10) = 1.0.

The last call to IVPRK with IDO = 3 deallocates IMSL workspace allocated on the first call to
IVPRK. It is not necessary to release the workspace in this example because the program ends
after solving a single problem. The call to release workspace is made as a model of what would
be needed if the program included further calls to IMSL routines.

 USE IVPRK_INT
 USE UMACH_INT
 INTEGER MXPARM, N
 PARAMETER (MXPARM=50, N=2)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, ISTEP, NOUT
 REAL PARAM(MXPARM), T, TEND, TOL, Y(N)
! SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL FCN
!
 CALL UMACH (2, NOUT)
! Set initial conditions
 T = 0.0
 Y(1) = 1.0
 Y(2) = 3.0
! Set error tolerance
 TOL = 0.0005
! Set PARAM to default
 PARAM = 0.E0
! Select absolute error control
 PARAM(10) = 1.0
! Print header
 WRITE (NOUT,99999)
 IDO = 1
 ISTEP = 0
 10 CONTINUE
 ISTEP = ISTEP + 1
 TEND = ISTEP
 CALL IVPRK (IDO, FCN, T, TEND, Y, TOL=TOL, PARAM=PARAM)
 IF (ISTEP .LE. 10) THEN
 WRITE (NOUT,’(I6,3F12.3)’) ISTEP, T, Y
! Final call to release workspace

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 841

 IF (ISTEP .EQ. 10) IDO = 3
 GO TO 10
 END IF
99999 FORMAT (4X, ’ISTEP’, 5X, ’Time’, 9X, ’Y1’, 11X, ’Y2’)
 END
 SUBROUTINE FCN (N, T, Y, YPRIME)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), YPRIME(N)
!
 YPRIME(1) = 2.0*Y(1) - 2.0*Y(1)*Y(2)
 YPRIME(2) = -Y(2) + Y(1)*Y(2)
 RETURN
 END

Output
 ISTEP Time Y1 Y2
 1 1.000 0.078 1.465
 2 2.000 0.085 0.578
 3 3.000 0.292 0.250
 4 4.000 1.449 0.187
 5 5.000 4.046 1.444
 6 6.000 0.176 2.256
 7 7.000 0.066 0.908
 8 8.000 0.148 0.367
 9 9.000 0.655 0.188
10 10.000 3.157 0.352

Comments
1. Workspace may be explicitly provided, if desired, by use of I2PRK/DI2PRK. The

reference is:

CALL I2PRK (IDO, NEQ, FCN, T, TEND, TOL, PARAM, Y,
 VNORM, WK)

The additional arguments are as follows: 2 2
1

/NEQ
i ii

e w
�

� �YMAX

VNORM — A Fortran SUBROUTINE to compute the norm of the error. (Input)
The routine may be provided by the user, or the IMSL routine I3PRK/DI3PRK may be
used. In either case, the name must be declared in a Fortran EXTERNAL statement. If
usage of the IMSL routine is intended, then the name I3PRK/DI3PRK should be used.
The usage of the error norm routine is CALL VNORM (N, V, Y, YMAX, ENORM),
where

Arg Definition

N Number of equations. (Input)

V Array of size N containing the vector whose norm is to be computed.
 (Input)

842 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

Y Array of size N containing the values of the dependent variable. (Input)

YMAX Array of size N containing the maximum values of |y(t)|. (Input)

ENORM Norm of the vector V. (Output)

VNORM must be declared EXTERNAL in the calling program.

WK — Work array of size 10N using the working precision. The contents of WK must not be
changed from the first call with IDO = 1 until after the final call with IDO = 3.

2. Informational errors

Type Code
 4 1 Cannot satisfy error condition. The value of TOL may be too small.
 4 2 Too many function evaluations needed.
 4 3 Too many steps needed. The problem may be stiff.

3. If PARAM(7) is nonzero, the subroutine returns with IDO = 4 and will resume
calculation at the point of interruption if re-entered with IDO = 4. If PARAM(8) is
nonzero, the subroutine will interrupt the calculations immediately after it decides
whether or not to accept the result of the most recent trial step. The values used are
IDO = 5 if the routine plans to accept, or IDO = 6 if it plans to reject the step. The
values of IDO may be changed by the user (by changing IDO from 6 to 5) in order to
force acceptance of a step that would otherwise be rejected. Some parameters the user
might want to examine after return from an interrupt are IDO, HTRIAL, NSTEP, NFCN,
T, and Y. The array Y contains the newly computed trial value for y(t), accepted or not.

Description
Routine IVPRK finds an approximation to the solution of a system of first-order differential
equations of the form y� = f (t, y) with given initial data. The routine attempts to keep the global
error proportional to a user-specified tolerance. This routine is efficient for nonstiff systems
where the derivative evaluations are not expensive.

The routine IVPRK is based on a code designed by Hull, Enright and Jackson (1976, 1977). It
uses Runge-Kutta formulas of order five and six developed by J. H. Verner.

Additional Examples

Example 2
This is a mildly stiff problem (F2) from the test set of Enright and Pryce (1987). It is included
here because it illustrates the inefficiency of requiring more function evaluations with a nonstiff
solver, for a requested accuracy, than would be required using a stiff solver. Also, see IVPAG,
page 854, Example 2, where the problem is solved using a BDF method. The number of
function evaluations may vary, depending on the accuracy and other arithmetic characteristics of
the computer. The test problem has n = 2 equations:

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 843

� �

� �

� �

1 1 1 2 1 2

2 2 2 3 2 1

1

2

1

2

3

1

0 1

0 0
294
3
0.01020408
240

y y y y k y
y k y k y y

y

y
k
k
k
tend

� � � � �

� � � � �

�

�

�

�

�

�

 USE IVPRK_INT
 USE UMACH_INT
 INTEGER MXPARM, N
 PARAMETER (MXPARM=50, N=2)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, ISTEP, NOUT
 REAL PARAM(MXPARM), T, TEND, TOL, Y(N)
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCN
!
 CALL UMACH (2, NOUT)
! Set initial conditions
 T = 0.0
 Y(1) = 1.0
 Y(2) = 0.0
! Set error tolerance
 TOL = 0.001
! Set PARAM to default
 PARAM = 0.0E0
! Select absolute error control
 PARAM(10) = 1.0
! Print header
 WRITE (NOUT,99998)
 IDO = 1
 ISTEP = 0
 10 CONTINUE
 ISTEP = ISTEP + 24
 TEND = ISTEP
 CALL IVPRK (IDO, FCN, T, TEND, Y, TOL=TOL, PARAM=PARAM)
 IF (ISTEP .LE. 240) THEN
 WRITE (NOUT,’(I6,3F12.3)’) ISTEP/24, T, Y
! Final call to release workspace
 IF (ISTEP .EQ. 240) IDO = 3
 GO TO 10
 END IF
! Show number of function calls.
 WRITE (NOUT,99999) PARAM(35)
99998 FORMAT (4X, ’ISTEP’, 5X, ’Time’, 9X, ’Y1’, 11X, ’Y2’)
99999 FORMAT (4X, ’Number of fcn calls with IVPRK =’, F6.0)
 END
 SUBROUTINE FCN (N, T, Y, YPRIME)
! SPECIFICATIONS FOR ARGUMENTS

844 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 INTEGER N
 REAL T, Y(N), YPRIME(N)
! SPECIFICATIONS FOR DATA VARIABLES
 REAL AK1, AK2, AK3
!
 DATA AK1, AK2, AK3/294.0E0, 3.0E0, 0.01020408E0/
!
 YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2)
 YPRIME(2) = -AK2*Y(2) + AK3*(1.0E0-Y(2))*Y(1)
 RETURN
 END

Output
ISTEP Time Y1 Y2
 1 24.000 0.688 0.002
 2 48.000 0.634 0.002
 3 72.000 0.589 0.002
 4 96.000 0.549 0.002
 5 120.000 0.514 0.002
 6 144.000 0.484 0.002
 7 168.000 0.457 0.002
 8 192.000 0.433 0.001
 9 216.000 0.411 0.001
10 240.000 0.391 0.001
Number of fcn calls with IVPRK = 2153.

IVMRK
Solves an initial-value problem y� = f(t, y) for ordinary differential equations using Runge-Kutta
pairs of various orders.

Required Arguments
IDO — Flag indicating the state of the computation. (Input/Output)

IDO State
 1 Initial entry
 2 Normal re-entry
 3 Final call to release workspace
 4 Return after a step
 5 Return for function evaluation (reverse communication)

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this
value is used for all but the last call that is made with IDO = 3. This final call is used to
release workspace, which was automatically allocated by the initial call with IDO = 1.

FCN — User-supplied SUBROUTINE to evaluate functions. The usage is
CALL FCN (N, T, Y, YPRIME), where

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 845

N — Number of equations. (Input)
T — Independent variable. (Input)
Y — Array of size N containing the dependent variable values, y. (Input)
YPRIME — Array of size N containing the values of the vector y� evaluated at (t, y).
(Output)
FCN must be declared EXTERNAL in the calling program.

T — Independent variable. (Input/Output)
On input, T contains the initial value. On output, T is replaced by TEND unless error
conditions have occurred.

TEND — Value of t where the solution is required. (Input)
The value of TEND may be less than the initial value of t.

Y — Array of size N of dependent variables. (Input/Output)
On input, Y contains the initial values. On output, Y contains the approximate solution.

YPRIME — Array of size N containing the values of the vector y' evaluated at (t, y).
(Output)

Optional Arguments
N — Number of differential equations. (Input)

Default: N= size (Y,1).

FORTRAN 90 Interface
Generic: CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME [,…])

Specific: The specific interface names are S_IVMRK and D_IVMRK.

FORTRAN 77 Interface
Single: CALL IVMRK (IDO, N, FCN, T, TEND, Y, YPRIME)

Double: The double precision name is DIVMRK.

Example 1
This example integrates the small system (A.2.B2) from the test set of Enright and Pryce (1987):

846 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

� �

� �

� �

1 1 2

2 1 2 3

3 2 3

1

2

3

2

0 2

0 0

0 1

y y y
y y y y
y y y

y

y

y

� � � �

� � � �

� � �

�

�

�

 USE IVMRK_INT
 USE WRRRN_INT
 INTEGER N

 PARAMETER (N=3)
! Specifications for local variables
 INTEGER IDO
 REAL T, TEND, Y(N), YPRIME(N)
 EXTERNAL FCN
! Set initial conditions
 T = 0.0
 TEND = 20.0
 Y(1) = 2.0
 Y(2) = 0.0
 Y(3) = 1.0
 IDO = 1
 CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME)
!
! Final call to release workspace
 IDO = 3
 CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME)
!
 CALL WRRRN ('Y', Y)
 END
!
 SUBROUTINE FCN (N, T, Y, YPRIME)
! Specifications for arguments
 INTEGER N
 REAL T, Y(*), YPRIME(*)
!
 YPRIME(1) = -Y(1) + Y(2)
 YPRIME(2) = Y(1) - 2.0*Y(2) + Y(3)
 YPRIME(3) = Y(2) - Y(3)
 RETURN
 END

Output
 Y
1 1.000
2 1.000
3 1.000

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 847

Comments
1. Workspace may be explicitly provided, if desired, by use of I2MRK/DI2MRK. The

reference is:

CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM,
YMAX, RMSERR, WORK, IWORK)

The additional arguments are as follows:

TOL — Tolerance for error control. (Input)

THRES — Array of size N. (Input)
THRES(I) is a threshold for solution component Y(I). It is chosen so that the
value of Y(L) is not important when Y(L) is smaller in magnitude than
THRES(L). THRES(L) must be greater than or equal to sqrt(amach(4)).

PARAM — A floating-point array of size 50 containing optional parameters.
(Input/Output)
If a parameter is zero, then a default value is used. These default values are
given below. The following parameters must be set by the user:

PARAM Meaning
1 HINIT Initial value of the step size. Must be chosen such that
 0.01
 HINIT
 10.0 amach(4). Default: automatic
 selection of stepsize.

2 METHOD Specify which Runge-Kutta pair is to be used.
 1 - use the (2, 3) pair
 2 - use the (4, 5) pair
 3 - use the (7, 8) pair.
 Default: METHOD = 1 if 10-2
 tol > 10-4
 METHOD = 2 if 10-4
 tol > 10-6
 METHOD = 3 if 10-6
 tol

3 ERREST ERREST = 1 attempts to assess the true error, the
 difference between the numerical solution and the
 true solution. The cost of this is roughly twice the cost
 of the integration itself with METHOD = 2 or
 METHOD = 3, and three times with METHOD = 1.
 Default: ERREST = 0.

4 INTRP If nonzero, then return the IDO = 4 before each step.
 See Comment 3. Default: 0

5 RCSTAT If nonzero, then reverse communication is used to get
 derivative information. See Comment 4. Default: 0.

6 - 30 Not used

The following entries are set by the program:
31 HTRIAL Current trial step size.

848 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

32 NSTEP Number of steps taken.
33 NFCN Number of function evaluations.
34 ERRMAX The maximum approximate weighted true error taken
 over all solution components and all steps from T
 through the current integration point.
35 TERRMX First value of the independent variable where an
 approximate true error attains the maximum value
 ERRMAX.

YMAX Array of size N, where YMAX(L) is the largest value of ABS(Y(L))
computed at any step in the integration so far.

RMSERR — Array of size N where RMSERR(L) approximates the RMS average of the
true error of the numerical solution for the L-th solution component,
L = 1,..., N. The average is taken over all steps from T through the current
integration point. RMSERR is accessed and set only if PARAM(3) = 1.

WORK — Floating point work array of size 39N using the working precision. The
contents of WORK must not be changed from the first call with IDO = 1 until after
the final call with IDO = 3.

IWORK — Length of array work. (Input)

2. Informational errors

Type Code
 4 1 It does not appear possible to achieve the accuracy specified by TOL

and THRES(*) using the current precision and METHOD. A larger value
for METHOD, if possible, will permit greater accuracy with this
precision. The integration must be restarted.

 4 2 The global error assessment may not be reliable beyond the current
integration point T. This may occur because either too little or too
much accuracy has been requested or because f(t, y) is not smooth
enough for values of t just past TEND and current values of the
solution y. This return does not mean that you cannot integrate past
TEND, rather that you cannot do it with PARAM(3) = 1.

3 If PARAM(4) is nonzero, the subroutine returns with IDO = 4 and will resume
calculation at the point of interruption if re-entered with IDO = 4. Some parameters the
user might want to examine are IDO, HTRIAL, NSTEP, NFCN, T, and Y. The array Y
contains the newly computed trial value for y(t), accepted or not.

4 If PARAM(5) is nonzero, the subroutine will return with IDO = 5. At this time, evaluate
the derivatives at T, place the result in YPRIME, and call IVMRK again. The dummy
function I40RK/DI40RK may be used in place of FCN.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 849

Description
Routine IVMRK finds an approximation to the solution of a system of first-order differential
equations of the form y� = f(t, y) with given initial data. Relative local error is controlled
according to a user-supplied tolerance. For added efficiency, three Runge-Kutta formula pairs,
of orders 3, 5, and 8, are available.

Optionally, the values of the vector y� can be passed to IVMRK by reverse communication,
avoiding the user-supplied subroutine FCN. Reverse communication is especially useful in
applications that have complicated algorithmic requirement for the evaluations of f(t, y).
Another option allows assessment of the global error in the integration.

The routine IVMRK is based on the codes contained in RKSUITE, developed by R. W. Brankin, I.
Gladwell, and L. F. Shampine (1991).

Additional Examples

Example 2
This problem is the same mildly stiff problem (A.1.F2) from the test set of Enright and Pryce as
Example 2 for IVPRK, page 837.

� �

� �

� �

1 1 1 2 1 2

2 2 2 3 2 1

1

2

1

2

3

1

0 1

0 0
294
3
0.01020408
240

y y y y k y
y k y k y y

y

y
k
k
k
tend

� � � � �

� � � � �

�

�

�

�

�

�

Although not a stiff solver, one notes the greater efficiency of IVMRK over IVPRK, in terms of
derivative evaluations. Reverse communication is also used in this example. Users will find this
feature particularly helpful if their derivative evaluation scheme is difficult to isolate in a
separate subroutine.

 USE I2MRK_INT
 USE UMACH_INT
 USE AMACH_INT
 INTEGER N

 PARAMETER (N=2)
! Specifications for local variables
 INTEGER IDO, ISTEP, LWORK, NOUT
 REAL PARAM(50), PREC, RMSERR(N), T, TEND, THRES(N), TOL, &
 WORK(1000), Y(N), YMAX(N), YPRIME(N)
 REAL AK1, AK2, AK3
 SAVE AK1, AK2, AK3
! Specifications for intrinsics
 INTRINSIC SQRT

850 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 REAL SQRT
! Specifications for subroutines
 EXTERNAL I40RK
! Specifications for functions
!
 DATA AK1, AK2, AK3/294.0, 3.0, 0.01020408/
!
 CALL UMACH (2, NOUT)
! Set initial conditions
 T = 0.0
 Y(1) = 1.0
 Y(2) = 0.0
! Set tolerance for error control,
! threshold vector and parameter
! vector
 TOL = .001
 PREC = AMACH(4)
 THRES = SQRT (PREC)
 PARAM = 0.0E0
 LWORK = 1000
! Turn on derivative evaluation by
! reverse communication
 PARAM(5) = 1
 IDO = 1
 ISTEP = 24
! Print header
 WRITE (NOUT,99998)
 10 CONTINUE
 TEND = ISTEP
 CALL I2MRK (IDO, N, I40RK, T, TEND, Y, YPRIME, TOL, THRES, PARAM,&
 YMAX, RMSERR, WORK, LWORK)
 IF (IDO .EQ. 5) THEN
! Evaluate derivatives
!
 YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2)
 YPRIME(2) = -AK2*Y(2) + AK3*(1.0-Y(2))*Y(1)
 GO TO 10
 ELSE IF (ISTEP .LE. 240) THEN
!
! Integrate to 10 equally spaced points
!
 WRITE (NOUT,'(I6,3F12.3)') ISTEP/24, T, Y
 IF (ISTEP .EQ. 240) IDO = 3
 ISTEP = ISTEP + 24
 GO TO 10
 END IF
! Show number of derivative evaluations
!
 WRITE (NOUT,99999) PARAM(33)
99998 FORMAT (3X, 'ISTEP', 5X, 'TIME', 9X, 'Y1', 10X, 'Y2')
99999 FORMAT (/, 4X, 'NUMBER OF DERIVATIVE EVALUATIONS WITH IVMRK =', &
 F6.0)
 END

! DUMMY FUNCTION TO TAKE THE PLACE OF DERIVATIVE EVALUATOR

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 851

 SUBROUTINE I40RK (N, T, Y, YPRIME)
 INTEGER N
 REAL T, y(*), YPRIME(*)
 RETURN
 END

Output
ISTEP TIME Y1 Y2
1 24.000 0.688 0.002
2 48.000 0.634 0.002
3 72.000 0.589 0.002
4 96.000 0.549 0.002
5 120.000 0.514 0.002
6 144.000 0.484 0.002
7 168.000 0.457 0.002
8 192.000 0.433 0.001
9 216.000 0.411 0.001
10 240.000 0.391 0.001
NUMBER OF DERIVATIVE EVALUATIONS WITH IVMRK = 1375.

Example 3
This example demonstrates how exceptions may be handled. The problem is from Enright and
Pryce (A.2.F1), and has discontinuities. We choose this problem to force a failure in the global
error estimation scheme, which requires some smoothness in y. We also request an initial
relative error tolerance which happens to be unsuitably small in this precision.

If the integration fails because of problems in global error assessment, the assessment option is
turned off, and the integration is restarted. If the integration fails because the requested accuracy
is not achievable, the tolerance is increased, and global error assessment is requested. The
reason error assessment is turned on is that prior assessment failures may have been due more in
part to an overly stringent tolerance than lack of smoothness in the derivatives.

When the integration is successful, the example prints the final relative error tolerance, and
indicates whether or not global error estimation was possible.

� �

� �

� �

� �

1 2

2 2
2 1

2 2 2
2 1

1

2

2 1, even

2 1, odd

0 0

0 0
0.1

largest integer

y y

ay a y x
y

ay a y x

y

y
a
x x

�

�

� �

� � � � � �� 	

� � �

� � � � �
 � 	�

�

�

�

�
� �� 	

 USE IMSL_LIBRARIES
 INTEGER N
 PARAMETER (N=2)
! Specifications for local variables
 INTEGER IDO, LWORK, NOUT
 REAL PARAM(50), PREC, RMSERR(N), T, TEND, THRES(N), TOL,&

852 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 WORK(100), Y(N), YMAX(N), YPRIME(N)
!
 Specifications for intrinsics
 INTRINSIC SQRT
 REAL SQRT
! Specifications for subroutines
!
!
! Specifications for functions
 EXTERNAL FCN
!
!
 CALL UMACH (2, NOUT)
! Turn off stopping for FATAL errors
 CALL ERSET (4, -1, 0)
! Initialize input, turn on global
! error assessment
 LWORK = 100
 PREC = AMACH(4)
 TOL = SQRT(PREC)
 PARAM = 0.0E01
 THRES = TOL
 TEND = 20.0E0
 PARAM(3) = 1
!
 10 CONTINUE
! Set initial values
 T = 0.0E0
 Y(1) = 0.0E0
 Y(2) = 0.0E0
 IDO = 1
 CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM,&
 YMAX, RMSERR, WORK, LWORK)
 IF (IERCD() .EQ. 32) THEN
! Unable to achieve requested
! accuracy, so increase tolerance.
! Activate global error assessment
 TOL = 10.0*TOL
 PARAM(3) = 1
 WRITE (NOUT,99995) TOL
 GO TO 10
 ELSE IF (IERCD() .EQ. 34) THEN
! Global error assessment has failed,
! cannot continue from this point,
! so restart integration
 WRITE (NOUT,99996)
 PARAM(3) = 0
 GO TO 10
 END IF
!
! Final call to release workspace
 IDO = 3
 CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM,&
 YMAX, RMSERR, WORK, LWORK)
!

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 853

! Summarize status
 WRITE (NOUT,99997) TOL
 IF (PARAM(3) .EQ. 1) THEN
 WRITE (NOUT,99998)
 ELSE
 WRITE (NOUT,99999)
 END IF
 CALL WRRRN ('Y', Y)
!
99995 FORMAT (/, 'CHANGING TOLERANCE TO ', E9.3, ' AND RESTARTING ...'&
 , /, 'ALSO (RE)ENABLING GLOBAL ERROR ASSESSMENT', /)
99996 FORMAT (/, 'DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ...'&
 , /)
99997 FORMAT (/, 72('-'), //, 'SOLUTION OBTAINED WITH TOLERANCE = ',&
 E9.3)
99998 FORMAT ('GLOBAL ERROR ASSESSMENT IS AVAILABLE')
99999 FORMAT ('GLOBAL ERROR ASSESSMENT IS NOT AVAILABLE')
!
 END
!
 SUBROUTINE FCN (N, T, Y, YPRIME)
 USE CONST_INT
! Specifications for arguments
 INTEGER N
 REAL T, Y(*), YPRIME(*)
! Specifications for local variables
 REAL A
 REAL PI
 LOGICAL FIRST
 SAVE FIRST, PI
! Specifications for intrinsics
 INTRINSIC INT, MOD
 INTEGER INT, MOD
! Specifications for functions
!
 DATA FIRST/.TRUE./
!
 IF (FIRST) THEN
 PI = CONST('PI')
 FIRST = .FALSE.
 END IF
!
 A = 0.1E0
 YPRIME(1) = Y(2)
 IF (MOD(INT(T),2) .EQ. 0) THEN
 YPRIME(2) = 2.0E0*A*Y(2) - (PI*PI+A*A)*Y(1) + 1.0E0
 ELSE
 YPRIME(2) = 2.0E0*A*Y(2) - (PI*PI+A*A)*Y(1) - 1.0E0
 END IF
 RETURN
 END

854 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

Output
 *** FATAL ERROR 34 from i2mrk. The global error assessment may not
 *** be reliable for T past 9.994749E-01. The integration is
 *** being terminated.

DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ...

 *** FATAL ERROR 32 from i2mrk. In order to satisfy the error
 *** requirement I6MRK would have to use a step size of
 *** 3.647129E- 06 at TNOW = 9.999932E-01. This is too small
 *** for the current precision.

CHANGING TOLERANCE TO 0.345E-02 AND RESTARTING ...
ALSO (RE)ENABLING GLOBAL ERROR ASSESSMENT

 *** FATAL ERROR 34 from i2mrk. The global error assessment may
 *** not be reliable for T past 9.986024E-01. The integration
 *** is being terminated.

DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ...

--

SOLUTION OBTAINED WITH TOLERANCE = 0.345E-02
GLOBAL ERROR ASSESSMENT IS NOT AVAILABLE

 Y
 1 -12.30
 2 0.95

IVPAG
Solves an initial-value problem for ordinary differential equations using either Adams-Moulton’s
or Gear’s BDF method.

Required Arguments
IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal re-entry

3 Final call to release workspace

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 855

4 Return because of interrupt 1

5 Return because of interrupt 2 with step accepted

6 Return because of interrupt 2 with step rejected

7 Return for new value of matrix A.

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this
value is then used for all but the last call that is made with IDO = 3. This final call is
only used to release workspace, which was automatically allocated by the initial call
with IDO = 1. See Comment 5 for a description of the interrupts.

 When IDO = 7, the matrix A at t must be recomputed and IVPAG/DIVPAG called again.
No other argument (including IDO) should be changed. This value of IDO is returned
only if PARAM(19) = 2.

FCN — User-supplied SUBROUTINE to evaluate functions. The usage is
 CALL FCN (N, T, Y, YPRIME), where
 N – Number of equations. (Input)
 T – Independent variable, t. (Input)
 Y – Array of size N containing the dependent variable values, y.
 (Input)
 YPRIME – Array of size N containing the values of the vector y�
 evaluated at (t, y). (Output)
 See Comment 3.
 FCN must be declared EXTERNAL in the calling program.

FCNJ — User-supplied SUBROUTINE to compute the Jacobian. The usage is
CALL FCNJ (N, T, Y, DYPDY) where
 N – Number of equations. (Input)
 T – Independent variable, t. (Input)
 Y – Array of size N containing the dependent variable values, y(t).
 (Input)

DYPDY – An array, with data structure and type determined by
PARAM(14) = MTYPE, containing the required partial derivatives �fi��yj. (Output)
These derivatives are to be evaluated at the current values of (t, y). When the
Jacobian is dense, MTYPE = 0 or = 2, the leading dimension of DYPDY has the
value N. When the Jacobian matrix is banded, MTYPE = 1, and the leading
dimension of DYPDY has the value 2 * NLC + NUC + 1. If the matrix is banded
positive definite symmetric, MTYPE = 3, and the leading dimension of DYPDY has
the value NUC + 1.

FCNJ must be declared EXTERNAL in the calling program. If PARAM(19) = IATYPE is
nonzero, then FCNJ should compute the Jacobian of the righthand side of the equation
Ay� = f(t, y). The subroutine FCNJ is used only if PARAM(13) = MITER = 1.

856 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

T — Independent variable, t. (Input/Output)
On input, T contains the initial independent variable value. On output, T is replaced by
TEND unless error or other normal conditions arise. See IDO for details.

TEND — Value of t = tend where the solution is required. (Input)
The value tend may be less than the initial value of t.

Y — Array of size NEQ of dependent variables, y(t). (Input/Output)
On input, Y contains the initial values, y(t�). On output, Y contains the approximate
solution, y(t).

Optional Arguments
NEQ— Number of differential equations. (Input)

Default: NEQ = size (Y,1)

A — Matrix structure used when the system is implicit. (Input)
The matrix A is referenced only if PARAM(19) = IATYPE is nonzero. Its data structure is
determined by PARAM(14) = MTYPE. The matrix A must be nonsingular and MITER
must be 1 or 2. See Comment 3.

TOL — Tolerance for error control. (Input)
An attempt is made to control the norm of the local error such that the global error is
proportional to TOL.
Default: TOL = .001

PARAM — A floating-point array of size 50 containing optional parameters. (Input/Output)
If a parameter is zero, then the default value is used. These default values are given
below. Parameters that concern values of the step size are applied in the direction of
integration. The following parameters may be set by the user:

 PARAM Meaning
1 HINIT Initial value of the step size H. Always nonnegative.

Default: 0.001|tend � t�|.

2 HMIN Minimum value of the step size H. Default: 0.0.
3 HMAX Maximum value of the step size H. Default: No limit,

beyond the machine scale, is imposed on the step size.
4 MXSTEP Maximum number of steps allowed. Default: 500.
5 MXFCN Maximum number of function evaluations allowed.

Default: No enforced limit.
6 MAXORD Maximum order of the method. Default: If Adams-Moulton

method is used, then 12. If Gear’s or BDF method is used,
then 5. The defaults are the maximum values allowed.

7 INTRP1 If this value is set nonzero, the subroutine will return before
every step with IDO = 4. See Comment 5. Default: 0.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 857

8 INTRP2 If this value is nonzero, the subroutine will return after
every successful step with IDO = 5 and return with IDO = 6
after every unsuccessful step. See Comment 5. Default: 0

9 SCALE A measure of the scale of the problem, such as an
approximation to the average value of a norm of the
Jacobian along the solution. Default: 1.0

10 INORM Switch determining error norm. In the following, ei is the
absolute value of an estimate of the error in yi(t).
Default: 0.

0 — min(absolute error, relative error) = max(ei�wi); i = 1,
�, N, where wi = max(|yi(t)|, 1.0).

1 — absolute error = max(ei), i = 1 �, NEQ.

2 — max(ei / wi), i = 1 �, N where wi = max(|yi(t)|,
FLOOR), and FLOOR is the value PARAM(11).
3 — Scaled Euclidean norm defined as

 2 2
1

YMAX /NEQ
i ii

e w
�

� �

where wi = max(|yi(t)|, 1.0). Other definitions of YMAX can
be specified by the user, as explained in Comment 1.

11 FLOOR Used in the norm computation associated the parameter
INORM. Default: 1.0.

12 METH Integration method indicator.
1 = METH selects the Adams-Moulton method.
2 = METH selects Gear’s BDF method.
Default: 1.

13 MITER Nonlinear solver method indicator.
Note: If the problem is stiff and a chord or modified
Newton method is most efficient, use MITER = 1 or = 2.
0 = MITER selects functional iteration. The value IATYPE
must be set to zero with this option.
1 = MITER selects a chord method with a user-provided
Jacobian.
2 = MITER selects a chord method with a divided-
difference Jacobian.
3 = MITER selects a chord method with the Jacobian
replaced by a diagonal matrix based on a directional
derivative. The value IATYPE must be set to zero with this
option.
Default: 0.

858 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

14 MTYPE Matrix type for A (if used) and the Jacobian (if MITER = 1
or = 2). When both are used, A and the Jacobian must be of
the same type.
0 = MTYPE selects full matrices.

1 = MTYPE selects banded matrices.
2 = MTYPE selects symmetric positive definite matrices.
3 = MTYPE selects banded symmetric positive definite
matrices.
Default: 0.

15 NLC Number of lower codiagonals, used if MTYPE = 1.
Default: 0.

16 NUC Number of upper codiagonals, used if MTYPE = 1 or
MTYPE = 3.
Default: 0.

17 Not used.
18 EPSJ Relative tolerance used in computing divided difference

Jacobians.
Default: SQRT(AMACH(4)) .

19 IATYPE Type of the matrix A.
0 = IATYPE implies A is not used (the system is explicit).
1 = IATYPE if A is a constant matrix.
2 = IATYPE if A depends on t.
Default: 0.

20 LDA Leading dimension of array A exactly as specified in the
dimension statement in the calling program. Used if
IATYPE is not zero.
Default:
N if MTYPE = 0 or = 2
NUC + NLC + 1 if MTYPE = 1
NUC + 1 if MTYPE = 3

21�30 Not used.

The following entries in the array PARAM are set by the program:
 PARAM Meaning
31 HTRIAL Current trial step size.
32 HMINC Computed minimum step size.
33 HMAXC Computed maximum step size.
34 NSTEP Number of steps taken.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 859

35 NFCN Number of function evaluations used.
36 NJE Number of Jacobian evaluations.
37�50 Not used.

FORTRAN 90 Interface
Generic: CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y [,…])

Specific: The specific interface names are S_IVPAG and D_IVPAG.

FORTRAN 77 Interface
Single: CALL IVPAG (IDO, NEQ, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y)

Double: The double precision name is DIVPAG.

Example 1
Euler’s equation for the motion of a rigid body not subject to external forces is

� �

� �

� �

1 2 3 1

2 1 3 2

3 1 2 3

0 0

0 1

0.51 0 1

y y y y

y y y y

y y y y

� � �

� � � �

� � � �

Its solution is, in terms of Jacobi elliptic functions, y�(t) = sn(t; k), y�(t) = cn(t; k), y�(t) = dn(t; k)
where k� = 0.51. The Adams-Moulton method of IVPAG is used to solve this system, since this
is the default. All parameters are set to defaults.

The last call to IVPAG with IDO = 3 releases IMSL workspace that was reserved on the first call
to IVPAG. It is not necessary to release the workspace in this example because the program ends
after solving a single problem. The call to release workspace is made as a model of what would
be needed if the program included further calls to IMSL routines.

Because PARAM(13) = MITER = 0, functional iteration is used and so subroutine FCNJ is never
called. It is included only because the calling sequence for IVPAG requires it.

 USE IVPAG_INT
 USE UMACH_INT
 INTEGER N, NPARAM
 PARAMETER (N=3, NPARAM=50)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, IEND, NOUT
 REAL A(1,1), T, TEND, TOL, Y(N)
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCN, FCNJ
! Initialize
!
 IDO = 1
 T = 0.0

860 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 Y(1) = 0.0
 Y(2) = 1.0
 Y(3) = 1.0
 TOL = 1.0E-6
! Write title
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
! Integrate ODE
 IEND = 0
 10 CONTINUE
 IEND = IEND + 1
 TEND = IEND
! The array a(*,*) is not used.
 CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL)
 IF (IEND .LE. 10) THEN
 WRITE (NOUT,99999) T, Y
! Finish up
 IF (IEND .EQ. 10) IDO = 3
 GO TO 10
 END IF
99998 FORMAT (11X, ’T’, 14X, ’Y(1)’, 11X, ’Y(2)’, 11X, ’Y(3)’)
99999 FORMAT (4F15.5)
 END
!
 SUBROUTINE FCN (N, X, Y, YPRIME)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL X, Y(N), YPRIME(N)
!
 YPRIME(1) = Y(2)*Y(3)
 YPRIME(2) = -Y(1)*Y(3)
 YPRIME(3) = -0.51*Y(1)*Y(2)
 RETURN
 END
!
 SUBROUTINE FCNJ (N, X, Y, DYPDY)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL X, Y(N), DYPDY(N,*)
! This subroutine is never called
 RETURN
 END

Output
 T Y(1) Y(2) Y(3)
 1.00000 0.80220 0.59705 0.81963
 2.00000 0.99537 -0.09615 0.70336
 3.00000 0.64141 -0.76720 0.88892
 4.00000 -0.26961 -0.96296 0.98129
 5.00000 -0.91173 -0.41079 0.75899
 6.00000 -0.95751 0.28841 0.72967
 7.00000 -0.42877 0.90342 0.95197
 8.00000 0.51092 0.85963 0.93106
 9.00000 0.97567 0.21926 0.71730
10.00000 0.87790 -0.47884 0.77906

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 861

Comments
1. Workspace and a user-supplied error norm subroutine may be explicitly provided, if

desired, by use of I2PAG/DI2PAG. The reference is:

CALL I2PAG (IDO, NEQ, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y,
YTEMP, YMAX, ERROR, SAVE1, SAVE2, PW, IPVT, VNORM)

None of the additional array arguments should be changed from the first call with
IDO = 1 until after the final call with IDO = 3. The additional arguments are as follows:

YTEMP — Array of size NMETH. (Workspace)

YMAX — Array of size NEQ containing the maximum Y-values computed so far.
(Output)

ERROR — Array of size NEQ containing error estimates for each component of Y.
(Output)

SAVE1 — Array of size NEQ. (Workspace)

SAVE2 — Array of size NEQ. (Workspace)

PW — Array of size NPW. (Workspace)

IPVT — Array of size NEQ. (Workspace)

VNORM — A Fortran SUBROUTINE to compute the norm of the error. (Input)
The routine may be provided by the user, or the IMSL routine I3PRK/DI3PRK
may be used. In either case, the name must be declared in a Fortran ENTERNAL
statement. If usage of the IMSL routine is intended, then the name
I3PRK/DI3PRK should be specified. The usage of the error norm routine is
CALL VNORM (NEQ, V, Y, YMAX, ENORM) where

Arg. Definition

NEQ Number of equations. (Input)

V Array of size N containing the vector whose norm is to be computed.
 (Input)

Y Array of size N containing the values of the dependent variable. (Input)

YMAX Array of size N containing the maximum values of |y (t)|. (Input)

ENORM Norm of the vector V. (Output)

VNORM must be declared EXTERNAL in the calling program.

862 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

2. Informational errors

Type Code
 4 1 After some initial success, the integration was halted by repeated

error-test failures.
 4 2 The maximum number of function evaluations have been used.
 4 3 The maximum number of steps allowed have been used. The

problem may be stiff.
 4 4 On the next step T + H will equal T. Either TOL is too small, or the

problem is stiff.
Note: If the Adams-Moulton method is the one used in the
integration, then users can switch to the BDF methods. If the BDF
methods are being used, then these comments are gratuitous and
indicate that the problem is too stiff for this combination of method
and value of TOL.

 4 5 After some initial success, the integration was halted by a test on
TOL.

 4 6 Integration was halted after failing to pass the error test even after
dividing the initial step size by a factor of 1.0E + 10. The value TOL
may be too small.

 4 7 Integration was halted after failing to achieve corrector convergence
even after dividing the initial step size by a factor of 1.0E + 10. The
value TOL may be too small.

 4 8 IATYPE is nonzero and the input matrix A multiplying y� is singular.

3. Both explicit systems, of the form y� = f (t, y), and implicit systems, Ay� = f (t, y), can
be solved. If the system is explicit, then PARAM(19) = 0; and the matrix A is not
referenced. If the system is implicit, then PARAM(14) determines the data structure of
the array A. If PARAM(19) = 1, then A is assumed to be a constant matrix. The value of A
used on the first call (with IDO = 1) is saved until after a call with IDO = 3. The value
of A must not be changed between these calls.
If PARAM(19) = 2, then the matrix is assumed to be a function of t.

4. If MTYPE is greater than zero, then MITER must equal 1 or 2.

5. If PARAM(7) is nonzero, the subroutine returns with IDO= 4 and will resume calculation
at the point of interruption if re-entered with IDO = 4. If PARAM(8) is nonzero, the
subroutine will interrupt immediately after decides to accept the result of the most
recent trial step. The value IDO = 5 is returned if the routine plans to accept, or IDO = 6
if it plans to reject. The value IDO may be changed by the user (by changing IDO from
6 to 5) to force acceptance of a step that would otherwise be rejected. Relevant
parameters to observe after return from an interrupt are IDO, HTRIAL, NSTEP, NFCN,
NJE, T and Y. The array Y contains the newly computed trial value y(t).

Description
The routine IVPAG solves a system of first-order ordinary differential equations of the form
y� = f (t, y) or Ay� = f (t, y) with initial conditions where A is a square nonsingular matrix of order

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 863

N. Two classes of implicit linear multistep methods are available. The first is the implicit
Adams-Moulton method (up to order twelve); the second uses the backward differentiation
formulas BDF (up to order five). The BDF method is often called Gear’s stiff method. In both
cases, because basic formulas are implicit, a system of nonlinear equations must be solved at
each step. The deriviative matrix in this system has the form L = A + �J where � is a small
number computed by IVPAG and J is the Jacobian. When it is used, this matrix is computed in
the user-supplied routine FCNJ or else it is approximated by divided differences as a default.
Using defaults, A is the identity matrix. The data structure for the matrix L may be identified to
be real general, real banded, symmetric positive definite, or banded symmetric positive definite.
The default structure for L is real general.

Example 2
The BDF method of IVPAG is used to solve Example 2 of IVPRK, page 837. We set
PARAM(12) = 2 to designate the BDF method. A chord or modified Newton method, with the
Jacobian computed by divided differences, is used to solve the nonlinear equations. Thus, we set
PARAM(13) = 2. The number of evaluations of y� is printed after the last output point, showing
the efficiency gained when using a stiff solver compared to using IVPRK on this problem. The
number of evaluations may vary, depending on the accuracy and other arithmetic characteristics
of the computer.

 USE IVPAG_INT
 USE UMACH_INT
 INTEGER MXPARM, N
 PARAMETER (MXPARM=50, N=2)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER MABSE, MBDF, MSOLVE
 PARAMETER (MABSE=1, MBDF=2, MSOLVE=2)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, ISTEP, NOUT
 REAL A(1,1), PARAM(MXPARM), T, TEND, TOL, Y(N)
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCN, FCNJ
!
 CALL UMACH (2, NOUT)
! Set initial conditions
 T = 0.0
 Y(1) = 1.0
 Y(2) = 0.0
! Set error tolerance
 TOL = 0.001
! Set PARAM to defaults
 PARAM = 0.0E0
!
 PARAM(10) = MABSE
! Select BDF method
 PARAM(12) = MBDF
! Select chord method and
! a divided difference Jacobian.
 PARAM(13) = MSOLVE
! Print header
 WRITE (NOUT,99998)

864 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 IDO = 1
 ISTEP = 0
 10 CONTINUE
 ISTEP = ISTEP + 24
 TEND = ISTEP
! The array a(*,*) is not used.
 CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL, &
 PARAM=PARAM)
 IF (ISTEP .LE. 240) THEN
 WRITE (NOUT,’(I6,3F12.3)’) ISTEP/24, T, Y
! Final call to release workspace
 IF (ISTEP .EQ. 240) IDO = 3
 GO TO 10
 END IF
! Show number of function calls.
 WRITE (NOUT,99999) PARAM(35)
99998 FORMAT (4X, ’ISTEP’, 5X, ’Time’, 9X, ’Y1’, 11X, ’Y2’)
99999 FORMAT (4X, ’Number of fcn calls with IVPAG =’, F6.0)
 END
 SUBROUTINE FCN (N, T, Y, YPRIME)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), YPRIME(N)
! SPECIFICATIONS FOR SAVE VARIABLES
 REAL AK1, AK2, AK3
 SAVE AK1, AK2, AK3
!
 DATA AK1, AK2, AK3/294.0E0, 3.0E0, 0.01020408E0/
!
 YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2)
 YPRIME(2) = -AK2*Y(2) + AK3*(1.0E0-Y(2))*Y(1)
 RETURN
 END
 SUBROUTINE FCNJ (N, T, Y, DYPDY)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), DYPDY(N,*)
!
 RETURN
 END

Output
ISTEP Time Y1 Y2
 1 24.000 0.689 0.002
 2 48.000 0.636 0.002
 3 72.000 0.590 0.002
 4 96.000 0.550 0.002
 5 120.000 0.515 0.002
 6 144.000 0.485 0.002
 7 168.000 0.458 0.002
 8 192.000 0.434 0.001
 9 216.000 0.412 0.001
10 240.000 0.392 0.001
Number of fcn calls with IVPAG = 73.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 865

Example 3
The BDF method of IVPAG is used to solve the so-called Robertson problem:

� �

� �

� �

1 1 1 2 2 3 1

2 1 3 2

2
3 3 2 3

4 7
1 2 3

0 1

0 0

0 0

0.04, 10 , 3 10 0 10

y c y c y y y

y y y y

y c y y

c c c t

� � � � �

� � �� � � �

� � �

� � � � � �

Output is obtained after each unit of the independent variable. A user-provided subroutine for
the Jacobian matrix is used. An absolute error tolerance of 10�� is required.

 USE IVPAG_INT
 USE UMACH_INT
 INTEGER MXPARM, N
 PARAMETER (MXPARM=50, N=3)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER MABSE, MBDF, MSOLVE
 PARAMETER (MABSE=1, MBDF=2, MSOLVE=1)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, ISTEP, NOUT
 REAL A(1,1), PARAM(MXPARM), T, TEND, TOL, Y(N)
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCN, FCNJ
!
 CALL UMACH (2, NOUT)
! Set initial conditions
 T = 0.0
 Y(1) = 1.0
 Y(2) = 0.0
 Y(3) = 0.0
! Set error tolerance
 TOL = 1.0E-5
! Set PARAM to defaults
 PARAM = 0.0E0

! Select absolute error control
 PARAM(10) = MABSE
! Select BDF method
 PARAM(12) = MBDF
! Select chord method and
! a user-provided Jacobian.
 PARAM(13) = MSOLVE
! Print header
 WRITE (NOUT,99998)
 IDO = 1
 ISTEP = 0
 10 CONTINUE
 ISTEP = ISTEP + 1
 TEND = ISTEP
! The array a(*,*) is not used.
 CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL &
 PARAM=PARAM)

866 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 IF (ISTEP .LE. 10) THEN
 WRITE (NOUT,’(I6,F12.2,3F13.5)’) ISTEP, T, Y
! Final call to release workspace
 IF (ISTEP .EQ. 10) IDO = 3
 GO TO 10
 END IF
99998 FORMAT (4X, ’ISTEP’, 5X, ’Time’, 9X, ’Y1’, 11X, ’Y2’, 11X, &
 ’Y3’)
 END
 SUBROUTINE FCN (N, T, Y, YPRIME)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), YPRIME(N)
! SPECIFICATIONS FOR SAVE VARIABLES
 REAL C1, C2, C3
 SAVE C1, C2, C3
!
 DATA C1, C2, C3/0.04E0, 1.0E4, 3.0E7/
!
 YPRIME(1) = -C1*Y(1) + C2*Y(2)*Y(3)
 YPRIME(3) = C3*Y(2)**2
 YPRIME(2) = -YPRIME(1) - YPRIME(3)
 RETURN
 END
 SUBROUTINE FCNJ (N, T, Y, DYPDY)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), DYPDY(N,*)
! SPECIFICATIONS FOR SAVE VARIABLES
 REAL C1, C2, C3
 SAVE C1, C2, C3
! SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL SSET
!
 DATA C1, C2, C3/0.04E0, 1.0E4, 3.0E7/
! Clear array to zero
 CALL SSET (N**2, 0.0, DYPDY, 1)
! Compute partials
 DYPDY(1,1) = -C1
 DYPDY(1,2) = C2*Y(3)
 DYPDY(1,3) = C2*Y(2)
 DYPDY(3,2) = 2.0*C3*Y(2)
 DYPDY(2,1) = -DYPDY(1,1)
 DYPDY(2,2) = -DYPDY(1,2) - DYPDY(3,2)
 DYPDY(2,3) = -DYPDY(1,3)
 RETURN
 END

Output
 ISTEP Time Y1 Y2 Y3
 1 1.00 0.96647 0.00003 0.03350
 2 2.00 0.94164 0.00003 0.05834
 3 3.00 0.92191 0.00002 0.07806
 4 4.00 0.90555 0.00002 0.09443
 5 5.00 0.89153 0.00002 0.10845

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 867

 6 6.00 0.87928 0.00002 0.12070
 7 7.00 0.86838 0.00002 0.13160
 8 8.00 0.85855 0.00002 0.14143
 9 9.00 0.84959 0.00002 0.15039
10 10.00 0.84136 0.00002 0.15862

Example 4
Solve the partial differential equation

2

2
t u ue

t x
� �

� �

�

�

with the initial condition

u(t = 0, x) = sin x

and the boundary conditions

u(t, x = 0) = u(t, x = �) = 0

on the square [0, 1]
 [0, �], using the method of lines with a piecewise-linear Galerkin
discretization. The exact solution is u(t, x) = exp(1 � et) sin x. The interval [0, �] is divided into
equal intervals by choosing breakpoints xk = k�/(N + 1) for k = 0, �, N + 1. The unknown
function u(t, x) is approximated by

� � � �1

N
k kk

c t x�
�

�

where �k (x) is the piecewiselinear function that equals 1 at xk and is zero at all of the other
breakpoints. We approximate the partial differential equation by a system of N ordinary
differential equations, A dc/dt = Rc where A and R are matrices of order N. The matrix A is
given by

A e x x dx
e h i j
e h i jij

t
i j

t

t
� � �

�

�

�z � �
� b g b g
0

2 3
6 1

0

/
/

if =
if =
otherwise

where h = 1/(N + 1) is the mesh spacing. The matrix R is given by

R x x dx x x dx
h i j

h i jij i j i j� �� � � � � �

�

� �z z� � � �
� �

0 0

2
1 1
0

b g b g b g b g
/

/
if =

if
otherwise

The integrals involving

���i

are assigned the values of the integrals on the right-hand side, by using the boundary values and
integration by parts. Because this system may be stiff, Gear’s BDF method is used.

868 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

In the following program, the array Y(1:N) corresponds to the vector of coefficients, c. Note that
Y contains N + 2 elements; Y(0) and Y(N + 1) are used to store the boundary values. The matrix A
depends on t so we set PARAM(19) = 2 and evaluate A when IVPAG returns with IDO = 7. The
subroutine FCN computes the vector Rc, and the subroutine FCNJ computes R. The matrices A
and R are stored as band-symmetric positive-definite structures having one upper co-diagonal.

 USE IVPAG_INT
 USE CONST_INT
 USE WRRRN_INT
 USE SSET_INT
 INTEGER LDA, N, NPARAM, NUC
 PARAMETER (N=9, NPARAM=50, NUC=1, LDA=NUC+1)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER NSTEP
 PARAMETER (NSTEP=4)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IATYPE, IDO, IMETH, INORM, ISTEP, MITER, MTYPE
 REAL A(LDA,N), C, HINIT, PARAM(NPARAM), PI, T, TEND, TMAX, &
 TOL, XPOINT(0:N+1), Y(0:N+1)
 CHARACTER TITLE*10
! SPECIFICATIONS FOR COMMON /COMHX/
 COMMON /COMHX/ HX
 REAL HX
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC EXP, REAL, SIN
 REAL EXP, REAL, SIN
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCN, FCNJ
! Initialize PARAM
 HINIT = 1.0E-3
 INORM = 1
 IMETH = 2
 MITER = 1
 MTYPE = 3
 IATYPE = 2
 PARAM = 0.0E0
 PARAM(1) = HINIT
 PARAM(10) = INORM
 PARAM(12) = IMETH
 PARAM(13) = MITER
 PARAM(14) = MTYPE
 PARAM(16) = NUC
 PARAM(19) = IATYPE
! Initialize other arguments
 PI = CONST(’PI’)
 HX = PI/REAL(N+1)
 CALL SSET (N-1, HX/6., A(1:,2), LDA)
 CALL SSET (N, 2.*HX/3., A(2:,1), LDA)
 DO 10 I=0, N + 1
 XPOINT(I) = I*HX
 Y(I) = SIN(XPOINT(I))
 10 CONTINUE
 TOL = 1.0E-6
 T = 0.0

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 869

 TMAX = 1.0
! Integrate ODE
 IDO = 1
 ISTEP = 0
 20 CONTINUE
 ISTEP = ISTEP + 1
 TEND = TMAX*REAL(ISTEP)/REAL(NSTEP)
 30 CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y(1:), NEQ=N, A=A, &
 TOL=TOL, PARAM=PARAM)
! Set matrix A
 IF (IDO .EQ. 7) THEN
 C = EXP(-T)
 CALL SSET (N-1, C*HX/6., A(1:,2), LDA)
 CALL SSET (N, 2.*C*HX/3., A(2:,1), LDA)
 GO TO 30
 END IF
 IF (ISTEP .LE. NSTEP) THEN
! Print solution
 WRITE (TITLE,’(A,F5.3,A)’) ’U(T=’, T, ’)’
 CALL WRRRN (TITLE, Y, 1, N+2, 1)
! Final call to release workspace
 IF (ISTEP .EQ. NSTEP) IDO = 3
 GO TO 20
 END IF
 END
!
 SUBROUTINE FCN (N, T, Y, YPRIME)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(*), YPRIME(N)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I
! SPECIFICATIONS FOR COMMON /COMHX/
 COMMON /COMHX/ HX
 REAL HX
! SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL SSCAL
!
 YPRIME(1) = -2.0*Y(1) + Y(2)
 DO 10 I=2, N - 1
 YPRIME(I) = -2.0*Y(I) + Y(I-1) + Y(I+1)
 10 CONTINUE
 YPRIME(N) = -2.0*Y(N) + Y(N-1)
 CALL SSCAL (N, 1.0/HX, YPRIME, 1)
 RETURN
 END
!
 SUBROUTINE FCNJ (N, T, Y, DYPDY)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(*), DYPDY(2,*)
! SPECIFICATIONS FOR COMMON /COMHX/
 COMMON /COMHX/ HX
 REAL HX
! SPECIFICATIONS FOR SUBROUTINES

870 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 EXTERNAL SSET
!
 CALL SSET (N-1, 1.0/HX, DYPDY(1,2), 2)
 CALL SSET (N, -2.0/HX, DYPDY(2,1), 2)
 RETURN
 END

Output
 U(T=0.250)
 1 2 3 4 5 6 7 8
0.0000 0.2321 0.4414 0.6076 0.7142 0.7510 0.7142 0.6076

 9 10 11
0.4414 0.2321 0.0000

 U(T=0.500)
 1 2 3 4 5 6 7 8
0.0000 0.1607 0.3056 0.4206 0.4945 0.5199 0.4945 0.4206

 9 10 11
0.3056 0.1607 0.0000

 U(T=0.750)
 1 2 3 4 5 6 7 8
0.0000 0.1002 0.1906 0.2623 0.3084 0.3243 0.3084 0.2623

 9 10 11
0.1906 0.1002 0.0000

 U(T=1.000)
 1 2 3 4 5 6 7 8
0.0000 0.0546 0.1039 0.1431 0.1682 0.1768 0.1682 0.1431

 9 10 11
0.1039 0.0546 0.0000

BVPFD
Solves a (parameterized) system of differential equations with boundary conditions at two points,
using a variable order, variable step size finite difference method with deferred corrections.

Required Arguments
FCNEQN — User-supplied SUBROUTINE to evaluate derivatives. The usage is CALL

 FCNEQN (N, T, Y, P, DYDT), where
 N – Number of differential equations. (Input)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 871

 T – Independent variable, t. (Input)
 Y – Array of size N containing the dependent variable values, y(t).
 (Input)
 P – Continuation parameter, p. (Input)
 See Comment 3.
 DYDT – Array of size N containing the derivatives y�(t). (Output)
 The name FCNEQN must be declared EXTERNAL in the calling program.

FCNJAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage is CALL
 FCNJAC (N, T, Y, P, DYPDY), where
 N – Number of differential equations. (Input)
 T – Independent variable, t. (Input)
 Y – Array of size N containing the dependent variable values. (Input)
 P – Continuation parameter, p. (Input)
 See Comments 3.
 DYPDY – N by N array containing the partial derivatives ai,j = � fi � � yj
 evaluated at (t, y). The values ai�j are returned in DYPDY(i, j).
 (Output)
 The name FCNJAC must be declared EXTERNAL in the calling program.

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The usage is
 CALL FCNBC (N, YLEFT, YRIGHT, P, H), where
 N – Number of differential equations. (Input)
 YLEFT – Array of size N containing the values of the dependent
 variable at the left endpoint. (Input)
 YRIGHT – Array of size N containing the values of the dependent
 variable at the right endpoint. (Input)
 P – Continuation parameter, p. (Input)
 See Comment 3.
 H – Array of size N containing the boundary condition residuals.
 (Output)

 The boundary conditions are defined by hi = 0; for i = 1, �, N. The left endpoint
conditions must be defined first, then, the conditions involving both endpoints,
and finally the right endpoint conditions.

 The name FCNBC must be declared EXTERNAL in the calling program.

FCNPEQ — User-supplied SUBROUTINE to evaluate the partial derivative of y� with respect
 to the parameter p. The usage is

 CALL FCNPEQ (N, T, Y, P, DYPDP), where
 N – Number of differential equations. (Input)
 T – Dependent variable, t. (Input)
 Y – Array of size N containing the dependent variable values. (Input)
 P – Continuation parameter, p. (Input)
 See Comment 3.

872 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 DYPDP – Array of size N containing the partial derivatives ai,j = �fi ��yj
 evaluated at (t, y). The values ai,j are returned in DYPDY(i, j).
 (Output)

 The name FCNPEQ must be declared EXTERNAL in the calling program.

FCNPBC — User-supplied SUBROUTINE to evaluate the derivative of the boundary
 conditions with respect to the parameter p. The usage is
 CALL FCNPBC (N, YLEFT, YRIGHT, P, H), where
 N – Number of differential equations. (Input)
 YLEFT – Array of size N containing the values of the dependent
 variable at the left endpoint. (Input)
 YRIGHT – Array of size N containing the values of the dependent
 variable at the right endpoint. (Input)
 P – Continuation parameter, p. (Input)
 See Comment 3.
 H – Array of size N containing the derivative of fi with respect to p.
 (Output)

 The name FCNPBC must be declared EXTERNAL in the calling program.

NLEFT — Number of initial conditions. (Input)
The value NLEFT must be greater than or equal to zero and less than N.

NCUPBC — Number of coupled boundary conditions. (Input)
The value NLEFT + NCUPBC must be greater than zero and less than or equal to N.

TLEFT — The left endpoint. (Input)

TRIGHT — The right endpoint. (Input)

PISTEP — Initial increment size for p. (Input)
If this value is zero, continuation will not be used in this problem. The routines FCNPEQ
and FCNPBC will not be called.

TOL — Relative error control parameter. (Input)
The computations stop when ABS(ERROR(J, I))/MAX(ABS(Y(J, I)), 1.0).LT.TOL for all
J = 1, �, N and I = 1, �, NGRID. Here, ERROR(J, I) is the estimated error in Y(J, I).

TINIT — Array of size NINIT containing the initial grid points. (Input)

YINIT — Array of size N by NINIT containing an initial guess for the values of Y at the
points in TINIT. (Input)

LINEAR — Logical .TRUE. if the differential equations and the boundary conditions are
linear. (Input)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 873

MXGRID — Maximum number of grid points allowed. (Input)

NFINAL — Number of final grid points, including the endpoints. (Output)

TFINAL — Array of size MXGRID containing the final grid points. (Output)
Only the first NFINAL points are significant.

YFINAL — Array of size N by MXGRID containing the values of Y at the points in TFINAL.
(Output)

ERREST — Array of size N. (Output)
ERREST(J) is the estimated error in Y(J).

Optional Arguments
N — Number of differential equations. (Input)

Default: N = size (YINIT,1).

NINIT — Number of initial grid points, including the endpoints. (Input)
It must be at least 4.
Default: NINIT = size (TINIT,1).

LDYINI — Leading dimension of YINIT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDYINI = size (YINIT,1).

PRINT — Logical .TRUE. if intermediate output is to be printed. (Input)
Default: PRINT = .FALSE.

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDYFIN = size (YFINAL,1).

FORTRAN 90 Interface
Generic: CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, NLEFT,

NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT,
YINIT, LINEAR, MXGRID, NFINAL, TFINAL, YFINAL,
ERREST [,…])

Specific: The specific interface names are S_BVPFD and D_BVPFD.

FORTRAN 77 Interface
Single: CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, N,

NLEFT, NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, NINIT, TINIT,
YINIT, LDYINI, LINEAR, PRINT, MXGRID, NFINAL, TFINAL,
YFINAL, LDYFIN, ERREST)

874 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

Double: The double precision name is DBVPFD.

Example 1
This example solves the third-order linear equation

2 siny y y y t��� �� �� � � �

subject to the boundary conditions y(0) = y(2�) and y�(0) = y�(2�) = 1. (Its solution is y = sin t.)
To use BVPFD, the problem is reduced to a system of first-order equations by defining
y� = y, y� = y� and y� = y�. The resulting system is

� �

� � � �

� �

1 2 2

2 3 1 1

3 3 2 1 2

0 1 0

0 2 0

2 sin 2 1 0

y y y

y y y y

y y y y t y

�

�

� � � �

� � � �

� � � � � � �

Note that there is one boundary condition at the left endpoint t = 0 and one boundary condition
coupling the left and right endpoints. The final boundary condition is at the right endpoint. The
total number of boundary conditions must be the same as the number of equations (in this case
3).

Note that since the parameter p is not used in the call to BVPFD, the routines FCNPEQ and
FCNPBC are not needed. Therefore, in the call to BVPFD, FCNEQN and FCNBC were used in place
of FCNPEQ and FCNPBC.

 USE BVPFD_INT
 USE UMACH_INT
 USE CONST_INT
! SPECIFICATIONS FOR PARAMETERS
 INTEGER LDYFIN, LDYINI, MXGRID, NEQNS, NINIT
 PARAMETER (MXGRID=45, NEQNS=3, NINIT=10, LDYFIN=NEQNS, &
 LDYINI=NEQNS)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, J, NCUPBC, NFINAL, NLEFT, NOUT
 REAL ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TINIT(NINIT), &
 TLEFT, TOL, TRIGHT, YFINAL(LDYFIN,MXGRID), &
 YINIT(LDYINI,NINIT)
 LOGICAL LINEAR, PRINT
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC FLOAT
 REAL FLOAT
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCNBC, FCNEQN, FCNJAC
! Set parameters
 NLEFT = 1
 NCUPBC = 1
 TOL = .001
 TLEFT = 0.0
 TRIGHT = CONST(’PI’)
 TRIGHT = 2.0*TRIGHT
 PISTEP = 0.0

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 875

 PRINT = .FALSE.
 LINEAR = .TRUE.
! Define TINIT
 DO 10 I=1, NINIT
 TINIT(I) = TLEFT + (I-1)*(TRIGHT-TLEFT)/FLOAT(NINIT-1)
 10 CONTINUE
! Set YINIT to zero
 YINIT = 0.0E0
! Solve problem
 CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNEQN, FCNBC, NLEFT, &
 NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT, &
 YINIT, LINEAR, MXGRID, NFINAL, &
 TFINAL, YFINAL, ERREST)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1, &
 NFINAL)
 WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS)
99997 FORMAT (4X, ’I’, 7X, ’T’, 14X, ’Y1’, 13X, ’Y2’, 13X, ’Y3’)
99998 FORMAT (I5, 1P4E15.6)
99999 FORMAT (’ Error estimates’, 4X, 1P3E15.6)
 END
 SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDX)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYDX(NEQNS)
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC SIN
 REAL SIN
! Define PDE
 DYDX(1) = Y(2)
 DYDX(2) = Y(3)
 DYDX(3) = 2.0*Y(3) - Y(2) + Y(1) + SIN(T)
 RETURN
 END
 SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS)
! Define d(DYDX)/dY
 DYPDY(1,1) = 0.0
 DYPDY(1,2) = 1.0
 DYPDY(1,3) = 0.0
 DYPDY(2,1) = 0.0
 DYPDY(2,2) = 0.0
 DYPDY(2,3) = 1.0
 DYPDY(3,1) = 1.0
 DYPDY(3,2) = -1.0
 DYPDY(3,3) = 2.0
 RETURN
 END
 SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS

876 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS)
! Define boundary conditions
 F(1) = YLEFT(2) - 1.0
 F(2) = YLEFT(1) - YRIGHT(1)
 F(3) = YRIGHT(2) - 1.0
 RETURN
 END

Output
 I T Y1 Y2 Y3
 1 0.000000E+00 -1.123191E-04 1.000000E+00 6.242319E05
 2 3.490659E-01 3.419107E-01 9.397087E-01 -3.419580E01
 3 6.981317E-01 6.426908E-01 7.660918E-01 -6.427230E-01
 4 1.396263E+00 9.847531E-01 1.737333E-01 -9.847453E-01
 5 2.094395E+00 8.660529E-01 -4.998747E-01 -8.660057E-01
 6 2.792527E+00 3.421830E-01 -9.395474E-01 -3.420648E-01
 7 3.490659E+00 -3.417234E-01 -9.396111E-01 3.418948E-01
 8 4.188790E+00 -8.656880E-01 -5.000588E-01 8.658733E-01
 9 4.886922E+00 -9.845794E-01 1.734571E-01 9.847518E-01
10 5.585054E+00 -6.427721E-01 7.658258E-01 6.429526E-01
11 5.934120E+00 -3.420819E-01 9.395434E-01 3.423986E-01
12 6.283185E+00 -1.123186E-04 1.000000E+00 6.743190E-04
Error estimates 2.840430E-04 1.792939E-04 5.588399E-04

Comments
1. Workspace may be explicitly provided, if desired, by use of B2PFD/DB2PFD. The

reference is:

CALL B2PFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, N, NLEFT,
NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, NINIT, TINIT, YINIT, LDYINI,
LINEAR, PRINT, MXGRID, NFINAL, TFINAL, YFINAL, LDYFIN, ERREST,
RWORK, IWORK)

The additional arguments are as follows:

RWORK — Floating-point work array of size N(3N * MXGRID + 4N + 1) +
MXGRID * (7N + 2).

IWORK — Integer work array of size 2N * MXGRID + N + MXGRID.

2. Informational errors

Type Code
 4 1 More than MXGRID grid points are needed to solve the problem.
 4 2 Newton’s method diverged.
 3 3 Newton’s method reached roundoff error level.

3. If the value of PISTEP is greater than zero, then the routine BVPFD assumes that the
user has embedded the problem into a one-parameter family of problems:

y� = y�(t, y, p)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 877

h(ytleft, ytright, p) = 0

such that for p = 0 the problem is simple. For p = 1, the original problem is recovered.
The routine BVPFD automatically attempts to increment from p = 0 to p = 1. The value
PISTEP is the beginning increment used in this continuation. The increment will
usually be changed by routine BVPFD, but an arbitrary minimum of 0.01 is imposed.

4. The vectors TINIT and TFINAL may be the same.

5. The arrays YINIT and YFINAL may be the same.

Description
The routine BVPFD is based on the subprogram PASVA3 by M. Lentini and V. Pereyra (see
Pereyra 1978). The basic discretization is the trapezoidal rule over a nonuniform mesh. This
mesh is chosen adaptively, to make the local error approximately the same size everywhere.
Higher-order discretizations are obtained by deferred corrections. Global error estimates are
produced to control the computation. The resulting nonlinear algebraic system is solved by
Newton’s method with step control. The linearized system of equations is solved by a special
form of Gauss elimination that preserves the sparseness.

Example 2
In this example, the following nonlinear problem is solved:

y� � y� + (1 + sin��t) sin t = 0

with y(0) = y(�) = 0. Its solution is y = sin t. As in Example 1, this equation is reduced to a
system of first-order differential equations by defining y� = y and y� = y�. The resulting system is

� �

� � � �

1 2 1

3 2
2 1 1

0 0

1 sin sin 0

y y y

y y t t y �

� � �

� � � � �

In this problem, there is one boundary condition at the left endpoint and one at the right
endpoint; there are no coupled boundary conditions.

Note that since the parameter p is not used, in the call to BVPFD the routines FCNPEQ and
FCNPBC are not needed. Therefore, in the call to BVPFD, FCNEQN and FCNBC were used in place
of FCNPEQ and FCNPBC.

 USE BVPFD_INT
 USE UMACH_INT
 USE CONST_INT

! SPECIFICATIONS FOR PARAMETERS
 INTEGER LDYFIN, LDYINI, MXGRID, NEQNS, NINIT
 PARAMETER (MXGRID=45, NEQNS=2, NINIT=12, LDYFIN=NEQNS, &
 LDYINI=NEQNS)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, J, NCUPBC, NFINAL, NLEFT, NOUT
 REAL ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TINIT(NINIT), &

878 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 TLEFT, TOL, TRIGHT, YFINAL(LDYFIN,MXGRID), &
 YINIT(LDYINI,NINIT)
 LOGICAL LINEAR, PRINT
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC FLOAT
 REAL FLOAT
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCNBC, FCNEQN, FCNJAC
! Set parameters
 NLEFT = 1
 NCUPBC = 0
 TOL = .001
 TLEFT = 0.0
 TRIGHT = CONST(’PI’)
 PISTEP = 0.0
 PRINT = .FALSE.
 LINEAR = .FALSE.
! Define TINIT and YINIT
 DO 10 I=1, NINIT
 TINIT(I) = TLEFT + (I-1)*(TRIGHT-TLEFT)/FLOAT(NINIT-1)
 YINIT(1,I) = 0.4*(TINIT(I)-TLEFT)*(TRIGHT-TINIT(I))
 YINIT(2,I) = 0.4*(TLEFT-TINIT(I)+TRIGHT-TINIT(I))
 10 CONTINUE
! Solve problem
 CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNEQN, FCNBC, NLEFT, &
 NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT, &
 YINIT, LINEAR, MXGRID, NFINAL, &
 TFINAL, YFINAL, ERREST)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1, &
 NFINAL)
 WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS)
99997 FORMAT (4X, ’I’, 7X, ’T’, 14X, ’Y1’, 13X, ’Y2’)
99998 FORMAT (I5, 1P3E15.6)
99999 FORMAT (’ Error estimates’, 4X, 1P2E15.6)
 END
 SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDT)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYDT(NEQNS)
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC SIN
 REAL SIN
! Define PDE
 DYDT(1) = Y(2)
 DYDT(2) = Y(1)**3 - SIN(T)*(1.0+SIN(T)**2)
 RETURN
 END
 SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS)
! Define d(DYDT)/dY

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 879

 DYPDY(1,1) = 0.0
 DYPDY(1,2) = 1.0
 DYPDY(2,1) = 3.0*Y(1)**2
 DYPDY(2,2) = 0.0
 RETURN
 END
 SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS)
! Define boundary conditions
 F(1) = YLEFT(1)
 F(2) = YRIGHT(1)
 RETURN
 END

Output
 I T Y1 Y2
 1 0.000000E+00 0.000000E+00 9.999277E-01
 2 2.855994E-01 2.817682E-01 9.594315E-01
 3 5.711987E-01 5.406458E-01 8.412407E-01
 4 8.567980E-01 7.557380E-01 6.548904E-01
 5 1.142397E+00 9.096186E-01 4.154530E-01
 6 1.427997E+00 9.898143E-01 1.423307E-01
 7 1.713596E+00 9.898143E-01 -1.423307E-01
 8 1.999195E+00 9.096185E-01 -4.154530E-01
 9 2.284795E+00 7.557380E-01 -6.548903E-01
10 2.570394E+00 5.406460E-01 -8.412405E-01
11 2.855994E+00 2.817683E-01 -9.594313E-01
12 3.141593E+00 0.000000E+00 -9.999274E-01
Error estimates 3.906105E-05 7.124186E-05

Example 3
In this example, the following nonlinear problem is solved:

2/3 8
3 40 1 1

9 2 2
y y t t� � � ��� � � � � �� � � �

� 	 � 	

with y(0) = y(1) = �/2. As in the previous examples, this equation is reduced to a system of first-
order differential equations by defining y� = y and y� = y�. The resulting system is

� �

� �

1 2 1

2/3 8
3

2 1 1

0 / 2

40 1 1 1 / 2
9 2 2

y y y

y y t t y

�

�

� � �

� � � �� � � � � � �� � � �
	
 	

The problem is embedded in a family of problems by introducing the parameter p and by
changing the second differential equation to

880 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

2 /3 8
3

2 1
40 1 1
9 2 2

y py t t� � � �� � � � � �� � � �
	
 	

At p = 0, the problem is linear; and at p = 1, the original problem is recovered. The derivatives �
y�/�p must now be specified in the subroutine FCNPEQ. The derivatives �f/�p are zero in
FCNPBC.

 USE BVPFD_INT
 USE UMACH_INT
! SPECIFICATIONS FOR PARAMETERS
 INTEGER LDYFIN, LDYINI, MXGRID, NEQNS, NINIT
 PARAMETER (MXGRID=45, NEQNS=2, NINIT=5, LDYFIN=NEQNS, &
 LDYINI=NEQNS)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER NCUPBC, NFINAL, NLEFT, NOUT
 REAL ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TLEFT, TOL, &
 XRIGHT, YFINAL(LDYFIN,MXGRID)
 LOGICAL LINEAR, PRINT
! SPECIFICATIONS FOR SAVE VARIABLES
 INTEGER I, J
 REAL TINIT(NINIT), YINIT(LDYINI,NINIT)
 SAVE I, J, TINIT, YINIT
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCNBC, FCNEQN, FCNJAC, FCNPBC, FCNPEQ
!
 DATA TINIT/0.0, 0.4, 0.5, 0.6, 1.0/
 DATA ((YINIT(I,J),J=1,NINIT),I=1,NEQNS)/0.15749, 0.00215, 0.0, &
 0.00215, 0.15749, -0.83995, -0.05745, 0.0, 0.05745, 0.83995/
! Set parameters
 NLEFT = 1
 NCUPBC = 0
 TOL = .001
 TLEFT = 0.0
 XRIGHT = 1.0
 PISTEP = 0.1
 PRINT = .FALSE.
 LINEAR = .FALSE.
!
 CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, NLEFT, &
 NCUPBC, TLEFT, XRIGHT, PISTEP, TOL, TINIT, &
 YINIT, LINEAR, MXGRID, NFINAL,TFINAL, YFINAL, ERREST)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1, &
 NFINAL)
 WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS)
99997 FORMAT (4X, ’I’, 7X, ’T’, 14X, ’Y1’, 13X, ’Y2’)
99998 FORMAT (I5, 1P3E15.6)
99999 FORMAT (’ Error estimates’, 4X, 1P2E15.6)
 END
 SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDT)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 881

 REAL T, P, Y(NEQNS), DYDT(NEQNS)
! Define PDE
 DYDT(1) = Y(2)
 DYDT(2) = P*Y(1)**3 + 40./9.*((T-0.5)**2)**(1./3.) - (T-0.5)**8
 RETURN
 END
 SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS)
! Define d(DYDT)/dY
 DYPDY(1,1) = 0.0
 DYPDY(1,2) = 1.0
 DYPDY(2,1) = P*3.*Y(1)**2
 DYPDY(2,2) = 0.0
 RETURN
 END
 SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)
 USE CONST_INT
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS)
! SPECIFICATIONS FOR LOCAL VARIABLES
 REAL PI
! Define boundary conditions
 PI = CONST(’PI’)
 F(1) = YLEFT(1) - PI/2.0
 F(2) = YRIGHT(1) - PI/2.0
 RETURN
 END
 SUBROUTINE FCNPEQ (NEQNS, T, Y, P, DYPDP)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYPDP(NEQNS)
! Define d(DYDT)/dP
 DYPDP(1) = 0.0
 DYPDP(2) = Y(1)**3
 RETURN
 END
 SUBROUTINE FCNPBC (NEQNS, YLEFT, YRIGHT, P, DFDP)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), DFDP(NEQNS)
! SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL SSET
! Define dF/dP
 CALL SSET (NEQNS, 0.0, DFDP, 1)
 RETURN
 END

Output
 I T Y1 Y2
 1 0.000000E+00 1.570796E+00 -1.949336E+00
 2 4.444445E-02 1.490495E+00 -1.669567E+00
 3 8.888889E-02 1.421951E+00 -1.419465E+00

882 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 4 1.333333E-01 1.363953E+00 -1.194307E+00
 5 2.000000E-01 1.294526E+00 -8.958461E-01
 6 2.666667E-01 1.243628E+00 -6.373191E-01
 7 3.333334E-01 1.208785E+00 -4.135206E-01
 8 4.000000E-01 1.187783E+00 -2.219351E-01
 9 4.250000E-01 1.183038E+00 -1.584200E-01
10 4.500000E-01 1.179822E+00 -9.973146E-02
11 4.625000E-01 1.178748E+00 -7.233893E-02
12 4.750000E-01 1.178007E+00 -4.638248E-02
13 4.812500E-01 1.177756E+00 -3.399763E-02
14 4.875000E-01 1.177582E+00 -2.205547E-02
15 4.937500E-01 1.177480E+00 -1.061177E-02
16 5.000000E-01 1.177447E+00 -1.479182E-07
17 5.062500E-01 1.177480E+00 1.061153E-02
18 5.125000E-01 1.177582E+00 2.205518E-02
19 5.187500E-01 1.177756E+00 3.399727E-02
20 5.250000E-01 1.178007E+00 4.638219E-02
21 5.375000E-01 1.178748E+00 7.233876E-02
22 5.500000E-01 1.179822E+00 9.973124E-02
23 5.750000E-01 1.183038E+00 1.584199E-01
24 6.000000E-01 1.187783E+00 2.219350E-01
25 6.666667E-01 1.208786E+00 4.135205E-01
26 7.333333E-01 1.243628E+00 6.373190E-01
27 8.000000E-01 1.294526E+00 8.958461E-01
28 8.666667E-01 1.363953E+00 1.194307E+00
29 9.111111E-01 1.421951E+00 1.419465E+00
30 9.555556E-01 1.490495E+00 1.669566E+00
31 1.000000E+00 1.570796E+00 1.949336E+00
Error estimates 3.448358E-06 5.549869E-05

BVPMS
Solves a (parameterized) system of differential equations with boundary conditions at two points,
using a multiple-shooting method.

Required Arguments
FCNEQN — User-supplied SUBROUTINE to evaluate derivatives. The usage is CALL

FCNEQN (NEQNS, T, Y, P, DYDT), where

 NEQNS – Number of equations. (Input)
T – Independent variable, t. (Input)
Y – Array of length NEQNS containing the dependent variable. (Input)
P – Continuation parameter used in solving highly nonlinear problems. (Input)
See Comment 4.
DYDT – Array of length NEQNS containing y� at T. (Output)

 The name FCNEQN must be declared EXTERNAL in the calling program.

FCNJAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage is CALL
FCNJAC (NEQNS, T, Y, P, DYPDY), where

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 883

 NEQNS – Number of equations. (Input)
T – Independent variable. (Input)
Y – Array of length NEQNS containing the dependent variable. (Input)
P – Continuation parameter used in solving highly nonlinear problems. (Input)
See Comment 4.
DYPDY – Array of size NEQNS by NEQNS containing the Jacobian. (Output)
The entry DYPDY(i, j) contains the partial derivative � fi�� yj evaluated at (t, y).

 The name FCNJAC must be declared EXTERNAL in the calling program.

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The usage is
CALL FCNBC (NEQNS, YLEFT, YRIGHT, P, H), where

 NEQNS – Number of equations. (Input)
YLEFT – Array of length NEQNS containing the values of Y at TLEFT. (Input)
YRIGHT – Array of length NEQNS containing the values of Y at
TRIGHT. (Input)
P – Continuation parameter used in solving highly nonlinear problems. (Input)
See Comment 4.
H – Array of length NEQNS containing the boundary function values. (Output)
The computed solution satisfies (within BTOL) the conditions hi = 0, i = 1, �, NEQNS.

 The name FCNBC must be declared EXTERNAL in the calling program.

TLEFT — The left endpoint. (Input)

TRIGHT — The right endpoint. (Input)

NMAX — Maximum number of shooting points to be allowed. (Input)
If NINIT is nonzero, then NMAX must equal NINIT. It must be at least 2.

NFINAL — Number of final shooting points, including the endpoints. (Output)

TFINAL — Vector of length NMAX containing the final shooting points. (Output)
Only the first NFINAL points are significant.

YFINAL — Array of size NEQNS by NMAX containing the values of Y at the points in TFINAL.
(Output)

Optional Arguments
NEQNS — Number of differential equations. (Input)

DTOL — Differential equation error tolerance. (Input)
An attempt is made to control the local error in such a way that the global error is
proportional to DTOL.
Default: DTOL = 1.0e-4.

884 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

BTOL — Boundary condition error tolerance. (Input)
The computed solution satisfies the boundary conditions, within BTOL tolerance.
Default: BTOL = 1.0e-4.

MAXIT — Maximum number of Newton iterations allowed. (Input)
Iteration stops if convergence is achieved sooner. Suggested values are MAXIT = 2 for
linear problems and MAXIT = 9 for nonlinear problems.
Default: MAXIT = 9.

NINIT — Number of shooting points supplied by the user. (Input)
It may be 0. A suggested value for the number of shooting points is 10.
Default: NINIT = 0.

TINIT — Vector of length NINIT containing the shooting points supplied by the user.
(Input)
If NINIT = 0, then TINIT is not referenced and the routine chooses all of the shooting
points. This automatic selection of shooting points may be expensive and should only
be used for linear problems. If NINIT is nonzero, then the points must be an increasing
sequence with TINIT(1) = TLEFT and TINIT(NINIT) = TRIGHT. By default, TINIT is
not used.

YINIT — Array of size NEQNS by NINIT containing an initial guess for the values of Y at the
points in TINIT. (Input)
YINIT is not referenced if NINIT = 0. By default, YINIT is not used.

LDYINI — Leading dimension of YINIT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDYINI = size (YINIT ,1).

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDYFIN = size (YFINAL,1).

FORTRAN 90 Interface
Generic: CALL BVPMS (FCNEQN, FCNJAC, FCNBC, TLEFT, TRIGHT,

 NMAX, NFINAL, TFINAL,YFINAL [,…])

Specific: The specific interface names are S_BVPMS and D_BVPMS.

FORTRAN 77 Interface
Single: CALL BVPMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT,

DTOL, BTOL, MAXIT, NINIT, TINIT, YINIT, LDYINI, NMAX,
NFINAL, TFINAL, YFINAL, LDYFIN)

Double: The double precision name is DBVPMS.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 885

Example
The differential equations that model an elastic beam are (see Washizu 1968, pages 142�143):

� �

� �2
0

0

0

2 0

0

xx

xx

x x

x

x� � �

� �

� � �

�

NMM L
EI

EIW M

EA U W N

N

/

where U is the axial displacement, W is the transverse displacement, N is the axial force, M is
the bending moment, E is the elastic modulus, I is the moment of inertia, A� is the cross-
sectional area, and L(x) is the transverse load.

Assume we have a clamped cylindrical beam of radius 0.1in, a length of 10in, and an elastic
modulus E = 10.6
 10� lb/in�. Then, I = 0.784
 10��, and A� = �10�� in�, and the boundary
conditions are U = W = Wx= 0 at each end. If we let y� = U, y� = N/EA�, y� = W, y� = Wx,
y� = M/EI , and y� = Mx/EI, then the above nonlinear equations can be written as a system of
six first-order equations.

� �

2
4

1 2

2

3 4

4 5

5 6

0 2 5
6

2
0

yy y

y
y y
y y
y y

xy y
y

� � �

� �

� �

� � �

� �

� � �
LA

I EI

The boundary conditions are y� = y� = y� = 0 at x = 0 and at x = 10. The loading function is
L(x) = �2, if 3 	 x 	 7, and is zero elsewhere.

The material parameters, A� = A0, I = AI, and E, are passed to the evaluation subprograms
using the common block PARAM.

 USE BVPMS_INT
 USE UMACH_INT
 INTEGER LDY, NEQNS, NMAX
 PARAMETER (NEQNS=6, NMAX=21, LDY=NEQNS)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, MAXIT, NFINAL, NINIT, NOUT
 REAL TOL, X(NMAX), XLEFT, XRIGHT, Y(LDY,NMAX)
! SPECIFICATIONS FOR COMMON /PARAM/
 COMMON /PARAM/ A0, A1, E
 REAL A0, A1, E
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC REAL
 REAL REAL
! SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL FCNBC, FCNEQN, FCNJAC

886 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

! Set material parameters
 A0 = 3.14E-2
 A1 = 0.784E-4
 E = 10.6E6
! Set parameters for BVPMS
 XLEFT = 0.0
 XRIGHT = 10.0
 MAXIT = 19
 NINIT = NMAX
 Y = 0.0E0
! Define the shooting points
 DO 10 I=1, NINIT
 X(I) = XLEFT + REAL(I-1)/REAL(NINIT-1)*(XRIGHT-XLEFT)
 10 CONTINUE
! Solve problem
 CALL BVPMS (FCNEQN, FCNJAC, FCNBC, XLEFT, XRIGHT, NMAX, NFINAL, &
 X, Y, MAXIT=MAXIT, NINIT=NINIT, TINIT=X, YINIT=Y)

! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(26X,A/12X,A,10X,A,7X,A)’) ’Displacement’, &
 ’X’, ’Axial’, ’Transvers’// &
 ’e’
 WRITE (NOUT,’(F15.1,1P2E15.3)’) (X(I),Y(1,I),Y(3,I),I=1,NFINAL)
 END
 SUBROUTINE FCNEQN (NEQNS, X, Y, P, DYDX)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL X, P, Y(NEQNS), DYDX(NEQNS)
! SPECIFICATIONS FOR LOCAL VARIABLES
 REAL FORCE
! SPECIFICATIONS FOR COMMON /PARAM/
 COMMON /PARAM/ A0, A1, E
 REAL A0, A1, E
! Define derivatives
 FORCE = 0.0
 IF (X.GT.3.0 .AND. X.LT.7.0) FORCE = -2.0
 DYDX(1) = Y(2) - P*0.5*Y(4)**2
 DYDX(2) = 0.0
 DYDX(3) = Y(4)
 DYDX(4) = -Y(5)
 DYDX(5) = Y(6)
 DYDX(6) = P*A0*Y(2)*Y(5)/A1 - FORCE/E/A1
 RETURN
 END
 SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS)
! SPECIFICATIONS FOR COMMON /PARAM/
 COMMON /PARAM/ A0, A1, E
 REAL A0, A1, E
! Define boundary conditions
 F(1) = YLEFT(1)
 F(2) = YLEFT(3)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 887

 F(3) = YLEFT(4)
 F(4) = YRIGHT(1)
 F(5) = YRIGHT(3)
 F(6) = YRIGHT(4)
 RETURN
 END
 SUBROUTINE FCNJAC (NEQNS, X, Y, P, DYPDY)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL X, P, Y(NEQNS), DYPDY(NEQNS,NEQNS)
! SPECIFICATIONS FOR COMMON /PARAM/
 COMMON /PARAM/ A0, A1, E
 REAL A0, A1, E
! SPECIFICATIONS FOR SUBROUTINES
! Define partials, d(DYDX)/dY
 DYPDY = 0.0E0
 DYPDY(1,2) = 1.0
 DYPDY(1,4) = -P*Y(4)
 DYPDY(3,4) = 1.0
 DYPDY(4,5) = -1.0
 DYPDY(5,6) = 1.0
 DYPDY(6,2) = P*Y(5)*A0/A1
 DYPDY(6,5) = P*Y(2)*A0/A1
 RETURN
 END

Output
 Displacement
 X Axial Transverse
 0.0 1.631E-11 -8.677E-10
 5.0 1.914E-05 -1.273E-03
 10.0 2.839E-05 -4.697E-03
 15.0 2.461E-05 -9.688E-03
 20.0 1.008E-05 -1.567E-02
 25.0 -9.550E-06 -2.206E-02
 30.0 -2.721E-05 -2.830E-02
 35.0 -3.644E-05 -3.382E-02
 40.0 -3.379E-05 -3.811E-02
 45.0 -2.016E-05 -4.083E-02
 50.0 -4.414E-08 -4.176E-02
 55.0 2.006E-05 -4.082E-02
 60.0 3.366E-05 -3.810E-02
 65.0 3.627E-05 -3.380E-02
 70.0 2.702E-05 -2.828E-02
 75.0 9.378E-06 -2.205E-02
 80.0 -1.021E-05 -1.565E-02
 85.0 -2.468E-05 -9.679E-03
 90.0 -2.842E-05 -4.692E-03
 95.0 -1.914E-05 -1.271E-03
100.0 0.000E+00 0.000E+00

888 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

Comments
1. Workspace may be explicitly provided, if desired, by use of B2PMS/DB2PMS. The

reference is:

CALL B2PMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT, DTOL,
BTOL, MAXIT, NINIT, TINIT, YINIT, LDYINI, NMAX, NFINAL, TFINAL,
YFINAL, LDYFIN, WORK, IWK)

The additional arguments are as follows:

WORK — Work array of length NEQNS * (NEQNS + 1)(NMAX + 12) +
NEQNS + 30.

IWK — Work array of length NEQNS.

2. Informational errors

Type Code
 1 5 Convergence has been achieved; but to get acceptably accurate

approximations to y(t), it is often necessary to start an initial-value
solver, for example IVPRK (page 837), at the nearest TFINAL(i) point
to t with t
 TFINAL (i). The vectors YFINAL(j, i), j = 1, �, NEQNS
are used as the initial values.

 4 1 The initial-value integrator failed. Relax the tolerance DTOL or see
Comment 3.

 4 2 More than NMAX shooting points are needed for stability.
 4 3 Newton’s iteration did not converge in MAXIT iterations. If the

problem is linear, do an extra iteration. If this error still occurs, check
that the routine FCNJAC is giving the correct derivatives. If this does
not fix the problem, see Comment 3.

 4 4 Linear-equation solver failed. The problem may not have a unique
solution, or the problem may be highly nonlinear. In the latter case,
see Comment 3.

3. Many linear problems will be successfully solved using program-selected shooting
points. Nonlinear problems may require user effort and input data. If the routine fails,
then increase NMAX or parameterize the problem. With many shooting points the
program essentially uses a finite-difference method, which has less trouble with
nonlinearities than shooting methods. After a certain point, however, increasing the
number of points will no longer help convergence. To parameterize the problem, see
Comment 4.

4. If the problem to be solved is highly nonlinear, then to obtain convergence it may be
necessary to embed the problem into a one-parameter family of boundary value
problems, y� = f(t, y, p), h(y(ta, tb, p)) = 0 such that for p = 0, the problem is simple,
e.g., linear; and for p = 1, the stated problem is solved. The routine BVPMS/DBVPMS
automatically moves the parameter from p = 0 toward p = 1.

5. This routine is not recommended for stiff systems of differential equations.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 889

Description
Define N = NEQNS, M = NFINAL, ta = TLEFT and tb = TRIGHT. The routine BVPMS uses a
multiple-shooting technique to solve the differential equation system y� = f (t, y) with boundary
conditions of the form

hk(y�(ta), �, yN (ta), y�(tb), �, yN (tb)) = 0 for k = 1, �, N

A modified version of IVPRK, page 837, is used to compute the initial-value problem at each
“shot.” If there are M shooting points (including the endpoints ta and tb), then a system of NM
simultaneous nonlinear equations must be solved. Newton’s method is used to solve this system,
which has a Jacobian matrix with a “periodic band” structure. Evaluation of the NM functions
and the NM
 NM (almost banded) Jacobian for one iteration of Newton’s method is
accomplished in one pass from ta to tb of the modified IVPRK, operating on a system of
N(N + 1) differential equations. For most problems, the total amount of work should not be
highly dependent on M. Multiple shooting avoids many of the serious ill-conditioning problems
that plague simple shooting methods. For more details on the algorithm, see Sewell (1982).

The boundary functions should be scaled so that all components hk are of comparable magnitude
since the absolute error in each is controlled.

DASPG
Solves a first order differential-algebraic system of equations, g(t, y, y�) = 0, using the Petzold�
Gear BDF method.

Required Arguments
T — Independent variable, t. (Input/Output)

Set T to the starting value t� at the first step.

TOUT — Final value of the independent variable. (Input)
Update this value when re-entering after output, IDO = 2.

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal re-entry after obtaining output

3 Release workspace

4 Return because of an error condition

890 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

The user sets IDO = 1 or IDO = 3. All other values of IDO are defined as output. The
initial call is made with IDO = 1 and T = t�. The routine then sets IDO = 2, and this
value is used for all but the last entry that is made with IDO = 3. This call is used to
release workspace and other final tasks. Values of IDO larger than 4 occur only when
calling the second-level routine D2SPG and using the options associated with reverse
communication.

Y — Array of size NEQ containing the dependent variable values, y. This array must contain
initial values. (Input/Output)

YPR — Array of size NEQ containing derivative values, y�. This array must contain initial
values. (Input/Output)
The routine will solve for consistent values of y� to satisfy the equations at the starting
point.

GCN — User-supplied SUBROUTINE to evaluate g(t, y, y�). The usage is
CALL GCN (NEQ, T, Y, YPR, GVAL), where GCN must be declared EXTERNAL in
the calling program. The routine will solve for values of y�(t�) so that
g(t�, y, y�) = 0. The user can signal that g is not defined at requested values of (t, y, y�)
using an option. This causes the routine to reduce the step size or else quit.

 NEQ – Number of differential equations. (Input)
T – Independent variable. (Input)
Y – Array of size NEQ containing the dependent variable values y(t) . (Input)
YPR – Array of size NEQ containing the derivative values y�(t). (Input)
GVAL – Array of size NEQ containing the function values, g(t, y, y�). (Output)

Optional Arguments
NEQ — Number of differential equations. (Input)

Default: NEQ = size(y,1)

FORTRAN 90 Interface
Generic: CALL DASPG (T, TOUT, IDO, Y, YPR, GCN[,…])

Specific: The specific interface names are S_DASPG and D_DASPG.

FORTRAN 77 Interface
Single: CALL DASPG (NEQ, T, TOUT, IDO, Y, YPR, GCN)

Double: The double precision name is DDASPG.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 891

Example 1
The Van der Pol equation u� + �(u� � 1) u� + u = 0, � > 0, is a single ordinary differential
equation with a periodic limit cycle. See Hartman (1964, page 181). For the value � = 5, the
equations are integrated from t = 0 until the limit has clearly developed at t = 26. The (arbitrary)
initial conditions used here are u(0) = 2 and u�(0) = � 2/3. Except for these initial conditions and
the final t value, this is problem (E2) of the Enright and Pryce (1987) test package. This
equation is solved as a differential-algebraic system by defining the first-order system:

� � � �

1

1 2 1

2
2 1 2 1 2

1/

0

1 0

y u

g y y

g y y y y

� �

�

�

�

�� � �

�� � � � �

Note that the initial condition for

2y�

in the sample program is not consistent, g� � 0 at t = 0. The routine DASPG solves for this
starting value. No options need to be changed for this usage. The set of pairs (u(tj), u�(tj)) are
accumulated for the 260 values tj = 0.1, 26, (0.1).

 USE UMACH_INT
 USE DASPG_INT
 INTEGER N, NP
 PARAMETER (N=2, NP=260)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER ISTEP, NOUT, NSTEP
 REAL DELT, T, TEND, U(NP), UPR(NP), Y(N), YPR(N)
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL GCN
! Define initial data
 IDO = 1
 T = 0.0
 TEND = 26.0
 DELT = 0.1
 NSTEP = TEND/DELT
! Initial values
 Y(1) = 2.0
 Y(2) = -2.0/3.0
! Initial derivatives
 YPR(1) = Y(2)
 YPR(2) = 0.
! Write title
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
! Integrate ODE/DAE
 ISTEP = 0
 10 CONTINUE
 ISTEP = ISTEP + 1
 CALL DASPG (T, T+DELT, IDO, Y, YPR, GCN)

892 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

! Save solution for plotting
 IF (ISTEP .LE. NSTEP) THEN
 U(ISTEP) = Y(1)
 UPR(ISTEP) = YPR(1)
! Release work space
 IF (ISTEP .EQ. NSTEP) IDO = 3
 GO TO 10
 END IF
 WRITE (NOUT,99999) TEND, Y, YPR
99998 FORMAT (11X, ’T’, 14X, ’Y(1)’, 11X, ’Y(2)’, 10X, ’Y’’(1)’, 10X, &
 ’Y’’(2)’)
99999 FORMAT (5F15.5)
! Start plotting
! CALL SCATR (NSTEP, U, UPR)
! CALL EFSPLT (0, ’ ’)
 END
!
 SUBROUTINE GCN (N, T, Y, YPR, GVAL)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), YPR(N), GVAL(N)
! SPECIFICATIONS FOR LOCAL VARIABLES
 REAL EPS
!
 EPS = 0.2
!
 GVAL(1) = Y(2) - YPR(1)
 GVAL(2) = (1.0-Y(1)**2)*Y(2) - EPS*(Y(1)+YPR(2))
 RETURN
 END

Output
 T Y(1) Y(2) Y’(1) Y’(2)
26.00000 1.45330 -0.24486 -0.24713 -0.09399

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 893

Figure 5-1 Van der Pol Cycle, (u(t), u�(t)), � = 5.

Comments
Users can often get started using the routine DASPG/DDASPG without reading beyond this point
in the documentation. There is often no reason to use options when getting started. Those
readers who do not want to use options can turn directly to the first two examples. The
following tables give numbers and key phrases for the options. A detailed guide to the options is
given below in Comment 2.

Value

Brief or Key Phrase for INTEGER Option

6 INTEGER option numbers

7 Floating-point option numbers

IN(1) First call to DASPG, D2SPG

IN(2) Scalar or vector tolerances

IN(3) Return for output at intermediate steps

IN(4) Creep up on special point, TSTOP

IN(5) Provide (analytic) partial derivative formulas

IN(6) Maximum number of steps

IN(7) Control maximum step size

IN(8) Control initial step size

894 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

Value

Brief or Key Phrase for INTEGER Option

IN(9) Not Used

IN(10) Constrain dependent variables

IN(11) Consistent initial data

IN(12-15) Not Used

IN(16) Number of equations

IN(17) What routine did, if any errors

IN(18) Maximum BDF order

IN(19) Order of BDF on next move

IN(20) Order of BDF on previous move

IN(21) Number of steps

IN(22) Number of g evaluations

IN(23) Number of derivative matrix evaluations

IN(24) Number of error test failures

IN(25) Number of convergence test failures

IN(26) Reverse communiction for g

IN(27) Where is g stored?

IN(28) Panic flag

IN(29) Reverse communication, for partials

IN(30) Where are partials stored?

IN(31) Reverse communication, for solving

IN(32) Not Used

IN(33) Where are vector tolerances stored?

IN(34) Is partial derivative array allocated?

IN(35) User's work arrays sizes are checked

IN(36-50) Not used

Table 1. Key Phrases for Floating-Point Options

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 895

Value Brief or Key Phrase for Floating-Point Option
INR(1) Value of t

INR(2) Farthest internal t vaue of integration

INR(3) Value of TOUT

INR(4) A stopping point of integration before TOUT

INR(5) Values of two scalars ATOL, RTOL

INR(6) Initial step size to use

INR(7) Maximum step allowed

INR(8) Condition number reciprocal

INR(9) Value of cj for partials

INR(10) Step size on the next move

INR(11) Step size on the previous move

INR(12-20) Not Used

Table 2. Number and Key Phrases for Floating-Point Options

1. Workspace may be explicitly provided, and many of the options utilized by directly
calling D2SPG/DD2SPG. The reference is:

CALL D2SPG (N, T, TOUT, IDO, Y, YPR, GCN, JGCN, IWK, WK)

The additional arguments are as follows:

IDO State

5 Return for evaluation of g(t, y, y�)

6 Return for evaluation of matrix A = [�g/�y + cj�g/�y�]

7 Return for factorization of the matrix A = [�g/�y + cj�g/�y�]

8 Return for solution of A�y = �g

These values of IDO occur only when calling the second-level routine D2SPG and using
options associated with reverse communication. The routine D2SPG/DD2SPG is
reentered.

GCN — A Fortran SUBROUTINE to compute g(t, y, y�). This routine is normally
provided by the user. That is the default case. The dummy IMSL routine
DGSPG/DDGSPG may be used as this argument when g(t, y, y�) is evaluated by
reverse communication. In either case, a name must be declared in a Fortran
EXTERNAL statement. If usage of the dummy IMSL routine is intended, then the
name DGSPG/DDGSPG should be specified. The dummy IMSL routine will never

896 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

be called under this optional usage of reverse communication. An example of
reverse communication for evaluation of g is given in Example 4.

JGCN — A Fortran SUBROUTINE to compute partial derivatives of g(t, y, y�). This
routine may be provided by the user. The dummy IMSL routine DJSPG/DDJSPG
may be used as this argument when partial derivatives are computed using
divided differences. This is the default. The dummy routine is not called under
default conditions. If partial derivatives are to be explicitly provided, the routine
JGCN must be written by the user or reverse communication can be used. An
example of reverse communication for evaluation of the partials is given in
Example 4.

 If the user writes a routine with the fixed name DJSPG/DDJSPG, then partial derivatives
can be provided while calling DASPG. An option is used to signal that formulas for
partial derivatives are being supplied. This is illustrated in Example 3. The name of the
partial derivative routine must be declared in a Fortran EXTERNAL statement when
calling D2SPG. If usage of the dummy IMSL routine is intended, then the name
DJSPG/DDJSPG should be specified for this EXTERNAL name. Whenever the user
provides partial derivative evaluation formulas, by whatever means, that must be noted
with an option. Usage of the derivative evaluation routine is CALL JGCN (N, T, Y,
YPR, CJ, PDG, LDPDG) where

Arg Definition

N Number of equations. (Input)

T Independent variable, t. (Input)

Y Array of size N containing the values of the dependent variables, y. (Input)

YPR Array of size N containing the values of the derivatives, y�. (Input)

CJ The value cj used in computing the partial derivatives returned in PDG.
 (Input)

PDG Array of size LDPDG * N containing the partial derivatives A = [�g/�y + cj�g/
 �y�]. Each nonzero derivative entry aij is returned in the array location
 PDG(i, j). The array contents are zero when the routine is called. Thus, only
 the nonzero derivatives have to be defined in the routine JGCN. (Output)

LDPDG The leading dimension of PDG. Normally, this value is N. It is a value larger
than N under the conditions explained in option 16 of LSLRG (Chapter 1,
Linear Systems).

JGCN must be declared EXTERNAL in the calling program.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 897

IWK — Work array of integer values. The size of this array is 35 + N. The contents of
IWK must not be changed from the first call with IDO = 1 until after the final call
with
IDO = 3.

WK — Work ahrray of floating-point values in the working precision. The size of this
array is 41 + (MAXORD + 6)N + (N + K)N(1 � L) where K is determined
from the values IVAL(3) and IVAL(4) of option 16 of LSLRG (Chapter 1,
Linear Systems). The value of L is 0 unless option IN(34) is used to avoid
allocation of the array containing the partial derivatives. With the use of this
option, L can be set to 1. The contents of array WK must not be changed from the
first call with IDO = 1 until after the final call.

2. Integer and Floating-Point Options with Chapter 11 Options Manager

 The routine DASPG allows the user access to many interface parameters and internal
working variables by the use of options. The options manager subprograms IUMAG,
SUMAG, and DUMAG (Chapter 11, Utilities), are used to change options from their default
values or obtain the current values of required parameters.

Options of type INTEGER:

6 This is the list of numbers used for INTEGER options. Users will typically call
this option first to get the numbers, IN(I), I = 1, 50. This option has 50 entries.
The default values are IN(I) = I + 50, I = 1, 50.

7 This is the list of numbers used for REAL and DOUBLE PRECISION options.
Users will typically call this option first to get the numbers, INR(I), I = 1,20.
This option has 20 entries. The default values are INR(I) = I + 50, I = 1, 20.

IN(1) This is the first call to the routine DASPG or D2SPG. Value is 0 for the first call, 1
for further calls. Setting IDO = 1 resets this option to its default. Default value is
0.

IN(2) This flag controls the kind of tolerances to be used for the solution. Value is 0
for scalar values of absolute and relative tolerances applied to all components.
Value is 1 when arrays for both these quantities are specified. In this case, the
option IN(33) is used to get the offset into WK where the 2N array values are to
be placed: all ATOL values followed by all RTOL values. This offset is defined
after the call to the routine D2SPG so users will have to call the options manager
at a convenient place in the GCN routine or during reverse communication.
Default value is 0.

IN(3) This flag controls when the code returns to the user with output values of y and y
�. If the value is 0, it returns to the user at T = TOUT only. If the value is 1, it
returns to the user at an internal working step. Default value is 0.

898 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

IN(4) This flag controls whether the code should integrate past a special point, TSTOP,
and then interpolate to get y and y�at TOUT. If the value is 0, this is permitted. If
the value is 1, the code assumes the equations either change on the alternate side
of TSTOP or they are undefined there. In this case, the code creeps up to TSTOP
in the direction of integration. The value of TSTOP is set with option INR(4).
Default value is 0.

IN(5) This flag controls whether partial derivatives are computed using divided
onesided differences, or they are to be computed using user-supplied evaluation
formulas. If the value is 0, use divided differences. If the value is 1, use
formulas for the partial derivatives. See Example 3 for an illustration of one way
to do this. Default value is 0.

IN(6) The maximum number of steps. Default value is 500.

IN(7) This flag controls a maximum magnitude constraint for the step size. If the value
is 0, the routine picks its own maximum. If the value is 1, a maximum is
specified by the user. That value is set with option number INR(7). Default
value is 0.

IN(8) This flag controls an initial value for the step size. If the value is 0, the routine
picks its own initial step size. If the value is 1, a starting step size is specified by
the user. That value is set with option number INR(6). Default value is 0.

IN(9) Not used. Default value is 0.

IN(10) This flag controls attempts to constrain all components to be nonnegative. If
the value is 0, no constraints are enforced. If value is 1, constraint is enforced.
Default value is 0.

IN(11) This flag controls whether the initial values (t, y, y�) are consistent. If the
value is 0, g(t, y, y�) = 0 at the initial point. If the value is 1, the routine will try
to solve for y� to make this equation satisfied. Default value is 1.

IN(12-15) Not used. Default value is 0 for each option.

IN(16) The number of equations in the system, n. Default value is 0.

IN(17) This value reports what the routine did. Default value is 0.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 899

Value Explanation
1 A step was taken in the intermediate output mode. The value

TOUT has not been reached.

2 The integration to exactly TSTOP was completed.

3 The integration to TSTOP was completed by stepping past TSTOP
and interpolating to evaluate y and y�.

�1 Too many steps taken.

�2 Error tolerances are too small.

�3 A pure relative error tolerance can't be satisfied.

�6 There were repeated error test failures on the last step.

�7 The BDF corrector equation solver did not converge.

�8 The matrix of partial derivatives is singular.

�10 The BDF corrector equation solver did not converge because the
evaluation failure flag was raised.

�11 The evaluation failure flag was raised to quit.

�12 The iteration for the initial vaule of y� did not converge.

�33 There is a fatal error, perhaps caused by invalid input.

Table 3. What the Routine DASPG or D2SPG Did

IN(18) The maximum order of BDF formula the routine should use. Default value
is 5.

IN(19) The order of the BDF method the routine will use on the next step. Default
value is IMACH(5).

IN(20) The order of the BDF method used on the last step. Default value is
IMACH(5).

IN(21) The number of steps taken so far. Default value is 0.

IN(22) The number of times that g has been evaluated. Default value is 0.

IN(23) The number of times that the partial derivative matrix has been evaluated.
Default value is 0.

IN(24) The total number of error test failures so far. Default value is 0.

IN(25) The total number of convergence test failures so far. This includes singular
iteration matrices. Default value is 0.

IN(26) Use reverse communication to evaluate g when this value is 0. If the value
is 1, forward communication is used. Use the routine D2SPG for reverse

900 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

communication. With reverse communication, a return will be made with
IDO = 5. Compute the value of g, place it into the array WK at the offset obtained
with option IN(27), and re-enter the routine. Default value is 1.

IN(27) The user is to store the evaluated function g during reverse communication
in the work array WK using this value as an offset. Default value is IMACH(5).

IN(28) This value is a “panic flag.” After an evaluation of g, this value is checked.
The value of g is used if the flag is 0. If it has the value �1, the routine reduces
the step size and possibly the order of the BDF. If the value is �2, the routine
returns control to the user immediately. This option is also used to signal a
singular or poorly conditioned partial derivative matrix encountered during the
factor phase in reverse communication. Use a nonzero value when the matrix is
singular. Default value is 0.

IN(29) Use reverse communication to evaluate the partial derivative matrix when
this value is 0. If the value is 1, forward communication is used. Use the routine
D2SPG for reverse communication. With reverse communication, a return will
be made with IDO = 6. Compute the partial derivative matrix A and re-enter the
routine. If forward communication is used for the linear solver, return the
partials using the offset into the array WK. This offset value is obtained with
option IN(30). Default value is 1.

IN(30) The user is to store the values of the partial derivative matrix A by columns
in the work array WK using this value as an offset. The option 16 for LSLRG is
used here to compute the row dimension of the internal working array that
contains A. Users can also choose to store this matrix in some convenient form
in their calling program if they are providing linear system solving using reverse
communication. See options IN(31) and IN(34). Default value is IMACH(5).

IN(31) Use reverse communication to solve the linear system A�y = �g if this
value is 0. If the value is 1, use forward communication into the routines L2CRG
and LFSRG (Chapter 1, Linear Systems) for the linear system solving. Return the
solution using the offset into the array WK where g is stored. This offset value is
obtained with option IN(27). With reverse communication, a return will be
made with IDO = 7 for factorization of A and with IDO = 8 for solving the
system. Re-enter the routine in both cases. If the matrix A is singular or poorly
conditioned, raise the “panic flag,” option IN(28), during the factorization.
Default value is 1.

IN(32) Not used. Default value is 0.

IN(33) The user is to store the vector of values for ATOL and RTOL in the array WK
using this value as an offset. The routine D2SPG must be called before this value
is defined.

IN(34) This flag is used if the user has not allocated storage for the matrix A in the
array WK. If the value is 0, storage is allocated. If the value is 1, storage was not

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 901

allocated. In this case, the user must be using reverse communication to evaluate
the partial derivative matrix and to solve the linear systems A�y = �g. Default
value is 0.

IN(35) These two values are the sizes of the arrays IWK and WK allocated in the
users program. The values are checked against the program requirements. These
checks are made only if the values are positive. Users will normally set this
option when directly calling D2SPG. Default values are (0, 0).

Options of type REAL or DOUBLE PRECISION:

INR(1) The value of the independent variable, t. Default value is AMACH(6).

INR(2) The farthest working t point the integration has reached. Default value is
AMACH(6) .

INR(3) The current value of TOUT. Default value is AMACH(6).

INR(4) The next special point, TSTOP, before reaching TOUT. Default value is
AMACH(6). Used with option IN(4).

INR(5) The pair of scalar values ATOL and RTOL that apply to the error estimates of
all components of y. Default values for both are SQRT(AMACH(4)).

INR(6) The initial step size if DASPG is not to compute it internally. Default value is
 AMACH(6).

INR(7) The maximum step size allowed. Default value is AMACH(2).

INR(8) This value is the reciprocal of the condition number of the matrix A. It is
defined when forward communication is used to solve for the linear updates to
the BDF corrector equation. No further program action, such as declaring a
singular system, based on the condition number. Users can declare the system to
be singular by raising the “panic flag” using option IN(28). Default value is
AMACH(6).

INR(9) The value of cj used in the partial derivative matrix for reverse
communication evaluation. Default value is AMACH(6).

INR(10) The step size to be attempted on the next move. Default value is AMACH(6).

INR(11) The step size taken on the previous move. Default value is AMACH(6).

4. Norm Function Subprogram

The routine DASPG uses a weighted Euclidean-RMS norm to measure the size of the
estimated error in each step. This is done using a FUNCTION subprogram: REAL

902 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

FUNCTION D10PG (N, V, WT). This routine returns the value of the RMS weighted
norm given by:

� �
21

1
D10PG /N

i ii
N v wt�

�

� �

Users can replace this function with one of their own choice. This should be done only
for problem-related reasons.

Description
Routine DASPG finds an approximation to the solution of a system of differential-algebraic
equations g(t, y, y�) = 0, with given initial data for y and y�. The routine uses BDF formulas,
appropriate for systems of stiff ODEs, and attempts to keep the global error proportional to a
user-specified tolerance. See Brenan et al. (1989). This routine is efficient for stiff systems of
index 1 or index 0. See Brenan et al. (1989) for a definition of index. Users are encouraged to
use DOUBLE PRECISION accuracy on machines with a short REAL precision accuracy. The
examples given below are in REAL accuracy because of the desire for consistency with the rest
of IMSL MATH/LIBRARY examples. The routine DASPG is based on the code DASSL designed
by L. Petzold (1982-1990).

Example 2

The first-order equations of motion of a point-mass m suspended on a massless wire of length �
under the influence of gravity force, mg and tension value �, in Cartesian coordinates, (p, q), are

2 2 2 0

p u
q v

mu p
mv q mg

p q

�

�

� �

� �

� � �

� � � �

� � ��

This is a genuine differential-algebraic system. The problem, as stated, has an index number
equal to the value 3. Thus, it cannot be solved with DASPG directly. Unfortunately, the fact that
the index is greater than 1 must be deduced indirectly. Typically there will be an error processed
which states that the (BDF) corrector equation did not converge. The user then differentiates and
replaces the constraint equation. This example is transformed to a problem of index number of
value 1 by differentiating the last equation twice. This resulting equation, which replaces the
given equation, is the total energy balance:

2 2 2() 0m u v mgq �� � � ��

With initial conditions and systematic definitions of the dependent variables, the system
becomes:

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 903

� � � � � � � � � �

1

2

3

4

5

0 , 0 0 0 0 0p q u v
y p
y q
y u
y v
y

�

�

� � � � �

�

�

�

�

�

�

� �

1 3 1

2 4 2

3 1 5 3

4 2 5 4

2 2 2
5 3 4 2 5

0
0

0
0

0

g y y
g y y
g y y my
g y y mg my

g m y y mgy y

�� � �

�� � �

�� � � �

�� � � � �

� � � � ��

The problem is given in English measurement units of feet, pounds, and seconds. The wire has
length 6.5 ft, and the mass at the end is 98 lb. Usage of the software does not require it, but
standard or “SI” units are used in the numerical model. This conversion of units is done as a first
step in the user-supplied evaluation routine, GCN. A set of initial conditions, corresponding to
the pendulum starting in a horizontal position, are provided as output for the input signal of n =
0. The maximum magnitude of the tension parameter, �(t) = y�(t), is computed at the output
points, t = 0.1, �, (0.1). This extreme value is converted to English units and printed.

 USE DASPG_INT
 USE CUNIT_INT
 USE UMACH_INT
 USE CONST_INT
 INTEGER N
 PARAMETER (N=5)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, ISTEP, NOUT, NSTEP
 REAL DELT, GVAL(N), MAXLB, MAXTEN, T, TEND, TMAX, Y(N), &
 YPR(N)
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC ABS
 REAL ABS
! SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL GCN
! SPECIFICATIONS FOR FUNCTIONS
! Define initial data
 IDO = 1
 T = 0.0
 TEND = CONST(’pi’)
 DELT = 0.1
 NSTEP = TEND/DELT
 CALL UMACH (2, NOUT)
! Get initial conditions
 CALL GCN (0, T, Y, YPR, GVAL)

904 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 ISTEP = 0
 MAXTEN = 0.
 10 CONTINUE
 ISTEP = ISTEP + 1
 CALL DASPG (T, T+DELT, IDO, Y, YPR, GCN)
 IF (ISTEP .LE. NSTEP) THEN
! Note max tension value
 IF (ABS(Y(5)) .GT. ABS(MAXTEN)) THEN
 TMAX = T
 MAXTEN = Y(5)
 END IF
 IF (ISTEP .EQ. NSTEP) IDO = 3
 GO TO 10
 END IF
! Convert to English units
 CALL CUNIT (MAXTEN, ’kg/s**2’, MAXLB, ’lb/s**2’)
! Print maximum tension
 WRITE (NOUT,99999) MAXLB, TMAX
99999 FORMAT (’ Extreme string tension of’, F10.2, ’ (lb/s**2)’, &
 ’ occurred at ’, ’time ’, F10.2)
 END
!
 SUBROUTINE GCN (N, T, Y, YPR, GVAL)
 USE CUNIT_INT
 USE CONST_INT
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(*), YPR(*), GVAL(*)
! SPECIFICATIONS FOR LOCAL VARIABLES
 REAL FEETL, GRAV, LENSQ, MASSKG, MASSLB, METERL, MG
! SPECIFICATIONS FOR SAVE VARIABLES
 LOGICAL FIRST
 SAVE FIRST
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
!
 DATA FIRST/.TRUE./
!
 IF (FIRST) GO TO 20
 10 CONTINUE
! Define initial conditions
 IF (N .EQ. 0) THEN
! The pendulum is horizontal
! with these initial y values
 Y(1) = METERL
 Y(2) = 0.
 Y(3) = 0.
 Y(4) = 0.
 Y(5) = 0.
 YPR(1) = 0.
 YPR(2) = 0.
 YPR(3) = 0.
 YPR(4) = 0.
 YPR(5) = 0.
 RETURN

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 905

 END IF
! Compute residuals
 GVAL(1) = Y(3) - YPR(1)
 GVAL(2) = Y(4) - YPR(2)
 GVAL(3) = -Y(1)*Y(5) - MASSKG*YPR(3)
 GVAL(4) = -Y(2)*Y(5) - MASSKG*YPR(4) - MG
 GVAL(5) = MASSKG*(Y(3)**2+Y(4)**2) - MG*Y(2) - LENSQ*Y(5)
 RETURN
! Convert from English to
! Metric units:
 20 CONTINUE
 FEETL = 6.5
 MASSLB = 98.0
! Change to meters
 CALL CUNIT (FEETL, ’ft’, METERL, ’meter’)
! Change to kilograms
 CALL CUNIT (MASSLB, ’lb’, MASSKG, ’kg’)
! Get standard gravity
 GRAV = CONST(’StandardGravity’)
 MG = MASSKG*GRAV
 LENSQ = METERL**2
 FIRST = .FALSE.
 GO TO 10
 END

Output
Extreme string tension of 1457.24 (lb/s**2) occurred at time 2.50

Example 3
In this example, we solve a stiff ordinary differential equation (E5) from the test package of
Enright and Pryce (1987). The problem is nonlinear with nonreal eigenvalues. It is included as
an example because it is a stiff problem, and its partial derivatives are provided in the
usersupplied routine with the fixed name DJSPG. Users who require a variable routine name for
partial derivatives can use the routine D2SPG. Providing explicit formulas for partial derivatives
is an important consideration for problems where evaluations of the function g(t, y, y�) are
expensive. Signaling that a derivative matrix is provided requires a call to the Chapter 10
options manager utility, IUMAG. In addition, an initial integration step-size is given for this test
problem. A signal for this is passed using the options manager routine IUMAG. The error
tolerance is changed from the defaults to a pure absolute tolerance of 0.1 * SQRT(AMACH(4)).
Also see IUMAG, SUMAG and DUMAG in Chapter 11, Utilities, for further details about the options
manager routines.

 USE IMSL_LIBRARIES
 INTEGER N
 PARAMETER (N=4)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER ICHAP, IGET, INUM, IPUT, IRNUM
 PARAMETER (ICHAP=5, IGET=1, INUM=6, IPUT=2, IRNUM=7)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, IN(50), INR(20), IOPT(2), IVAL(2), NOUT
 REAL C0, PREC, SVAL(3), T, TEND, Y(N), YPR(N)
! SPECIFICATIONS FOR FUNCTIONS

906 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 EXTERNAL GCN
! Define initial data
 IDO = 1
 T = 0.0
 TEND = 1000.0
! Initial values
 C0 = 1.76E-3
 Y(1) = C0
 Y(2) = 0.
 Y(3) = 0.
 Y(4) = 0.
! Initial derivatives
 YPR(1) = 0.
 YPR(2) = 0.
 YPR(3) = 0.
 YPR(4) = 0.
! Get option numbers
 IOPT(1) = INUM
 CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, IN)
 IOPT(1) = IRNUM
 CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, INR)
! Provide initial step
 IOPT(1) = INR(6)
 SVAL(1) = 5.0E-5
! Provide absolute tolerance
 IOPT(2) = INR(5)
 PREC = AMACH(4)
 SVAL(2) = 0.1*SQRT(PREC)
 SVAL(3) = 0.0

 CALL UMAG (’math’, ICHAP, IPUT, IOPT, SVAL)
! Using derivatives and
 IOPT(1) = IN(5)
 IVAL(1) = 1
! providing initial step
 IOPT(2) = IN(8)
 IVAL(2) = 1

 CALL IUMAG (’math’, ICHAP, IPUT, 2, IOPT, IVAL)
! Write title
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
! Integrate ODE/DAE
 CALL DASPG (T, TEND, IDO, Y, YPR, GCN)
 WRITE (NOUT,99999) T, Y, YPR
! Reset floating options
! to defaults
 IOPT(1) = -INR(5)
 IOPT(2) = -INR(6)
!
 CALL UMAG (’math’, ICHAP, IPUT, IOPT, SVAL)
! Reset integer options
! to defaults
 IOPT(1) = -IN(5)
 IOPT(2) = -IN(8)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 907

!
 CALL IUMAG (’math’, ICHAP, IPUT, 2, IOPT, IVAL)

99998 FORMAT (11X, ’T’, 14X, ’Y followed by Y’’’)
99999 FORMAT (F15.5/(4F15.5))
 END
!
 SUBROUTINE GCN (N, T, Y, YPR, GVAL)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), YPR(N), GVAL(N)
! SPECIFICATIONS FOR LOCAL VARIABLES
 REAL C1, C2, C3, C4
!
 C1 = 7.89E-10
 C2 = 1.1E7
 C3 = 1.13E9
 C4 = 1.13E3
!
 GVAL(1) = -C1*Y(1) - C2*Y(1)*Y(3) - YPR(1)
 GVAL(2) = C1*Y(1) - C3*Y(2)*Y(3) - YPR(2)
 GVAL(3) = C1*Y(1) - C2*Y(1)*Y(3) + C4*Y(4) - C3*Y(2)*Y(3) - &
 YPR(3)
 GVAL(4) = C2*Y(1)*Y(3) - C4*Y(4) - YPR(4)
 RETURN
 END
 SUBROUTINE DJSPG (N, T, Y, YPR, CJ, PDG, LDPDG)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N, LDPDG
 REAL T, CJ, Y(N), YPR(N), PDG(LDPDG,N)
! SPECIFICATIONS FOR LOCAL VARIABLES
 REAL C1, C2, C3, C4
!
 C1 = 7.89E-10
 C2 = 1.1E7
 C3 = 1.13E9
 C4 = 1.13E3
!
 PDG(1,1) = -C1 - C2*Y(3) - CJ
 PDG(1,3) = -C2*Y(1)
 PDG(2,1) = C1
 PDG(2,2) = -C3*Y(3) - CJ
 PDG(2,3) = -C3*Y(2)
 PDG(3,1) = C1 - C2*Y(3)
 PDG(3,2) = -C3*Y(3)
 PDG(3,3) = -C2*Y(1) - C3*Y(2) - CJ
 PDG(3,4) = C4
 PDG(4,1) = C2*Y(3)
 PDG(4,3) = C2*Y(1)
 PDG(4,4) = -C4 - CJ
 RETURN
 END

908 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

Output
 T Y followed by Y’
1000.00000
 0.00162 0.00000 0.00000 0.00000
 0.00000 0.00000 0.00000 0.00000

Example 4
In this final example, we compute the solution of n = 10 ordinary differential equations,
g = Hy � y�, where y(0) = y� = (1, 1, �, 1)T. The value

� �1
n
i iy t
��

is evaluated at t = 1. The constant matrix H has entries hi,j = min(j � i, 0) so it is lower
Hessenberg. We use reverse communication for the evaluation of the following intermediate
quantities:

1. The function g,

2. The partial derivative matrix A = �g/�y + cj�g/�y� = H � cj I,

3. The solution of the linear system A�y = �g.

In addition to the use of reverse communication, we evaluate the partial derivatives using
formulas. No storage is allocated in the floating-point work array for the matrix. Instead, the
matrix A is stored in an array A within the main program unit. Signals for this organization are
passed using the routine IUMAG (Chapter 11, Utilities).

An algorithm appropriate for this matrix, Givens transformations applied from the right side, is
used to factor the matrix A. The rotations are reconstructed during the solve step. See SROTG
(Chapter 9, Basic Matrix/Vector Operations) for the formulas.

The routine D2SPG stores the value of cj. We get it with a call to the options manager routine
SUMAG (Chapter 11, Utilities). A pointer, or offset into the work array, is obtained as an integer
option. This gives the location of g and �g. The solution vector �y replaces �g at that location.
Caution: If a user writes code wherein g is computed with reverse communication and partials
are evaluated with divided differences, then there will be two distinct places where g is to be
stored. This example shows a correct place to get this offset.

This example also serves as a prototype for large, structured (possibly nonlinear) DAE problems
where the user must use special methods to store and factor the matrix A and solve the linear
system A�y = �g. The word “factor” is used literally here. A user could, for instance, solve the
system using an iterative method. Generally, the factor step can be any preparatory phase
required for a later solve step.

 USE IMSL_LIBRARIES
 INTEGER N
 PARAMETER (N=10)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER ICHAP, IGET, INUM, IPUT, IRNUM
 PARAMETER (ICHAP=5, IGET=1, INUM=6, IPUT=2, IRNUM=7)
! SPECIFICATIONS FOR LOCAL VARIABLES

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 909

 INTEGER I, IDO, IN(50), INR(20), IOPT(6), IVAL(7), IWK(35+N), &
 J, NOUT
 REAL A(N,N), GVAL(N), H(N,N), SC, SS, SUMY, SVAL(1), T, &
 TEND, WK(41+11*N), Y(N), YPR(N), Z
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC ABS, SQRT
 REAL ABS, SQRT
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL DGSPG, DJSPG
! Define initial data
 IDO = 1
 T = 0.0E0
 TEND = 1.0E0
! Initial values
 CALL SSET (N, 1.0E0, Y, 1)
 CALL SSET (N, 0.0, YPR, 1)
! Initial lower Hessenberg matrix
 CALL SSET (N*N, 0.0E0, H, 1)
 DO 20 I=1, N - 1
 DO 10 J=1, I + 1
 H(I,J) = J - I
 10 CONTINUE
 20 CONTINUE
 DO 30 J=1, N
 H(N,J) = J - N
 30 CONTINUE
! Get integer option numbers
 IOPT(1) = INUM
 CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, IN)
! Get floating point option numbers
 IOPT(1) = IRNUM
 CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, INR)
! Set for reverse communication
! evaluation of g.
 IOPT(1) = IN(26)
 IVAL(1) = 0
! Set for evaluation of partial
! derivatives.
 IOPT(2) = IN(5)
 IVAL(2) = 1
! Set for reverse communication
! evaluation of partials.
 IOPT(3) = IN(29)
 IVAL(3) = 0
! Set for reverse communication
! solution of linear equations.
 IOPT(4) = IN(31)
 IVAL(4) = 0
! Storage for the partial
! derivative array not allocated.
 IOPT(5) = IN(34)
 IVAL(5) = 1
! Set the sizes of IWK, WK
! for internal checking.

910 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 IOPT(6) = IN(35)
 IVAL(6) = 35 + N
 IVAL(7) = 41 + 11*N
! ’Put’ integer options.
 CALL IUMAG (’math’, ICHAP, IPUT, 6, IOPT, IVAL)
! Write problem title.
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
! Integrate ODE/DAE. Use
! dummy IMSL external names.
 40 CONTINUE
 CALL D2SPG (N, T, TEND, IDO, Y, YPR, DGSPG, DJSPG, IWK, WK)
! Find where g goes.
! (It only goes in one place
! here, but can vary if
! divided differences are used
! for partial derivatives.)
 IOPT(1) = IN(27)
 CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, IVAL)
! Direct user response.
 GO TO (50, 180, 60, 50, 90, 100, 130, 150), IDO
 50 CONTINUE
! This should not occur.
 WRITE (NOUT,*) ’ Unexpected return with IDO = ’, IDO
 60 CONTINUE
! Reset options to defaults
 DO 70 I=1, 50
 IN(I) = -IN(I)
 70 CONTINUE
 CALL IUMAG (’math’, ICHAP, IPUT, 50, IN, IVAL)
 DO 80 I=1, 20
 INR(I) = -INR(I)
 80 CONTINUE
 CALL UMAG (’math’, ICHAP, IPUT, INR, SVAL, numopts=1)
 STOP
 90 CONTINUE
! Return came for g evaluation.
 CALL SCOPY (N, YPR, 1, GVAL, 1)
 CALL SGEMV (’NO’, N, N, 1.0E0, H, N, Y, 1, -1.0E0, GVAL, 1)
! Put g into place.
 CALL SCOPY (N, GVAL, 1, WK(IVAL(1:)), 1)
 GO TO 40
 100 CONTINUE
! Return came for partial
! derivative evaluation.
 110 CALL SCOPY (N*N, H, 1, A, 1)
! Get value of c_j for partials.
 IOPT(1) = INR(9)
 CALL UMAG (’math’, ICHAP, IGET, IOPT, SVAL, numopts=1)
! Subtract c_j from diagonals
! to compute (partials for y’)*c_j.
 DO 120 I=1, N
 A(I,I) = A(I,I) - SVAL(1)
 120 CONTINUE
 GO TO 40

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 911

 130 CONTINUE
! Return came for factorization
 DO 140 J=1, N - 1
! Construct and apply Givens
! transformations.
 CALL SROTG (A(J,J), A(J,J+1), SC, SS)
 CALL SROT (N-J, A((J+1):,1), 1, A((J+1):,J+1), 1, SC, SS)
 140 CONTINUE
 GO TO 40
 150 CONTINUE
! Return came to solve the system
 CALL SCOPY (N, WK(IVAL(1)), 1, GVAL, 1)
 DO 160 J=1, N - 1
 GVAL(J) = GVAL(J)/A(J,J)
 CALL SAXPY (N-J, -GVAL(J), A((J+1):,J), 1, GVAL((J+1):, 1)
 160 CONTINUE
 GVAL(N) = GVAL(N)/A(N,N)
! Reconstruct Givens rotations
 DO 170 J=N - 1, 1, -1
 Z = A(J,J+1)
 IF (ABS(Z) .LT. 1.0E0) THEN
 SC = SQRT(1.0E0-Z**2)
 SS = Z
 ELSE IF (ABS(Z) .GT. 1.0E0) THEN
 SC = 1.0E0/Z
 SS = SQRT(1.0E0-SC**2)
 ELSE
 SC = 0.0E0
 SS = 1.0E0
 END IF
 CALL SROT (1, GVAL(J:), 1, GVAL((J+1):), 1, SC, SS)
 170 CONTINUE
 CALL SCOPY (N, GVAL, 1, WK(IVAL(1)), 1)
 GO TO 40
!
 180 CONTINUE
 SUMY = 0.E0
 DO 190 I=1, N
 SUMY = SUMY + Y(I)
 190 CONTINUE
 WRITE (NOUT,99999) TEND, SUMY
! Finish up internally
 IDO = 3
 GO TO 40
99998 FORMAT (11X, ’T’, 6X, ’Sum of Y(i), i=1,n’)
99999 FORMAT (2F15.5)
 END

Output
 T Sum of Y(i), i=1,n
1.00000 65.17058

912 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

Introduction to Subroutine PDE_1D_MG
The section describes an algorithm and a corresponding integrator subroutine PDE_1D_MG for
solving a system of partial differential equations
This software is a one-dimensional solver. It requires initial and boundary conditions in addition
to values of tu . The integration method is noteworthy due to the maintenance of grid lines in the
space variable, x . Details for choosing new grid lines are given in Blom and Zegeling, (1994).
The class of problems solved with PDE_1D_MG is expressed by equations:

� � � �� � � �

� �

,
1

, 0

, , , , , , , , , ,

1, , , , 0,1,2

kNPDE
m m

j k x j x j x
k

L R

uC x t u u x x R x t u u Q x t u u
t x

j NPDE x x x t t m

�

�

� �
� �

� �

� � � � �

�

�

Equation 1

The vector

,
TNPDEu u u�� �� � ��

is the solution. The integer value NPDE �1 is the number of differential equations. The
functions Rj and Qj can be regarded, in special cases, as flux and source terms. The functions

u C R Qj k j j, ,, and
are expected to be continuous. Allowed values

m m m� � �0 1 2, , and
are for problems in Cartesian, cylindrical or polar, and spherical coordinates. In the two cases

m > 0 , the interval

x xL R,
must not contain x = 0 as an interior point.

The boundary conditions have the master equation form

� � � � � �, , , , , , , ,

at and , 1,...,
j j x j x

L R

x t R x t u u x t u u

x x x x j NPDE

� ��

� � �

Equation 2

In the boundary conditions the

� �j j and
are continuous functions of their arguments. In the two cases m � 0 and an endpoint occurs at 0,
the finite value of the solution at x = 0 must be ensured. This requires the specification of the
solution at x = 0, or implies that

0
L

j x x
R

�

�

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 913

 or

Rj x xR�

� 0
.

The initial values satisfy

 u x t u x x x xL R, , ,0 0b g b g� � ,

where u0 is a piece-wise continuous vector function of x with NPDE components.

The user must pose the problem so that mathematical definitions are known for the functions

C R Q uk j j j j j, , , , ,� � and 0 .

These functions are provided to the routine PDE_1D_MG in the form of three subroutines.
Optionally, this information can be provided by reverse communication. These forms of the
interface are explained below and illustrated with examples. Users may turn directly to the
examples if they are comfortable with the description of the algorithm.

PDE_1D_MG
Invokes a module, with the statement USE PDE_1D_MG, near the second line of the program unit.
The integrator is provided with single or double precision arithmetic, and a generic named
interface is provided. We do not recommend using 32-bit floating point arithmetic here. The
routine is called within the following loop, and is entered with each value of IDO. The loop
continues until a value of IDO results in an exit.

IDO=1

DO

 CASE(IDO == 1) {Do required initialization steps}

 CASE(IDO == 2) {Save solution, update T0 and TOUT }

 IF{Finished with integration} IDO=3

 CASE(IDO == 3) EXIT {Normal}

 CASE(IDO == 4) EXIT {Due to errors}

 CASE(IDO == 5) {Evaluate initial data}

 CASE(IDO == 6) {Evaluate differential equations}

 CASE(IDO == 7) {Evaluate boundary conditions}

 CASE(IDO == 8) {Prepare to solve banded system}

 CASE(IDO == 9) {Solve banded system}

 CALL PDE_1D_MG (T0, TOUT, IDO, U,&
 initial_conditions,&
 pde_system_definition,&
 boundary_conditions, IOPT)

END DO

914 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

The arguments to PDE_1D_MG are required or optional.

Required Arguments
T0—(Input/Output)

This is the value of the independent variable t where the integration of ut begins. It is
set to the value TOUT on return.

TOUT—(Input)
This is the value of the independent variable t where the integration of ut ends. Note:
Values of T0 < TOUT imply integration in the forward direction, while values of
T0 > TOUT imply integration in the backward direction. Either direction is permitted.

IDO—(Input/Output)
This in an integer flag that directs program control and user action. Its value is used
for initialization, termination, and for directing user response during reverse
communication:

IDO=1 This value is assigned by the user for the start of a new problem. Internally it
causes allocated storage to be reallocated, conforming to the problem size.
Various initialization steps are performed.

IDO=2 This value is assigned by the routine when the integrator has successfully
reached the end point, TOUT.

IDO=3 This value is assigned by the user at the end of a problem. The routine is called
by the user with this value. Internally it causes termination steps to be
performed.

IDO=4 This value is assigned by the integrator when a type FATAL or TERMINAL error
condition has occurred, and error processing is set NOT to STOP for these
types of errors. It is not necessary to make a final call to the integrator with
IDO=3 in this case.

Values of IDO = 5,6,7,8,9 are reserved for applications that provide problem
information or linear algebra computations using reverse communication. When
problem information is provided using reverse communication, the differential
equations, boundary conditions and initial data must all be given. The absence
of optional subroutine names in the calling sequence directs the routine to use
reverse communication. In the module PDE_1D_MG_INT, scalars and arrays for
evaluating results are named below. The names are preceded by the prefix
“s_pde_1d_mg_” or “d_pde_1d_mg_”, depending on the precision. We use
the prefix “?_pde_1d_mg_”, for the appropriate choice.

IDO=5 This value is assigned by the integrator, requesting data for the initial
conditions. Following this evaluation the integrator is re-entered.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 915

(Optional) Update the grid of values in array locations U(NPDE +1, j) j = 2, �, N.
This grid is returned to the user equally spaced, but can be updated as desired,
provided the values are increasing.

(Required) Provide initial values for all components of the system at the grid of values
U(NPDE +1, j) j = 1, �, N. If the optional step of updating the initial grid is
performed, then the initial values are evaluated at the updated grid.

 IDO=6 This value is assigned by the integrator, requesting data for the differential
equations. Following this evaluation the integrator is re-entered. Evaluate the terms of
the system of Equation 2. A default value of m � 0 is assumed, but this can be changed
to one of the other choices m � 1 2or . Use the optional argument IOPT(:) for that
purpose. Put the values in the arrays as indicated1.

� �

� �

� � � �

� � � �

,

?_ _1 _ _
?_ _1 _ _

?_ _1 _ _ ()

?_ _1 _ _

?_ _1 _ _ (,) : , , ,

?_ _1 _ _ : , , ,

?_ _1 _ _ : , , ,
, 1,...,

j

j
j
x

j k x

j x

j x

x pde d mg x
t pde d mg t
u pde d mg u j

u u pde d mg dudx j
x
pde d mg c j k C x t u u

pde d mg r j r x t u u

pde d mg q j q x t u u

j k NPDE

�

�

�

�

�

� �

�

�

�

�

If any of the functions cannot be evaluated, set pde_1d_mg_ires=3. Otherwise do not change its
value.

IDO=7 This value is assigned by the integrator, requesting data for the boundary conditions,
as expressed in Equation 3. Following the evaluation the integrator is re-entered.

� �

� � � �

� � � �

?_ _1 _ _
?_ _1 _ _

?_ _1 _ _ ()

?_ _1 _ _

?_ _1 _ _ : , , ,

?_ _1 _ _ : , , ,

1,...,

j

j
j
x

j x

j x

x pde d mg x
t pde d mg t
u pde d mg u j

u u pde d mg dudx j
x
pde d mg beta j x t u u

pde d mg gamma j x t u u

j NPDE

�

�

�

�

�

�

�

� �

�

�

�

1 The assign-to equality, a b:� , used here and below, is read “the expressionb is evaluated and then
assigned to the location a .”

916 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

The value x�{xL, xR}, and the logical flag pde_1d_mg_LEFT=.TRUE. for x = xL. It has the value
pde_1d_mg_LEFT=.FALSE. for x = xR. If any of the functions cannot be evaluated, set
pde_1d_mg_ires=3. Otherwise do not change its value.

IDO=8 This value is assigned by the integrator, requesting the calling program to prepare for
solving a banded linear system of algebraic equations. This value will occur only when
the option for “reverse communication solving” is set in the array IOPT(:), with
option PDE_1D_MG_REV_COMM_FACTOR_SOLVE. The matrix data for this system is in
Band Storage Mode, described in the section: Reference Material for the IMSL Fortran
Numerical Libraries.

PDE_1D_MG_IBAND Half band-width of linear system

PDE_1D_MG_LDA The value 3*PDE_1D_MG_IBAND+1, with
NEQ NPDE N� �1b g

?_PDE_1D_MG_A Array of size PDE_1D_MG_LDA by NEQ
holding the problem matrix in Band Storage
Mode

PDE_1D_MG_PANIC_FLAG Integer set to a non-zero value only if the linear
system is detected as singular

IDO=9 This value is assigned by the integrator , requesting the calling program to solve a
linear system with the matrix defined as noted with IDO=8.

?_PDE_1D_MG_RHS Array of size NEQ holding the linear
system problem right-hand side

PDE_1D_MG_PANIC_FLAG Integer set to a non-zero value only if the
linear system is singular

?_PDE_1D_MG_SOL Array of size NEQ to receive the solution,
after the solving step

U(1:NPDE+1,1:N)—(Input/Output)
This assumed-shape array specifies Input information about the problem size and
boundaries. The dimension of the problem is obtained from NPDE +1 = size(U,1). The
number of grid points is obtained by N = size(U,2). Limits for the variable x are
assigned as input in array locations, U(NPDE +1, 1) = xL, U(NPDE +1, N) =xR. It is
not required to define U(NPDE +1, j), j=2, �, N-1. At completion, the array
U(1:NPDE,1:N)contains the approximate solution value Ui(xj(TOUT),TOUT) in
location U(I,J). The grid value xj(TOUT) is in location U(NPDE+1,J). Normally the
grid values are equally spaced as the integration starts. Variable spaced grid values can
be provided by defining them as Output from the subroutine initial_conditions
or during reverse communication, IDO=5.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 917

Optional Arguments
initial_conditions—(Input)

The name of an external subroutine, written by the user, when using forward
communication. If this argument is not used, then reverse communication is used to
provide the problem information. The routine gives the initial values for the system at
the starting independent variable value T0. This routine can also provide a non-
uniform grid at the initial value.

SUBROUTINE initial_conditions NPDE,N,U

 Integer NPDE, N

 REAL(kind(T0)) U(:,:)

END SUBROUTINE

a f

(Optional) Update the grid of values in array locations

U NPDE j j N(,), ,...,� � �1 2 1. This grid is input equally spaced, but can be
updated as desired, provided the values are increasing.

(Required) Provide initial values U j j N(:,), ,...,� 1 for all components of the system
at the grid of values U NPDE j j N(,), ,...,� �1 1 . If the optional step of
updating the initial grid is performed, then the initial values are evaluated at
the updated grid.

pde_system_definition—(Input)
The name of an external subroutine, written by the user, when using
forward communication. It gives the differential equation, as expressed in Equation 2.

SUBROUTINE pde_system_definition&

 (t, x, NPDE, u, dudx, c, q, r, IRES)

 Integer NPDE, IRES

 REAL(kind(T0)) t, x, u(:), dudx(:)

 REAL(kind(T0)) c(:,:), q(:), r(:)

END SUBROUTINE
Evaluate the terms of the system of . A default value of m � 0 is assumed, but this can be changed
to one of the other choices m � 1 2or . Use the optional argument IOPT(:) for that purpose. Put
the values in the arrays as indicated.

918 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

u u j

u
x

u dudx j

c j k C x t u u

r j r x t u u

q j q x t u u

j k NPDE

j

j

x
j

j k x

j x

j x

�

� �

�

�

�

�

()

(,): , , ,

: , , ,

: , , ,

, ,...,

,

�

�
b g
b g

b g b g
b g b g

1
If any of the functions cannot be evaluated, set IRES=3. Otherwise do not change its value.

boundary_conditions—(Input)
The name of an external subroutine, written by the user when using forward communication. It
gives the boundary conditions, as expressed in Equation 2.

u u j

u
x

u dudx j

beta j x t u u

gamma j x t u u

j NPDE

j

j

x
j

j x

j x

�

� �

�

�

�

()

: , , ,

: , , ,

,...,

�

�

�

�

b g
b g b g
b g b g

1

The value x x xL R� ,l q , and the logical flag LEFT=.TRUE. for x xL� . The flag has the value
LEFT=.FALSE. for x xR� .

IOPT—(Input)
Derived type array s_options or d_options, used for passing optional data to
PDE_1D_MG. See the section Optional Data in the Introduction for an explanation of
the derived type and its use. It is necessary to invoke a module, with the statement USE
ERROR_OPTION_PACKET, near the second line of the program unit. Examples 2-8 use
this optional argument. The choices are as follows:

Packaged Options for PDE_1D_MG

Option Prefix = ? Option Name Option Value

S_, d_ PDE_1D_MG_CART_COORDINATES 1

S_, d_ PDE_1D_MG_CYL_COORDINATES 2

S_, d_ PDE_1D_MG_SPH_COORDINATES 3

S_, d_ PDE_1D_MG_TIME_SMOOTHING 4

S_, d_ PDE_1D_MG_SPATIAL_SMOOTHING 5

S_, d_ PDE_1D_MG_MONITOR_REGULARIZING 6

S_, d_ PDE_1D_MG_RELATIVE_TOLERANCE 7

S_, d_ PDE_1D_MG_ABSOLUTE_TOLERANCE 8

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 919

Packaged Options for PDE_1D_MG

S_, d_ PDE_1D_MG_MAX_BDF_ORDER 9

S_, d_ PDE_1D_MG_REV_COMM_FACTOR_SOLVE 10

s_, d_ PDE_1D_MG_NO_NULLIFY_STACK 11

IOPT(IO) = PDE_1D_MG_CART_COORDINATES
Use the value m � 0 in Equation 2. This is the default.

IOPT(IO) = PDE_1D_MG_CYL_COORDINATES
Use the value m � 1 in Equation 2. The default value is m � 0 .

IOPT(IO) = PDE_1D_MG_SPH_COORDINATES
Use the value m � 2 in Equation 2. The default value is m � 0 .

IOPT(IO) =
?_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,TAU)
This option resets the value of the parameter � � 0, described above.
The default value is � � 0.

IOPT(IO) =
?_OPTIONS(PDE_1D_MG_SPATIAL_SMOOTHING,KAP)
This option resets the value of the parameter � � 0, described above.
The default value is � � 2 .

IOPT(IO) =
?_OPTIONS(PDE_1D_MG_MONITOR_REGULARIZING,ALPH)
This option resets the value of the parameter � � 0, described above.
The default value is � � 0 01. .

IOPT(IO) = ?_OPTIONS
(PDE_1D_MG_RELATIVE_TOLERANCE,RTOL)
This option resets the value of the relative accuracy parameter used in DASPG. The
default value is RTOL=1E-2 for single precision and
RTOL=1D-4 for double precision.

IOPT(IO) = ?_OPTIONS
(PDE_1D_MG_ABSOLUTE_TOLERANCE,ATOL)
This option resets the value of the absolute accuracy parameter used in DASPG. The
default value is ATOL=1E-2 for single precision and
ATOL=1D-4 for double precision.

IOPT(IO) = PDE_1D_MG_MAX_BDF_ORDER
IOPT(IO+1) = MAXBDF
Reset the maximum order for the BDF formulas used in DASPG. The default value is
MAXBDF=2. The new value can be any integer between 1 and 5. Some problems will
benefit by making this change. We used the default value due to the fact that DASPG
may cycle on its selection of order and step-size with orders higher than value 2.

920 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

IOPT(IO) = PDE_1D_MG_REV_COMM_FACTOR_SOLVE
The calling program unit will solve the banded linear systems required in the stiff
differential-algebraic equation integrator. Values of IDO=8, 9 will occur only when
this optional value is used.

IOPT(IO) = PDE_1D_MG_NO_NULLIFY_STACK
To maintain an efficient interface, the routine PDE_1D_MG collapses the subroutine call
stack with CALL_E1PSH(“NULLIFY_STACK”). This implies that the overhead of
maintaining the stack will be eliminated, which may be important with reverse
communication. It does not eliminate error processing. However, precise information
of which routines have errors will not be displayed. To see the full call chain, this
option should be used. Following completion of the integration, stacking is turned
back on with CALL_E1POP(“NULLIFY_STACK”).

FORTRAN 90 Interface
Generic: CALL PDE_1D_MG (T0, TOUT, IDO, [,…])

Specific: The specific interface names are S_PDE_1D_MG and D_PDE_1D_MG.

Remarks on the Examples
Due to its importance and the complexity of its interface, this subroutine is presented with several
examples. Many of the program features are exercised. The problems complete without any
change to the optional arguments, except where these changes are required to describe or to solve
the problem.

In many applications the solution to a PDE is used as an auxiliary variable, perhaps as part of a
larger design or simulation process. The truncation error of the approximate solution is
commensurate with piece-wise linear interpolation on the grid of values, at each output point. To
show that the solution is reasonable, a graphical display is revealing and helpful. We have not
provided graphical output as part of our documentation, but users may already have the Visual
Numerics, Inc. product, PV-WAVE, not included with Fortran 90 MP Library. Examples 1-8
write results in files “PDE_ex0?.out” that can be visualized with PV-WAVE. We provide a
script of commands, “pde_1d_mg_plot.pro”, for viewing the solutions (see example below).
The grid of values and each consecutive solution component is displayed in separate plotting
windows. The script and data files written by examples 1-8 on a SUN-SPARC system are in the
directory for Fortran 90 MP Library examples. When inside PV_WAVE, execute the command
line “pde_1d_mg_plot,filename=’PDE_ex0?.out’” to view the output of a particular
example.

Code for PV-WAVE Plotting (Examples Directory)
PRO PDE_1d_mg_plot, FILENAME = filename, PAUSE = pause
;
 if keyword_set(FILENAME) then file = filename else file = "res.dat"
 if keyword_set(PAUSE) then twait = pause else twait = .1
;
; Define floating point variables that will be read
; from the first line of the data file.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 921

 xl = 0D0
 xr = 0D0
 t0 = 0D0
 tlast = 0D0
;
; Open the data file and read in the problem parameters.
 openr, lun, filename, /get_lun
 readf, lun, npde, np, nt, xl, xr, t0, tlast

; Define the arrays for the solutions and grid.
 u = dblarr(nt, npde, np)
 g = dblarr(nt, np)
 times = dblarr(nt)
;
; Define a temporary array for reading in the data.
 tmp = dblarr(np)
 t_tmp = 0D0
;
; Read in the data.
 for i = 0, nt-1 do begin ; For each step in time
 readf, lun, t_tmp
 times(i) = t_tmp

 for k = 0, npde-1 do begin ; For each PDE:
 rmf, lun, tmp
 u(i,k,*) = tmp ; Read in the components.
 end

 rmf, lun, tmp
 g(i,*) = tmp ; Read in the grid.
 end
;
; Close the data file and free the unit.
 close, lun
 free_lun, lun
;
; We now have all of the solutions and grids.
;
; Delete any window that is currently open.
 while (!d.window NE -1) do WDELETE
;
; Open two windows for plotting the solutions
; and grid.
 window, 0, xsize = 550, ysize = 420
 window, 1, xsize = 550, ysize = 420
;
; Plot the grid.
 wset, 0
 plot, [xl, xr], [t0, tlast], /nodata, ystyle = 1, $
 title = "Grid Points", xtitle = "X", ytitle = "Time"
 for i = 0, np-1 do begin
 oplot, g(*, i), times, psym = -1
 end
;
; Plot the solution(s):

922 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 wset, 1
 for k = 0, npde-1 do begin
 umin = min(u(*,k,*))
 umax = max(u(*,k,*))
 for i = 0, nt-1 do begin
 title = strcompress("U_"+string(k+1), /remove_all)+ $
 " at time "+string(times(i))
 plot, g(i, *), u(i,k,*), ystyle = 1, $
 title = title, xtitle = "X", $
 ytitle = strcompress("U_"+string(k+1), /remove_all), $
 xr = [xl, xr], yr = [umin, umax], $
 psym = -4
 wait, twait
 end
 end

end

Example 1 - Electrodynamics Model
This example is from Blom and Zegeling (1994). The system is

()

(),
where () (/ 3) (2 / 3)
0 1,0 4

1 and 0at 0
0and 0at 0

1and 0at 1
0.143, 0.1743, 17.19

t xx

t xx

x

x

u pu g u v
v pv g u v

g z exp z exp z
x t

u v t
u v x
u v x

p

�

� �

� �

� �

� �

� � �

� � � �

� � �

� � �

� � �

� � �

We make the connection between the model problem statement and the example:

2

1 2

1 2 1

0, ,
(),

x x

C I
m R pu R pv
Q g u v Q Q

�

�

� � �

� � � �

The boundary conditions are

1 2 1 2

1 2 1 2

1, 0, 0, , at 0
0, 1, 1, 0, at 1

L

R

v x x
u x x

� � � �

� � � �

� � � � � �

� � � � � � �

Rationale: Example 1
This is a non-linear problem with sharply changing conditions near t � 0. The default settings of
integration parameters allow the problem to be solved. The use of PDE_1D_MG with forward

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 923

communication requires three subroutines provided by the user to describe the initial conditions,
differential equations, and boundary conditions.

 program PDE_EX1
! Electrodynamics Model:
 USE PDE_1d_mg
 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDE=2, N=51, NFRAMES=5
 INTEGER I, IDO

! Define array space for the solution.
 real(kind(1d0)) U(NPDE+1,N), T0, TOUT
 real(kind(1d0)) :: ZERO=0D0, ONE=1D0, &
 DELTA_T=10D0, TEND=4D0
 EXTERNAL IC_01, PDE_01, BC_01

! Start loop to integrate and write solution values.
 IDO=1
 DO
 SELECT CASE (IDO)

! Define values that determine limits.
 CASE (1)
 T0=ZERO
 TOUT=1D-3
 U(NPDE+1,1)=ZERO;U(NPDE+1,N)=ONE
 OPEN(FILE='PDE_ex01.out',UNIT=7)
 WRITE(7, "(3I5, 4F10.5)") NPDE, N, NFRAMES,&
 U(NPDE+1,1), U(NPDE+1,N), T0, TEND
! Update to the next output point.
! Write solution and check for final point.
 CASE (2)

 WRITE(7,"(F10.5)")TOUT
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO
 T0=TOUT;TOUT=TOUT*DELTA_T
 IF(T0 >= TEND) IDO=3
 TOUT=MIN(TOUT, TEND)

! All completed. Solver is shut down.
 CASE (3)
 CLOSE(UNIT=7)
 EXIT

 END SELECT

! Forward communication is used for the problem data.
 CALL PDE_1D_MG (T0, TOUT, IDO, U,&
 initial_conditions= IC_01,&
 PDE_system_definition= PDE_01,&
 boundary_conditions= BC_01)

 END DO
 END

 SUBROUTINE IC_01(NPDE, NPTS, U)
! This is the initial data for Example 1.
 IMPLICIT NONE
 INTEGER NPDE, NPTS

924 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 REAL(KIND(1D0)) U(NPDE+1,NPTS)
 U(1,:)=1D0;U(2,:)=0D0
 END SUBROUTINE

 SUBROUTINE PDE_01(T, X, NPDE, U, DUDX, C, Q, R, IRES)
! This is the differential equation for Example 1.
 IMPLICIT NONE
 INTEGER NPDE, IRES
 REAL(KIND(1D0)) T, X, U(NPDE), DUDX(NPDE),&
 C(NPDE,NPDE), Q(NPDE), R(NPDE)
 REAL(KIND(1D0)) :: EPS=0.143D0, P=0.1743D0,&
 ETA=17.19D0, Z, TWO=2D0, THREE=3D0

 C=0D0;C(1,1)=1D0;C(2,2)=1D0
 R=P*DUDX;R(1)=R(1)*EPS
 Z=ETA*(U(1)-U(2))/THREE
 Q(1)=EXP(Z)-EXP(-TWO*Z)
 Q(2)=-Q(1)

 END SUBROUTINE

 SUBROUTINE BC_01(T, BTA, GAMA, U, DUDX, NPDE, LEFT, IRES)
! These are the boundary conditions for Example 1.
 IMPLICIT NONE
 INTEGER NPDE, IRES
 LOGICAL LEFT
 REAL(KIND(1D0)) T, BTA(NPDE), GAMA(NPDE),&
 U(NPDE), DUDX(NPDE)

 IF(LEFT) THEN
 BTA(1)=1D0;BTA(2)=0D0
 GAMA(1)=0D0;GAMA(2)=U(2)
 ELSE
 BTA(1)=0D0;BTA(2)=1D0
 GAMA(1)=U(1)-1D0;GAMA(2)=0D0
 END IF
 END SUBROUTINE

Description
The equation

u f u x t x x x t tt L R� � � �(, ,), , 0,

is approximated at N time-dependent grid values

x x x t x t x xL i i N R� � � � � � �
�0 1... ...b g b g .

Using the total differential

du
dt

u u dx
dtt x� �

 transforms the differential equation to

du
dt

u dx
dt

u f u x tx t� � � , ,b g
.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 925

Using central divided differences for the factor ux leads to the system of ordinary differential
equations in implicit form

dU
dt

U U
x x

dx
dt

F t t i Ni i i

i i

i
i�

�

�

� � �
� �

� �

1 1

1 1
0 1

b g
b g , , ,...,

.

The terms Ui, Fi respectively represent the approximate solution to the partial differential equation
and the value of f(u,x,t) at the point (x,t) = (xi,(t),t). The truncation error is second-order in the
space variable, x. The above ordinary differential equations are underdetermined, so additional
equations are added for the variation of the time-dependent grid points. It is necessary to discuss
these equations, since they contain parameters that can be adjusted by the user. Often it will be
necessary to modify these parameters to solve a difficult problem. For this purpose the following
quantities are defined2:

� �

� � � �

1
1

1 1

1 0 1

,

1 2 , 0
,

i i i i i

i i i i i

N N

x x x n x

n n n n i N
n n n n
� � �

�

�

� �

� �

� � � � �

� � � � � � �

� �

The values ni are the so-called point concentration of the grid, and � � 0 denotes a spatial
smoothing parameter. Now the grid points are defined implicitly so that

1 1
1

1

, 1
i

i i

i i

d d
dt dt i N

M M

� �
� � � �

�

�

�

� �

� � � ,

where � � 1 is a time-smoothing parameter. Choosing � very large results in a fixed grid.
Increasing the value of � from its default avoids the error condition where grid lines cross. The
divisors are

M NPDE
U U

x
i

i
j

i
j

ij

NPDE
2 1 1

2

2
1

� �

�
� �

�

�� b g e j
b g� .

The value � determines the level of clustering or spatial smoothing of the grid points. Decreasing
� from its default decrease the amount of spatial smoothing. The parameters Mi approximate arc
length and help determine the shape of the grid or xi-distribution. The parameter �prevents the
grid movement from adjusting immediately to new values of the Mi, thereby avoiding oscillations
in the grid that cause large relative errors. This is important when applied to solutions with steep
gradients.

The discrete form of the differential equation and the smoothing equations are combined to yield
the implicit system of differential equations

2 The three-tiered equal sign, used here and below, is read “a � b or a and b are exactly the same object
or value.”

926 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

A Y dY
dt

L Y

Y U U x U U xNPDE
j j

NPDE
j

T

b g b g�

�

,

,..., , ,..., ,..., , ,...1
1

1 1
1

This is frequently a stiff differential-algebraic system. It is solved using the integrator DASPG and
its subroutines, including D2SPG. These are documented in this chapter. Note that DASPG is
restricted to use within PDE_1D_MG until the routine exits with the flag IDO = 3. If DASPG is
needed during the evaluations of the differential equations or boundary conditions, use of a second
processor and inter-process communication is required. The only options for DASPG set by
PDE_1D_MG are the Maximum BDF Order, and the absolute and relative error values, ATOL and
RTOL. Users may set other options using the Options Manager. This is described in routine
DASPG, see page 889, and generally in Chapter 11 of this manual.

Additional Examples

Example 2 - Inviscid Flow on a Plate
This example is a first order system from Pennington and Berzins, (1994). The equations are

u v
uu vu w
w u uu vu u
u t v t u t u x t t

u x v x x

t x

t x x

x t x xx

R

� �

� � �

� � � �

� � � � � �

� � �

, implying that
0 0 0 1 0

0 1 0 0 0

, , , , , ,

, , , ,
b g b g b g b g
b g b g

Following elimination of w, there remain NPDE � 2 differential equations. The variable t is not
time, but a second space variable. The integration goes from t � 0 to t � 5. It is necessary to
truncate the variable x at a finite value, say x xRmax � � 25. In terms of the integrator, the system
is defined by letting m � 0 and

C C
u

R
v

u
Q

vujk
x x

� �

L
NM
O
QP �

�L
NM
O
QP �

L
NM
O
QPn s 1 0

0
0

, ,

The boundary conditions are satisfied by

� 	

� 	

� �
� �L
NM

O
QP

�

� �
�L
NM
O
QP �

0
20

0
1

,
exp

,

, ,

u t
v

x x

u
v

x x

L

x
R

b g at

at

We use N � � �10 51 61 grid points and output the solution at steps of �t � 01. .

Rationale: Example 2
This is a non-linear boundary layer problem with sharply changing conditions near t � 0. The
problem statement was modified so that boundary conditions are continuous near t � 0. Without

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 927

this change the underlying integration software, DASPG, cannot solve the problem. The

continuous blending function u t� �exp 20b g is arbitrary and artfully chosen. This is a
mathematical change to the problem, required because of the stated discontinuity at t � 0. Reverse
communication is used for the problem data. No additional user-written subroutines are required
when using reverse communication. We also have chosen 10 of the initial grid points to be
concentrated near xL � 0 , anticipating rapid change in the solution near that point. Optional
changes are made to use a pure absolute error tolerance and non-zero time-smoothing.

 program PDE_1D_MG_EX02
! Inviscid Flow Over a Plate
 USE PDE_1d_mg
 USE ERROR_OPTION_PACKET
 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDE=2, N1=10, N2=51, N=N1+N2
 INTEGER I, IDO, NFRAMES
! Define array space for the solution.
 real(kind(1d0)) U(NPDE+1,N), T0, TOUT, DX1, DX2, DIF
 real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-1,&
 TEND=5D0, XMAX=25D0
 real(kind(1d0)) :: U0=1D0, U1=0D0, TDELTA=1D-1, TOL=1D-2
 TYPE(D_OPTIONS) IOPT(3)
! Start loop to integrate and record solution values.
 IDO=1
 DO
 SELECT CASE (IDO)
! Define values that determine limits and options.
 CASE (1)
 T0=ZERO
 TOUT=DELTA_T
 U(NPDE+1,1)=ZERO;U(NPDE+1,N)=XMAX
 OPEN(FILE='PDE_ex02.out',UNIT=7)
 NFRAMES=NINT((TEND+DELTA_T)/DELTA_T)
 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
 U(NPDE+1,1), U(NPDE+1,N), T0, TEND
 DX1=XMAX/N2;DX2=DX1/N1
 IOPT(1)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO)
 IOPT(2)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,TOL)
 IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D-3)

! Update to the next output point.
! Write solution and check for final point.
 CASE (2)
 T0=TOUT
 IF(T0 <= TEND) THEN
 WRITE(7,"(F10.5)")TOUT
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO
 TOUT=MIN(TOUT+DELTA_T,TEND)
 IF(T0 == TEND)IDO=3
 END IF

928 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

! All completed. Solver is shut down.
 CASE (3)

 CLOSE(UNIT=7)
 EXIT

! Define initial data values.
 CASE (5)
 U(:NPDE,:)=ZERO;U(1,:)=ONE
 DO I=1,N1
 U(NPDE+1,I)=(I-1)*DX2
 END DO
 DO I=N1+1,N
 U(NPDE+1,I)=(I-N1)*DX1
 END DO
 WRITE(7,"(F10.5)")T0
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO

! Define differential equations.
 CASE (6)
 D_PDE_1D_MG_C=ZERO
 D_PDE_1D_MG_C(1,1)=ONE
 D_PDE_1D_MG_C(2,1)=D_PDE_1D_MG_U(1)

 D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_U(2)
 D_PDE_1D_MG_R(2)= D_PDE_1D_MG_DUDX(1)

 D_PDE_1D_MG_Q(1)= ZERO
 D_PDE_1D_MG_Q(2)= &
 D_PDE_1D_MG_U(2)*D_PDE_1D_MG_DUDX(1)
! Define boundary conditions.
 CASE (7)
 D_PDE_1D_MG_BETA=ZERO
 IF(PDE_1D_MG_LEFT) THEN
 DIF=EXP(-20D0*D_PDE_1D_MG_T)
! Blend the left boundary value down to zero.
 D_PDE_1D_MG_GAMMA=(/D_PDE_1D_MG_U(1)-DIF,D_PDE_1D_MG_U(2)/)
 ELSE
 D_PDE_1D_MG_GAMMA=(/D_PDE_1D_MG_U(1)-
ONE,D_PDE_1D_MG_DUDX(2)/)
 END IF
 END SELECT

! Reverse communication is used for the problem data.
 CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)
 END DO
 end program

Example 3 - Population Dynamics
This example is from Pennington and Berzins (1994). The system is

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 929

u u I t u x x a x t

I t u x t dx

u x
x

a

u t g b x I t u x t dx t

b x y
xy x

y

g z t

z a t
a a a

t x L R
a

a

� � � � � � � �

�

�
�

� �

�

F
H
GG

I
K
JJ

�
�

�

�

� � � �

� � � � � � �

z

z

b g

b g b g

b g b g
b g

b g b gc h b g

b g b g
b g

b g
b g b gc h

b gc h b g b gc h

,

 where

 and

0 0

0
2

0

1

4 2 2
1 1 1 2 2 1

0

0

2

2

,

,

,
exp

exp

, , , , ,

,
exp

,

,

exp exp
exp exp exp a tb g b gc h� �exp

This is a notable problem because it involves the unknown
u x t

x
a t

,
exp

exp exp
b g b g

b g b g�

�

� � � �1 across
the entire domain. The software can solve the problem by introducing two dependent algebraic
equations:

v t u x t dx

v t x x u x t dx

a

a

1
0

2
0

b g b g

b g b g b g

�

� �

z
z

, ,

exp ,

This leads to the modified system

u u v u x a t

u t
g t v v

v

t x� � � � � �

�

�

1

1 2

1
2

0 0

0
1

1

, ,

,
,b g b gb g

In the interface to the evaluation of the differential equation and boundary conditions, it is

necessary to evaluate the integrals, which are computed with the values of u x t,b g on the grid. The
integrals are approximated using the trapezoid rule, commensurate with the truncation error in the
integrator.

Rationale: Example 3
This is a non-linear integro-differential problem involving non-local conditions for the differential
equation and boundary conditions. Access to evaluation of these conditions is provided using
reverse communication. It is not possible to solve this problem with forward communication,
given the current subroutine interface. Optional changes are made to use an absolute error

930 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

tolerance and non-zero time-smoothing. The time-smoothing value� � 1 prevents grid lines from
crossing.

 program PDE_1D_MG_EX03
! Population Dynamics Model.
 USE PDE_1d_mg
 USE ERROR_OPTION_PACKET
 IMPLICIT NONE
 INTEGER, PARAMETER :: NPDE=1, N=101
 INTEGER IDO, I, NFRAMES
! Define array space for the solution.
 real(kind(1d0)) U(NPDE+1,N), MID(N-1), T0, TOUT, V_1, V_2
 real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, ONE=1D0,&
 TWO=2D0, FOUR=4D0, DELTA_T=1D-1,TEND=5D0, A=5D0
 TYPE(D_OPTIONS) IOPT(3)
! Start loop to integrate and record solution values.
 IDO=1
 DO
 SELECT CASE (IDO)
! Define values that determine limits.
 CASE (1)
 T0=ZERO
 TOUT=DELTA_T
 U(NPDE+1,1)=ZERO;U(NPDE+1,N)=A
 OPEN(FILE='PDE_ex03.out',UNIT=7)
 NFRAMES=NINT((TEND+DELTA_T)/DELTA_T)
 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
 U(NPDE+1,1), U(NPDE+1,N), T0, TEND
 IOPT(1)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO)
 IOPT(2)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2)
 IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D0)
! Update to the next output point.
! Write solution and check for final point.
 CASE (2)
 T0=TOUT
 IF(T0 <= TEND) THEN
 WRITE(7,"(F10.5)")TOUT
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO
 TOUT=MIN(TOUT+DELTA_T,TEND)
 IF(T0 == TEND)IDO=3
 END IF
! All completed. Solver is shut down.
 CASE (3)
 CLOSE(UNIT=7)
 EXIT
! Define initial data values.
 CASE (5)
 U(1,:)=EXP(-U(2,:))/(TWO-EXP(-A))
 WRITE(7,"(F10.5)")T0
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO
! Define differential equations.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 931

 CASE (6)
 D_PDE_1D_MG_C(1,1)=ONE
 D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_U(1)
! Evaluate the approximate integral, for this t.
 V_1=HALF*SUM((U(1,1:N-1)+U(1,2:N))*&
 (U(2,2:N) - U(2,1:N-1)))
 D_PDE_1D_MG_Q(1)=V_1*D_PDE_1D_MG_U(1)
! Define boundary conditions.
 CASE (7)
 IF(PDE_1D_MG_LEFT) THEN
! Evaluate the approximate integral, for this t.
! A second integral is needed at the edge.
 V_1=HALF*SUM((U(1,1:N-1)+U(1,2:N))*&
 (U(2,2:N) - U(2,1:N-1)))
 MID=HALF*(U(2,2:N)+U(2,1:N-1))
 V_2=HALF*SUM(MID*EXP(-MID)*&
 (U(1,1:N-1)+U(1,2:N))*(U(2,2:N)-U(2,1:N-1)))
 D_PDE_1D_MG_BETA=ZERO

D_PDE_1D_MG_GAMMA=G(ONE,D_PDE_1D_MG_T)*V_1*V_2/(V_1+ONE)**2-&
 D_PDE_1D_MG_U
 ELSE
 D_PDE_1D_MG_BETA=ZERO
 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX(1)
 END IF
 END SELECT
! Reverse communication is used for the problem data.
 CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)
 END DO
CONTAINS
 FUNCTION G(z,t)
 IMPLICIT NONE
 REAL(KIND(1d0)) Z, T, G
 G=FOUR*Z*(TWO-TWO*EXP(-A)+EXP(-T))**2
 G=G/((ONE-EXP(-A))*(ONE-(ONE+TWO*A)*&
 EXP(-TWO*A))*(1-EXP(-A)+EXP(-T)))
 END FUNCTION
 end program

Example 4 - A Model in Cylindrical Coordinates
This example is from Blom and Zegeling (1994). The system models a reactor-diffusion problem:

T r
rT
r

T
T

T z T z z

T r r

z
r

r

� �
�

� � �

� � �

� � �

�

�

F
H
I
K

1

4

1

0 0 1 0 0

0 0 0 1

10 1 01

� �

�
�

	

� � 	

a f

a f a f
a f

exp

, , , ,

, ,

, , .
The axial direction z is treated as a time coordinate. The radius r is treated as the single space
variable.

932 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

Rationale: Example 4
This is a non-linear problem in cylindrical coordinates. Our example illustrates assigning m � 1 in
Equation 2. We provide an optional argument that resets this value from its default, m � 0 .
Reverse communication is used to interface with the problem data.

 program PDE_1D_MG_EX04
! Reactor-Diffusion problem in cylindrical coordinates.
 USE pde_1d_mg
 USE error_option_packet
 IMPLICIT NONE
 INTEGER, PARAMETER :: NPDE=1, N=41
 INTEGER IDO, I, NFRAMES
! Define array space for the solution.
 real(kind(1d0)) T(NPDE+1,N), Z0, ZOUT
 real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_Z=1D-1,&
 ZEND=1D0, ZMAX=1D0, BTA=1D-4, GAMA=1D0, EPS=1D-1
 TYPE(D_OPTIONS) IOPT(1)
! Start loop to integrate and record solution values.
 IDO=1
 DO
 SELECT CASE (IDO)
! Define values that determine limits.
 CASE (1)
 Z0=ZERO
 ZOUT=DELTA_Z
 T(NPDE+1,1)=ZERO;T(NPDE+1,N)=ZMAX
 OPEN(FILE='PDE_ex04.out',UNIT=7)
 NFRAMES=NINT((ZEND+DELTA_Z)/DELTA_Z)
 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
 T(NPDE+1,1), T(NPDE+1,N), Z0, ZEND
 IOPT(1)=PDE_1D_MG_CYL_COORDINATES
! Update to the next output point.
! Write solution and check for final point.
 CASE (2)
 IF(Z0 <= ZEND) THEN
 WRITE(7,"(F10.5)")ZOUT
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")T(I,:)
 END DO
 ZOUT=MIN(ZOUT+DELTA_Z,ZEND)
 IF(Z0 == ZEND)IDO=3
 END IF
! All completed. Solver is shut down.
 CASE (3)
 CLOSE(UNIT=7)
 EXIT
! Define initial data values.
 CASE (5)
 T(1,:)=ZERO
 WRITE(7,"(F10.5)")Z0
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")T(I,:)
 END DO
! Define differential equations.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 933

 CASE (6)
 D_PDE_1D_MG_C(1,1)=ONE
 D_PDE_1D_MG_R(1)=BTA*D_PDE_1D_MG_DUDX(1)
 D_PDE_1D_MG_Q(1)= -GAMA*EXP(D_PDE_1D_MG_U(1)/&
 (ONE+EPS*D_PDE_1D_MG_U(1)))
! Define boundary conditions.
 CASE (7)
 IF(PDE_1D_MG_LEFT) THEN
 D_PDE_1D_MG_BETA=ONE; D_PDE_1D_MG_GAMMA=ZERO
 ELSE
 D_PDE_1D_MG_BETA=ZERO; D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U(1)
 END IF
 END SELECT
! Reverse communication is used for the problem data.
! The optional derived type changes the internal model
! to use cylindrical coordinates.
 CALL PDE_1D_MG (Z0, ZOUT, IDO, T, IOPT=IOPT)
 END DO
 end program

Example 5 - A Flame Propagation Model
This example is presented more fully in Verwer, et al., (1989). The system is a normalized

problem relating mass density u x t,b g and temperature v x t,b g :
u u uf v

v v uf v

f z z
x t

u x v x
u v x
u v b t x

b t t

t t

t xx

t xx

x x

x

� �

� �

� � � � �

� � � �

� �

� � �

� � �

� � �

� � � �

�

�

b g
b g

b g b g

b g b g

b g
b g

,

exp / , , .
, .

, , , .
,

, , ,

. , ,

,

where

 where

for and

= 0.2 +5 10 for 3

� � � �4 352 10
0 1 0 0 006

0 1 0 0 2
0 0

0 1

12 2 10

0 2 10

6

4

4

Rationale: Example 5
This is a non-linear problem. The example shows the model steps for replacing the banded solver
in the software with one of the user’s choice. Reverse communication is used for the interface to
the problem data and the linear solver. Following the computation of the matrix factorization in
DL2CRB, we declare the system to be singular when the reciprocal of the condition number is
smaller than the working precision. This choice is not suitable for all problems. Attention must
be given to detecting a singularity when this option is used.

 program PDE_1D_MG_EX05
! Flame propagation model
 USE pde_1d_mg
 USE ERROR_OPTION_PACKET

934 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 USE Numerical_Libraries, ONLY :&
 dl2crb, dlfsrb
 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDE=2, N=40, NEQ=(NPDE+1)*N
 INTEGER I, IDO, NFRAMES, IPVT(NEQ)

! Define array space for the solution.
 real(kind(1d0)) U(NPDE+1,N), T0, TOUT
! Define work space for the banded solver.
 real(kind(1d0)) WORK(NEQ), RCOND
 real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-4,&
 TEND=6D-3, XMAX=1D0, BTA=4D0, GAMA=3.52D6
 TYPE(D_OPTIONS) IOPT(1)
! Start loop to integrate and record solution values.
 IDO=1
 DO
 SELECT CASE (IDO)

! Define values that determine limits.
 CASE (1)
 T0=ZERO
 TOUT=DELTA_T
 U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX
 OPEN(FILE='PDE_ex05.out',UNIT=7)
 NFRAMES=NINT((TEND+DELTA_T)/DELTA_T)
 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
 U(NPDE+1,1), U(NPDE+1,N), T0, TEND
 IOPT(1)=PDE_1D_MG_REV_COMM_FACTOR_SOLVE
! Update to the next output point.
! Write solution and check for final point.
 CASE (2)
 T0=TOUT
 IF(T0 <= TEND) THEN
 WRITE(7,"(F10.5)")TOUT
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO
 TOUT=MIN(TOUT+DELTA_T,TEND)
 IF(T0 == TEND)IDO=3
 END IF

! All completed. Solver is shut down.
 CASE (3)
 CLOSE(UNIT=7)
 EXIT

! Define initial data values.
 CASE (5)
 U(1,:)=ONE; U(2,:)=2D-1
 WRITE(7,"(F10.5)")T0
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO
! Define differential equations.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 935

 CASE (6)
 D_PDE_1D_MG_C=ZERO
 D_PDE_1D_MG_C(1,1)=ONE; D_PDE_1D_MG_C(2,2)=ONE

 D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX

 D_PDE_1D_MG_Q(1)= D_PDE_1D_MG_U(1)*F(D_PDE_1D_MG_U(2))
 D_PDE_1D_MG_Q(2)= -D_PDE_1D_MG_Q(1)
! Define boundary conditions.
 CASE (7)
 IF(PDE_1D_MG_LEFT) THEN
 D_PDE_1D_MG_BETA=ZERO;D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX
 ELSE
 D_PDE_1D_MG_BETA(1)=ONE
 D_PDE_1D_MG_GAMMA(1)=ZERO
 D_PDE_1D_MG_BETA(2)=ZERO
 IF(D_PDE_1D_MG_T >= 2D-4) THEN
 D_PDE_1D_MG_GAMMA(2)=12D-1
 ELSE
 D_PDE_1D_MG_GAMMA(2)=2D-1+5D3*D_PDE_1D_MG_T
 END IF
 D_PDE_1D_MG_GAMMA(2)=D_PDE_1D_MG_GAMMA(2)-&
 D_PDE_1D_MG_U(2)
 END IF
 CASE(8)
! Factor the banded matrix. This is the same solver used
! internally but that is not required. A user can substitute
! one of their own.
 call dl2crb (neq, d_pde_1d_mg_a, pde_1d_mg_lda,
pde_1d_mg_iband,&
 pde_1d_mg_iband, d_pde_1d_mg_a, pde_1d_mg_lda, ipvt, rcond,
work)
 IF(rcond <= EPSILON(ONE)) pde_1d_mg_panic_flag = 1
 CASE(9)
! Solve using the factored banded matrix.
 call dlfsrb(neq, d_pde_1d_mg_a, pde_1d_mg_lda,
pde_1d_mg_iband,&
 pde_1d_mg_iband, ipvt, d_pde_1d_mg_rhs, 1, d_pde_1d_mg_sol)
 END SELECT

! Reverse communication is used for the problem data.
 CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)
 END DO
CONTAINS
 FUNCTION F(Z)
 IMPLICIT NONE
 REAL(KIND(1D0)) Z, F
 F=GAMA*EXP(-BTA/Z)
 END FUNCTION
 end program

936 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

Example 6 - A ‘Hot Spot’ Model
This example is presented more fully in Verwer, et al., (1989). The system is a normalized

problem relating the temperature u x t,b g, of a reactant in a chemical system. The formula for
h zb g is equivalent to their example.

u u h u

h z R
a

a z z

a R
x t

u x
u x
u x

t xx

x

� �

� � � � �

� � �

� � � �

�

� �

� �

b g
b g b g b gc h

b g

,

exp / ,

, ,
, .

,
,

,

where
�

�

�

1 1 1

1 20 5
0 1 0 0 29

0 1
0 0

1 1

Rationale: Example 6
This is a non-linear problem. The output shows a case where a rapidly changing front, or hot-spot,
develops after a considerable way into the integration. This causes rapid change to the grid. An
option sets the maximum order BDF formula from its default value of 2 to the theoretical stable
maximum value of 5.

 USE pde_1d_mg
 USE error_option_packet
 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDE=1, N=80
 INTEGER I, IDO, NFRAMES

! Define array space for the solution.
 real(kind(1d0)) U(NPDE+1,N), T0, TOUT
 real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-2,&
 TEND=29D-2, XMAX=1D0, A=1D0, DELTA=2D1, R=5D0
 TYPE(D_OPTIONS) IOPT(2)
! Start loop to integrate and record solution values.
 IDO=1
 DO
 SELECT CASE (IDO)

! Define values that determine limits.
 CASE (1)
 T0=ZERO
 TOUT=DELTA_T
 U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX
 OPEN(FILE='PDE_ex06.out',UNIT=7)
 NFRAMES=(TEND+DELTA_T)/DELTA_T
 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
 U(NPDE+1,1), U(NPDE+1,N), T0, TEND
! Illustrate allowing the BDF order to increase
! to its maximum allowed value.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 937

 IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER
 IOPT(2)=5
! Update to the next output point.
! Write solution and check for final point.
 CASE (2)
 T0=TOUT
 IF(T0 <= TEND) THEN
 WRITE(7,"(F10.5)")TOUT
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO
 TOUT=MIN(TOUT+DELTA_T,TEND)
 IF(T0 == TEND)IDO=3
 END IF
! All completed. Solver is shut down.
 CASE (3)
 CLOSE(UNIT=7)
 EXIT

! Define initial data values.
 CASE (5)
 U(1,:)=ONE
 WRITE(7,"(F10.5)")T0
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO
! Define differential equations.
 CASE (6)
 D_PDE_1D_MG_C=ONE
 D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX
 D_PDE_1D_MG_Q= - H(D_PDE_1D_MG_U(1))

! Define boundary conditions.
 CASE (7)
 IF(PDE_1D_MG_LEFT) THEN
 D_PDE_1D_MG_BETA=ZERO
 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX
 ELSE

 D_PDE_1D_MG_BETA=ZERO
 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U(1)-ONE
 END IF
 END SELECT

! Reverse communication is used for the problem data.
 CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)
 END DO
CONTAINS
 FUNCTION H(Z)
 real(kind(1d0)) Z, H
 H=(R/(A*DELTA))*(ONE+A-Z)*EXP(-DELTA*(ONE/Z-ONE))
 END FUNCTION
 end program

938 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

Example 7 - Traveling Waves
This example is presented more fully in Verwer, et al., (1989). The system is a normalized

problem relating the interaction of two waves, u x t,b g and v x t,b g moving in opposite directions.
The waves meet and reduce in amplitude, due to the non-linear terms in the equation. Then they
separate and travel onward, with reduced amplitude.

u u uv
v v uv

x t

u x x x

v x x x

u v t

t x

t x

� � �

� �

� � � � �

� � � � �

�

� � �

�

� � �

100
100

05 05 0 05

0 05 1 10 0 3 01

0

0 05 1 10 01 0 3

0
0 0

,
,

. . , .

, . cos , . , . ,

,

, . cos , . , . ,

,

b g b gc h

b g b gc h

�

�

 and

 otherwise

 and

 otherwise
 at both ends,

Rationale: Example 7
This is a non-linear system of first order equations.

 program PDE_1D_MG_EX07
! Traveling Waves
 USE pde_1d_mg
 USE error_option_packet
 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDE=2, N=50
 INTEGER I, IDO, NFRAMES

! Define array space for the solution.
 real(kind(1d0)) U(NPDE+1,N), TEMP(N), T0, TOUT
 real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, &
 ONE=1D0, DELTA_T=5D-2,TEND=5D-1, PI
 TYPE(D_OPTIONS) IOPT(5)
! Start loop to integrate and record solution values.
 IDO=1
 DO
 SELECT CASE (IDO)

! Define values that determine limits.
 CASE (1)
 T0=ZERO
 TOUT=DELTA_T
 U(NPDE+1,1)=-HALF; U(NPDE+1,N)=HALF
 OPEN(FILE='PDE_ex07.out',UNIT=7)
 NFRAMES=(TEND+DELTA_T)/DELTA_T
 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
 U(NPDE+1,1), U(NPDE+1,N), T0, TEND
 IOPT(1)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D-3)
 IOPT(2)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 939

 IOPT(3)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-3)
 IOPT(4)=PDE_1D_MG_MAX_BDF_ORDER
 IOPT(5)=3
! Update to the next output point.
! Write solution and check for final point.
 CASE (2)
 T0=TOUT
 IF(T0 <= TEND) THEN
 WRITE(7,"(F10.5)")TOUT
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO
 TOUT=MIN(TOUT+DELTA_T,TEND)
 IF(T0 == TEND)IDO=3
 END IF

! All completed. Solver is shut down.
 CASE (3)
 CLOSE(UNIT=7)
 EXIT

! Define initial data values.
 CASE (5)
 TEMP=U(3,:)
 U(1,:)=PULSE(TEMP); U(2,:)=U(1,:)
 WHERE (TEMP < -3D-1 .or. TEMP > -1D-1) U(1,:)=ZERO
 WHERE (TEMP < 1D-1 .or. TEMP > 3D-1) U(2,:)=ZERO
 WRITE(7,"(F10.5)")T0
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO

! Define differential equations.
 CASE (6)
 D_PDE_1D_MG_C=ZERO
 D_PDE_1D_MG_C(1,1)=ONE; D_PDE_1D_MG_C(2,2)=ONE

 D_PDE_1D_MG_R=D_PDE_1D_MG_U
 D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_R(1)

 D_PDE_1D_MG_Q(1)= 100D0*D_PDE_1D_MG_U(1)*D_PDE_1D_MG_U(2)
 D_PDE_1D_MG_Q(2)= D_PDE_1D_MG_Q(1)

! Define boundary conditions.
 CASE (7)
 D_PDE_1D_MG_BETA=ZERO;D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U

 END SELECT

! Reverse communication is used for the problem data.
 CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)
 END DO
CONTAINS
 FUNCTION PULSE(Z)
 real(kind(1d0)) Z(:), PULSE(SIZE(Z))

940 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 PI=ACOS(-ONE)
 PULSE=HALF*(ONE+COS(10D0*PI*Z))
 END FUNCTION
 end program

Example 8 - Black-Scholes

The value of a European “call option,” c s t,b g , with exercise price e and expiration date T ,

satisfies the “asset-or-nothing payoff ” c s T s s e s e, , ; ,b g � � � �0 . Prior to expiration c s t,b g is
estimated by the Black-Scholes differential equation

c s c rsc rc c s c r sc rct ss s t s s s� � � � � � � � �
� �

�

2
2

2
2 2

2 2
0e j e j

. The parameters in the model are

the risk-free interest rate, r , and the stock volatility,� . The boundary conditions are c t0 0,b g �

and c s t ss , ,b g � � �1 . This development is described in Wilmott, et al. (1995), pages 41-57.
There are explicit solutions for this equation based on the Normal Curve of Probability. The
normal curve, and the solution itself, can be efficiently computed with the IMSL function ANORDF,
IMSL (1994), page 186. With numerical integration the equation itself or the payoff can be

readily changed to include other formulas, c s T,b g, and corresponding boundary conditions. We

use e r T t s sL R� � � � � � �100 0 08 0 25 0 04 0 1502, . , . , . , ,� and .

Rationale: Example 8
This is a linear problem but with initial conditions that are discontinuous. It is necessary to use a
positive time-smoothing value to prevent grid lines from crossing. We have used an absolute
tolerance of 10 3� . In $US, this is one-tenth of a cent.

 program PDE_1D_MG_EX08
! Black-Scholes call price
 USE pde_1d_mg
 USE error_option_packet
 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDE=1, N=100
 INTEGER I, IDO, NFRAMES

! Define array space for the solution.
 real(kind(1d0)) U(NPDE+1,N), T0, TOUT, SIGSQ, XVAL
 real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, ONE=1D0, &
 DELTA_T=25D-3, TEND=25D-2, XMAX=150, SIGMA=2D-1, &
 R=8D-2, E=100D0
 TYPE(D_OPTIONS) IOPT(5)
! Start loop to integrate and record solution values.
 IDO=1
 DO
 SELECT CASE (IDO)

! Define values that determine limits.
 CASE (1)
 T0=ZERO

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 941

 TOUT=DELTA_T
 U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX
 OPEN(FILE='PDE_ex08.out',UNIT=7)
 NFRAMES=NINT((TEND+DELTA_T)/DELTA_T)
 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
 U(NPDE+1,1), U(NPDE+1,N), T0, TEND
 SIGSQ=SIGMA**2
! Illustrate allowing the BDF order to increase
! to its maximum allowed value.
 IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER
 IOPT(2)=5
 IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,5D-3)
 IOPT(4)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO)
 IOPT(5)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2)
! Update to the next output point.
! Write solution and check for final point.
 CASE (2)
 T0=TOUT
 IF(T0 <= TEND) THEN
 WRITE(7,"(F10.5)")TOUT
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO
 TOUT=MIN(TOUT+DELTA_T,TEND)
 IF(T0 == TEND)IDO=3
 END IF
! All completed. Solver is shut down.
 CASE (3)
 CLOSE(UNIT=7)
 EXIT

! Define initial data values.
 CASE (5)
 U(1,:)=MAX(U(NPDE+1,:)-E,ZERO) ! Vanilla European Call
 U(1,:)=U(NPDE+1,:) ! Asset-or-nothing Call
 WHERE(U(1,:) <= E) U(1,:)=ZERO ! on these two lines
 WRITE(7,"(F10.5)")T0
 DO I=1,NPDE+1
 WRITE(7,"(4E15.5)")U(I,:)
 END DO
! Define differential equations.
 CASE (6)
 XVAL=D_PDE_1D_MG_X
 D_PDE_1D_MG_C=ONE
 D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX*XVAL**2*SIGSQ*HALF
 D_PDE_1D_MG_Q=-(R-SIGSQ)*XVAL*D_PDE_1D_MG_DUDX+R*D_PDE_1D_MG_U
! Define boundary conditions.
 CASE (7)
 IF(PDE_1D_MG_LEFT) THEN
 D_PDE_1D_MG_BETA=ZERO
 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U
 ELSE

 D_PDE_1D_MG_BETA=ZERO
 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX(1)-ONE

942 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 END IF
 END SELECT

! Reverse communication is used for the problem data.
 CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)
 END DO

 end program

Example 9 - Electrodynamics, Parameters Studied with MPI
This example, described above in Example 1, is from Blom and Zegeling (1994). The system

parameters � �, ,p and , are varied, using uniform random numbers. The intervals studied are
01 0 2 01 0 2 10 20. . , . . ,� � � � � �� �p and . Using N � 21 grid values and other program options,

the elapsed time, parameter values, and the value
v x t

x t
,

,b g
� �1 4 are sent to the root node. This

information is written on a file. The final summary includes the minimum value of

v x t
x t

,
,b g

� �1 4,

and the maximum and average time per integration, per node.

Rationale: Example 9
This is a non-linear simulation problem. Using at least two integrating processors and MPI allows
more values of the parameters to be studied in a given time than with a single processor. This
code is valuable as a study guide when an application needs to estimate timing and other output
parameters. The simulation time is controlled at the root node. An integration is started, after
receiving results, within the first SIM_TIME seconds. The elapsed time will be longer than
SIM_TIME by the slowest processor’s time for its last integration.

 program PDE_1D_MG_EX09
! Electrodynamics Model, parameter study.
 USE PDE_1d_mg
 USE MPI_SETUP_INT
 USE RAND_INT
 USE SHOW_INT
 IMPLICIT NONE
 INCLUDE "mpif.h"
 INTEGER, PARAMETER :: NPDE=2, N=21
 INTEGER I, IDO, IERROR, CONTINUE, STATUS(MPI_STATUS_SIZE)
 INTEGER, ALLOCATABLE :: COUNTS(:)
! Define array space for the solution.
 real(kind(1d0)) :: U(NPDE+1,N), T0, TOUT
 real(kind(1d0)) :: ZERO=0D0, ONE=1D0,DELTA_T=10D0, TEND=4D0
! SIM_TIME is the number of seconds to run the simulation.
 real(kind(1d0)) :: EPS, P, ETA, Z, TWO=2D0, THREE=3D0,
SIM_TIME=60D0
 real(kind(1d0)) :: TIMES, TIMEE, TIMEL, TIME, TIME_SIM,
V_MIN, DATA(5)
 real(kind(1d0)), ALLOCATABLE :: AV_TIME(:), MAX_TIME(:)
 TYPE(D_OPTIONS) IOPT(4), SHOW_IOPT(2)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 943

 TYPE(S_OPTIONS) SHOW_INTOPT(2)
 MP_NPROCS=MP_SETUP(1)
 MPI_NODE_PRIORITY=(/(I-1,I=1,MP_NPROCS)/)
! If NP_NPROCS=1, the program stops. Change
! MPI_ROOT_WORKS=.TRUE. if MP_NPROCS=1.
 MPI_ROOT_WORKS=.FALSE.
 IF(.NOT. MPI_ROOT_WORKS .and. MP_NPROCS == 1) STOP
 ALLOCATE(AV_TIME(MP_NPROCS), MAX_TIME(MP_NPROCS),
COUNTS(MP_NPROCS))
! Get time start for simulation timing.
 TIME=MPI_WTIME()
 IF(MP_RANK == 0) OPEN(FILE='PDE_ex09.out',UNIT=7)
 SIMULATE: DO
! Pick random parameter values.
 EPS=1D-1*(ONE+rand(EPS))
 P=1D-1*(ONE+rand(P))
 ETA=10D0*(ONE+rand(ETA))
! Start loop to integrate and communicate solution times.
 IDO=1
! Get time start for each new problem.
 DO
 IF(.NOT. MPI_ROOT_WORKS .and. MP_RANK == 0) EXIT
 SELECT CASE (IDO)
! Define values that determine limits.
 CASE (1)
 T0=ZERO
 TOUT=1D-3
 U(NPDE+1,1)=ZERO;U(NPDE+1,N)=ONE
 IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER
 IOPT(2)=5
 IOPT(3)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,1D-2)
 IOPT(4)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2)

 TIMES=MPI_WTIME()
! Update to the next output point.
! Write solution and check for final point.
 CASE (2)
 T0=TOUT;TOUT=TOUT*DELTA_T
 IF(T0 >= TEND) IDO=3
 TOUT=MIN(TOUT, TEND)
! All completed. Solver is shut down.
 CASE (3)
 TIMEE=MPI_WTIME()
 EXIT
! Define initial data values.
 CASE (5)
 U(1,:)=1D0;U(2,:)=0D0
! Define differential equations.
 CASE (6)

D_PDE_1D_MG_C=0D0;D_PDE_1D_MG_C(1,1)=1D0;D_PDE_1D_MG_C(2,2)=1D0
 D_PDE_1D_MG_R=P*D_PDE_1D_MG_DUDX
D_PDE_1D_MG_R(1)=D_PDE_1D_MG_R(1)*EPS
 Z=ETA*(D_PDE_1D_MG_U(1)-D_PDE_1D_MG_U(2))/THREE
 D_PDE_1D_MG_Q(1)=EXP(Z)-EXP(-TWO*Z)

944 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 D_PDE_1D_MG_Q(2)=-D_PDE_1D_MG_Q(1)
! Define boundary conditions.
 CASE (7)
 IF(PDE_1D_MG_LEFT) THEN
 D_PDE_1D_MG_BETA(1)=1D0;D_PDE_1D_MG_BETA(2)=0D0

D_PDE_1D_MG_GAMMA(1)=0D0;D_PDE_1D_MG_GAMMA(2)=D_PDE_1D_MG_U(2)
 ELSE
 D_PDE_1D_MG_BETA(1)=0D0;D_PDE_1D_MG_BETA(2)=1D0
 D_PDE_1D_MG_GAMMA(1)=D_PDE_1D_MG_U(1)-
1D0;D_PDE_1D_MG_GAMMA(2)=0D0
 END IF
 END SELECT
! Reverse communication is used for the problem data.
 CALL PDE_1D_MG (T0, TOUT, IDO, U)
 END DO
 TIMEL=TIMEE-TIMES
 DATA=(/EPS, P, ETA, U(2,N), TIMEL/)
 IF(MP_RANK > 0) THEN
! Send parameters and time to the root.
 CALL MPI_SEND(DATA, 5, MPI_DOUBLE_PRECISION,0, MP_RANK,
MP_LIBRARY_WORLD, IERROR)
! Receive back a "go/stop" flag.
 CALL MPI_RECV(CONTINUE, 1, MPI_INTEGER, 0, MPI_ANY_TAG,
MP_LIBRARY_WORLD, STATUS, IERROR)
! If root notes that time is up, it sends node a quit flag.
 IF(CONTINUE == 0) EXIT SIMULATE
 ELSE
! If root is working, record its result and then stand ready
! for other nodes to send.
 IF(MPI_ROOT_WORKS) WRITE(7,*) MP_RANK, DATA
! If all nodes have reported, then quit.
 IF(COUNT(MPI_NODE_PRIORITY >= 0) == 0) EXIT SIMULATE
! See if time is up. Some nodes still must report.
 IF(MPI_WTIME()-TIME >= SIM_TIME) THEN
 CONTINUE=0
 ELSE
 CONTINUE=1
 END IF
! Root receives simulation data and finds which node sent it.
 IF(MP_NPROCS > 1) THEN
 CALL MPI_RECV(DATA, 5,
MPI_DOUBLE_PRECISION,MPI_ANY_SOURCE, MPI_ANY_TAG, MP_LIBRARY_WORLD,
STATUS, IERROR)
 WRITE(7,*) STATUS(MPI_SOURCE), DATA
! If time at the root has elapsed, nodes receive signal to stop.
! Send the reporting node the "go/stop" flag.
! Mark if a node has been stopped.
 CALL MPI_SEND(CONTINUE, 1, MPI_INTEGER,
STATUS(MPI_SOURCE), 0, MP_LIBRARY_WORLD, IERROR)
 IF (CONTINUE == 0)
MPI_NODE_PRIORITY(STATUS(MPI_SOURCE)+1) =-
MPI_NODE_PRIORITY(STATUS(MPI_SOURCE)+1)-1
 END IF
 IF (CONTINUE == 0) MPI_NODE_PRIORITY(1)=-1

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 945

 END IF
 END DO SIMULATE
 IF(MP_RANK == 0) THEN
 ENDFILE(UNIT=7);REWIND(UNIT=7)
! Read the data. Find extremes and averages.
 MAX_TIME=ZERO;AV_TIME=ZERO;COUNTS=0;V_MIN=HUGE(ONE)
 DO
 READ(7,*, END=10) I, DATA
 COUNTS(I+1)=COUNTS(I+1)+1
 AV_TIME(I+1)=AV_TIME(I+1)+DATA(5)
 IF(MAX_TIME(I+1) < DATA(5)) MAX_TIME(I+1)=DATA(5)
 V_MIN=MIN(V_MIN, DATA(4))
 END DO
10 CONTINUE
 CLOSE(UNIT=7)
! Set printing Index to match node numbering.
 SHOW_IOPT(1)= SHOW_STARTING_INDEX_IS
 SHOW_IOPT(2)=0
 SHOW_INTOPT(1)=SHOW_STARTING_INDEX_IS
 SHOW_INTOPT(2)=0
 CALL SHOW(MAX_TIME,"Maximum Integration Time, per
process:",IOPT=SHOW_IOPT)
 AV_TIME=AV_TIME/MAX(1,COUNTS)
 CALL SHOW(AV_TIME,"Average Integration Time, per
process:",IOPT=SHOW_IOPT)
 CALL SHOW(COUNTS,"Number of
Integrations",IOPT=SHOW_INTOPT)
 WRITE(*,"(1x,A,F6.3)") "Minimum value for v(x,t),at
x=1,t=4: ",V_MIN
 END IF
 MP_NPROCS=MP_SETUP("Final")
 end program

946 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

MOLCH
Solves a system of partial differential equations of the form ut = f(x, t, u, ux, uxx) using the method
of lines. The solution is represented with cubic Hermite polynomials.

Required Arguments
IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal reentry

3 Final call, release workspace

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this
value is then used for all but the last call that is made with IDO = 3.

FCNUT — User-supplied SUBROUTINE to evaluate the function ut. The usage is
CALL FCNUT (NPDES, X, T, U, UX, UXX, UT), where
 NPDES – Number of equations. (Input)
 X – Space variable, x. (Input)
 T – Time variable, t. (Input)
 U – Array of length NPDES containing the dependent variable values,
 u. (Input)
 UX – Array of length NPDES containing the first derivatives ux.
 (Input)
 UXX – Array of length NPDES containing the second derivative uxx.
 (Input)
 UT – Array of length NPDES containing the computed derivatives, ut.
 (Output)

The name FCNUT must be declared EXTERNAL in the calling program.

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The boundary
conditions accepted by MOLCH are �k uk + �k ux � �k. Note: Users must supply the
values �k and �k, which determine the values �k. Since the �k can depend on t, values of
��k are also required. Users must supply these values. The usage is CALL FCNBC
(NPDES, X, T, ALPHA, BTA, GAMMAP), where

 NPDES – Number of equations. (Input)
X – Space variable, x. This value directs which boundary condition to compute.
(Input)
T – Time variable, t. (Input)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 947

ALPHA – Array of length NPDES containing the �k values. (Output)
BTA – Array of length NPDES containing the �k values. (Output)

GAMMAP – Array of length NPDES containing the values of the derivatives, k
k

d
dt

��
�

�

(Output)

 The name FCNBC must be declared EXTERNAL in the calling program.

T — Independent variable, t. (Input/Output)
On input, T supplies the initial time, t�. On output, T is set to the value to which the
integration has been updated. Normally, this new value is TEND.

TEND — Value of t = tend at which the solution is desired. (Input)

XBREAK — Array of length NX containing the break points for the cubic Hermite splines
used in the x discretization. (Input)
The points in the array XBREAK must be strictly increasing. The values XBREAK(1) and
XBREAK(NX) are the endpoints of the interval.

Y — Array of size NPDES by NX containing the solution. (Input/Output)
The array Y contains the solution as Y(k, i) = uk(x, tend) at x = XBREAK(i). On input, Y
contains the initial values. It MUST satisfy the boundary conditions. On output, Y
contains the computed solution.
There is an optional application of MOLCH that uses derivative values, ux(x, t�). The user
allocates twice the space for Y to pass this information. The optional derivative
information is input as

� � � �0Y k,i NX ,ku x t
x

�

�
� �

 at x = X(i). The array Y contains the optional derivative values as output:

 � � � �Y k,i NX ,ku x tend
x

�

�
� �

 at x = X(i). To signal that this information is provided, use an options manager call as
outlined in Comment 3 and illustrated in Examples 3 and 4.

Optional Arguments
NPDES — Number of differential equations. (Input)

Default: NPDES = size (Y,1).

NX — Number of mesh points or lines. (Input)
Default: NX = size (Y,2).

948 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

TOL — Differential equation error tolerance. (Input)
An attempt is made to control the local error in such a way that the global relative error
is proportional to TOL.
Default: TOL = 100. * machine precision.

HINIT — Initial step size in the t integration. (Input)
This value must be nonnegative. If HINIT is zero, an initial step size of 0.001|tend � t�|
will be arbitrarily used. The step will be applied in the direction of integration.
Default: HINIT = 0.0.

LDY — Leading dimension of Y exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDY = size (Y,1).

FORTRAN 90 Interface
Generic: CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y [,…])

Specific: The specific interface names are S_MOLCH and D_MOLCH.

FORTRAN 77 Interface
Single: CALL MOLCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK,

 TOL, HINIT, Y, LDY)

Double: The double precision name is DMOLCH.

Example 1
The normalized linear diffusion PDE, ut = uxx, 0 � x � 1, t > t�, is solved. The initial values are
t� = 0, u(x, t�) = u� = 1. There is a “zero-flux” boundary condition at x = 1, namely ux(1, t) = 0,
(t > t�). The boundary value of u(0, t) is abruptly changed from u� to the value u� = 0.1. This
transition is completed by t = t� = 0.09.

Due to restrictions in the type of boundary conditions sucessfully processed by MOLCH, it is
necessary to provide the derivative boundary value function �� at x = 0 and at x = 1. The function
� at x = 0 makes a smooth transition from the value u� at t = t��to the value u� at t = t�. We
compute the transition phase for �� by evaluating a cubic interpolating polynomial. For this
purpose, the function subprogram CSDER, see Chapter 3, Interpolation and Approximation, is
used. The interpolation is performed as a first step in the user-supplied routine FCNBC. The
function and derivative values �(t�) = u�, ��(t�) = 0, �(t�) = u�, and ��(t�) = 0, are used as input to
routine C2HER, to obtain the coefficients evaluated by CSDER. Notice that ��(t) = 0, t > t�. The
evaluation routine CSDER will not yield this value so logic in the routine FCNBC assigns ��(t) = 0,
t > t�.

 USE MOLCH_INT
 USE UMACH_INT

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 949

 USE AMACH_INT
 USE WRRRN_INT
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER LDY, NPDES, NX
 PARAMETER (NPDES=1, NX=8, LDY=NPDES)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IDO, J, NOUT, NSTEP
 REAL HINIT, PREC, T, TEND, TOL, XBREAK(NX), Y(LDY,NX)
 CHARACTER TITLE*19
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC FLOAT
 REAL FLOAT
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCNBC, FCNUT
! Set breakpoints and initial
! conditions
 U0 = 1.0
 DO 10 I=1, NX
 XBREAK(I) = FLOAT(I-1)/(NX-1)
 Y(1,I) = U0
 10 CONTINUE
! Set parameters for MOLCH
 PREC = AMACH(4)
 TOL = SQRT(PREC)
 HINIT = 0.01*TOL
 T = 0.0
 IDO = 1
 NSTEP = 10
 CALL UMACH (2, NOUT)
 J = 0
 20 CONTINUE
 J = J + 1
 TEND = FLOAT(J)/FLOAT(NSTEP)
! This puts more output for small
! t values where action is fastest.
 TEND = TEND**2
! Solve the problem
 CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, TOL=TOL, HINIT=HINIT)
 IF (J .LE. NSTEP) THEN
! Print results
 WRITE (TITLE,’(A,F4.2)’) ’Solution at T =’, T
 CALL WRRRN (TITLE, Y)
! Final call to release workspace
 IF (J .EQ. NSTEP) IDO = 3
 GO TO 20
 END IF
 END
 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, U(*), UX(*), UXX(*), UT(*)
!
! Define the PDE
 UT(1) = UXX(1)

950 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 RETURN
 END

 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAMP)
 USE CSDER_INT
 USE C2HER_INT
 USE WRRRN_INT
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, ALPHA(*), BTA(*), GAMP(*)
! SPECIFICATIONS FOR PARAMETERS
 REAL TDELTA, U0, U1
 PARAMETER (TDELTA=0.09, U0=1.0, U1=0.1)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IWK(2), NDATA
 REAL DFDATA(2), FDATA(2), XDATA(2)
! SPECIFICATIONS FOR SAVE VARIABLES
 REAL BREAK(2), CSCOEF(4,2)
 LOGICAL FIRST
 SAVE BREAK, CSCOEF, FIRST
! SPECIFICATIONS FOR SUBROUTINES
 DATA FIRST/.TRUE./
!
 IF (FIRST) GO TO 20
 10 CONTINUE
!
!
! Define the boundary conditions
 IF (X .EQ. 0.0) THEN
! These are for x=0.
 ALPHA(1) = 1.0
 BTA(1) = 0.0
 GAMP(1) = 0.
! If in the boundary layer,
! compute nonzero gamma prime.
 IF (T .LE. TDELTA) GAMP(1) = CSDER(1,T,BREAK,CSCOEF)
 ELSE
! These are for x=1.
 ALPHA(1) = 0.0
 BTA(1) = 1.0
 GAMP(1) = 0.0
 END IF
 RETURN
 20 CONTINUE
! Compute the boundary layer data.
 NDATA = 2
 XDATA(1) = 0.0
 XDATA(2) = TDELTA
 FDATA(1) = U0
 FDATA(2) = U1
 DFDATA(1) = 0.0
 DFDATA(2) = 0.0
! Do Hermite cubic interpolation.
 CALL C2HER (NDATA, XDATA, FDATA, DFDATA, BREAK, CSCOEF, IWK)
 FIRST = .FALSE.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 951

 GO TO 10
 END

Output
 Solution at T =0.01
 1 2 3 4 5 6 7 8
0.969 0.997 1.000 1.000 1.000 1.000 1.000 1.000

 Solution at T =0.04
 1 2 3 4 5 6 7 8
0.625 0.871 0.963 0.991 0.998 1.000 1.000 1.000

 Solution at T =0.09
 1 2 3 4 5 6 7 8
0.0998 0.4603 0.7171 0.8673 0.9437 0.9781 0.9917 0.9951

 Solution at T =0.16
 1 2 3 4 5 6 7 8
0.0994 0.3127 0.5069 0.6680 0.7893 0.8708 0.9168 0.9316

 Solution at T =0.25
 1 2 3 4 5 6 7 8
0.0994 0.2564 0.4043 0.5352 0.6428 0.7223 0.7709 0.7873

 Solution at T =0.36
 1 2 3 4 5 6 7 8
0.0994 0.2172 0.3289 0.4289 0.5123 0.5749 0.6137 0.6268

 Solution at T =0.49
 1 2 3 4 5 6 7 8
0.0994 0.1847 0.2657 0.3383 0.3989 0.4445 0.4728 0.4824

 Solution at T =0.64
 1 2 3 4 5 6 7 8
0.0994 0.1583 0.2143 0.2644 0.3063 0.3379 0.3574 0.3641

 Solution at T =0.81
 1 2 3 4 5 6 7 8
0.0994 0.1382 0.1750 0.2080 0.2356 0.2563 0.2692 0.2736

 Solution at T =1.00
 1 2 3 4 5 6 7 8
0.0994 0.1237 0.1468 0.1674 0.1847 0.1977 0.2058 0.2085

Comments
1. Workspace may be explicitly provided, if desired, by use of M2LCH/DM2LCH. The

reference is:

CALL M2LCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK, TOL,
HINIT, Y, LDY, WK, IWK)

The additional arguments are as follows:

952 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

WK — Work array of length 2NX * NPDES(12 * NPDES� + 21 * NPDES + 9).
WK should not be changed between calls to M2LCH.

IWK — Work array of length 2NX * NPDES. IWK should not be changed between
calls to M2LCH.

2. Informational errors

Type Code
 4 1 After some initial success, the integration was halted by repeated

error test failures.
 4 2 On the next step, X + H will equal X. Either TOL is too small or the

problem is stiff.
 4 3 After some initial success, the integration was halted by a test on

TOL.
 4 4 Integration was halted after failing to pass the error test even after

reducing the step size by a factor of 1.0E + 10. TOL may be too
small.

 4 5 Integration was halted after failing to achieve corrector convergence
even after reducing the step size by a factor of 1.0E + 10. TOL may
be too small.

3. Optional usage with Chapter 10 Option Manager

11 This option consists of the parameter PARAM, an array with 50 components. See
IVPAG (page 854) for a more complete documentation of the contents of this
array. To reset this option, use the subprogram SUMAG for single precision, and
DUMAG (see Chapter 11, Utilities) for double precision. The entry PARAM(1) is
assigned the initial step, HINIT. The entries PARAM(15) and PARAM(16) are
assigned the values equal to the number of lower and upper diagonals that will
occur in the Newton method for solving the BDF corrector equations. The value
PARAM(17) = 1 is used to signal that the x derivatives of the initial data are
provided in the the array Y. The output values PARAM(31)-PARAM(36) , showing
technical data about the ODE integration, are available with another option
manager subroutine call. This call is made after the storage for MOLCH is
released. The default values for the first 20 entries of PARAM are (0, 0, amach(2),
500., 0., 5., 0, 0, 1., 3., 1., 2., 2., 1., amach(6), amach(6), 0, sqrt(amach(4)), 1.,
0.). Entries 21�50 are defaulted to amach(6).

Description
Let M = NPDES, N = NX and xi = XBREAK(I). The routine MOLCH uses the method of lines to
solve the partial differential equation system

2 2
1 1

1 2 2, , , , , , ,k M M
k M

u u u u u
f x t u u

t x x x x
� � � � �

� � � � �

� �
� � �

� �
� � �

with the initial conditions

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 953

uk = uk(x, t) at t = t�

and the boundary conditions

1() at and at k
k k k k N

u
u t x x x x

x
�

� � �
�

� � � �

for k = 1, �, M.

Cubic Hermite polynomials are used in the x variable approximation so that the trial solution is
expanded in the series

� � � � � � � � � �� �, ,
1

ˆ ,
N

k i k i i k i
i

bu x t a t x t x� �
�

���

where 	i(x) and
i(x) are the standard basis functions for the cubic Hermite polynomials with
the knots x� < x� < � < xN. These are piecewise cubic polynomials with continuous first
derivatives. At the breakpoints, they satisfy

� � � �

� � � �

0

0

i l il i l

i i
l l il

x x
d d

x x
dx dx

� � �

� �
�

� �

� �

According to the collocation method, the coefficients of the approximation are obtained so that
the trial solution satisfies the differential equation at the two Gaussian points in each
subinterval,

� �

� �

2 1 1

2 1

3 3
6

3 3
6

j j j j

j j j j

p x x x

p x x x

� �

�

�

� � �

�

� � �

for j = 1, �, N. The collocation approximation to the differential equation is

� � � �

� � � � � � � � � � � �� �

, ,

1

1 1ˆ ˆ ˆ ˆ, , , , , , , ,

N
i k i k

i j i j
i

k j j M j j M jxx xx

da db
p p

dt dt

f p t u p u p u p u p

� �
�

� ��

� � �

for k = 1, �, M and j = 1, �, 2(N � 1).

This is a system of 2M(N � 1) ordinary differential equations in 2M N unknown coefficient
functions, ai,k and bi,k. This system can be written in the matrix�vector form as A dc/dt = F (t, y)
with c(t�) = c� where c is a vector of coefficients of length 2M N and c� holds the initial values
of the coefficients. The last 2M equations are obtained by differentiating the boundary
conditions

k k k
k k

da db d
dt dt dt

�
� �� �

for k = 1, �, M.

954 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

The initial conditions uk(x, t�) must satisfy the boundary conditions. Also, the �k(t) must be
continuous and have a smooth derivative, or the boundary conditions will not be properly
imposed for t > t�.

If �k = �k = 0, it is assumed that no boundary condition is desired for the k-th unknown at the
left endpoint. A similar comment holds for the right endpoint. Thus, collocation is done at the
endpoint. This is generally a useful feature for systems of first-order partial differential
equations.

If the number of partial differential equations is M = 1 and the number of breakpoints is N = 4,
then

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

1 1

1 1 1 1 2 1 2 1

1 2 1 2 2 2 2 2

3 3 3 3 4 3 4 3

3 4 3 4 4 4 4 4

5 5 5 5 6 5 6 5

5 6 5 6 6 6 6 6

4 4

p p p p
p p p p

p p p p
A

p p p p
p p p p
p p p p

� �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� �

� �
� �
� �
� �
� �
� ��
� �
� �
� �
� �
� �
� �� �

The vector c is

c = [a�, b�, a�, b�, a�, b�, a�, b�]T

and the right-side F is

� � � � � � � � � � � � � � � �1 1 2 3 4 5 6 4, , , , , , ,
T

F x f p f p f p f p f p f p x� �� �� � �� �

If M > 1, then each entry in the above matrix is replaced by an M � M diagonal matrix. The
element �� is replaced by diag(����, �, ���). The elements �N, �� and �N are handled in the
same manner. The 	i(pj) and
i(pj) elements are replaced by 	i(pj)IM and
i(pj)IM where IM is
the identity matrix of order M. See Madsen and Sincovec (1979) for further details about
discretization errors and Jacobian matrix structure.

The input/output array Y contains the values of the ak,i. The initial values of the bk,i are obtained
by using the IMSL cubic spline routine CSINT (see Chapter 3, Interpolation and Approximation)
to construct functions

� �0ˆ ,ku x t

such that

� �0ˆ ,k i kiu x t a�

The IMSL routine CSDER, see Chapter 3, Interpolation and Approximation, is used to
approximate the values

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 955

� �0 ,

ˆ
,k

i k i
dU x t b
dx

�

There is an optional usage of MOLCH that allows the user to provide the initial values of bk,i.

The order of matrix A is 2M N and its maximum bandwidth is 6M � 1. The band structure of the
Jacobian of F with respect to c is the same as the band structure of A. This system is solved
using a modified version of IVPAG, page 854. Some of the linear solvers were removed.
Numerical Jacobians are used exclusively. The algorithm is unchanged. Gear’s BDF method is
used as the default because the system is typically stiff.

We now present four examples of PDEs that illustrate how users can interface their problems
with IMSL PDE solving software. The examples are small and not indicative of the
complexities that most practitioners will face in their applications. A set of seven sample
application problems, some of them with more than one equation, is given in Sincovec and
Madsen (1975). Two further examples are given in Madsen and Sincovec (1979).

Additonal Examples

Example 2
In this example, using MOLCH, we solve the linear normalized diffusion PDE ut = uxx but with an
optional usage that provides values of the derivatives, ux, of the initial data. Due to errors in the
numerical derivatives computed by spline interpolation, more precise derivative values are
required when the initial data is u(x, 0) = 1 + cos[(2n � 1)�x], n > 1. The boundary conditions
are “zero flux” conditions ux(0, t) = ux(1, t) = 0 for t > 0. Note that the initial data is compatible
with these end conditions since the derivative function

� �
� �

� � � �
,0

,0 2 1 sin 2 1x

du x
u x n n x

dx
� �� � � � �� �� �

vanishes at x = 0 and x = 1.

The example illustrates the use of the IMSL options manager subprograms SUMAG or, for double
precision, DUMAG, see Chapter 11, Utilities, to reset the array PARAM used for control of the
specialized version of IVPAG that integrates the system of ODEs. This optional usage signals
that the derivative of the initial data is passed by the user. The values u(x, tend) and ux(x, tend)
are output at the breakpoints with the optional usage.

 USE IMSL_LIBRARIES
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER LDY, NPDES, NX
 PARAMETER (NPDES=1, NX=10, LDY=NPDES)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER ICHAP, IGET, IPUT, KPARAM
 PARAMETER (ICHAP=5, IGET=1, IPUT=2, KPARAM=11)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IACT, IDO, IOPT(1), J, JGO, N, NOUT, NSTEP
 REAL ARG1, HINIT, PREC, PARAM(50), PI, T, TEND, TOL, &
 XBREAK(NX), Y(LDY,2*NX)
 CHARACTER TITLE*36
! SPECIFICATIONS FOR INTRINSICS

956 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 INTRINSIC COS, FLOAT, SIN, SQRT
 REAL COS, FLOAT, SIN, SQRT
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCNBC, FCNUT
! Set breakpoints and initial
! conditions.
 N = 5
 PI = CONST(’pi’)
 IOPT(1) = KPARAM
 DO 10 I=1, NX
 XBREAK(I) = FLOAT(I-1)/(NX-1)
 ARG1 = (2.*N-1)*PI
! Set function values.
 Y(1,I) = 1. + COS(ARG1*XBREAK(I))
! Set first derivative values.
 Y(1,I+NX) = -ARG1*SIN(ARG1*XBREAK(I))
 10 CONTINUE
! Set parameters for MOLCH
 PREC = AMACH(4)
 TOL = SQRT(PREC)
 HINIT = 0.01*TOL
 T = 0.0
 IDO = 1
 NSTEP = 10
 CALL UMACH (2, NOUT)
 J = 0
! Get and reset the PARAM array
! so that user-provided derivatives
! of the initial data are used.
 JGO = 1
 IACT = IGET
 GO TO 70
 20 CONTINUE
! This flag signals that
! derivatives are passed.
 PARAM(17) = 1.
 JGO = 2
 IACT = IPUT
 GO TO 70
 30 CONTINUE
! Look at output at steps
! of 0.001.
 TEND = 0.
 40 CONTINUE
 J = J + 1
 TEND = TEND + 0.001
! Solve the problem
 CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, NPDES=NPDES, &
 NX=NX, HINIT=HINIT, TOL=TOL)
 IF (J .LE. NSTEP) THEN
! Print results
 WRITE (TITLE,’(A,F5.3)’) ’Solution and derivatives at T =’, T
 CALL WRRRN (TITLE, Y)
! Final call to release workspace
 IF (J .EQ. NSTEP) IDO = 3

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 957

 GO TO 40
 END IF
! Show, for example, the maximum
! step size used.
 JGO = 3
 IACT = IGET
 GO TO 70
 50 CONTINUE
 WRITE (NOUT,*) ’ Maximum step size used is: ’, PARAM(33)
! Reset option to defaults
 JGO = 4
 IAC = IPUT
 IOPT(1) = -IOPT(1)
 GO TO 70
 60 CONTINUE
 RETURN
! Internal routine to work options
 70 CONTINUE
 CALL SUMAG (’math’, ICHAP, IACT, IOPT, PARAM, numopt=1)
 GO TO (20, 30, 50, 60), JGO
 END
 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, U(*), UX(*), UXX(*), UT(*)
!
! Define the PDE
 UT(1) = UXX(1)
 RETURN
 END
 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAMP)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, ALPHA(*), BTA(*), GAMP(*)
!
 ALPHA(1) = 0.0
 BTA(1) = 1.0
 GAMP(1) = 0.0
 RETURN
 END

Output
 Solution and derivatives at T =0.001
 1 2 3 4 5 6 7 8 9 10
 1.483 0.517 1.483 0.517 1.483 0.517 1.483 0.517 1.483 0.517

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.002
 1 2 3 4 5 6 7 8 9 10
 1.233 0.767 1.233 0.767 1.233 0.767 1.233 0.767 1.233 0.767

 11 12 13 14 15 16 17 18 19 20

958 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.003
 1 2 3 4 5 6 7 8 9 10
 1.113 0.887 1.113 0.887 1.113 0.887 1.113 0.887 1.113 0.887

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.004
 1 2 3 4 5 6 7 8 9 10
 1.054 0.946 1.054 0.946 1.054 0.946 1.054 0.946 1.054 0.946

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.005
 1 2 3 4 5 6 7 8 9 10
 1.026 0.974 1.026 0.974 1.026 0.974 1.026 0.974 1.026 0.974

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.006
 1 2 3 4 5 6 7 8 9 10
 1.012 0.988 1.012 0.988 1.012 0.988 1.012 0.988 1.012 0.988

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.007
 1 2 3 4 5 6 7 8 9 10
 1.006 0.994 1.006 0.994 1.006 0.994 1.006 0.994 1.006 0.994

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.008
 1 2 3 4 5 6 7 8 9 10
 1.003 0.997 1.003 0.997 1.003 0.997 1.003 0.997 1.003 0.997

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.009
 1 2 3 4 5 6 7 8 9 10
 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.010
 1 2 3 4 5 6 7 8 9 10
 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 959

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Maximum step size used is: 1.00000E-02

Example 3
In this example, we consider the linear normalized hyperbolic PDE, utt = uxx, the “vibrating
string” equation. This naturally leads to a system of first order PDEs. Define a new dependent
variable ut = v. Then, vt = uxx is the second equation in the system. We take as initial data u(x, 0)
= sin(�x) and ut(x, 0) = v(x, 0) = 0. The ends of the string are fixed so u(0, t) = u(1, t) = v(0, t) =
v(1, t) = 0. The exact solution to this problem is u(x, t) = sin(�x) cos(�t). Residuals are
computed at the output values of t for 0 < t � 2. Output is obtained at 200 steps in increments of
0.01.

Even though the sample code MOLCH gives satisfactory results for this PDE, users should be
aware that for nonlinear problems, “shocks” can develop in the solution. The appearance of
shocks may cause the code to fail in unpredictable ways. See Courant and Hilbert (1962), pages
488-490, for an introductory discussion of shocks in hyperbolic systems.

 USE IMSL_LIBRARIES
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER LDY, NPDES, NX
 PARAMETER (NPDES=2, NX=10, LDY=NPDES)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER ICHAP, IGET, IPUT, KPARAM
 PARAMETER (ICHAP=5, IGET=1, IPUT=2, KPARAM=11)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IACT, IDO, IOPT(1), J, JGO, NOUT, NSTEP
 REAL HINIT, PREC, PARAM(50), PI, T, TEND, TOL, XBREAK(NX), &
 Y(LDY,2*NX), ERROR(NX)
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC COS, FLOAT, SIN, SQRT
 REAL COS, FLOAT, SIN, SQRT
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCNBC, FCNUT
! Set breakpoints and initial
! conditions.
 PI = CONST(’pi’)
 IOPT(1) = KPARAM
 DO 10 I=1, NX
 XBREAK(I) = FLOAT(I-1)/(NX-1)
! Set function values.
 Y(1,I) = SIN(PI*XBREAK(I))
 Y(2,I) = 0.
! Set first derivative values.
 Y(1,I+NX) = PI*COS(PI*XBREAK(I))
 Y(2,I+NX) = 0.0
 10 CONTINUE
! Set parameters for MOLCH
 PREC = AMACH(4)
 TOL = 0.1*SQRT(PREC)
 HINIT = 0.01*TOL

960 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 T = 0.0
 IDO = 1
 NSTEP = 200
 CALL UMACH (2, NOUT)
 J = 0
! Get and reset the PARAM array
! so that user-provided derivatives
! of the initial data are used.
 JGO = 1
 IACT = IGET
 GO TO 90
 20 CONTINUE
! This flag signals that
! derivatives are passed.
 PARAM(17) = 1.
 JGO = 2
 IACT = IPUT
 GO TO 90
 30 CONTINUE
! Look at output at steps
! of 0.01 and compute errors.
 ERRU = 0.
 TEND = 0.
 40 CONTINUE
 J = J + 1
 TEND = TEND + 0.01
! Solve the problem
 CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, NX=NX, &
 HINIT=HINIT, TOL=TOL)
 DO 50 I=1, NX
 ERROR(I) = Y(1,I) - SIN(PI*XBREAK(I))*COS(PI*TEND)
 50 CONTINUE
 IF (J .LE. NSTEP) THEN
 DO 60 I=1, NX
 ERRU = AMAX1(ERRU,ABS(ERROR(I)))
 60 CONTINUE
! Final call to release workspace
 IF (J .EQ. NSTEP) IDO = 3
 GO TO 40
 END IF
! Show, for example, the maximum
! step size used.
 JGO = 3
 IACT = IGET
 GO TO 90
 70 CONTINUE
 WRITE (NOUT,*) ’ Maximum error in u(x,t) divided by TOL: ’, &
 ERRU/TOL
 WRITE (NOUT,*) ’ Maximum step size used is: ’, PARAM(33)
! Reset option to defaults
 JGO = 4
 IACT = IPUT
 IOPT(1) = -IOPT(1)
 GO TO 90
 80 CONTINUE

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 961

 RETURN
! Internal routine to work options
 90 CONTINUE
 CALL SUMAG (’math’, ICHAP, IACT, IOPT, PARAM)
 GO TO (20, 30, 70, 80), JGO
 END
 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, U(*), UX(*), UXX(*), UT(*)
!
! Define the PDE
 UT(1) = U(2)
 UT(2) = UXX(1)
 RETURN
 END
 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAMP)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, ALPHA(*), BTA(*), GAMP(*)
!
 ALPHA(1) = 1.0
 BTA(1) = 0.0
 GAMP(1) = 0.0
 ALPHA(2) = 1.0
 BTA(2) = 0.0
 GAMP(2) = 0.0
 RETURN
 END

Output
Maximum error in u(x,t) divided by TOL: 1.28094
Maximum step size used is: 9.99999E-02

FPS2H
Solves Poisson’s or Helmholtz’s equation on a two-dimensional rectangle using a fast Poisson
solver based on the HODIE finite-difference scheme on a uniform mesh.

Required Arguments
PRHS — User-supplied FUNCTION to evaluate the right side of the partial differential

equation. The form is PRHS(X, Y), where

 X – X-coordinate value. (Input)
Y – Y-coordinate value. (Input)
PRHS – Value of the right side at (X, Y). (Output)

 PRHS must be declared EXTERNAL in the calling program.

962 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

BRHS — User-supplied FUNCTION to evaluate the right side of the boundary conditions. The
form is BRHS(ISIDE, X, Y), where

ISIDE – Side number. (Input)
See IBCTY below for the definition of the side numbers.
X – X-coordinate value. (Input)
Y – Y-coordinate value. (Input)
BRHS – Value of the right side of the boundary condition at (X, Y). (Output)
BRHS must be declared EXTERNAL in the calling program.

COEFU — Value of the coefficient of U in the differential equation. (Input)

NX — Number of grid lines in the X-direction. (Input)
NX must be at least 4. See Comment 2 for further restrictions on NX.

NY — Number of grid lines in the Y-direction. (Input)
NY must be at least 4. See Comment 2 for further restrictions on NY.

AX — The value of X along the left side of the domain. (Input)

BX — The value of X along the right side of the domain. (Input)

AY — The value of Y along the bottom of the domain. (Input)

BY — The value of Y along the top of the domain. (Input)

IBCTY — Array of size 4 indicating the type of boundary condition on each side of the
domain or that the solution is periodic. (Input)
The sides are numbered 1 to 4 as follows:

Side Location

1 - Right (X = BX)

2 - Bottom (Y = AY)

3 - Left (X = AX)

4 - Top (Y = BY)

There are three boundary condition types.

IBCTY Boundary Condition

1 Value of U is given. (Dirichlet)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 963

 2 Value of dU/dX is given (sides 1 and/or 3). (Neumann) Value of dU/dY is
given (sides 2 and/or 4).

3 Periodic.

U — Array of size NX by NY containing the solution at the grid points. (Output)

Optional Arguments
IORDER — Order of accuracy of the finite-difference approximation. (Input)

It can be either 2 or 4. Usually, IORDER = 4 is used.
Default: IORDER = 4.

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDU = size (U,1).

FORTRAN 90 Interface
Generic: CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY,

 IBCTY, U [,…])

Specific: The specific interface names are S_FPS2H and D_FPS2H.

FORTRAN 77 Interface
Single: CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY,

 IBCTY, IORDER, U, LDU)

Double: The double precision name is DFPS2H.

Example
In this example, the equation

� �
2 2

2 3
2 2 3 2sin 2 16 x yu u u x y e

x y
� �

� �

�

� � � � � �

with the boundary conditions
u/
y = 2 cos(x + 2y) + 3 exp(2x + 3y) on the bottom side and
u = sin(x + 2y) + exp(2x + 3y) on the other three sides. The domain is the rectangle[0, 1/4] � [0,
1/2]. The output of FPS2H is a 17 � 33 table of U values. The quadratic interpolation routine
QD2VL is used to print a table of values.

 USE FPS2H_INT
 USE QD2VL_INT
 USE UMACH_INT
 INTEGER NCVAL, NX, NXTABL, NY, NYTABL
 PARAMETER (NCVAL=11, NX=17, NXTABL=5, NY=33, NYTABL=5)
!

964 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 INTEGER I, IBCTY(4), IORDER, J, NOUT
 REAL AX, AY, BRHS, BX, BY, COEFU, ERROR, FLOAT, PRHS, &
 TRUE, U(NX,NY), UTABL, X, XDATA(NX), Y, YDATA(NY)
 INTRINSIC FLOAT
 EXTERNAL BRHS, PRHS
! Set rectangle size
 AX = 0.0
 BX = 0.25
 AY = 0.0
 BY = 0.50
! Set boundary condition types
 IBCTY(1) = 1
 IBCTY(2) = 2
 IBCTY(3) = 1
 IBCTY(4) = 1
! Coefficient of U
 COEFU = 3.0
! Order of the method
 IORDER = 4
! Solve the PDE
 CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY, U)
! Setup for quadratic interpolation
 DO 10 I=1, NX
 XDATA(I) = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NX-1)
 10 CONTINUE
 DO 20 J=1, NY
 YDATA(J) = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NY-1)
 20 CONTINUE
! Print the solution
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(8X,A,11X,A,11X,A,8X,A)’) ’X’, ’Y’, ’U’, ’Error’
 DO 40 J=1, NYTABL
 DO 30 I=1, NXTABL
 X = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NXTABL-1)
 Y = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NYTABL-1)
 UTABL = QD2VL(X,Y,XDATA,YDATA,U)
 TRUE = SIN(X+2.*Y) + EXP(2.*X+3.*Y)
 ERROR = TRUE - UTABL
 WRITE (NOUT,’(4F12.4)’) X, Y, UTABL, ERROR
 30 CONTINUE
 40 CONTINUE
 END
!
 REAL FUNCTION PRHS (X, Y)
 REAL X, Y
!
 REAL EXP, SIN
 INTRINSIC EXP, SIN
! Define right side of the PDE
 PRHS = -2.*SIN(X+2.*Y) + 16.*EXP(2.*X+3.*Y)
 RETURN
 END
!
 REAL FUNCTION BRHS (ISIDE, X, Y)
 INTEGER ISIDE

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 965

 REAL X, Y
!
 REAL COS, EXP, SIN
 INTRINSIC COS, EXP, SIN
! Define the boundary conditions
 IF (ISIDE .EQ. 2) THEN
 BRHS = 2.*COS(X+2.*Y) + 3.*EXP(2.*X+3.*Y)
 ELSE
 BRHS = SIN(X+2.*Y) + EXP(2.*X+3.*Y)
 END IF
 RETURN
 END

Output
 X Y U Error
 0.0000 0.0000 1.0000 0.0000
 0.0625 0.0000 1.1956 0.0000
 0.1250 0.0000 1.4087 0.0000
 0.1875 0.0000 1.6414 0.0000
 0.2500 0.0000 1.8961 0.0000
 0.0000 0.1250 1.7024 0.0000
 0.0625 0.1250 1.9562 0.0000
 0.1250 0.1250 2.2345 0.0000
 0.1875 0.1250 2.5407 0.0000
 0.2500 0.1250 2.8783 0.0000
 0.0000 0.2500 2.5964 0.0000
 0.0625 0.2500 2.9322 0.0000
 0.1250 0.2500 3.3034 0.0000
 0.1875 0.2500 3.7148 0.0000
 0.2500 0.2500 4.1720 0.0000
 0.0000 0.3750 3.7619 0.0000
 0.0625 0.3750 4.2163 0.0000
 0.1250 0.3750 4.7226 0.0000
 0.1875 0.3750 5.2878 0.0000
 0.2500 0.3750 5.9199 0.0000
 0.0000 0.5000 5.3232 0.0000
 0.0625 0.5000 5.9520 0.0000
 0.1250 0.5000 6.6569 0.0000
 0.1875 0.5000 7.4483 0.0000
 0.2500 0.5000 8.3380 0.0000

Comments
1. Workspace may be explicitly provided, if desired, by use of F2S2H/DF2S2H. The

reference is:
CALL F2S2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY,
IORDER, U, LDU, UWORK, WORK)

The additional arguments are as follows:

UWORK — Work array of size NX + 2 by NY + 2. If the actual dimensions of U are
large enough, then U and UWORK can be the same array.

966 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

WORK — Work array of length (NX + 1)(NY + 1)(IORDER � 2)/2 + 6(NX +
NY) + NX/2 + 16.

2. The grid spacing is the distance between the (uniformly spaced) grid lines. It is given
by the formulas HX = (BX � AX)/(NX � 1) and HY = (BY � AY)/(NY � 1). The grid
spacings in the X and Y directions must be the same, i.e., NX and NY must be such that
HX equals HY. Also, as noted above, NX and NY must both be at least 4. To increase the
speed of the fast Fourier transform, NX � 1 should be the product of small primes. Good
choices are 17, 33, and 65.

3. If �COEFU is nearly equal to an eigenvalue of the Laplacian with homogeneous
boundary conditions, then the computed solution might have large errors.

Description
Let c = COEFU, ax = AX, bx = BX, ay = AY, by = BY, nx = NX and ny = NY.

FPS2H is based on the code HFFT2D by Boisvert (1984). It solves the equation
2 2

2 2

u u cu p
x y

� �

� �
� � �

on the rectangular domain (ax, bx) � (ay, by) with a user-specified combination of Dirichlet
(solution prescribed), Neumann (first-derivative prescribed), or periodic boundary conditions.
The sides are numbered clockwise, starting with the right side.

by

y

Side 4

Side 2

Side 3 Side 1

a y
xa bx

x

When c = 0 and only Neumann or periodic boundary conditions are prescribed, then any
constant may be added to the solution to obtain another solution to the problem. In this case, the
solution of minimum �-norm is returned.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 967

The solution is computed using either a second-or fourth-order accurate finite-difference
approximation of the continuous equation. The resulting system of linear algebraic equations is
solved using fast Fourier transform techniques. The algorithm relies upon the fact that nx � 1 is
highly composite (the product of small primes). For details of the algorithm, see Boisvert
(1984). If nx � 1 is highly composite then the execution time of FPS2H is proportional to nxny
log��nx. If evaluations of p(x, y) are inexpensive, then the difference in running time between
IORDER = 2 and IORDER = 4 is small.

FPS3H
Solves Poisson’s or Helmholtz’s equation on a three-dimensional box using a fast Poisson solver
based on the HODIE finite-difference scheme on a uniform mesh.

Required Arguments
PRHS — User-supplied FUNCTION to evaluate the right side of the partial differential

equation. The form is PRHS(X, Y, Z), where

 X – The x-coordinate value. (Input)
Y – The y-coordinate value. (Input)
Z – The z-coordinate value. (Input)
PRHS – Value of the right side at (X, Y, Z). (Output)

 PRHS must be declared EXTERNAL in the calling program.

BRHS — User-supplied FUNCTION to evaluate the right side of the boundary conditions. The
form is BRHS(ISIDE, X, Y, Z), where

 ISIDE – Side number. (Input)
See IBCTY for the definition of the side numbers.
X – The x-coordinate value. (Input)
Y – The y-coordinate value. (Input)
Z – The z-coordinate value. (Input)
BRHS – Value of the right side of the boundary condition at (X, Y, Z). (Output)

 BRHS must be declared EXTERNAL in the calling program.

COEFU — Value of the coefficient of U in the differential equation. (Input)

NX — Number of grid lines in the x-direction. (Input)
NX must be at least 4. See Comment 2 for further restrictions on NX.

NY — Number of grid lines in the y-direction. (Input)
NY must be at least 4. See Comment 2 for further restrictions on NY.

NZ — Number of grid lines in the y-direction. (Input)
NZ must be at least 4. See Comment 2 for further restrictions on NZ.

968 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

AX — Value of X along the left side of the domain. (Input)

BX — Value of X along the right side of the domain. (Input)

AY — Value of Y along the bottom of the domain. (Input)

BY — Value of Y along the top of the domain. (Input)

AZ — Value of Z along the front of the domain. (Input)

BZ — Value of Z along the back of the domain. (Input)

IBCTY — Array of size 6 indicating the type of boundary condition on each face of the
domain or that the solution is periodic. (Input)
The sides are numbers 1 to 6 as follows:

Side Location

1 - Right (X = BX)

2 - Bottom (Y = AY)

3 - Left (X = AX)

4 - Top (Y = BY)

5 - Front (Z = BZ)

6 - Back (Z = AZ)

There are three boundary condition types.

IBCTY Boundary Condition

1 Value of U is given. (Dirichlet)

2 Value of dU/dX is given (sides 1 and/or 3). (Neumann) Value of dU/dY is
 given (sides 2 and/or 4). Value of dU/dZ is given (sides 5 and/or 6).

3 Periodic.

U — Array of size NX by NY by NZ containing the solution at the grid points. (Output)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 969

Optional Arguments
IORDER — Order of accuracy of the finite-difference approximation. (Input)

It can be either 2 or 4. Usually, IORDER = 4 is used.
Default: IORDER = 4.

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDU = size (U,1).

MDU — Middle dimension of U exactly as specified in the dimension statement of the calling
program. (Input)
Default: MDU = size (U,2).

FORTRAN 90 Interface
Generic: CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY,

 AZ, BZ, IBCTY, U [,…])

Specific: The specific interface names are S_FPS3H and D_FPS3H.

FORTRAN 77 Interface
Single: CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY,

 AZ, BZ, IBCTY, IORDER, U, LDU, MDU)

Double: The double precision name is DFPS3H.

Example
This example solves the equation

� �
2 2 2

2 2 2 10 4 cos 3 2 12 10x zu u u u x y z e
x y z

� � �

� � �

�

� � � � � � � � �

with the boundary conditions
u/
z = �2 sin(3x + y �2z) � exp(x � z) on the front side and
u = cos(3x + y � 2z) + exp(x � z) + 1 on the other five sides. The domain is the box [0, 1/4] × [0,
1/2] × [0, 1/2]. The output of FPS3H is a 9 � 17 � 17 table of U values. The quadratic
interpolation routine QD3VL is used to print a table of values.

 USE FPS3H_INT
 USE UMACH_INT
 USE QD3VL_INT
! SPECIFICATIONS FOR PARAMETERS
 INTEGER LDU, MDU, NX, NXTABL, NY, NYTABL, NZ, NZTABL
 PARAMETER (NX=5, NXTABL=4, NY=9, NYTABL=3, NZ=9, &
 NZTABL=3, LDU=NX, MDU=NY)
!
 INTEGER I, IBCTY(6), IORDER, J, K, NOUT
 REAL AX, AY, AZ, BRHS, BX, BY, BZ, COEFU, FLOAT, PRHS, &

970 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 U(LDU,MDU,NZ), UTABL, X, ERROR, TRUE, &
 XDATA(NX), Y, YDATA(NY), Z, ZDATA(NZ)
 INTRINSIC COS, EXP, FLOAT
 EXTERNAL BRHS, PRHS
! Define domain
 AX = 0.0
 BX = 0.125
 AY = 0.0
 BY = 0.25
 AZ = 0.0
 BZ = 0.25
! Set boundary condition types
 IBCTY(1) = 1
 IBCTY(2) = 1
 IBCTY(3) = 1
 IBCTY(4) = 1
 IBCTY(5) = 2
 IBCTY(6) = 1
! Coefficient of U
 COEFU = 10.0
! Order of the method
 IORDER = 4
! Solve the PDE
 CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, &
 BZ, IBCTY, U)
! Set up for quadratic interpolation
 DO 10 I=1, NX
 XDATA(I) = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NX-1)
 10 CONTINUE
 DO 20 J=1, NY
 YDATA(J) = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NY-1)
 20 CONTINUE
 DO 30 K=1, NZ
 ZDATA(K) = AZ + (BZ-AZ)*FLOAT(K-1)/FLOAT(NZ-1)
 30 CONTINUE
! Print the solution
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(8X,5(A,11X))’) ’X’, ’Y’, ’Z’, ’U’, ’Error’
 DO 60 K=1, NZTABL
 DO 50 J=1, NYTABL
 DO 40 I=1, NXTABL
 X = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NXTABL-1)
 Y = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NYTABL-1)
 Z = AZ + (BZ-AZ)*FLOAT(K-1)/FLOAT(NZTABL-1)
 UTABL = QD3VL(X,Y,Z,XDATA,YDATA,ZDATA,U, CHECK=.false.)
 TRUE = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0
 ERROR = UTABL - TRUE
 WRITE (NOUT,’(5F12.4)’) X, Y, Z, UTABL, ERROR
 40 CONTINUE
 50 CONTINUE
 60 CONTINUE
 END
!
 REAL FUNCTION PRHS (X, Y, Z)
 REAL X, Y, Z

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 971

!
 REAL COS, EXP
 INTRINSIC COS, EXP
! Right side of the PDE
 PRHS = -4.0*COS(3.0*X+Y-2.0*Z) + 12*EXP(X-Z) + 10.0
 RETURN
 END
!
 REAL FUNCTION BRHS (ISIDE, X, Y, Z)
 INTEGER ISIDE
 REAL X, Y, Z
!
 REAL COS, EXP, SIN
 INTRINSIC COS, EXP, SIN
! Boundary conditions
 IF (ISIDE .EQ. 5) THEN
 BRHS = -2.0*SIN(3.0*X+Y-2.0*Z) - EXP(X-Z)
 ELSE
 BRHS = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0
 END IF
 RETURN
 END

Output
 X Y Z U Error
 0.0000 0.0000 0.0000 3.0000 0.0000
 0.0417 0.0000 0.0000 3.0348 0.0000
 0.0833 0.0000 0.0000 3.0558 0.0001
 0.1250 0.0000 0.0000 3.0637 0.0001
 0.0000 0.1250 0.0000 2.9922 0.0000
 0.0417 0.1250 0.0000 3.0115 0.0000
 0.0833 0.1250 0.0000 3.0175 0.0000
 0.1250 0.1250 0.0000 3.0107 0.0000
 0.0000 0.2500 0.0000 2.9690 0.0001
 0.0417 0.2500 0.0000 2.9731 0.0000
 0.0833 0.2500 0.0000 2.9645 0.0000
 0.1250 0.2500 0.0000 2.9440 -0.0001
 0.0000 0.0000 0.1250 2.8514 0.0000
 0.0417 0.0000 0.1250 2.9123 0.0000
 0.0833 0.0000 0.1250 2.9592 0.0000
 0.1250 0.0000 0.1250 2.9922 0.0000
 0.0000 0.1250 0.1250 2.8747 0.0000
 0.0417 0.1250 0.1250 2.9211 0.0010
 0.0833 0.1250 0.1250 2.9524 0.0010
 0.1250 0.1250 0.1250 2.9689 0.0000
 0.0000 0.2500 0.1250 2.8825 0.0000
 0.0417 0.2500 0.1250 2.9123 0.0000
 0.0833 0.2500 0.1250 2.9281 0.0000
 0.1250 0.2500 0.1250 2.9305 0.0000
 0.0000 0.0000 0.2500 2.6314 -0.0249
 0.0417 0.0000 0.2500 2.7420 -0.0004
 0.0833 0.0000 0.2500 2.8112 -0.0042
 0.1250 0.0000 0.2500 2.8609 -0.0138
 0.0000 0.1250 0.2500 2.7093 0.0000

972 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 0.0417 0.1250 0.2500 2.8153 0.0344
 0.0833 0.1250 0.2500 2.8628 0.0237
 0.1250 0.1250 0.2500 2.8825 0.0000
 0.0000 0.2500 0.2500 2.7351 -0.0127
 0.0417 0.2500 0.2500 2.8030 -0.0011
 0.0833 0.2500 0.2500 2.8424 -0.0040
 0.1250 0.2500 0.2500 2.8735 -0.0012

Comments
1. Workspace may be explicitly provided, if desired, by use of F2S3H/DF2S3H. The

reference is:

CALL F2S3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX,
 AY, BY, AZ, BZ, IBCTY, IORDER, U, LDU,
 MDU, UWORK, WORK)

The additional arguments are as follows:

UWORK — Work array of size NX + 2 by NY + 2 by NZ + 2. If the actual
dimensions of U are large enough, then U and UWORK can be the same array.

WORK — Work array of length (NX + 1)(NY + 1)(NZ + 1)(IORDER � 2)/2 +
2(NX * NY + NX * NZ + NY * NZ) + 2(NX + NY + 1) + MAX(2 *
NX * NY, 2 * NX + NY + 4 * NZ + (NX + NZ)/2 + 29)

2. The grid spacing is the distance between the (uniformly spaced) grid lines. It is given
by the formulas
HX = (BX � AX)/(NX � 1),
HY = (BY � AY)/(NY � 1), and
HZ = (BZ � AZ)/(NZ � 1).
The grid spacings in the X, Y and Z directions must be the same, i.e., NX, NY and NZ
must be such that HX = HY = HZ. Also, as noted above, NX, NY and NZ must all be at
least 4. To increase the speed of the Fast Fourier transform, NX � 1 and NZ � 1 should
be the product of small primes. Good choices for NX and NZ are 17, 33 and 65.

3. If �COEFU is nearly equal to an eigenvalue of the Laplacian with homogeneous
boundary conditions, then the computed solution might have large errors.

Description
Let c = COEFU, ax = AX, bx = BX, nx = NX, ay = AY, by = BY, ny = NY, az = AZ, bz = BZ, and
nz = NZ.

FPS3H is based on the code HFFT3D by Boisvert (1984). It solves the equation
2 2 2

2 2 2

u u u cu p
x y z

� � �

� � �
� � � �

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 973

on the domain (ax, bx) � (ay, by) � (az, bz) (a box) with a user-specified combination of Dirichlet
(solution prescribed), Neumann (first derivative prescribed), or periodic boundary conditions.
The six sides are numbered as shown in the following diagram.

z

b

a

y

z

x

b

b
x

Front - 5

Top - 4

Right - 1

Bottom - 2

Left - 3

Back - 6

y

When c = 0 and only Neumann or periodic boundary conditions are prescribed, then any
constant may be added to the solution to obtain another solution to the problem. In this case, the
solution of minimum �-norm is returned.

The solution is computed using either a second-or fourth-order accurate finite-difference
approximation of the continuous equation. The resulting system of linear algebraic equations is
solved using fast Fourier transform techniques. The algorithm relies upon the fact that nx � 1
and nz � 1 are highly composite (the product of small primes). For details of the algorithm, see
Boisvert (1984). Ifnx � 1 and nz � 1 are highly composite, then the execution time of FPS3H is
proportional to

� �2 2
2 2log logx y z x zn n n n n�

If evaluations of p(x, y, z) are inexpensive, then the difference in running time between
IORDER = 2 and IORDER = 4 is small.

SLEIG
Determines eigenvalues, eigenfunctions and/or spectral density functions for Sturm-Liouville
problems in the form

� � � � � � � �() for in ,d dup x q x u r x u x a b
dx dx

�� � �

with boundary conditions (at regular points)

974 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

� � � �� �

� �

1 2 1 2

1 2

at

0 at

a u a pu a u a pu a

b u b pu b

�� � � �� � �

�� �

Required Arguments
CONS — Array of size eight containing

1 1 2 2 1 2, , , , , , and a a a a b b a b� �

in locations CONS(1) through CONS(8), respectively. (Input)

COEFFN — User-supplied SUBROUTINE to evaluate the coefficient functions. The usage is
CALL COEFFN (X, PX, QX, RX)
X — Independent variable. (Input)
PX — The value of p(x) at X. (Output)
QX — The value of q(x) at X. (Output)
RX — The value of r(x) at X. (Output)
COEFFN must be declared EXTERNAL in the calling program.

ENDFIN — Logical array of size two. ENDFIN(1) = .true. if the endpoint a is finite.
ENDFIN(2) = .true. if endpoint b is finite. (Input)

INDEX — Vector of size NUMEIG containing the indices of the desired eigenvalues. (Input)

EVAL — Array of length NUMEIG containing the computed approximations to the
eigenvalues whose indices are specified in INDEX. (Output)

Optional Arguments
NUMEIG — The number of eigenvalues desired. (Input)

Default: NUMEIG = size (INDEX,1).

TEVLAB — Absolute error tolerance for eigenvalues. (Input)
Default: TEVLAB = 10.* machine precision.

TEVLRL — Relative error tolerance for eigenvalues. (Input)
Default: TEVLRL = SQRT(machine precision).

FORTRAN 90 Interface
Generic: CALL SLEIG (CONS, COEFFN, ENDFIN, INDEX, EVAL [,…])

Specific: The specific interface names are S_SLEIG and D_SLEIG.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 975

FORTRAN 77 Interface
Single: CALL SLEIG (CONS, COEFFN, ENDFIN, NUMEIG, INDEX, TEVLAB,

 TEVLRL, EVAL)

Double: The double precision name is DSLEIG.

Example 1
This example computes the first ten eigenvalues of the problem from Titchmarsh (1962) given
by

p(x) = r(x) = 1

q(x) = x

[a, b] = [0, �]

u(a) = u(b) = 0

The eigenvalues are known to be the zeros of

� � 3 / 2 3 / 2
1/ 3 1/ 3

2 2
3 3

f J J� � �
�

� � � �
� �� � � �

� � � �

For each eigenvalue �k, the program prints k, �k and f(�k).
 USE SLEIG_INT
 USE CBJS_INT
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, INDEX(10), NUMEIG
 REAL CONS(8), EVAL(10), LAMBDA, TEVLAB,&
 TEVLRL, XNU

 COMPLEX CBS1(1), CBS2(1), Z
 LOGICAL ENDFIN(2)
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC CMPLX, SQRT
 REAL SQRT
 COMPLEX CMPLX
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL COEFF
!
 CALL UMACH (2, NOUT)
! Define boundary conditions
 CONS(1) = 1.0
 CONS(2) = 0.0
 CONS(3) = 0.0
 CONS(4) = 0.0
 CONS(5) = 1.0
 CONS(6) = 0.0
 CONS(7) = 0.0
 CONS(8) = 0.0
!
 ENDFIN(1) = .TRUE.

976 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 ENDFIN(2) = .FALSE.
! Compute the first 10 eigenvalues
 NUMEIG = 10
 DO 10 I=1, NUMEIG
 INDEX(I) = I - 1
 10 CONTINUE
! Set absolute and relative tolerance
!
 CALL SLEIG (CONS, COEFF, ENDFIN, INDEX, EVAL)
!
 XNU = -1.0/3.0
 WRITE(NOUT,99998)
 DO 20 I=1, NUMEIG
 LAMBDA = EVAL(I)
 Z = CMPLX(2.0/3.0*LAMBDA*SQRT(LAMBDA),0.0)
 CALL CBJS (XNU, Z, 1, CBS1)
 CALL CBJS (-XNU, Z, 1, CBS2)
 WRITE (NOUT,99999) I-1, LAMBDA, REAL(CBS1(1) + CBS2(1))
 20 CONTINUE
!
99998 FORMAT(/, 2X, 'index', 5X, 'lambda', 5X, 'f(lambda)',/)
99999 FORMAT(I5, F13.4, E15.4)
 END
!
 SUBROUTINE COEFF (X, PX, QX, RX)
! SPECIFICATIONS FOR ARGUMENTS
 REAL X, PX, QX, RX
!
 PX = 1.0
 QX = X
 RX = 1.0
 RETURN
 END

Output
 index lambda f(lambda)

 0 2.3381 -0.8285E-05
 1 4.0879 -0.1651E-04
 2 5.5205 0.6843E-04
 3 6.7867 -0.4523E-05
 4 7.9440 0.8952E-04
 5 9.0227 0.1123E-04
 6 10.0401 0.1031E-03
 7 11.0084 -0.7913E-04
 8 11.9361 -0.5095E-04
 9 12.8293 0.4645E-03

Comments
1. Workspace may be explicitly provided, if desired, by use of S2EIG/DS2EIG. The

reference is:

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 977

CALL S2EIG (CONS, COEFFN, ENDFIN, NUMEIG, INDEX, TEVLAB, TEVLRL,
EVAL, JOB, IPRINT, TOLS, NUMX, XEF, NRHO, T, TYPE, EF, PDEF,
RHO, IFLAG, WORK, IWORK)

The additional arguments are as follows:

 JOB — Logical array of length five. (Input)

JOB(1) = .true. if a set of eigenvalues are to be computed but not their eigenfunctions.

JOB(2) = .true. if a set of eigenvalue and eigenfunction pairs are to be computed.

JOB(3) = .true. if the spectral function is to be computed
over some subinterval of the essential spectrum.

JOB(4) = .true. if the normal automatic classification is overridden. If JOB(4) = .true.
then TYPE(*,*) must be entered correctly. Most users will not want to override
the classification process, but it might be appropriate for users experimenting
with problems for which the coefficient functions do not have power-like
behavior near the singular endpoints. The classification is considered
sufficiently important for spectral density function calculations that JOB(4) is
ignored with JOB(3) = .true..

JOB(5) = .true. if mesh distribution is chosen by SLEIG. If JOB(5) = .true. and NUMX
is zero, the number of mesh points are also chosen by SLEIG. If NUMX > 0 then
NUMX mesh points will be used. If JOB(5) = .false., the number NUMX and
distribution XEF(*) must be input by the user.

IPRINT — Control levels of internal printing. (Input)
No printing is performed if IPRINT = 0. If either JOB(1) or JOB(2) is true:
IPRINT Printed Output
1 initial mesh (the first 51 or fewer points), eigenvalue estimate at each level
4 the above and at each level matching point for
 eigenfunction shooting, X(*), EF(*) and PDEF(*) values
5 the above and at each level the brackets for the eigenvalue
 search, intermediate shooting information for the eigenfunction and
 eigenfunction norm.

 If JOB(3) = .true.
IPRINT Printed Output
1 the actual (a, b) used at each iteration and the total number
 of eigenvalues computed
2 the above and switchover points to the asymptotic
 formulas, and some intermediate �(t) approximations
4 the above and initial meshes for each iteration, the index
 of the largest eigenvalue which may be computed, and various
 eigenvalue and RN values
4 the above and

978 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 �̂

 values at each level
5 the above and RN add eigenvalues below the switchover point
If JOB(4)=.false.
IPRINT Printed Output
2 output a description of the spectrum
3 the above and the constants for the Friedrichs' boundary condition(s)
5 the above and intermediate details of the classification
 calculation

TOLS — Array of length 4 containing tolerances. (Input)
TOLS(1) — absolute error tolerance for eigenfunctions
TOLS(2) — relative error tolerance for eigenfunctions
TOLS(3) — absolute error tolerance for eigenfunction derivatives
TOLS(4) — relative error tolerance for eigenfunction derivatives

 The absolute tolerances must be positive.
The relative tolerances must be at least 100 *amach(4)

NUMX — Integer whose value is the number of output points where each eigenfunction is to
be evaluated (the number of entries in XEF(*)) when JOB(2) = .true.. If JOB(5)= .false.
and NUMX is greater than zero, then NUMX is the number of points in the initial mesh
used. If JOB(5) = .false., the points in XEF(*) should be chosen with a reasonable
distribution. Since the endpoints a and b must be part of any mesh, NUMX cannot be one
in this case. If JOB(5) = .false. and JOB(3) = .true., then NUMX must be positive. On
output, NUMX is set to the number of points for eigenfunctions when input NUMX = 0,
and JOB(2) or JOB(5) = .true.. (Input/Output)

XEF — Array of points on input where eigenfunction estimates are desired, if JOB(2) =
.true.. Otherwise, if JOB(5) = .false. and NUMX is greater than zero, the user’s initial
mesh is entered. The entries must be ordered so that a = XEF(1) < XEF(2) < � <
XEF(NUMX) = b. If either endpoint is infinite, the corresponding XEF(1) or XEF(NUMX) is
ignored. However, it is required that XEF(2) be negative when ENDFIN(1) = .false., and
that XEF(NUMX-1) be positive when ENDFIN(2) = .false.. On output, XEF(*) is changed
only if JOB(2) and JOB(5) are true. If JOB(2) = .false., this vector is not referenced. If
JOB(2) = .true. and NUMX is greater than zero on input, XEF(*) should be dimensioned
at least NUMX + 16. If JOB(2) is true and NUMX is zero on input, XEF(*) should be
dimensioned at least 31.

NRHO — The number of output values desired for the array RHO(*). NRHO is not used if
JOB(3) = .false.. (Input)

T — Real vector of size NRHO containing values where the spectral function RHO(*) is desired.
The entries must be sorted in increasing order. The existence and location of a
continuous spectrum can be determined by calling SLEIG with the first four entries of
JOB set to false and IPRINT set to 1. T(*) is not used if JOB(3) = .false.. (Input)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 979

TYPE — 4 by 2 logical matrix. Column 1 contains information about endpoint a and column
2 refers to endpoint b.
TYPE(1,*) = .true. if and only if the endpoint is regular
TYPE(2,*) = .true. if and only if the endpoint is limit circle
TYPE(3,*) = .true. if and only if the endpoint is nonoscillatory for all eigenvalues
TYPE(4,*) = .true. if and only if the endpoint is oscillatory for all eigenvalues
Note: all of these values must be correctly input if JOB(4) = .true..
Otherwise, TYPE(*,*) is output. (Input/Output)

EF — Array of eigenfunction values. EF((k � 1)*NUMX + i) is the estimate of u(XEF(i))
corresponding to the eigenvalue in EV(k). If JOB(2) = .false. then this vector is not
referenced. If JOB(2) = .true. and NUMX is greater than zero on entry, then EF(*) should
be dimensioned at least NUMX * NUMEIG. If JOB(2) = .true. and NUMX is zero on input,
then EF(*) should be dimensioned 31 * NUMEIG. (Output)

PDEF — Array of eigenfunction derivative values. PDEF((k-1)*NUMX + i) is the estimate of
(pu�) (XEF(i)) corresponding to the eigenvalue in EV(k). If JOB(2) = .false. this vector is
not referenced. If JOB(2) = .true., it must be dimensioned the same as EF(*). (Output)

RHO — Array of size NRHO containing values for the spectral density function �(t), RHO(I) =
�(T(I)). This vector is not referenced if JOB(3) is false. (Output)

IFLAG — Array of size max(1, numeig) containing information about the output. IFLAG(K)
refers to the K-th eigenvalue, when JOB(1) or JOB(2) = .true.. Otherwise, only
IFLAG(1) is used. Negative values are associated with fatal errors, and the calculations
are ceased. Positive values indicate a warning. (Output)
IFLAG(K)

IFLAG(K) Description
�1 too many levels needed for the eigenvalue calculation;

problem seems too difficult at this tolerance. Are the
coefficient functions nonsmooth?

�2 too many levels needed for the eigenfunction
calculation; problem seems too difficult at this
tolerance. Are the eigenfunctions ill-conditioned?

�3 too many levels needed for the spectral density
calculation; problem seems too difficult at this
tolerance.

�4 the user has requested the spectral density function for
a problem which has no continuous spectrum.

�5 the user has requested the spectral density function for
a problem with both endpoints generating essential
spectrum, i.e. both endpoints either OSC or O-NO.

980 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

�6 the user has requested the spectral density function for
a problem in spectral category 2 for which a proper
normalization of the solution at the NONOSC
endpoint is not known; for example, problems with an
irregular singular point or infinite endpoint at one end
and continuous spectrum generated at the other.

�7 problems were encountered in obtaining a bracket.

�8 too small a step was used in the integration. The
TOLS(*) values may be too small for this problem.

�9 too small a step was used in the spectral density
function calculation for which the continuous
spectrum is generated by a finite endpoint.

�10 an argument to the circular trig functions is too large.
Try running the problem again with a finer initial mesh
or, for singular problems, use interval truncation.

�15 p(x) and r(x) are not positive in the interval (a, b).

�20 eigenvalues and/or eigenfunctions were requested for a
problem with an OSC singular endpoint. Interval
truncation must be used on such problems.

1 Failure in the bracketing procedure probably due to a
cluster of eigenvalues which the code cannot separate.
Calculations have continued but any eigenfunction
results are suspect. Try running the problem again with
tighter input tolerances to separate the cluster.

2 there is uncertainty in the classification for this
problem. Because of the limitations of floating point
arithmetic, and the nature of the finite sampling, the
routine cannot be certain about the classification
information at the requested tolerance.

3 there may be some eigenvalues embedded in the
essential spectrum. Use of IPRINT greater than zero
will provide additional output giving the location of
the approximating eigenvalues for the step function
problem. These could be extrapolated to estimate the
actual eigenvalue embedded in the essential spectrum.

4 a change of variables was made to avoid potentially
slow convergence. However, the global error estimates
may not be as reliable. Some experimentation using
different tolerances is recommended.

6 there were problems with eigenfunction convergence
in a spectral density calculation. The output �(t) may
not be accurate.

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 981

WORK — Array of size MAX(1000, NUMEIG + 22) used for workspace.

IWORK — Integer array of size NUMEIG + 3 used for workspace.

Description
This subroutine is designed for the calculation of eigenvalues, eigenfunctions and/or spectral
density functions for Sturm-Liouville problems in the form

 � � � � � � � �() for in ,d dup x q x u r x u x a b
dx dx

�� � � (1)

with boundary conditions (at regular points)

� � � �� �

� �

1 2 1 2

1 2

at

0 at

a u a pu a u a pu a

b u b pu b

�� � � �� � �

�� �

We assume that

1 2 1 2 0a a a a� �� �

when a�1 � 0 and a�2 � 0. The problem is considered regular if and only if

� a and b are finite,

� p(x) and r(x) are positive in (a, b),

� 1/p(x), q(x) and r(x) are locally integrable near the endpoints.

Otherwise the problem is called singular. The theory assumes that p, p�, q, and r are at least
continuous on (a, b), though a finite number of jump discontinuities can be handled by suitably
defining an input mesh.

For regular problems, there are an infinite number of eigenvalues

�0 < �1 < � < �k, k � �

Each eigenvalue has an associated eigenfunction which is unique up to a constant. For singular
problems, there is a wide range in the behavior of the eigenvalues.

As presented in Pruess and Fulton (1993) the approach is to replace (1) by a new problem

 � � ˆˆ ˆ ˆ ˆ ˆ ˆpu qu ru�
�

�� � � (2)

with analogous boundary conditions

� � � � � � � � � �� �

� � � � � �

1 2 1 2

1 2

ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ 0

a u a a pu a a u a a pu a

b u b b pu b

�
�� �� � �� � �

� �� 	

�
 �

where

982 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

ˆ ˆ ˆ, and p q r

are step function approximations to p, q, and r, respectively. Given the mesh
a = x1 < x2 < � < xN+1 = b, the usual choice for the step functions uses midpoint interpolation,
i. e.,

� � 1ˆ ()
2

n n
n

x xp x p p �
�

� �

for x in (xn, xn+1) and similarly for the other coefficient functions. This choice works well for
regular problems. Some singular problems require a more sophisticated technique to capture the
asymptotic behavior. For the midpoint interpolants, the differential equation (2) has the known
closed form solution in

(xn, xn+1)

� � � � � � � �� � � �ˆ ˆ ˆ ˆ /n n n n n n nu x u x x x pu x x x p� �� �� � � �

with

� �

sin / , 0
sinh / , 0
, 0

n n n

n n n n

t
t t

t

� � �

� � � �

�

��
�

� ��
� ��

where

� �ˆ /n n n nr q p� �� �

and

n n� ��

Starting with,

� � � � � �ˆ ˆ ˆ and u a pu a�

consistent with the boundary condition,

� �

� �� �

2 2

1 1

ˆˆ
ˆˆ ˆ

u a a a

pu a a a

�

�

�� �

� �� �

an algorithm is to compute for n = 1, 2, ..., N,

� � � � � � � �� � � �

� �� � � � � � � �� � � �

1

1

ˆ ˆ ˆ ˆ /

ˆ ˆ ˆ ˆ ˆ
n n n n n n n n

n n n n n n n n n

u x u x h pu x h p

pu x p u x h pu x h

� �

� � �

�

�

� �� �

� � �� � �

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 983

which is a shooting method. For a fixed mesh we can iterate on the approximate eigenvalue until
the boundary condition at b is satisfied. This will yield an O(h2) approximation

ˆ
k�

to some �k.

The problem (2) has a step spectral function given by

� �
� � � �2

1ˆ
ˆ ˆk

t
r x u x dx

�

�

�

�

�
�

where the sum is taken over k such that

ˆ
k t� �

and

1 2 1 2a a a a� � �� �

Additional Examples

Example 2
In this problem from Scott, Shampine and Wing (1969),

p(x) = r(x) = 1

q(x) = x2 + x4

[a, b] = [��, �]

u(a) = u(b) = 0

the first eigenvalue and associated eigenfunction, evaluated at selected points, are computed. As
a rough check of the correctness of the results, the magnitude of the residual

� � � � � �()d dup x q x u r x u
dx dx

�� � �

is printed. We compute a spline interpolant to u� and use the function CSDER to estimate the
quantity �(p(x)u�)�.

 USE S2EIG_INT
 USE CSDER_INT
 USE UMACH_INT
 USE CSAKM_INT
! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I, IFLAG(1), INDEX(1), IWORK(100), NINTV, NOUT, NRHO, &
 NUMEIG, NUMX
 REAL BRKUP(61), CONS(8), CSCFUP(4,61), EF(61), EVAL(1), &
 LAMBDA, PDEF(61), PX, QX, RESIDUAL, RHO(1), RX, T(1), &

984 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 TEVLAB, TEVLRL, TOLS(4), WORK(3000), X, XEF(61)
 LOGICAL ENDFIN(2), JOB(5), TYPE(4,2)
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC ABS, REAL
 REAL ABS, REAL
! SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL COEFF
! Define boundary conditions
 CONS(1) = 1.0
 CONS(2) = 0.0
 CONS(3) = 0.0
 CONS(4) = 0.0
 CONS(5) = 1.0
 CONS(6) = 0.0
 CONS(7) = 0.0
 CONS(8) = 0.0
! Compute eigenvalue and eigenfunctions
 JOB(1) = .FALSE.
 JOB(2) = .TRUE.
 JOB(3) = .FALSE.
 JOB(4) = .FALSE.
 JOB(5) = .FALSE.
!
 ENDFIN(1) = .FALSE.
 ENDFIN(2) = .FALSE.
! Compute eigenvalue with index 0
 NUMEIG = 1
 INDEX(1) = 0
!
 TEVLAB = 1.0E-3
 TEVLRL = 1.0E-3
 TOLS(1) = TEVLAB
 TOLS(2) = TEVLRL
 TOLS(3) = TEVLAB
 TOLS(4) = TEVLRL
 NRHO = 0
! Set up mesh, points at which u and
! u' will be computed
 NUMX = 61
 DO 10 I=1, NUMX
 XEF(I) = 0.05*REAL(I-31)
 10 CONTINUE
!
 CALL S2EIG (CONS, COEFF, ENDFIN, NUMEIG, INDEX, TEVLAB, TEVLRL, &
 EVAL, JOB, 0, TOLS, NUMX, XEF, NRHO, T, TYPE, EF, &
 PDEF, RHO, IFLAG, WORK, IWORK)
!
 LAMBDA = EVAL(1)
 20 CONTINUE
! Compute spline interpolant to u'
!
 CALL CSAKM (XEF, PDEF, BRKUP, CSCFUP)
 NINTV = NUMX - 1
!
 CALL UMACH (2, NOUT)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 985

 WRITE (NOUT,99997) ' lambda = ', LAMBDA
 WRITE (NOUT,99999)
! At a subset of points from the
! input mesh, compute residual =
! abs(-(u')' + q(x)u - lambda*u).
! We know p(x) = 1 and r(x) = 1.
 DO 30 I=1, 41, 2
 X = XEF(I+10)
 CALL COEFF (X, PX, QX, RX)
!
! Use the spline fit to u' to
! estimate u'' with CSDER
!
 RESIDUAL = ABS(-CSDER(1,X,BRKUP,CSCFUP)+QX*EF(I+10)- &
 LAMBDA*EF(I+10))
 WRITE (NOUT,99998) X, EF(I+10), PDEF(I+10), RESIDUAL
 30 CONTINUE
!
99997 FORMAT (/, A14, F10.5, /)
99998 FORMAT (5X, F4.1, 3F15.5)
99999 FORMAT (7X, 'x', 11X, 'u(x)', 10X, 'u''(x)', 9X, 'residual', /)
 END
!
 SUBROUTINE COEFF (X, PX, QX, RX)
! SPECIFICATIONS FOR ARGUMENTS
 REAL X, PX, QX, RX
!
 PX = 1.0
 QX = X*X + X*X*X*X
 RX = 1.0
 RETURN
 END

Output
 lambda = 1.39247
 x u(x) u'(x) residual
 -1.0 0.38632 0.65019 0.00189
 -0.9 0.45218 0.66372 0.00081
 -0.8 0.51837 0.65653 0.00023
 -0.7 0.58278 0.62827 0.00113
 -0.6 0.64334 0.57977 0.00183
 -0.5 0.69812 0.51283 0.00230
 -0.4 0.74537 0.42990 0.00273
 -0.3 0.78366 0.33393 0.00265
 -0.2 0.81183 0.22811 0.00273
 -0.1 0.82906 0.11570 0.00278
 0.0 0.83473 0.00000 0.00136
 0.1 0.82893 -0.11568 0.00273
 0.2 0.81170 -0.22807 0.00273
 0.3 0.78353 -0.33388 0.00267
 0.4 0.74525 -0.42983 0.00265
 0.5 0.69800 -0.51274 0.00230
 0.6 0.64324 -0.57967 0.00182

986 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 0.7 0.58269 -0.62816 0.00113
 0.8 0.51828 -0.65641 0.00023
 0.9 0.45211 -0.66361 0.00081
 1.0 0.38626 -0.65008 0.00189

SLCNT
Calculates the indices of eigenvalues of a Sturm-Liouville problem of the form for

� � � � � � � �() for in ,d dup x q x u r x u x a b
dx dx

�� � �

with boundary conditions (at regular points)

� � � �� �

� �

1 2 1 2

1 2

at

0 at

a u a pu a u a pu a

b u b pu b

�� � � �� � �

�� �

in a specified subinterval of the real line, [�, �].

Required Arguments
ALPHA — Value of the left end point of the search interval. (Input)

BETAR — Value of the right end point of the search interval. (Input)

CONS — Array of size eight containing

1 1 2 2 1 2, , , , , , and a a a a b b a b� �

in locations CONS(1) � CONS(8), respectively. (Input)

COEFFN — User-supplied SUBROUTINE to evaluate the coefficient functions. The usage is
CALL COEFFN (X, PX, QX, RX)
X — Independent variable. (Input)
PX — The value of p(x) at X. (Output)
QX — The value of q(x) at X. (Output)
RX — The value of r(x) at X. (Output)
COEFFN must be declared EXTERNAL in the calling program.

ENDFIN — Logical array of size two. ENDFIN = .true. if and only if the endpoint a is
finite. ENDFIN(2) = .true. if and only if endpoint b is finite. (Input)

IFIRST — The index of the first eigenvalue greater than �. (Output)

NTOTAL — Total number of eigenvalues in the interval [�, �]. (Output)

IMSL MATH/LIBRARY Chapter 5: Differential Equations � 987

FORTRAN 90 Interface
Generic: CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST,

 NTOTAL)

Specific: The specific interface names are S_SLCNT and D_SLCNT.

FORTRAN 77 Interface
Single: CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST,

 NTOTAL)

Double: The double precision name is DSLCNT.

Example
Consider the harmonic oscillator (Titchmarsh) defined by

 p(x) = 1

 q(x) = x2

 r(x) = 1

 [a, b] = [��, �]

 u(a) = 0

 u(b) = 0

The eigenvalues of this problem are known to be

 �k = 2k + 1, k = 0, 1, �

Therefore in the interval [10, 16] we expect SLCNT to note three eigenvalues, with the first of
these having index five.

 USE SLCNT_INT
 USE UMACH_INT
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IFIRST, NOUT, NTOTAL
 REAL ALPHA, BETAR, CONS(8)
 LOGICAL ENDFIN(2)
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL COEFFN
!
 CALL UMACH (2, NOUT)
! set u(a) = 0, u(b) = 0
 CONS(1) = 1.0E0
 CONS(2) = 0.0E0
 CONS(3) = 0.0E0
 CONS(4) = 0.0E0
 CONS(5) = 1.0E0
 CONS(6) = 0.0E0
 CONS(7) = 0.0E0

988 � Chapter 5: Differential Equations IMSL MATH/LIBRARY

 CONS(8) = 0.0E0
!
 ENDFIN(1) = .FALSE.
 ENDFIN(2) = .FALSE.
!
 ALPHA = 10.0
 BETAR = 16.0
!
 CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST, NTOTAL)
!
 WRITE (NOUT,99998) ALPHA, BETAR, IFIRST
 WRITE (NOUT,99999) NTOTAL
!
99998 FORMAT (/, 'Index of first eigenvalue in [', F5.2, ',', F5.2, &
 '] IS ', I2)
99999 FORMAT ('Total number of eigenvalues in this interval: ', I2)
!
 END
!
 SUBROUTINE COEFFN (X, PX, QX, RX)
! SPECIFICATIONS FOR ARGUMENTS
 REAL X, PX, QX, RX
!
 PX = 1.0E0
 QX = X*X
 RX = 1.0E0
 RETURN
 END

Output

Index of first eigenvalue in [10.00,16.00] is 5
Total number of eigenvalues in this interval: 3

Description
This subroutine computes the indices of eigenvalues, if any, in a subinterval of the real line for
Sturm-Liouville problems in the form

� � � � � � � �() for in ,d dup x q x u r x u x a b
dx dx

�� � �

with boundary conditions (at regular points)

� � � �� �

� �

1 2 1 2

1 2

at

0 at

a u a pu a u a pu a

b u b pu b

�� � � �� � �

�� �

It is intended to be used in conjunction with SLEIG, page 973. SLCNT is based on the routine
INTERV from the package SLEDGE.

IMSL MATH/LIBRARY Chapter 6: Transforms � 989

Chapter 6: Transforms

Routines
6.1. Real Trigonometric FFT

Computes the Discrete Fourier Transform
of a rank-1 complex array, x. ...FAST_DFT 992
Computes the Discrete Fourier Transform (2DFT)
of a rank-2 complex array, x ..FAST_2DFT 1000
Computes the Discrete Fourier Transform (2DFT)
of a rank-3 complex array, x ..FAST_3DFT 1006

Forward transform ..FFTRF 1009
Backward or inverse transform.. FFTRB 1012
Initialization routine for FFTR* ...FFTRI 1015

6.2. Complex Exponential FFT
Forward transform ..FFTCF 1017
Backward or inverse transform.. FFTCB 1019
Initialization routine for FFTC* ...FFTCI 1022

6.3. Real Sine and Cosine FFTs
Forward and inverse sine transformFSINT 1024
Initialization routine for FSINT ..FSINI 1026
Forward and inverse cosine transformFCOST 1028
Initialization routine for FCOST...FCOSI 1030

6.4. Real Quarter Sine and Quarter Cosine FFTs
Forward quarter sine transform ..QSINF 1032
Backward or inverse transform...QSINB 1034
Initialization routine for QSIN*.. QSINI 1037
Forward quarter cosine transform....................................... QCOSF 1039
Backward or inverse transform...QCOSB 1041
Initialization routine for QCOS*.. QCOSI 1043

6.5. Two- and Three-Dimensional Complex FFTs
Forward transform ..FFT2D 1045
Backward or inverse transform...FFT2B 1048
Forward transform .. FFT3F 1051
Backward or inverse transform...FFT3B 1055

990 � Chapter 6: Transforms IMSL MATH/LIBRARY

6.6. Convolutions and Correlations
Real convolution... RCONV 1059
Complex convolution .. CCONV 1064
Real correlation ...RCORL 1068
Complex correlation ..CCORL 1073

6.7. Laplace Transform
Inverse Laplace transform... INLAP 1078
Inverse Laplace transform for smooth functionsSINLP 1081

Usage Notes
Fast Fourier Transforms
A Fast Fourier Transform (FFT) is simply a discrete Fourier transform that can be computed
efficiently. Basically, the straightforward method for computing the Fourier transform takes
approximately N� operations where N is the number of points in the transform, while the FFT
(which computes the same values) takes approximately N log N operations. The algorithms in this
chapter are modeled on the Cooley-Tukey (1965) algorithm; hence, the computational savings
occur, not for all integers N, but for N which are highly composite. That is, N (or in certain cases
N + 1 or N � 1) should be a product of small primes.

All of the FFT routines compute a discrete Fourier transform. The routines accept a vector x of
length N and return a vector

x̂

defined by

1

ˆ :
N

m n nm
n

x x �

�

��

The various transforms are determined by the selection of �. In the following table, we indicate
the selection of � for the various transforms. This table should not be mistaken for a definition
since the precise transform definitions (at times) depend on whether N or m is even or odd.

IMSL MATH/LIBRARY Chapter 6: Transforms � 991

� �� �

� � � �

� �� �

� �� �

� �� �

� �

� �

� �� �

-2 -1 1 /

2 -1 1 /

Routine
1 1 2

FFTRF cos or sin

1 1 2
FFTRB cos or sin

FFTCF exp

FFTCB exp

FSINT sin
1

1 1
FCOST cos

1
2 1

QSINF 2 sin
2

2 1
QSINB 4 sin

2
2 1 1

QCOSF 2 cos
2

QCOSB 4 co

nm

i n m N

i n m N

m n
N

m n
N

nm
N

n m
N
m n

N
n m

N
m n

N

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

�

� �

�

�

�

� �

� �� �2n-1 1
s

2
m
N

��

For many of the routines listed above, there is a corresponding “I” (for initialization) routine. Use
these routines only when repeatedly transforming sequences of the same length. In this situation,
the “I” routine will compute the initial setup once, and then the user will call the corresponding
“2” routine. This can result in substantial computational savings. For more information on the
usage of these routines, the user should consult the documentation under the appropriate routine
name.

In addition to the one-dimensional transformations described above, we also provide complex two
and three-dimensional FFTs and their inverses based on calls to either FFTCF (page 1017) or
FFTCB (page 1019). If you need a higher dimensional transform, then you should consult the
example program for FFTCI (page 1022) which suggests a basic strategy one could employ.

Continuous versus Discrete Fourier Transform
There is, of course, a close connection between the discrete Fourier transform and the continuous
Fourier transform. Recall that the continuous Fourier transform is defined (Brigham, 1974) as

� � � �� � � � 2ˆ i tf F f f t e dt� �

� �

�
�

��

� � �

We begin by making the following approximation:

992 � Chapter 6: Transforms IMSL MATH/LIBRARY

� � � �

� � � �

� �

/ 2 2

/ 2

2 / 2

0

2

0

ˆ

/ 2

/ 2

T i t

T

T i t T

Ti T i t

f f t e dt

f t T e dt

e f t T e dt

� �

� �

� � � �

�
�

�

� �

�

�

� �

� �

�

�

�

If we approximate the last integral using the rectangle rule with spacing h = T/N, we have

� � � �
1

2

0

ˆ / 2
N

i T i kh

k

f e h e f kh T� � � �

�

�

�

�

� ��

Finally, setting � = j/T for j = 0, �, N � 1 yields

� � � � � �
1 1

2 / 2 /

0 0

ˆ / / 2 1
N N

jij ijk N ijk N h
k

k k

f j T e h e f kh T h e f� � �

� �

� �

� �

� � � �� �

where the vector f h = (f(� T/2), �, f((N � 1)h � T/2)). Thus, after scaling the components by
(�1)jh, the discrete Fourier transform as computed in FFTCF (with input fh) is related to an
approximation of the continuous Fourier transform by the above formula. This is seen more
clearly by making a change of variables in the last sum. Set

1, 1, and h
k nn k m j f x� � � � �

then, for m = 1, �, N we have

� �� � � � � � � �� �2 1 1 /

1

ˆ ˆ1 / 1 1
N

m m i m n N
m n

n

f m T hx h e x�� � �

�

� � � � � � � �

If the function f is expressed as a FORTRAN function routine, then the continuous Fourier
transform

f̂

can be approximated using the IMSL routine QDAWF (see Chapter 4, Integration and
Differentiation).

Inverse Laplace Transform
The last two routines described in this chapter, INLAP (page 1078) and SINLP (page 1081),
compute the inverse Laplace transforms.

FAST_DFT
Computes the Discrete Fourier Transform (DFT) of a rank-1 complex array, x.

Required Arguments
No required arguments; pairs of optional arguments are required. These pairs are forward_in
and forward_out or inverse_in and inverse_out.

IMSL MATH/LIBRARY Chapter 6: Transforms � 993

Optional Arguments
forward_in = x (Input)

Stores the input complex array of rank-1 to be transformed.

forward_out = y (Output)
Stores the output complex array of rank-1 resulting from the transform.

inverse_in = y (Input)
Stores the input complex array of rank-1 to be inverted.

inverse_out = x (Output)
Stores the output complex array of rank-1 resulting from the inverse transform.

ndata = n (Input)
Uses the sub-array of size n for the numbers.
Default value: n = size(x).

ido = ido (Input/Output)
Integer flag that directs user action. Normally, this argument is used only when the
working variables required for the transform and its inverse are saved in the calling
program unit. Computing the working variables and saving them in internal arrays
within fast_dft is the default. This initialization step is expensive.

There is a two-step process to compute the working variables just once. Example 3
illustrates this usage. The general algorithm for this usage is to enter fast_dft
with ido = 0. A return occurs thereafter with ido < 0. The optional rank-1
complex array w(:) with size(w) >= �ido must be re-allocated. Then, re-enter
fast_dft. The next return from fast_dft has the output value ido = 1. The variables
required for the transform and its inverse are saved in w(:). Thereafter, when the
routine is entered with ido = 1 and for the same value of n, the contents of w(:)

will be used for the working variables. The expensive initialization step is
avoided. The optional arguments “ido=” and “work_array=” must be used
together.

work_array = w(:) (Output/Input)
Complex array of rank-1 used to store working variables and values between calls to
fast_dft. The value for size(w) must be at least as large as the value � ido for the
value of ido < 0.

iopt = iopt(:) (Input/Output)
Derived type array with the same precision as the input array; used for passing optional
data to fast_dft. The options are as follows:

Packaged Options for FAST_DFT

Option Prefix = ? Option Name Option Value

c_, z_ fast_dft_scan_for_NaN 1

994 � Chapter 6: Transforms IMSL MATH/LIBRARY

Packaged Options for FAST_DFT

c_, z_ fast_dft_near_power_of_2 2

c_, z_ fast_dft_scale_forward 3

c_, z_ Fast_dft_scale_inverse 4

iopt(IO) = ?_options(?_fast_dft_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(x(i)) ==.true.

See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_fast_dft_near_power_of_2, ?_dummy)
Nearest power of 2 � n is returned as an output in iopt(IO + 1)%idummy.

iopt(IO) = ?_options(?_fast_dft_scale_forward, real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)
Complex number defined by the factor
cmplx(real_part_of_scale, imaginary_part_of_scale) is
multiplied by the forward transformed array.
Default value is 1.

iopt(IO) = ?_options(?_fast_dft_scale_inverse, real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)
Complex number defined by the factor
cmplx(real_part_of_scale, imaginary_part_of_scale) is
multiplied by the inverse transformed array.
Default value is 1.

FORTRAN 90 Interface
Generic: None

Specific: The specific interface names are S_FAST_DFT, D_FAST_DFT, C_FAST_DFT,
and Z_FAST_DFT.

Example 1: Transforming an Array of Random Complex Numbers
An array of random complex numbers is obtained. The transform of the numbers is inverted and
the final results are compared with the input array.

 use fast_dft_int
 use rand_gen_int

 implicit none

IMSL MATH/LIBRARY Chapter 6: Transforms � 995

! This is Example 1 for FAST_DFT.

 integer, parameter :: n=1024
 real(kind(1e0)), parameter :: one=1e0
 real(kind(1e0)) err, y(2*n)
 complex(kind(1e0)), dimension(n) :: a, b, c

! Generate a random complex sequence.
 call rand_gen(y)
 a = cmplx(y(1:n),y(n+1:2*n),kind(one))
 c = a

! Transform and then invert the sequence back.
 call c_fast_dft(forward_in=a, &
 forward_out=b)
 call c_fast_dft(inverse_in=b, &
 inverse_out=a)

! Check that inverse(transform(sequence)) = sequence.
 err = maxval(abs(c-a))/maxval(abs(c))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for FAST_DFT is correct.'
 end if

 end

Output

Example 1 for FAST_DFT is correct.

Description
The fast_dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776). The
maximum computing efficiency occurs when the size of the array can be factored in the form

31 2 42 3 4 5ii i in �

using non-negative integer values {i1, i2, i3, i4}. There is no further restriction on n � 1.

Additional Examples

Example 2: Cyclical Data with a Linear Trend
This set of data is sampled from a function x(t) = at + b + y(t), where y(t) is a harmonic series. The
independent variable is normalized as �1 � t � 1. Thus, the data is said to have cyclical
components plus a linear trend. As a first step, the linear terms are effectively removed from the
data using the least-squares system solver lin_sol_lsq, Chapter 1. Then, the residuals are
transformed and the resulting frequencies are analyzed.

 use fast_dft_int
 use lin_sol_lsq_int

996 � Chapter 6: Transforms IMSL MATH/LIBRARY

 use rand_gen_int
 use sort_real_int

 implicit none

! This is Example 2 for FAST_DFT.

 integer i
 integer, parameter :: n=64, k=4
 integer ip(n)
 real(kind(1e0)), parameter :: one=1e0, two=2e0, zero=0e0
 real(kind(1e0)) delta_t, pi
 real(kind(1e0)) y(k), z(2), indx(k), t(n), temp(n)
 complex(kind(1e0)) a_trend(n,2), a, b_trend(n,1), b, c(k), f(n),&
 r(n), x(n), x_trend(2,1)

! Generate random data for linear trend and harmonic series.
 call rand_gen(z)
 a = z(1); b = z(2)
 call rand_gen(y)
! This emphasizes harmonics 2 through k+1.
 c = y + one

! Determine sampling interval.
 delta_t = two/n
 t=(/(-one+i*delta_t, i=0,n-1)/)

! Compute pi.
 pi = atan(one)*4E0
 indx=(/(i*pi,i=1,k)/)

! Make up data set as a linear trend plus harmonics.
 x = a + b*t + &
 matmul(exp(cmplx(zero,spread(t,2,k)*spread(indx,1,n),kind(one))),c)

! Define least-squares matrix data for a linear trend.
 a_trend(1:,1) = one
 a_trend(1:,2) = t
 b_trend(1:,1) = x

! Solve for a linear trend.
 call lin_sol_lsq(a_trend, b_trend, x_trend)

! Compute harmonic residuals.
 r = x - reshape(matmul(a_trend,x_trend),(/n/))

! Transform harmonic residuals.
 call c_fast_dft(forward_in=r, forward_out=f)
 ip=(/(i,i=1,n)/)

! The dominant frequencies should be 2 through k+1.
! Sort the magnitude of the transform first.
 call s_sort_real(-(abs(f)), temp, iperm=ip)

! The dominant frequencies are output in ip(1:k).

IMSL MATH/LIBRARY Chapter 6: Transforms � 997

! Sort these values to compare with 2 through k+1.
 call s_sort_real(real(ip(1:k)), temp)
 ip(1:k)=(/(i,i=2,k+1)/)

! Check the results.
 if (count(int(temp(1:k)) /= ip(1:k)) == 0) then
 write (*,*) 'Example 2 for FAST_DFT is correct.'
 end if

 end

Output

Example 2 for FAST_DFT is correct.

Example 3: Several Transforms with Initialization
In this example, the optional arguments ido and work_array are used to save working
variables in the calling program unit. This results in maximum efficiency of the transform and its
inverse since the working variables do not have to be precomputed following each entry to routine
fast_dft.

 use fast_dft_int
 use rand_gen_int

 implicit none

! This is Example 3 for FAST_DFT.

! The value of the array size for work(:) is computed in the
! routine fast_dft as a first step.
 integer, parameter :: n=64
 integer ido_value
 real(kind(1e0)) :: one=1e0
 real(kind(1e0)) err, y(2*n)
 complex(kind(1e0)), dimension(n) :: a, b, save_a
 complex(kind(1e0)), allocatable :: work(:)

! Generate a random complex array.
 call rand_gen(y)
 a = cmplx(y(1:n),y(n+1:2*n),kind(one))
 save_a = a

! Transform and then invert the sequence using the pre-computed
! working values.
 ido_value = 0
 do
 if(allocated(work)) deallocate(work)

! Allocate the space required for work(:).
 if (ido_value <= 0) allocate(work(-ido_value))

998 � Chapter 6: Transforms IMSL MATH/LIBRARY

 call c_fast_dft(forward_in=a, forward_out=b, &
 ido=ido_value, work_array=work)

 if (ido_value == 1) exit
 end do

! Re-enter routine with working values available in work(:).
 call c_fast_dft(inverse_in=b, inverse_out=a, &
 ido=ido_value, work_array=work)

! Deallocate the space used for work(:).
 if (allocated(work)) deallocate(work)

! Check the results.
 err = maxval(abs(save_a-a))/maxval(abs(save_a))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 3 for FAST_DFT is correct.'
 end if

 end

Output

Example 3 for FAST_DFT is correct.

Example 4: Convolutions using Fourier Transforms
In this example we compute sums

1

0
, 0, , 1

n

k j k j
j

c a b k n
�

�

�

� � �� �

The definition implies a matrix-vector product. A direct approach requires about 2n operations
consisisting of an add and multiply. An efficient method consisting of computing the products of
the transforms of the

 � �ja and � �jb

then inverting this product, is preferable to the matrix-vector approach for large problems. The
example is also illustrated in operator_ex37, Chapter 10 using the generic function interface
FFT and IFFT.

 use fast_dft_int
 use rand_gen_int

 implicit none

! This is Example 4 for FAST_DFT.

 integer j

IMSL MATH/LIBRARY Chapter 6: Transforms � 999

 integer, parameter :: n=40
 real(kind(1e0)) :: one=1e0
 real(kind(1e0)) err
 real(kind(1e0)), dimension(n) :: x, y, yy(n,n)
 complex(kind(1e0)), dimension(n) :: a, b, c, d, e, f

! Generate two random complex sequence 'a' and 'b'.

 call rand_gen(x)
 call rand_gen(y)
 a=x; b=y

! Compute the convolution 'c' of 'a' and 'b'.
! Use matrix times vector for test results.
 yy(1:,1)=y
 do j=2,n
 yy(2:,j)=yy(1:n-1,j-1)
 yy(1,j)=yy(n,j-1)
 end do

 c=matmul(yy,x)

! Transform the 'a' and 'b' sequences into 'd' and 'e'.

 call c_fast_dft(forward_in=a, &
 forward_out=d)
 call c_fast_dft(forward_in=b, &
 forward_out=e)

! Invert the product d*e.

 call c_fast_dft(inverse_in=d*e, &
 inverse_out=f)

! Check the Convolution Theorem:
! inverse(transform(a)*transform(b)) = convolution(a,b).

 err = maxval(abs(c-f))/maxval(abs(c))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 4 for FAST_DFT is correct.'
 end if

 end

Output

Example 4 for FAST_DFT is correct.

Fatal and Terminal Messages
See the messages.gls file for error messages for fast_dft. These error messages are numbered
651�661; 701�711.

1000 � Chapter 6: Transforms IMSL MATH/LIBRARY

FAST_2DFT
Computes the Discrete Fourier Transform (2DFT) of a rank-2 complex array, x.

Required Arguments
No required arguments; pairs of optional arguments are required. These pairs are forward_in
and forward_out or inverse_in and inverse_out.

Optional Arguments
forward_in = x (Input)

Stores the input complex array of rank-2 to be transformed.

forward_out = y (Output)
Stores the output complex array of rank-2 resulting from the transform.

inverse_in = y (Input)
Stores the input complex array of rank-2 to be inverted.

inverse_out = x (Output)
Stores the output complex array of rank-2 resulting from the inverse transform.

mdata = m (Input)
Uses the sub-array in first dimension of size m for the numbers.
Default value: m = size(x,1).

ndata = n (Input)
Uses the sub-array in the second dimension of size n for the numbers.
Default value: n = size(x,2).

ido = ido (Input/Output)
Integer flag that directs user action. Normally, this argument is used only when the
working variables required for the transform and its inverse are saved in the calling
program unit. Computing the working variables and saving them in internal arrays
within fast_2dft is the default. This initialization step is expensive.

There is a two-step process to compute the working variables just once. Example 3
illustrates this usage. The general algorithm for this usage is to enter fast_2dft
with ido = 0. A return occurs thereafter with ido < 0. The optional rank-1
complex array w(:) with size(w) >= �ido must be re-allocated. Then, re-enter
fast_2dft. The next return from fast_2dft has the output value ido = 1. The
variables required for the transform and its inverse are saved in w(:). Thereafter,
when the routine is entered with ido = 1 and for the same values of m and n, the
contents of w(:) will be used for the working variables. The expensive
initialization step is avoided. The optional arguments “ido=” and “work_array=”
must be used together.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1001

work_array = w(:) (Output/Input)
Complex array of rank-1 used to store working variables and values between calls to
fast_2dft. The value for size(w) must be at least as large as the value � ido for the
value of ido < 0.

iopt = iopt(:) (Input/Output)
Derived type array with the same precision as the input array; used for passing optional
data to fast_2dft. The options are as follows:

Packaged Options for FAST_2DFT

Option Prefix = ? Option Name Option Value

c_, z_ fast_2dft_scan_for_NaN 1

c_, z_ fast_2dft_near_power_of_2 2

c_, z_ fast_2dft_scale_forward 3

c_, z_ fast_2dft_scale_inverse 4

iopt(IO) = ?_options(?_fast_2dft_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(x(i,j)) ==.true.

See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_fast_2dft_near_power_of_2, ?_dummy)
Nearest powers of 2 � m and � n are returned as an outputs in iopt(IO +
1)%idummy and iopt(IO + 2)%idummy.

iopt(IO) = ?_options(?_fast_2dft_scale_forward, real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)
Complex number defined by the factor
cmplx(real_part_of_scale, imaginary_part_of_scale) is
multiplied by the forward transformed array.
Default value is 1.

iopt(IO) = ?_options(?_fast_2dft_scale_inverse, real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)
Complex number defined by the factor
cmplx(real_part_of_scale, imaginary_part_of_scale) is
multiplied by the inverse transformed array.
Default value is 1.

FORTRAN 90 Interface
Generic: None

1002 � Chapter 6: Transforms IMSL MATH/LIBRARY

Specific: The specific interface names are S_FAST_2DFT, D_FAST_2DFT,
C_FAST_2DFT, and Z_FAST_2DFT.

Example 1: Transforming an Array of Random Complex Numbers
An array of random complex numbers is obtained. The transform of the numbers is inverted and
the final results are compared with the input array.

 use fast_2dft_int
 use rand_int

 implicit none

! This is Example 1 for FAST_2DFT.

 integer, parameter :: n=24
 integer, parameter :: m=40
 real(kind(1e0)) :: err, one=1e0
 complex(kind(1e0)), dimension(n,m) :: a, b, c

! Generate a random complex sequence.
 a=rand(a); c=a

! Transform and then invert the transform.
 call c_fast_2dft(forward_in=a, &
 forward_out=b)
 call c_fast_2dft(inverse_in=b, &
 inverse_out=a)

! Check that inverse(transform(sequence)) = sequence.
 err = maxval(abs(c-a))/maxval(abs(c))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for FAST_2DFT is correct.'
 end if

 end

Output

Example 1 for FAST_2DFT is correct.

Description
The fast_2dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776).

Additional Examples

Example 2: Cyclical 2D Data with a Linear Trend
This set of data is sampled from a function x(s, t) = a + bs + ct + y(s, t) , where y(s, t) is an
harmonic series. The independent variables are normalized as

IMSL MATH/LIBRARY Chapter 6: Transforms � 1003

 �1 � s � 1 and �1 � t � 1. Thus, the data is said to have cyclical components plus a linear trend.
As a first step, the linear terms are effectively removed from the data using the least-squares
system solver . Then, the residuals are transformed and the resulting frequencies are analyzed.

 use fast_2dft_int
 use lin_sol_lsq_int
 use sort_real_int
 use rand_int
 implicit none

! This is Example 2 for FAST_2DFT.

 integer i
 integer, parameter :: n=8, k=15
 integer ip(n*n), order(k)
 real(kind(1e0)), parameter :: one=1e0, two=2e0, zero=0e0
 real(kind(1e0)) delta_t
 real(kind(1e0)) rn(3), s(n), t(n), temp(n*n), new_order(k)
 complex(kind(1e0)) a, b, c, a_trend(n*n,3), b_trend(n*n,1), &
 f(n,n), r(n,n), x(n,n), x_trend(3,1)
 complex(kind(1e0)), dimension(n,n) :: g=zero, h=zero

! Generate random data for planar trend.
 rn = rand(rn)
 a = rn(1)
 b = rn(2)
 c = rn(3)

! Generate the frequency components of the harmonic series.
! Non-zero random amplitudes given on two edges of the square domain.
 g(1:,1)=rand(g(1:,1))
 g(1,1:)=rand(g(1,1:))

! Invert 'g' into the harmonic series 'h' in time domain.
 call c_fast_2dft(inverse_in=g, inverse_out=h)

! Compute sampling interval.
 delta_t = two/n
 s = (/(-one + (i-1)*delta_t, i=1,n)/)
 t = (/(-one + (i-1)*delta_t, i=1,n)/)

! Make up data set as a linear trend plus harmonics.
 x = a + b*spread(s,dim=2,ncopies=n) + &
 c*spread(t,dim=1,ncopies=n) + h

! Define least-squares matrix data for a planar trend.
 a_trend(1:,1) = one
 a_trend(1:,2) = reshape(spread(s,dim=2,ncopies=n),(/n*n/))
 a_trend(1:,3) = reshape(spread(t,dim=1,ncopies=n),(/n*n/))
 b_trend(1:,1) = reshape(x,(/n*n/))

! Solve for a linear trend.
 call lin_sol_lsq(a_trend, b_trend, x_trend)

1004 � Chapter 6: Transforms IMSL MATH/LIBRARY

! Compute harmonic residuals.
 r = x - reshape(matmul(a_trend,x_trend),(/n,n/))

! Transform harmonic residuals.
 call c_fast_2dft(forward_in=r, forward_out=f)

 ip = (/(i,i=1,n**2)/)

! Sort the magnitude of the transform.
 call s_sort_real(-(abs(reshape(f,(/n*n/)))), &
 temp, iperm=ip)

! The dominant frequencies are output in ip(1:k).
! Sort these values to compare with the original frequency order.
 call s_sort_real(real(ip(1:k)), new_order)

 order(1:n) = (/(i,i=1,n)/)
 order(n+1:k) = (/((i-n)*n+1,i=n+1,k)/)

! Check the results.
 if (count(order /= int(new_order)) == 0) then
 write (*,*) 'Example 2 for FAST_2DFT is correct.'
 end if

 end

Output

Example 2 for FAST_2DFT is correct.

Example 3: Several 2D Transforms with Initialization
In this example, the optional arguments ido and work_array are used to save working
variables in the calling program unit. This results in maximum efficiency of the transform and its
inverse since the working variables do not have to be precomputed following each entry to routine
fast_2dft.

 use fast_2dft_int

 implicit none

! This is Example 3 for FAST_2DFT.

 integer i, j
 integer, parameter :: n=256
 real(kind(1e0)), parameter :: one=1e0, zero=0e0
 real(kind(1e0)) r(n,n), err
 complex(kind(1e0)) a(n,n), b(n,n), c(n,n)

! The value of the array size for work(:) is computed in the
! routine fast_dft as a first step.

 integer ido_value
 complex(kind(1e0)), allocatable :: work(:)

IMSL MATH/LIBRARY Chapter 6: Transforms � 1005

! Fill in value one for points inside the circle with r=64.
 a = zero
 r = reshape((/(((i-n/2)**2 + (j-n/2)**2, i=1,n), &
 j=1,n)/),(/n,n/))
 where (r <= (n/4)**2) a = one
 c = a

! Transform and then invert the sequence using the pre-computed
! working values.
 ido_value = 0
 do
 if(allocated(work)) deallocate(work)

! Allocate the space required for work(:).
 if (ido_value <= 0) allocate(work(-ido_value))

! Transform the image and then invert it back.
 call c_fast_2dft(forward_in=a, &
 forward_out=b, IDO=ido_value, work_array=work)
 if (ido_value == 1) exit
 end do
 call c_fast_2dft(inverse_in=b, &
 inverse_out=a, IDO=ido_value, work_array=work)

! Deallocate the space used for work(:).
 if (allocated(work)) deallocate(work)

! Check that inverse(transform(image)) = image.
 err = maxval(abs(c-a))/maxval(abs(c))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 3 for FAST_2DFT is correct.'
 end if

 end

Output

Example 3 for FAST_2DFT is correct.

Fatal and Terminal Messages

See the messages.gls file for error messages for fast_2dft. These error messages are numbered
670�680; 720�730.

1006 � Chapter 6: Transforms IMSL MATH/LIBRARY

FAST_3DFT
Required Arguments
No required arguments; pairs of optional arguments are required. These pairs are forward_in
and forward_out or inverse_in and inverse_out.

Optional Arguments
forward_in = x (Input)

Stores the input complex array of rank-3 to be transformed.

forward_out = y (Output)
Stores the output complex array of rank-3 resulting from the transform.

inverse_in = y (Input)
Stores the input complex array of rank-3 to be inverted.

inverse_out = x (Output)
Stores the output complex array of rank-3 resulting from the inverse transform.

mdata = m (Input)
Uses the sub-array in first dimension of size m for the numbers.
Default value: m = size(x,1).

ndata = n (Input)
Uses the sub-array in the second dimension of size n for the numbers.
Default value: n = size(x,2).

kdata = k (Input)
Uses the sub-array in the third dimension of size k for the numbers.
Default value: k = size(x,3).

ido = ido (Input/Output)
Integer flag that directs user action. Normally, this argument is used only when the
working variables required for the transform and its inverse are saved in the calling
program unit. Computing the working variables and saving them in internal arrays
within fast_3dft is the default. This initialization step is expensive.

There is a two-step process to compute the working variables just once. The general
algorithm for this usage is to enter fast_3dft with
ido = 0. A return occurs thereafter with ido < 0. The optional rank-1 complex
array w(:) with size(w) >= �ido must be re-allocated. Then, re-enter fast_3dft.
The next return from fast_3dft has the output value ido = 1. The variables
required for the transform and its inverse are saved in w(:). Thereafter, when the
routine is entered with ido = 1 and for the same values of m and n, the contents
of w(:) will be used for the working variables. The expensive initialization step

IMSL MATH/LIBRARY Chapter 6: Transforms � 1007

is avoided. The optional arguments “ido=” and “work_array=” must be used
together.

work_array = w(:) (Output/Input)
Complex array of rank-1 used to store working variables and values between calls to
fast_3dft. The value for size(w) must be at least as large as the value � ido for the
value of ido < 0.

iopt = iopt(:) (Input/Output)
Derived type array with the same precision as the input array; used for passing optional
data to fast_3dft. The options are as follows:

Packaged Options for FAST_3DFT
Option Prefix = ? Option Name Option Value

C_, z_ fast_3dft_scan_for_NaN 1

C_, z_ fast_3dft_near_power_of_2 2

C_, z_ fast_3dft_scale_forward 3

C_, z_ fast_3dft_scale_inverse 4

iopt(IO) = ?_options(?_fast_3dft_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(x(i,j,k)) ==.true.

See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_fast_3dft_near_power_of_2, ?_dummy)
Nearest powers of 2 � m, � n, and � k are returned as an outputs in
iopt(IO+1)%idummy , iopt(IO+2)%idummy and iopt(IO+3)%idummy

iopt(IO) = ?_options(?_fast_3dft_scale_forward, real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)
Complex number defined by the factor
cmplx(real_part_of_scale, imaginary_part_of_scale) is
multiplied by the forward transformed array.
Default value is 1.

iopt(IO) = ?_options(?_fast_3dft_scale_inverse, real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)
Complex number defined by the factor
cmplx(real_part_of_scale, imaginary_part_of_scale) is
multiplied by the inverse transformed array.
Default value is 1.

1008 � Chapter 6: Transforms IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: None

Specific: The specific interface names are S_FAST_3DFT, D_FAST_3DFT,
C_FAST_3DFT, and Z_FAST_3DFT.

Example 1: Transforming an Array of Random Complex Numbers
An array of random complex numbers is obtained. The transform of the numbers is inverted and
the final results are compared with the input array.

 use fast_3dft_int

 implicit none

! This is Example 1 for FAST_3DFT.

 integer i, j, k
 integer, parameter :: n=64
 real(kind(1e0)), parameter :: one=1e0, zero=0e0
 real(kind(1e0)) r(n,n,n), err
 complex(kind(1e0)) a(n,n,n), b(n,n,n), c(n,n,n)

! Fill in value one for points inside the sphere
! with radius=16.
 a = zero
 do i=1,n
 do j=1,n
 do k=1,n
 r(i,j,k) = (i-n/2)**2+(j-n/2)**2+(k-n/2)**2
 end do
 end do
 end do
 where (r <= (n/4)**2) a = one
 c = a

! Transform the image and then invert it back.
 call c_fast_3dft(forward_in=a, &
 forward_out=b)
 call c_fast_3dft(inverse_in=b, &
 inverse_out=a)

! Check that inverse(transform(image)) = image.
 err = maxval(abs(c-a))/maxval(abs(c))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for FAST_3DFT is correct.'
 end if

 end

Output

IMSL MATH/LIBRARY Chapter 6: Transforms � 1009

Example 1 for FAST_3DFT is correct.

Description
The fast_3dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776).

Fatal and Terminal Messages
See the messages.gls file for error messages for fast_3dft. These error messages are numbered
685�695; 740�750.

FFTRF
Computes the Fourier coefficients of a real periodic sequence.

Required Arguments
N — Length of the sequence to be transformed. (Input)

SEQ — Array of length N containing the periodic sequence. (Input)

COEF — Array of length N containing the Fourier coefficients. (Output)

FORTRAN 90 Interface
Generic: CALL FFTRF (N, SEQ, COEF)

Specific: The specific interface names are S_FFTRF and D_FFTRF.

FORTRAN 77 Interface
Single: CALL FFTRF (N, SEQ, COEF)

Double: The double precision name is DFFTRF.

Example
In this example, a pure cosine wave is used as a data vector, and its Fourier series is recovered.
The Fourier series is a vector with all components zero except at the appropriate frequency
where it has an N.

 USE FFTRF_INT
 USE CONST_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, NOUT
 REAL COEF(N), COS, FLOAT, TWOPI, SEQ(N)
 INTRINSIC COS, FLOAT

1010 � Chapter 6: Transforms IMSL MATH/LIBRARY

 TWOPI = CONST(’PI’)
!
 TWOPI = 2.0*TWOPI
! Get output unit number
 CALL UMACH (2, NOUT)
! This loop fills out the data vector
! with a pure exponential signal
 DO 10 I=1, N
 SEQ(I) = COS(FLOAT(I-1)*TWOPI/FLOAT(N))
 10 CONTINUE
! Compute the Fourier transform of SEQ
 CALL FFTRF (N, SEQ, COEF)
! Print results
 WRITE (NOUT,99998)
99998 FORMAT (9X, ’INDEX’, 5X, ’SEQ’, 6X, ’COEF’)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)
 END

Output
INDEX SEQ COEF
 1 1.00 0.00
 2 0.62 3.50
 3 -0.22 0.00
 4 -0.90 0.00
 5 -0.90 0.00
 6 -0.22 0.00
 7 0.62 0.00

Comments
1. Workspace may be explicitly provided, if desired, by use of F2TRF/DF2TRF. The

reference is:

CALL F2TRF (N, SEQ, COEF, WFFTR)

The additional argument is

WFFTR — Array of length 2N + 15 initialized by FFTRI (page 1015). (Input)
The initialization depends on N.

2. The routine FFTRF is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTRF/FFTRB is used repeatedly with the same value of N, then call FFTRI followed
by repeated calls to F2TRF/F2TRB. This is more efficient than repeated calls to
FFTRF/FFTRB.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1011

Description
The routine FFTRF computes the discrete Fourier transform of a real vector of size N. The
method used is a variant of the Cooley-Tukey algorithm that is most efficient when N is a
product of small prime factors. If N satisfies this condition, then the computational effort is
proportional to N log N.

Specifically, given an N-vector s = SEQ, FFTRF returns in c = COEF, if N is even:

� �� �

� �� �

2 2
1

2 1
1

1
1

1 1 2
cos 2, , / 2 1

1 1 2
sin 2, , / 2

N

m n
n

N

m n
n

N

n
n

m n
c s m N

N

m n
c s m N

N

c s

�

�

�

�

�

�

�

� �� �
� � �� �

� 	

� �� �
� � �� �

� 	

�

�

�

�

�

�

If N is odd, cm is defined as above for m from 2 to (N + 1)/2.

We now describe a fairly common usage of this routine. Let f be a real valued function of time.
Suppose we sample f at N equally spaced time intervals of length � seconds starting at time t�.
That is, we have

SEQ i:= f (t� + (i � 1)�) i = 1, 2, �, N

The routine FFTRF treats this sequence as if it were periodic of period N. In particular, it
assumes that f (t�) = f (t� + N�). Hence, the period of the function is assumed to be T = N�.

Now, FFTRF accepts as input SEQ and returns as output coefficients c = COEF that satisfy the
following relation when N is odd (N even is similar):

� �� � � �� �� �� �1 / 2 1 / 2

1 2 2 2 1
2 2

2 1 1 2 1 11SEQ 2 cos 2 sin
N N

i n n
n n

n i n i
c c c

N N N
� �

� �

� �

� �

� �� � � �� � � �
� � �� �� � � �

� �� 	 � 	� 	
� �

This formula is very revealing. It can be interpreted in the following manner. The coefficients
produced by FFTRF produce an interpolating trigonometric polynomial to the data. That is, if we
define

� �
� �� � � �� �� �� �

� �� � � � � �� �� �

1 / 2 1 / 2
0 0

1 2 2 2 1
2 2

1 / 2 1 / 2
0 0

1 2 2 2 1
2 2

2 1 2 11: 2 cos 2 sin

2 1 2 11 2 cos 2 sin

N N

n n
n n

N N

n n
n n

n t t n t t
g t c c c

N N N

n t t n t t
c c c

N T T

� �

� �

� �

� �

� �

� �

� �

� �

� �� � � �� � � �
� � �� �� � � �

� �� �	
 	
	

� �� � � �� � � �
� � �� �� � � �

� �	
 	
	

� �

� �

then, we have

f(t� + (i � 1)�) = g(t� + (i � 1)�)

Now, suppose we want to discover the dominant frequencies. One forms the vector P of length
N/2 as follows:

1012 � Chapter 6: Transforms IMSL MATH/LIBRARY

� �

1 1

2 2
2 2 2 1

:

: 2, 3, , 1 / 2k k k

P c

P c c k N
� �

�

� � � ��

These numbers correspond to the energy in the spectrum of the signal. In particular, Pk
corresponds to the energy level at frequency

1 1 11, 2, ,
2

k k Nk
T N
� � �

� �
�

�

Furthermore, note that there are only (N + 1)/2 � T/(2�) resolvable frequencies when N
observations are taken. This is related to the Nyquist phenomenon, which is induced by discrete
sampling of a continuous signal.

Similar relations hold for the case when N is even.

Finally, note that the Fourier transform hsas an (unnormalized) inverse that is implemented in
FFTRB (page 1012). The routine FFTRF is based on the real FFT in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

FFTRB
Computes the real periodic sequence from its Fourier coefficients.

Required Arguments
N — Length of the sequence to be transformed. (Input)

COEF — Array of length N containing the Fourier coefficients. (Input)

SEQ — Array of length N containing the periodic sequence. (Output)

FORTRAN 90 Interface
Generic: CALL FFTRB (N, COEF, SEQ [,…])

Specific: The specific interface names are S_FFTRB and D_FFTRB.

FORTRAN 77 Interface
Single: CALL FFTRB (N, COEF, SEQ)

Double: The double precision name is DFFTRB.

Example
We compute the forward real FFT followed by the inverse operation. In this example, we first
compute the Fourier transform

IMSL MATH/LIBRARY Chapter 6: Transforms � 1013

COEFx̂ �

of the vector x, where xj = (�1)j for j = 1 to N. This vector

x̂

is now input into FFTRB with the resulting output s = Nx, that is, sj = (�1)j N for j = 1 to N.
 USE FFTRB_INT
 USE CONST_INT
 USE FFTRF_INT
 USE UMACH_INT

 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, NOUT
 REAL COEF(N), FLOAT, SEQ(N), TWOPI, X(N)
 INTRINSIC FLOAT
 TWOPI = CONST(’PI’)
!
 TWOPI = TWOPI
! Get output unit number
 CALL UMACH (2, NOUT)
! Fill the data vector
 DO 10 I=1, N
 X(I) = FLOAT((-1)**I)
 10 CONTINUE
! Compute the forward transform of X
 CALL FFTRF (N, X, COEF)
! Print results
 WRITE (NOUT,99994)
 WRITE (NOUT,99995)
99994 FORMAT (9X, ’Result after forward transform’)
99995 FORMAT (9X, ’INDEX’, 5X, ’X’, 8X, ’COEF’)
 WRITE (NOUT,99996) (I, X(I), COEF(I), I=1,N)
99996 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)
! Compute the backward transform of
! COEF
 CALL FFTRB (N, COEF, SEQ)
! Print results
 WRITE (NOUT,99997)
 WRITE (NOUT,99998)
99997 FORMAT (/, 9X, ’Result after backward transform’)
99998 FORMAT (9X, ’INDEX’, 4X, ’COEF’, 6X, ’SEQ’)
 WRITE (NOUT,99999) (I, COEF(I), SEQ(I), I=1,N)
99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)
 END

Output
Result after forward transform
INDEX X COEF
 1 -1.00 -1.00
 2 1.00 -1.00
 3 -1.00 -0.48

1014 � Chapter 6: Transforms IMSL MATH/LIBRARY

 4 1.00 -1.00
 5 -1.00 -1.25
 6 1.00 -1.00
 7 -1.00 -4.38

Result after backward transform
INDEX COEF SEQ
 1 -1.00 -7.00
 2 -1.00 7.00
 3 -0.48 -7.00
 4 -1.00 7.00
 5 -1.25 -7.00
 6 -1.00 7.00
 7 -4.38 -7.00

Comments
1. Workspace may be explicitly provided, if desired, by use of F2TRB/DF2TRB. The

reference is:

CALL F2TRB (N, COEF, SEQ, WFFTR)

The additional argument is

WFFTR — Array of length 2N + 15 initialized by FFTRI (page 1015). (Input)
The initialization depends on N.

2. The routine FFTRB is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTRF/FFTRB is used repeatedly with the same value of N, then call FFTRI (page
1015) followed by repeated calls to F2TRF/F2TRB. This is more efficient than repeated
calls to FFTRF/FFTRB.

Description
The routine FFTRB is the unnormalized inverse of the routine FFTRF (page 1009). This routine
computes the discrete inverse Fourier transform of a real vector of size N. The method used is a
variant of the Cooley-Tukey algorithm, which is most efficient when N is a product of small
prime factors. If N satisfies this condition, then the computational effort is proportional to N log
N.

Specifically, given an N-vector c = COEF, FFTRB returns in s = SEQ, if N is even:

� �
� � � �� �

� � � �

/ 2
1

1 2 2
2

/ 2

2 1
2

1 1 2
1 2 cos

1 1 2
2 sin

N
m

m N n
n

N

n
n

n m
s c c c

N
n m

c
N

�

�

�

�

�

�

�

� �� �� �� � � �

� �� �� ��

�

�

If N is odd:

IMSL MATH/LIBRARY Chapter 6: Transforms � 1015

� �� �� �

� � � �� �

1 / 2

1 2 2
2

1 / 2

2 1
2

1 1 2
2 cos

1 1 2
2 sin

N

m n
n

N

n
n

n m
s c c

N
n m

c
N

�

�

�

�

�

�

�

�

� �� �� �� �

� �� �� ��

�

�

The routine FFTRB is based on the inverse real FFT in FFTPACK. The package FFTPACK was
developed by Paul Swarztrauber at the National Center for Atmospheric Research.

FFTRI
Computes parameters needed by FFTRF and FFTRB.

Required Arguments
N — Length of the sequence to be transformed. (Input)

WFFTR — Array of length 2N + 15 containing parameters needed by FFTRF and FFTRB.
(Output)

FORTRAN 90 Interface
Generic: CALL FFTRI (N, WFFTR)

Specific: The specific interface names are S_FFTRI and D_FFTRI.

FORTRAN 77 Interface
Single: CALL FFTRI (N, WFFTR)

Double: The double precision name is DFFTRI.

Example
In this example, we compute three distinct real FFTs by calling FFTRI once and then calling
F2TRF three times.

 USE FFTRI_INT
 USE CONST_INT
 USE F2TRF_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, K, NOUT

1016 � Chapter 6: Transforms IMSL MATH/LIBRARY

 REAL COEF(N), COS, FLOAT, TWOPI, WFFTR(29), SEQ(N)
 INTRINSIC COS, FLOAT
!
 TWOPI = CONST(’PI’)
 TWOPI = 2* TWOPI
! Get output unit number
 CALL UMACH (2, NOUT)
! Set the work vector
 CALL FFTRI (N, WFFTR)
!
 DO 20 K=1, 3
! This loop fills out the data vector
! with a pure exponential signal
 DO 10 I=1, N
 SEQ(I) = COS(FLOAT(K*(I-1))*TWOPI/FLOAT(N))
 10 CONTINUE
! Compute the Fourier transform of SEQ
 CALL F2TRF (N, SEQ, COEF, WFFTR)
! Print results
 WRITE (NOUT,99998)
99998 FORMAT (/, 9X, ’INDEX’, 5X, ’SEQ’, 6X, ’COEF’)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)
!
 20 CONTINUE
 END

Output
INDEX SEQ COEF
 1 1.00 0.00
 2 0.62 3.50
 3 -0.22 0.00
 4 -0.90 0.00
 5 -0.90 0.00
 6 -0.22 0.00
 7 0.62 0.00

INDEX SEQ COEF
 1 1.00 0.00
 2 -0.22 0.00
 3 -0.90 0.00
 4 0.62 3.50
 5 0.62 0.00
 6 -0.90 0.00
 7 -0.22 0.00

INDEX SEQ COEF
1 1.00 0.00
2 -0.90 0.00
3 0.62 0.00
4 -0.22 0.00
5 -0.22 0.00

IMSL MATH/LIBRARY Chapter 6: Transforms � 1017

6 0.62 3.50
7 -0.90 0.00

Comments
Different WFFTR arrays are needed for different values of N.

Description
The routine FFTRI initializes the routines FFTRF (page 1009) and FFTRB (page 1012). An
efficient way to make multiple calls for the same N to routine FFTRF or FFTRB, is to use routine
FFTRI for initialization. (In this case, replace FFTRF or FFTRB with F2TRF or F2TRB,
respectively.) The routine FFTRI is based on the routine RFFTI in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

FFTCF
Computes the Fourier coefficients of a complex periodic sequence.

Required Arguments
N — Length of the sequence to be transformed. (Input)

SEQ — Complex array of length N containing the periodic sequence. (Input)

COEF — Complex array of length N containing the Fourier coefficients. (Output)

FORTRAN 90 Interface
Generic: CALL FFTCF (N, SEQ, COEF)

Specific: The specific interface names are S_FFTCF and D_FFTCF.

FORTRAN 77 Interface
Single: CALL FFTCF (N, SEQ, COEF)

Double: The double precision name is DFFTCF.

Example
In this example, we input a pure exponential data vector and recover its Fourier series, which is
a vector with all components zero except at the appropriate frequency where it has an N. Notice
that the norm of the input vector is

N

1018 � Chapter 6: Transforms IMSL MATH/LIBRARY

but the norm of the output vector is N.
 USE FFTCF_INT
 USE CONST_INT
 USE UMACH_INT

 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, NOUT
 REAL TWOPI
 COMPLEX C, CEXP, COEF(N), H, SEQ(N)
 INTRINSIC CEXP
!
 C = (0.,1.)
 TWOPI = CONST(’PI’)
 TWOPI = 2.0 * TWOPI
! Here we compute (2*pi*i/N)*3.
 H = (TWOPI*C/N)*3.
! This loop fills out the data vector
! with a pure exponential signal of
! frequency 3.
 DO 10 I=1, N
 SEQ(I) = CEXP((I-1)*H)
 10 CONTINUE
! Compute the Fourier transform of SEQ
 CALL FFTCF (N, SEQ, COEF)
! Get output unit number and print
! results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
99998 FORMAT (9X, ’INDEX’, 8X, ’SEQ’, 15X, ’COEF’)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99999 FORMAT (1X, I11, 5X,’(’,F5.2,’,’,F5.2,’)’, &
 5X,’(’,F5.2,’,’,F5.2,’)’)
 END

Output
INDEX SEQ COEF
 1 (1.00, 0.00) (0.00, 0.00)
 2 (-0.90, 0.43) (0.00, 0.00)
 3 (0.62,-0.78) (0.00, 0.00)
 4 (-0.22, 0.97) (7.00, 0.00)
 5 (-0.22,-0.97) (0.00, 0.00)
 6 (0.62, 0.78) (0.00, 0.00)
 7 (-0.90,-0.43) (0.00, 0.00)

Comments
1. Workspace may be explicitly provided, if desired, by use of F2TCF/DF2TCF. The

reference is:

CALL F2TCF (N, SEQ, COEF, WFFTC, CPY)

The additional arguments are as follows:

IMSL MATH/LIBRARY Chapter 6: Transforms � 1019

WFFTC — Real array of length 4 * N + 15 initialized by FFTCI (page 1022). The
initialization depends on N. (Input)

CPY — Real array of length 2 * N. (Workspace)

2. The routine FFTCF is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTCF/FFTCB is used repeatedly with the same value of N, then call FFTCI followed
by repeated calls to F2TCF/F2TCB. This is more efficient than repeated calls to
FFTCF/FFTCB.

Description
The routine FFTCF computes the discrete complex Fourier transform of a complex vector of size
N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N
is a product of small prime factors. If N satisfies this condition, then the computational effort is
proportional to N log N. This considerable savings has historically led people to refer to this
algorithm as the “fast Fourier transform” or FFT.

Specifically, given an N-vector x, FFTCF returns in c = COEF

� �� �2 1 1 /

1

N
i n m N

m n
n

c x e �� � �

�

��

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

N S

Finally, note that we can invert the Fourier transform as follows:

� �� �2 1 1 /

1

1 N
i m n N

n m
m

x c e
N

� � �

�

� �

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has
the coefficients for a trigonometric interpolating polynomial to the data. An unnormalized
inverse is implemented in FFTCB (page 1019). FFTCF is based on the complex FFT in
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center
for Atmospheric Research.

FFTCB
Computes the complex periodic sequence from its Fourier coefficients.

Required Arguments
N — Length of the sequence to be transformed. (Input)

COEF — Complex array of length N containing the Fourier coefficients. (Input)

1020 � Chapter 6: Transforms IMSL MATH/LIBRARY

SEQ — Complex array of length N containing the periodic sequence. (Output)

FORTRAN 90 Interface
Generic: CALL FFTCB (N, COEF, SEQ)

Specific: The specific interface names are S_FFTCB and D_FFTCB.

FORTRAN 77 Interface
Single: CALL FFTCB (N, COEF, SEQ)

Double: The double precision name is DFFTCB.

Example
In this example, we first compute the Fourier transform of the vector x, where xj = j for j = 1 to
N. Note that the norm of x is (N[N + 1][2N + 1]/6)���, and hence, the norm of the transformed
vector

x̂ c�

is N([N + 1][2N + 1]/6)���. The vector

x̂

is used as input into FFTCB with the resulting output s = Nx, that is, sj = jN, for j = 1 to N.
 USE FFTCB_INT
 USE FFTCF_INT
 USE UMACH_INT

 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, NOUT
 COMPLEX CMPLX, SEQ(N), COEF(N), X(N)
 INTRINSIC CMPLX
! This loop fills out the data vector
! with X(I)=I, I=1,N
 DO 10 I=1, N
 X(I) = CMPLX(I,0)
 10 CONTINUE
! Compute the forward transform of X
 CALL FFTCF (N, X, COEF)
! Compute the backward transform of
! COEF
 CALL FFTCB (N, COEF, SEQ)
! Get output unit number
 CALL UMACH (2, NOUT)
! Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, X(I), COEF(I), SEQ(I), I=1,N)

IMSL MATH/LIBRARY Chapter 6: Transforms � 1021

99998 FORMAT (5X, ’INDEX’, 9X, ’INPUT’, 9X, ’FORWARD TRANSFORM’, 3X, &
 ’BACKWARD TRANSFORM’)
99999 FORMAT (1X, I7, 7X,’(’,F5.2,’,’,F5.2,’)’, &
 7X,’(’,F5.2,’,’,F5.2,’)’, &
 7X,’(’,F5.2,’,’,F5.2,’)’)
 END

Output
INDEX INPUT FORWARD TRANSFORM BACKWARD TRANSFORM
 1 (1.00, 0.00) (28.00, 0.00) (7.00, 0.00)
 2 (2.00, 0.00) (-3.50, 7.27) (14.00, 0.00)
 3 (3.00, 0.00) (-3.50, 2.79) (21.00, 0.00)
 4 (4.00, 0.00) (-3.50, 0.80) (28.00, 0.00)
 5 (5.00, 0.00) (-3.50,-0.80) (35.00, 0.00)
 6 (6.00, 0.00) (-3.50,-2.79) (42.00, 0.00)
 7 (7.00, 0.00) (-3.50,-7.27) (49.00, 0.00)

Comments
1. Workspace may be explicitly provided, if desired, by use of F2TCB/DF2TCB. The

reference is:

CALL F2TCB (N, COEF, SEQ, WFFTC, CPY)

The additional arguments are as follows:

WFFTC — Real array of length 4 * N + 15 initialized by FFTCI (page 1022). The
initialization depends on N. (Input)

CPY — Real array of length 2 * N. (Workspace)

2. The routine FFTCB is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTCF/FFTCB is used repeatedly with the same value of N; then call FFTCI followed
by repeated calls to F2TCF/F2TCB. This is more efficient than repeated calls to
FFTCF/FFTCB.

Description
The routine FFTCB computes the inverse discrete complex Fourier transform of a complex
vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is most
efficient when N is a product of small prime factors. If N satisfies this condition, then the
computational effort is proportional to N log N. This considerable savings has historically led
people to refer to this algorithm as the “fast Fourier transform” or FFT.

Specifically, given an N-vector c = COEF, FFTCB returns in s = SEQ

� �� �2 1 1 /

1

N
i n m N

m n
n

s c e � � �

�

��

1022 � Chapter 6: Transforms IMSL MATH/LIBRARY

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

N S

Finally, note that we can invert the inverse Fourier transform as follows:

� �� �2 1 1 /

1

1 N
i n m N

n m
m

c s e
N

�� � �

�

� �

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has
the coefficients for a trigonometric interpolating polynomial to the data. FFTCB is based on the
complex inverse FFT in FFTPACK. The package FFTPACK was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.

FFTCI
Computes parameters needed by FFTCF and FFTCB.

Required Arguments
N — Length of the sequence to be transformed. (Input)

WFFTC — Array of length 4N + 15 containing parameters needed by FFTCF and FFTCB.
(Output)

FORTRAN 90 Interface
Generic: CALL FFTCI (N, WFFTC)

Specific: The specific interface names are S_FFTCI and D_FFTCI.

FORTRAN 77 Interface
Single: CALL FFTCI (N, WFFTC)

Double: The double precision name is DFFTCI.

Example
In this example, we compute a two-dimensional complex FFT by making one call to FFTCI
followed by 2N calls to F2TCF.

 USE FFTCI_INT
 USE CONST_INT
 USE F2TCF_INT
 USE UMACH_INT
! SPECIFICATIONS FOR PARAMETERS
 INTEGER N
 PARAMETER (N=4)
!

IMSL MATH/LIBRARY Chapter 6: Transforms � 1023

 INTEGER I, IR, IS, J, NOUT
 REAL FLOAT, TWOPI, WFFTC(35), CPY(2*N)
 COMPLEX CEXP, CMPLX, COEF(N,N), H, SEQ(N,N), TEMP
 INTRINSIC CEXP, CMPLX, FLOAT
!
 TWOPI = CONST(’PI’)
 TWOPI = 2*TWOPI
 IR = 3
 IS = 1
! Here we compute e**(2*pi*i/N)
 TEMP = CMPLX(0.0,TWOPI/FLOAT(N))
 H = CEXP(TEMP)
! Fill SEQ with data
 DO 20 I=1, N
 DO 10 J=1, N
 SEQ(I,J) = H**((I-1)*(IR-1)+(J-1)*(IS-1))
 10 CONTINUE
 20 CONTINUE
! Print out SEQ
! Get output unit number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99997)
 DO 30 I=1, N
 WRITE (NOUT,99998) (SEQ(I,J),J=1,N)
 30 CONTINUE
! Set initialization vector
 CALL FFTCI (N, WFFTC)
! Transform the columns of SEQ
 DO 40 I=1, N
 CALL F2TCF (N, SEQ(1:,I), COEF(1:,I), WFFTC, CPY)
 40 CONTINUE
! Take transpose of the result
 DO 60 I=1, N
 DO 50 J=I + 1, N
 TEMP = COEF(I,J)
 COEF(I,J) = COEF(J,I)
 COEF(J,I) = TEMP
 50 CONTINUE
 60 CONTINUE
! Transform the columns of this result
 DO 70 I=1, N
 CALL F2TCF (N, COEF(1:,I), SEQ(1:,I), WFFTC, CPY)
 70 CONTINUE
! Take transpose of the result
 DO 90 I=1, N
 DO 80 J=I + 1, N
 TEMP = SEQ(I,J)
 SEQ(I,J) = SEQ(J,I)
 SEQ(J,I) = TEMP
 80 CONTINUE
 90 CONTINUE
! Print results
 WRITE (NOUT,99999)
 DO 100 I=1, N
 WRITE (NOUT,99998) (SEQ(I,J),J=1,N)

1024 � Chapter 6: Transforms IMSL MATH/LIBRARY

 100 CONTINUE
!
99997 FORMAT (1X, ’The input matrix is below’)
99998 FORMAT (1X, 4(’ (’,F5.2,’,’,F5.2,’)’))
99999 FORMAT (/, 1X, ’Result of two-dimensional transform’)
 END

Output
The input matrix is below
 (1.00, 0.00) (1.00, 0.00) (1.00, 0.00) (1.00, 0.00)
 (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00)
 (1.00, 0.00) (1.00, 0.00) (1.00, 0.00) (1.00, 0.00)
 (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00)

Result of two-dimensional transform
 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
 (16.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

Comments
Different WFFTC arrays are needed for different values of N.

Description
The routine FFTCI initializes the routines FFTCF (page 1017) and FFTCB (page 1019). An
efficient way to make multiple calls for the same N to IMSL routine FFTCF or FFTCB is to use
routine FFTCI for initialization. (In this case, replace FFTCF or FFTCB with F2TCF or F2TCB,
respectively.) The routine FFTCI is based on the routine CFFTI in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

FSINT
Computes the discrete Fourier sine transformation of an odd sequence.

Required Arguments
N — Length of the sequence to be transformed. It must be greater than 1. (Input)

SEQ — Array of length N containing the sequence to be transformed. (Input)

COEF — Array of length N + 1 containing the transformed sequence. (Output)

FORTRAN 90 Interface
Generic: CALL FSINT (N, SEQ, COEF)

Specific: The specific interface names are S_FSINT and D_FSINT.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1025

FORTRAN 77 Interface
Single: CALL FSINT (N, SEQ, COEF)

Double: The double precision name is DFSINT.

Example
In this example, we input a pure sine wave as a data vector and recover its Fourier sine series,
which is a vector with all components zero except at the appropriate frequency it has an N.

 USE FSINT_INT
 USE CONST_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, NOUT
 REAL COEF(N+1), FLOAT, PI, SIN, SEQ(N)
 INTRINSIC FLOAT, SIN
! Get output unit number
 CALL UMACH (2, NOUT)
! Fill the data vector SEQ
! with a pure sine wave
 PI = CONST(’PI’)
 DO 10 I=1, N
 SEQ(I) = SIN(FLOAT(I)*PI/FLOAT(N+1))
 10 CONTINUE
! Compute the transform of SEQ
 CALL FSINT (N, SEQ, COEF)
! Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 0.38 8.00
 2 0.71 0.00
 3 0.92 0.00
 4 1.00 0.00
 5 0.92 0.00
 6 0.71 0.00
 7 0.38 0.00

Comments
1. Workspace may be explicitly provided, if desired, by use of F2INT/DF2INT. The

reference is:

CALL F2INT (N, SEQ, COEF, WFSIN)

1026 � Chapter 6: Transforms IMSL MATH/LIBRARY

The additional argument is:

WFSIN — Array of length INT(2.5 * N + 15) initialized by FSINI. The
initialization depends on N. (Input)

2. The routine FSINT is most efficient when N + 1 is the product of small primes.

3. The routine FSINT is its own (unnormalized) inverse. Applying FSINT twice will
reproduce the original sequence multiplied by 2 * (N + 1).

4. The arrays COEF and SEQ may be the same, if SEQ is also dimensioned at least N + 1.

5. COEF (N + 1) is needed as workspace.

6. If FSINT is used repeatedly with the same value of N, then call FSINI (page 1026)
followed by repeated calls to F2INT. This is more efficient than repeated calls to
FSINT.

Description
The routine FSINT computes the discrete Fourier sine transform of a real vector of size N. The
method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N + 1 is a
product of small prime factors. If N satisfies this condition, then the computational effort is
proportional to N log N.

Specifically, given an N-vector s = SEQ, FSINT returns in c = COEF

1

2 sin
1

N

m n
n

mnc s
N

�

�

� �
� � �

�� �
�

Finally, note that the Fourier sine transform is its own (unnormalized) inverse. The routine
FSINT is based on the sine FFT in FFTPACK. The package FFTPACK was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.

FSINI
Computes parameters needed by FSINT.

Required Arguments
N — Length of the sequence to be transformed. N must be greater than 1. (Input)

WFSIN — Array of length INT(2.5 * N + 15) containing parameters needed by FSINT.
(Output)

FORTRAN 90 Interface
Generic: CALL FSINI (N, WFSIN)

IMSL MATH/LIBRARY Chapter 6: Transforms � 1027

Specific: The specific interface names are S_FSINI and D_FSINI.

FORTRAN 77 Interface
Single: CALL FSINI (N, WFSIN)

Double: The double precision name is DFSINI.

Example
In this example, we compute three distinct sine FFTs by calling FSINI once and then calling
F2INT three times.

 USE FSINI_INT
 USE UMACH_INT
 USE CONST_INT
 USE F2INT_INT
 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, K, NOUT
 REAL COEF(N+1), FLOAT, PI, SIN, WFSIN(32), SEQ(N)
 INTRINSIC FLOAT, SIN
! Get output unit number
 CALL UMACH (2, NOUT)
! Initialize the work vector WFSIN
 CALL FSINI (N, WFSIN)
! Different frequencies of the same
! wave will be transformed
 DO 20 K=1, 3
! Fill the data vector SEQ
! with a pure sine wave
 PI = CONST(’PI’)
 DO 10 I=1, N
 SEQ(I) = SIN(FLOAT(K*I)*PI/FLOAT(N+1))
 10 CONTINUE
! Compute the transform of SEQ
 CALL F2INT (N, SEQ, COEF, WFSIN)
! Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
 20 CONTINUE
99998 FORMAT (/, 9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 0.38 8.00
 2 0.71 0.00
 3 0.92 0.00
 4 1.00 0.00
 5 0.92 0.00

1028 � Chapter 6: Transforms IMSL MATH/LIBRARY

 6 0.71 0.00
 7 0.38 0.00

INDEX SEQ COEF
 1 0.71 0.00
 2 1.00 8.00
 3 0.71 0.00
 4 0.00 0.00
 5 -0.71 0.00
 6 -1.00 0.00
 7 -0.71 0.00

INDEX SEQ COEF
 1 0.92 0.00
 2 0.71 0.00
 3 -0.38 8.00
 4 -1.00 0.00
 5 -0.38 0.00
 6 0.71 0.00
 7 0.92 0.00

Comments
Different WFSIN arrays are needed for different values of N.

Description
The routine FSINI initializes the routine FSINT (page 1024). An efficient way to make multiple
calls for the same N to IMSL routine FSINT, is to use routine FSINI for initialization. (In this
case, replace FSINT with F2INT.) The routine FSINI is based on the routine SINTI in
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center
for Atmospheric Research.

FCOST
Computes the discrete Fourier cosine transformation of an even sequence.

Required Arguments
N — Length of the sequence to be transformed. It must be greater than 1. (Input)

SEQ — Array of length N containing the sequence to be transformed. (Input)

COEF — Array of length N containing the transformed sequence. (Output)

FORTRAN 90 Interface
Generic: CALL FCOST (N, SEQ, COEF)

Specific: The specific interface names are S_FCOST and D_FCOST.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1029

FORTRAN 77 Interface
Single: CALL FCOST (N, SEQ, COEF)

Double: The double precision name is DFCOST.

Example
In this example, we input a pure cosine wave as a data vector and recover its Fourier cosine
series, which is a vector with all components zero except at the appropriate frequency it has an
N � 1.

 USE FCOST_INT
 USE CONST_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, NOUT
 REAL COEF(N), COS, FLOAT, PI, SEQ(N)
 INTRINSIC COS, FLOAT
!
 CALL UMACH (2, NOUT)
! Fill the data vector SEQ
! with a pure cosine wave
 PI = CONST(’PI’)
 DO 10 I=1, N
 SEQ(I) = COS(FLOAT(I-1)*PI/FLOAT(N-1))
 10 CONTINUE
! Compute the transform of SEQ
 CALL FCOST (N, SEQ, COEF)
! Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 1.00 0.00
 2 0.87 6.00
 3 0.50 0.00
 4 0.00 0.00
 5 -0.50 0.00
 6 -0.87 0.00
 7 -1.00 0.00

Comments
1. Workspace may be explicitly provided, if desired, by use of F2OST/DF2OST. The

reference is:

1030 � Chapter 6: Transforms IMSL MATH/LIBRARY

CALL F2OST (N, SEQ, COEF, WFCOS)

The additional argument is

WFCOS — Array of length 3 * N + 15 initialized by FCOSI (page 1030). The
initialization depends on N. (Input)

2. The routine FCOST is most efficient when N � 1 is the product of small primes.

3. The routine FCOST is its own (unnormalized) inverse. Applying FCOST twice will
reproduce the original sequence multiplied by 2 * (N � 1).

4. The arrays COEF and SEQ may be the same.

5. If FCOST is used repeatedly with the same value of N, then call FCOSI followed by
repeated calls to F2OST. This is more efficient than repeated calls to FCOST.

Description
The routine FCOST computes the discrete Fourier cosine transform of a real vector of size N.
The method used is a variant of the Cooley-Tukey algorithm , which is most efficient when N �
1 is a product of small prime factors. If N satisfies this condition, then the computational effort
is proportional to N log N.

Specifically, given an N-vector s = SEQ, FCOST returns in c = COEF

� �� �
� �

� �
1

1
1

2

1 1
2 cos 1

1

N
m

m n N
n

m n
c s s s

N
�

�

�

�

� �� �
� � � �� �

�� 	
�

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse. Two
applications of FCOST to a vector s produces (2N � 2)s. The routine FCOST is based on the
cosine FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the
National Center for Atmospheric Research.

FCOSI
Computes parameters needed by FCOST.

Required Arguments
N — Length of the sequence to be transformed. N must be greater than 1. (Input)

WFCOS — Array of length 3N + 15 containing parameters needed by FCOST. (Output)

FORTRAN 90 Interface
Generic: CALL FCOSI (N, WFCOS)

IMSL MATH/LIBRARY Chapter 6: Transforms � 1031

Specific: The specific interface names are S_FCOSI and D_FCOSI.

FORTRAN 77 Interface
Single: CALL FCOSI (N, WFCOS)

Double: The double precision name is DFCOSI.

Example
In this example, we compute three distinct cosine FFTs by calling FCOSI once and then calling
F2OST three times.

 USE FCOSI_INT
 USE CONST_INT
 USE F2OST_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, K, NOUT
 REAL COEF(N), COS, FLOAT, PI, WFCOS(36), SEQ(N)
 INTRINSIC COS, FLOAT
! Get output unit number
 CALL UMACH (2, NOUT)
! Initialize the work vector WFCOS
 CALL FCOSI (N, WFCOS)
! Different frequencies of the same
! wave will be transformed
 PI = CONST(’PI’)
 DO 20 K=1, 3
! Fill the data vector SEQ
! with a pure cosine wave
 DO 10 I=1, N
 SEQ(I) = COS(FLOAT(K*(I-1))*PI/FLOAT(N-1))
 10 CONTINUE
! Compute the transform of SEQ
 CALL F2OST (N, SEQ, COEF, WFCOS)
! Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
 20 CONTINUE
99998 FORMAT (/, 9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 1.00 0.00
 2 0.87 6.00
 3 0.50 0.00
 4 0.00 0.00
 5 -0.50 0.00

1032 � Chapter 6: Transforms IMSL MATH/LIBRARY

 6 -0.87 0.00
 7 -1.00 0.00

INDEX SEQ COEF
 1 1.00 0.00
 2 0.50 0.00
 3 -0.50 6.00
 4 -1.00 0.00
 5 -0.50 0.00
 6 0.50 0.00
 7 1.00 0.00

INDEX SEQ COEF
 1 1.00 0.00
 2 0.00 0.00
 3 -1.00 0.00
 4 0.00 6.00
 5 1.00 0.00
 6 0.00 0.00
 7 -1.00 0.00

Comments
Different WFCOS arrays are needed for different values of N.

Description
The routine FCOSI initializes the routine FCOST (page 1028). An efficient way to make multiple
calls for the same N to IMSL routine FCOST is to use routine FCOSI for initialization. (In this
case, replace FCOST with F2OST.) The routine FCOSI is based on the routine COSTI in
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center
for Atmospheric Research.

QSINF
Computes the coefficients of the sine Fourier transform with only odd wave numbers.

Required Arguments
N — Length of the sequence to be transformed. (Input)

SEQ — Array of length N containing the sequence. (Input)

COEF — Array of length N containing the Fourier coefficients. (Output)

FORTRAN 90 Interface
Generic: CALL QSINF (N, SEQ, COEF)

Specific: The specific interface names are S_QSINF and D_QSINF.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1033

FORTRAN 77 Interface
Single: CALL QSINF (N, SEQ, COEF)

Double: The double precision name is DQSINF.

Example
In this example, we input a pure quarter sine wave as a data vector and recover its Fourier
quarter sine series.

 USE QSINF_INT
 USE CONST_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, NOUT
 REAL COEF(N), FLOAT, PI, SIN, SEQ(N)
 INTRINSIC FLOAT, SIN
! Get output unit number
 CALL UMACH (2, NOUT)
! Fill the data vector SEQ
! with a pure sine wave
 PI = CONST(’PI’)
 DO 10 I=1, N
 SEQ(I) = SIN(FLOAT(I)*(PI/2.0)/FLOAT(N))
 10 CONTINUE
! Compute the transform of SEQ
 CALL QSINF (N, SEQ, COEF)
! Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 0.22 7.00
 2 0.43 0.00
 3 0.62 0.00
 4 0.78 0.00
 5 0.90 0.00
 6 0.97 0.00
 7 1.00 0.00

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2INF/DQ2INF. The

reference is:

CALL Q2INF (N, SEQ, COEF, WQSIN)

1034 � Chapter 6: Transforms IMSL MATH/LIBRARY

The additional argument is:

WQSIN — Array of length 3 * N + 15 initialized by QSINI (page 1037). The
initialization depends on N. (Input)

2. The routine QSINF is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If QSINF/QSINB is used repeatedly with the same value of N, then call QSINI followed
by repeated calls to Q2INF/Q2INB. This is more efficient than repeated calls to
QSINF/QSINB.

Description
The routine QSINF computes the discrete Fourier quarter sine transform of a real vector of size
N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N
is a product of small prime factors. If N satisfies this condition, then the computational effort is
proportional to N log N.

Specifically, given an N-vector s = SEQ, QSINF returns in c = COEF

� �
� �

1
1

1

2 1
2 sin 1

2

N
m

m n N
n

m n
c s s

N
�

�

�

�

�� �
� � �� �

� 	
�

Finally, note that the Fourier quarter sine transform has an (unnormalized) inverse, which is
implemented in the IMSL routine QSINB. The routine QSINF is based on the quarter sine FFT in
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center
for Atmospheric Research.

QSINB
Computes a sequence from its sine Fourier coefficients with only odd wave numbers.

Required Arguments
N — Length of the sequence to be transformed. (Input)

COEF — Array of length N containing the Fourier coefficients. (Input)

SEQ — Array of length N containing the sequence. (Output)

FORTRAN 90 Interface
Generic: CALL QSINB (N, COEF, SEQ)

Specific: The specific interface names are S_QSINB and D_QSINB.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1035

FORTRAN 77 Interface
Single: CALL QSINB (N, COEF, SEQ)

Double: The double precision name is DQSINB.

Example
In this example, we first compute the quarter wave sine Fourier transform c of the vector x
where xn = n for n = 1 to N. We then compute the inverse quarter wave Fourier transform of c
which is 4Nx = s.

 USE QSINB_INT
 USE QSINF_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, NOUT
 REAL FLOAT, SEQ(N), COEF(N), X(N)
 INTRINSIC FLOAT
! Get output unit number
 CALL UMACH (2, NOUT)
! Fill the data vector X
! with X(I) = I, I=1,N
 DO 10 I=1, N
 X(I) = FLOAT(I)
 10 CONTINUE
! Compute the forward transform of X
 CALL QSINF (N, X, COEF)
! Compute the backward transform of W
 CALL QSINB (N, COEF, SEQ)
!C Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (X(I), COEF(I), SEQ(I), I=1,N)
99998 FORMAT (5X, ’INPUT’, 5X, ’FORWARD TRANSFORM’, 3X, ’BACKWARD ’, &
 ’TRANSFORM’)
99999 FORMAT (3X, F6.2, 10X, F6.2, 15X, F6.2)
 END

1036 � Chapter 6: Transforms IMSL MATH/LIBRARY

Output

INPUT FORWARD TRANSFORM BACKWARD TRANSFORM
1.00 39.88 28.00
2.00 -4.58 56.00
3.00 1.77 84.00
4.00 -1.00 112.00
5.00 0.70 140.00
6.00 -0.56 168.00
7.00 0.51 196.00

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2INB/DQ2INB. The

reference is:

CALL Q2INB (N, SEQ, COEF, WQSIN)

The additional argument is:

WQSIN — ray of length 3 * N + 15 initialized by QSINI (page 1037). The
initialization depends on N.(Input)

2. The routine QSINB is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If QSINF/QSINB is used repeatedly with the same value of N, then call QSINI followed
by repeated calls to Q2INF/Q2INB. This is more efficient than repeated calls to
QSINF/QSINB.

Description
The routine QSINB computes the discrete (unnormalized) inverse Fourier quarter sine transform
of a real vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is
most efficient when N is a product of small prime factors. If N satisfies this condition, then the
computational effort is proportional to N log N.

Specifically, given an N-vector c = COEF, QSINB returns in s = SEQ

� �

1

2 1
4 sin

2

N

m n
n

n m
s c

N
�

�

�� �
� � �

� �
�

Furthermore, a vector x of length N that is first transformed by QSINF (page 1032) and then by
QSINB will be returned by QSINB as 4Nx. The routine QSINB is based on the inverse quarter
sine FFT in FFTPACK which was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1037

QSINI
Computes parameters needed by QSINF and QSINB.

CALL QSINI (N, WQSIN)

Required Arguments
N — Length of the sequence to be transformed. (Input)

WQSIN — Array of length 3N + 15 containing parameters needed by QSINF and QSINB.
(Output)

FORTRAN 90 Interface
Generic: CALL QSINI (N, WQSIN)

Specific: The specific interface names are S_QSINI and D_QSINI.

FORTRAN 77 Interface
Single: CALL QSINI (N, WQSIN)

Double: The double precision name is DQSINI.

Example
In this example, we compute three distinct quarter sine transforms by calling QSINI once and
then calling Q2INF three times.

 USE QSINI_INT
 USE CONST_INT
 USE Q2INF_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, K, NOUT
 REAL COEF(N), FLOAT, PI, SIN, WQSIN(36), SEQ(N)
 INTRINSIC FLOAT, SIN
! Get output unit number
 CALL UMACH (2, NOUT)
! Initialize the work vector WQSIN
 CALL QSINI (N, WQSIN)
! Different frequencies of the same
! wave will be transformed
 PI = CONST(’PI’)
 DO 20 K=1, 3
! Fill the data vector SEQ
! with a pure sine wave
 DO 10 I=1, N

1038 � Chapter 6: Transforms IMSL MATH/LIBRARY

 SEQ(I) = SIN(FLOAT((2*K-1)*I)*(PI/2.0)/FLOAT(N))
 10 CONTINUE
! Compute the transform of SEQ
 CALL Q2INF (N, SEQ, COEF, WQSIN)
! Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
 20 CONTINUE
99998 FORMAT (/, 9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 0.22 7.00
 2 0.43 0.00
 3 0.62 0.00
 4 0.78 0.00
 5 0.90 0.00
 6 0.97 0.00
 7 1.00 0.00

INDEX SEQ COEF
 1 0.62 0.00
 2 0.97 7.00
 3 0.90 0.00
 4 0.43 0.00
 5 -0.22 0.00
 6 -0.78 0.00
 7 -1.00 0.00

INDEX SEQ COEF
 1 0.90 0.00
 2 0.78 0.00
 3 -0.22 7.00
 4 -0.97 0.00
 5 -0.62 0.00
 6 0.43 0.00
 7 1.00 0.00

Comments
Different WQSIN arrays are needed for different values of N.

Description
The routine QSINI initializes the routines QSINF (page 1032) and QSINB (page 1034). An
efficient way to make multiple calls for the same N to IMSL routine QSINF or QSINB is to use
routine QSINI for initialization. (In this case, replace QSINF or QSINB with Q2INF or Q2INB,
respectively.) The routine QSINI is based on the routine SINQI in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1039

QCOSF
Computes the coefficients of the cosine Fourier transform with only odd wave numbers.

Required Arguments
N — Length of the sequence to be transformed. (Input)

SEQ — Array of length N containing the sequence. (Input)

COEF — Array of length N containing the Fourier coefficients. (Output)

FORTRAN 90 Interface
Generic: CALL QCOSF (N, SEQ, COEF [,…])

Specific: The specific interface names are S_QCOSF and D_QCOSF.

FORTRAN 77 Interface
Single: CALL QCOSF (N, SEQ, COEF)

Double: The double precision name is DQCOSF.

Example
In this example, we input a pure quarter cosine wave as a data vector and recover its Fourier
quarter cosine series.

 USE QCOSF_INT
 USE CONST_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, NOUT
 REAL COEF(N), COS, FLOAT, PI, SEQ(N)
 INTRINSIC COS, FLOAT
! Get output unit number
 CALL UMACH (2, NOUT)
! Fill the data vector SEQ
! with a pure cosine wave
 PI = CONST(’PI’)
 DO 10 I=1, N
 SEQ(I) = COS(FLOAT(I-1)*(PI/2.0)/FLOAT(N))
 10 CONTINUE

! Compute the transform of SEQ
 Call QCOSF (N, SEQ, COEF)
! Print results
 WRITE (NOUT,99998)

1040 � Chapter 6: Transforms IMSL MATH/LIBRARY

 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 1.00 7.00
 2 0.97 0.00
 3 0.90 0.00
 4 0.78 0.00
 5 0.62 0.00
 6 0.43 0.00
 7 0.22 0.00

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2OSF/DQ2OSF. The

reference is:

CALL Q2OSF (N, SEQ, COEF, WQCOS)

The additional argument is:

WQCOS — Array of length 3 * N + 15 initialized by QCOSI (page 1043). The
initialization depends on N. (Input)

2. The routine QCOSF is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If QCOSF/QCOSB is used repeatedly with the same value of N, then call QCOSI followed
by repeated calls to Q2OSF/Q2OSB. This is more efficient than repeated calls to
QCOSF/QCOSB.

Description
The routine QCOSF computes the discrete Fourier quarter cosine transform of a real vector of
size N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient
when N is a product of small prime factors. If N satisfies this condition, then the computational
effort is proportional to N log N.

Specifically, given an N-vector s = SEQ, QCOSF returns in c = COEF

� �� �
1

2

2 1 1
2 cos

2

N

m n
n

m n
c s s

N
�

�

� �� �
� � � �

� 	
�

Finally, note that the Fourier quarter cosine transform has an (unnormalized) inverse which is
implemented in QCOSB. The routine QCOSF is based on the quarter cosine FFT in FFTPACK.
The package FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1041

QCOSB
Computes a sequence from its cosine Fourier coefficients with only odd wave numbers.

Required Arguments
N — Length of the sequence to be transformed. (Input)

COEF — Array of length N containing the Fourier coefficients. (Input)

SEQ — Array of length N containing the sequence. (Output)

FORTRAN 90 Interface
Generic: CALL QCOSB (N, COEF, SEQ)

Specific: The specific interface names are S_QCOSB and D_QCOSB.

FORTRAN 77 Interface
Single: CALL QCOSB (N, COEF, SEQ)

Double: The double precision name is DQCOSB.

Example
In this example, we first compute the quarter wave cosine Fourier transform c of the vector x,
where xn = n for n = 1 to N. We then compute the inverse quarter wave Fourier transform of c
which is 4Nx = s.

 USE QCOSB_INT
 USE QCOSF_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, NOUT
 REAL FLOAT, SEQ(N), COEF(N), X(N)
 INTRINSIC FLOAT
! Get output unit number
 CALL UMACH (2, NOUT)
! Fill the data vector X
! with X(I) = I, I=1,N
 DO 10 I=1, N
 X(I) = FLOAT(I)
 10 CONTINUE
! Compute the forward transform of X
 CALL QCOSF (N, X, COEF)
! Compute the backward transform of
! COEF

1042 � Chapter 6: Transforms IMSL MATH/LIBRARY

 CALL QCOSB (N, COEF, SEQ)
! Print results
 WRITE (NOUT,99998)
 DO 20 I=1, N
 WRITE (NOUT,99999) X(I), COEF(I), SEQ(I)
 20 CONTINUE
99998 FORMAT (5X, ’INPUT’, 5X, ’FORWARD TRANSFORM’, 3X, ’BACKWARD ’, &
 ’TRANSFORM’)
99999 FORMAT (3X, F6.2, 10X, F6.2, 15X, F6.2)
 END

Output
INPUT FORWARD TRANSFORM BACKWARD TRANSFORM
1.00 31.12 28.00
2.00 -27.45 56.00
3.00 10.97 84.00
4.00 -9.00 112.00
5.00 4.33 140.00
6.00 -3.36 168.00
7.00 0.40 196.00

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2OSB/DQ2OSB. The

reference is:

CALL Q2OSB (N, COEF, SEQ, WQCOS)

The additional argument is:

WQCOS — Array of length 3 * N + 15 initialized by QCOSI (page 1043). The
initialization depends on N. (Input)

2. The routine QCOSB is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If QCOSF/QCOSB is used repeatedly with the same value of N, then call QCOSI followed
by repeated calls to Q2OSF/Q2OSB. This is more efficient than repeated calls to
QCOSF/QCOSB.

Description
The routine QCOSB computes the discrete (unnormalized) inverse Fourier quarter cosine
transform of a real vector of size N. The method used is a variant of the Cooley-Tukey
algorithm, which is most efficient when N is a product of small prime factors. If N satisfies this
condition, then the computational effort is proportional to N log N. Specifically, given an N-
vector c = COEF, QCOSB returns in s = SEQ

� � � �

1

2 1 1
4 cos

2

N

m n
n

n m
s c

N
�

�

� �� �
� � �

� �
�

IMSL MATH/LIBRARY Chapter 6: Transforms � 1043

Furthermore, a vector x of length N that is first transformed by QCOSF (page 1039) and then by
QCOSB will be returned by QCOSB as 4Nx. The routine QCOSB is based on the inverse quarter
cosine FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the
National Center for Atmospheric Research.

QCOSI
Computes parameters needed by QCOSF and QCOSB.

Required Arguments
N — Length of the sequence to be transformed. (Input)

WQCOS — Array of length 3N + 15 containing parameters needed by QCOSF and QCOSB.
(Output)

FORTRAN 90 Interface
Generic: CALL QCOSI (N, WQCOS)

Specific: The specific interface names are S_QCOSI and D_QCOSI.

FORTRAN 77 Interface
Single: CALL QCOSI (N, WQCOS)

Double: The double precision name is DQCOSI.

Example
In this example, we compute three distinct quarter cosine transforms by calling QCOSI once and
then calling Q2OSF three times.

 USE QCOSI_INT
 USE CONST_INT
 USE Q2OSF_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=7)
!
 INTEGER I, K, NOUT
 REAL COEF(N), COS, FLOAT, PI, WQCOS(36), SEQ(N)
 INTRINSIC COS, FLOAT
! Get output unit number
 CALL UMACH (2, NOUT)
! Initialize the work vector WQCOS
 CALL QCOSI (N, WQCOS)
! Different frequencies of the same
! wave will be transformed
 PI = CONST(’PI’)

1044 � Chapter 6: Transforms IMSL MATH/LIBRARY

 DO 20 K=1, 3
! Fill the data vector SEQ
! with a pure cosine wave
 DO 10 I=1, N
 SEQ(I) = COS(FLOAT((2*K-1)*(I-1))*(PI/2.0)/FLOAT(N))
 10 CONTINUE
! Compute the transform of SEQ
 CALL Q2OSF (N, SEQ, COEF, WQCOS)
! Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
 20 CONTINUE
99998 FORMAT (/, 9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 1.00 7.00
 2 0.97 0.00
 3 0.90 0.00
 4 0.78 0.00
 5 0.62 0.00
 6 0.43 0.00
 7 0.22 0.00

INDEX SEQ COEF
 1 1.00 0.00
 2 0.78 7.00
 3 0.22 0.00
 4 -0.43 0.00
 5 -0.90 0.00
 6 -0.97 0.00
 7 -0.62 0.00

INDEX SEQ COEF
 1 1.00 0.00
 2 0.43 0.00
 3 -0.62 7.00
 4 -0.97 0.00
 5 -0.22 0.00
 6 0.78 0.00
 7 0.90 0.00

Comments
Different WQCOS arrays are needed for different values of N.

Description
The routine QCOSI initializes the routines QCOSF (page 1039) and QCOSB (page 1041). An
efficient way to make multiple calls for the same N to IMSL routine QCOSF or QCOSB is to use
routine QCOSI for initialization. (In this case, replace QCOSF or QCOSB with Q2OSF or Q2OSB ,

IMSL MATH/LIBRARY Chapter 6: Transforms � 1045

respectively.) The routine QCOSI is based on the routine COSQI in FFTPACK, which was
developed by Paul Swarztrauber at the National Center for Atmospheric Research.

FFT2D
Computes Fourier coefficients of a complex periodic two-dimensional array.

Required Arguments
A — NRA by NCA complex matrix containing the periodic data to be transformed. (Input)

COEF — NRA by NCA complex matrix containing the Fourier coefficients of A. (Output)

Optional Arguments
NRA — The number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — The number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDCOEF = size (COEF,1).

FORTRAN 90 Interface
Generic: CALL FFT2D (A, COEF [,…])

Specific: The specific interface names are S_FFT2D and D_FFT2D.

FORTRAN 77 Interface
Single: CALL FFT2D (NRA, NCA, A, LDA, COEF, LDCOEF)

Double: The double precision name is DFFT2D.

Example
In this example, we compute the Fourier transform of the pure frequency input for a 5 � 4 array

� � � �2 1 2 / 2 1 3 /i n N i m M
nma e e� �� �

�

1046 � Chapter 6: Transforms IMSL MATH/LIBRARY

for 1 � n � 5 and 1 � m � 4 using the IMSL routine FFT2D. The result

â c�

has all zeros except in the (3, 4) position.
 USE FFT2D_INT
 USE CONST_INT
 USE WRCRN_INT
 INTEGER I, IR, IS, J, NCA, NRA
 REAL FLOAT, TWOPI
 COMPLEX A(5,4), C, CEXP, CMPLX, COEF(5,4), H
 CHARACTER TITLE1*26, TITLE2*26
 INTRINSIC CEXP, CMPLX, FLOAT
!
 TITLE1 = ’The input matrix is below ’
 TITLE2 = ’The output matrix is below’
 NRA = 5
 NCA = 4
 IR = 3
 IS = 4
! Fill A with initial data
 TWOPI = CONST(’PI’)
 TWOPI = 2.0*TWOPI
 C = CMPLX(0.0,1.0)
 H = CEXP(TWOPI*C)
 DO 10 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = CEXP(TWOPI*C*((FLOAT((I-1)*(IR-1))/FLOAT(NRA)+ &
 FLOAT((J-1)*(IS-1))/FLOAT(NCA))))
 10 CONTINUE
!
 CALL WRCRN (TITLE1, A)
!
 CALL FFT2D (A, COEF)
!
 CALL WRCRN (TITLE2, COEF)
!
 END

Output
 The input matrix is below
 1 2 3 4
1 (1.000, 0.000) (0.000,-1.000) (-1.000, 0.000) (0.000, 1.000)
2 (-0.809, 0.588) (0.588, 0.809) (0.809,-0.588) (-0.588,-0.809)
3 (0.309,-0.951) (-0.951,-0.309) (-0.309, 0.951) (0.951, 0.309)
4 (0.309, 0.951) (0.951,-0.309) (-0.309,-0.951) (-0.951, 0.309)
5 (-0.809,-0.588) (-0.588, 0.809) (0.809, 0.588) (0.588,-0.809)

 The Output matrix is below
 1 2 3 4
1 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
2 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
3 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (20.00, 0.00)
4 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
5 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

IMSL MATH/LIBRARY Chapter 6: Transforms � 1047

Comments
1. Workspace may be explicitly provided, if desired, by use of F2T2D/DF2T2D. The

reference is:

CALL F2T2D (NRA, NCA, A, LDA, COEF, LDCOEF, WFF1,
 WFF2, CWK, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * NRA + 15 initialized by FFTCI. The initialization
depends on NRA. (Input)

WFF2 — Real array of length 4 * NCA + 15 initialized by FFTCI. The initialization
depends on NCA. (Input)

CWK — Complex array of length 1. (Workspace)

CPY — Real array of length 2 * MAX(NRA, NCA). (Workspace)

2. The routine FFT2D is most efficient when NRA and NCA are the product of small primes.

3. The arrays COEF and A may be the same.

4. If FFT2D/FFT2B is used repeatedly, with the same values for NRA and NCA, then use
FFTCI (page 1022) to fill WFF1(N = NRA) and WFF2(N = NCA). Follow this with
repeated calls to F2T2D/F2T2B. This is more efficient than repeated calls to
FFT2D/FFT2B.

Description
The routine FFT2D computes the discrete complex Fourier transform of a complex two
dimensional array of size (NRA = N) � (NCA = M). The method used is a variant of the Cooley-
Tukey algorithm , which is most efficient when N and M are each products of small prime
factors. If N and M satisfy this condition, then the computational effort is proportional to N M
log N M. This considerable savings has historically led people to refer to this algorithm as the
“fast Fourier transform” or FFT.

Specifically, given an N � M array a, FFT2D returns in c = COEF

� �� � � �� �2 1 1 / 2 1 1 /

1 1

N M
i j n N i k m M

jk nm
n m

c a e e� �� � � � � �

� �

���

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NM S

1048 � Chapter 6: Transforms IMSL MATH/LIBRARY

Finally, note that an unnormalized inverse is implemented in FFT2B (page 1048). The routine
FFT2D is based on the complex FFT in FFTPACK. The package FFTPACK was developed by
Paul Swarztrauber at the National Center for Atmospheric Research.

FFT2B
Computes the inverse Fourier transform of a complex periodic two-dimensional array.

Required Arguments
COEF — NRCOEF by NCCOEF complex array containing the Fourier coefficients to be

transformed. (Input)

A — NRCOEF by NCCOEF complex array containing the Inverse Fourier coefficients of COEF.
(Output)

Optional Arguments
NRCOEF — The number of rows of COEF. (Input)

Default: NRCOEF = size (COEF,1).

NCCOEF — The number of columns of COEF. (Input)
Default: NCCOEF = size (COEF,2).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDCOEF = size (COEF,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL FFT2B (COEF, A [,…])

Specific: The specific interface names are S_FFT2B and D_FFT2B.

FORTRAN 77 Interface
Single: CALL FFT2B (NRCOEF, NCCOEF, COEF, LDCOEF, A, LDA)

Double: The double precision name is DFFT2B.

Example
In this example, we first compute the Fourier transform of the 5 � 4 array

IMSL MATH/LIBRARY Chapter 6: Transforms � 1049

� �5 1nmx n m� � �

for 1 � n � 5 and 1 � m � 4 using the IMSL routine FFT2D. The result

x̂ c�

is then inverted by a call to FFT2B. Note that the result is an array a satisfying a = (5)(4)x = 20x.
In general, FFT2B is an unnormalized inverse with expansion factor N M.

 USE FFT2B_INT
 USE FFT2D_INT
 USE WRCRN_INT
 INTEGER M, N, NCA, NRA
 COMPLEX CMPLX, X(5,4), A(5,4), COEF(5,4)
 CHARACTER TITLE1*26, TITLE2*26, TITLE3*26
 INTRINSIC CMPLX
!
 TITLE1 = ’The input matrix is below ’
 TITLE2 = ’After FFT2D ’
 TITLE3 = ’After FFT2B ’
 NRA = 5
 NCA = 4
! Fill X with initial data
 DO 20 N=1, NRA
 DO 10 M=1, NCA
 X(N,M) = CMPLX(FLOAT(N+5*M-5),0.0)
 10 CONTINUE
 20 CONTINUE
!
 CALL WRCRN (TITLE1, X)
!
 CALL FFT2D (X, COEF)
!
 CALL WRCRN (TITLE2, COEF)
!
 CALL FFT2B (COEF, A)
!
 CALL WRCRN (TITLE3, A)
!
 END

Output
 The input matrix is below
 1 2 3 4
1 (1.00, 0.00) (6.00, 0.00) (11.00, 0.00) (16.00, 0.00)
2 (2.00, 0.00) (7.00, 0.00) (12.00, 0.00) (17.00, 0.00)
3 (3.00, 0.00) (8.00, 0.00) (13.00, 0.00) (18.00, 0.00)
4 (4.00, 0.00) (9.00, 0.00) (14.00, 0.00) (19.00, 0.00)
5 (5.00, 0.00) (10.00, 0.00) (15.00, 0.00) (20.00, 0.00)

 After FFT2D
 1 2 3 4
1 (210.0, 0.0) (-50.0, 50.0) (-50.0, 0.0) (-50.0, -50.0)
2 (-10.0, 13.8) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)
3 (-10.0, 3.2) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

1050 � Chapter 6: Transforms IMSL MATH/LIBRARY

4 (-10.0, -3.2) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)
5 (-10.0, -13.8) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

 After FFT2B
 1 2 3 4
1 (20.0, 0.0) (120.0, 0.0) (220.0, 0.0) (320.0, 0.0)
2 (40.0, 0.0) (140.0, 0.0) (240.0, 0.0) (340.0, 0.0)
3 (60.0, 0.0) (160.0, 0.0) (260.0, 0.0) (360.0, 0.0)
4 (80.0, 0.0) (180.0, 0.0) (280.0, 0.0) (380.0, 0.0)
5 (100.0, 0.0) (200.0, 0.0) (300.0, 0.0) (400.0, 0.0)

Comments
1. Workspace may be explicitly provided, if desired, by use of F2T2B/DF2T2B. The

reference is:

CALL F2T2B (NRCOEF, NCCOEF, A, LDA, COEF, LDCOEF,
 WFF1, WFF2, CWK, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * NRCOEF + 15 initialized by FFTCI (page 1022). The
initialization depends on NRCOEF. (Input)

WFF2 — Real array of length 4 * NCCOEF + 15 initialized by FFTCI. The initialization
depends on NCCOEF. (Input)

CWK — Complex array of length 1. (Workspace)

CPY — Real array of length 2 * MAX(NRCOEF, NCCOEF). (Workspace)

2. The routine FFT2B is most efficient when NRCOEF and NCCOEF are the product of
small primes.

3. The arrays COEF and A may be the same.

4. If FFT2D/FFT2B is used repeatedly, with the same values for NRCOEF and NCCOEF,
then use FFTCI to fill WFF1(N = NRCOEF) and WFF2(N = NCCOEF). Follow this with
repeated calls to F2T2D/F2T2B. This is more efficient than repeated calls to
FFT2D/FFT2B.

Description
The routine FFT2B computes the inverse discrete complex Fourier transform of a complex two-
dimensional array of size (NRCOEF = N) × (NCCOEF = M). The method used is a variant of the
Cooley-Tukey algorithm , which is most efficient when N and M are both products of small
prime factors. If N and M satisfy this condition, then the computational effort is proportional to
N M log N M. This considerable savings has historically led people to refer to this algorithm as
the “fast Fourier transform” or FFT.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1051

Specifically, given an N � M array c = COEF, FFT2B returns in a

� �� � � �� �2 1 1 / 2 1 1 /

1 1

N M
i j n N i k m M

jk nm
n m

a c e e� �� � � �

� �

���

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

S NM

Finally, note that an unnormalized inverse is implemented in FFT2D (page 1045). The routine
FFT2B is based on the complex FFT in FFTPACK. The package FFTPACK was developed by
Paul Swarztrauber at the National Center for Atmospheric Research.

FFT3F
Computes Fourier coefficients of a complex periodic three-dimensional array.

Required Arguments
A — Three-dimensional complex matrix containing the data to be transformed. (Input)

B — Three-dimensional complex matrix containing the Fourier coefficients of A. (Output)
The matrices A and B may be the same.

Optional Arguments
N1 — Limit on the first subscript of matrices A and B. (Input)

Default: N1 = size(A, 1)

N2 — Limit on the second subscript of matrices A and B. (Input)
Default: N2 = size(A, 2)

N3 — Limit on the third subscript of matrices A and B. (Input)
Default: N3 = size(A, 3)

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

MDA — Middle dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: MDA = size (A,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

1052 � Chapter 6: Transforms IMSL MATH/LIBRARY

MDB — Middle dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: MDB = size (B,2).

FORTRAN 90 Interface
Generic: CALL FFT3F (A, B [,…])

Specific: The specific interface names are S_FFT3F and D_FFT3F.

FORTRAN 77 Interface
Single: CALL FFT3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB)

Double: The double precision name is DFFT3F.

Example
In this example, we compute the Fourier transform of the pure frequency input for a 2 � 3 � 4
array

� � � � � �2 1 1/ 2 2 1 2 / 3 2 1 2 / 4i n i m i l
nmla e e e� � �� � �

�

for 1 � n � 2, 1 � m � 3, and 1 � l � 4 using the IMSL routine FFT3F. The result

â c�

has all zeros except in the (2, 3, 3) position.
 USE FFT3F_INT
 USE UMACH_INT
 USE CONST_INT
 INTEGER LDA, LDB, MDA, MDB, NDA, NDB
 PARAMETER (LDA=2, LDB=2, MDA=3, MDB=3, NDA=4, NDB=4)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, J, K, L, M, N, N1, N2, N3, NOUT
 REAL PI
 COMPLEX A(LDA,MDA,NDA), B(LDB,MDB,NDB), C, H
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC CEXP, CMPLX
 COMPLEX CEXP, CMPLX
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
! Get output unit number
 CALL UMACH (2, NOUT)
 PI = CONST(’PI’)
 C = CMPLX(0.0,2.0*PI)
! Set array A
 DO 30 N=1, 2
 DO 20 M=1, 3
 DO 10 L=1, 4
 H = C*(N-1)*1/2 + C*(M-1)*2/3 + C*(L-1)*2/4
 A(N,M,L) = CEXP(H)

IMSL MATH/LIBRARY Chapter 6: Transforms � 1053

 10 CONTINUE
 20 CONTINUE
 30 CONTINUE
!
 CALL FFT3F (A, B)
!
 WRITE (NOUT,99996)
 DO 50 I=1, 2
 WRITE (NOUT,99998) I
 DO 40 J=1, 3
 WRITE (NOUT,99999) (A(I,J,K),K=1,4)
 40 CONTINUE
 50 CONTINUE
!
 WRITE (NOUT,99997)
 DO 70 I=1, 2
 WRITE (NOUT,99998) I
 DO 60 J=1, 3
 WRITE (NOUT,99999) (B(I,J,K),K=1,4)
 60 CONTINUE
 70 CONTINUE
!
99996 FORMAT (13X, ’The input for FFT3F is’)
99997 FORMAT (/, 13X, ’The results from FFT3F are’)
99998 FORMAT (/, ’ Face no. ’, I1)
99999 FORMAT (1X, 4(’(’,F6.2,’,’,F6.2,’)’,3X))
 END

Output
 The input for FFT3F is

Face no. 1
(1.00, 0.00) (-1.00, 0.00) (1.00, 0.00) (-1.00, 0.00)
(-0.50, -0.87) (0.50, 0.87) (-0.50, -0.87) (0.50, 0.87)
(-0.50, 0.87) (0.50, -0.87) (-0.50, 0.87) (0.50, -0.87)

Face no. 2
(-1.00, 0.00) (1.00, 0.00) (-1.00, 0.00) (1.00, 0.00)
(0.50, 0.87) (-0.50, -0.87) (0.50, 0.87) (-0.50, -0.87)
(0.50, -0.87) (-0.50, 0.87) (0.50, -0.87) (-0.50, 0.87)

The results from FFT3F are

Face no. 1
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

Face no. 2
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(0.00, 0.00) (0.00, 0.00) (24.00, 0.00) (0.00, 0.00)

1054 � Chapter 6: Transforms IMSL MATH/LIBRARY

Comments
1. Workspace may be explicitly provided, if desired, by use of F2T3F/DF2T3F. The

reference is:

CALL F2T3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB,
 WFF1, WFF2, WFF3, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * N1 + 15 initialized by FFTCI (page 1022). The
initialization depends on N1. (Input)

WFF2 — Real array of length 4 * N2 + 15 initialized by FFTCI. The initialization
depends on N2. (Input)

WFF3 — Real array of length 4 * N3 + 15 initialized by FFTCI. The initialization
depends on N3. (Input)

CPY — Real array of size 2 * MAX(N1, N2, N3). (Workspace)

2. The routine FFT3F is most efficient when N1, N2, and N3 are the product of small
primes.

3. If FFT3F/FFT3B is used repeatedly with the same values for N1, N2 and N3, then use
FFTCI to fill WFF1(N = N1), WFF2(N = N2), and WFF3(N = N3). Follow this with
repeated calls to F2T3F/F2T3B. This is more efficient than repeated calls to
FFT3F/FFT3B.

Description
The routine FFT3F computes the forward discrete complex Fourier transform of a complex
three-dimensional array of size (N1 = N) � (N2 = M) � (N3 = L). The method used is a variant of
the Cooley-Tukey algorithm , which is most efficient when N, M, and L are each products of
small prime factors. If N, M, and L satisfy this condition, then the computational effort is
proportional to N M L log N M L. This considerable savings has historically led people to refer
to this algorithm as the “fast Fourier transform” or FFT.

Specifically, given an N � M � L array a, FFT3F returns in c = COEF

� �� � � �� � � �� �2 1 1 / 2 1 1 / 2 1 1 /

1 1 1

N M L
i j n N i k m M i k l L

jkl nml
n m l

c a e e e� � �� � � � � � � � �

� � �

����

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NMLS

Finally, note that an unnormalized inverse is implemented in FFT3B. The routine FFT3F is
based on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1055

FFT3B
Computes the inverse Fourier transform of a complex periodic three-dimensional array.

Required Arguments
A — Three-dimensional complex matrix containing the data to be transformed. (Input)

B — Three-dimensional complex matrix containing the inverse Fourier coefficients of A.
(Output)
The matrices A and B may be the same.

Optional Arguments
N1 — Limit on the first subscript of matrices A and B. (Input)

Default: N1 = size (A,1).

N2 — Limit on the second subscript of matrices A and B. (Input)
Default: N2 = size (A,2).

N3 — Limit on the third subscript of matrices A and B. (Input)
Default: N3 = size (A,3).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

MDA — Middle dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: MDA = size (A,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

MDB — Middle dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: MDB = size (B,2).

FORTRAN 90 Interface
Generic: CALL FFT3B (A, B [,…])

Specific: The specific interface names are S_FFT3B and D_FFT3B.

1056 � Chapter 6: Transforms IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL FFT3B (N1, N2, N3, A, LDA, MDA, B, LDB, MDB)

Double: The double precision name is DFFT3B.

Example
In this example, we compute the Fourier transform of the 2 � 3 � 4 array

� � � �� �2 1 2 3 1nmlx n m l� � � � �

for 1 � n � 2, 1 � m � 3, and 1 � l � 4 using the IMSL routine FFT3F. The result

ˆa x�

is then inverted using FFT3B. Note that the result is an array b satisfying b = 2(3)(4)x = 24x. In
general, FFT3B is an unnormalized inverse with expansion factor N M L.

 USE FFT3B_INT
 USE FFT3F_INT
 USE UMACH_INT
 INTEGER LDA, LDB, MDA, MDB, NDA, NDB
 PARAMETER (LDA=2, LDB=2, MDA=3, MDB=3, NDA=4, NDB=4)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, J, K, L, M, N, N1, N2, N3, NOUT
 COMPLEX A(LDA,MDA,NDA), B(LDB,MDB,NDB), X(LDB,MDB,NDB)
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC CEXP, CMPLX
 COMPLEX CEXP, CMPLX
! SPECIFICATIONS FOR SUBROUTINES
! Get output unit number
 CALL UMACH (2, NOUT)
 N1 = 2
 N2 = 3
 N3 = 4
! Set array X
 DO 30 N=1, 2
 DO 20 M=1, 3
 DO 10 L=1, 4
 X(N,M,L) = N + 2*(M-1) + 2*3*(L-1)
 10 CONTINUE
 20 CONTINUE
 30 CONTINUE
!
 CALL FFT3F (X, A)
 CALL FFT3B (A, B)
!
 WRITE (NOUT,99996)
 DO 50 I=1, 2
 WRITE (NOUT,99998) I
 DO 40 J=1, 3
 WRITE (NOUT,99999) (X(I,J,K),K=1,4)
 40 CONTINUE
 50 CONTINUE

IMSL MATH/LIBRARY Chapter 6: Transforms � 1057

!
 WRITE (NOUT,99997)
 DO 70 I=1, 2
 WRITE (NOUT,99998) I
 DO 60 J=1, 3
 WRITE (NOUT,99999) (A(I,J,K),K=1,4)
 60 CONTINUE
 70 CONTINUE
!
 WRITE (NOUT, 99995)
 DO 90 I=1, 2
 WRITE (NOUT,99998) I
 DO 80 J=1, 3
 WRITE (NOUT,99999) (B(I,J,K),K=1,4)
 80 CONTINUE
 90 CONTINUE
99995 FORMAT (13X, ’The unnormalized inverse is’)
99996 FORMAT (13X, ’The input for FFT3F is’)
99997 FORMAT (/, 13X, ’The results from FFT3F are’)
99998 FORMAT (/, ’ Face no. ’, I1)
99999 FORMAT (1X, 4(’(’,F6.2,’,’,F6.2,’)’,3X))
 END

Output
 The input for FFT3F is

Face no. 1
(1.00, 0.00) (7.00, 0.00) (13.00, 0.00) (19.00, 0.00)
(3.00, 0.00) (9.00, 0.00) (15.00, 0.00) (21.00, 0.00)
(5.00, 0.00) (11.00, 0.00) (17.00, 0.00) (23.00, 0.00)

Face no. 2
(2.00, 0.00) (8.00, 0.00) (14.00, 0.00) (20.00, 0.00)
(4.00, 0.00) (10.00, 0.00) (16.00, 0.00) (22.00, 0.00)
(6.00, 0.00) (12.00, 0.00) (18.00, 0.00) (24.00, 0.00)

The results from FFT3F are

Face no. 1
(300.00, 0.00) (-72.00, 72.00) (-72.00, 0.00) (-72.00,-72.00)
(-24.00, 13.86) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(-24.00,-13.86) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

Face no. 2
(-12.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

The unnormalized inverse is

Face no. 1
(24.00, 0.00) (168.00, 0.00) (312.00, 0.00) (456.00, 0.00)
(72.00, 0.00) (216.00, 0.00) (360.00, 0.00) (504.00, 0.00)
(120.00, 0.00) (264.00, 0.00) (408.00, 0.00) (552.00, 0.00)

1058 � Chapter 6: Transforms IMSL MATH/LIBRARY

Face no. 2
(48.00, 0.00) (192.00, 0.00) (336.00, 0.00) (480.00, 0.00)
(96.00, 0.00) (240.00, 0.00) (384.00, 0.00) (528.00, 0.00)
(144.00, 0.00) (288.00, 0.00) (432.00, 0.00) (576.00, 0.00)

Comments
1. Workspace may be explicitly provided, if desired, by use of F2T3B/DF2T3B. The

reference is:

CALL F2T3B (N1, N2, N3, A, LDA, MDA, B, LDB, MDB,
 WFF1, WFF2, WFF3, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * N1 + 15 initialized by FFTCI (page 1022). The
initialization depends on N1. (Input)

WFF2 — Real array of length 4 * N2 + 15 initialized by FFTCI. The initialization
depends on N2. (Input)

WFF3 — Real array of length 4 * N3 + 15 initialized by FFTCI. The initialization
depends on N3. (Input)

CPY — Real array of size 2 * MAX(N1, N2, N3). (Workspace)

2. The routine FFT3B is most efficient when N1, N2, and N3 are the product of small
primes.

3. If FFT3F/FFT3B is used repeatedly with the same values for N1, N2 and N3, then use
FFTCI to fill WFF1(N = N1), WFF2(N = N2), and WFF3(N = N3). Follow this with
repeated calls to F2T3F/F2T3B. This is more efficient than repeated calls to
FFT3F/FFT3B.

Description
The routine FFT3B computes the inverse discrete complex Fourier transform of a complex
three-dimensional array of size (N1 = N) × (N2 = M) × (N3 = L). The method used is a variant of
the Cooley-Tukey algorithm, which is most efficient when N, M, and L are each products of
small prime factors. If N, M, and L satisfy this condition, then the computational effort is
proportional to N M L log N M L. This considerable savings has historically led people to refer
to this algorithm as the “fast Fourier transform” or FFT.

Specifically, given an N � M � L array a, FFT3B returns in b

� �� � � �� � � �� �2 1 1 / 2 1 1 / 2 1 1 /

1 1 1

N M L
i j n N i k m M i k l L

jkl nml
n m l

b a e e e� � �� � � � � �

� � �

���

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

IMSL MATH/LIBRARY Chapter 6: Transforms � 1059

NMLS

Finally, note that an unnormalized inverse is implemented in FFT3F. The routine FFT3B is
based on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.

RCONV
Computes the convolution of two real vectors.

Required Arguments
X — Real vector of length NX. (Input)

Y — Real vector of length NY. (Input)

Z — Real vector of length NZ ontaining the convolution of X and Y. (Output)

ZHAT — Real vector of length NZ containing the discrete Fourier transform of Z. (Output)

Optional Arguments
IDO — Flag indicating the usage of RCONV. (Input)

 Default: IDO = 0.

 IDO Usage

0 If this is the only call to RCONV.

If RCONV is called multiple times in sequence with the same NX, NY, and IPAD, IDO
should be set to

1 on the first call

2 on the intermediate calls

 3 on the final call.

NX — Length of the vector X. (Input)
Default: NX = size (X,1).

NY — Length of the vector Y. (Input)
Default: NY = size (Y,1).

IPAD — IPAD should be set to zero for periodic data or to one for nonperiodic data. (Input)
Default: IPAD = 0.

1060 � Chapter 6: Transforms IMSL MATH/LIBRARY

NZ — Length of the vector Z. (Input/Output)
Upon input: When IPAD is zero, NZ must be at least MAX(NX, NY). When IPAD is one,
NZ must be greater than or equal to the smallest integer greater than or equal to (NX +
NY �1) of the form (2�) * (3�) * (5�) where alpha, beta, and gamma are nonnegative
integers. Upon output, the value for NZ that was used by RCONV.
Default: NZ = size (Z,1).

FORTRAN 90 Interface
Generic: CALL RCONV (X, Y, Z, ZHAT [,…])

Specific: The specific interface names are S_RCONV and D_RCONV.

FORTRAN 77 Interface
Single: CALL RCONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT)

Double: The double precision name is DRCONV.

Example
In this example, we compute both a periodic and a non-periodic convolution. The idea here is
that one can compute a moving average of the type found in digital filtering using this routine.
The averaging operator in this case is especially simple and is given by averaging five
consecutive points in the sequence. The periodic case tries to recover a noisy sin function by
averaging five nearby values. The nonperiodic case tries to recover the values of an exponential
function contaminated by noise. The large error for the last value printed has to do with the fact
that the convolution is averaging the zeroes in the “pad” rather than function values. Notice that
the signal size is 100, but we only report the errors at ten points.

 USE IMSL_LIBRARIES
 INTEGER NFLTR, NY
 PARAMETER (NFLTR=5, NY=100)
!
 INTEGER I, IPAD, K, MOD, NOUT, NZ
 REAL ABS, EXP, F1, F2, FLOAT, FLTR(NFLTR), &
 FLTRER, ORIGER, SIN, TOTAL1, TOTAL2, TWOPI, X, &
 Y(NY), Z(2*(NFLTR+NY-1)), ZHAT(2*(NFLTR+NY-1))
 INTRINSIC ABS, EXP, FLOAT, MOD, SIN
! DEFINE FUNCTIONS
 F1(X) = SIN(X)
 F2(X) = EXP(X)
!
 CALL RNSET (1234579)
 CALL UMACH (2, NOUT)
 TWOPI = CONST(’PI’)
 TWOPI = 2.0*TWOPI
! SET UP THE FILTER
 DO 10 I=1, 5
 FLTR(I) = 0.2
 10 CONTINUE

IMSL MATH/LIBRARY Chapter 6: Transforms � 1061

! SET UP Y-VECTOR FOR THE PERIODIC
! CASE.
 DO 20 I=1, NY
 X = TWOPI*FLOAT(I-1)/FLOAT(NY-1)
 Y(I) = RNUNF()
 Y(I) = F1(X) + 0.5*Y(I) - 0.25
 20 CONTINUE
! CALL THE CONVOLUTION ROUTINE FOR THE
! PERIODIC CASE.
 NZ = 2*(NFLTR+NY-1)
 CALL RCONV (FLTR, Y, Z, ZHAT, IPAD=0, NZ=NZ)
! PRINT RESULTS
 WRITE (NOUT,99993)
 WRITE (NOUT,99995)
 TOTAL1 = 0.0
 TOTAL2 = 0.0
 DO 30 I=1, NY
! COMPUTE THE OFFSET FOR THE Z-VECTOR
 IF (I .GE. NY-1) THEN
 K = I - NY + 2
 ELSE
 K = I + 2
 END IF
!
 X = TWOPI*FLOAT(I-1)/FLOAT(NY-1)
 ORIGER = ABS(Y(I)-F1(X))
 FLTRER = ABS(Z(K)-F1(X))
 IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F1(X), ORIGER, &
 FLTRER
 TOTAL1 = TOTAL1 + ORIGER
 TOTAL2 = TOTAL2 + FLTRER
 30 CONTINUE
 WRITE (NOUT,99998) TOTAL1/FLOAT(NY)
 WRITE (NOUT,99999) TOTAL2/FLOAT(NY)
! SET UP Y-VECTOR FOR THE NONPERIODIC
! CASE.
 DO 40 I=1, NY
 A = FLOAT(I-1)/FLOAT(NY-1)
 Y(I) = RNUNF()
 Y(I) = F2(A) + 0.5*Y(I) - 0.25
 40 CONTINUE
! CALL THE CONVOLUTION ROUTINE FOR THE
! NONPERIODIC CASE.
 NZ = 2*(NFLTR+NY-1)
 CALL RCONV (FLTR, Y, Z, ZHAT, IPAD=1)
! PRINT RESULTS
 WRITE (NOUT,99994)
 WRITE (NOUT,99996)
 TOTAL1 = 0.0
 TOTAL2 = 0.0
 DO 50 I=1, NY
 X = FLOAT(I-1)/FLOAT(NY-1)
 ORIGER = ABS(Y(I)-F2(X))
 FLTRER = ABS(Z(I+2)-F2(X))
 IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F2(X), ORIGER, &

1062 � Chapter 6: Transforms IMSL MATH/LIBRARY

 FLTRER
 TOTAL1 = TOTAL1 + ORIGER
 TOTAL2 = TOTAL2 + FLTRER
 50 CONTINUE
 WRITE (NOUT,99998) TOTAL1/FLOAT(NY)
 WRITE (NOUT,99999) TOTAL2/FLOAT(NY)
99993 FORMAT (’ Periodic Case’)
99994 FORMAT (/,’ Nonperiodic Case’)
99995 FORMAT (8X, ’x’, 9X, ’sin(x)’, 6X, ’Original Error’, 5X, &
 ’Filtered Error’)
99996 FORMAT (8X, ’x’, 9X, ’exp(x)’, 6X, ’Original Error’, 5X, &
 ’Filtered Error’)
99997 FORMAT (1X, F10.4, F13.4, 2F18.4)
99998 FORMAT (’ Average absolute error before filter:’, F10.5)
99999 FORMAT (’ Average absolute error after filter:’, F11.5)
 END

Output
Periodic Case
 x sin(x) Original Error Filtered Error
 0.0000 0.0000 0.0811 0.0587
 0.6981 0.6428 0.0226 0.0781
 1.3963 0.9848 0.1526 0.0529
 2.0944 0.8660 0.0959 0.0125
 2.7925 0.3420 0.1747 0.0292
 3.4907 -0.3420 0.1035 0.0238
 4.1888 -0.8660 0.0402 0.0595
 4.8869 -0.9848 0.0673 0.0798
 5.5851 -0.6428 0.1044 0.0074
 6.2832 0.0000 0.0154 0.0018
 Average absolute error before filter: 0.12481
 Average absolute error after filter: 0.04778

Nonperiodic Case
 x exp(x) Original Error Filtered Error
 0.0000 1.0000 0.1476 0.3915
 0.1111 1.1175 0.0537 0.0326
 0.2222 1.2488 0.1278 0.0932
 0.3333 1.3956 0.1136 0.0987
 0.4444 1.5596 0.1617 0.0964
 0.5556 1.7429 0.0071 0.0662
 0.6667 1.9477 0.1248 0.0713
 0.7778 2.1766 0.1556 0.0158
 0.8889 2.4324 0.1529 0.0696
 1.0000 2.7183 0.2124 1.0562
 Average absolute error before filter: 0.12538
 Average absolute error after filter: 0.07764

Comments
1. Workspace may be explicitly provided, if desired, by use of R2ONV/DR2ONV. The

reference is:

IMSL MATH/LIBRARY Chapter 6: Transforms � 1063

CALL R2ONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT
 XWK, YWK, WK)

The additional arguments are as follows:

XWK — Real work array of length NZ.

YWK — Real work array of length NZ.

WK — Real work arrary of length 2 * NZ + 15.

2. Informational error

Type Code
 4 1 The length of the vector Z must be large enough to hold the results.

An acceptable length is returned in NZ.

Description
The routine RCONV computes the discrete convolution of two sequences x and y. More precisely,
let nx be the length of x and ny denote the length of y. If a circular convolution is desired, then
IPAD must be set to zero. We set

nz := max{nx, ny}

and we pad out the shorter vector with zeroes. Then, we compute

1
1

zn

i i j j
j

z x y
� �

�

��

where the index on x is interpreted as a positive number between 1 and nz, modulo nz.

The technique used to compute the zi’s is based on the fact that the (complex discrete) Fourier
transform maps convolution into multiplication. Thus, the Fourier transform of z is given by

� � � � � �ˆ ˆẑ n x n y n�

where

� � � �� �2 1 1 /

1

ˆ
z

z

n
i m n n

m
m

z n z e �� � �

�

��

The technique used here to compute the convolution is to take the discrete Fourier transform of
x and y, multiply the results together component-wise, and then take the inverse transform of
this product. It is very important to make sure that nz is a product of small primes if IPAD is set
to zero. If nz is a product of small primes, then the computational effort will be proportional to
nz log(nz). If IPAD is one, then a good value is chosen for nz so that the Fourier transforms are
efficient and nz � nx + ny � 1. This will mean that both vectors will be padded with zeroes.

We point out that no complex transforms of x or y are taken since both sequences are real, we
can take real transforms and simulate the complex transform above. This can produce a savings
of a factor of six in time as well as save space over using the complex transform.

1064 � Chapter 6: Transforms IMSL MATH/LIBRARY

CCONV
Computes the convolution of two complex vectors.

Required Arguments
X — Complex vector of length NX. (Input)

Y — Complex vector of length NY. (Input)

Z — Complex vector of length NZ containing the convolution of X and Y. (Output)

ZHAT — Complex vector of length NZ containing the discrete complex Fourier transform of
Z. (Output)

Optional Arguments
IDO — Flag indicating the usage of CCONV. (Input)

 Default: IDO = 0.

IDO Usage

0 If this is the only call to CCONV.

If CCONV is called multiple times in sequence with the same NX, NY, and IPAD, IDO
should be set to:

1 on the first call

2 on the intermediate calls

 3 on the final call.

NX — Length of the vector X. (Input)
Default: NX = size (X,1).

NY — Length of the vector Y. (Input)
Default: NY = size (Y,1).

IPAD — IPAD should be set to zero for periodic data or to one for nonperiodic data. (Input)
Default: IPAD =0.

NZ — Length of the vector Z. (Input/Output)
Upon input: When IPAD is zero, NZ must be at least MAX(NX, NY). When IPAD is one,
NZ must be greater than or equal to the smallest integer greater than or equal to (NX +
NY � 1) of the form (2�) * (3�) * (5�) where alpha, beta, and gamma are nonnegative

IMSL MATH/LIBRARY Chapter 6: Transforms � 1065

integers. Upon output, the value for NZ that was used by CCONV.
Default: NZ = size (Z,1).

FORTRAN 90 Interface
Generic: CALL CCONV (X, Y, Z, ZHAT [,…])

Specific: The specific interface names are S_CCONV and D_CCONV.

FORTRAN 77 Interface
Single: CALL CCONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT)

Double: The double precision name is DCCONV.

Example
In this example, we compute both a periodic and a non-periodic convolution. The idea here is
that one can compute a moving average of the type found in digital filtering using this routine.
The averaging operator in this case is especially simple and is given by averaging five
consecutive points in the sequence. The periodic case tries to recover a noisy function f�(x) =
cos(x) + i sin(x) by averaging five nearby values. The nonperiodic case tries to recover the
values of the function f�(x) = exf�(x) contaminated by noise. The large error for the first and last
value printed has to do with the fact that the convolution is averaging the zeroes in the “pad”
rather than function values. Notice that the signal size is 100, but we only report the errors at ten
points.

 USE IMSL_LIBRARIES
 INTEGER NFLTR, NY
 PARAMETER (NFLTR=5, NY=100)
!
 INTEGER I, IPAD, K, MOD, NOUT, NZ
 REAL CABS, COS, EXP, FLOAT, FLTRER, ORIGER, &
 SIN, TOTAL1, TOTAL2, TWOPI, X, T1, T2
 COMPLEX CMPLX, F1, F2, FLTR(NFLTR), Y(NY), Z(2*(NFLTR+NY-1)), &
 ZHAT(2*(NFLTR+NY-1))
 INTRINSIC CABS, CMPLX, COS, EXP, FLOAT, MOD, SIN
! DEFINE FUNCTIONS
 F1(X) = CMPLX(COS(X),SIN(X))
 F2(X) = EXP(X)*CMPLX(COS(X),SIN(X))
!
 CALL RNSET (1234579)
 CALL UMACH (2, NOUT)
 TWOPI = CONST(’PI’)
 TWOPI = 2.0*TWOPI
! SET UP THE FILTER
 CALL CSET(NFLTR,(0.2,0.0),FLTR,1)
! SET UP Y-VECTOR FOR THE PERIODIC
! CASE.
 DO 20 I=1, NY
 X = TWOPI*FLOAT(I-1)/FLOAT(NY-1)

1066 � Chapter 6: Transforms IMSL MATH/LIBRARY

 T1 = RNUNF()
 T2 = RNUNF()
 Y(I) = F1(X) + CMPLX(0.5*T1-0.25,0.5*T2-0.25)
 20 CONTINUE
! CALL THE CONVOLUTION ROUTINE FOR THE
! PERIODIC CASE.
 NZ = 2*(NFLTR+NY-1)
 CALL CCONV (FLTR, Y, Z, ZHAT)
! PRINT RESULTS
 WRITE (NOUT,99993)
 WRITE (NOUT,99995)
 TOTAL1 = 0.0
 TOTAL2 = 0.0
 DO 30 I=1, NY
! COMPUTE THE OFFSET FOR THE Z-VECTOR
 IF (I .GE. NY-1) THEN
 K = I - NY + 2
 ELSE
 K = I + 2
 END IF
!
 X = TWOPI*FLOAT(I-1)/FLOAT(NY-1)
 ORIGER = CABS(Y(I)-F1(X))
 FLTRER = CABS(Z(K)-F1(X))
 IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F1(X), ORIGER, &
 FLTRER
 TOTAL1 = TOTAL1 + ORIGER
 TOTAL2 = TOTAL2 + FLTRER
 30 CONTINUE
 WRITE (NOUT,99998) TOTAL1/FLOAT(NY)
 WRITE (NOUT,99999) TOTAL2/FLOAT(NY)
! SET UP Y-VECTOR FOR THE NONPERIODIC
! CASE.
 DO 40 I=1, NY
 X = FLOAT(I-1)/FLOAT(NY-1)
 T1 = RNUNF()
 T2 = RNUNF()
 Y(I) = F2(X) + CMPLX(0.5*T1-0.25,0.5*T2-0.25)
 40 CONTINUE
! CALL THE CONVOLUTION ROUTINE FOR THE
! NONPERIODIC CASE.
 NZ = 2*(NFLTR+NY-1)
 CALL CCONV (FLTR, Y, Z, ZHAT, IPAD=1)
! PRINT RESULTS
 WRITE (NOUT,99994)
 WRITE (NOUT,99996)
 TOTAL1 = 0.0
 TOTAL2 = 0.0
 DO 50 I=1, NY
 X = FLOAT(I-1)/FLOAT(NY-1)
 ORIGER = CABS(Y(I)-F2(X))
 FLTRER = CABS(Z(I+2)-F2(X))
 IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F2(X), ORIGER, &
 FLTRER
 TOTAL1 = TOTAL1 + ORIGER

IMSL MATH/LIBRARY Chapter 6: Transforms � 1067

 TOTAL2 = TOTAL2 + FLTRER
 50 CONTINUE
 WRITE (NOUT,99998) TOTAL1/FLOAT(NY)
 WRITE (NOUT,99999) TOTAL2/FLOAT(NY)
99993 FORMAT (’ Periodic Case’)
99994 FORMAT (/, ’ Nonperiodic Case’)
99995 FORMAT (8X, ’x’, 15X, ’f1(x)’, 8X, ’Original Error’, 5X, &
 ’Filtered Error’)
99996 FORMAT (8X, ’x’, 15X, ’f2(x)’, 8X, ’Original Error’, 5X, &
 ’Filtered Error’)
99997 FORMAT (1X, F10.4, 5X, ’(’, F7.4, ’,’, F8.4, ’)’, 5X, F8.4, &
 10X, F8.4)
99998 FORMAT (’ Average absolute error before filter:’, F11.5)
99999 FORMAT (’ Average absolute error after filter:’, F12.5)
 END

Output
Periodic Case
 x f1(x) Original Error Filtered Error
 0.0000 (1.0000, 0.0000) 0.1666 0.0773
 0.6981 (0.7660, 0.6428) 0.1685 0.1399
 1.3963 (0.1736, 0.9848) 0.1756 0.0368
 2.0944 (-0.5000, 0.8660) 0.2171 0.0142
 2.7925 (-0.9397, 0.3420) 0.1147 0.0200
 3.4907 (-0.9397, -0.3420) 0.0998 0.0331
 4.1888 (-0.5000, -0.8660) 0.1137 0.0586
 4.8869 (0.1736, -0.9848) 0.2217 0.0843
 5.5851 (0.7660, -0.6428) 0.1831 0.0744
 6.2832 (1.0000, 0.0000) 0.3234 0.0893
 Average absolute error before filter: 0.19315
 Average absolute error after filter: 0.08296

Nonperiodic Case
 x f2(x) Original Error Filtered Error
 0.0000 (1.0000, 0.0000) 0.0783 0.4336
 0.1111 (1.1106, 0.1239) 0.2434 0.0477
 0.2222 (1.2181, 0.2752) 0.1819 0.0584
 0.3333 (1.3188, 0.4566) 0.0703 0.1267
 0.4444 (1.4081, 0.6706) 0.1458 0.0868
 0.5556 (1.4808, 0.9192) 0.1946 0.0930
 0.6667 (1.5307, 1.2044) 0.1458 0.0734
 0.7778 (1.5508, 1.5273) 0.1815 0.0690
 0.8889 (1.5331, 1.8885) 0.0805 0.0193
 1.0000 (1.4687, 2.2874) 0.2396 1.1708
 Average absolute error before filter: 0.18549
 Average absolute error after filter: 0.09636

Comments
1. Workspace may be explicitly provided, if desired, by use of C2ONV/DC2ONV. The

reference is:

CALL C2ONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT,
 XWK, YWK, WK)

1068 � Chapter 6: Transforms IMSL MATH/LIBRARY

The additional arguments are as follows:

XWK — Complex work array of length NZ.

YWK — Complex work array of length NZ.

WK — Real work array of length 6 * NZ + 15.

2. Informational error

Type Code
 4 1 The length of the vector Z must be large enough to hold the results.

An acceptable length is returned in NZ.

Description
The subroutine CCONV computes the discrete convolution of two complex sequences x and y.
More precisely, let nx be the length of x and ny denote the length of y. If a circular convolution is
desired, then IPAD must be set to zero. We set

nz := max{nx, ny}

and we pad out the shorter vector with zeroes. Then, we compute

1
1

zn

i i j j
j

z x y
� �

�

��

where the index on x is interpreted as a positive number between 1 and nz, modulo nz.

The technique used to compute the zi’s is based on the fact that the (complex discrete) Fourier
transform maps convolution into multiplication. Thus, the Fourier transform of z is given by

� � � � � �ˆ ˆẑ n x n y n�

where

� � � �� �2 1 1 /

1

ˆ
z

z

n
i m n n

m
m

z n z e �� � �

�

��

The technique used here to compute the convolution is to take the discrete Fourier transform of
x and y, multiply the results together component-wise, and then take the inverse transform of
this product. It is very important to make sure that nz is a product of small primes if IPAD is set
to zero. If nz is a product of small primes, then the computational effort will be proportional to
nz log(nz). If IPAD is one, then a a good value is chosen for nz so that the Fourier transforms are
efficient and nz � nx + ny � 1. This will mean that both vectors will be padded with zeroes.

RCORL
Computes the correlation of two real vectors.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1069

Required Arguments
X — Real vector of length N. (Input)

Y — Real vector of length N. (Input)

Z — Real vector of length NZ containing the correlation of X and Y. (Output)

ZHAT — Real vector of length NZ containing the discrete Fourier transform of Z. (Output)

Optional Arguments
IDO — Flag indicating the usage of RCORL. (Input)

 Default: IDO = 0.

 IDO Usage

0 If this is the only call to RCORL.

If RCORL is called multiple times in sequence with the same NX, NY, and IPAD, IDO
should be set to:

1 on the first call

2 on the intermediate calls

3 on the final call.

N — Length of the X and Y vectors. (Input)
Default: N = size (X,1).

IPAD — IPAD should be set as follows. (Input)
Default: IPAD = 0.

IPAD Value

IPAD 0 for periodic data with X and Y different.

IPAD 1 for nonperiodic data with X and Y different.

IPAD 2 for periodic data with X and Y identical.

IPAD 3 for nonperiodic data with X and Y identical.

NZ — Length of the vector Z. (Input/Output)
Upon input: When IPAD is zero or two, NZ must be at least (2 * N � 1). When IPAD is
one or three, NZ must be greater than or equal to the smallest integer greater than or
equal to (2 * N � 1) of the form (2�) * (3�) * (5�) where alpha, beta, and gamma are

1070 � Chapter 6: Transforms IMSL MATH/LIBRARY

nonnegative integers. Upon output, the value for NZ that was used by RCORL.
Default: NZ = size (Z,1).

FORTRAN 90 Interface
Generic: CALL RCORL (X, Y, Z, ZHAT [,…])

Specific: The specific interface names are S_RCORL and D_RCORL.

FORTRAN 77 Interface
Single: CALL RCORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT)

Double: The double precision name is DRCORL.

Example
In this example, we compute both a periodic and a non-periodic correlation between two distinct
signals x and y. In the first case we have 100 equally spaced points on the interval [0, 2�] and
f�(x) = sin(x). We define x and y as follows

1

1

1(2) 1, ,
1
1(2) 1, ,
1 2

i

i

ix f i n
n
iy f i n
n

�

�

�

�

� �

�

�

� � �

�

�

�

Note that the maximum value of z (the correlation of x with y) occurs at i = 26, which
corresponds to the offset.

The nonperiodic case uses the function f�(x) = sin(x�). The two input signals are on the interval
[0, 4�].

2

2

1(4) 1, ,
1
1(4) 1, ,
1

i

i

ix f i n
n
iy f i n
n

�

� �

�

� �

�

�

� � �

�

�

�

The offset of x to y is again (roughly) 26 and this is where z has its maximum value.
 USE IMSL_LIBRARIES
 INTEGER N
 PARAMETER (N=100)
!
 INTEGER I, IPAD, K, NOUT, NZ
 REAL A, F1, F2, FLOAT, PI, SIN, X(N), XNORM, &
 Y(N), YNORM, Z(4*N), ZHAT(4*N)
 INTRINSIC FLOAT, SIN
! Define functions
 F1(A) = SIN(A)
 F2(A) = SIN(A*A)
!

IMSL MATH/LIBRARY Chapter 6: Transforms � 1071

 CALL UMACH (2, NOUT)
 PI = CONST(’pi’)
! Set up the vectors for the
! periodic case.
 DO 10 I=1, N
 X(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1))
 Y(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI/2.0)
 10 CONTINUE
! Call the correlation routine for the
! periodic case.
 NZ = 2*N
 CALL RCORL (X, Y, Z, ZHAT)
! Find the element of Z with the
! largest normalized value.
 XNORM = SNRM2(N,X,1)
 YNORM = SNRM2(N,Y,1)
 DO 20 I=1, N
 Z(I) = Z(I)/(XNORM*YNORM)
 20 CONTINUE
 K = ISMAX(N,Z,1)
! Print results for the periodic
! case.
 WRITE (NOUT,99995)
 WRITE (NOUT,99994)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) K
 WRITE (NOUT,99999) K, Z(K)
! Set up the vectors for the
! nonperiodic case.
 DO 30 I=1, N
 X(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1))
 Y(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI)
 30 CONTINUE
! Call the correlation routine for the
! nonperiodic case.
 NZ = 4*N
 CALL RCORL (X, Y, Z, ZHAT, IPAD=1)
! Find the element of Z with the
! largest normalized value.
 XNORM = SNRM2(N,X,1)
 YNORM = SNRM2(N,Y,1)
 DO 40 I=1, N
 Z(I) = Z(I)/(XNORM*YNORM)
 40 CONTINUE
 K = ISMAX(N,Z,1)
! Print results for the nonperiodic
! case.
 WRITE (NOUT,99996)
 WRITE (NOUT,99994)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) K
 WRITE (NOUT,99999) K, Z(K)
99994 FORMAT (1X, 28(’-’))
99995 FORMAT (’ Case #1: Periodic data’)
99996 FORMAT (/, ’ Case #2: Nonperiodic data’)

1072 � Chapter 6: Transforms IMSL MATH/LIBRARY

99997 FORMAT (’ The element of Z with the largest normalized ’)
99998 FORMAT (’ value is Z(’, I2, ’).’)
99999 FORMAT (’ The normalized value of Z(’, I2, ’) is’, F6.3)
 END

Output
Example #1: Periodic case

The element of Z with the largest normalized value is Z(26).
The normalized value of Z(26) is 1.000

Example #2: Nonperiodic case

The element of Z with the largest normalized value is Z(26).
The normalized value of Z(26) is 0.661

Comments
1. Workspace may be explicitly provided, if desired, by use of R2ORL/DR2ORL. The

reference is:

CALL R2ORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT, XWK,
 YWK, WK)

The additional arguments are as follows:

XWK — Real work array of length NZ.

YWK — Real work array of length NZ.

WK — Real work arrary of length 2 * NZ + 15.

2. Informational error

Type Code
 4 1 The length of the vector Z must be large enough to hold the results.

An acceptable length is returned in NZ.

Description
The subroutine RCORL computes the discrete correlation of two sequences x and y. More
precisely, let n be the length of x and y. If a circular correlation is desired, then IPAD must be set
to zero (for x and y distinct) and two (for x = y). We set (on output)

if IPAD = 0, 2

2 3 5 2 1 if IPAD = 1, 3
z

z

n n

n n� � �

�

� � �

where �, �, � are nonnegative integers yielding the smallest number of the type 2�3�5� satisfying
the inequality. Once nz is determined, we pad out the vectors with zeroes. Then, we compute

1
1

zn

i i j j
j

z x y
� �

�

��

IMSL MATH/LIBRARY Chapter 6: Transforms � 1073

where the index on x is interpreted as a positive number between one and nz, modulo nz. Note
that this means that

zn kz
�

contains the correlation of x(� k � 1) with y as k = 0, 1,
, nz /2. Thus, if
x(k � 1) = y(k) for all k, then we would expect

znz

to be the largest component of z.

The technique used to compute the zi’s is based on the fact that the (complex discrete) Fourier
transform maps correlation into multiplication. Thus, the Fourier transform of z is given by

ˆ ˆˆ j j jz x y�

where

� �� �2 1 1 /

1

ˆ
z

z

n
i m j n

j m
m

z z e �� � �

�

��

Thus, the technique used here to compute the correlation is to take the discrete Fourier
transform of x and the conjugate of the discrete Fourier transform of y, multiply the results
together component-wise, and then take the inverse transform of this product. It is very
important to make sure that nz is a product of small primes if IPAD is set to zero or two. If nz is a
product of small primes, then the computational effort will be proportional to nz log(nz). If IPAD
is one or three, then a good value is chosen for nz so that the Fourier transforms are efficient and
nz � 2n � 1. This will mean that both vectors will be padded with zeroes.

We point out that no complex transforms of x or y are taken since both sequences are real, and
we can take real transforms and simulate the complex transform above. This can produce a
savings of a factor of six in time as well as save space over using the complex transform.

CCORL
Computes the correlation of two complex vectors.

Required Arguments
X — Complex vector of length N. (Input)

Y — Complex vector of length N. (Input)

Z — Complex vector of length NZ containing the correlation of X and Y. (Output)

ZHAT — Complex vector of length NZ containing the inverse discrete complex Fourier
transform of Z. (Output)

1074 � Chapter 6: Transforms IMSL MATH/LIBRARY

Optional Arguments
IDO — Flag indicating the usage of CCORL. (Input)

Default: IDO = 0.

IDO Usage

0 If this is the only call to CCORL.

If CCORL is called multiple times in sequence with the same NX, NY, and IPAD, IDO
should be set to:

1 on the first call

2 on the intermediate calls

3 on the final call.

N — Length of the X and Y vectors. (Input)
Default: N = size (X,1).

IPAD — IPAD should be set as follows. (Input)
IPAD = 0 for periodic data with X and Y different. IPAD = 1 for nonperiodic data with X
and Y different. IPAD = 2 for periodic data with X and Y identical. IPAD = 3 for
nonperiodic data with X and Y identical.
Default: IPAD = 0.

NZ — Length of the vector Z. (Input/Output)
Upon input: When IPAD is zero or two, NZ must be at least (2 * N � 1). When IPAD is
one or three, NZ must be greater than or equal to the smallest integer greater than or
equal to (2 * N � 1) of the form (2�) * (3�) * (5�) where alpha, beta, and gamma are
nonnegative integers. Upon output, the value for NZ that was used by CCORL.
Default: NZ = size (Z,1).

FORTRAN 90 Interface
Generic: CALL CCORL (X, Y, Z, ZHAT [,…])

Specific: The specific interface names are S_CCORL and D_CCORL.

FORTRAN 77 Interface
Single: CALL CCORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT)

Double: The double precision name is DCCORL.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1075

Example
In this example, we compute both a periodic and a non-periodic correlation between two distinct
signals x and y. In the first case, we have 100 equally spaced points on the interval [0, 2�] and
f�(x) = cos(x) + i sin(x). We define x and y as follows

1

1

1(2) 1, ,
1
1(2) 1, ,
1 2

i

i

ix f i n
n
iy f i n
n

�

�

�

�

� �

�

�

� � �

�

�

�

Note that the maximum value of z (the correlation of x with y) occurs at i = 26, which
corresponds to the offset.

The nonperiodic case uses the function f�(x) = cos(x�) + i sin(x�). The two input signals are on
the interval [0, 4�].

2

2

1(4) 1, ,
1
1(4) 1, ,
1

i

i

ix f i n
n
iy f i n
n

�

� �

�

� �

�

�

� � �

�

�

�

The offset of x to y is again (roughly) 26 and this is where z has its maximum value.
 USE IMSL_LIBRARIES
 INTEGER N
 PARAMETER (N=100)
!
 INTEGER I, IPAD, K, NOUT, NZ
 REAL A, COS, F1, F2, FLOAT, PI, SIN, &
 XNORM, YNORM, ZREAL1(4*N)
 COMPLEX CMPLX, X(N), Y(N), Z(4*N), ZHAT(4*N)
 INTRINSIC CMPLX, COS, FLOAT, SIN
! Define functions
 F1(A) = CMPLX(COS(A),SIN(A))
 F2(A) = CMPLX(COS(A*A),SIN(A*A))
!
 CALL RNSET (1234579)
 CALL UMACH (2, NOUT)
 PI = CONST(’pi’)
! Set up the vectors for the
! periodic case.
 DO 10 I=1, N
 X(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1))
 Y(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI/2.0)
 10 CONTINUE
! Call the correlation routine for the
! periodic case.
 NZ = 2*N
 CALL CCORL (X, Y, Z, ZHAT, IPAD=0, NZ=NZ)
! Find the element of Z with the
! largest normalized real part.
 XNORM = SCNRM2(N,X,1)
 YNORM = SCNRM2(N,Y,1)

1076 � Chapter 6: Transforms IMSL MATH/LIBRARY

 DO 20 I=1, N
 ZREAL1(I) = REAL(Z(I))/(XNORM*YNORM)
 20 CONTINUE
 K = ISMAX(N,ZREAL1,1)
! Print results for the periodic
! case.
 WRITE (NOUT,99995)
 WRITE (NOUT,99994)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) K
 WRITE (NOUT,99999) K, ZREAL1(K)
! Set up the vectors for the
! nonperioddic case.
 DO 30 I=1, N
 X(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1))
 Y(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI)
 30 CONTINUE
! Call the correlation routine for the
! nonperiodic case.
 NZ = 4*N
 CALL CCORL (X, Y, Z, ZHAT, IPAD=1, NZ=NZ)
! Find the element of z with the
! largest normalized real part.
 XNORM = SCNRM2(N,X,1)
 YNORM = SCNRM2(N,Y,1)
 DO 40 I=1, N
 ZREAL1(I) = REAL(Z(I))/(XNORM*YNORM)
 40 CONTINUE
 K = ISMAX(N,ZREAL1,1)
! Print results for the nonperiodic
! case.
 WRITE (NOUT,99996)
 WRITE (NOUT,99994)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) K
 WRITE (NOUT,99999) K, ZREAL1(K)
99994 FORMAT (1X, 28(’-’))
99995 FORMAT (’ Case #1: periodic data’)
99996 FORMAT (/, ’ Case #2: nonperiodic data’)
99997 FORMAT (’ The element of Z with the largest normalized ’)
99998 FORMAT (’ real part is Z(’, I2, ’).’)
99999 FORMAT (’ The normalized value of real(Z(’, I2, ’)) is’, F6.3)
 END

Output
Example #1: periodic case

The element of Z with the largest normalized real part is Z(26).
The normalized value of real(Z(26)) is 1.000

Example #2: nonperiodic case

The element of Z with the largest normalized real part is Z(26).
The normalized value of real(Z(26)) is 0.638

IMSL MATH/LIBRARY Chapter 6: Transforms � 1077

Comments
1. Workspace may be explicitly provided, if desired, by use of C2ORL/DC2ORL. The

reference is:

CALL C2ORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT, XWK,
 YWK, WK)

The additional arguments are as follows:

XWK — Complex work array of length NZ.

YWK — Complex work array of length NZ.

WK — Real work arrary of length 6 * NZ + 15.

2. Informational error

Type Code
 4 1 The length of the vector Z must be large enough to hold the results.

An acceptable length is returned in NZ.

Description
The subroutine CCORL computes the discrete correlation of two complex sequences x and y.
More precisely, let n be the length of x and y. If a circular correlation is desired, then IPAD must
be set to zero (for x and y distinct) and two (for x = y). We set (on output)

if IPAD = 0, 2

2 3 5 2 1 if IPAD = 1, 3
z

z

n n

n n� � �

�

� � �

where �, �, � are nonnegative integers yielding the smallest number of the type 2�3�5� satisfying
the inequality. Once nz is determined, we pad out the vectors with zeroes. Then, we compute

1
1

zn

i i j j
j

z x y
� �

�

��

where the index on x is interpreted as a positive number between one and nz, modulo nz. Note
that this means that

zn kz
�

contains the correlation of x(� k � 1) with y as k = 0, 1,
, nz /2. Thus, if
x(k � 1) = y(k) for all k, then we would expect

znz�

to be the largest component of �z.

The technique used to compute the zi’s is based on the fact that the (complex discrete) Fourier
transform maps correlation into multiplication. Thus, the Fourier transform of z is given by

1078 � Chapter 6: Transforms IMSL MATH/LIBRARY

ˆ ˆˆ j j jz x y�

where

� �� �2 1 1 /

1

ˆ
z

z

n
i m j n

j m
m

z z e �� � �

�

��

Thus, the technique used here to compute the correlation is to take the discrete Fourier
transform of x and the conjugate of the discrete Fourier transform of y, multiply the results
together component-wise, and then take the inverse transform of this product. It is very
important to make sure that nz is a product of small primes if IPAD is set to zero or two. If nz is a
product of small primes, then the computational effort will be proportional to nz log(nz). If IPAD
is one or three, then a good value is chosen for nz so that the Fourier transforms are efficient and
nz � 2n � 1. This will mean that both vectors will be padded with zeroes.

INLAP
Computes the inverse Laplace transform of a complex function.

Required Arguments
F — User-supplied FUNCTION to which the inverse Laplace transform will be computed. The

form is F(Z), where

 Z – Complex argument. (Input)
F – The complex function value. (Output)

F must be declared EXTERNAL in the calling program. F should also be declared COMPLEX.

T — Array of length N containing the points at which the inverse Laplace transform is
desired. (Input)
T(I) must be greater than zero for all I.

FINV — Array of length N whose I-th component contains the approximate value of the
Laplace transform at the point T(I). (Output)

Optional Arguments
N — Number of points at which the inverse Laplace transform is desired. (Input)

Default: N = size (T,1).

ALPHA — An estimate for the maximum of the real parts of the singularities of F. If
unknown, set ALPHA = 0. (Input)
Default: ALPHA = 0.0.

KMAX — The number of function evaluations allowed for each T(I). (Input)
Default: KMAX = 500.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1079

RELERR — The relative accuracy desired. (Input)
Default: RELERR = 1.1920929e-5 for single precision and 2.22d-10 for double
precision.

FORTRAN 90 Interface
Generic: CALL INLAP (F, T, FINV [,…])

Specific: The specific interface names are S_INLAP and D_INLAP.

FORTRAN 77 Interface
Single: CALL INLAP (F, N, T, ALPHA, RELERR, KMAX, FINV)

Double: The double precision name is DINLAP.

Example
We invert the Laplace transform of the simple function (s � 1)�� and print the computed answer,
the true solution and the difference at five different points. The correct inverse transform is xex.

 USE INLAP_INT
 USE UMACH_INT
 INTEGER I, KMAX, N, NOUT
 REAL ALPHA, DIF(5), EXP, FINV(5), FLOAT, RELERR, T(5), &
 TRUE(5)
 COMPLEX F
 INTRINSIC EXP, FLOAT
 EXTERNAL F
! Get output unit number
 CALL UMACH (2, NOUT)
!
 DO 10 I=1, 5
 T(I) = FLOAT(I) - 0.5
 10 CONTINUE
 N = 5
 ALPHA = 1.0E0
 RELERR = 5.0E-4
 CALL INLAP (F, T, FINV, ALPHA=ALPHA, RELERR=RELERR)
! Evaluate the true solution and the
! difference
 DO 20 I=1, 5
 TRUE(I) = T(I)*EXP(T(I))
 DIF(I) = TRUE(I) - FINV(I)
 20 CONTINUE
!
 WRITE (NOUT,99999) (T(I),FINV(I),TRUE(I),DIF(I),I=1,5)
99999 FORMAT (7X, ’T’, 8X, ’FINV’, 9X, ’TRUE’, 9X, ’DIFF’, /, &
 5(1X,E9.1,3X,1PE10.3,3X,1PE10.3,3X,1PE10.3,/))
 END
!
 COMPLEX FUNCTION F (S)

1080 � Chapter 6: Transforms IMSL MATH/LIBRARY

 COMPLEX S
 F = 1./(S-1.)**2
 RETURN
 END

Output
 T FINV TRUE DIFF
0.5E+00 8.244E-01 8.244E-01 -4.768E-06
1.5E+00 6.723E+00 6.723E+00 -3.481E-05
2.5E+00 3.046E+01 3.046E+01 -1.678E-04
3.5E+00 1.159E+02 1.159E+02 -6.027E-04
4.5E+00 4.051E+02 4.051E+02 -2.106E-03

Comments
Informational errors

Type Code

 4 1 The algorithm was not able to achieve the accuracy requested within KMAX
 function evaluations for some T(I).

 4 2 Overflow is occurring for a particular value of T.

Description
The routine INLAP computes the inverse Laplace transform of a complex-valued function.
Recall that if f is a function that vanishes on the negative real axis, then we can define the
Laplace transform of f by

� �� � � �
0

: sxL f s e f x dx
�

�

� �

It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on applying the epsilon algorithm to
the complex Fourier series obtained as a discrete approximation to the inversion integral. The
initial algorithm was proposed by K.S. Crump (1976) but was significantly improved by de
Hoog et al. (1982). Given a complex-valued transform F(s) = L[f](s), the trapezoidal rule gives
the approximation to the inverse transform

� � � � � �
1

1/ ()exp()
2

t

k

ik ik tg t e T F F
T T

�
� �

� �

�

�

� �
� � � �� �

� 	
�

This is the real part of the sum of a complex power series in z = exp(i�t/T), and the algorithm
accelerates the convergence of the partial sums of this power series by using the epsilon
algorithm to compute the corresponding diagonal Pade approximants. The algorithm attempts to
choose the order of the Pade approximant to obtain the specified relative accuracy while not
exceeding the maximum number of function evaluations allowed. The parameter � is an
estimate for the maximum of the real parts of the singularities of F, and an incorrect choice of �
may give false convergence. Even in cases where the correct value of � is unknown, the

IMSL MATH/LIBRARY Chapter 6: Transforms � 1081

algorithm will attempt to estimate an acceptable value. Assuming satisfactory convergence, the
discretization error E := g � f satisfies

� �2

1
2n T

n
E e f nT t�

�

�

�

� ��

It follows that if |f(t)| � Me�t, then we can estimate the expression above to obtain
(for 0 � t � 2T)

� �� �2/ 1TtE Me e � �� �

� �

SINLP
Computes the inverse Laplace transform of a complex function.

Required Arguments
F — User-supplied FUNCTION to which the inverse Laplace transform will be

computed. The form is F(Z), where

 Z — Complex argument. (Input)
F — The complex function value. (Output)

 F must be declared EXTERNAL in the calling program. F must also be declared
COMPLEX.

T — Vector of length N containing points at which the inverse Laplace transform is desired.
(Input)
T(I) must be greater than zero for all I.

FINV — Vector of length N whose I-th component contains the approximate value of the
inverse Laplace transform at the point T(I). (Output)

Optional Arguments
N — The number of points at which the inverse Laplace transform is desired. (Input)

Default: N = size (T,1).

SIGMA0 — An estimate for the maximum of the real parts of the singularities of F. (Input)
If unknown, set SIGMA0 = 0.0.
Default: SIGMA0 = 0.e0.

EPSTOL — The required absolute uniform pseudo accuracy for the coefficients and inverse
Laplace transform values. (Input)
Default: EPSTOL = 1.1920929e-5 for single precision and 2.22d-10 for double
precision.

1082 � Chapter 6: Transforms IMSL MATH/LIBRARY

ERRVEC — Vector of length eight containing diagnostic information. (Output)
All components depend on the intermediately generated Laguerre coefficients. See
Comments.

FORTRAN 90 Interface
Generic: CALL SINLP (F, T, FINV [,…])

Specific: The specific interface names are S_SINLP and D_SINLP.

FORTRAN 77 Interface
Single: CALL SINLP (F, N, T, SIGMA0, EPSTOL, ERRVEC, FINV)

Double: The double precision name is DSINLP.

Example
We invert the Laplace transform of the simple function (s � 1)�� and print the computed answer,
the true solution, and the difference at five different points. The correct inverse transform is xex.

 USE SINLP_INT
 USE UMACH_INT
 INTEGER I, NOUT
 REAL DIF(5), ERRVEC(8), EXP, FINV(5), FLOAT, RELERR, &
 SIGMA0, T(5), TRUE(5)
 COMPLEX F
 INTRINSIC EXP, FLOAT
 EXTERNAL F
! Get output unit number
 CALL UMACH (2, NOUT)
!
 DO 10 I=1, 5
 T(I) = FLOAT(I) - 0.5
 10 CONTINUE
 SIGMA0 = 1.0E0
 RELERR = 5.0E-4
 EPSTOL = 1.0E-4
 CALL SINLP (F, T, FINV, SIGMA0=SIGMA0, EPSTOL=RELERR)
! Evaluate the true solution and the
! difference
 DO 20 I=1, 5
 TRUE(I) = T(I)*EXP(T(I))
 DIF(I) = TRUE(I) - FINV(I)
 20 CONTINUE
!
 WRITE (NOUT,99999) (T(I),FINV(I),TRUE(I),DIF(I),I=1,5)
99999 FORMAT (7X, ’T’, 8X, ’FINV’, 9X, ’TRUE’, 9X, ’DIFF’, /, &
 5(1X,E9.1,3X,1PE10.3,3X,1PE10.3,3X,1PE10.3,/))
 END
!
 COMPLEX FUNCTION F (S)

IMSL MATH/LIBRARY Chapter 6: Transforms � 1083

 COMPLEX S
!
 F = 1./(S-1.)**2
 RETURN
 END

Output
 T FINV TRUE DIFF
0.5E+00 8.244E-01 8.244E-01 -2.086E-06
1.5E+00 6.723E+00 6.723E+00 -8.583E-06
2.5E+00 3.046E+01 3.046E+01 0.000E+00
3.5E+00 1.159E+02 1.159E+02 2.289E-05
4.5E+00 4.051E+02 4.051E+02 -2.136E-04

Comments
1. Workspace may be explicitly provided, if desired, by use of S2NLP/DS2NLP. The

reference is:

CALL S2NLP (F, N, T, SIGMA0, EPSTOL, ERRVEC, FINV,
 SIGMA, BVALUE, MTOP, WK, IFLOVC)

The additional arguments are as follows:

SIGMA — The first parameter of the Laguerre expansion. If SIGMA is not greater than
SIGMA0, it is reset to SIGMA0 + 0.7. (Input)

BVALUE — The second parameter of the Laguerre expansion. If BVALUE is less than
2.0 * (SIGMA � SIGMA0), it is reset to 2.5 * (SIGMA � SIGMA0). (Input)

MTOP — An upper limit on the number of coefficients to be computed in the Laguerre
expansion. MTOP must be a multiple of four. Note that the maximum number of
Laplace transform evaluations is MTOP/2 + 2. (Default: 1024.) (Input)

WK — Real work vector of length 9 * MTOP/4.

IFLOVC — Integer vector of length N, the I-th component of which contains the
overflow/underflow indicator for the computed value of FINV(I). (Output)
See Comment 3.

2. Informational errors

Type Code
 1 1 Normal termination, but with estimated error bounds slightly larger

than EPSTOL. Note, however, that the actual errors on the final
results may be smaller than EPSTOL as bounds independent of T are
pessimistic.

 3 2 Normal calculation, terminated early at the roundoff error level
estimate because this estimate exceeds the required accuracy (usually
due to overly optimistic expectation by the user about attainable
accuracy).

1084 � Chapter 6: Transforms IMSL MATH/LIBRARY

 4 3 The decay rate of the coefficients is too small. It may improve results
to use S2NLP and increase MTOP.

 4 4 The decay rate of the coefficients is too small. In addition, the
roundoff error level is such that required accuracy cannot be reached.

 4 5 No error bounds are returned as the behavior of the coefficients does
not enable reasonable prediction. Results are probably wrong. Check
the value of SIGMA0. In this case, each of ERRVEC(J), J = 1,
, 5, is
set to � 1.0.

3. The following are descriptions of the vectors ERRVEC and IFLOVC.

ERRVEC — Real vector of length eight.

ERRVEC(1) = Overall estimate of the pseudo error, ERRVEC(2) + ERRVEC(3) +
ERRVEC(4). Pseudo error = absolute error / exp(sigma * tvalue).

ERRVEC(2) = Estimate of the pseudo discretization error.

ERRVEC(3) = Estimate of the pseudo truncation error.

ERRVEC(4) = Estimate of the pseudo condition error on the basis of minimal noise
levels in the function values.

ERRVEC(5) = K, the coefficient of the decay function for ACOEF, the coefficients of the
Laguerre expansion.

ERRVEC(6) = R, the base of the decay function for ACOEF. Here abs(ACOEF (J +
1)).LE.K/R**J for J.GE.MACT/2, where MACT is the number of Laguerre
coefficients actually computed.

ERRVEC(7) = ALPHA, the logarithm of the largest ACOEF.

ERRVEC(8) = BETA, the logarithm of the smallest nonzero ACOEF.

IFLOVC — Integer vector of length N containing the overflow/underflow indicators
for FINV. For each I, the value of IFLOVC(I) signifies the following.

 0 = Normal termination.

 1 = The value of the inverse Laplace transform is found to be too large to be
representable; FINV(I) is set to AMACH(6).

�1 = The value of the inverse Laplace transform is found to be too small to be
representable; FINV(I) is set to 0.0.

 2 = The value of the inverse Laplace transform is estimated to be too large, even
before the series expansion, to be representable; FINV(I) is set to AMACH(6).

�2 = The value of the inverse Laplace transform is estimated to be too small, even
before the series expansion, to be representable; FINV(I) is set to 0.0.

IMSL MATH/LIBRARY Chapter 6: Transforms � 1085

Description
The routine SINLP computes the inverse Laplace transform of a complex-valued function.
Recall that if f is a function that vanishes on the negative real axis, then we can define the
Laplace transform of f by

� �� � � �
0

: sxL f s e f x dx
�

�

� �

It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on a modification of Weeks’ method
(see W.T. Weeks (1966)) due to B.S. Garbow et. al. (1988). This method is suitable when f has
continuous derivatives of all orders on [0, �). In this situation, this routine should be used in
place of the IMSL routine INLAP (page 1078). It is especially efficient when multiple function
values are desired. In particular, given a complex-valued function F(s) = L[f](s), we can expand
f in a Laguerre series whose coefficients are determined by F. This is fully described in B.S.
Garbow et. al. (1988) and Lyness and Giunta (1986).

The algorithm attempts to return approximations g(t) to f(t) satisfying

� � � �
t

g t f t
e�

�

�

�

where
 := EPSTOL and � := SIGMA > SIGMA0. The expression on the left is called the pseudo
error. An estimate of the pseudo error is available in ERRVEC(1).

The first step in the method is to transform F to � where

� �
1 1 2

b b bz F
z z

� �
� �

� � �� �
� �� 	

Then, if f is smooth, it is known that � is analytic in the unit disc of the complex plane and
hence has a Taylor series expansion

� �
0

s
s

s
z a z�

�

�

��

which converges for all z whose absolute value is less than the radius of convergence Rc. This
number is estimated in ERRVEC(6). In ERRVEC(5), we estimate the smallest number K which
satisfies

s s

Ka
R

�

for all R < Rc.

The coefficients of the Taylor series for � can be used to expand f in a Laguerre series

� � � �/ 2

0

t bt
s s

s
f t e a e L bt�

�

�

�

� �

1086 � Chapter 6: Transforms IMSL MATH/LIBRARY

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1147

Chapter 7: Nonlinear Equations

Routines
7.1. Zeros of a Polynomial

Real coefficients using Laguerre method ZPLRC 1148
Real coefficients using Jenkins-Traub method................... ZPORC 1150
Complex coefficients... ZPOCC 1152

7.2. Zero(s) of a Function
Zeros of a complex analytic function ZANLY 1153
Zero of a real function with sign changesZBREN 1156
Zeros of a real function .. ZREAL 1159

7.3. Root of a System of Equations
Finite-difference Jacobian... NEQNF 1162
Analytic Jacobian...NEQNJ 1165
Broyden’s update and Finite-difference JacobianNEQBF 1169
Broyden’s update and Analytic Jacobian.............................NEQBJ 1174

Usage Notes
Zeros of a Polynomial

A polynomial function of degree n can be expressed as follows:

p(z) = anzn + an��zn�� + � + a�z + a�

where an � 0.

There are three routines for zeros of a polynomial. The routines ZPLRC (page 1148) and ZPORC
(page 1150) find zeros of the polynomial with real coefficients while the routine ZPOCC (page
1152) finds zeros of the polynomial with complex coefficients.

The Jenkins-Traub method is used for the routines ZPORC and ZPOCC; whereas ZPLRC uses the
Laguerre method. Both methods perform well in comparison with other methods. The Jenkins-
Traub algorithm usually runs faster than the Laguerre method. Furthermore, the routine ZANLY
(page 1153) in the next section can also be used for the complex polynomial.

1148 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

Zero(s) of a Function
The routines ZANLY (page 1153) and ZREAL (page 1159) use Müller’s method to find the zeros
of a complex analytic function and real zeros of a real function, respectively. The routine ZBREN
(page 1156) finds a zero of a real function, using an algorithm that is a combination of
interpolation and bisection. This algorithm requires the user to supply two points such that the
function values at these two points have opposite sign. For functions where it is difficult to
obtain two such points, ZREAL can be used.

Root of System of Equations
A system of equations can be stated as follows:

fi(x) = 0, for i = 1, 2, �, n

where x � Rn.

The routines NEQNF (page 1162) and NEQNJ (page 1165) use a modified Powell hybrid method
to find a zero of a system of nonlinear equations. The difference between these two routines is
that the Jacobian is estimated by a finite-difference method in NEQNF, whereas the user has to
provide the Jacobian for NEQNJ. It is advised that the Jacobian-checking routine, CHJAC (page
952), be used to ensure the accuracy of the user-supplied Jacobian.

The routines NEQBF (page 1169) and NEQBJ (page 1174) use a secant method with Broyden’s
update to find a zero of a system of nonlinear equations. The difference between these two
routines is that the Jacobian is estimated by a finite-difference method in NEQBF; whereas the
user has to provide the Jacobian for NEQBJ. For more details, see Dennis and Schnabel (1983,
Chapter 8).

 ZPLRC
Finds the zeros of a polynomial with real coefficients using Laguerre’s method.

Required Arguments
COEFF — Vector of length NDEG + 1 containing the coefficients of the polynomial in

increasing order by degree. (Input)
The polynomial is COEFF(NDEG + 1) * Z**NDEG + COEFF(NDEG) * Z**(NDEG � 1) +
� + COEFF(1).

ROOT — Complex vector of length NDEG containing the zeros of the polynomial. (Output)

Optional Arguments
NDEG — Degree of the polynomial. 1 � NDEG � 100 (Input)

Default: NDEG = size (COEFF,1) – 1.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1149

FORTRAN 90 Interface
Generic: CALL ZPLRC (COEFF, ROOT [,…])

Specific: The specific interface names are S_ZPLRC and D_ZPLRC.

FORTRAN 77 Interface
Single: CALL ZPLRC (NDEG, COEFF, ROOT)

Double: The double precision name is DZPLRC.

Example
This example finds the zeros of the third-degree polynomial

p(z) = z� � 3z� + 4z �2

where z is a complex variable.
 USE ZPLRC_INT
 USE WRCRN_INT
! Declare variables
 INTEGER NDEG
 PARAMETER (NDEG=3)
!
 REAL COEFF(NDEG+1)
 COMPLEX ZERO(NDEG)
! Set values of COEFF
! COEFF = (-2.0 4.0 -3.0 1.0)
!
 DATA COEFF/-2.0, 4.0, -3.0, 1.0/
!
 CALL ZPLRC (COEFF, ZERO, NDEG)
!
 CALL WRCRN (’The zeros found are’, ZERO, 1, NDEG, 1)
!
 END

Output
 The zeros found are
 1 2 3
(1.000, 1.000) (1.000,-1.000) (1.000, 0.000)

Comments
Informational errors

Type Code

 3 1 The first several coefficients of the polynomial are equal to zero. Several of the
 last roots will be set to machine infinity to compensate for this problem.

1150 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

 3 2 Fewer than NDEG zeros were found. The ROOT vector will contain the value for
 machine infinity in the locations that do not contain zeros.

Description
Routine ZPLRC computes the n zeros of the polynomial

p(z) = anzn + an��zn�� + � + a�z + a�

where the coefficients ai for i = 0, 1, �, n are real and n is the degree of the polynomial.

The routine ZPLRC is a modification of B.T. Smith’s routine ZERPOL (Smith 1967) that uses
Laguerre’s method. Laguerre’s method is cubically convergent for isolated zeros and linearly
convergent for multiple zeros. The maximum length of the step between successive iterates is
restricted so that each new iterate lies inside a region about the previous iterate known to
contain a zero of the polynomial. An iterate is accepted as a zero when the polynomial value at
that iterate is smaller than a computed bound for the rounding error in the polynomial value at
that iterate. The original polynomial is deflated after each real zero or pair of complex zeros is
found. Subsequent zeros are found using the deflated polynomial.

ZPORC
Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub three-stage
algorithm.

Required Arguments
COEFF — Vector of length NDEG + 1 containing the coefficients of the polynomial in

increasing order by degree. (Input)
The polynomial is COEFF(NDEG + 1)*Z**NDEG + COEFF(NDEG) * Z**(NDEG �1)
+ � + COEFF(1).

ROOT — Complex vector of length NDEG containing the zeros of the polynomial. (Output)

Optional Arguments
NDEG — Degree of the polynomial. 1 � NDEG � 100 (Input)

Default: NDEG = size (COEFF,1) – 1.

FORTRAN 90 Interface
Generic: CALL ZPORC (COEFF, ROOT [,…])

Specific: The specific interface names are S_ZPORC and D_ZPORC.

FORTRAN 77 Interface
Single: CALL ZPORC (NDEG, COEFF, ROOT)

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1151

Double: The double precision name is DZPORC.

Example
This example finds the zeros of the third-degree polynomial

p(z) = z� � 3z� + 4z �2

where z is a complex variable.
 USE ZPORC_INT
 USE WRCRN_INT
! Declare variables
 INTEGER NDEG
 PARAMETER (NDEG=3)
!
 REAL COEFF(NDEG+1)
 COMPLEX ZERO(NDEG)
! Set values of COEFF
! COEFF = (-2.0 4.0 -3.0 1.0)
!
 DATA COEFF/-2.0, 4.0, -3.0, 1.0/
!
 CALL ZPORC (COEFF, ZERO)
!
 CALL WRCRN (’The zeros found are’, ZERO, 1, NDEG, 1)
!
 END

Output
 The zeros found are
 1 2 3
(1.000, 0.000) (1.000, 1.000) (1.000,-1.000)

Comments
Informational errors

Type Code

 3 1 The first several coefficients of the polynomial are equal to zero. Several of
the last roots will be set to machine infinity to compensate for this problem.

 3 2 Fewer than NDEG zeros were found. The ROOT vector will contain the value
for machine infinity in the locations that do not contain zeros.

Description
Routine ZPORC computes the n zeros of the polynomial

p(z) = anzn + an��zn�� + � + a�z + a�

where the coefficients ai for i = 0, 1, �, n are real and n is the degree of the polynomial.

1152 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

The routine ZPORC uses the Jenkins-Traub three-stage algorithm (Jenkins and Traub 1970;
Jenkins 1975). The zeros are computed one at a time for real zeros or two at a time for complex
conjugate pairs. As the zeros are found, the real zero or quadratic factor is removed by
polynomial deflation.

ZPOCC
Finds the zeros of a polynomial with complex coefficients.

Required Arguments
COEFF — Complex vector of length NDEG + 1 containing the coefficients of the polynomial

in increasing order by degree. (Input)
The polynomial is COEFF(NDEG + 1) * Z**NDEG + COEFF(NDEG) * Z**(NDEG � 1) +
� + COEFF(1).

ROOT — Complex vector of length NDEG containing the zeros of the polynomial. (Output)

Optional Arguments
NDEG — Degree of the polynomial. 1 � NDEG < 50 (Input)

Default: NDEG = size (COEFF,1) – 1.

FORTRAN 90 Interface
Generic: CALL ZPOCC (COEFF, ROOT [,…])

Specific: The specific interface names are S_ZPOCC and D_ZPOCC.

FORTRAN 77 Interface
Single: CALL ZPOCC (NDEG, COEFF, ROOT)

Double: The double precision name is DZPOCC.

Example
This example finds the zeros of the third-degree polynomial

p(z) = z� � (3 + 6i)z� � (8 � 12i)z + 10

where z is a complex variable.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1153

 USE ZPOCC_INT
 USE WRCRN_INT
! Declare variables
 INTEGER NDEG
 PARAMETER (NDEG=3)
!
 COMPLEX COEFF(NDEG+1), ZERO(NDEG)
! Set values of COEFF
! COEFF = (10.0 + 0.0i)
! (-8.0 + 12.0i)
! (-3.0 - 6.0i)
! (1.0 + 0.0i)
!
 DATA COEFF/(10.0,0.0), (-8.0,12.0), (-3.0,-6.0), (1.0,0.0)/
!
 CALL ZPOCC (COEFF, ZERO)
!
 CALL WRCRN (’The zeros found are’, ZERO, 1, NDEG, 1)
!
 END

Output
 The zeros found are
 1 2 3
(1.000, 1.000) (1.000, 2.000) (1.000, 3.000)

Comments
Informational errors

Type Code

 3 1 The first several coefficients of the polynomial are equal to zero. Several of
the last roots will be set to machine infinity to compensate for this problem.

 3 2 Fewer than NDEG zeros were found. The ROOT vector will contain the value
for machine infinity in the locations that do not contain zeros.

Description
Routine ZPOCC computes the n zeros of the polynomial

p(z) = anzn + an��zn�� + � + a�z + a�

where the coefficients ai for i = 0, 1, �, n are real and n is the degree of the polynomial.

The routine ZPOCC uses the Jenkins-Traub three-stage complex algorithm (Jenkins and Traub
1970, 1972). The zeros are computed one at a time in roughly increasing order of modulus. As
each zero is found, the polynomial is deflated to one of lower degree.

ZANLY
Finds the zeros of a univariate complex function using Müller’s method.

1154 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

Required Arguments
F — User-supplied COMPLEX FUNCTION to compute the value of the function

of which the zeros will be found. The form is F(Z), where

Z — The complex value at which the function is evaluated. (Input)
Z should not be changed by F.

F — The computed complex function value at the point Z. (Output)
F must be declared EXTERNAL in the calling program.

Z — A complex vector of length NKNOWN + NNEW. (Output)
Z(1), �, Z(NKNOWN) contain the known zeros. Z(NKNOWN + 1), �, Z(NKNOWN + NNEW)
contain the new zeros found by ZANLY. If ZINIT is not needed, ZINIT and Z can share
the same storage locations.

Optional Arguments
ERRABS — First stopping criterion. (Input)

Let FP(Z) = F(Z)/P where P = (Z � Z(1)) * (Z � Z(2)) *�* (Z � Z(K � 1)) and Z(1), �,
Z(K � 1) are previously found zeros. If
(CABS(F(Z)).LE.ERRABS.AND.CABS(FP(Z)).LE.ERRABS), then Z is accepted as a
zero.
Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision.

ERRREL — Second stopping criterion is the relative error. (Input)
A zero is accepted if the difference in two successive approximations to this zero is
within ERRREL. ERRREL must be less than 0.01; otherwise, 0.01 will be used.
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

NKNOWN — The number of previously known zeros, if any, that must be stored in
ZINIT(1), �, ZINIT(NKNOWN) prior to entry to ZANLY. (Input)
NKNOWN must be set equal to zero if no zeros are known.
Default: NKNOWN = 0.

NNEW — The number of new zeros to be found by ZANLY. (Input)
Default: NNEW = 1.

NGUESS — The number of initial guesses provided. (Input)
These guesses must be stored in ZINIT(NKNOWN + 1), �, ZINIT(NKNOWN + NGUESS).
NGUESS must be set equal to zero if no guesses are provided.
Default: NGUESS = 0.

ITMAX — The maximum allowable number of iterations per zero. (Input)
Default: ITMAX = 100.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1155

ZINIT — A complex vector of length NKNOWN + NNEW. (Input)
ZINIT(1), �, ZINIT(NKNOWN) must contain the known zeros. ZINIT(NKNOWN + 1), �,
ZINIT(NKNOWN + NNEW) may, on user option, contain initial guesses for the NNEW new
zeros that are to be computed. If the user does not provide an initial guess, zero is used.

INFO — An integer vector of length NKNOWN + NNEW. (Output)
INFO(J) contains the number of iterations used in finding the J-th zero when
convergence was achieved. If convergence was not obtained in ITMAX iterations,
INFO(J) will be greater than ITMAX.

FORTRAN 90 Interface
Generic: CALL ZANLY (F, Z [,…])

Specific: The specific interface names are S_ZANLY and D_ZANLY.

FORTRAN 77 Interface
Single: CALL ZANLY (F, ERRABS, ERRREL, NKNOWN, NNEW, NGUESS,

 ZINIT, ITMAX, Z, INFO)

Double: The double precision name is DZANLY.

Comments
1. Informational error

Type Code
 3 1 Failure to converge within ITMAX iterations for at least one of the

NNEW new roots.

2. Routine ZANLY always returns the last approximation for zero J in Z(J). If the
convergence criterion is satisfied, then INFO(J) is less than or equal to ITMAX. If the
convergence criterion is not satisfied, then INFO(J) is set to either ITMAX + 1 or
ITMAX + K, with K greater than 1. INFO(J) = ITMAX + 1 indicates that ZANLY did not
obtain convergence in the allowed number of iterations. In this case, the user may wish
to set ITMAX to a larger value. INFO(J) = ITMAX + K means that convergence was
obtained (on iteration K) for the deflated function FP(Z) = F(Z)/((Z � Z(1)) � (Z � Z(J
� 1))) but failed for F(Z). In this case, better initial guesses might help or it might be
necessary to relax the convergence criterion.

Description
Müller’s method with deflation is used. It assumes that the complex function f(z) has at least
two continuous derivatives. For more details, see Müller (1965).

1156 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

Example
This example finds the zeros of the equation f(z) = z� + 5z� + 9z + 45, where z is a complex
variable.

 USE ZANLY_INT
 USE WRCRN_INT
! Declare variables
 INTEGER INFO(3), NGUESS, NNEW
 COMPLEX F, Z(3), ZINIT(3)
 EXTERNAL F
! Set the guessed zero values in ZINIT
!
! ZINIT = (1.0+1.0i 1.0+1.0i 1.0+1.0i)
 DATA ZINIT/3*(1.0,1.0)/
! Set values for all input parameters
 NNEW = 3
 NGUESS = 3
! Find the zeros of F
 CALL ZANLY (F, Z, NNEW=NNEW, NGUESS=NGUESS, &
 ZINIT=ZINIT, INFO=INFO)
! Print results
 CALL WRCRN (’The zeros are’, Z)
 END
! External complex function
 COMPLEX FUNCTION F (Z)
 COMPLEX Z
!
 F = Z**3 + 5.0*Z**2 + 9.0*Z + 45.0
 RETURN
 END

Output
 The zeros are
 1 2 3
(0.000, 3.000) (0.000,-3.000) (-5.000, 0.000)

ZBREN
Finds a zero of a real function that changes sign in a given interval.

Required Arguments
F — User-supplied FUNCTION to compute the value of the function of which a zero will be

found. The form is F(X), where

X — The point at which the function is evaluated. (Input)
X should not be changed by F.

F — The computed function value at the point X. (Output)
F must be declared EXTERNAL in the calling program.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1157

A — See B. (Input/Output)

B — On input, the user must supply two points, A and B, such that F(A) and F(B) are opposite
in sign. (Input/Output)
On output, both A and B are altered. B will contain the best approximation to the zero of
F.

Optional Arguments
ERRABS — First stopping criterion. (Input)

A zero, B, is accepted if ABS(F(B)) is less than or equal to ERRABS. ERRABS may be set
to zero.
Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision.

ERRREL — Second stopping criterion is the relative error. (Input)
A zero is accepted if the change between two successive approximations to this zero is
within ERRREL.
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

MAXFN — On input, MAXFN specifies an upper bound on the number of function evaluations
required for convergence. (Input/Output)
On output, MAXFN will contain the actual number of function evaluations used.
Default: MAXFN = 100.

FORTRAN 90 Interface
Generic: CALL ZBREN (F, A, B [,…])

Specific: The specific interface names are S_ZBREN and D_ZBREN.

FORTRAN 77 Interface
Single: CALL ZBREN (F, ERRABS, ERRREL, A, B, MAXFN)

Double: The double precision name is DZBREN.

Example
This example finds a zero of the function

f(x) = x� + x � 2

in the interval (� 10.0, 0.0).
 USE ZBREN_INT
 USE UMACH_INT
! Declare variables
 REAL ERRABS, ERRREL
!
 INTEGER NOUT

1158 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

 REAL A, B, F
 EXTERNAL F
! Set values of A, B, ERRABS,
! ERRREL, MAXFN
 A = -10.0
 B = 0.0
 ERRABS = 0.0
 ERRREL = 0.001
 MAXFN = 100
!
 CALL UMACH (2, NOUT)
! Find zero of F
 CALL ZBREN (F, A, B, ERRABS=ERRABS, ERRREL=ERRREL, MAXFN=MAXFN)
!
 WRITE (NOUT,99999) B, MAXFN
99999 FORMAT (’ The best approximation to the zero of F is equal to’, &
 F5.1, ’.’, /, ’ The number of function evaluations’, &
 ’ required was ’, I2, ’.’, //)
!
 END
!
 REAL FUNCTION F (X)
 REAL X
!
 F = X**2 + X - 2.0
 RETURN
 END

Output
The best approximation to the zero of F is equal to -2.0.
The number of function evaluations required was 12.

Comments
1. Informational error

Type Code
 4 1 Failure to converge in MAXFN function evaluations.

2. On exit from ZBREN without any error message, A and B satisfy the following:

 F(A)F(B) � 0.0
 |F(B)| � |F(A)|, and
 either |F(B)| � ERRABS or
 |A � B| � max(|B|, 0.1) * ERRREL.

The presence of 0.1 in the stopping criterion causes leading zeros to the right of the
decimal point to be counted as significant digits. Scaling may be required in order to
accurately determine a zero of small magnitude.

3. ZBREN is guaranteed to convergence within K function evaluations, where
K = (ln((B � A)/D) + 1.0)�, and

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1159

� �
� �� �� �,

= min max ,0.1
x � A B

D x *ERRREL

 This is an upper bound on the number of evaluations. Rarely does the actual number of
evaluations used by ZBREN exceed

K

D can be computed as follows:
P = AMAX1(0.1, AMIN1(|A|, |B|))
IF((A � 0.1) * (B � 0.1) < 0.0) P = 0.1,
D = P * ERRREL

Description
The algorithm used by ZBREN is a combination of linear interpolation, inverse quadratic
interpolation, and bisection. Convergence is usually superlinear and is never much slower than
the rate for the bisection method. See Brent (1971) for a more detailed account of this algorithm.

ZREAL
Finds the real zeros of a real function using Müller’s method.

Required Arguments
F — User-supplied FUNCTION to compute the value of the function of which a zero will be

found. The form is F(X), where

X – The point at which the function is evaluated. (Input)
X should not be changed by F.

F – The computed function value at the point X. (Output)
F must be declared EXTERNAL in the calling program.

X — A vector of length NROOT. (Output)
X contains the computed zeros.

Optional Arguments
ERRABS — First stopping criterion. (Input)

A zero X(I) is accepted if ABS(F(X(I)).LT. ERRABS.
Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision.

ERRREL — Second stopping criterion is the relative error. (Input)
A zero X(I) is accepted if the relative change of two successive approximations to X(I)
is less than ERRREL.
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

1160 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

EPS — See ETA. (Input)
Default: EPS = 1.e-4 for single precision and 1.d-8 for double precision.

ETA — Spread criteria for multiple zeros. (Input)
If the zero X(I) has been computed and ABS(X(I) � X(J)).LT.EPS, where X(J) is a
previously computed zero, then the computation is restarted with a guess equal to
X(I) + ETA.
Default: ETA = .01.

NROOT — The number of zeros to be found by ZREAL. (Input)
Default: NROOT = 1.

ITMAX — The maximum allowable number of iterations per zero. (Input)
Default: ITMAX = 100.

XGUESS — A vector of length NROOT. (Input)
XGUESS contains the initial guesses for the zeros.
Default: XGUESS = 0.0.

INFO — An integer vector of length NROOT. (Output)
INFO(J) contains the number of iterations used in finding the J-th zero when
convergence was achieved. If convergence was not obtained in ITMAX iterations,
INFO(J) will be greater than ITMAX.

FORTRAN 90 Interface
Generic: CALL ZREAL (F, X [,…])

Specific: The specific interface names are S_ZREAL and D_ZREAL.

FORTRAN 77 Interface
Single: CALL ZREAL (F, ERRABS, ERRREL, EPS, ETA, NROOT, ITMAX,

 XGUESS, X, INFO)

Double: The double precision name is DZREAL.

Example
This example finds the real zeros of the second-degree polynomial

f(x) = x� + 2x � 6

with the initial guess (4.6, �193.3).
 USE ZREAL_INT
 USE WRRRN_INT
! Declare variables
 INTEGER NROOT

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1161

 REAL EPS, ERRABS, ERRREL
 PARAMETER (NROOT=2)
!
 INTEGER INFO(NROOT)
 REAL F, X(NROOT), XGUESS(NROOT)
 EXTERNAL F
! Set values of initial guess
! XGUESS = (4.6 -193.3)
!
 DATA XGUESS/4.6, -193.3/
!
 EPS = 1.0E-5
 ERRABS = 1.0E-5
 ERRREL = 1.0E-5

! Find the zeros
 CALL ZREAL (F, X, ERRABS=ERRABS, ERRREL=ERRREL, EPS=EPS, &
 NROOT=NROOT, XGUESS=XGUESS)
!
 CALL WRRRN (’The zeros are’, X, 1, NROOT, 1)
!
 END
!
 REAL FUNCTION F (X)
 REAL X
!
 F = X*X + 2.0*X - 6.0
 RETURN
 END

Output
The zeros are
 1 2
1.646 -3.646

Comments
1. Informational error

Type Code
 3 1 Failure to converge within ITMAX iterations for at least one of the

NROOT roots.

2. Routine ZREAL always returns the last approximation for zero J in X(J). If the
convergence criterion is satisfied, then INFO(J) is less than or equal to ITMAX. If the
convergence criterion is not satisfied, then INFO(J) is set to ITMAX + 1.

3. The routine ZREAL assumes that there exist NROOT distinct real zeros for the function F
and that they can be reached from the initial guesses supplied. The routine is designed
so that convergence to any single zero cannot be obtained from two different initial
guesses.

1162 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

4. Scaling the X vector in the function F may be required, if any of the zeros are known to
be less than one.

Description
Routine ZREAL computes n real zeros of a real function f. Given a user-supplied function f(x)
and an n-vector of initial guesses x�, x�, �, xn, the routine uses Müller’s method to locate n real
zeros of f, that is, n real values of x for which f(x) = 0. The routine has two convergence criteria:
the first requires that

� �mif x

be less than ERRABS; the second requires that the relative change of any two successive
approximations to an xi be less than ERRREL. Here,

m
ix

is the m-th approximation to xi. Let ERRABS be ��, and ERRREL be ��.The criteria may be stated
mathematically as follows:

Criterion 1:

� � 1
m
if x ��

Criterion 2:
1

2

m m
i i

m
i

x x
x

�

�

�

�

“Convergence” is the satisfaction of either criterion.

NEQNF
Solves a system of nonlinear equations using a modified Powell hybrid algorithm and a finite-
difference approximation to the Jacobian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The

usage is CALL FCN (X, F, N), where

X – The point at which the functions are evaluated. (Input)
X should not be changed by FCN.

F – The computed function values at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

 N — Length of X and F. (Input)

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1163

X — A vector of length N. (Output)
X contains the best estimate of the root found by NEQNF.

Optional Arguments
ERRREL — Stopping criterion. (Input)

The root is accepted if the relative error between two successive approximations to this
root is less than ERRREL.
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

N – The number of equations to be solved and the number of unknowns. (Input)
Default: N = size (X,1).

ITMAX — The maximum allowable number of iterations. (Input)
The maximum number of calls to FCN is ITMAX * (N + 1). Suggested value
ITMAX = 200.
Default: ITMAX = 200.

XGUESS — A vector of length N. (Input)
XGUESS contains the initial estimate of the root.
Default: XGUESS = 0.0.

FNORM — A scalar that has the value F(1)� + � + F(N)� at the point X. (Output)

FORTRAN 90 Interface
Generic: CALL NEQNF (FCN, X [,…])

Specific: The specific interface names are S_NEQNF and D_NEQNF.

FORTRAN 77 Interface
Single: CALL NEQNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM)

Double: The double precision name is DNEQNF.

Example
The following 3 � 3 system of nonlinear equations

� � � �

� �

� � � �

1

2

21
1 1 2 3

2 2
2 1 3

2
3 3 2 2

27 0

/ 10 0

sin 2 7 0

x

x

f x x e x x

f x e x x

f x x x x

�

�

� � � � � �

� � � �

� � � � � �

is solved with the initial guess (4.0, 4.0, 4.0).

1164 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

 USE NEQNF_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=3)
!
 INTEGER K, NOUT
 REAL FNORM, X(N), XGUESS(N)
 EXTERNAL FCN
! Set values of initial guess
! XGUESS = (4.0 4.0 4.0)
!
 DATA XGUESS/4.0, 4.0, 4.0/
!
!
 CALL UMACH (2, NOUT)
! Find the solution
 CALL NEQNF (FCN, X, XGUESS=XGUESS, FNORM=FNORM)
! Output
 WRITE (NOUT,99999) (X(K),K=1,N), FNORM
99999 FORMAT (’ The solution to the system is’, /, ’ X = (’, 3F5.1, &
 ’)’, /, ’ with FNORM =’, F5.4, //)
!
 END
! User-defined subroutine
 SUBROUTINE FCN (X, F, N)
 INTEGER N
 REAL X(N), F(N)
!
 REAL EXP, SIN
 INTRINSIC EXP, SIN
!
 F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0
 F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0
 F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0
 RETURN
 END

Output
The solution to the system is
X = (1.0 2.0 3.0)
with FNORM =.0000

Comments
1. Workspace may be explicitly provided, if desired, by use of N2QNF/DN2QNF. The

reference is:

CALL N2QNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM,
 FVEC, FJAC, R, QTF, WK)

The additional arguments are as follows:

FVEC — A vector of length N. FVEC contains the functions evaluated at the point X.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1165

FJAC — An N by N matrix. FJAC contains the orthogonal matrix Q produced by the
QR factorization of the final approximate Jacobian.

R — A vector of length N * (N + 1)/2. R contains the upper triangular matrix produced
by the QR factorization of the final approximate Jacobian. R is stored row-wise.

QTF — A vector of length N. QTF contains the vector TRANS(Q) * FVEC.

WK — A work vector of length 5 * N.

2. Informational errors

Type Code
 4 1 The number of calls to FCN has exceeded ITMAX * (N + 1). A new

initial guess may be tried.
 4 2 ERRREL is too small. No further improvement in the approximate

solution is possible.
 4 3 The iteration has not made good progress. A new initial guess may

be tried.

Description
Routine NEQNF is based on the MINPACK subroutine HYBRD1, which uses a modification of
M.J.D. Powell’s hybrid algorithm. This algorithm is a variation of Newton’s method, which
uses a finite-difference approximation to the Jacobian and takes precautions to avoid large step
sizes or increasing residuals. For further description, see More et al. (1980).

Since a finite-difference method is used to estimate the Jacobian, for single precision
calculation, the Jacobian may be so incorrect that the algorithm terminates far from a root. In
such cases, high precision arithmetic is recommended. Also, whenever the exact Jacobian can
be easily provided, IMSL routine NEQNJ (page 1165) should be used instead.

NEQNJ
Solves a system of nonlinear equations using a modified Powell hybrid algorithm with a user-
supplied Jacobian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The

usage is CALL FCN (X, F, N), where

X – The point at which the functions are evaluated. (Input)
X should not be changed by FCN.

F – The computed function values at the point X. (Output)

N – Length of X, F. (Input)

1166 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

FCN must be declared EXTERNAL in the calling program.

LSJAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is
CALL LSJAC (N, X, FJAC), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by LSJAC.

FJAC — The computed N by N Jacobian at the point X. (Output)

LSJAC must be declared EXTERNAL in the calling program.

X — A vector of length N. (Output)
X contains the best estimate of the root found by NEQNJ.

Optional Arguments
ERRREL — Stopping criterion. (Input)

The root is accepted if the relative error between two successive approximations to this
root is less than ERRREL.
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

N — The number of equations to be solved and the number of unknowns. (Input)
Default: N = size (X,1).

ITMAX — The maximum allowable number of iterations. (Input)
Suggested value = 200.
Default: ITMAX = 200.

XGUESS — A vector of length N. (Input)
XGUESS contains the initial estimate of the root.
Default: XGUESS = 0.0.

FNORM — A scalar that has the value F(1)� + � + F(N)� at the point X. (Output)

FORTRAN 90 Interface
Generic: CALL NEQNJ (FCN, LSJAC, X [,…])

Specific: The specific interface names are S_NEQNJ and D_NEQNJ.

FORTRAN 77 Interface
Single: CALL NEQNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X, FNORM)

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1167

Double: The double precision name is DNEQNJ.

Example
The following 3 � 3 system of nonlinear equations

� � � �

� �

� � � �

1

2

21
1 1 2 3

2 2
2 1 3

2
3 3 2 2

27 0

/ 10 0

sin 2 7 0

x

x

f x x e x x

f x e x x

f x x x x

�

�

� � � � � �

� � � �

� � � � � �

is solved with the initial guess (4.0, 4.0, 4.0).
 USE NEQNJ_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=3)
!
 INTEGER K, NOUT
 REAL FNORM, X(N), XGUESS(N)
 EXTERNAL FCN, LSJAC
! Set values of initial guess
! XGUESS = (4.0 4.0 4.0)
!
 DATA XGUESS/4.0, 4.0, 4.0/
!
!
 CALL UMACH (2, NOUT)
! Find the solution
 CALL NEQNJ (FCN, LSJAC, X, XGUESS=XGUESS, FNORM=FNORM)
! Output
 WRITE (NOUT,99999) (X(K),K=1,N), FNORM
99999 FORMAT (’ The roots found are’, /, ’ X = (’, 3F5.1, &
 ’)’, /, ’ with FNORM = ’,F5.4, //)
!
 END
! User-supplied subroutine
 SUBROUTINE FCN (X, F, N)
 INTEGER N
 REAL X(N), F(N)
!
 REAL EXP, SIN
 INTRINSIC EXP, SIN
!
 F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0
 F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0
 F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0
 RETURN
 END
! User-supplied subroutine to
! compute Jacobian
 SUBROUTINE LSJAC (N, X, FJAC)
 INTEGER N

1168 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

 REAL X(N), FJAC(N,N)
!
 REAL COS, EXP
 INTRINSIC COS, EXP
!
 FJAC(1,1) = 1.0 + EXP(X(1)-1.0)
 FJAC(1,2) = 2.0*(X(2)+X(3))
 FJAC(1,3) = 2.0*(X(2)+X(3))
 FJAC(2,1) = -EXP(X(2)-2.0)*(1.0/X(1)**2)
 FJAC(2,2) = EXP(X(2)-2.0)*(1.0/X(1))
 FJAC(2,3) = 2.0*X(3)
 FJAC(3,1) = 0.0
 FJAC(3,2) = COS(X(2)-2.0) + 2.0*X(2)
 FJAC(3,3) = 1.0
 RETURN
 END

Output
The roots found are
X = (1.0 2.0 3.0)
with FNORM =.0000

Comments
1. Workspace may be explicitly provided, if desired, by use of N2QNJ/DN2QNJ. The

reference is:

CALL N2QNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X,
FNORM, FVEC, FJAC, R, QTF, WK)

The additional arguments are as follows:

FVEC — A vector of length N. FVEC contains the functions evaluated at the point X.

FJAC — An N by N matrix. FJAC contains the orthogonal matrix Q produced by the
QR factorization of the final approximate Jacobian.

R — A vector of length N * (N + 1)/2. R contains the upper triangular matrix
produced by the QR factorization of the final approximate Jacobian. R is stored
row-wise.

QTF — A vector of length N. QTF contains the vector TRANS(Q) * FVEC.

WK — A work vector of length 5 * N.

2. Informational errors

Type Code
 4 1 The number of calls to FCN has exceeded ITMAX. A new initial guess

may be tried.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1169

 4 2 ERRREL is too small. No further improvement in the approximate
solution is possible.

 4 3 The iteration has not made good progress. A new initial guess may
be tried.

Description
Routine NEQNJ is based on the MINPACK subroutine HYBRDJ, which uses a modification of
M.J.D. Powell’s hybrid algorithm. This algorithm is a variation of Newton’s method, which
takes precautions to avoid large step sizes or increasing residuals. For further description, see
More et al. (1980).

NEQBF
Solves a system of nonlinear equations using factored secant update with a finite-difference
approximation to the Jacobian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The

usage is CALL FCN (N, X, F), where

N – Length of X and F. (Input)

X – The point at which the functions are evaluated. (Input)
X should not be changed by FCN.

F – The computed function values at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing initial guess of the root. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the distance between two points. In the absence of
other information, set all entries to 1.0. If internal scaling is desired for XSCALE, set
IPARAM (6) to 1.
Default: XSCALE = 1.0.

1170 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

FSCALE — Vector of length N containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the function residuals. In the absence of other
information, set all entries to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM (1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 4.

FVEC — Vector of length N containing the values of the functions at the approximate
solution. (Output)

FORTRAN 90 Interface
Generic: CALL NEQBF (FCN, X [,…])

Specific: The specific interface names are S_NEQBF and D_NEQBF.

FORTRAN 77 Interface
Single: CALL NEQBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,

 X, FVEC)

Double: The double precision name is DNEQBF.

Example
The following 3 � 3 system of nonlinear equations:

� � � �

� �

� � � �

1

2

21
1 1 2 3

2 2
2 1 3

2
3 3 2 2

27 0

/ 10 0

sin 2 7 0

x

x

f x x e x x

f x e x x

f x x x x

�

�

� � � � � �

� � � �

� � � � � �

is solved with the initial guess (4.0, 4.0, 4.0).
 USE NEQBF_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=3)
!
 INTEGER K, NOUT
 REAL X(N), XGUESS(N)
 EXTERNAL FCN
! Set values of initial guess

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1171

! XGUESS = (4.0 4.0 4.0)
!
 DATA XGUESS/3*4.0/
!
! Find the solution
 CALL NEQBF (FCN, X, XGUESS=XGUESS)
! Output
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(K),K=1,N)
99999 FORMAT (’ The solution to the system is’, /, ’ X = (’, 3F8.3, &
 ’)’)
!
 END
! User-defined subroutine
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F(N)
!
 REAL EXP, SIN
 INTRINSIC EXP, SIN
!
 F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0
 F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0
 F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0
 RETURN
 END

Output
The solution to the system is
X = (1.000 2.000 3.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of N2QBF/DN2QBF. The

reference is:

CALL N2QBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVEC, WK, LWK)

The additional arguments are as follows:

WK — A work vector of length LWK. On output WK contains the following information:

The third N locations contain the last step taken.

The fourth N locations contain the last Newton step.

The final N� locations contain an estimate of the Jacobian at the solution.

LWK — Length of WK, which must be at least 2 * N� + 11 * N. (Input)

2. Informational errors

1172 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

Type Code
 3 1 The last global step failed to decrease the 2-norm of F(X) sufficiently;

either the current point is close to a root of F(X) and no more
accuracy is possible, or the secant approximation to the Jacobian is
inaccurate, or the step tolerance is too large.

 3 3 The scaled distance between the last two steps is less than the step
tolerance; the current point is probably an approximate root of F(X)
(unless STEPTL is too large).

 3 4 Maximum number of iterations exceeded.
 3 5 Maximum number of function evaluations exceeded.
 3 7 Five consecutive steps of length STEPMX have been taken; either the

2-norm of F(X) asymptotes from above to a finite value in some
direction or the maximum allowable step size STEPMX is too small.

3. The stopping criterion for NEQBF occurs when the scaled norm of the functions is less
than the scaled function tolerance (RPARAM(1)).

4. If the default parameters are desired for NEQBF, then set IPARAM(1) to zero and call
routine NEQBF. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling NEQBF:

CALL N4QBJ (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to N4QBJ will set IPARAM and RPARAM to their default values, so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: not used in NEQBF.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1173

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values of XSCALE are set internally.
Default: 0.

RPARAM — Real vector of length 5.

 RPARAM(1) = Scaled function tolerance.
The scaled norm of the functions is computed as

� �max *i if fsi

 where fi is the i-th component of the function vector F, and fsi is the i-th
component of FSCALE.
Default:

�

 where � is the machine precision.

 RPARAM(2) = Scaled step tolerance. (STEPTL)
The scaled norm of the step between two points x and y is computed as

� �
max { }

max , 1/
i i

i i

x y
i x s

�

where si is the i-th component of XSCALE.
Default: ����, where � is the machine precision.

RPARAM(3) = False convergence tolerance.
Default: not used in NEQBF.

RPARAM(4) = Maximum allowable step size. (STEPMX)

Default: 1000 * max(��, ��), where

� �
2

1 1

n
i ii
s t�

�

� �

�� = ||s||�, s = XSCALE, and t = XGUESS.

RPARAM(5) = Size of initial trust region.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DN4QBJ is called and RPARAM is declared
double precision.

1174 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
Routine NEQBF uses a secant algorithm to solve a system of nonlinear equations, i.e.,

F(x) = 0

where F : Rn � Rn, and x � Rn.

From a current point, the algorithm uses a double dogleg method to solve the following
subproblem approximately:

� � � �min
2n c cs

F x J x s
�

�
R

subject to || s ||� � 	c

to get a direction sc, where F(xc) and J(xc) are the function values and the approximate Jacobian
respectively evaluated at the current point xc. Then, the function values at the point xn = xc + sc
are evaluated and used to decide whether the new point xn should be accepted.

When the point xn is rejected, this routine reduces the trust region 	c and goes back to solve the
subproblem again. This procedure is repeated until a better point is found.

The algorithm terminates if the new point satisfies the stopping criterion. Otherwise, 	c is
adjusted, and the approximate Jacobian is updated by Broyden’s formula,

� � T
c c c

n c T
c c

y J s s
J J

s s
�

� �

where Jn = J(xn), Jc = J(xc), and y = F (xn) � F (xc). The algorithm then continues using the new
point as the current point, i.e. xc
 xn.

For more details, see Dennis and Schnabel (1983, Chapter 8).

Since a finite-difference method is used to estimate the initial Jacobian, for single precision
calculation, the Jacobian may be so incorrect that the algorithm terminates far from a root. In
such cases, high precision arithmetic is recommended. Also, whenever the exact Jacobian can
be easily provided, IMSL routine NEQBJ (page 1174) should be used instead.

NEQBJ
Solves a system of nonlinear equations using factored secant update with a user-supplied Jacobian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The

usage is CALL FCN (N, X, F), where

N – Length of X and F. (Input)

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1175

X – The point at which the functions are evaluated. (Input)
X should not be changed by FCN.
F – The computed function values at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL
JAC (N, X, FJAC, LDFJAC), where

N – Length of X. (Input)
X – Vector of length N at which point the Jacobian is evaluated. (Input)
X should not be changed by JAC.
FJAC – The computed N by N Jacobian at the point X. (Output)
LDFJAC – Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)
 Default: N = size (X,1).

XGUESS — Vector of length N containing initial guess of the root. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the distance between two points. In the absence of
other information, set all entries to 1.0. If internal scaling is desired for XSCALE, set
IPARAM(6) to 1.
Default: XSCALE = 1.0.

FSCALE — Vector of length N containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the function residuals. In the absence of other
information, set all entries to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM (1) to zero for default values of IPARAM and RPARAM.
See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 4.

FVEC — Vector of length N containing the values of the functions at the approximate
solution. (Output)

1176 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL NEQBJ (FCN, JAC, X [,…])

Specific: The specific interface names are S_NEQBJ and D_NEQBJ.

FORTRAN 77 Interface
Single: CALL NEQBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE, IPARAM,

 RPARAM, X, FVEC)

Double: The double precision name is DNEQBJ.

Example
The following 3 � 3 system of nonlinear equations

� � � �

� �

� � � �

1

2

21
1 1 2 3

2 2
2 1 3

2
3 3 2 2

27 0

/ 10 0

sin 2 7 0

x

x

f x x e x x

f x e x x

f x x x x

�

�

� � � � � �

� � � �

� � � � � �

is solved with the initial guess (4.0, 4.0, 4.0).
 USE NEQBJ_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=3)
!
 INTEGER K, NOUT
 REAL X(N), XGUESS(N)
 EXTERNAL FCN, JAC
! Set values of initial guess
! XGUESS = (4.0 4.0 4.0)
!
 DATA XGUESS/3*4.0/
! Find the solution
 CALL NEQBJ (FCN, JAC, X, XGUESS=XGUESS)
! Output
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(K),K=1,N)
99999 FORMAT (’ The solution to the system is’, /, ’ X = (’, 3F8.3, &
 ’)’)
!
 END
! User-defined subroutine
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F(N)
!
 REAL EXP, SIN
 INTRINSIC EXP, SIN

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1177

!
 F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0
 F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0
 F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0
 RETURN
 END
! User-supplied subroutine to
! compute Jacobian
 SUBROUTINE JAC (N, X, FJAC, LDFJAC)
 INTEGER N, LDFJAC
 REAL X(N), FJAC(LDFJAC,N)
!
 REAL COS, EXP
 INTRINSIC COS, EXP
!
 FJAC(1,1) = 1.0 + EXP(X(1)-1.0)
 FJAC(1,2) = 2.0*(X(2)+X(3))
 FJAC(1,3) = 2.0*(X(2)+X(3))
 FJAC(2,1) = -EXP(X(2)-2.0)*(1.0/X(1)**2)
 FJAC(2,2) = EXP(X(2)-2.0)*(1.0/X(1))
 FJAC(2,3) = 2.0*X(3)
 FJAC(3,1) = 0.0
 FJAC(3,2) = COS(X(2)-2.0) + 2.0*X(2)
 FJAC(3,3) = 1.0
 RETURN
 END

Output
The solution to the system is
X = (1.000 2.000 3.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of N2QBJ/DN2QBJ. The

reference is:

CALL N2QBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE,
 IPARAM, RPARAM, X, FVEC, WK, LWK)

The additional arguments are as follows:

WK — A work vector of length LWK. On output WK contains the following information:
The third N locations contain the last step taken. The fourth N locations contain
the last Newton step. The final N� locations contain an estimate of the Jacobian
at the solution.

LWK — Length of WK, which must be at least 2 * N� + 11 * N. (Input)

2. Informational errors

Type Code
 3 1 The last global step failed to decrease the 2-norm of F(X) sufficiently;

either the current point is close to a root of F(X) and no more

1178 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

accuracy is possible, or the secant approximation to the Jacobian is
inaccurate, or the step tolerance is too large.

 3 3 The scaled distance between the last two steps is less than the step
tolerance; the current point is probably an approximate root of F(X)
(unless STEPTL is too large).

 3 4 Maximum number of iterations exceeded.
 3 5 Maximum number of function evaluations exceeded.
 3 7 Five consecutive steps of length STEPMX have been taken; either the

2-norm of F(X) asymptotes from above to a finite value in some
direction or the maximum allowable stepsize STEPMX is too small.

3. The stopping criterion for NEQBJ occurs when the scaled norm of the functions is less
than the scaled function tolerance (RPARAM(1)).

4. If the default parameters are desired for NEQBJ, then set IPARAM(1) to zero and call
routine NEQBJ. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling NEQBJ:

CALL N4QBJ (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to N4QBJ will set IPARAM and RPARAM to their default values, so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: not used in NEQBJ.

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values of XSCALE are set internally.
Default: 0.

RPARAM — Real vector of length 5.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations � 1179

RPARAM(1) = Scaled function tolerance.
The scaled norm of the functions is computed as

� �max *i if fsi

where fi is the i-th component of the function vector F, and fsi is the i-th component of
FSCALE.
Default:

�

where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The scaled norm of the step between two points x and y is computed as

� �
max { }

max , 1/
i i

i i

x y
i x s

�

where si is the i-th component of XSCALE.

Default: ����, where � is the machine precision.

RPARAM(3) = False convergence tolerance.
Default: not used in NEQBJ.

RPARAM(4) = Maximum allowable step size. (STEPMX)

Default: 1000 * max(��, ��), where

� �
2

1 1

n
i ii
s t�

�

� �

�� = ||s||�, s = XSCALE, and t = XGUESS.

RPARAM(5) = Size of initial trust region.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DN4QBJ is called and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
Routine NEQBJ uses a secant algorithm to solve a system of nonlinear equations, i. e.,

1180 � Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

F (x) = 0

where F : Rn� Rn, and x � Rn.

From a current point, the algorithm uses a double dogleg method to solve the following
subproblem approximately:

� � � �
2

min
n c c

s
F x J x s

�

�

R

subject to ||s||� � 	c

to get a direction sc, where F(xc) and J(xc) are the function values and the approximate Jacobian
respectively evaluated at the current point xc. Then, the function values at the point xn = xc + sc
are evaluated and used to decide whether the new point xn should be accepted.

When the point xn is rejected, this routine reduces the trust region 	c and goes back to solve the
subproblem again. This procedure is repeated until a better point is found.

The algorithm terminates if the new point satisfies the stopping criterion. Otherwise, 	c is
adjusted, and the approximate Jacobian is updated by Broyden’s formula,

� � T
c c c

n c T
c c

y J s s
J J

s s
�

� �

where Jn = J(xn), Jc = J(xc), and y = F (xn) � F (xc). The algorithm then continues using the new
point as the current point, i.e. xc
 xn.

For more details, see Dennis and Schnabel (1983, Chapter 8).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1181

Chapter 8: Optimization

Routines
8.1. Unconstrained Minimization
8.1.1 Univariate Function

Using function values only ..UVMIF 1186
Using function and first derivative values UVMID 1189
Nonsmooth function..UVMGS 1193

8.1.2 Multivariate Function
Using finite-difference gradient ...UMINF 1196
Using analytic gradient ..UMING 1202
Using finite-difference Hessian .. UMIDH 1208
Using analytic Hessian .. UMIAH 1213
Using conjugate gradient with finite-difference gradient.....UMCGF 1219
Using conjugate gradient with analytic gradient UMCGG 1223
Nonsmooth function.. UMPOL 1227

8.1.3 Nonlinear Least Squares
Using finite-difference Jacobian... UNLSF 1231
Using analytic Jacobian ..UNLSJ 1237

8.2. Minimization with Simple Bounds
Using finite-difference gradient ... BCONF 1243
Using analytic gradient ...BCONG 1249
Using finite-difference Hessian ...BCODH 1257
Using analytic Hessian ... BCOAH 1263
Nonsmooth Function..BCPOL 1271
Nonlinear least squares using finite-difference Jacobian BCLSF 1274
Nonlinear least squares using analytic Jacobian..................BCLSJ 1281
Nonlinear least squares problem subject to bounds............BCNLS 1288

8.3. Linearly Constrained Minimization
Dense linear programming ..DLPRS 1297
Sparse linear programming ... SLPRS 1301
Quadratic programming ..QPROG 1307
General objective function with finite-difference gradient....LCONF 1310
General objective function with analytic gradient LCONG 1316

1182 � Chapter 8: Optimization IMSL MATH/LIBRARY

8.4. Nonlinearly Constrained Minimization
Using a sequential equality constrained QP methodNNLPF 1323
Using a sequential equality constrained QP methodNNLPG 1329

8.5. Service Routines
Central-difference gradient... CDGRD 1336
Forward-difference gradient ..FDGRD 1338
Forward-difference Hessian .. FDHES 1340
Forward-difference Hessian using analytic gradientGDHES 1343
Forward-difference Jacobian..FDJAC 1346
Check user-supplied gradient .. CHGRD 1349
Check user-supplied Hessian ...CHHES 1352
Check user-supplied Jacobian .. CHJAC 1355
Generate starting points ... GGUES 1359

Usage Notes
Unconstrained Minimization
The unconstrained minimization problem can be stated as follows:

� �min
nx

f x
�R

where f : Rn� R is at least continuous. The routines for unconstrained minimization are grouped
into three categories: univariate functions (UV***), multivariate functions (UM***), and nonlinear
least squares (UNLS*).

For the univariate function routines, it is assumed that the function is unimodal within the
specified interval. Otherwise, only a local minimum can be expected. For further discussion on
unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate function routines UMINF (page 1196) and
UMING (page 1202), whereas UMIDH (page 1208) and UMIAH (page 1213) use a modified Newton
algorithm. The routines UMCGF (page 1219) and UMCGG (page 1223) make use of a conjugate
gradient approach, and UMPOL (page 1227) uses a polytope method. For more details on these
algorithms, see the documentation for the corresponding routines.

The nonlinear least squares routines use a modified Levenberg-Marquardt algorithm. If the
nonlinear least squares problem is a nonlinear data-fitting problem, then software that is designed
to deliver better statistical output may be useful; see IMSL (1991).

These routines are designed to find only a local minimum point. However, a function may have
many local minima. It is often possible to obtain a better local solution by trying different initial
points and intervals.

High precision arithmetic is recommended for the routines that use only function values. Also it is
advised that the derivative-checking routines CH*** be used to ensure the accuracy of the user-
supplied derivative evaluation subroutines.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1183

Minimization with Simple Bounds
The minimization with simple bounds problem can be stated as follows:

� �min
nx

f x
�R

subject to li � xi � ui, for i = 1, 2, �, n

where f : Rn� R, and all the variables are not necessarily bounded.

The routines BCO** use the same algorithms as the routines UMI**, and the routines BCLS* are
the corresponding routines of UNLS*. The only difference is that an active set strategy is used to
ensure that each variable stays within its bounds. The routine BCPOL (page 1271) uses a function
comparison method similar to the one used by UMPOL (page 1227). Convergence for these
polytope methods is not guaranteed; therefore, these routines should be used as a last alternative.

Linearly Constrained Minimization
The linearly constrained minimization problem can be stated as follows:

� �min
nx

f x
�R

subject to Ax = b

where f : Rn� R, A is an m � n coefficient matrix, and b is a vector of length m. If f(x) is linear,
then the problem is a linear programming problem; if f(x) is quadratic, the problem is a quadratic
programming problem.

The routine DLPRS (page 1297) uses a revised simplex method to solve small- to medium-sized
linear programming problems. No sparsity is assumed since the coefficients are stored in full
matrix form.

The routine QPROG (page 1307) is designed to solve convex quadratic programming problems
using a dual quadratic programming algorithm. If the given Hessian is not positive definite, then
QPROG modifies it to be positive definite. In this case, output should be interpreted with care.

The routines LCONF (page 1310) and LCONG (page 1316) use an iterative method to solve the
linearly constrained problem with a general objective function. For a detailed description of the
algorithm, see Powell (1988, 1989).

Nonlinearly Constrained Minimization
The nonlinearly constrained minimization problem can be stated as follows:

� �min
nx

f x
�R

subject to gi(x) = 0, for i = 1, 2, �, m�

 gi(x) � 0, for i = m� + 1, �, m

where f : Rn� R and gi : Rn� R, for i = 1, 2, �, m

1184 � Chapter 8: Optimization IMSL MATH/LIBRARY

The routines NNLPF (page 1323) and NNLPG (page 1329) use a sequential equality constrained
quadratic programming method. A more complete discussion of this algorithm can be found in the
documentation.

Selection of Routines
The following general guidelines are provided to aid in the selection of the appropriate routine.

Unconstrained Minimization
1. For the univariate case, use UVMID (page 1189) when the gradient is available, and use

UVMIF (page 1182) when it is not. If discontinuities exist, then use UVMGS (page 1193).

2. For the multivariate case, use UMCG* when storage is a problem, and use UMPOL (page
1227) when the function is nonsmooth. Otherwise, use UMI** depending on the
availability of the gradient and the Hessian.

3. For least squares problems, use UNLSJ (page 1237) when the Jacobian is available, and
use UNLSF (page 1231) when it is not.

Minimization with Simple Bounds
1. Use BCONF (page 1243) when only function values are available. When first

derivatives are available, use either BCONG (page 1249) or BCODH (page 1257). If first
and second derivatives are available, then use BCOAH (page 1263).

2. For least squares, use BCLSF (page 1274) or BCLSJ (page 1281) depending on the
availability of the Jacobian.

3. Use BCPOL (page 1271) for nonsmooth functions that could not be solved satisfactorily
by the other routines.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1185

The following charts provide a quick reference to routines in this chapter:

nonsmooth

UMCGF no derivative large-size

least squaresno Jacobian

no derivative

nonsmooth

UNLSF

UVMSG

UVMIF

UMCGG

UNLSJ

UMPOL

UMINF

UMING
UMIDH

UVMID UMIAH

no first
derivative

no second

problem

derivative

UNCONSTRAINED
MINIMIZATION

univariate multivariate

smooth

1186 � Chapter 8: Optimization IMSL MATH/LIBRARY

UVMIF
Finds the minimum point of a smooth function of a single variable using only function
evaluations.

Required Arguments
F — User-supplied FUNCTION to compute the value of the function to be minimized. The

form is F(X), where
X – The point at which the function is evaluated. (Input)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1187

X should not be changed by F.
F – The computed function value at the point X. (Output)

F must be declared EXTERNAL in the calling program.

XGUESS — An initial guess of the minimum point of F. (Input)

BOUND — A positive number that limits the amount by which X may be changed from its
initial value. (Input)

X — The point at which a minimum value of F is found. (Output)

Optional Arguments
STEP — An order of magnitude estimate of the required change in X. (Input)

Default: STEP = 1.0.

XACC — The required absolute accuracy in the final value of X. (Input)
On a normal return there are points on either side of X within a distance XACC at which
F is no less than F(X).
Default: XACC = 1.e-4.

MAXFN — Maximum number of function evaluations allowed. (Input)
Default: MAXFN = 1000.

FORTRAN 90 Interface
Generic: CALL UVMIF (F, XGUESS, BOUND, X [,…])

Specific: The specific interface names are S_UVMIF and D_UVMIF.

FORTRAN 77 Interface
Single: CALL UVMIF (F, XGUESS, STEP, BOUND, XACC, MAXFN, X)

Double: The double precision name is DUVMIF.

Example

A minimum point of ex � 5x is found.
 USE UVMIF_INT
 USE UMACH_INT
! Declare variables
 INTEGER MAXFN, NOUT
 REAL BOUND, F, FX, STEP, X, XACC, XGUESS
 EXTERNAL F
! Initialize variables

1188 � Chapter 8: Optimization IMSL MATH/LIBRARY

 XGUESS = 0.0
 XACC = 0.001
 BOUND = 100.0
 STEP = 0.1
 MAXFN = 50
!
! Find minimum for F = EXP(X) - 5X
 CALL UVMIF (F, XGUESS, BOUND, X, STEP=STEP, XACC=XACC, MAXFN=MAXFN)
 FX = F(X)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FX
!
99999 FORMAT (’ The minimum is at ’, 7X, F7.3, //, ’ The function ’ &
 , ’value is ’, F7.3)
!
 END
! Real function: F = EXP(X) - 5.0*X
 REAL FUNCTION F (X)
 REAL X
!
 REAL EXP
 INTRINSIC EXP
!
 F = EXP(X) - 5.0E0*X
!
 RETURN
 END

Output
The minimum is at 1.609

The function value is -3.047

Comments
Informational errors

Type Code
 3 1 Computer rounding errors prevent further refinement of X.
 3 2 The final value of X is at a bound. The minimum is probably beyond the

bound.
 4 3 The number of function evaluations has exceeded MAXFN.

Description
The routine UVMIF uses a safeguarded quadratic interpolation method to find a minimum point
of a univariate function. Both the code and the underlying algorithm are based on the routine
ZXLSF written by M.J.D. Powell at the University of Cambridge.

The routine UVMIF finds the least value of a univariate function, f, that is specified by the
function subroutine F. Other required data include an initial estimate of the solution, XGUESS ,
and a positive number BOUND. Let x� = XGUESS and b = BOUND, then x is restricted to the

IMSL MATH/LIBRARY Chapter 8: Optimization � 1189

interval [x� � b, x� + b]. Usually, the algorithm begins the search by moving from x� to
x = x� + s, where s = STEP is also provided by the user and may be positive or negative. The first
two function evaluations indicate the direction to the minimum point, and the search strides out
along this direction until a bracket on a minimum point is found or until x reaches one of the
bounds x� � b. During this stage, the step length increases by a factor of between two and nine
per function evaluation; the factor depends on the position of the minimum point that is
predicted by quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we will have three points, x�, x�, and x�,
with x� < x� < x� and f (x�) � f (x�) and f (x�) � f (x�). There are three main ingredients in the
technique for choosing the new x from these three points. They are (i) the estimate of the
minimum point that is given by quadratic interpolation of the three function values, (ii) a
tolerance parameter �, that depends on the closeness of f to a quadratic, and (iii) whether x� is
near the center of the range between x� and x� or is relatively close to an end of this range. In
outline, the new value of x is as near as possible to the predicted minimum point, subject to
being at least � from x�, and subject to being in the longer interval between x� and x� or x� and x�
when x� is particularly close to x� or x�. There is some elaboration, however, when the distance
between these points is close to the required accuracy; when the distance is close to the machine
precision; or when � is relatively large.

The algorithm is intended to provide fast convergence when f has a positive and continuous
second derivative at the minimum and to avoid gross inefficiencies in pathological cases, such
as

f (x) = x + 1.001|x|

The algorithm can make � large automatically in the pathological cases. In this case, it is usual
for a new value of x to be at the midpoint of the longer interval that is adjacent to the least
calculated function value. The midpoint strategy is used frequently when changes to f are
dominated by computer rounding errors, which will almost certainly happen if the user requests
an accuracy that is less than the square root of the machine precision. In such cases, the routine
claims to have achieved the required accuracy if it knows that there is a local minimum point
within distance 	 of x, where 	 = XACC, even though the rounding errors in f may cause the
existence of other local minimum points nearby. This difficulty is inevitable in minimization
routines that use only function values, so high precision arithmetic is recommended.

UVMID
Finds the minimum point of a smooth function of a single variable using both function evaluations
and first derivative evaluations.

Required Arguments
F — User-supplied FUNCTION to define the function to be minimized. The form is F(X),

where

X — The point at which the function is to be evaluated. (Input)

1190 � Chapter 8: Optimization IMSL MATH/LIBRARY

F — The computed value of the function at X. (Output)

F must be declared EXTERNAL in the calling program.

G — User-supplied FUNCTION to compute the derivative of the function. The form is G(X),
where

X — The point at which the derivative is to be computed. (Input)

G — The computed value of the derivative at X. (Output)

G must be declared EXTERNAL in the calling program.

A — A is the lower endpoint of the interval in which the minimum point of F is to be located.
(Input)

B — B is the upper endpoint of the interval in which the minimum point of F is to be located.
(Input)

X — The point at which a minimum value of F is found. (Output)

Optional Arguments
XGUESS — An initial guess of the minimum point of F. (Input)

Default: XGUESS = (a + b) / 2.0.

ERRREL — The required relative accuracy in the final value of X. (Input)
This is the first stopping criterion. On a normal return, the solution X is in an interval
that contains a local minimum and is less than or equal to MAX(1.0, ABS(X)) * ERRREL.
When the given ERRREL is less than machine epsilon, SQRT(machine epsilon) is used
as ERRREL.
Default: ERRREL = 1.e-4.

GTOL — The derivative tolerance used to decide if the current point is a local minimum.
(Input)
This is the second stopping criterion. X is returned as a solution when GX is less than or
equal to GTOL. GTOL should be nonnegative, otherwise zero would be used.
Default: GTOL = 1.e-4.

MAXFN — Maximum number of function evaluations allowed. (Input)
Default: MAXFN = 1000.

FX — The function value at point X. (Output)

GX — The derivative value at point X. (Output)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1191

FORTRAN 90 Interface
Generic: CALL UVMID (F, G, A, B, X [,…])

Specific: The specific interface names are S_UVMID and D_UVMID.

FORTRAN 77 Interface
Single: CALL UVMID (F, G, XGUESS, ERRREL, GTOL, MAXFN, A, B, X, FX,

GX)

Double: The double precision name is DUVMID.

Example

A minimum point of ex � 5x is found.
 USE UVMID_INT
 USE UMACH_INT
! Declare variables
 INTEGER MAXFN, NOUT
 REAL A, B, ERRREL, F, FX, G, GTOL, GX, X, XGUESS
 EXTERNAL F, G
! Initialize variables
 XGUESS = 0.0
! Set ERRREL to zero in order
! to use SQRT(machine epsilon)
! as relative error
 ERRREL = 0.0
 GTOL = 0.0
 A = -10.0
 B = 10.0
 MAXFN = 50
!
! Find minimum for F = EXP(X) - 5X
 CALL UVMID (F, G, A, B, X, XGUESS=XGUESS, ERRREL=ERRREL, &
 GTOL=FTOL, MAXFN=MAXFN, FX=FX, GX=GX)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FX, GX
!
99999 FORMAT (’ The minimum is at ’, 7X, F7.3, //, ’ The function ’ &
 , ’value is ’, F7.3, //, ’ The derivative is ’, F7.3)
!
 END
! Real function: F = EXP(X) - 5.0*X
 REAL FUNCTION F (X)
 REAL X
!
 REAL EXP
 INTRINSIC EXP
!
 F = EXP(X) - 5.0E0*X

1192 � Chapter 8: Optimization IMSL MATH/LIBRARY

!
 RETURN
 END
!
 REAL FUNCTION G (X)
 REAL X
!
 REAL EXP
 INTRINSIC EXP
!
 G = EXP(X) - 5.0E0
 RETURN
 END

Output
The minimum is at 1.609

The function value is -3.047

The derivative is -0.001

Comments
Informational errors

Type Code
 3 1 The final value of X is at the lower bound. The minimum is probably

beyond the bound.
 3 2 The final value of X is at the upper bound. The minimum is probably

beyond the bound.
 4 3 The maximum number of function evaluations has been exceeded.

Description
The routine UVMID uses a descent method with either the secant method or cubic interpolation to
find a minimum point of a univariate function. It starts with an initial guess and two endpoints.
If any of the three points is a local minimum point and has least function value, the routine
terminates with a solution. Otherwise, the point with least function value will be used as the
starting point.

From the starting point, say xc, the function value fc = f (xc), the derivative value gc = g(xc), and
a new point xn defined by xn = xc � gc are computed. The function fn = f(xn), and the derivative
gn = g(xn) are then evaluated. If either fn � fc or gn has the opposite sign of gc, then there exists a
minimum point between xc and xn; and an initial interval is obtained. Otherwise, since xc is kept
as the point that has lowest function value, an interchange between xn and xc is performed. The
secant method is then used to get a new point

()n c
s c c

n c

g g
x x g

x x
�

� �

�

IMSL MATH/LIBRARY Chapter 8: Optimization � 1193

Let xn
 xs and repeat this process until an interval containing a minimum is found or one of the
convergence criteria is satisfied. The convergence criteria are as follows: Criterion 1:

c n cx x �� �

Criterion 2:

c gg ��

where �c = max{1.0, |xc|}�, � is a relative error tolerance and �g is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new point.
Function and derivative are then evaluated at that point; and accordingly, a smaller interval that
contains a minimum point is chosen. A safeguarded method is used to ensure that the interval
reduces by at least a fraction of the previous interval. Another cubic interpolation is then
performed, and this procedure is repeated until one of the stopping criteria is met.

UVMGS
Finds the minimum point of a nonsmooth function of a single variable.

Required Arguments
F — User-supplied FUNCTION to compute the value of the function to be minimized. The

form is F(X), where

X – The point at which the function is evaluated. (Input)
X should not be changed by F.

F – The computed function value at the point X. (Output)

F must be declared EXTERNAL in the calling program.

A — On input, A is the lower endpoint of the interval in which the minimum of F is to be
located. On output, A is the lower endpoint of the interval in which the minimum of F
is located. (Input/Output)

B — On input, B is the upper endpoint of the interval in which the minimum of F is to be
located. On output, B is the upper endpoint of the interval in which the minimum of F
is located. (Input/Output)

XMIN — The approximate minimum point of the function F on the original interval (A, B).
(Output)

1194 � Chapter 8: Optimization IMSL MATH/LIBRARY

Optional Arguments
TOL — The allowable length of the final subinterval containing the minimum point. (Input)

Default: TOL = 1.e-4.

FORTRAN 90 Interface
Generic: CALL UVMGS (F, A, B, XMIN [,…])

Specific: The specific interface names are S_UVMGS and D_UVMGS.

FORTRAN 77 Interface
Single: CALL UVMGS (F, A, B, TOL, XMIN)

Double: The double precision name is DUVMGS.

Example
A minimum point of 3x� � 2x + 4 is found.

 USE UVMGS_INT
 USE UMACH_INT
! Specification of variables
 INTEGER NOUT
 REAL A, B, FCN, FMIN, TOL, XMIN
 EXTERNAL FCN
! Initialize variables
 A = 0.0E0
 B = 5.0E0
 TOL = 1.0E-3
! Minimize FCN
 CALL UVMGS (FCN, A, B, XMIN, TOL=TOL)
 FMIN = FCN(XMIN)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) XMIN, FMIN, A, B
99999 FORMAT (’ The minimum is at ’, F5.3, //, ’ The ’, &
 ’function value is ’, F5.3, //, ’ The final ’, &
 ’interval is (’, F6.4, ’,’, F6.4, ’)’, /)
!
 END
!
! REAL FUNCTION: F = 3*X**2 - 2*X + 4
 REAL FUNCTION FCN (X)
 REAL X
!
 FCN = 3.0E0*X*X - 2.0E0*X + 4.0E0
!
 RETURN
 END

IMSL MATH/LIBRARY Chapter 8: Optimization � 1195

Output
The minimum is at 0.333

The function value is 3.667

The final interval is (0.3331,0.3340)

Comments
1. Informational errors

Type Code
 3 1 TOL is too small to be satisfied.
 4 2 Due to rounding errors F does not appear to be unimodal.

2. On exit from UVMGS without any error messages, the following conditions hold: (B-A) �
TOL.
A � XMIN and XMIN � B
F(XMIN) � F(A) and F(XMIN) � F(B)

3. On exit from UVMGS with error code 2, the following conditions hold:
A � XMIN and XMIN � B
F(XMIN) � F(A) and F(XMIN) � F(B) (only one equality can hold).
Further analysis of the function F is necessary in order to determine whether it is not
unimodal in the mathematical sense or whether it appears to be not unimodal to the
routine due to rounding errors in which case the A, B, and XMIN returned may be
acceptable.

Description
The routine UVMGS uses the golden section search technique to compute to the desired accuracy
the independent variable value that minimizes a unimodal function of one independent variable,
where a known finite interval contains the minimum.

Let � = TOL. The number of iterations required to compute the minimizing value to accuracy � is
the greatest integer less than or equal to

� �� �
� �

ln /
1

ln 1
b a

c
� �

�

�

where a and b define the interval and

� �3 5 / 2c � �

The first two test points are v� and v� that are defined as

v� = a + c(b � a), and v� = b � c(b � a)

1196 � Chapter 8: Optimization IMSL MATH/LIBRARY

If f(v�) < f(v�), then the minimizing value is in the interval (a, v�). In this case, b
 v�, v�
 v�,
and v�
 a + c(b � a). If f(v�) � f(v�), the minimizing value is in (v�, b). In this case, a
 v�, v�

 v�, and v�
 b � c(b � a).

The algorithm continues in an analogous manner where only one new test point is computed at
each step. This process continues until the desired accuracy � is achieved. XMIN is set to the
point producing the minimum value for the current iteration.

Mathematically, the algorithm always produces the minimizing value to the desired accuracy;
however, numerical problems may be encountered. If f is too flat in part of the region of interest,
the function may appear to be constant to the computer in that region. Error code 2 indicates that
this problem has occurred. The user may rectify the problem by relaxing the requirement on �,
modifying (scaling, etc.) the form of f or executing the program in a higher precision.

UMINF
Minimizes a function of N variables using a quasi-Newton method and a finite-difference gradient.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing an initial guess of the computed solution. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1197

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7.(Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMINF (FCN, X [,…])

Specific: The specific interface names are S_UMINF and D_UMINF.

FORTRAN 77 Interface
Single: CALL UMINF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,

X, FVALUE)

Double: The double precision name is DUMINF.

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized.
 USE UMINF_INT
 USE U4INF_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IPARAM(7), L, NOUT
 REAL F, RPARAM(7), X(N), XGUESS(N), &
 XSCALE(N)
 EXTERNAL ROSBRK
!
 DATA XGUESS/-1.2E0, 1.0E0/
!
! Relax gradient tolerance stopping
! criterion
 CALL U4INF (IPARAM, RPARAM)

1198 � Chapter 8: Optimization IMSL MATH/LIBRARY

 RPARAM(1) = 10.0E0*RPARAM(1)
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0

CALL UMINF (ROSBRK, X, XGUESS=XGUESS, IPARAM=IPARAM, RPARAM=RPARAM, &
FVALUE=F)

! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END

Output
The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 15
The number of function evaluations is 40
The number of gradient evaluations is 19

Comments
1. Workspace may be explicitly provided, if desired, by use of U2INF/DU2INF. The

reference is:

CALL U2INF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X,FVALUE, WK)

The additional argument is:

WK — Work vector of length N(N + 8). WK contains the following information on
output: The second N locations contain the last step taken. The third N locations
contain the last Newton step. The fourth N locations contain an estimate of the
gradient at the solution. The final N� locations contain the Cholesky
factorization of a BFGS approximation to the Hessian at the solution.

2. Informational errors

Type Code

IMSL MATH/LIBRARY Chapter 8: Optimization � 1199

 3 1 Both the actual and predicted relative reductions in the function are
less than or equal to the relative function convergence tolerance.

 4 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 3 8 The last global step failed to locate a lower point than the current X
value.

3. The first stopping criterion for UMINF occurs when the infinity norm of the scaled
gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping
criterion for UMINF occurs when the scaled distance between the last two steps is less
than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UMINF, then set IPARAM(1) to zero and call the
routine UMINF. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling UMINF:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

1200 � Chapter 8: Optimization IMSL MATH/LIBRARY

IPARAM(6) = Hessian initialization parameter.
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it is
initialized to a diagonal matrix containing

� �� � 2max , s if t f s�

on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE.
Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in UMINF.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at
x is calculated as

� �

� �� �

*max ,1/

max ,
i i i

s

g x s

f x f

where g = �f (x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.
Default: �
�� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max(10���, ����) in double where � is the machine
precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in UMINF.

RPARAM(5) = False convergence tolerance.
Default: Not used in UMINF.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1201

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 2 21
XSCALE XGUESS, , , and n

i ii
s t s s t� �

�

� � � ��

RPARAM(7) = Size of initial trust region radius.
Default: Not used in UMINF.

If double precision is required, then DU4INF is called, and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine UMINF uses a quasi-Newton method to find the minimum of a function f(x) of n
variables. Only function values are required. The problem is stated as follows:

� �min
nx

f x
�R

Given a starting point xc, the search direction is computed according to the formula

d = �B�� gc

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at
xc. A line search is then used to find a new point

xn = xc + �d, � > 0

such that

f(xn) � f(xc) + �gT d, � � (0, 0.5)

Finally, the optimality condition ||g(x)|| = � is checked where � is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula
T T

T T

Bss B yyB B
s Bs y s

� � �

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next
iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

Since a finite-difference method is used to estimate the gradient, for some single precision
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact gradient can be easily provided, IMSL routine UMING (page 1202) should be used instead.

1202 � Chapter 8: Optimization IMSL MATH/LIBRARY

UMING
Minimizes a function of N variables using a quasi-Newton method and a user-supplied gradient.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by GRAD .
G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set

IMSL MATH/LIBRARY Chapter 8: Optimization � 1203

FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMING (FCN, GRAD, X [,…])

Specific: The specific interface names are S_UMING and D_UMING.

FORTRAN 77 Interface
Single: CALL UMING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVALUE)

Double: The double precision name is DUMING.

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized. Default values for parameters are used.
 USE UMING_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IPARAM(7), L, NOUT
 REAL F, X(N), XGUESS(N)
 EXTERNAL ROSBRK, ROSGRD
!
 DATA XGUESS/-1.2E0, 1.0E0/
!
 IPARAM(1) = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
 CALL UMING (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)

1204 � Chapter 8: Optimization IMSL MATH/LIBRARY

!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END
!
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END

Output
The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 18
The number of function evaluations is 31
The number of gradient evaluations is 22

Comments
1. Workspace may be explicitly provided, if desired, by use of U2ING/DU2ING. The

reference is:

CALL U2ING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVALUE, WK)

The additional argument is

WK — Work vector of length N * (N + 8). WK contains the following information on
output: The second N locations contain the last step taken. The third N locations
contain the last Newton step. The fourth N locations contain an estimate of the
gradient at the solution. The final N� locations contain the Cholesky factorization
of a BFGS approximation to the Hessian at the solution.

2. Informational errors

IMSL MATH/LIBRARY Chapter 8: Optimization � 1205

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 4 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 3 8 The last global step failed to locate a lower point than the current X
value.

3. The first stopping criterion for UMING occurs when the infinity norm of the scaled
gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping
criterion for UMING occurs when the scaled distance between the last two steps is less
than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UMING, then set IPARAM(1) to zero and call
routine UMING (page 1202). Otherwise, if any nondefault parameters are desired for
IPARAM or RPARAM, then the following steps should be taken before calling UMING:

 CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

1206 � Chapter 8: Optimization IMSL MATH/LIBRARY

IPARAM(6) = Hessian initialization parameter
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it is
initialized to a diagonal matrix containing

 � �� � 2max , s if t f s�

on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE.
Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in UMING.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at
x is calculated as

� �

� �� �

* max ,1/

max ,
i i i

s

g x s

f x f

where g = �f (x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max(10���, ����) in double where � is the machine
precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in UMING.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1207

RPARAM(5) = False convergence tolerance.
Default: Not used in UMING.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

� �

�� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: Not used in UMING.

If double precision is required, then DU4INF is called, and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine UMING uses a quasi-Newton method to find the minimum of a function f(x) of n
variables. Function values and first derivatives are required. The problem is stated as follows:

� �min
nx

f x
�R

Given a starting point xc, the search direction is computed according to the formula

d = �B�� gc

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at
xc. A line search is then used to find a new point

xn = xc + �d, � > 0

such that

f(xn) � f(xc) + �gT d, � � (0, 0.5)

Finally, the optimality condition ||g(x)|| = � is checked where � is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula
T T

T T

Bss B yyB B
s Bs y s

� � �

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next
iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

1208 � Chapter 8: Optimization IMSL MATH/LIBRARY

UMIDH
Minimizes a function of N variables using a modified Newton method and a finite-difference
Hessian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – The point at which the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing initial guess. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1209

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMIDH (FCN, GRAD, X [,…])

Specific: The specific interface names are S_UMIDH and D_UMIDH.

FORTRAN 77 Interface
Single: CALL UMIDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVALUE)

Double: The double precision name is DUMIDH.

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized. Default values for parameters are used.
 USE UMIDH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IPARAM(7), L, NOUT
 REAL F, X(N), XGUESS(N)
 EXTERNAL ROSBRK, ROSGRD
!
 DATA XGUESS/-1.2E0, 1.0E0/
!
 IPARAM(1) = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
 CALL UMIDH (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F)
! Print results

1210 � Chapter 8: Optimization IMSL MATH/LIBRARY

 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3, /, &
 ’ The number of Hessian evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END
!
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END

Output
The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 21
The number of function evaluations is 30
The number of gradient evaluations is 22
The number of Hessian evaluations is 21

Comments
1. Workspace may be explicitly provided, if desired, by use of U2IDH/DU2IDH. The

reference is:

1CALL U2IDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVALUE, WK)

The additional argument is:

WK — Work vector of length N * (N + 9). WK contains the following information on
output: The second N locations contain the last step taken. The third N locations
contain the last Newton step. The fourth N locations contain an estimate of the

IMSL MATH/LIBRARY Chapter 8: Optimization � 1211

gradient at the solution. The final N� locations contain the Hessian at the
approximate solution.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 4 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 4 7 Maximum number of Hessian evaluations exceeded.
 3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for UMIDH occurs when the norm of the gradient is less than
the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIDH
occurs when the scaled distance between the last two steps is less than the step
tolerance (RPARAM(2)).

4. If the default parameters are desired for UMIDH, then set IPARAM(1) to zero and call
routine UMIDH. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling UMIDH:

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

 IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

1212 � Chapter 8: Optimization IMSL MATH/LIBRARY

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter
Default: Not used in UMIDH.

IPARAM(7) = Maximum number of Hessian evaluations.
Default:100

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �� �

* max ,1/

max ,
i i i

s

g x s

f x f

where g = �f (x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

 RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

 where s = XSCALE.
Default: ���� where � is the machine precision.

 RPARAM(3) = Relative function tolerance.

 Default: max(10���, ����), max(10���, ����) in double where � is the machine
 precision.

 RPARAM(4) = Absolute function tolerance.

 Default: Not used in UMIDH.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1213

 RPARAM(5) = False convergence tolerance.

 Default: 100� where � is the machine precision.

 RPARAM(6) = Maximum allowable step size.

 Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

� �

 �� = || s ||�, s = XSCALE, and t = XGUESS.

 RPARAM(7) = Size of initial trust region radius.

 Default: Based on initial scaled Cauchy step.

If double precision is required, then DU4INF is called, and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine UMIDH uses a modified Newton method to find the minimum of a function f (x) of n
variables. First derivatives must be provided by the user. The algorithm computes an optimal
locally constrained step (Gay 1981) with a trust region restriction on the step. It handles the case
that the Hessian is indefinite and provides a way to deal with negative curvature. For more
details, see Dennis and Schnabel (1983, Appendix A) and Gay (1983).

Since a finite-difference method is used to estimate the Hessian for some single precision
calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact Hessian can be easily provided, IMSL routine UMIAH (page 1213) should be used instead.

UMIAH
Minimizes a function of N variables using a modified Newton method and a user-supplied
Hessian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

1214 � Chapter 8: Optimization IMSL MATH/LIBRARY

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The usage is
CALL HESS (N, X, H, LDH), where

N – Length of X. (Input)

X – Vector of length N at which point the Hessian is evaluated. (Input)
X should not be changed by HESS.

H – The Hessian evaluated at the point X. (Output)

LDH – Leading dimension of H exactly as specified in the dimension statement of the
calling program. LDH must be equal to N in this routine. (Input)

HESS must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing initial guess. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In

IMSL MATH/LIBRARY Chapter 8: Optimization � 1215

the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMIAH (FCN, GRAD, HESS, X, [,…])

Specific: The specific interface names are S_UMIAH and D_UMIAH.

FORTRAN 77 Interface
Single: CALL UMIAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE,

IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DUMIAH.

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized. Default values for parameters are used.
 USE UMIAH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IPARAM(7), L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N), &
 XGUESS(N), XSCALE(N)
 EXTERNAL ROSBRK, ROSGRD, ROSHES
!
 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/
!

1216 � Chapter 8: Optimization IMSL MATH/LIBRARY

 IPARAM(1) = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0

CALL UMIAH (ROSBRK, ROSGRD, ROSHES, X, XGUESS=XGUESS, IPARAM=IPARAM, &
FVALUE=F)

! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3, /, &
 ’ The number of Hessian evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END
!
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END
!
 SUBROUTINE ROSHES (N, X, H, LDH)
 INTEGER N, LDH
 REAL X(N), H(LDH,N)
!
 H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0
 H(2,1) = -4.0E2*X(1)
 H(1,2) = H(2,1)
 H(2,2) = 2.0E2
!
 RETURN
 END

Output
The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 21
The number of function evaluations is 31

IMSL MATH/LIBRARY Chapter 8: Optimization � 1217

The number of gradient evaluations is 22
The number of Hessian evaluations is 21

Comments
1. Workspace may be explicitly provided, if desired, by use of U2IAH/DU2IAH. The

reference is:

CALL U2IAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVALUE, WK)

The additional argument is:

WK — Work vector of length N * (N + 9). WK contains the following information on
output: The second N locations contain the last step taken. The third N locations
contain the last Newton step. The fourth N locations contain an estimate of the
gradient at the solution. The final N� locations contain the Hessian at the
approximate solution.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 4 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 4 7 Maximum number of Hessian evaluations exceeded.
 3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for UMIAH occurs when the norm of the gradient is less than
the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIAH
occurs when the scaled distance between the last two steps is less than the step
tolerance (RPARAM(2)).

4. If the default parameters are desired for UMIAH, then set IPARAM(1) to zero and call the
routine UMIAH. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling UMIAH:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

1218 � Chapter 8: Optimization IMSL MATH/LIBRARY

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter
Default: Not used in UMIAH.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: 100.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 where g = �f (x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

 in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

IMSL MATH/LIBRARY Chapter 8: Optimization � 1219

 where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max(10���, ����) in double where � is the machine
precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in UMIAH.

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

� �

 �� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called, and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine UMIAH uses a modified Newton method to find the minimum of a function f(x) of n
variables. First and second derivatives must be provided by the user. The algorithm computes an
optimal locally constrained step (Gay 1981) with a trust region restriction on the step. This
algorithm handles the case where the Hessian is indefinite and provides a way to deal with
negative curvature. For more details, see Dennis and Schnabel (1983, Appendix A) and Gay
(1983).

UMCGF
Minimizes a function of N variables using a conjugate gradient algorithm and a finite-difference
gradient.

1220 � Chapter 8: Optimization IMSL MATH/LIBRARY

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

DFPRED — A rough estimate of the expected reduction in the function. (Input)
DFPRED is used to determine the size of the initial change to X.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
Default: XSCALE = 1.0.

GRADTL — Convergence criterion. (Input)
The calculation ends when the sum of squares of the components of G is less than
GRADTL.
Default: GRADTL = 1.e-4.

MAXFN — Maximum number of function evaluations. (Input)
If MAXFN is set to zero, then no restriction on the number of function evaluations is set.
Default: MAXFN = 0.

G — Vector of length N containing the components of the gradient at the final parameter
estimates. (Output)

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMCGF (FCN, DFPRED, X [,…])

IMSL MATH/LIBRARY Chapter 8: Optimization � 1221

Specific: The specific interface names are S_UMCGF and D_UMCGF.

FORTRAN 77 Interface
Single: CALL UMCGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED,

X, G, FVALUE)

Double: The double precision name is DUMCGF.

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized and the solution is printed.
 USE UMCGF_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER I, MAXFN, NOUT
 REAL DFPRED, FVALUE, G(N), GRADTL, X(N), XGUESS(N)
 EXTERNAL ROSBRK
!
 DATA XGUESS/-1.2E0, 1.0E0/
!
 DFPRED = 0.2
 GRADTL = 1.0E-6
 MAXFN = 100
! Minimize the Rosenbrock function
 CALL UMCGF (ROSBRK, DFPRED, X, XGUESS=XGUESS, GRADTL=GRADTL, &
 G=G, FVALUE=FVALUE)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N)
99999 FORMAT (’ The solution is ’, 2F8.3, //, ’ The function ’, &
 ’evaluated at the solution is ’, F8.3, //, ’ The ’, &
 ’gradient is ’, 2F8.3, /)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
 RETURN
 END

1222 � Chapter 8: Optimization IMSL MATH/LIBRARY

Output
The solution is 0.999 0.998

The function evaluated at the solution is 0.000

The gradient is -0.001 0.000

Comments
1. Workspace may be explicitly provided, if desired, by use of U2CGF/DU2CGF. The

reference is:

CALL U2CGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED, X, G,
FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT)

The additional arguments are as follows:

S — Vector of length N used for the search direction in each iteration.

RSS — Vector of length N containing conjugacy information.

RSG — Vector of length N containing conjugacy information.

GINIT — Vector of length N containing the gradient values at the start of an iteration.

XOPT — Vector of length N containing the parameter values that yield the least
calculated value for FVALUE.

GOPT — Vector of length N containing the gradient values that yield the least
calculated value for FVALUE.

2. Informational errors

Type Code
 4 1 The line search of an integration was abandoned. This error may be

caused by an error in gradient.
 4 2 The calculation cannot continue because the search is uphill.
 4 3 The iteration was terminated because MAXFN was exceeded.
 3 4 The calculation was terminated because two consecutive iterations

failed to reduce the function.

3. Because of the close relation between the conjugate-gradient method and the method of
steepest descent, it is very helpful to choose the scale of the variables in a way that
balances the magnitudes of the components of a typical gradient vector. It can be
particularly inefficient if a few components of the gradient are much larger than the
rest.

4. If the value of the parameter GRADTL in the argument list of the routine is set to zero,
then the subroutine will continue its calculation until it stops reducing the objective
function. In this case, the usual behavior is that changes in the objective function
become dominated by computer rounding errors before precision is lost in the gradient

IMSL MATH/LIBRARY Chapter 8: Optimization � 1223

vector. Therefore, because the point of view has been taken that the user requires the
least possible value of the function, a value of the objective function that is small due
to computer rounding errors can prevent further progress. Hence, the precision in the
final values of the variables may be only about half the number of significant digits in
the computer arithmetic, but the least value of FVALUE is usually found to be quite
accurate.

Description
The routine UMCGF uses a conjugate gradient method to find the minimum of a function f (x) of
n variables. Only function values are required.

The routine is based on the version of the conjugate gradient algorithm described in Powell
(1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of
convergence without the storage of any matrices. Therefore, it is particularly suitable for
unconstrained minimization calculations where the number of variables is so large that matrices
of dimension n cannot be stored in the main memory of the computer. For smaller problems,
however, a routine such as routine UMINF (page 1196), is usually more efficient because each
iteration makes use of additional information from previous iterations.

Since a finite-difference method is used to estimate the gradient for some single precision
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact gradient can be easily provided, routine UMCGG (page 1223) should be used instead.

UMCGG
Minimizes a function of N variables using a conjugate gradient algorithm and a user-supplied
gradient.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

1224 � Chapter 8: Optimization IMSL MATH/LIBRARY

X – The point at which the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

DFPRED — A rough estimate of the expected reduction in the function. (Input) DFPRED is
used to determine the size of the initial change to X.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

GRADTL — Convergence criterion. (Input)
The calculation ends when the sum of squares of the components of G is less than
GRADTL.
Default: GRADTL = 1.e-4.

MAXFN — Maximum number of function evaluations. (Input)
Default: MAXFN = 100.

G — Vector of length N containing the components of the gradient at the final parameter
estimates. (Output)

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMCGG (FCN, GRAD, DFPRED, X [,…])

Specific: The specific interface names are S_UMCGG and D_UMCGG.

FORTRAN 77 Interface
Single: CALL UMCGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X,

G, FVALUE)

Double: The double precision name is DUMCGG.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1225

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized and the solution is printed.
 USE UMCGG_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER I, NOUT
 REAL DFPRED, FVALUE, G(N), GRADTL, X(N), &
 XGUESS(N)
 EXTERNAL ROSBRK, ROSGRD
!
 DATA XGUESS/-1.2E0, 1.0E0/
!
 DFPRED = 0.2
 GRADTL = 1.0E-7
! Minimize the Rosenbrock function
 CALL UMCGG (ROSBRK, ROSGRD, DFPRED, X, XGUESS=XGUESS, &
 GRADTL=GRADTL, G=G, FVALUE=FVALUE)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N)
99999 FORMAT (’ The solution is ’, 2F8.3, //, ’ The function ’, &
 ’evaluated at the solution is ’, F8.3, //, ’ The ’, &
 ’gradient is ’, 2F8.3, /)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
 RETURN
 END
!
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END

1226 � Chapter 8: Optimization IMSL MATH/LIBRARY

Output
The solution is 1.000 1.000

The function evaluated at the solution is 0.000

The gradient is 0.000 0.000

Comments
1. Workspace may be explicitly provided, if desired, by use of U2CGG/DU2CGG. The

reference is:

CALL U2CGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X, G,
FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT)

The additional arguments are as follows:

S — Vector of length N used for the search direction in each iteration.

RSS — Vector of length N containing conjugacy information.

RSG — Vector of length N containing conjugacy information.

GINIT — Vector of length N containing the gradient values at the start on an iteration.

XOPT — Vector of length N containing the parameter values which yield the least
calculated value for FVALUE.

GOPT — Vector of length N containing the gradient values which yield the least
calculated value for FVALUE.

2. Informational errors

Type Code
 4 1 The line search of an integration was abandoned. This error may be

caused by an error in gradient.
 4 2 The calculation cannot continue because the search is uphill.
 4 3 The iteration was terminated because MAXFN was exceeded.
 3 4 The calculation was terminated because two consecutive iterations

failed to reduce the function.

3. The routine includes no thorough checks on the part of the user program that calculates
the derivatives of the objective function. Therefore, because derivative calculation is a
frequent source of error, the user should verify independently the correctness of the
derivatives that are given to the routine.

4. Because of the close relation between the conjugate-gradient method and the method of
steepest descent, it is very helpful to choose the scale of the variables in a way that
balances the magnitudes of the components of a typical gradient vector. It can be
particularly inefficient if a few components of the gradient are much larger than the
rest.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1227

5. If the value of the parameter GRADTL in the argument list of the routine is set to zero,
then the subroutine will continue its calculation until it stops reducing the objective
function. In this case, the usual behavior is that changes in the objective function
become dominated by computer rounding errors before precision is lost in the gradient
vector. Therefore, because the point of view has been taken that the user requires the
least possible value of the function, a value of the objective function that is small due
to computer rounding errors can prevent further progress. Hence, the precision in the
final values of the variables may be only about half the number of significant digits in
the computer arithmetic, but the least value of FVALUE is usually found to be quite
accurate.

Description
The routine UMCGG uses a conjugate gradient method to find the minimum of a function f (x) of
n variables. Function values and first derivatives are required.

The routine is based on the version of the conjugate gradient algorithm described in Powell
(1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of
convergence without the storage of any matrices. Therefore, it is particularly suitable for
unconstrained minimization calculations where the number of variables is so large that matrices
of dimension n cannot be stored in the main memory of the computer. For smaller problems,
however, a subroutine such as IMSL routine UMING (page 1202), is usually more efficient
because each iteration makes use of additional information from previous iterations.

UMPOL
Minimizes a function of N variables using a direct search polytope algorithm.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

X — Real vector of length N containing the best estimate of the minimum found. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

1228 � Chapter 8: Optimization IMSL MATH/LIBRARY

XGUESS — Real vector of length N which contains an initial guess to the minimum. (Input)
Default: XGUESS = 0.0.

S — On input, real scalar containing the length of each side of the initial simplex.
(Input/Output)
If no reasonable information about S is known, S could be set to a number less than or
equal to zero and UMPOL will generate the starting simplex from the initial guess with a
random number generator. On output, the average distance from the vertices to the
centroid that is taken to be the solution; see Comment 4.
Default: S = 0.0.

FTOL — First convergence criterion. (Input)
The algorithm stops when a relative error in the function values is less than FTOL, i.e.
when (F(worst) � F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and F(best) are
the function values of the current worst and best points, respectively. Second
convergence criterion. The algorithm stops when the standard deviation of the function
values at the N + 1 current points is less than FTOL. If the subroutine terminates
prematurely, try again with a smaller value for FTOL.
Default: FTOL = 1.e-7.

MAXFCN — On input, maximum allowed number of function evaluations. (Input/ Output)
On output, actual number of function evaluations needed.
Default: MAXFCN = 200.

FVALUE — Function value at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMPOL (FCN, X [,…])

Specific: The specific interface names are S_UMPOL and D_UMPOL.

FORTRAN 77 Interface
Single: CALL UMPOL (FCN, N, XGUESS, S, FTOL, MAXFCN, X, FVALUE)

Double: The double precision name is DUMPOL.

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized and the solution is printed.
 USE UMPOL_INT
 USE UMACH_INT
! Variable declarations

IMSL MATH/LIBRARY Chapter 8: Optimization � 1229

 INTEGER N
 PARAMETER (N=2)
!
 INTEGER K, NOUT
 REAL FTOL, FVALUE, S, X(N), XGUESS(N)
 EXTERNAL FCN
!
! Initializations
! XGUESS = (-1.2, 1.0)
!
 DATA XGUESS/-1.2, 1.0/
!
 FTOL = 1.0E-10
 S = 1.0
!
 CALL UMPOL (FCN, X, XGUESS=XGUESS, S=S, FTOL=FTOL,&
 FVALUE=FVALUE)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(K),K=1,N), FVALUE
99999 FORMAT (’ The best estimate for the minimum value of the’, /, &
 ’ function is X = (’, 2(2X,F4.2), ’)’, /, ’ with ’, &
 ’function value FVALUE = ’, E12.6)
!
 END
! External function to be minimized
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 100.0*(X(1)*X(1)-X(2))**2 + (1.0-X(1))**2
 RETURN
 END

Output
The best estimate for the minimum value of the
function is X = (1.00 1.00)
with function value FVALUE = 0.502496E-10

Comments
1. Workspace may be explicitly provided, if desired, by use of U2POL/DU2POL. The

reference is:

CALL U2POL (FCN, N, XGUESS, S, FTOL, MAXFCN, X,
FVALUE, WK)

The additional argument is:

WK — Real work vector of length N**2 + 5 * N + 1.

2. Informational error

Type Code

1230 � Chapter 8: Optimization IMSL MATH/LIBRARY

 4 1 Maximum number of function evaluations exceeded.

3. Since UMPOL uses only function value information at each step to determine a new
approximate minimum, it could be quite ineficient on smooth problems compared to
other methods such as those implemented in routine UMINF that takes into account
derivative information at each iteration. Hence, routine UMPOL should only be used as a
last resort. Briefly, a set of N + 1 points in an N-dimensional space is called a simplex.
The minimization process iterates by replacing the point with the largest function value
by a new point with a smaller function value. The iteration continues until all the points
cluster sufficiently close to a minimum.

4. The value returned in S is useful for assessing the flatness of the function near the
computed minimum. The larger its value for a given value of FTOL, the flatter the
function tends to be in the neighborhood of the returned point.

Description
The routine UMPOL uses the polytope algorithm to find a minimum point of a function f(x) of n
variables. The polytope method is based on function comparison; no smoothness is assumed. It
starts with n + 1 points x�, x�, �, xn + 1. At each iteration, a new point is generated to replace the
worst point xj, which has the largest function value among these n + 1 points. The new point is
constructed by the following formula:

xk = c + �(c � xj)

where

1
i j ic x

n �
� �

and � (� > 0) is the reflection coefficient.

When xk is a best point, that is f(xk) � f(xi) for i = 1, �, n + 1, an expansion point is computed
xe = c + �(xk � c) where �(� > 1) is called the expansion coefficient. If the new point is a worst
point, then the polytope would be contracted to get a better new point. If the contraction step is
unsuccessful, the polytope is shrunk by moving the vertices halfway toward current best point.
This procedure is repeated until one of the following stopping criteria is satisfied:

Criterion 1:

fbest � fworst � �f (1. + |fbest|)

Criterion 2:
1

1
1 2

1
()

1

n
n jj

i f
i

f
f

n
�

�

�

�

�

� �

�

�
�

where fi = f (xi), fj = f (xj), and �f is a given tolerance. For a complete description, see Nelder and
Mead (1965) or Gill et al. (1981).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1231

UNLSF
Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm and a
finite-difference Jacobian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function that defines the least-squares

problem. The usage is CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – Vector of length M containing the function values at X. (Output)

FCN must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments
N — Number of variables. N must be less than or equal to M. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)
Default: NDEG = size (COEFF,1) – 1.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. By
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.
Default: XSCALE = 1.0.

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
all entries to 1.0.
Default: FSCALE = 1.0.

1232 � Chapter 8: Optimization IMSL MATH/LIBRARY

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVEC — Vector of length M containing the residuals at the approximate solution. (Output)

FJAC — M by N matrix containing a finite difference approximate Jacobian at the
approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFJAC = size (FJAC,1).

FORTRAN 90 Interface
Generic: CALL UNLSF (FCN, M, X [,…])

Specific: The specific interface names are S_UNLSF and D_UNLSF.

FORTRAN 77 Interface
Single: CALL UNLSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVEC, FJAC, LDFJAC)

Double: The double precision name is DUNLSF.

Example
The nonlinear least squares problem

� �
2

2
2

1

1min
2 i

x i
f x

�
�

�
R

where

� � � � � � � �2
1 2 1 2 110 and 1f x x x f x x� � � �

is solved. RPARAM(4) is changed to a non-default value.
 USE UNLSF_INT
 USE UMACH_INT
 USE U4LSF_INT
! Declaration of variables
 INTEGER LDFJAC, M, N
 PARAMETER (LDFJAC=2, M=2, N=2)
!
 INTEGER IPARAM(6), NOUT

IMSL MATH/LIBRARY Chapter 8: Optimization � 1233

 REAL FVEC(M), RPARAM(7),X(N), XGUESS(N)
 EXTERNAL ROSBCK
! Compute the least squares for the
! Rosenbrock function.
 DATA XGUESS/-1.2E0, 1.0E0/
!
! Relax the first stopping criterion by
! calling U4LSF and scaling the
! absolute function tolerance by 10.
 CALL U4LSF (IPARAM, RPARAM)
 RPARAM(4) = 10.0E0*RPARAM(4)
!

CALL UNLSF (ROSBCK, M, X,XGUESS=XGUESS, IPARAM=IPARAM, &
RPARAM=RPARAM, FVEC=FVEC)

! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)
!
99999 FORMAT (’ The solution is ’, 2F9.4, //, ’ The function ’, &
 ’evaluated at the solution is ’, /, 18X, 2F9.4, //, &
 ’ The number of iterations is ’, 10X, I3, /, ’ The ’, &
 ’number of function evaluations is ’, I3, /)
 END
!
 SUBROUTINE ROSBCK (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
!
 F(1) = 10.0E0*(X(2)-X(1)*X(1))
 F(2) = 1.0E0 - X(1)
 RETURN
 END

Output
The solution is 1.0000 1.0000

The function evaluated at the solution is
0.0000 0.0000

The number of iterations is 24
The number of function evaluations is 33

Comments
1. Workspace may be explicitly provided, if desired, by use of U2LSF/DU2LSF. The

reference is:

CALL U2LSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,
X, FVEC, FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length 9 * N + 3 * M � 1. WK contains the following
information on output: The second N locations contain the last step taken. The

1234 � Chapter 8: Optimization IMSL MATH/LIBRARY

third N locations contain the last Gauss-Newton step. The fourth N locations
contain an estimate of the gradient at the solution.

IWK — Integer work vector of length N containing the permutations used in the QR
factorization of the Jacobian at the solution.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 3 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 3 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

3. The first stopping criterion for UNLSF occurs when the norm of the function is less than
the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs
when the norm of the scaled gradient is less than the given gradient tolerance
(RPARAM(1)). The third stopping criterion for UNLSF occurs when the scaled distance
between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UNLSF, then set IPARAM(1) to zero and call the
routine UNLSF. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling UNLSF:

CALL U4LSF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1235

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: Not used in UNLSF.

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values for XSCALE are set internally.
Default: 1.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �
2

2

max ,1/i i ig x s

F x

�

 where

� � � �� � � �
2T

i s ii
g J x F x f� �

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE.
Default:

3,� �

 in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

 where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max (10���, ����) in double where � is the machine
precision.

RPARAM(4) = Absolute function tolerance.
Default: max (10���, ��), max(10���, ��) in double where � is the machine
precision.

1236 � Chapter 8: Optimization IMSL MATH/LIBRARY

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

� �

 �� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DU4LSF is called and RPARAM is declared double
 precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine UNLSF is based on the MINPACK routine LMDIF by Moré et al. (1980). It uses a
modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem
is stated as follows:

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a current
point, the algorithm uses the trust region approach:

� � � �� �
2

min
n

n
c c n c

x
F x J x x x

�

� �

R

subject to ||xn � xc||� � 	c

to get a new point xn, which is computed as

� � � �� � � � � �
1T T

n c c c c c cx x J x J x I J x F x�

�

� � �

where �c = 0 if 	c � ||(J(xc)T J(xc))�� J(xc)T F(xc)||� and �c > 0 otherwise. F(xc) and J(xc) are the
function values and the Jacobian evaluated at the current point xc. This procedure is repeated
until the stopping criteria are satisfied. For more details, see Levenberg (1944), Marquardt
(1963), or Dennis and Schnabel (1983, Chapter 10).

Since a finite-difference method is used to estimate the Jacobian for some single precision
calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a

IMSL MATH/LIBRARY Chapter 8: Optimization � 1237

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact Jacobian can be easily provided, routine UNLSJ (page 1237) should be used instead.

UNLSJ
Solves a nonlinear least squares problem using a modified Levenberg-Marquardt algorithm and a
user-supplied Jacobian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function which defines the least-squares

problem. The usage is CALL FCN (M, N, X, F), where

M – Length of F. (Input)
N – Length of X. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – Vector of length M containing the function values at X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL
JAC (M, N, X, FJAC, LDFJAC), where

M – Length of F. (Input)
N – Length of X. (Input)
X – Vector of length N at which point the Jacobian is evaluated. (Input)
X should not be changed by JAC.
FJAC – The computed M by N Jacobian at the point X. (Output)
LDFJAC – Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments
N — Number of variables. N must be less than or equal to M. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. By
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.
Default: XSCALE = 1.0.

1238 � Chapter 8: Optimization IMSL MATH/LIBRARY

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
all entries to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVEC — Vector of length M containing the residuals at the approximate solution. (Output)

FJAC — M by N matrix containing a finite-difference approximate Jacobian at the
approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFJAC = size (FJAC,1).

FORTRAN 90 Interface
Generic: CALL UNLSJ (FCN, JAC, M, X [,…])

Specific: The specific interface names are S_UNLSJ and D_UNLSJ.

FORTRAN 77 Interface
Single: CALL UNLSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVEC, FJAC, LDFJAC)

Double: The double precision name is DUNLSJ.

Example

The nonlinear least-squares problem

� �
2

2
2

1

1min
2 i

x i

f x
�

�

�
R

where

� � � � � � � �2
1 2 1 2 110 and 1f x x x f x x� � � �

is solved; default values for parameters are used.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1239

 USE UNLSJ_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER LDFJAC, M, N
 PARAMETER (LDFJAC=2, M=2, N=2)
!
 INTEGER IPARAM(6), NOUT
 REAL FVEC(M), X(N), XGUESS(N)
 EXTERNAL ROSBCK, ROSJAC
! Compute the least squares for the
! Rosenbrock function.
 DATA XGUESS/-1.2E0, 1.0E0/
 IPARAM(1) = 0
!
 CALL UNLSJ (ROSBCK, ROSJAC, M, X, XGUESS=XGUESS, &
 IPARAM=IPARAM, FVEC=FVEC)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4), IPARAM(5)
!
99999 FORMAT (’ The solution is ’, 2F9.4, //, ’ The function ’, &
 ’evaluated at the solution is ’, /, 18X, 2F9.4, //, &
 ’ The number of iterations is ’, 10X, I3, /, ’ The ’, &
 ’number of function evaluations is ’, I3, /, ’ The ’, &
 ’number of Jacobian evaluations is ’, I3, /)
 END
!
 SUBROUTINE ROSBCK (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
!
 F(1) = 10.0E0*(X(2)-X(1)*X(1))
 F(2) = 1.0E0 - X(1)
 RETURN
 END
!
 SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC)
 INTEGER M, N, LDFJAC
 REAL X(N), FJAC(LDFJAC,N)
!
 FJAC(1,1) = -20.0E0*X(1)
 FJAC(2,1) = -1.0E0
 FJAC(1,2) = 10.0E0
 FJAC(2,2) = 0.0E0
 RETURN
 END

Output
The solution is 1.0000 1.0000

The function evaluated at the solution is
0.0000 0.0000

The number of iterations is 23

1240 � Chapter 8: Optimization IMSL MATH/LIBRARY

The number of function evaluations is 32
The number of Jacobian evaluations is 24

Comments
1. Workspace may be explicitly provided, if desired, by use of U2LSJ/DU2LSJ. The

reference is:

CALL U2LSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 9 * N + 3 * M � 1. WK contains the following information
on output: The second N locations contain the last step taken. The third N
locations contain the last Gauss-Newton step. The fourth N locations contain an
estimate of the gradient at the solution.

IWK — Work vector of length N containing the permutations used in the QR
factorization of the Jacobian at the solution.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 3 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of Jacobian evaluations exceeded.
 3 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

3. The first stopping criterion for UNLSJ occurs when the norm of the function is less than
the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs
when the norm of the scaled gradient is less than the given gradient tolerance
(RPARAM(1)). The third stopping criterion for UNLSJ occurs when the scaled distance
between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UNLSJ, then set IPARAM(1) to zero and call the
routine UNLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling UNLSJ:

CALL U4LSF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1241

Note that the call to U4LSF will set IPARAM and RPARAM to their default values, so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: 100.

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values for XSCALE are set internally.
Default: 1.

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �
2

2

max ,1/i i ig x s

F x

�

 where

� � � �� � � �
2T

i s ii
g J x F x f� �

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE.
Default:

3,� �

 in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

1242 � Chapter 8: Optimization IMSL MATH/LIBRARY

� �max ,1/
i i

i i

x y
x s
�

 where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max (10���, ����) in double where � is the machine
precision.

RPARAM(4) = Absolute function tolerance.
Default: max (10���, ��), max(10���, ��) in double where � is the machine
precision.

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

�

 �� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DU4LSF is called and RPARAM is declared double
 precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine UNLSJ is based on the MINPACK routine LMDER by Moré et al. (1980). It uses a
modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem
is stated as follows:

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a current
point, the algorithm uses the trust region approach:

IMSL MATH/LIBRARY Chapter 8: Optimization � 1243

� � � �� �
2

min
n

n
c c n c

x
F x J x x x

�

� �

R

subject to ||xn � xc||� � 	c

to get a new point xn, which is computed as

� � � �� � � � � �
1T T

n c c c c c cx x J x J x I J x F x�

�

� � �

where �c = 0 if 	c � ||(J(xc)T J(xc))�� J(xc)T F (xc)||� and �c > 0 otherwise. F(xc) and J(xc) are the
function values and the Jacobian evaluated at the current point xc. This procedure is repeated
until the stopping criteria are satisfied. For more details, see Levenberg (1944),
Marquardt(1963), or Dennis and Schnabel (1983, Chapter 10).

BCONF
Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton
method and a finite-difference gradient.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have
 the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

1244 � Chapter 8: Optimization IMSL MATH/LIBRARY

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing an initial guess of the computed solution. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL BCONF (FCN, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCONF and D_BCONF.

FORTRAN 77 Interface
Single: CALL BCONF (FCN, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,

FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCONF.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1245

Example
The problem

� � � � � �
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

is solved with an initial guess (�1.2, 1.0) and default values for parameters.
 USE BCONF_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IPARAM(7), ITP, L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N), XGUESS(N), &
 XLB(N), XSCALE(N), XUB(N)
 EXTERNAL ROSBRK
!
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
! All the bounds are provided
 ITP = 0
! Default parameters are used
 IPARAM(1) = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
 CALL BCONF (ROSBRK, ITP, XLB, XUB, X, XGUESS=XGUESS, &
 IPARAM=IPARAM, FVALUE=F)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END

Output
The solution is 0.500 0.250

The function value is 0.250

1246 � Chapter 8: Optimization IMSL MATH/LIBRARY

The number of iterations is 24
The number of function evaluations is 34
The number of gradient evaluations is 26

Comments
1. Workspace may be explicitly provided, if desired, by use of B2ONF/DB2ONF. The

reference is:

CALL B2ONF (FCN, N, XGUESS, IBTYPE, XLB, XUB,
 XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length N * (2 * N + 8). WK contains the following
information on output: The second N locations contain the last step taken. The
third N locations contain the last Newton step. The fourth N locations contain an
estimate of the gradient at the solution. The final N� locations contain a BFGS
approximation to the Hessian at the solution.

IWK — Work vector of length N stored in column order. Only the lower triangular
portion of the matrix is stored in WK. The values returned in the upper triangle
should be ignored.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 4 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 3 8 The last global step failed to locate a lower point than the current X
value.

3. The first stopping criterion for BCONF occurs when the norm of the gradient is less than
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONF
occurs when the scaled distance between the last two steps is less than the step
tolerance (RPARAM(2)).

4. If the default parameters are desired for BCONF, then set IPARAM(1) to zero and call the
routine BCONF. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling BCONF:

IMSL MATH/LIBRARY Chapter 8: Optimization � 1247

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise,
it is initialized to a diagonal matrix containing

� �� � 2max , s if t f s�

 on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE.
Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in BCONF.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 where g = �f(x), s = XSCALE, and fs = FSCALE.
Default:

1248 � Chapter 8: Optimization IMSL MATH/LIBRARY

3,� �

 in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

 where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max (10���, ����) in double where � is the machine
precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in BCONF.

RPARAM(5) = False convergence �	
��
���.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

�

 �� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine BCONF uses a quasi-Newton method and an active set strategy to solve minimization
problems subject to simple bounds on the variables. The problem is stated as follows:

� �min
nx

f x
�R

IMSL MATH/LIBRARY Chapter 8: Optimization � 1249

subject to l � x � u

From a given starting point xc, an active set IA, which contains the indices of the variables at
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The
routine then computes the search direction for the free variables according to the formula

d = �B�� gc

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at
xc; both are computed with respect to the free variables. The search direction for the variables in
IA is set to zero. A line search is used to find a new point xn ,

xn = xc + �d, � � (0, 1]

such that

f (xn) � f (xc) + �gT d, � � (0, 0.5)

Finally, the optimality conditions

||g(xi)|| � �, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

are checked, where � is a gradient tolerance. When optimality is not achieved, B is updated
according to the BFGS formula:

T T

T T

Bss B yyB B
s Bs y s

� � �

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next
iteration.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set. In
the latter case, a variable that violates the optimality condition will be dropped out of IA. For
more details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For
more detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the gradient for some single precision
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact gradient can be easily provided, routine BCONG (page 1249) should be used instead.

BCONG
Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton
method and a user-supplied gradient.

1250 � Chapter 8: Optimization IMSL MATH/LIBRARY

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables
 will have the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Vector of length N containing the computed solution. (Output)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1251

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL BCONG (FCN, GRAD, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCONG and D_BCONG.

FORTRAN 77 Interface
Single: CALL BCONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,

FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCONG.

Example
The problem

1252 � Chapter 8: Optimization IMSL MATH/LIBRARY

� � � � � �
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

is solved with an initial guess (�1.2, 1.0), and default values for parameters.
 USE BCONG_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IPARAM(7), ITP, L, NOUT
 REAL F, X(N), XGUESS(N), XLB(N), XUB(N)
 EXTERNAL ROSBRK, ROSGRD
!
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
! All the bounds are provided
 ITP = 0
! Default parameters are used
 IPARAM(1) = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
 CALL BCONG (ROSBRK, ROSGRD, ITP, XLB, XUB, X, XGUESS=XGUESS, &
 IPARAM=IPARAM, FVALUE=F)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END
!
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END

IMSL MATH/LIBRARY Chapter 8: Optimization � 1253

Output
The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 22
The number of function evaluations is 32
The number of gradient evaluations is 23

Comments
1. Workspace may be explicitly provided, if desired, by use of B2ONG/DB2ONG. The

reference is:

 CALL B2ONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length N * (2 * N + 8). WK contains the following
information on output: The second N locations contain the last step taken. The
third N locations contain the last Newton step. The fourth N locations contain an
estimate of the gradient at the solution. The final N� locations contain a BFGS
approximation to the Hessian at the solution.

IWK — Work vector of length N stored in column order. Only the lower triangular
portion of the matrix is stored in WK. The values returned in the upper triangle
should be ignored.

2. Informational errors

Type Code

 3 1 Both the actual and predicted relative reductions in the function are less
than or equal to the relative function convergence tolerance.

 4 2 The iterates appear to be converging to a noncritical point.

 4 3 Maximum number of iterations exceeded.

 4 4 Maximum number of function evaluations exceeded.

 4 5 Maximum number of gradient evaluations exceeded.

 4 6 Five consecutive steps have been taken with the maximum step length.

 2 7 Scaled step tolerance satisfied; the current point may be an approximate
local solution, or the algorithm is making very slow progress and is not near a solution,
or STEPTL is too big.

1254 � Chapter 8: Optimization IMSL MATH/LIBRARY

3 8 The last global step failed to locate a lower point than the current X value.

3. The first stopping criterion for BCONG occurs when the norm of the gradient is less than
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONG
occurs when the scaled distance between the last two steps is less than the step
tolerance (RPARAM(2)).

4. If the default parameters are desired for BCONG, then set IPARAM (1) to zero and call
the routine BCONG. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling BCONG:

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it
is initialized to a diagonal matrix containing

� �� � 2max , s if t f s�

on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE.
Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in BCONG.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1255

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

where g = �f (x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max (10���, ����) in double where � is the machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in BCONG.

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

�

�� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called and RPARAM is declared double
precision.

1256 � Chapter 8: Optimization IMSL MATH/LIBRARY

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine BCONG uses a quasi-Newton method and an active set strategy to solve minimization
problems subject to simple bounds on the variables. The problem is stated as follows:

� �min
nx

f x
�R

subject to l � x � u

From a given starting point xc, an active set IA, which contains the indices of the variables at
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The
routine then computes the search direction for the free variables according to the formula

d = �B�� gc

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at
xc; both are computed with respect to the free variables. The search direction for the variables in
IA is set to zero. A line search is used to find a new point xn ,

xn = xc + �d, � � (0, 1]

such that

f (xn) � f (xc) + �gT d, � � (0, 0.5)

Finally, the optimality conditions

||g(xi)|| � �, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

are checked, where � is a gradient tolerance. When optimality is not achieved, B is updated
according to the BFGS formula:

T T

T T

Bss B yyB B
s Bs y s

� � �

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next
iteration.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set. In
the latter case, a variable that violates the optimality condition will be dropped out of IA. For
more details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For
more detailed information on active set strategy, see Gill and Murray (1976).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1257

BCODH
Minimizes a function of N variables subject to bounds on the variables using a modified Newton
method and a finite-difference Hessian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

 0 User will supply all the bounds.

 1 All variables are nonnegative.

 2 All variables are nonpositive.

 3 User supplies only the bounds on 1st variable, all other variables will have
 the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input)

XUB — Vector of length N containing the upper bounds on the variables. (Input)

1258 � Chapter 8: Optimization IMSL MATH/LIBRARY

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL BCODH (FCN, GRAD, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCODH and D_BCODH.

FORTRAN 77 Interface
Single: CALL BCODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,

FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCODH.

Example

The problem

IMSL MATH/LIBRARY Chapter 8: Optimization � 1259

� � � � � �
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

is solved with an initial guess (�1.2, 1.0), and default values for parameters.
 USE BCODH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IP, IPARAM(7), L, NOUT
 REAL F, X(N), XGUESS(N), XLB(N), XUB(N)
 EXTERNAL ROSBRK, ROSGRD
!
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
!
 IPARAM(1) = 0
 IP = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
 CALL BCODH (ROSBRK, ROSGRD, IP, XLB, XUB, X, XGUESS=XGUESS, &
 IPARAM=IPARAM, FVALUE=F)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END

1260 � Chapter 8: Optimization IMSL MATH/LIBRARY

Output
The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 17
The number of function evaluations is 26
The number of gradient evaluations is 18

Comments
1. Workspace may be explicitly provided, if desired, by use of B2ODH/DB2ODH. The

reference is:

CALL B2ODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length N * (N + 8). WK contains the following
information on output: The second N locations contain the last step taken. The
third N locations contain the last Newton step. The fourth N locations contain an
estimate of the gradient at the solution. The final N� locations contain the
Hessian at the approximate solution.

IWK — Integer work vector of length N.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 4 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 4 7 Maximum number of Hessian evaluations exceeded.

3. The first stopping criterion for BCODH occurs when the norm of the gradient is less than
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCODH
occurs when the scaled distance between the last two steps is less than the step
tolerance (RPARAM(2)).

4. If the default parameters are desired for BCODH, then set IPARAM(1) to zero and call the
routine BCODH. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM; then the following steps should be taken before calling BCODH:

IMSL MATH/LIBRARY Chapter 8: Optimization � 1261

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
Default: Not used in BCODH.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: 100.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

where g = �f (x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

1262 � Chapter 8: Optimization IMSL MATH/LIBRARY

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max (10���, ����) in double where � is the machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in BCODH.

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

�

�� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine BCODH uses a modified Newton method and an active set strategy to solve
minimization problems subject to simple bounds on the variables. The problem is stated as

� �min
nx

f x
�R

subject to l � x � u

From a given starting point xc, an active set IA, which contains the indices of the variables at
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The
routine then computes the search direction for the free variables according to the formula

d = �H�� gc

IMSL MATH/LIBRARY Chapter 8: Optimization � 1263

where H is the Hessian and gc is the gradient evaluated at xc; both are computed with respect to
the free variables. The search direction for the variables in IA is set to zero. A line search is used
to find a new point xn ,

xn = xc + �d, � � (0, 1]

such that

f (xn) � f (xc) + �gT d, � � (0, 0.5)

Finally, the optimality conditions

||g(xi)|| � �, li < xi < ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

are checked where � is a gradient tolerance. When optimality is not achieved, another search
direction is computed to begin the next iteration. This process is repeated until the optimality
criterion is met.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set. In
the latter case, a variable that violates the optimality condition will be dropped out of IA. For
more details on the modified Newton method and line search, see Dennis and Schnabel (1983).
For more detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the Hessian for some single precision
calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact Hessian can be easily provided, routine BCOAH (page 1263) should be used instead.

BCOAH
Minimizes a function of N variables subject to bounds on the variables using a modified Newton
method and a user-supplied Hessian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

1264 � Chapter 8: Optimization IMSL MATH/LIBRARY

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The usage is
CALL HESS (N, X, H, LDH), where

N – Length of X. (Input)

X – Vector of length N at which point the Hessian is evaluated. (Input)
X should not be changed by HESS.

H – The Hessian evaluated at the point X. (Output)

LDH – Leading dimension of H exactly as specified in the dimension statement of the
calling program. (Input)

HESS must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have
 the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input)

XUB — Vector of length N containing the upper bounds on the variables. (Input)

X — Vector of length N containing the computed solution. (Output)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1265

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL BCOAH (FCN, GRAD, HESS, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCOAH and D_BCOAH.

FORTRAN 77 Interface
Single: CALL BCOAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB, XUB,

XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCOAH.

Example
The problem

1266 � Chapter 8: Optimization IMSL MATH/LIBRARY

� � � � � �
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

is solved with an initial guess (�1.2, 1.0), and default values for parameters.
 USE BCOAH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IP, IPARAM(7), L, NOUT
 REAL F, X(N), XGUESS(N), XLB(N), XUB(N)
 EXTERNAL ROSBRK, ROSGRD, ROSHES
!
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
!
 IPARAM(1) = 0
 IP = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
 CALL BCOAH (ROSBRK, ROSGRD, ROSHES, IP, XLB, XUB, X, &
 XGUESS=XGUESS,IPARAM=IPARAM, FVALUE=F)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3, /, &
 ’ The number of Hessian evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END
!
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END

IMSL MATH/LIBRARY Chapter 8: Optimization � 1267

!
 SUBROUTINE ROSHES (N, X, H, LDH)
 INTEGER N, LDH
 REAL X(N), H(LDH,N)
!
 H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0
 H(2,1) = -4.0E2*X(1)
 H(1,2) = H(2,1)
 H(2,2) = 2.0E2
!
 RETURN
 END

Output
The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 18
The number of function evaluations is 29
The number of gradient evaluations is 19
The number of Hessian evaluations is 18

Comments
1. Workspace may be explicitly provided, if desired, by use of B2OAH/DB2OAH. The

reference is:

CALL B2OAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB,
 XUB, XSCALE, FSCALE, IPARAM, RPARAM, X,
 FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length N * (N + 8). WK contains the following information on
output: The second N locations contain the last step taken. The third N locations
contain the last Newton step. The fourth N locations contain an estimate of the
gradient at the solution. The final N� locations contain the Hessian at the
approximate solution.

IWK — Work vector of length N.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 4 2 The iterates appear to be converging to a noncritical point.

1268 � Chapter 8: Optimization IMSL MATH/LIBRARY

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 4 7 Maximum number of Hessian evaluations exceeded.
 3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for BCOAH occurs when the norm of the gradient is less than
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCOAH
occurs when the scaled distance between the last two steps is less than the step
tolerance (RPARAM(2)).

4. If the default parameters are desired for BCOAH, then set IPARAM(1) to zero and call the
routine BCOAH. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling BCOAH:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
Default: Not used in BCOAH.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1269

IPARAM(7) = Maximum number of Hessian evaluations.
Default: 100.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

where g = �f(x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max (10���, ����) in double where � is the machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in BCOAH.

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

�

�� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

1270 � Chapter 8: Optimization IMSL MATH/LIBRARY

If double precision is required, then DU4INF is called and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine BCOAH uses a modified Newton method and an active set strategy to solve
minimization problems subject to simple bounds on the variables. The problem is stated as
follows:

� �min
nx

f x
�R

subject to l � x � u

From a given starting point xc, an active set IA, which contains the indices of the variables at
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The
routine then computes the search direction for the free variables according to the formula

d = �H�� gc

where H is the Hessian and gc is the gradient evaluated at xc; both are computed with respect to
the free variables. The search direction for the variables in IA is set to zero. A line search is used
to find a new point xn ,

xn = xc + �d, � � (0, 1]

such that

f(xn) � f(xc) + �gT d, � � (0, 0.5)

Finally, the optimality conditions

||g(xi)|| � �, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

are checked where � is a gradient tolerance. When optimality is not achieved, another search
direction is computed to begin the next iteration. This process is repeated until the optimality
criterion is met.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set. In
the latter case, a variable that violates the optimality condition will be dropped out of IA. For
more details on the modified Newton method and line search, see Dennis and Schnabel (1983).
For more detailed information on active set strategy, see Gill and Murray (1976).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1271

BCPOL
Minimizes a function of N variables subject to bounds on the variables using a direct search
complex algorithm.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on the first, variable. All other variables will
have the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input, if IBTYPE
= 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on the variables. (Input, if IBTYPE
= 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Real vector of length N containing the best estimate of the minimum found. (Output)

Optional Arguments
N — The number of variables. (Input)

Default: N = size (XGUESS,1).

XGUESS — Real vector of length N that contains an initial guess to the minimum. (Input)
Default: XGUESS = 0.0.

1272 � Chapter 8: Optimization IMSL MATH/LIBRARY

FTOL — First convergence criterion. (Input)
The algorithm stops when a relative error in the function values is less than FTOL, i.e.
when (F(worst) � F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and F(best) are
the function values of the current worst and best point, respectively. Second
convergence criterion. The algorithm stops when the standard deviation of the function
values at the 2 * N current points is less than FTOL. If the subroutine terminates
prematurely, try again with a smaller value FTOL.
Default: FTOL = 1.0e-4 for single and 1.0d-8 for double precision.

MAXFCN — On input, maximum allowed number of function evaluations. (Input/ Output)
On output, actual number of function evaluations needed.
Default: MAXFCN = 300.

FVALUE — Function value at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL BCPOL (FCN, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCPOL and D_BCPOL.

FORTRAN 77 Interface
Single: CALL BCPOL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL, MAXFCN,

X, FVALUE)

Double: The double precision name is DBCPOL.

Example
The problem

� � � � � �
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

is solved with an initial guess (�1.2, 1.0), and the solution is printed.
 USE BCPOL_INT
 USE UMACH_INT
! Variable declarations
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IBTYPE, K, NOUT
 REAL FTOL, FVALUE, X(N), XGUESS(N), XLB(N), XUB(N)
 EXTERNAL FCN

IMSL MATH/LIBRARY Chapter 8: Optimization � 1273

!
! Initializations
! XGUESS = (-1.2, 1.0)
! XLB = (-2.0, -1.0)
! XUB = (0.5, 2.0)
 DATA XGUESS/-1.2, 1.0/, XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
!
 FTOL = 1.0E-5
 IBTYPE = 0
!
 CALL BCPOL (FCN, IBTYPE, XLB, XUB, X, XGUESS=XGUESS, FTOL=FTOL, &
 FVALUE=FVALUE)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(K),K=1,N), FVALUE
99999 FORMAT (’ The best estimate for the minimum value of the’, /, &
 ’ function is X = (’, 2(2X,F4.2), ’)’, /, ’ with ’, &
 ’function value FVALUE = ’, E12.6)
!
 END
! External function to be minimized
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 100.0*(X(2)-X(1)*X(1))**2 + (1.0-X(1))**2
 RETURN
 END

Output
The best estimate for the minimum value of the
function is X = (0.50 0.25)
with function value FVALUE = 0.250002E+00

Comments
1. Workspace may be explicitly provided, if desired, by use of B2POL/DB2POL. The

reference is:

CALL B2POL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL,
 MAXFCN, X, FVALUE, WK)

The additional argument is:

WK — Real work vector of length 2 * N**2 + 5 * N

2. Informational error

Type Code
 3 1 The maximum number of function evaluations is exceeded.

3. Since BCPOL uses only function-value information at each step to determine a new
approximate minimum, it could be quite inefficient on smooth problems compared to
other methods such as those implemented in routine BCONF (page 1243), which takes

1274 � Chapter 8: Optimization IMSL MATH/LIBRARY

into account derivative information at each iteration. Hence, routine BCPOL should only
be used as a last resort. Briefly, a set of 2 * N points in an N-dimensional space is called
a complex. The minimization process iterates by replacing the point with the largest
function value by a new point with a smaller function value. The iteration continues
until all the points cluster sufficiently close to a minimum.

Description
The routine BCPOL uses the complex method to find a minimum point of a function of n
variables. The method is based on function comparison; no smoothness is assumed. It starts with
2n points x�, x�, �, x�n. At each iteration, a new point is generated to replace the worst point xj,
which has the largest function value among these 2n points. The new point is constructed by the
following formula:

xk = c + �(c � xj)

where

1
2 1 i j ic x

n �
�

�

�

and � (� > 0) is the reflection coefficient.

When xk is a best point, that is, when f (xk) � f (xi) for i = 1, �, 2n, an expansion point is
computed xe = c + �(xk � c), where �(� > 1) is called the expansion coefficient. If the new point
is a worst point, then the complex would be contracted to get a better new point. If the
contraction step is unsuccessful, the complex is shrunk by moving the vertices halfway toward
the current best point. Whenever the new point generated is beyond the bound, it will be set to
the bound. This procedure is repeated until one of the following stopping criteria is satisfied:

Criterion 1:

fbest � fworst � �f(1. + |fbest|)

Criterion 2:
2

2
1 2

1
()

2

n
n jj

i f
i

f
f

n
�

�

�

� �
�

�

where fi = f(xi), fj = f(xj), and �f is a given tolerance. For a complete description, see Nelder and
Mead (1965) or Gill et al. (1981).

BCLSF
Solves a nonlinear least squares problem subject to bounds on the variables using a modified
Levenberg-Marquardt algorithm and a finite-difference Jacobian.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1275

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have
 the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments
N — Number of variables. (Input)

N must be less than or equal to M.
Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)
Default: XGUESS = 0.0.

1276 � Chapter 8: Optimization IMSL MATH/LIBRARY

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. By
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
all entries to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM= 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVEC — Vector of length M containing the residuals at the approximate solution. (Output)

FJAC — M by N matrix containing a finite difference approximate Jacobian at the
approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFJAC = size (FJAC ,1).

FORTRAN 90 Interface
Generic: CALL BCLSF (FCN, M, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCLSF and D_BCLSF.

FORTRAN 77 Interface
Single: CALL BCLSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,

FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC)

Double: The double precision name is DBCLSF.

Example
The nonlinear least squares problem

� �
2

2
2

1

1min
2 i

x i
f x

�
�

�
R

subject to �2 � x� � 0.5

IMSL MATH/LIBRARY Chapter 8: Optimization � 1277

 �1 � x� � 2

where

� � � � � � � �2
1 2 1 2 110 and 1f x x x f x x� � � �

is solved with an initial guess (�1.2, 1.0) and default values for parameters.
 USE BCLSF_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER M, N
 PARAMETER (M=2, N=2)
!
 INTEGER IPARAM(7), ITP, NOUT
 REAL FSCALE(M), FVEC(M), X(N), XGUESS(N), XLB(N), XS(N), XUB(N)
 EXTERNAL ROSBCK
! Compute the least squares for the
! Rosenbrock function.
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
! All the bounds are provided
 ITP = 0
! Default parameters are used
 IPARAM(1) = 0
!
 CALL BCLSF (ROSBCK, M, ITP, XLB, XUB, X, XGUESS=XGUESS, &
 IPARAM=IPARAM, FVEC=FVEC)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)
!
99999 FORMAT (’ The solution is ’, 2F9.4, //, ’ The function ’, &
 ’evaluated at the solution is ’, /, 18X, 2F9.4, //, &
 ’ The number of iterations is ’, 10X, I3, /, ’ The ’, &
 ’number of function evaluations is ’, I3, /)
 END
!
 SUBROUTINE ROSBCK (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
!
 F(1) = 1.0E1*(X(2)-X(1)*X(1))
 F(2) = 1.0E0 - X(1)
 RETURN
 END

Output
The solution is 0.5000 0.2500

The function evaluated at the solution is
0.0000 0.5000

The number of iterations is 15
The number of function evaluations is 20

1278 � Chapter 8: Optimization IMSL MATH/LIBRARY

Comments
1. Workspace may be explicitly provided, if desired, by use of B2LSF/DB2LSF. The

reference is:

CALL B2LSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE,
IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 11 * N + 3 * M � 1. WK contains the following
information on output: The second N locations contain the last step taken. The
third N locations contain the last Gauss-Newton step. The fourth N locations
contain an estimate of the gradient at the solution.

IWK — Work vector of length 2 * N containing the permutations used in the QR
factorization of the Jacobian at the solution.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 3 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 3 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

3. The first stopping criterion for BCLSF occurs when the norm of the function is less than
the absolute function tolerance. The second stopping criterion occurs when the norm of
the scaled gradient is less than the given gradient tolerance. The third stopping criterion
for BCLSF occurs when the scaled distance between the last two steps is less than the
step tolerance.

4. If the default parameters are desired for BCLSF, then set IPARAM(1) to zero and call the
routine BCLSF. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling BCLSF:

CALL U4LSF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IMSL MATH/LIBRARY Chapter 8: Optimization � 1279

IPARAM — Integer vector of length 6.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: 100.

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values for XSCALE are set internally.
Default: 1.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �
2

2

max ,1/i i ig x s

F x

�

where

� � � �� � � �
2T

i s ii
g J x F x f� �

J(x) is the Jacobian, s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.

1280 � Chapter 8: Optimization IMSL MATH/LIBRARY

Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���� ������ max(10���, ����) in double where � is the machine precision.

RPARAM(4) = Absolute function tolerance.
Default: max (10���, ��), max(10�	�, ��) in double where � is the machine precision.

RPARAM(5) = False convergence tolerance.
Default: 100 � where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

� �

�2 = ||s||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DU4LSF is called and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine BCLSF uses a modified Levenberg-Marquardt method and an active set strategy to
solve nonlinear least squares problems subject to simple bounds on the variables. The problem
is stated as follows:

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

subject to l � x � u

where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a given
starting point, an active set IA, which contains the indices of the variables at their bounds, is
built. A variable is called a “free variable” if it is not in the active set. The routine then
computes the search direction for the free variables according to the formula

d = � (JT J + �I)�� JT F

where � is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian with respect to
the free variables. The search direction for the variables in IA is set to zero. The trust region

IMSL MATH/LIBRARY Chapter 8: Optimization � 1281

approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the
optimality conditions are checked. The conditions are

||g(xi)|| � �, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

where � is a gradient tolerance. This process is repeated until the optimality criterion is
achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set. In
the latter case, a variable that violates the optimality condition will be dropped out of IA. For
more detail on the Levenberg-Marquardt method, see Levenberg (1944), or Marquardt (1963).
For more detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the Jacobian for some single precision
calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact Jacobian can be easily provided, routine BCLSJ (page 1281) should be used instead.

BCLSJ
Solves a nonlinear least squares problem subject to bounds on the variables using a modified
Levenberg-Marquardt algorithm and a user-supplied Jacobian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL
JAC (M, N, X, FJAC, LDFJAC), where

M – Length of F. (Input)

N – Length of X. (Input)

1282 � Chapter 8: Optimization IMSL MATH/LIBRARY

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

FJAC – The computed M by N Jacobian at the point X. (Output)

LDFJAC – Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have
the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments
N — Number of variables. (Input)

N must be less than or equal to M.
Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. By
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1283

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
all entries to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM= 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVEC — Vector of length M containing the residuals at the approximate solution. (Output)

FJAC — M by N matrix containing a finite difference approximate Jacobian at the
approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFJAC size = (FJAC,1).

FORTRAN 90 Interface
Generic: CALL BCLSJ (FCN, JAC, M, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCLSJ and D_BCLSJ.

FORTRAN 77 Interface
Single: CALL BCLSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB,

XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, FJAC,
LDFJAC)

Double: The double precision name is DBCLSJ.

Example
The nonlinear least squares problem

� �
2

2
2

1

1min
2 i

x i
f x

�
�

�
R

subject to �2 � x� � 0.5

 �1 � x� � 2

where

1284 � Chapter 8: Optimization IMSL MATH/LIBRARY

� � � � � � � �2
1 2 1 2 110 and 1f x x x f x x� � � �

is solved with an initial guess (�1.2, 1.0) and default values for parameters.
 USE BCLSJ_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER LDFJAC, M, N
 PARAMETER (LDFJAC=2, M=2, N=2)
!
 INTEGER IPARAM(7), ITP, NOUT
 REAL FVEC(M), RPARAM(7), X(N), XGUESS(N), XLB(N), XUB(N)
 EXTERNAL ROSBCK, ROSJAC
! Compute the least squares for the
! Rosenbrock function.
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
! All the bounds are provided
 ITP = 0
! Default parameters are used
 IPARAM(1) = 0
!
 CALL BCLSJ (ROSBCK,ROSJAC,M,ITP,XLB,XUB,X,XGUESS=XGUESS, &
 IPARAM=IPARAM, FVEC=FVEC)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)
!
99999 FORMAT (’ The solution is ’, 2F9.4, //, ’ The function ’, &
 ’evaluated at the solution is ’, /, 18X, 2F9.4, //, &
 ’ The number of iterations is ’, 10X, I3, /, ’ The ’, &
 ’number of function evaluations is ’, I3, /)
 END
!
 SUBROUTINE ROSBCK (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
!
 F(1) = 1.0E1*(X(2)-X(1)*X(1))
 F(2) = 1.0E0 - X(1)
 RETURN
 END
!
 SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC)
 INTEGER M, N, LDFJAC
 REAL X(N), FJAC(LDFJAC,N)
!
 FJAC(1,1) = -20.0E0*X(1)
 FJAC(2,1) = -1.0E0
 FJAC(1,2) = 10.0E0
 FJAC(2,2) = 0.0E0
 RETURN
 END

IMSL MATH/LIBRARY Chapter 8: Optimization � 1285

Output
The solution is 0.5000 0.2500

The function evaluated at the solution is
0.0000 0.5000

The number of iterations is 13
The number of function evaluations is 21

Comments
1. Workspace may be explicitly provided, if desired, by use of B2LSJ/DB2LSJ. The

reference is:

CALL B2LSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 11 * N + 3 * M � 1. WK contains the following
information on output: The second N locations contain the last step taken. The
third N locations contain the last Gauss-Newton step. The fourth N locations
contain an estimate of the gradient at the solution.

IWK — Work vector of length 2 * N containing the permutations used in the QR
factorization of the Jacobian at the solution.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 3 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 3 6 Five consecutive steps have been taken with the maximum step

length.
 4 5 Maximum number of Jacobian evaluations exceeded.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

3. The first stopping criterion for BCLSJ occurs when the norm of the function is less than
the absolute function tolerance. The second stopping criterion occurs when the norm of
the scaled gradient is less than the given gradient tolerance. The third stopping criterion
for BCLSJ occurs when the scaled distance between the last two steps is less than the
step tolerance.

4. If the default parameters are desired for BCLSJ, then set IPARAM(1) to zero and call the
routine BCLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling BCLSJ:

1286 � Chapter 8: Optimization IMSL MATH/LIBRARY

CALL U4LSF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: 100.

IPARAM(6) = Internal variable scaling flag.

If IPARAM(6) = 1, then the values for XSCALE are set internally.
Default: 1.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �
2

2

max ,1/i i ig x s

F x

�

where

� � � �� � � �
2T

i s ii
g J x F x f� �

J(x) is the Jacobian, s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1287

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step
between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.

Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max(10���, ����) in double where � is the machine precision.

RPARAM(4) = Absolute function tolerance.
Default: max (10���, ��), max(10���, ��) in double where � is the machine precision.

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

� �

�2 = ||s||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DU4LSF is called and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to ERROR HANDLING in the Introduction.

Description
The routine BCLSJ uses a modified Levenberg-Marquardt method and an active set strategy to
solve nonlinear least squares problems subject to simple bounds on the variables. The problem
is stated as follows:

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

subject to l � x � u

1288 � Chapter 8: Optimization IMSL MATH/LIBRARY

where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a given
starting point, an active set IA, which contains the indices of the variables at their bounds, is
built. A variable is called a “free variable” if it is not in the active set. The routine then
computes the search direction for the free variables according to the formula

d = � (JT J + �I)�� JT F

where is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian with respect to the
free variables. The search direction for the variables in IA is set to zero. The trust region
approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the
optimality conditions are checked. The conditions are

||g(xi)|| � �, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

where � is a gradient tolerance. This process is repeated until the optimality criterion is
achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set. In
the latter case, a variable that violates the optimality condition will be dropped out of IA. For
more detail on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt (1963).
For more detailed information on active set strategy, see Gill and Murray (1976).

BCNLS
Solves a nonlinear least-squares problem subject to bounds on the variables and general linear
constraints.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where
M � Number of functions. (Input)
N � Number of variables. (Input)
X � Array of length N containing the point at which the function will be evaluated.
(Input)
F � Array of length M containing the computed function at the point X. (Output)
The routine FCN must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

C — MCON � N matrix containing the coefficients of the MCON general linear constraints.
(Input)

BL — Vector of length MCON containing the lower limit of the general constraints. (Input).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1289

BU — Vector of length MCON containing the upper limit of the general constraints. (Input).

IRTYPE — Vector of length MCON indicating the types of general constraints in the matrix C.
(Input)
Let R(I) = C(I, 1)*X(1) + � + C(I, N)*X(N). Then the value of IRTYPE(I)
signifies the following:

 IRTYPE(I) I-th CONSTRAINT
 0 BL(I).EQ.R(I).EQ.BU(I)
 1 R(I).LE.BU(I)
 2 R(I).GE.BL(I)
 3 BL(I).LE.R(I).LE.BU(I)

XLB — Vector of length N containing the lower bounds on variables; if there is no lower
bound on a variable, then 1.0E30 should be set as the lower bound. (Input)

XUB — Vector of length N containing the upper bounds on variables; if there is no upper
bound on a variable, then �1.0E30 should be set as the upper bound. (Input)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments
N — Number of variables. (Input)

Default: N = size (C,2).

MCON — The number of general linear constraints for the system, not including simple
bounds. (Input)
Default: MCON = size (C,1).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling
program. (Input)
LDC must be at least MCON.
Default: LDC = size (C,1).

XGUESS — Vector of length N containing the initial guess. (Input)
Default: XGUESS = 0.0.

RNORM — The Euclidean length of components of the function f (x) after the approximate
solution has been found. (Output).

ISTAT — Scalar indicating further information about the approximate solution X. (Output)
See the Comments section for a description of the tolerances and the vectors IPARAM
and RPARAM.

ISTAT Meaning

1290 � Chapter 8: Optimization IMSL MATH/LIBRARY

1 The function f (x) has a length less than TOLF = RPARAM(1). This is the expected
value for ISTAT when an actual zero value of f (x) is anticipated.

2 The function f (x) has reached a local minimum. This is the expected value for
ISTAT when a nonzero value of f (x) is anticipated.

3 A small change (absolute) was noted for the vector x. A full model problem step
was taken. The condition for ISTAT = 2 may also be satisfied, so that a
minimum has been found. However, this test is made before the test for
ISTAT = 2.

4 A small change (relative) was noted for the vector x. A full model problem step
was taken. The condition for ISTAT = 2 may also be satisfied, so that a
minimum has been found. However, this test is made before the test for
ISTAT = 2.

5 The number of terms in the quadratic model is being restricted by the amount of
storage allowed for that purpose. It is suggested, but not required, that
additional storage be given for the quadratic model parameters. This is
accessed through the vector
IPARAM, documented below.

6 Return for evaluation of function and Jacobian if reverse
communication is desired. See the Comments below.

FORTRAN 90 Interface
Generic: CALL BCNLS (FCN, M, C, BL, BU, IRTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCNLS and D_BCNLS.

FORTRAN 77 Interface
Single: CALL BCNLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE,

XLB, XUB, XGUESS, X, RNORM, ISTAT)

Double: The double precision name is DBCNLS.

Example 1
This example finds the four variables x1, x2, x3, x4 that are in the model function

� � 2 4
1 3

x t x th t x e x e� �

There are values of h(t) at five values of t.
h(0.05) = 2.206

h(0.1) = 1.994

IMSL MATH/LIBRARY Chapter 8: Optimization � 1291

h(0.4) = 1.35

h(0.5) = 1.216

h(1.0) = 0.7358

There are also the constraints that x2, x4 � 0, x1, x3 � 0, and x2 and x4 must be separated by at
least 0.05. Nothing more about the values of the parameters is known so the initial guess is 0.

 USE BCNLS_INT
 USE UMACH_INT
 USE WRRRN_INT
 INTEGER MCON, N
 PARAMETER (MCON=1, N=4)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER LDC, M
 PARAMETER (M=5, LDC=MCON)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IRTYPE(MCON), NOUT
 REAL BL(MCON), C(MCON,N), RNORM, X(N), XLB(N), &
 XUB(N)
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCN
!
 CALL UMACH (2, NOUT)
! Define the separation between x(2)
! and x(4)
 C(1,1) = 0.0
 C(1,2) = 1.0
 C(1,3) = 0.0
 C(1,4) = -1.0
 BL(1) = 0.05
 IRTYPE(1) = 2
! Set lower bounds on variables
 XLB(1) = 0.0
 XLB(2) = 1.0E30
 XLB(3) = 0.0
 XLB(4) = 1.0E30
! Set upper bounds on variables
 XUB(1) = -1.0E30
 XUB(2) = 0.0
 XUB(3) = -1.0E30
 XUB(4) = 0.0
!
 CALL BCNLS (FCN, M, C, BL, BL, IRTYPE, XLB, XUB, X, RNORM=RNORM)

 CALL WRRRN ('X', X, 1, N, 1)
 WRITE (NOUT,99999) RNORM
99999 FORMAT (/, 'rnorm = ', E10.5)
 END
!
 SUBROUTINE FCN (M, N, X, F)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER M, N
 REAL X(*), F(*)
! SPECIFICATIONS FOR LOCAL VARIABLES

1292 � Chapter 8: Optimization IMSL MATH/LIBRARY

 INTEGER I
! SPECIFICATIONS FOR SAVE VARIABLES
 REAL H(5), T(5)
 SAVE H, T
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC EXP
 REAL EXP
!
 DATA T/0.05, 0.1, 0.4, 0.5, 1.0/
 DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/
!
 DO 10 I=1, M
 F(I) = X(1)*EXP(X(2)*T(I)) + X(3)*EXP(X(4)*T(I)) - H(I)
 10 CONTINUE
 RETURN
 END

Output
 X
 1 2 3 4
 1.999 -1.000 0.500 -9.954
rnorm = .42425E-03

Comments
1. Workspace may be explicitly provided, if desired, by use of B2NLS/DB2NLS. The

reference is:

CALL B2NLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE, XLB, XUB,
XGUESS, X, RNORM,ISTAT, IPARAM, RPARAM, JAC, F, FJ, LDFJ,
IWORK, LIWORK, WORK, LWORK)

The additional arguments are as follows:

IPARAM — Integer vector of length six used to change certain default attributes of
BCNLS. (Input).
If the default parameters are desired for BCNLS, set IPARAM(1) to zero.
Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, the
following steps should be taken before calling B2NLS:

CALL B7NLS (IPARAM, RPARAM)
Set nondefault values for IPARAM and RPARAM.

If double precision is being used, DB7NLS should be called instead. Following is a list
of parameters and the default values.

IPARAM(1) = Initialization flag.

IPARAM(2) = ITMAX, the maximum number of iterations allowed.
Default: 75

IMSL MATH/LIBRARY Chapter 8: Optimization � 1293

IPARAM(3) = a flag that suppresses the use of the quadratic model in the inner loop. If
set to one, then the quadratic model is never used. Otherwise use the quadratic model
where appropriate. This option decreases the amount of workspace as well as the
computing overhead required. A user may wish to determine if the application really
requires the use of the quadratic model.
Default: 0

IPARAM(4) = NTERMS, one more than the maximum number of terms used in the
quadratic model.
Default: 5

IPARAM(5) = RCSTAT, a flag that determines whether forward or reverse
communication is used. If set to zero, forward communication through functions FCN
and JAC is used. If set to one, reverse communication is used, and the dummy routines
B10LS/DB10LS and B11LS/DB11LS may be used in place of FCN and JAC,
respectively. When BCNLS returns with ISTAT = 6, arrays F and FJ are filled with f(x)
and the Jacobian of f(x), respectively. BCNLS is then called again.
Default: 0

IPARAM(6) = a flag that determines whether the analytic Jacobian, as supplied in JAC,
is used, or if a finite difference approximation is computed. If set to zero, JAC is not
accessed and finite differences are used. If set to one, JAC is used to compute the
Jacobian.
Default: 0

RPARAM — Real vector of length 7 used to change certain default attributes of
BCNLS. (Input)

For the description of RPARAM, we make the following definitions:
FC current value of the length of f (x)
FB best value of length of f (x)
FL value of length of f (x) at the previous step
PV predicted value of length of f (x), after the step is taken, using
 the approximating model
� machine epsilon = amach(4)

The conditions |FB � PV| � TOLSNR*FB and |FC � PV| � TOLP*FB and |FC � FL| �
TOLSNR*FB together with taking a full model step, must be satisfied before the
condition ISTAT = 2 is returned. (Decreasing any of the values for TOLF, TOLD, TOLX,
TOLSNR, or TOLP will likely increase the number of iterations required for
convergence.)
RPARAM(1) = TOLF, tolerance used for stopping when FC � TOLF.
Default : min(1.E 5,)��

1294 � Chapter 8: Optimization IMSL MATH/LIBRARY

RPARAM(2) = TOLX, tolerance for stopping when change to x values has length less than
or equal to TOLX*length of x values.
Default : min(1.E 5,)��

RPARAM(3) = TOLD, tolerance for stopping when change to x values has length less than
pr equal to TOLD.
Default : min(1.E 5,)��

RPARAM(4) = TOLSNR, tolerance used in stopping condition ISTAT = 2.
Default: 1.E�5

RPARAM(5) = TOLP, tolerance used in stopping condition ISTAT = 2.
Default: 1.E�5

RPARAM(6) = TOLUSE, tolerance used to avoid values of x in the quadratic model's
interpolation of previous points. Decreasing this value may result in more terms being
included in the quadratic model.
Default : �

RPARAM(7) = COND, largest condition number to allow when solving for the quadratic
model coefficients. Increasing this value may result in more terms being included in
the quadratic model.
Default: 30

JAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage is
CALL JAC(M, N, X, FJAC, LDFJAC), where
M � Number of functions. (Input)
N � Number of variables. (Input)
X � Array of length N containing the point at which the Jacobian will be evaluated.
(Input)
FJAC � The computed M � N Jacobian at the point X. (Output)
LDFJAC � Leading dimension of the array FJAC. (Input)
The routine JAC must be declared EXTERNAL in the calling program.

F — Real vector of length N used to pass f(x) if reverse communication
(IPARAM(4)) is enabled. (Input)

FJ — Real array of size M � N used to store the Jacobian matrix of f(x) if reverse
communication (IPARAM(4)) is enabled. (Input)
Specifically,

� �, i

j

f
FJ i j

x
�

�
�

IMSL MATH/LIBRARY Chapter 8: Optimization � 1295

LDFJ — Leading dimension of FJ exactly as specified in the dimension statement of the
calling program. (Input)

IWORK — Integer work vector of length LIWORK.

LIWORK — Length of work vector IWORK. LIWORK must be at least
5MCON + 12N + 47 + MAX(M, N)

WORK — Real work vector of length LWORK

LWORK — Length of work vector WORK. LWORK must be at least 41N + 6M + 11MCON + (M +
MCON)(N + 1) + NA(NA + 7) + 8 MAX(M, N) + 99. Where NA = MCON +
2N + 6.

2. Informational errors

Type Code
 3 1 The function f (x) has reached a value that may be a local minimum.

However, the bounds on the trust region defining the size of the step
are being hit at each step. Thus, the situation is suspect. (Situations of
this type can occur when the solution is at infinity at some of the
components of the unknowns, x).

 3 2 The model problem solver has noted a value for the linear or
quadratic model problem residual vector length that is greater than or
equal to the current value of the function, i.e. the Euclidean length of
f (x). This situation probably means that the evaluation of f (x) has
more uncertainty or noise than is possible to account for in the
tolerances used to not a local minimum. The value of x is suspect, but
a minimum has probably been found.

 3 3 More than ITMAX iterations were taken to obtain the solution. The
value obtained for x is suspect, although it is the best set of x values
that occurred in the entire computation. The value of ITMAX can be
increased though the IPARAM vector.

Description
The routine BCNLS solves the nonlinear least squares problem

� �
2

1
min

m

i
i

f x
�

�

subject to

l u

l u

b Cx b
x x x
� �

� �

BCNLS is based on the routine DQED by R.J. Hanson and F.T. Krogh. The section of BCNLS that
approximates, using finite differences, the Jacobian of f(x) is a modification of JACBF by D.E.
Salane.

1296 � Chapter 8: Optimization IMSL MATH/LIBRARY

Example 2
This example solves the same problem as the last example, but reverse communication is used
to evaluate f(x) and the Jacobian of f(x). The use of the quadratic model is turned off.

 USE B2NLS_INT
 USE UMACH_INT
 USE WRRRN_INT
 INTEGER LDC, LDFJ, M, MCON, N
 PARAMETER (M=5, MCON=1, N=4, LDC=MCON, LDFJ=M)
! Specifications for local variables
 INTEGER I, IPARAM(6), IRTYPE(MCON), ISTAT, IWORK(1000), &
 LIWORK, LWORK, NOUT
 REAL BL(MCON), C(MCON,N), F(M), FJ(M,N), RNORM, RPARAM(7), &
 WORK(1000), X(N), XGUESS(N), XLB(N), XUB(N)
 REAL H(5), T(5)
 SAVE H, T
 INTRINSIC EXP
 REAL EXP
! Specifications for subroutines
 EXTERNAL B7NLS
! Specifications for functions
 EXTERNAL B10LS, B11LS
!
 DATA T/0.05, 0.1, 0.4, 0.5, 1.0/
 DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/
!
 CALL UMACH (2, NOUT)
! Define the separation between x(2)
! and x(4)
 C(1,1) = 0.0
 C(1,2) = 1.0
 C(1,3) = 0.0
 C(1,4) = -1.0
 BL(1) = 0.05
 IRTYPE(1) = 2
! Set lower bounds on variables
 XLB(1) = 0.0
 XLB(2) = 1.0E30
 XLB(3) = 0.0
 XLB(4) = 1.0E30
! Set upper bounds on variables
 XUB(1) = -1.0E30
 XUB(2) = 0.0
 XUB(3) = -1.0E30
 XUB(4) = 0.0
! Set initial guess to 0.0
 XGUESS = 0.0E0
! Call B7NLS to set default parameters
 CALL B7NLS (IPARAM, RPARAM)
! Suppress the use of the quadratic
! model, evaluate functions and
! Jacobian by reverse communication
 IPARAM(3) = 1
 IPARAM(5) = 1

IMSL MATH/LIBRARY Chapter 8: Optimization � 1297

 IPARAM(6) = 1
 LWORK = 1000
 LIWORK = 1000
! Specify dummy routines for FCN
! and JAC since we are using reverse
! communication
 10 CONTINUE
 CALL B2NLS (B10LS, M, N, MCON, C, LDC, BL, BL, IRTYPE, XLB, &
 XUB, XGUESS, X, RNORM, ISTAT, IPARAM, RPARAM, &
 B11LS, F, FJ, LDFJ, IWORK, LIWORK, WORK, LWORK)
!
! Evaluate functions if the routine
! returns with ISTAT = 6
 IF (ISTAT .EQ. 6) THEN
 DO 20 I=1, M
 FJ(I,1) = EXP(X(2)*T(I))
 FJ(I,2) = T(I)*X(1)*FJ(I,1)
 FJ(I,3) = EXP(X(4)*T(I))
 FJ(I,4) = T(I)*X(3)*FJ(I,3)
 F(I) = X(1)*FJ(I,1) + X(3)*FJ(I,3) - H(I)
 20 CONTINUE
 GO TO 10
 END IF
!
 CALL WRRRN ('X', X, 1, N, 1)
 WRITE (NOUT,99999) RNORM
99999 FORMAT (/, 'rnorm = ', E10.5)
 END

 Output
 X
 1 2 3 4
 1.999 -1.000 0.500 -9.954
rnorm = .42413E-03

DLPRS
Solves a linear programming problem via the revised simplex algorithm.

Required Arguments
A — M by NVAR matrix containing the coefficients of the M constraints. (Input)

BL — Vector of length M containing the lower limit of the general constraints; if there is no
lower limit on the I-th constraint, then BL(I) is not referenced. (Input)

BU — Vector of length M containing the upper limit of the general constraints; if there is no
upper limit on the I-th constraint, then BU(I) is not referenced; if there are no range
constraints, BL and BU can share the same storage locations. (Input)

1298 � Chapter 8: Optimization IMSL MATH/LIBRARY

C — Vector of length NVAR containing the coefficients of the objective function. (Input)

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.
(Input)
Let R(I) = A(I, 1) * XSOL(1) + � + A(I, NVAR) * XSOL(NVAR). Then, the value of
IRTYPE(I) signifies the following:

IRTYPE(I) I-th Constraint

0 BL(I).EQ.R(I).EQ.BU(I)

1 R(I).LE.BU(I)

2 R(I).GE.BL(I)

3 BL(I).LE.R(I).LE.BU(I)

OBJ — Value of the objective function. (Output)

XSOL — Vector of length NVAR containing the primal solution. (Output)

DSOL — Vector of length M containing the dual solution. (Output)

Optional Arguments
M — Number of constraints. (Input)

Default: M = size (A,1).

NVAR — Number of variables. (Input)
Default: NVAR = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
LDA must be at least M.
Default: LDA = size (A,1).

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no
lower bound on a variable, then 1.0E30 should be set as the lower bound. (Input)
Default: XLB = 0.0.

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no
upper bound on a variable, then �1.0E30 should be set as the upper bound. (Input)
Default: XUB = 3.4e38 for single precision and 1.79d + 308 for double precision.

FORTRAN 90 Interface
Generic: CALL DLPRS (A, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL [,…])

IMSL MATH/LIBRARY Chapter 8: Optimization � 1299

Specific: The specific interface names are S_DLPRS and D_DLPRS.

FORTRAN 77 Interface
Single: CALL DLPRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB,

 OBJ, XSOL, DSOL)

Double: The double precision name is DDLPRS.

Example
A linear programming problem is solved.

 USE DLPRS_INT
 USE UMACH_INT
 USE SSCAL_INT
 INTEGER LDA, M, NVAR
 PARAMETER (M=2, NVAR=2, LDA=M)
! M = number of constraints
! NVAR = number of variables
!
 INTEGER I, IRTYPE(M), NOUT
 REAL A(LDA,NVAR), B(M), C(NVAR), DSOL(M), OBJ, XLB(NVAR), &
 XSOL(NVAR), XUB(NVAR)
!
! Set values for the following problem
!
! Max 1.0*XSOL(1) + 3.0*XSOL(2)
!
! XSOL(1) + XSOL(2) .LE. 1.5
! XSOL(1) + XSOL(2) .GE. 0.5
!
! 0 .LE. XSOL(1) .LE. 1
! 0 .LE. XSOL(2) .LE. 1
!
 DATA XLB/2*0.0/, XUB/2*1.0/
 DATA A/4*1.0/, B/1.5, .5/, C/1.0, 3.0/
 DATA IRTYPE/1, 2/
! To maximize, C must be multiplied by
! -1.
 CALL SSCAL (NVAR, -1.0E0, C, 1)
! Solve the LP problem. Since there is
! no range constraint, only B is
! needed.
 CALL DLPRS (A, B, B, C, IRTYPE, OBJ, XSOL, DSOL, &
 XUB=XUB)
! OBJ must be multiplied by -1 to get
! the true maximum.
 OBJ = -OBJ
! DSOL must be multiplied by -1 for
! maximization.
 CALL SSCAL (M, -1.0E0, DSOL, 1)
! Print results
 CALL UMACH (2, NOUT)

1300 � Chapter 8: Optimization IMSL MATH/LIBRARY

 WRITE (NOUT,99999) OBJ, (XSOL(I),I=1,NVAR), (DSOL(I),I=1,M)
!
99999 FORMAT (//, ’ Objective = ’, F9.4, //, ’ Primal ’,&
 ’Solution =’, 2F9.4, //, ’ Dual solution =’, 2F9.4)
!
 END

Output
Objective = 3.5000

Primal Solution = 0.5000 1.0000

Dual solution = 1.0000 0.0000

Comments
1. Workspace may be explicitly provided, if desired, by use of D2PRS/DD2PRS. The

reference is:

CALL D2PRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB, OBJ,
XSOL, DSOL, AWK, LDAWK, WK, IWK)

The additional arguments are as follows:

AWK — Real work array of dimension 1 by 1. (AWK is not used in the new
implementation of the revised simplex algorithm. It is retained merely for
calling sequence consistency.)

LDAWK — Leading dimension of AWK exactly as specified in the dimension statement
of the calling program. LDAWK should be 1. (LDAWK is not used in the new
implementation of the revised simplex algorithm. It is retained merely for
calling sequence consistency.)

WK — Real work vector of length M * (M + 28).

IWK — Integer work vector of length 29 * M + 3 * NVAR.

2. Informational errors

Type Code
 3 1 The problem is unbounded.
 4 2 Maximum number of iterations exceeded.
 3 3 The problem is infeasible.
 4 4 Moved to a vertex that is poorly conditioned; using double precision

may help.
 4 5 The bounds are inconsistent.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1301

Description
The routine DLPRS uses a revised simplex method to solve linear programming problems, i.e.,
problems of the form

min
n

T

x
c x

�R

subject to bl � Ax � bu

xl � x � xu

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl
and xu are the lower and upper bounds on the constraints and the variables, respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983).

SLPRS
Solves a sparse linear programming problem via the revised simplex algorithm.

Required Arguments
A — Vector of length NZ containing the coefficients of the M constraints. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding element in A.
(Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements
in A. (Input)

BL — Vector of length M containing the lower limit of the general constraints; if there is no
lower limit on the I-th constraint, then BL(I) is not referenced. (Input)

BU — Vector of length M containing the upper lower limit of the general constraints; if there
is no upper limit on the I-th constraint, then BU(I) is not referenced. (Input)

C — Vector of length NVAR containing the coefficients of the objective function. (Input)

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.
(Input)
Let R(I) = A(I, 1)*XSOL(1) + � + A(I, NVAR)*XSOL(NVAR)

IRTYPE(I) I-th CONSTRAINT
 0 BL(I) = R(I) = BU(I)
 1 R(I) � BU(I)
 2 R(I) � BL(I)
 3 BL(I) � R(I) � BU(I)

OBJ — Value of the objective function. (Output)

1302 � Chapter 8: Optimization IMSL MATH/LIBRARY

XSOL — Vector of length NVAR containing the primal solution. (Output)

DSOL — Vector of length M containing the dual solution. (Output)

Optional Arguments
M — Number of constraints. (Input)

Default: M = size (IRTYPE,1).

NVAR — Number of variables. (Input)
Default: NVAR = size (C,1).

NZ — Number of nonzero coefficients in the matrix A. (Input)
Default: NZ = size (A,1).

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no
lower bound on a variable, then 1.0E30 should be set as the lower bound. (Input)
Default: XLB = 0.0.

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no
upper bound on a variable, then �1.0E30 should be set as the upper bound. (Input)
Default: XLB = 3.4e38 for single precision and 1.79d + 308 for double precision.

FORTRAN 90 Interface
Generic: CALL SLPRS (A, IROW, JCOL, BL, BU, C, IRTYPE,

OBJ, XSOL, DSOL [,…])

Specific: The specific interface names are S_SLPRS and D_SLPRS.

FORTRAN 77 Interface
Single: CALL SLPRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C, IRTYPE,

XLB, XUB, OBJ, XSOL, DSOL)

Double: The double precision name is DSLPRS.

Example
Solve a linear programming problem, with

0 0.5
1 0.5

1
0.5
1

A

� �
� �
� �
� ��
� �
� �
� �� �

�

�

IMSL MATH/LIBRARY Chapter 8: Optimization � 1303

defined in sparse coordinate format.
 USE SLPRS_INT
 USE UMACH_INT
 INTEGER M, NVAR
 PARAMETER (M=200, NVAR=200)
! Specifications for local variables
 INTEGER INDEX, IROW(3*M), J, JCOL(3*M), NOUT, NZ
 REAL A(3*M), DSOL(M), OBJ, XSOL(NVAR)
 INTEGER IRTYPE(M)
 REAL B(M), C(NVAR), XL(NVAR), XU(NVAR)
! Specifications for subroutines
 DATA B/199*1.7, 1.0/
 DATA C/-1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0, &
 -10.0, 190*-1.0/
 DATA XL/200*0.1/
 DATA XU/200*2.0/
 DATA IRTYPE/200*1/
!
 CALL UMACH (2, NOUT)
! Define A
 INDEX = 1
 DO 10 J=2, M
! Superdiagonal element
 IROW(INDEX) = J - 1
 JCOL(INDEX) = J
 A(INDEX) = 0.5
! Diagonal element
 IROW(INDEX+1) = J
 JCOL(INDEX+1) = J
 A(INDEX+1) = 1.0
 INDEX = INDEX + 2
 10 CONTINUE
 NZ = INDEX - 1
!
!
 XL(4) = 0.2
 CALL SLPRS (A, IROW, JCOL, B, B, C, IRTYPE, OBJ, XSOL, DSOL, &
 NZ=NZ, XLB=XL, XUB=XU)
!
 WRITE (NOUT,99999) OBJ
!
99999 FORMAT (/, 'The value of the objective function is ', E12.6)
!
 END

Output
The value of the objective function is -.280971E+03

Comments
Workspace may be explicitly provided, if desired, by use of S2PRS/DS2PRS. The

reference is:

1304 � Chapter 8: Optimization IMSL MATH/LIBRARY

CALL S2PRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C,
 IRTYPE, XLB, XUB, OBJ, XSOL, DSOL,
 IPARAM, RPARAM, COLSCL, ROWSCL, WORK,
 LW, IWORK, LIW)

The additional arguments are as follows:

IPARAM — Integer parameter vector of length 12. If the default parameters are
desired for SLPRS, then set IPARAM(1) to zero and call the routine SLPRS.
Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then
the following steps should be taken before calling SLPRS:

CALL S5PRS (IPARAM, RPARAM)
Set nondefault values for IPARAM and RPARAM.

Note that the call to S5PRS will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

IPARAM(1) = 0 indicates that a minimization problem is solved. If set to 1, a
maximization problem is solved.
Default: 0

IPARAM(2) = switch indicating the maximum number of iterations to be taken before
returning to the user. If set to zero, the maximum number of iterations taken is set to
3*(NVARS+M). If positive, that value is used as the iteration limit.
Default: IPARAM(2) = 0

IPARAM(3) = indicator for choosing how columns are selected to enter the basis. If set
to zero, the routine uses the steepest edge pricing strategy which is the best local move.
If set to one, the minimum reduced cost pricing strategy is used. The steepest edge
pricing strategy generally uses fewer iterations than the minimum reduced cost pricing,
but each iteration costs more in terms of the amount of calculation performed.
However, this is very problem-dependent.
Default: IPARAM(3) = 0

IPARAM(4) = MXITBR, the number of iterations between recalculating the error in the
primal solution is used to monitor the error in solving the linear system. This is an
expensive calculation and every tenth iteration is generally enough.
Default: IPARAM(4) = 10

IPARAM(5) = NPP, the number of negative reduced costs (at most) to be found at each
iteration of choosing a variable to enter the basis. If set to zero, NPP = NVARS will be
used, implying that all of the reduced costs are computed at each such step. This
“Partial pricing” may increase the total number of iterations required. However, it
decreases the number of calculation required at each iteration. The effect on overall
efficiency is very problem-dependent. If set to some positive number, that value is used
as NPP.
Default: IPARAM(5) = 0

IMSL MATH/LIBRARY Chapter 8: Optimization � 1305

IPARAM(6) = IREDFQ, the number of steps between basis matrix redecompositions.
Redecompositions also occur whenever the linear systems for the primal and dual
systems have lost half their working precision.
Default: IPARAM(6) = 50

IPARAM(7) = LAMAT, the length of the portion of WORK that is allocated to sparse matrix
storage and decomposition. LAMAT must be greater than NZ + NVARS + 4.
Default: LAMAT = NZ + NVARS + 5

IPARAM(8) = LBM, then length of the portion of IWORK that is allocated to sparse matrix
storage and decomposition. LBM must be positive.
Default: LBM = 8*M

IPARAM(9) = switch indicating that partial results should be saved after the maximum
number of iterations, IPARAM(2), or at the optimum. If IPARAM(9) is not zero, data
essential to continuing the calculation is saved to a file, attached to unit number
IPARAM(9). The data saved includes all the information about the sparse matrix A and
information about the current basis. If IPARAM(9) is set to zero, partial results are not
saved. It is the responsibility of the calling program to open the output file.

IPARAM(10) = switch indicating that partial results have been computed and stored on
unit number IPARAM(10), if greater than zero. If IPARAM(10) is zero, a new problem is
started.
Default: IPARAM(10) = 0

IPARAM(11) = switch indicating that the user supplies scale factors for the columns of
the matrix A. If IPARAM(11) = 0, SLPRS computes the scale factors as the reciprocals of
the max norm of each column. If IPARAM(11) is set to one, element I of the vector
COLSCL is used as the scale factor for column I of the matrix A. The scaling is implicit,
so no input data is actually changed.
Default: IPARAM(11) = 0

IPARAM(12) = switch indicating that the user supplied scale factors for the rows of the
matrix A. If IPARAM(12) is set to zero, no row scaling is one. If IPARAM(12) is set to 1,
element I of the vector ROWSCL is used as the scale factor for row I of the matrix A.
The scaling is implicit, so no input data is actually changed.
Default: IPARAM(12) = 0

RPARAM — Real parameter vector of length 7.
RPARAM(1) = COSTSC, a scale factor for the vector of costs. Normally
SLPRS computes this scale factor to be the reciprocal of the max norm if the
vector costs after the column scaling has been applied. If RPARAM(1) is zero,
SLPRS compute COSTSC.
Default: RPARAM(1) = 0.0

RPARAM(2) = ASMALL, the smallest magnitude of nonzero entries in the matrix A. If
RPARAM(2) is nonzero, checking is done to ensure that all elements of A are at least as

1306 � Chapter 8: Optimization IMSL MATH/LIBRARY

large as RPARAM(2). Otherwise, no checking is done.
Default: RPARAM(2) = 0.0

RPARAM(3) = ABIG, the largest magnitude of nonzero entries in the matrix A. If
RPARAM(3) is nonzero, checking is done to ensure that all elements of A are no larger
than RPARAM(3). Otherwise, no checking is done.
Default: RPARAM(3) = 0.0

RPARAM(4) = TOLLS, the relative tolerance used in checking if the residuals are
feasible. RPARAM(4) is nonzero, that value is used as TOLLS, otherwise the default
value is used.
Default: TOLLS = 1000.0*amach(4)

RPARAM(5) = PHI, the scaling factor used to scale the reduced cost error estimates. In
some environments, it may be necessary to reset PHI to the range [0.01, 0.1],
particularly on machines with short word length and working precision when solving a
large problem. If RPARAM(5) is nonzero, that value is used as PHI, otherwise the default
value is used.
Default: PHI = 1.0

RPARAM(6) = TOLABS, an absolute error test on feasibility. Normally a relative test is
used with TOLLS (see RPARAM(4)). If this test fails, an absolute test will be applied
using the value TOLABS.
Default: TOLABS = 0.0

RPARAM(7) = pivot tolerance of the underlying sparse factorization routine. If
RPARAM(7) is set to zero, the default pivot tolerance is used, otherwise, the RPARAM(7)
is used.
Default: RPARAM(7) = 0.1

COLSCL — Array of length NVARS containing column scale factors for the matrix A.
(Input).
COLSCL is not used if IPARAM(11) is set to zero.

ROWSCL — Array of length M containing row scale factors for the matrix A. (Input)
ROWSCL is not used if IPARAM(12) is set to zero.

WORK — Work array of length LW.

LW — Length of real work array. LW must be at least
2 + 2NZ + 9NVAR + 27M + MAX(NZ + NVAR + 8, 4NVAR + 7).

IWORK — Integer work array of length LIW.

LIW — Length of integer work array. LIW must be at least
1 + 3NVAR + 41M + MAX(NZ + NVAR + 8, 4NVAR + 7).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1307

Description
This subroutine solves problems of the form

min cTx

subject to

,l u

l u

b Ax b
x x x
� �

� �

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl,
and xu are the lower and upper bounds on the constraints and the variables, respectively. SLPRS
is designed to take advantage of sparsity in A. The routine is based on DPLO by Hanson and
Hiebert.

QPROG
Solves a quadratic programming problem subject to linear equality/inequality constraints.

Required Arguments
NEQ — The number of linear equality constraints. (Input)

A — NCON by NVAR matrix. (Input)
The matrix contains the equality contraints in the first NEQ rows followed by the
inequality constraints.

B — Vector of length NCON containing right-hand sides of the linear constraints. (Input)

G — Vector of length NVAR containing the coefficients of the linear term of the objective
function. (Input)

H — NVAR by NVAR matrix containing the Hessian matrix of the objective function. (Input)
H should be symmetric positive definite; if H is not positive definite, the algorithm
attempts to solve the QP problem with H replaced by a H + DIAGNL * I such that H +
DIAGNL * I is positive definite. See Comment 3.

SOL — Vector of length NVAR containing solution. (Output)

Optional Arguments
NVAR — The number of variables. (Input)

Default: NVAR = size (A,2).

NCON — The number of linear constraints. (Input)
Default: NCON = size (A,1).

1308 � Chapter 8: Optimization IMSL MATH/LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDH = size (H,1).

DIAGNL — Scalar equal to the multiple of the identity matrix added to H to give a positive
definite matrix. (Output)

NACT — Final number of active constraints. (Output)

IACT — Vector of length NVAR containing the indices of the final active constraints in the
first NACT positions. (Output)

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final
active constraints in the first NACT positions. (Output)

FORTRAN 90 Interface
Generic: CALL QPROG (NEQ, A, B, G, H, SOL [,…])

Specific: The specific interface names are S_QPROG and D_QPROG.

FORTRAN 77 Interface
Single: CALL QPROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH, DIAGNL,

SOL, NACT, IACT, ALAMDA)

Double: The double precision name is DQPROG.

Example
The quadratic programming problem

min f x x x x x x x x x x x
x x x x x
x x x

b g � � � � � � � �

� � � � �

� � � �

1
2

2
2

3
2

4
2

5
2

2 3 4 5 1

1 2 3 4 5

3 4 5

2 2 2
5

2 2 3
subject to

is solved.

 USE QPROG_INT
 USE UMACH_INT
! Declare variables
 INTEGER LDA, LDH, NCON, NEQ, NVAR
 PARAMETER (NCON=2, NEQ=2, NVAR=5, LDA=NCON, LDH=NVAR)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1309

!
 INTEGER K, NACT, NOUT
 REAL A(LDA,NVAR), ALAMDA(NVAR), B(NCON), G(NVAR), &
 H(LDH,LDH), SOL(NVAR)
!
! Set values of A, B, G and H.
! A = (1.0 1.0 1.0 1.0 1.0)
! (0.0 0.0 1.0 -2.0 -2.0)
!
! B = (5.0 -3.0)
!
! G = (-2.0 0.0 0.0 0.0 0.0)
!
! H = (2.0 0.0 0.0 0.0 0.0)
! (0.0 2.0 -2.0 0.0 0.0)
! (0.0 -2.0 2.0 0.0 0.0)
! (0.0 0.0 0.0 2.0 -2.0)
! (0.0 0.0 0.0 -2.0 2.0)
!
 DATA A/1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, -2.0, 1.0, -2.0/
 DATA B/5.0, -3.0/
 DATA G/-2.0, 4*0.0/
 DATA H/2.0, 5*0.0, 2.0, -2.0, 3*0.0, -2.0, 2.0, 5*0.0, 2.0, &
 -2.0, 3*0.0, -2.0, 2.0/
!
 CALL QPROG (NEQ, A, B, G, H, SOL)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (SOL(K),K=1,NVAR)
99999 FORMAT (’ The solution vector is’, /, ’ SOL = (’, 5F6.1, &
 ’)’)
!
 END

Output
The solution vector is
SOL = (1.0 1.0 1.0 1.0 1.0)

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2ROG/DQ2ROG. The

reference is:

CALL Q2ROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH,
 DIAGNL, SOL, NACT, IACT, ALAMDA, WK)

The additional argument is:

WK — Work vector of length (3 * NVAR**2 + 11 * NVAR)/2 + NCON.

2. Informational errors

Type Code

1310 � Chapter 8: Optimization IMSL MATH/LIBRARY

 3 1 Due to the effect of computer rounding error, a change in the
variables fail to improve the objective function value; usually the
solution is close to optimum.

 4 2 The system of equations is inconsistent. There is no solution.

3. If a perturbation of H, H + DIAGNL * I, was used in the QP problem, then H + DIAGNL *
I should also be used in the definition of the Lagrange multipliers.

Description
The routine QPROG is based on M.J.D. Powell’s implementation of the Goldfarb and Idnani
(1983) dual quadratic programming (QP) algorithm for convex QP problems subject to general
linear equality/inequality constraints, i.e., problems of the form

1min
2n

T T

x
g x x Hx

�

�

R

subject to A�x = b�

 A�x � b�

given the vectors b�, b�, and g and the matrices H, A�, and A�. H is required to be positive
definite. In this case, a unique x solves the problem or the constraints are inconsistent. If H is not
positive definite, a positive definite perturbation of H is used in place of H. For more details, see
Powell (1983, 1985).

LCONF
Minimizes a general objective function subject to linear equality/inequality constraints.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Value of NVAR. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

NEQ — The number of linear equality constraints. (Input)

A — NCON by NVAR matrix. (Input)
The matrix contains the equality constraint gradients in the first NEQ rows, followed by
the inequality constraint gradients.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1311

B — Vector of length NCON containing right-hand sides of the linear constraints. (Input)
Specifically, the constraints on the variables X(I), I = 1, �, NVAR are A(K, 1) * X(1) +
� + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, �, NEQ.A(K, 1) * X(1) + � + A(K, NVAR)
* X(NVAR).LE.B(K), K = NEQ + 1, �, NCON. Note that the data that define the equality
constraints come before the data of the inequalities.

XLB — Vector of length NVAR containing the lower bounds on the variables; choose a very
large negative value if a component should be unbounded below or set
XLB(I) = XUB(I) to freeze the I-th variable. (Input)
Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, �, NVAR.

XUB — Vector of length NVAR containing the upper bounds on the variables; choose a very
large positive value if a component should be unbounded above. (Input)
Specifically, these simple bounds are X(I).LE.XUB(I), I = 1, �, NVAR.

SOL — Vector of length NVAR containing solution. (Output)

Optional Arguments
NVAR — The number of variables. (Input)

Default: NVAR = size (A,2).

NCON — The number of linear constraints (excluding simple bounds). (Input)
Default: NCON = size (A,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

XGUESS — Vector of length NVAR containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

ACC — The nonnegative tolerance on the first order conditions at the calculated solution.
(Input)
Default: ACC = 1.e-4 for single precision and 1.d-8 for double precision.

MAXFCN — On input, maximum number of function evaluations allowed. (Input/ Output)
On output, actual number of function evaluations needed.
Default: MAXFCN = 400.

OBJ — Value of the objective function. (Output)

NACT — Final number of active constraints. (Output)

IACT — Vector containing the indices of the final active constraints in the first NACT
positions. (Output)
Its length must be at least NCON + 2 * NVAR.

1312 � Chapter 8: Optimization IMSL MATH/LIBRARY

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final
active constraints in the first NACT positions. (Output)

FORTRAN 90 Interface
Generic: CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL [,…])

Specific: The specific interface names are S_LCONF and D_LCONF.

FORTRAN 77 Interface
Single: CALL LCONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB,

XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT,
ALAMDA)

Double: The double precision name is DLCONF.

Example
The problem from Schittkowski (1987)

min f(x) = �x�x�x�

subject to �x� � 2x� � 2x� � 0

 x� +2x� + 2x� � 72

 0 � x� � 20

 0 � x� � 11

 0 � x� � 42

is solved with an initial guess x� = 10, x� = 10 and x� = 10.
 USE LCONF_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER NCON, NEQ, NVAR
 PARAMETER (NCON=2, NEQ=0, NVAR=3)
!
 INTEGER MAXFCN, NOUT
 REAL A(NCON,NVAR), ACC, B(NCON), OBJ, &
 SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR)
 EXTERNAL FCN
!
! Set values for the following problem.
!
! Min -X(1)*X(2)*X(3)
!
! -X(1) - 2*X(2) - 2*X(3) .LE. 0
! X(1) + 2*X(2) + 2*X(3) .LE. 72
!

IMSL MATH/LIBRARY Chapter 8: Optimization � 1313

! 0 .LE. X(1) .LE. 20
! 0 .LE. X(2) .LE. 11
! 0 .LE. X(3) .LE. 42
!
 DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/
 DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/
 DATA ACC/0.0/, MAXFCN/400/
!
 CALL UMACH (2, NOUT)
!
 CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS, &
 MAXFCN=MAXFCN, ACC=ACC, OBJ=OBJ)
!
 WRITE (NOUT,99998) ’Solution:’
 WRITE (NOUT,99999) SOL
 WRITE (NOUT,99998) ’Function value at solution:’
 WRITE (NOUT,99999) OBJ
 WRITE (NOUT,99998) ’Number of function evaluations:’, MAXFCN
 STOP
99998 FORMAT (//, ’ ’, A, I4)
99999 FORMAT (1X, 5F16.6)
 END
!
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(*), F
!
 F = -X(1)*X(2)*X(3)
 RETURN
 END

Output
Solution:
 20.000000 11.000000 15.000000

Function value at solution:
-3300.000000

Number of function evaluations: 5

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ONF/DL2ONF. The

reference is:

CALL L2ONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS,
ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA, IPRINT, INFO, WK)

The additional arguments are as follows:

IPRINT — Print option (see Comment 3). (Input)

INFO — Informational flag (see Comment 3). (Output)

1314 � Chapter 8: Optimization IMSL MATH/LIBRARY

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON.

2. Informational errors

Type Code
 4 4 The equality constraints are inconsistent.
 4 5 The equality constraints and the bounds on the variables are found to

be inconsistent.
 4 6 No vector X satisfies all of the constraints. In particular, the current

active constraints prevent any change in X that reduces the sum of
constraint violations.

 4 7 Maximum number of function evaluations exceeded.
 4 9 The variables are determined by the equality constraints.

3. The following are descriptions of the arguments IPRINT and INFO:

IPRINT — This argument must be set by the user to specify the frequency of printing during
the execution of the routine LCONF. There is no printed output if IPRINT = 0.
Otherwise, after ensuring feasibility, information is given every IABS(IPRINT)
iterations and whenever a parameter called TOL is reduced. The printing provides the
values of X(.), F(.) and G(.) = GRAD(F) if IPRINT is positive. If IPRINT is negative,
this information is augmented by the current values of IACT(K) K = 1, �, NACT,
PAR(K) K = 1, �, NACT and RESKT(I) I = 1, �, N. The reason for returning to the
calling program is also displayed when IPRINT is nonzero.

INFO — On exit from L2ONF, INFO will have one of the following integer values to indicate
the reason for leaving the routine:

INFO = 1 SOL is feasible, and the condition that depends on ACC is satisfied.

INFO = 2 SOL is feasible, and rounding errors are preventing further progress.

INFO = 3 SOL is feasible, but the objective function fails to decrease although a
decrease is predicted by the current gradient vector.

INFO = 4 In this case, the calculation cannot begin because LDA is less than NCON or
because the lower bound on a variable is greater than the upper bound.

INFO = 5 This value indicates that the equality constraints are inconsistent. These
constraints include any components of X(.) that are frozen by setting
XL(I) = XU(I).

INFO = 6 In this case there is an error return because the equality constraints and the
bounds on the variables are found to be inconsistent.

INFO = 7 This value indicates that there is no vector of variables that satisfies all of
the constraints. Specifically, when this return or an INFO = 6 return occurs, the
current active constraints (whose indices are IACT(K), K = 1, �, NACT) prevent

IMSL MATH/LIBRARY Chapter 8: Optimization � 1315

any change in X(.) that reduces the sum of constraint violations. Bounds are only
included in this sum if INFO = 6.

INFO = 8 Maximum number of function evaluations exceeded.

INFO = 9 The variables are determined by the equality constraints.

Description
The routine LCONF is based on M.J.D. Powell’s TOLMIN, which solves linearly constrained
optimization problems, i.e., problems of the form

� �min
nx

f x
�R

subject to A�x = b�

 A�x � b�

 xl � x � xu

given the vectors b�, b�, xl and xu and the matrices A�, and A�.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If
the equality constraints are consistent, the method will revise x�, the initial guess provided by
the user, to satisfy

A�x = b�

Next, x� is adjusted to satisfy the simple bounds and inequality constraints. This is done by
solving a sequence of quadratic programming subproblems to minimize the sum of the
constraint or bound violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints
that have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be
the set of indices of active constraints. The following quadratic programming problem

� � � �
1min
2

k T k T kf x d f x d B d� � �

subject to ajd = 0 j � Ik

 ajd � 0 j � Jk

is solved to get (dk, �k) where aj is a row vector representing either a constraint in A�or A� or a
bound constraint on x. In the latter case, the aj = ei for the bound constraint xi � (xu)i and aj = �ei
for the constraint �xi � (�xl)i. Here, ei is a vector with a 1 as the i-th component, and zeroes

elsewhere. �k are the Lagrange multipliers, and Bk is a positive definite approximation to the
second derivative ��f(xk).

1316 � Chapter 8: Optimization IMSL MATH/LIBRARY

After the search direction dk is obtained, a line search is performed to locate a better point. The
new point xk+1= xk + �kdk has to satisfy the conditions

� � � � � � � �0.1
Tk k k k k k kf x d f x d f x� �� � � �

and

� � � � � � � �0.7
T Tk k k k k kd f x d d f x�� � � �

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-

length �k, then its index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation, Bk , is updated by the BFGS formula, if the
condition

� � � � � � 0
Tk k k k kd f x d f x�� � �� �

holds. Let xk
 xk+�, and start another iteration.

The iteration repeats until the stopping criterion

� �
2

k k kf x A � �� � �

is satisfied; here, � is a user-supplied tolerance. For more details, see Powell (1988, 1989).

Since a finite-difference method is used to estimate the gradient for some single precision
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact gradient can be easily provided, routine LCONG (page 1316) should be used instead.

LCONG
Minimizes a general objective function subject to linear equality/inequality constraints.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Value of NVAR. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1317

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Value of NVAR. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by GRAD.

G – Vector of length N containing the values of the gradient of the objective function
evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

NEQ — The number of linear equality constraints. (Input)

A — NCON by NVAR matrix. (Input)
The matrix contains the equality constraint gradients in the first NEQ rows, followed by
the inequality constraint gradients.

B — Vector of length NCON containing right-hand sides of the linear constraints. (Input)
Specifically, the constraints on the variables X(I), I = 1, �, NVAR are A(K, 1) * X(1) +
� + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, �, NEQ.A(K, 1) * X(1) + � + A(K, NVAR)
* X(NVAR).LE.B(K), K = NEQ + 1, �, NCON. Note that the data that define the equality
constraints come before the data of the inequalities.

XLB — Vector of length NVAR containing the lower bounds on the variables; choose a very
large negative value if a component should be unbounded below or set XLB(I) =
XUB(I) to freeze the I-th variable. (Input)
Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, �, NVAR.

XUB — Vector of length NVAR containing the upper bounds on the variables; choose a very
large positive value if a component should be unbounded above. (Input)
Specifically, these simple bounds are X(I).LE. XUB(I), I = 1, �, NVAR.

SOL — Vector of length NVAR containing solution. (Output)

Optional Arguments
NVAR — The number of variables. (Input)

Default: NVAR = size (A,2).

NCON — The number of linear constraints (excluding simple bounds). (Input)
Default: NCON = size (A,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

1318 � Chapter 8: Optimization IMSL MATH/LIBRARY

XGUESS — Vector of length NVAR containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

ACC — The nonnegative tolerance on the first order conditions at the calculated solution.
(Input)
Default: ACC = 1.e-4 for single precision and 1.d-8 for double precision.

MAXFCN — On input, maximum number of function evaluations allowed.(Input/ Output)
On output, actual number of function evaluations needed.
Default: MAXFCN = 400.

OBJ — Value of the objective function. (Output)

NACT — Final number of active constraints. (Output)

IACT — Vector containing the indices of the final active constraints in the first NACT
positions. (Output)
Its length must be at least NCON + 2 * NVAR.

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final
active constraints in the first NACT positions. (Output)

FORTRAN 90 Interface
Generic: CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL [,…])

Specific: The specific interface names are S_LCONG and D_LCONG.

FORTRAN 77 Interface
Single: CALL LCONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB,

XUB, XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT,
ALAMDA)

Double: The double precision name is DLCONG.

Example
The problem from Schittkowski (1987)

min f(x) = �x�x�x�

subject to �x� � 2x� � 2x� � 0

 x� +2x� + 2x� � 72

 0 � x� � 20

 0 � x� � 11

IMSL MATH/LIBRARY Chapter 8: Optimization � 1319

 0 � x� � 42

is solved with an initial guess x� = 10, x� = 10 and x� = 10.
 USE LCONG_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER NCON, NEQ, NVAR
 PARAMETER (NCON=2, NEQ=0, NVAR=3)
!
 INTEGER MAXFCN, NOUT
 REAL A(NCON,NVAR), ACC, B(NCON), OBJ, &
 SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR)
 EXTERNAL FCN, GRAD
!
! Set values for the following problem.
!
! Min -X(1)*X(2)*X(3)
!
! -X(1) - 2*X(2) - 2*X(3) .LE. 0
! X(1) + 2*X(2) + 2*X(3) .LE. 72
!
! 0 .LE. X(1) .LE. 20
! 0 .LE. X(2) .LE. 11
! 0 .LE. X(3) .LE. 42
!
 DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/
 DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/
 DATA ACC/0.0/, MAXFCN/400/
!
 CALL UMACH (2, NOUT)
!
 CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS, &
 ACC=ACC, MAXFCN=MAXFCN, OBJ=OBJ)
!
 WRITE (NOUT,99998) ’Solution:’
 WRITE (NOUT,99999) SOL
 WRITE (NOUT,99998) ’Function value at solution:’
 WRITE (NOUT,99999) OBJ
 WRITE (NOUT,99998) ’Number of function evaluations:’, MAXFCN
 STOP
99998 FORMAT (//, ’ ’, A, I4)
99999 FORMAT (1X, 5F16.6)
 END
!
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(*), F
!
 F = -X(1)*X(2)*X(3)
 RETURN
 END
!
 SUBROUTINE GRAD (N, X, G)
 INTEGER N
 REAL X(*), G(*)

1320 � Chapter 8: Optimization IMSL MATH/LIBRARY

!
 G(1) = -X(2)*X(3)
 G(2) = -X(1)*X(3)
 G(3) = -X(1)*X(2)
 RETURN
 END

Output
Solution:
20.000000 11.000000 15.000000

Function value at solution:
-3300.000000

Number of function evaluations: 5

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ONG/DL2ONG. The

reference is:

CALL L2ONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB,
XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA, IPRINT,
INFO, WK)

The additional arguments are as follows:

IPRINT — Print option (see Comment 3). (Input)

INFO — Informational flag (see Comment 3). (Output)

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON.

2. Informational errors

Type Code
 4 4 The equality constraints are inconsistent.
 4 5 The equality constraints and the bounds on the variables are found to

be inconsistent.
 4 6 No vector X satisfies all of the constraints. In particular, the current

active constraints prevent any change in X that reduces the sum of
constraint violations.

 4 7 Maximum number of function evaluations exceeded.
 4 9 The variables are determined by the equality constraints.

3. The following are descriptions of the arguments IPRINT and INFO:

IPRINT — This argument must be set by the user to specify the frequency of printing
during the execution of the routine LCONG. There is no printed output if IPRINT
= 0. Otherwise, after ensuring feasibility, information is given every
IABS(IPRINT) iterations and whenever a parameter called TOL is reduced. The
printing provides the values of X(.), F(.) and G(.) = GRAD(F) if IPRINT is

IMSL MATH/LIBRARY Chapter 8: Optimization � 1321

positive. If IPRINT is negative, this information is augmented by the current
values of IACT(K) K = 1, �,
NACT, PAR(K) K = 1, �, NACT and RESKT(I) I = 1, �, N. The reason for
returning to the calling program is also displayed when IPRINT is nonzero.

INFO — On exit from L2ONG, INFO will have one of the following integer
 values to indicate the reason for leaving the routine:

INFO = 1 SOL is feasible and the condition that depends on ACC is satisfied.

INFO = 2 SOL is feasible and rounding errors are preventing further progress.

INFO = 3 SOL is feasible but the objective function fails to decrease although
 a decrease is predicted by the current gradient vector.

INFO = 4 In this case, the calculation cannot begin because LDA is less than
 NCON or because the lower bound on a variable is greater than the
 upper bound.

INFO = 5 This value indicates that the equality constraints are inconsistent.
 These constraints include any components of X(.) that are frozen
 by setting XL(I) = XU(I).

INFO = 6 In this case, there is an error return because the equality constraints
 and the bounds on the variables are found to be inconsistent.

INFO = 7 This value indicates that there is no vector of variables that
 satisfies all of the constraints. Specifically, when this return or an
 INFO = 6 return occurs, the current active constraints (whose
 indices are IACT(K), K = 1, �, NACT) prevent any change in X(.)
 that reduces the sum of constraint violations, where only bounds
 are included in this sum if INFO = 6.

INFO = 8 Maximum number of function evaluations exceeded.

INFO = 9 The variables are determined by the equality constraints.

Description
The routine LCONG is based on M.J.D. Powell’s TOLMIN, which solves linearly constrained
optimization problems, i.e., problems of the form

� �min
nx

f x
�R

subject to A�x = b�

 A�x � b�

1322 � Chapter 8: Optimization IMSL MATH/LIBRARY

 xl � x � xu

given the vectors b�, b�, xl and xu and the matrices A�, and A�.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If
the equality constraints are consistent, the method will revise x�, the initial guess provided by
the user, to satisfy

A�x = b�

Next, x� is adjusted to satisfy the simple bounds and inequality constraints. This is done by
solving a sequence of quadratic programming subproblems to minimize the sum of the
constraint or bound violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints
that have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be
the set of indices of active constraints. The following quadratic programming problem

� � � �
1min
2

k T k T kf x d f x d B d� � �

subject to ajd = 0 j � Ik

 ajd � 0 j � Jk

is solved to get (dk, �k) where aj is a row vector representing either a constraint in A�or A� or a
bound constraint on x. In the latter case, the aj = ei for the bound constraint xi � (xu)i and
aj = � ei for the constraint � xi � (� xl)i. Here, ei is a vector with a 1 as the i-th component, and

zeroes elsewhere. �k are the Lagrange multipliers, and Bk is a positive definite approximation to
the second derivative ��f(xk).

After the search direction dk is obtained, a line search is performed to locate a better point. The
new point xk+1= xk + �kdk has to satisfy the conditions

� � � � � � � �0.1
Tk k k k k k kf x d f x d f x� �� � � �

and

� � � � � � � �0.7
T Tk k k k k kd f x d d f x�� � � �

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-

length �k, then its index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation, Bk, is updated by the BFGS formula, if the
condition

� � � � � � 0
Tk k k k kd f x d f x�� � �� �

holds. Let xk
 xk+1, and start another iteration.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1323

The iteration repeats until the stopping criterion

� �
2

k k kf x A � �� � �

is satisfied; here, � is a user-supplied tolerance. For more details, see Powell (1988, 1989).

NNLPF
Solves a general nonlinear programming problem using a sequential equality constrained quadratic
programming method.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the objective function and constraints at a

given point. The internal usage is CALL FCN (X, IACT, RESULT, IERR),
where

 X – The point at which the objective function or constraint is evaluated. (Input)

IACT – Integer indicating whether evaluation of the objective function is requested or
evaluation of a constraint is requested. If IACT is zero, then an objective
function evaluation is requested. If IACT is nonzero then the value if IACT
indicates the index of the constraint to evaluate. (Input)

RESULT – If IACT is zero, then RESULT is the computed function value at the point
X. If IACT is nonzero, then RESULT is the computed constraint value at the
point X. (Output)

IERR – Logical variable. On input IERR is set to .FALSE. If an error or other
undesirable condition occurs during evaluation, then IERR should be set to
.TRUE. Setting IERR to .TRUE. will result in the step size being reduced and
the step being tried again. (If IERR is set to .TRUE. for XGUESS, then an error is
issued.)

The routine FCN must be use-associated in a user module that uses NNLPF_INT, or else
declared EXTERNAL in the calling program. If FCN is a separately compiled routine, not
in a module, then it must be declared EXTERNAL.

M — Total number of constraints. (Input)

ME — Number of equality constraints. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1324 � Chapter 8: Optimization IMSL MATH/LIBRARY

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable; all other variables will have
 the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)
If there is no lower bound for a variable, then the corresponding XLB value should be
set to �Huge(X(1)).

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3).
If there is no upper bound for a variable, then the corresponding XUB value should be
set to Huge(X(1)).

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Number of variables. (Input)

Default: N = size(X).

XGUESS — Vector of length N containing an initial guess of the solution. (Input)
Default: XGUESS = X, (with the smallest value of

2
X) that satisfies the bounds.

XSCALE — Vector of length N setting the internal scaling of the variables. The initial value
given and the objective function and gradient evaluations however are always in the
original unscaled variables. The first internal variable is obtained by dividing values
X(I) by XSCALE(I). (Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE(:) = 1.0.

IPRINT — Parameter indicating the desired output level. (Input)

IPRINT Action

0 No output printed.

1 One line of intermediate results is printed in each iteration.

2 Lines of intermediate results summarizing the most important data for each
step are printed.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1325

3 Lines of detailed intermediate results showing all primal and dual variables,
the relevant values from the working set, progress in the backtracking and
etc are printed

4 Lines of detailed intermediate results showing all primal and dual variables,
the relevant values from the working set, progress in the backtracking, the
gradients in the working set, the quasi-Newton updated and etc are printed.

 Default: IPRINT = 0.

MAXITN — Maximum number of iterations allowed. (Input)
Default: MAXITN = 200.

EPSDIF — Relative precision in gradients. (Input)
Default: EPSDIF = epsilon(x(1))

TAU0 — A universal bound describing how much the unscaled penalty-term may deviate
from zero. (Input)
NNLPF assumes that within the region described by

� � � �� �
1 1

min 0,
e

e

M M

i i
i i M

g x g x
� � �

� �� � TAU0

all functions may be evaluated safely. The initial guess, however, may violate these
requirements. In that case an initial feasibility improvement phase is run by NNLPF
until such a point is found. A small TAU0 diminishes the efficiency of NNLPF, because
the iterates then will follow the boundary of the feasible set closely. Conversely, a large
TAU0 may degrade the reliability of the code.
Default TAU0 = 1.E0

DEL0 — In the initial phase of minimization a constraint is considered binding if

� �

� �� �max 1,
i

i

g x

g x
�

�

DEL0 1, ,ei M M� � �

Good values are between .01 and 1.0. If DEL0 is chosen too small then identification
of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large,
then the method will often escape to the full regularized SQP method, using individual
slack variables for any active constraint, which is quite costly. For well-scaled
problems DEL0=1.0 is reasonable. (Input)
Default: DEL0 = .5*TAU0

EPSFCN – Relative precision of the function evaluation routine. (Input)
Default: EPSFCN = epsilon(x(1))

IDTYPE – Type of numerical differentiation to be used. (Input)
Default: IDTYPE = 1

1326 � Chapter 8: Optimization IMSL MATH/LIBRARY

IDTYPE Action

1 Use a forward difference quotient with discretization stepsize
 0.1(EPSFCN���� componentwise relative.

2 Use the symmetric difference quotient with discretization stepsize
 0.1(EPSFCN���) componentwise relative

3 Use the sixth order approximation computing a Richardson extrapolation of
 three symmetric difference quotient values. This uses a discretization
 stepsize 0.01(EPSFCN���)

TAUBND – Amount by which bounds may be violated during numerical differentiation.
Bounds are violated by TAUBND (at most) only if a variable is on a bound and finite
differences are taken for gradient evaluations. (Input)
Default: TAUBND = 1.E0

SMALLW — Scalar containing the error allowed in the multipliers. For example, a negative
multiplier of an inequality constraint is accepted (as zero) if its absolute value is less
than SMALLW. (Input)
Default: SMALLW = exp(2*log(epsilon(x(1)/3)))

DELMIN — Scalar which defines allowable constraint violations of the final accepted result.
Constraints are satisfied if |gi(x)| � DELMIN , and gj(x) � (-DELMIN) respectively.
(Input)
Default: DELMIN = min(DEL0/10, max(EPSDIF, min(DEL0/10,
max(1.E-6*DEL0, SMALLW))

SCFMAX — Scalar containing the bound for the internal automatic scaling of the objective
function. (Intput)
Default: SCFMAX = 1.0E4

FVALUE — Scalar containing the value of the objective function at the computed solution.
(Output)

FORTRAN 90 Interface
Generic: CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_NNLPF and D_NNLPF .

Example
The problem

IMSL MATH/LIBRARY Chapter 8: Optimization � 1327

� � � � � �

� �

� �

2 2
1 2

1 1 2

2 2
2 1 2

min 2 1

subject to 2 1 0

/ 4 1 0

F x x x

g x x x

g x x x

� � � �

� � � �

� � � � �

is solved.
 USE NNLPF_INT
 USE WRRRN_INT
 INTEGER IBTYPE, M, ME
 PARAMETER (IBTYPE=0, M=2, ME=1)
!
 REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2)
 EXTERNAL FCN, GRAD
!
 XLB = -HUGE(X(1))
 XUB = HUGE(X(1))
!
 CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X)
!
 CALL WRRRN ('The solution is', X)
 END

 SUBROUTINE FCN (X, IACT, RESULT, IERR)
 INTEGER IACT
 REAL(KIND(1E0)) X(*), RESULT
 LOGICAL IERR
!
 SELECT CASE (IACT)
 CASE(0)
 RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2
 CASE(1)
 RESULT = X(1) - 2.0E0*X(2) + 1.0E0
 CASE(2)
 RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0
 END SELECT
 RETURN
 END

Output
The solution is
 1 0.8229
 2 0.9114

Comments
1. Informational errors

Type Code
 4 1 Constraint evaluation returns an error with current point.
 4 2 Objective evaluation returns an error with current point.
 4 3 Working set is singular in dual extended QP.
 4 4 QP problem is seemingly infeasible.
 4 5 A stationary point located.

1328 � Chapter 8: Optimization IMSL MATH/LIBRARY

 4 6 A stationary point located or termination criteria too strong.
 4 7 Maximum number of iterations exceeded.
 4 8 Stationary point not feasible.
 4 9 Very slow primal progress.
 4 10 The problem is singular.
 4 11 Matrix of gradients of binding constraints is singular or very ill-

conditioned.
 4 12 Small changes in the penalty function.

Description
The routine NNLPF provides an interface to a licensed version of subroutine DONLP2, a
FORTRAN code developed by Peter Spellucci (1998). It uses a sequential equality constrained
quadratic programming method with an active set technique, and an alternative usage of a fully
regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear
dependent gradients in the “working sets”). It uses a slightly modified version of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variable dual scaling and an improved
Armjijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection
like fashion. Details may be found in the following two papers:

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained
subproblems. Math. Prog. 82, (1998), 413-448.

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of
Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany).

The problem is stated as follows:

� �min
nx

f x
�R

� �

� �

subject to 0, for 1, ,

0, for 1, ,
j e

j e

l u

g x j m

g x j m m

x x x

� �

� � �

� �

�

�

Although default values are provided for optional input arguments, it may be necessary to adjust
these values for some problems. Through the use of optional arguments, NNLPF allows for
several parameters of the algorithm to be adjusted to account for specific characteristics of
problems. The DONLP2 Users Guide provides detailed descriptions of these parameters as
well as strategies for maximizing the perfomance of the algorithm. The DONLP2 Users Guide
is available in the “help” subdirectory of the main IMSL product installation directory. In
addition, the following are a number of guidelines to consider when using NNLPF.

�� A good initial starting point is very problem specific and should be provided by the
calling program whenever possible. See optional argument XGUESS.

�� Gradient approximation methods can have an effect on the success of NNLPF.
Selecting a higher order appoximation method may be necessary for some problems.
See optional argument IDTYPE.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1329

�� If a two sided constraint ()i i il g x u� � is transformed into two constraints 2 () 0ig x �
and 2 1() 0ig x

�
� , then choose � �1

2DEL0 () / {1, }i i iu l max g x� � � , or at least try to
provide an estimate for that value. This will increase the efficiency of the algorithm.
See optional argument DEL0.

�� The parameter IERR provided in the interface to the user supplied function FCN can be
very useful in cases when evaluation is requested at a point that is not possible or
reasonable. For example, if evaluation at the requested point would result in a floating
point exception, then setting IERR to .TRUE. and returning without performing the
evaluation will avoid the exception. NNLPF will then reduce the stepsize and try the
step again. Note, if IERR is set to .TRUE. for the initial guess, then an error is issued.

NNLPG
Solves a general nonlinear programming problem using a sequential equality constrained quadratic
programming method with user supplied gradients.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the objective function and constraints at a

given point. The internal usage is CALL FCN (X, IACT, RESULT, IERR),
where

 X – The point at which the objective function or constraint is evaluated. (Input)

IACT – Integer indicating whether evaluation of the objective function is requested or
evaluation of a constraint is requested. If IACT is zero, then an objective
function evaluation is requested. If IACT is nonzero then the value if IACT
indicates the index of the constraint to evaluate. (Input)

RESULT – If IACT is zero, then RESULT is the computed objective function value at
the point X. If IACT is nonzero, then RESULT is the computed constraint value
at the point X. (Output)

IERR – Logical variable. On input IERR is set to .FALSE. If an error or other
undesirable condition occurs during evaluation, then IERR should be set to
.TRUE. Setting IERR to .TRUE. will result in the step size being reduced and
the step being tried again. (If IERR is set to .TRUE. for XGUESS, then an error is
issued.)

The routine FCN must be use-associated in a user module that uses NNLPG_INT, or else
declared EXTERNAL in the calling program. If FCN is a separately compiled routine, not
in a module, then it must be declared EXTERNAL.

GRAD — User-supplied SUBROUTINE to evaluate the gradients at a given point. The usage is
CALL GRAD (X, IACT, RESULT), where

1330 � Chapter 8: Optimization IMSL MATH/LIBRARY

 X – The point at which the gradient of the objective function or gradient of a constraint
is evaluated. (Input)

IACT – Integer indicating whether evaluation of the function gradient is requested or
evaluation of a constraint gradient is requested. If IACT is zero, then an
objective function gradient evaluation is requested. If IACT is nonzero then the
value if IACT indicates the index of the constraint gradient to evaluate.
(Input)RESULT – If IACT is zero, then RESULT is the computed gradient of the
objective function at the point X. If IACT is nonzero, then RESULT is the
computed gradient of the requested constraint value at the point X. (Output)

The routine GRAD must be use-associated in a user module that uses NNLPG_INT, or
else declared EXTERNAL in the calling program. If GRAD is a separately compiled
routine, not in a module, then is must be declared EXTERNAL

M — Total number of constraints. (Input)

ME — Number of equality constraints. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have
 the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is no
lower bound on a variable, then the corresponding XLB value should be set to
�huge(x(1)).

XUB — Vector of length N containing the upper bounds on the variables. (Input, if IBTYPE
= 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is no upper bound
on a variable, then the corresponding XUB value should be set to huge(x(1)).

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Number of variables. (Input)

Default: N = size(X).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1331

IPRINT — Parameter indicating the desired output level. (Input)

IPRINT Action

0 No output printed.

1 One line of intermediate results is printed in each iteration.

2 Lines of intermediate results summarizing the most important data for each
step are printed.

 3 Lines of detailed intermediate results showing all primal and dual variables,
the relevant values from the working set, progress in the backtracking and
etc are printed

4 Lines of detailed intermediate results showing all primal and dual variables,
the relevant values from the working set, progress in the backtracking, the
gradients in the working set, the quasi-Newton updated and etc are printed.

 Default: IPRINT = 0.

MAXITN — Maximum number of iterations allowed. (Input)
Default: MAXITN = 200.

XGUESS — Vector of length N containing an initial guess of the solution. (Input)
Default: XGUESS = X, (with the smallest value of

2
X) that satisfies the bounds.

TAU0 — A universal bound describing how much the unscaled penalty-term may deviate
from zero. (Input)
NNLPG assumes that within the region described by

� � � �� �
1 1

min 0,
e

e

M M

i i
i i M

g x g x
� � �

� �� � TAU0

all functions may be evaluated safely. The initial guess however, may violate these
requirements. In that case an initial feasibility improvement phase is run by NNLPG
until such a point is found. A small TAU0 diminishes the efficiency of NNLPG, because
the iterates then will follow the boundary of the feasible set closely. Conversely, a large
TAU0 may degrade the reliability of the code.
Default: TAU0 = 1.E0

DEL0 — In the initial phase of minimization a constraint is considered binding if

� �

� �� �max 1,
i

i

g x

g x
�

�

DEL0 1, ,ei M M� � �

1332 � Chapter 8: Optimization IMSL MATH/LIBRARY

Good values are between .01 and 1.0. If DEL0 is chosen too small then identification
of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large,
then the method will often escape to the full regularized SQP method, using individual
slack variables for any active constraint, which is quite costly. For well-scaled
problems DEL0=1.0 is reasonable. (Input)
Default: DEL0 = .5*TAU0

SMALLW — Scalar containing the error allowed in the multipliers. For example, a negative
multiplier of an inequality constraint is accepted (as zero) if its absolute value is less
than SMALLW. (Input)
Default: SMALLW = exp(2*log(epsilon(x(1)/3)))

DELMIN — Scalar which defines allowable constraint violations of the final accepted result.
Constraints are satisfied if |gi(x)| � DELMIN , and gj(x) � (-DELMIN) respectively.
(Input)
Default: DELMIN = min(DEL0/10, max(EPSDIF, min(DEL0/10,
max(1.E-6*DEL0, SMALLW))

SCFMAX — Scalar containing the bound for the internal automatic scaling of the objective
function. (Intput)
Default: SCFMAX = 1.0E4

FVALUE — Scalar containing the value of the objective function at the computed solution.
(Output)

FORTRAN 90 Interface
Generic: CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_NNLPG and D_NNLPG.

Example 1

The problem

� � � � � �

� �

� �

2 2
1 2

1 1 2

2 2
2 1 2

min 2 1

subject to 2 1 0

/ 4 1 0

F x x x

g x x x

g x x x

� � � �

� � � �

� � � � �

is solved.
 USE NNLPG_INT
 USE WRRRN_INT
 INTEGER IBTYPE, M, ME
 PARAMETER (IBTYPE=0, M=2, ME=1)
!
 REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2)
 EXTERNAL FCN, GRAD
!

IMSL MATH/LIBRARY Chapter 8: Optimization � 1333

 XLB = -HUGE(X(1))
 XUB = HUGE(X(1))
!
 CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X)
!
 CALL WRRRN ('The solution is', X)
 END

 SUBROUTINE FCN (X, IACT, RESULT, IERR)
 INTEGER IACT
 REAL(KIND(1E0)) X(*), RESULT
 LOGICAL IERR
!
 SELECT CASE (IACT)
 CASE(0)
 RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2
 CASE(1)
 RESULT = X(1) - 2.0E0*X(2) + 1.0E0
 CASE(2)
 RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0
 END SELECT
 RETURN
 END

 SUBROUTINE GRAD (X, IACT, RESULT)
 INTEGER IACT
 REAL(KIND(1E0)) X(*),RESULT(*)
!
 SELECT CASE (IACT)
 CASE(0)
 RESULT (1) = 2.0E0*(X(1)-2.0E0)
 RESULT (2) = 2.0E0*(X(2)-1.0E0)
 CASE(1)
 RESULT (1) = 1.0E0
 RESULT (2) = -2.0E0
 CASE(2)
 RESULT (1) = -0.5E0*X(1)
 RESULT (2) = -2.0E0*X(2)
 END SELECT
 RETURN
 END

Output
 The solution is
 1 0.8229
 2 0.9114

Comments
1. Informational errors

Type Code
 4 1 Constraint evaluation returns an error with current point.
 4 2 Objective evaluation returns an error with current point.

1334 � Chapter 8: Optimization IMSL MATH/LIBRARY

 4 3 Working set is singular in dual extended QP.
 4 4 QP problem is seemingly infeasible.
 4 5 A stationary point located.
 4 6 A stationary point located or termination criteria too strong.
 4 7 Maximum number of iterations exceeded.
 4 8 Stationary point not feasible.
 4 9 Very slow primal progress.
 4 10 The problem is singular.
 4 11 Matrix of gradients of binding constraints is singular or very ill-

conditioned.
 4 12 Small changes in the penalty function.

.

Description
The routine NNLPG provides an interface to a licensed version of subroutine DONLP2, a
FORTRAN code developed by Peter Spellucci (1998). It uses a sequential equality constrained
quadratic programming method with an active set technique, and an alternative usage of a fully
regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear
dependent gradients in the “working sets”). It uses a slightly modified version of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variable dual scaling and an improved
Armjijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection
like fashion. Details may be found in the following two papers:

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained
subproblems. Math. Prog. 82, (1998), 413-448.

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of
Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany).

The problem is stated as follows:

� �min
nx

f x
�R

� �

� �

subject to 0, for 1, ,

0, for 1, ,
j e

j e

l u

g x j m

g x j m m

x x x

� �

� � �

� �

�

�

Although default values are provided for optional input arguments, it may be necessary to adjust
these values for some problems. Through the use of optional arguments, NNLPG allows for
several parameters of the algorithm to be adjusted to account for specific characteristics of
problems. The DONLP2 Users Guide provides detailed descriptions of these parameters as
well as strategies for maximizing the perfomance of the algorithm. The DONLP2 Users Guide
is available in the “help” subdirectory of the main IMSL product installation directory. In
addition, the following are a number of guidelines to consider when using NNLPG.

�� A good initial starting point is very problem specific and should be provided by the
calling program whenever possible. See optional argument XGUESS.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1335

�� If a two sided constraint ()i i il g x u� � is transformed into two constraints 2 () 0ig x �
and 2 1() 0ig x

�
� , then choose � �1

2DEL0 () / {1, }i i iu l max g x� � � , or at least try to
provide an estimate for that value. This will increase the efficiency of the algorithm.
See optional argument DEL0.

�� The parameter IERR provided in the interface to the user supplied function FCN can be
very useful in cases when evaluation is requested at a point that is not possible or
reasonable. For example, if evaluation at the requested point would result in a floating
point exception, then setting IERR to .TRUE. and returning without performing the
evaluation will avoid the exception. NNLPG will then reduce the stepsize and try the
step again. Note, if IERR is set to .TRUE. for the initial guess, then an error is issued.

Example 2

The same problem from Example 1 is solved, but here we use central differences to compute the
gradient of the first constraint. This example demonstrates how NNLPG can be used in cases
when analytic gradients are known for only a portion of the constraints and/or objective
function. The subroutine CDGRD is used to compute an approximation to the gradient of the
first constraint.

 USE NNLPG_INT
 USE CDGRD_INT
 USE WRRRN_INT
 INTEGER IBTYPE, M, ME
 PARAMETER (IBTYPE=0, M=2, ME=1)
!
 REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2)
 EXTERNAL FCN, GRAD
!
 XLB = -HUGE(X(1))
 XUB = HUGE(X(1))
!
 CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X)
!
 CALL WRRRN ('The solution is', X)
 END

 SUBROUTINE FCN (X, IACT, RESULT, IERR)
 INTEGER IACT
 REAL(KIND(1E0)) X(2), RESULT
 LOGICAL IERR
 EXTERNAL CONSTR1
!
 SELECT CASE (IACT)
 CASE(0)
 RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2
 CASE(1)
 CALL CONSTR1(2, X, RESULT)
 CASE(2)
 RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0
 END SELECT
 RETURN

1336 � Chapter 8: Optimization IMSL MATH/LIBRARY

 END

 SUBROUTINE GRAD (X, IACT, RESULT)
 USE CDGRD_INT
 INTEGER IACT
 REAL(KIND(1E0)) X(2),RESULT(2)
 EXTERNAL CONSTR1
!
 SELECT CASE (IACT)
 CASE(0)
 RESULT (1) = 2.0E0*(X(1)-2.0E0)
 RESULT (2) = 2.0E0*(X(2)-1.0E0)
 CASE(1)
 CALL CDGRD(CONSTR1, X, RESULT)
 CASE(2)
 RESULT (1) = -0.5E0*X(1)
 RESULT (2) = -2.0E0*X(2)
 END SELECT
 RETURN
 END

 SUBROUTINE CONSTR1 (N, X, RESULT)
 INTEGER N
 REAL(KIND(1E0)) X(*), RESULT
 RESULT = X(1) - 2.0E0*X(2) + 1.0E0
 RETURN
 END

Output
 The solution is
 1 0.8229
 2 0.9114

CDGRD
Approximates the gradient using central differences.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1337

XC — Vector of length N containing the point at which the gradient is to be estimated.
(Input)

GC — Vector of length N containing the estimated gradient at XC. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

EPSFCN — Estimate for the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.
Default: EPSFCN = 0.0.

FORTRAN 90 Interface
Generic: CALL CDGRD (FCN, XC, GC [,…])

Specific: The specific interface names are S_CDGRD and D_CDGRD.

FORTRAN 77 Interface
Single: CALL CDGRD (FCN, N, XC, XSCALE, EPSFCN, GC)

Double: The double precision name is DCDGRD.

Example
In this example, the gradient of f(x) = x��� x�x� � 2 is estimated by the finite-difference method
at the point (1.0, 1.0).

 USE CDGRD_INT
 USE UMACH_INT
 INTEGER I, N, NOUT
 PARAMETER (N=2)
 REAL EPSFCN, GC(N), XC(N)
 EXTERNAL FCN
! Initialization.
 DATA XC/2*1.0E0/
! Set function noise.
 EPSFCN = 0.01
!
 CALL CDGRD (FCN, XC, GC, EPSFCN=EPSFCN)

1338 � Chapter 8: Optimization IMSL MATH/LIBRARY

!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (GC(I),I=1,N)
99999 FORMAT (’ The gradient is’, 2F8.2, /)
!
 END
!
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = X(1) - X(1)*X(2) - 2.0E0
!
 RETURN
 END

Output
The gradient is 0.00 -1.00

Comments
This is Description A5.6.4, Dennis and Schnabel, 1983, page 323.

Description
The routine CDGRD uses the following finite-difference formula to estimate the gradient of a
function of n variables at x:

� � � �
 for 1, ,

2
i i i i

i

f x h e f x h e
i n

h
� � �

� �

where hi = ���� max{|xi|, 1/si} sign(xi), � is the machine epsilon, si is the scaling factor of the i-th
variable, and ei is the i-th unit vector. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,
users should be aware of possible poor performance. When possible, high precision arithmetic is
recommended.

FDGRD
Approximates the gradient using forward differences.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1339

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the gradient is to be estimated.
(Input)

FC — Scalar containing the value of the function at XC. (Input)

GC — Vector of length N containing the estimated gradient at XC. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

EPSFCN — Estimate of the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.
Default: EPSFCN = 0.0.

FORTRAN 90 Interface
Generic: CALL FDGRD (FCN, XC, FC, GC [,…])

Specific: The specific interface names are S_FDGRD and D_FDGRD.

FORTRAN 77 Interface
Single: CALL FDGRD (FCN, XC, FC, GC, N, XSCALE, EPSFCN)

Double: The double precision name is DFDGRD.

Example
In this example, the gradient of f(x) = x� � x�x� � 2 is estimated by the finite-difference method
at the point (1.0, 1.0).

 USE FDGRD_INT
 USE UMACH_INT
 INTEGER I, N, NOUT
 PARAMETER (N=2)
 REAL EPSFCN, FC, GC(N), XC(N)

1340 � Chapter 8: Optimization IMSL MATH/LIBRARY

 EXTERNAL FCN
! Initialization.
 DATA XC/2*1.0E0/
! Set function noise.
 EPSFCN = 0.01
! Get function value at current
! point.
 CALL FCN (N, XC, FC)
!
 CALL FDGRD (FCN, XC, FC, GC, EPSFCN=EPSFCN)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (GC(I),I=1,N)
99999 FORMAT (’ The gradient is’, 2F8.2, /)
!
 END
!
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = X(1) - X(1)*X(2) - 2.0E0
!
 RETURN
 END

Output
The gradient is 0.00 -1.00

Comments
This is Description A5.6.3, Dennis and Schnabel, 1983, page 322.

Description
The routine FDGRD uses the following finite-difference formula to estimate the gradient of a
function of n variables at x:

� � � �
 for 1, ,i i

i

f x h e f x
i n

h
� �

� �

where hi = ���� max{|xi|, 1/si} sign(xi), � is the machine epsilon, ei is the i-th unit vector, and si is
the scaling factor of the i-th variable. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,
users should be aware of possible poor performance. When possible, high precision arithmetic is
recommended. When accuracy of the gradient is important, IMSL routine CDGRD (page 1336)
should be used.

FDHES
Approximates the Hessian using forward differences and function values.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1341

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the Hessian is to be approximated.
(Input)

FC — Function value at XC. (Input)

H — N by N matrix containing the finite difference approximation to the Hessian in the lower
triangle. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

EPSFCN — Estimate of the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.
Default: EPSFCN = 0.0.

LDH — Row dimension of H exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDH = size (H,1).

FORTRAN 90 Interface
Generic: CALL FDHES (FCN, XC, FC, H [,…])

Specific: The specific interface names are S_FDHES and D_FDHES.

1342 � Chapter 8: Optimization IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL FDHES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH)

Double: The double precision name is DFDHES.

Example
The Hessian is estimated for the following function at (1, �1)

� � 2
1 1 2 2f x x x x� � �

 USE FDHES_INT
 USE UMACH_INT

! Declaration of variables
 INTEGER N, LDHES, NOUT
 PARAMETER (N=2, LDHES=2)
 REAL XC(N), FVALUE, HES(LDHES,N), EPSFCN
 EXTERNAL FCN
! Initialization
 DATA XC/1.0E0,-1.0E0/
! Set function noise
 EPSFCN = 0.001
! Evaluate the function at
! current point
 CALL FCN (N, XC, FVALUE)
! Get Hessian forward difference
! approximation
 CALL FDHES (FCN, XC, FVALUE, HES, EPSFCN=EPSFCN)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) ((HES(I,J),J=1,I),I=1,N)
99999 FORMAT (’ The lower triangle of the Hessian is’, /,&
 5X,F10.2,/,5X,2F10.2,/)
!
 END
!
 SUBROUTINE FCN (N, X, F)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL X(N), F
!
 F = X(1)*(X(1) - X(2)) - 2.0E0
!
 RETURN
 END

Output
 The lower triangle of the Hessian is
 2.00
 -1.00 0.00

IMSL MATH/LIBRARY Chapter 8: Optimization � 1343

Comments
1. Workspace may be explicitly provided, if desired, by use of F2HES/DF2HES. The

reference is:

CALL F2HES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH, WK1, WK2)

The additional arguments are as follows:

WK1 — Real work vector of length N.

WK2 — Real work vector of length N.

2. This is Description A5.6.2 from Dennis and Schnabel, 1983; page 321.

Description
The routine FDHES uses the following finite-difference formula to estimate the Hessian matrix
of function f at x:

� � � � � � � �i i j j i i j j

i j

f x h e h e f x h e f x h e f x

h h

� � � � � � �

where hi = �����max{|xi|, 1/si} sign(xi), hj = ���� max{|xj|, 1/si} sign(xj), � is the machine epsilon or
user-supplied estimate of the relative noise, si and sj are the scaling factors of the i-th and j-th
variables, and ei and ej are the i-th and j-th unit vectors, respectively. For more details, see
Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,
users should be aware of possible poor performance. When possible, high precision arithmetic is
recommended.

GDHES
Approximates the Hessian using forward differences and a user-supplied gradient.

Required Arguments
GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – The point at which the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

1344 � Chapter 8: Optimization IMSL MATH/LIBRARY

GRAD must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the Hessian is to be estimated.
(Input)

GC — Vector of length N containing the gradient of the function at XC. (Input)

H — N by N matrix containing the finite-difference approximation to the Hessian in the lower
triangular part and diagonal. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

EPSFCN — Estimate of the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.
Default: EPSFCN = 0.0.

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDH = size (H,1).

FORTRAN 90 Interface
Generic: CALL GDHES (GRAD, XC, GC, H [,…])

Specific: The specific interface names are S_GDHES and D_GDHES.

FORTRAN 77 Interface
Single: CALL GDHES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH)

Double: The double precision name is DGDHES.

Example
The Hessian is estimated by the finite-difference method at point (1.0, 1.0) from the following
gradient functions:

IMSL MATH/LIBRARY Chapter 8: Optimization � 1345

1 1 2

2 1 1

2 2
1

g x x
g x x

� �

� �

 USE GDHES_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER N, LDHES, NOUT
 PARAMETER (N=2, LDHES=2)
 REAL XC(N), GC(N), HES(LDHES,N)
 EXTERNAL GRAD
!
 DATA XC/2*1.0E0/
! Set function noise
! Evaluate the gradient at the
! current point
 CALL GRAD (N, XC, GC)
! Get Hessian forward-difference
! approximation
 CALL GDHES (GRAD, XC, GC, HES)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) ((HES(I,J),J=1,N),I=1,N)
99999 FORMAT (’ THE HESSIAN IS’, /, 2(5X,2F10.2,/),/)
!
 END
!
 SUBROUTINE GRAD (N, X, G)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = 2.0E0*X(1)*X(2) - 2.0E0
 G(2) = X(1)*X(1) + 1.0E0
!
 RETURN
 END

Output
 THE HESSIAN IS
 2.00 2.00
 2.00 0.00

Comments
1. Workspace may be explicitly provided, if desired, by use of G2HES/DG2HES. The

reference is:

CALL G2HES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH, WK)

The additional argument is

WK — Work vector of length N.

2. This is Description A5.6.1, Dennis and Schnabel, 1983; page 320.

1346 � Chapter 8: Optimization IMSL MATH/LIBRARY

Description
The routine GDHES uses the following finite-difference formula to estimate the Hessian matrix
of function F at x:

� � � �j j

j

g x h e g x

h

� �

where hj = ���� max{|xj|, 1/sj} sign(xj), � is the machine epsilon, sj is the scaling factor of the j-th
variable, g is the analytic gradient of F at x, and ej is the j-th unit vector. For more details, see
Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,
users should be aware of possible poor performance. When possible, high precision arithmetic is
recommended.

FDJAC
Approximates the Jacobian of M functions in N unknowns using forward differences.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the gradient is to be estimated.
(Input)

FC — Vector of length M containing the function values at XC. (Input)

FJAC — M by N matrix containing the estimated Jacobian at XC. (Output)

Optional Arguments
M — The number of functions. (Input)

Default: M = size (FC,1).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1347

N — The number of variables. (Input)
Default: N = size (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

EPSFCN — Estimate for the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.
Default: EPSFCN = 0.0.

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFJAC = size (FJAC,1).

FORTRAN 90 Interface
Generic: CALL FDJAC (FCN, XC, FC, FJAC [,…])

Specific: The specific interface names are S_FDJAC and D_FDJAC.

FORTRAN 77 Interface
Single: CALL FDJAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC,

LDFJAC)

Double: The double precision name is DFDJAC.

Example
In this example, the Jacobian matrix of

� �

� �
1 1 2

2 1 1 2

2

1

f x x x

f x x x x

� �

� � �

is estimated by the finite-difference method at the point (1.0, 1.0).
 USE FDJAC_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER N, M, LDFJAC, NOUT
 PARAMETER (N=2, M=2, LDFJAC=2)
 REAL FJAC(LDFJAC,N), XC(N), FC(M), EPSFCN
 EXTERNAL FCN
!
 DATA XC/2*1.0E0/
! Set function noise
 EPSFCN = 0.01

1348 � Chapter 8: Optimization IMSL MATH/LIBRARY

! Evaluate the function at the
! current point
 CALL FCN (M, N, XC, FC)
! Get Jacobian forward-difference
! approximation
 CALL FDJAC (FCN, XC, FC, FJAC, EPSFCN=EPFSCN)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) ((FJAC(I,J),J=1,N),I=1,M)
99999 FORMAT (’ The Jacobian is’, /, 2(5X,2F10.2,/),/)
!
 END
!
 SUBROUTINE FCN (M, N, X, F)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER M, N
 REAL X(N), F(M)
!
 F(1) = X(1)*X(2) - 2.0E0
 F(2) = X(1) - X(1)*X(2) + 1.0E0
!
 RETURN
 END

Output
 The Jacobian is
 1.00 1.00
 0.00 -1.00

Comments
1. Workspace may be explicitly provided, if desired, by use of F2JAC/DF2JAC. The

reference is:

CALL F2JAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC, LDFJAC, WK)

The additional argument is:

WK — Work vector of length M.

2. This is Description A5.4.1, Dennis and Schnabel, 1983, page 314.

Description
The routine FDJAC uses the following finite-difference formula to estimate the Jacobian matrix
of function f at x:

� � � �j j

j

f x h e f x

h

� �

where ej is the j-th unit vector, hj = ���� max{|xj|, 1/sj} sign(xj), � is the machine epsilon, and sj is
the scaling factor of the j-th variable. For more details, see Dennis and Schnabel (1983).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1349

Since the finite-difference method has truncation error, cancellation error, and rounding error,
users should be aware of possible poor performance. When possible, high precision arithmetic is
recommended.

CHGRD
Checks a user-supplied gradient of a function.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function of which the gradient will be

checked. The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — Vector of length N containing the estimated gradient at X. (Input)

X — Vector of length N containing the point at which the gradient is to be checked. (Input)

INFO — Integer vector of length N. (Output)

INFO(I) = 0 means the user-supplied gradient is a poor estimate of the numerical
gradient at the point X(I).

INFO(I) = 1 means the user-supplied gradient is a good estimate of the numerical
gradient at the point X(I).

INFO(I) = 2 means the user-supplied gradient disagrees with the numerical gradient at
the point X(I), but it might be impossible to calculate the numerical gradient.

INFO(I) = 3 means the user-supplied gradient and the numerical gradient are both zero
at X(I), and, therefore, the gradient should be rechecked at a different point.

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

1350 � Chapter 8: Optimization IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL CHGRD (FCN, GRAD, X, INFO [,…])

Specific: The specific interface names are S_CHGRD and D_CHGRD.

FORTRAN 77 Interface
Single: CALL CHGRD (FCN, GRAD, N, X, INFO)

Double: The double precision name is DCHGRD.

Example
The user-supplied gradient of

� � � �3 42 /
2

t x x
if x x x e� �

� �

at (625, 1, 3.125, 0.25) is checked where t = 2.125.
 USE CHGRD_INT
 USE WRIRN_INT
! Declare variables
 INTEGER N
 PARAMETER (N=4)
!
 INTEGER INFO(N)
 REAL GRAD(N), X(N)
 EXTERNAL DRIV, FCN
!
! Input values for point X
! X = (625.0, 1.0, 3.125, .25)
!
 DATA X/625.0E0, 1.0E0, 3.125E0, 0.25E0/
!
 CALL DRIV (N, X, GRAD)
!
 CALL CHGRD (FCN, GRAD, X, INFO)
 CALL WRIRN (’The information vector’, INFO, 1, N, 1)
!
 END
!
 SUBROUTINE FCN (N, X, FX)
 INTEGER N
 REAL X(N), FX
!
 REAL EXP
 INTRINSIC EXP
!
 FX = X(1) + X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))
 RETURN
 END
!
 SUBROUTINE DRIV (N, X, GRAD)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1351

 INTEGER N
 REAL X(N), GRAD(N)
!
 REAL EXP
 INTRINSIC EXP
!
 GRAD(1) = 1.0E0
 GRAD(2) = EXP(-1.0E0*(2.125E0-X(3))**2/X(4))
 GRAD(3) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))*2.0E0/X(4)* &
 (2.125-X(3))
 GRAD(4) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))* &
 (2.125E0-X(3))**2/(X(4)*X(4))
 RETURN
 END

Output
 The information vector
 1 2 3 4
 1 1 1 1

Comments
1. Workspace may be explicitly provided, if desired, by use of C2GRD/DC2GRD. The

reference is:

CALL C2GRD (FCN, GRAD, N, X, INFO, FX, XSCALE, EPSFCN, XNEW)

The additional arguments are as follows:

FX — The functional value at X.

XSCALE — Real vector of length N containing the diagonal scaling matrix.

EPSFCN — The relative “noise” of the function FCN.

XNEW — Real work vector of length N.

2. Informational errors

Type Code
 4 1 The user-supplied gradient is a poor estimate of the numerical

gradient.

Description
The routine CHGRD uses the following finite-difference formula to estimate the gradient of a
function of n variables at x:

� �
� � � �

for =1, ,i i
i

i

f x h e f x
g x i n

h
� �

� �

1352 � Chapter 8: Optimization IMSL MATH/LIBRARY

where hi = ���� max{|xi|, 1/si} sign(xi), � is the machine epsilon, ei is the i-th unit vector, and si is
the scaling factor of the i-th variable.

The routine CHGRD checks the user-supplied gradient �f(x) by comparing it with the finite-
difference gradient g(x). If

� � � �� � � �� �i i i
g x f x f x�� � � �

where � = ����, then (�f(x))i, which is the i-th element of �f(x), is declared correct; otherwise,
CHGRD computes the bounds of calculation error and approximation error. When both bounds
are too small to account for the difference, (�f(x))i is reported as incorrect. In the case of a large
error bound, CHGRD uses a nearly optimal stepsize to recompute gi(x) and reports that (�f(x))i is
correct if

� � � �� � � �� �2i i i
g x f x f x�� � � �

Otherwise, (�f(x))i is considered incorrect unless the error bound for the optimal step is greater
than � |(�f(x))i|. In this case, the numeric gradient may be impossible to compute correctly. For
more details, see Schnabel (1985).

CHHES
Checks a user-supplied Hessian of an analytic function.

Required Arguments
GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – The point at which the gradient is evaluated. X should not be changed by GRAD.
(Input)

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The usage is
CALL HESS (N, X, H, LDH), where

N – Length of X. (Input)

X – The point at which the Hessian is evaluated. (Input)
X should not be changed by HESS.

H – The Hessian evaluated at the point X. (Output)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1353

LDH – Leading dimension of H exactly as specified in in the dimension statement of the
calling program. (Input)

HESS must be declared EXTERNAL in the calling program.

X — Vector of length N containing the point at which the Hessian is to be checked. (Input)

INFO — Integer matrix of dimension N by N. (Output)

INFO(I, J) = 0 means the Hessian is a poor estimate for function I at the point X(J).

INFO(I, J) = 1 means the Hessian is a good estimate for function I at the point X(J).

INFO(I, J) = 2 means the Hessian disagrees with the numerical Hessian for function I
at the point X(J), but it might be impossible to calculate the numerical Hessian.

INFO(I, J) = 3 means the Hessian for function I at the point X(J) and the numerical
Hessian are both zero, and, therefore, the gradient should be rechecked at a
different point.

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

LDINFO — Leading dimension of INFO exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDINFO = size (INFO,1).

FORTRAN 90 Interface
Generic: CALL CHHES (GRAD, HESS, X, INFO [,…])

Specific: The specific interface names are S_CHHES and D_CHHES.

FORTRAN 77 Interface
Single: CALL CHHES (GRAD, HESS, N, X, INFO, LDINFO)

Double: The double precision name is DCHHES.

Example
The user-supplied Hessian of

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

1354 � Chapter 8: Optimization IMSL MATH/LIBRARY

at (�1.2, 1.0) is checked, and the error is found.
 USE CHHES_INT
 INTEGER LDINFO, N
 PARAMETER (N=2, LDINFO=N)
!
 INTEGER INFO(LDINFO,N)
 REAL X(N)
 EXTERNAL GRD, HES
!
! Input values for X
! X = (-1.2, 1.0)
!
 DATA X/-1.2, 1.0/
!
 CALL CHHES (GRD, HES, X, INFO)
!
 END
!
 SUBROUTINE GRD (N, X, UG)
 INTEGER N
 REAL X(N), UG(N)
!
 UG(1) = -400.0*X(1)*(X(2)-X(1)*X(1)) + 2.0*X(1) - 2.0
 UG(2) = 200.0*X(2) - 200.0*X(1)*X(1)
 RETURN
 END
!
 SUBROUTINE HES (N, X, HX, LDHS)
 INTEGER N, LDHS
 REAL X(N), HX(LDHS,N)
!
 HX(1,1) = -400.0*X(2) + 1200.0*X(1)*X(1) + 2.0
 HX(1,2) = -400.0*X(1)
 HX(2,1) = -400.0*X(1)
! A sign change is made to HX(2,2)
!
 HX(2,2) = -200.0
 RETURN
 END

Output
*** FATAL ERROR 1 from CHHES. The Hessian evaluation with respect to
*** X(2) and X(2) is a poor estimate.

Comments
Workspace may be explicitly provided, if desired, by use of C2HES/DC2HES. The reference is

CALL C2HES (GRAD, HESS, N, X, INFO, LDINFO, G, HX, HS,
 XSCALE, EPSFCN, INFT, NEWX)

The additional arguments are as follows:

G — Vector of length N containing the value of the gradient GRD at X.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1355

HX — Real matrix of dimension N by N containing the Hessian evaluated at X.

HS — Real work vector of length N.

XSCALE — Vector of length N used to store the diagonal scaling matrix for the
variables.

EPSFCN — Estimate of the relative noise in the function.

INFT — Vector of length N. For I = 1 through N, INFT contains information about the
Jacobian.

NEWX — Real work array of length N.

Description
The routine CHHES uses the following finite-difference formula to estimate the Hessian of a
function of n variables at x:

� � � � � �� � / for 1, ,ij i j j i jB x g x h e g x h j n� � � � �

where hj = ����max{|xj|, 1/sj} sign(xj), � is the machine epsilon, ej is the j-th unit vector, sj is the
scaling factor of the j-th variable, and gi(x) is the gradient of the function with respect to the i-th
variable.

Next, CHHES checks the user-supplied Hessian H(x) by comparing it with the finite difference
approximation B(x). If

|Bij(x) � Hij(x)| < � |Hij(x)|

where � = ����, then Hij(x) is declared correct; otherwise, CHHES computes the bounds of
calculation error and approximation error. When both bounds are too small to account for the
difference, Hij(x) is reported as incorrect. In the case of a large error bound, CHHES uses a nearly
optimal stepsize to recompute Bij(x) and reports that Bij(x) is correct if

|Bij(x) � Hij(x)| < 2� |Hij(x)|

Otherwise, Hij(x) is considered incorrect unless the error bound for the optimal step is greater
than � |Hij(x)|. In this case, the numeric approximation may be impossible to compute correctly.
For more details, see Schnabel (1985).

CHJAC
Checks a user-supplied Jacobian of a system of equations with M functions in N unknowns.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

1356 � Chapter 8: Optimization IMSL MATH/LIBRARY

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL
JAC (M, N, X, FJAC, LDFJAC), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

FJAC – The computed M by N Jacobian at the point X. (Output)

LDFJAC – Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.

X — Vector of length N containing the point at which the Jacobian is to be checked. (Input)

INFO — Integer matrix of dimension M by N. (Output)

INFO(I, J) = 0 means the user-supplied Jacobian is a poor estimate for function I at
the point X(J).

INFO(I, J) = 1 means the user-supplied Jacobian is a good estimate for function I at
the point X(J).

INFO(I, J) = 2 means the user-supplied Jacobian disagrees with the numerical Jacobian
for function I at the point X(J), but it might be impossible to calculate the
numerical Jacobian.

INFO(I, J) = 3 means the user-supplied Jacobian for function I at the point X(J) and
the numerical Jacobian are both zero. Therefore, the gradient should be
rechecked at a different point.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1357

Optional Arguments
M — The number of functions in the system of equations. (Input)

Default: M = size (INFO,1).

N — The number of unknowns in the system of equations. (Input)
Default: N = size (X,1).

LDINFO — Leading dimension of INFO exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDINFO = size (INFO,1).

FORTRAN 90 Interface
Generic: CALL CHJAC (FCN, JAC, X, INFO [,…])

Specific: The specific interface names are S_CHJAC and D_CHJAC.

FORTRAN 77 Interface
Single: CALL CHJAC (FCN, JAC, M, N, X, INFO, LDINFO)

Double: The double precision name is DCHJAC.

Example
The user-supplied Jacobian of

� �
1 1

2
2 2 1

1

10

f x

f x x

� �

� �

at (�1.2, 1.0) is checked.
 USE CHJAC_INT
 USE WRIRN_INT
 INTEGER LDINFO, N
 PARAMETER (M=2,N=2,LDINFO=M)
!
 INTEGER INFO(LDINFO,N)
 REAL X(N)
 EXTERNAL FCN, JAC
!
! Input value for X
! X = (-1.2, 1.0)
!
 DATA X/-1.2, 1.0/
!
 CALL CHJAC (FCN, JAC, X, INFO)
 CALL WRIRN (’The information matrix’, INFO)
!
 END

1358 � Chapter 8: Optimization IMSL MATH/LIBRARY

!
 SUBROUTINE FCN (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
!
 F(1) = 1.0 - X(1)
 F(2) = 10.0*(X(2)-X(1)*X(1))
 RETURN
 END
!
 SUBROUTINE JAC (M, N, X, FJAC, LDFJAC)
 INTEGER M, N, LDFJAC
 REAL X(N), FJAC(LDFJAC,N)
!
 FJAC(1,1) = -1.0
 FJAC(1,2) = 0.0
 FJAC(2,1) = -20.0*X(1)
 FJAC(2,2) = 10.0
 RETURN
 END

Output
*** WARNING ERROR 2 from C2JAC. The numerical value of the Jacobian
*** evaluation for function 1 at the point X(2) = 1.000000E+00 and
*** the user-supplied value are both zero. The Jacobian for this
*** function should probably be re-checked at another value for
*** this point.

The information matrix
 1 2
1 1 3
2 1 1

Comments
1. Workspace may be explicitly provided, if desired, by use of C2JAC/DC2JAC. The

reference is:

CALL C2JAC (FCN, JAC, N, X, INFO, LDINFO, FX, FJAC,
 GRAD, XSCALE, EPSFCN, INFT, NEWX)

The additional arguments are as follows:

FX — Vector of length M containing the value of each function in FCN at X.

FJAC — Real matrix of dimension M by N containing the Jacobian of FCN evaluated at
X.

GRAD — Real work vector of length N used to store the gradient of each function in
FCN.

XSCALE — Vector of length N used to store the diagonal scaling matrix for the
variables.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1359

EPSFCN — Estimate of the relative noise in the function.

INFT — Vector of length N. For I = 1 through N, INFT contains information about the
Jacobian.

NEWX — Real work array of length N.

2. Informational errors

Type Code
 4 1 The user-supplied Jacobian is a poor estimate of the numerical

Jacobian.

Description
The routine CHJAC uses the following finite-difference formula to estimate the gradient of the i-
th function of n variables at x:

gij(x) = (fi(x + hjej) � fi(x))/hj for j = 1, �, n

where hj = ����max{|xj|, 1/sj} sign(xj), � is the machine epsilon, ej is the j-th unit vector, and sj is
the scaling factor of the j-th variable.

Next, CHJAC checks the user-supplied Jacobian J(x) by comparing it with the finite difference
gradient gi(x). If

|gij(x) � Jij(x)| < � |Jij(x)|

where � = ����, then Jij(x) is declared correct; otherwise, CHJAC computes the bounds of
calculation error and approximation error. When both bounds are too small to account for the
difference, Jij(x) is reported as incorrect. In the case of a large error bound, CHJAC uses a nearly
optimal stepsize to recompute gij(x) and reports that Jij(x) is correct if

|gij(x) � Jij(x)| < 2� |Jij(x)|

Otherwise, Jij(x) is considered incorrect unless the error bound for the optimal step is greater
than � |Jij(x)|. In this case, the numeric gradient may be impossible to compute correctly. For
more details, see Schnabel (1985).

GGUES
Generates points in an N-dimensional space.

Required Arguments
A — Vector of length N. (Input)

See B.

1360 � Chapter 8: Optimization IMSL MATH/LIBRARY

B — Real vector of length N. (Input)
A and B define the rectangular region in which the points will be generated, i.e.,
A(I) < S(I) < B(I) for I = 1, 2, �, N. Note that if B(I) < A(I), then B(I) < S(I) < A(I).

K — The number of points to be generated. (Input)

IDO — Initialization parameter. (Input/Output)
IDO must be set to zero for the first call. GGUES resets IDO to 1 and returns the first
generated point in S. Subsequent calls should be made with IDO = 1.

S — Vector of length N containing the generated point. (Output)
Each call results in the next generated point being stored in S.

Optional Arguments
N — Dimension of the space. (Input)

Default: N = size (B,1).

FORTRAN 90 Interface
Generic: CALL GGUES (A, B, K, IDO, S [,…])

Specific: The specific interface names are S_GGUES and D_GGUES.

FORTRAN 77 Interface
Single: CALL GGUES (N, A, B, K, IDO, S)

Double: The double precision name is DGGUES.

Example
We want to search the rectangle with vertices at coordinates (1, 1), (3, 1), (3, 2), and (1, 2) ten
times for a global optimum of a nonlinear function. To do this, we need to generate starting
points. The following example illustrates the use of GGUES in this process:

 USE GGUES_INT
 USE UMACH_INT
! Variable Declarations
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IDO, J, K, NOUT
 REAL A(N), B(N), S(N)
! Initializations
!
! A = (1.0, 1.0)
! B = (3.0, 2.0)
!
 DATA A/1.0, 1.0/

IMSL MATH/LIBRARY Chapter 8: Optimization � 1361

 DATA B/3.0, 2.0/
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
99998 FORMAT (’ Point Number’, 7X, ’Generated Point’)
!
 K = 10
 IDO = 0
 DO 10 J=1, K
 CALL GGUES (A, B, K, IDO, S)
!
 WRITE (NOUT,99999) J, S(1), S(2)
99999 FORMAT (1X, I7, 14X, ’(’, F4.1, ’,’, F6.3, ’)’)
!
 10 CONTINUE
!
 END

Output
Point Number Generated Point

 1 (1.5, 1.125)
 2 (2.0, 1.500)
 3 (2.5, 1.750)
 4 (1.5, 1.375)
 5 (2.0, 1.750)
 6 (1.5, 1.625)
 7 (2.5, 1.250)
 8 (1.5, 1.875)
 9 (2.0, 1.250)
10 (2.5, 1.500)

Comments
1. Workspace may be explicitly provided, if desired, by use of G2UES/DG2UES. The

reference is:

CALL G2UES (N, A, B, K, IDO, S, WK, IWK)

The additional arguments are:

WK — Work vector of length N. WK must be preserved between calls to G2UES.

IWK — Work vector of length 10. IWK must be preserved between calls to G2UES.

2. Informational error

Type Code
 4 1 Attempt to generate more than K points.

3. The routine GGUES may be used with any nonlinear optimization routine that requires
starting points. The rectangle to be searched (defined by A, B, and N) must be
determined; and the number of starting points, K, must be chosen. One possible use for

1362 � Chapter 8: Optimization IMSL MATH/LIBRARY

GGUES would be to call GGUES to generate a point in the chosen rectangle. Then, call
the nonlinear optimization routine using this point as an initial guess for the solution.
Repeat this process K times. The number of iterations that the optimization routine is
allowed to perform should be quite small (5 to 10) during this search process. The best
(or best several) point(s) found during the search may be used as an initial guess to
allow the optimization routine to determine the optimum more accurately. In this
manner, an N dimensional rectangle may be effectively searched for a global optimum
of a nonlinear function. The choice of K depends upon the nonlinearity of the function
being optimized. A function with many local optima requires a larger value than a
function with only a few local optima.

Description
The routine GGUES generates starting points for algorithms that optimize functions of several
variables�or, almost equivalently�algorithms that solve simultaneous nonlinear equations.

The routine GGUES is based on systematic placement of points to optimize the dispersion of the
set. For more details, see Aird and Rice (1977).

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1363

Chapter 9: Basic Matrix/Vector
Operations

Routines
9.1. Basic Linear Algebra Subprograms (BLAS)

Set a vector to a constant value, xi � a..................................SSET 1369
Copy a vector, yi � xi ... SCOPY 1369
Scale a vector by a constant, xi � axi SSCAL 1369
Set a vector to a constant multiple of a vector, yi � axi SVCAL 1369
Add a constant to a vector, xi �xi + a....................................SADD 1370
Subtract a vector from a constant, xi � a � xi........................ SSUB 1370
Add a multiple of one vector to another, yi � axi + yiSAXPY 1370
Swap two vectors, yi� xi ..SSWAP 1370

Compute xTy or xHy ...SDOT 1370
Compute extended precision xTy or xHy............................. DSDOT 1371
Compute extended precision a + xTy or a + xHy...............SDSDOT 1371
Compute ACC + b + xTy
with extended precision accumulator SDDOTI 1372
Compute zi � xiyi ... SHPROD 1372
Compute � xiyizi ..SXYZ 1372
Compute � xi ..SSUM 1372
Compute � |xi| ... SASUM 1373
Compute ||x||�... SNRM2 1373
Compute � xi .. SPRDCT 1373
Find the index i such that xi = minj xj...................................... ISMIN 1374
Find the index i such that xi= maxj xjISMAX 1374
Find the index i such that |xi| = minj |xj|ISAMIN 1374
Find the index i such that |xi| = maxj |xj| ISAMAX 1374
Construct a Givens rotation .. SROTG 1374
Apply a Givens rotation..SROT 1375
Construct a modified Givens rotation SROTMG 1376

1364 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Apply a modified Givens rotation SROTM 1377
Matrix-vector multiply, general ... SGEMV 1381
Matrix-vector multiply, banded ... SGBMV 1381
Matrix-vector multiply, Hermitian.. CHEMV 1381
Matrix-vector multiply, Hermitian and banded.................... CHBMV 1381
Matrix-vector multiply, symmetric and real..........................SSYMV 1382
Matrix-vector multiply, symmetric and banded....................SSBMV 1382
Matrix-vector multiply, triangular ...STRMV 1382
Matrix-vector multiply, triangular and bandedSTBMV 1382
Matrix-vector solve, triangular ... STRSV 1383
Matrix-vector solve, triangular and banded..........................STBSV 1383
Rank-one matrix update, general and real............................ SGER 1383
Rank-one matrix update, general, complex,
and transpose... CGERU 1384
Rank-one matrix update, general, complex,
and conjugate transpose.. CGERC 1384
Rank-one matrix update,
Hermitian and conjugate transpose CHER 1384
Rank-two matrix update,
Hermitian and conjugate transpose CHER2 1384
Rank-one matrix update, symmetric and realSSYR 1384
Rank-two matrix update, symmetric and real.......................SSYR2 1384
Matrix-matrix multiply, general ...SGEMM 1385
Matrix-matrix multiply, symmetric....................................... SSYMM 1385
Matrix-matrix multiply, Hermitian..CHEMM 1385
Rank-k update, symmetric... SSYRK 1386
Rank-k update, Hermitian..CHERK 1386
Rank-2k update, symmetric... SSYR2K 1386
Rank-2k update, Hermitian..CHER2K 1387
Matrix-matrix multiply, triangular .. STRMM 1387
Matrix-matrix solve, triangular ...STRSM 1387

9.2. Other Matrix/Vector Operations
9.2.1 Matrix Copy

Real general ...CRGRG 1389
Complex general ..CCGCG 1390
Real band ..CRBRB 1392
Complex band ...CCBCB 1393

9.2.2 Matrix Conversion
Real general to real band... CRGRB 1395
Real band to real general ... CRBRG 1397
Complex general to complex band..................................... CCGCB 1398
Complex band to complex general..................................... CCBCG 1400
Real general to complex generalCRGCG 1402
Real rectangular to complex rectangular CRRCR 1403
Real band to complex band ..CRBCB 1405
Real symmetric to real general ...CSFRG 1406
Complex Hermitian to complex generalCHFCG 1408
Real symmetric band to real bandCSBRB 1409

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1365

Complex Hermitian band to complex band......................... CHBCB 1411
Real rectangular matrix to its transpose TRNRR 1413

9.2.3 Matrix Multiplication
Compute XT X ..MXTXF 1415
Compute XT Y ..MXTYF 1416
Compute XYT ...MXYTF 1418
Multiply two real rectangular matricesMRRRR 1421
Multiply two complex rectangular matrices.........................MCRCR 1423
Compute matrix Hadamard product....................................HRRRR 1425
Compute the bilinear form xTAy ...BLINF 1427
Compute the matrix polynomial p(A)................................... POLRG 1429

9.2.4 Matrix-Vector Multiplication
Real rectangular matrix times a real vectorMURRV 1431
Real band matrix times a real vectorMURBV 1433
Complex rectangular matrix times a complex vector..........MUCRV 1435
Complex band matrix times a complex vector....................MUCBV 1436

9.2.5 Matrix Addition
Real band matrix plus a real band matrixARBRB 1438
Complex band matrix plus a complex band matrix..............ACBCB 1441

9.2.6 Matrix Norm
�-norm of a real rectangular matrixNRIRR 1443
1-norm of a real rectangular matrixNR1RR 1444
Frobenius norm of a real rectangular matrix........................NR2RR 1446
1-norm of a real band matrix..NR1RB 1447
1-norm of a complex band matrix ..NR1CB 1449

9.2.7 Distance Between Two Points
Euclidean distance...DISL2 1450
1-norm distance ...DISL1 1452
�-norm distance..DISLI 1454

9.2.8 Vector Convolutions
Convolution of real vectors ...VCONR 1455
Convolution of complex vectors..VCONC 1457

9.3. Extended Precision Arithmetic
Initialize a real accumulator, ACC � aDQINI 1460
Store a real accumulator, a � ACC DQSTO 1460
Add to a real accumulator, ACC � ACC + a..........................DQADD 1460
Add a product to a real accumulator, ACC � ACC + abDQMUL 1460
Initialize a complex accumulator, ACC � a ZQINI 1460
Store a complex accumulator, a � ACCZQSTO 1460
Add to a complex accumulator, ACC �ACC + a ZQADD 1460
Add a product to a complex accumulator,
ACC � ACC + ab ... ZQMUL 1460

1366 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Basic Linear Algebra Subprograms
The basic linear algebra subprograms, normally referred to as the BLAS, are routines for low-level
operations such as dot products, matrix times vector, and matrix times matrix. Lawson et al.
(1979) published the original set of 38 BLAS. The IMSL BLAS collection includes these 38
subprograms plus additional ones that extend their functionality. Since Dongarra et al. (1988 and
1990) published extensions to this set, it is customary to refer to the original 38 as Level 1 BLAS.
The Level 1 operations are performed on one or two vectors of data. An extended set of
subprograms perform operations involving a matrix and one or two vectors. These are called the
Level 2 BLAS (page 1377). An additional extended set of operations on matrices is called the
Level 3 BLAS (page 1377).

Users of the BLAS will often benefit from using versions of the BLAS supplied by hardware
vendors, if available. This can provide for more efficient execution of many application programs.
The BLAS provided by IMSL are written in FORTRAN. Those supplied by vendors may be
written in other languages, such as assembler. The documentation given below for the BLAS is
compatible with a vendor’s version of the BLAS that conforms to the published specifications.

Programming Notes for Level 1 BLAS
The Level 1 BLAS do not follow the usual IMSL naming conventions. Instead, the names consist
of a prefix of one or more of the letters “I,” “S,” “D,” “C” and “Z;” a root name; and sometimes a
suffix. For subprograms involving a mixture of data types, the output type is indicated by the first
prefix letter. The suffix denotes a variant algorithm. The prefix denotes the type of the operation
according to the following table:

I Integer

S Real C Complex
D Double Z Double complex
SD Single and Double CZ Single and double complex
DQ Double and Quadruple ZQ Double and quadruple complex

Vector arguments have an increment parameter that specifies the storage space or stride between
elements. The correspondence between the vectors x and y and the arguments SX and SY, and
INCX and INCY is

� �� �

� �� �

� �� �

� �� �

SX I-1 INCX 1 if INCX 0

SX I-N INCX 1 if INCX 0

SY I-1 INCY 1 if INCY 0

SY I-N INCY 1 if INCY 0

i

i

x

y

� � �

� � �

� � �

� � �

��
� �
��

��
� �
��

Function subprograms SXYZ, DXYZ, page 1372, refer to a third vector argument z. The storage
increment INCZ for z is defined like INCX, INCY. In the Level 1 BLAS, only positive values of
INCX are allowed for operations that have a single vector argument. The loops in all of the Level 1
BLAS process the vector arguments in order of increasing i. For INCX, INCY, INCZ < 0, this
implies processing in reverse storage order.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1367

The function subprograms in the Level 1 BLAS are all illustrated by means of an assignment
statement. For example, see SDOT (page 1370). Any value of a function subprogram can be used in
an expression or as a parameter passed to a subprogram as long as the data types agree.

Descriptions of the Level 1 BLAS Subprograms
The set of Level 1 BLAS are summarized in Table 9.1. This table also lists the page numbers
where the subprograms are described in more detail.

Specification of the Level 1 BLAS
With the definitions,

MX = max {1, 1 + (N � 1)|INCX|}

MY = max {1, 1 + (N � 1)|INCY|}

MZ = max {1, 1 + (N � 1)|INCZ|}

the subprogram descriptions assume the following FORTRAN declarations:
IMPLICIT INTEGER (I-N)
IMPLICIT REAL S
IMPLICIT DOUBLE PRECISION D
IMPLICIT COMPLEX C
IMPLICIT DOUBLE COMPLEX Z

INTEGER IX(MX)
REAL SX(MX), SY(MY), SZ(MZ),
 SPARAM(5)
DOUBLE PRECISION DX(MX), DY(MY), DZ(MZ),
 DPARAM(5)

DOUBLE PRECISION DACC(2), DZACC(4)
COMPLEX CX(MX), CY(MY)
DOUBLE COMPLEX ZX(MX), ZY(MY)

Since FORTRAN 77 does not include the type DOUBLE COMPLEX, subprograms with DOUBLE
COMPLEX arguments are not available for all systems. Some systems use the declaration COMPLEX
* 16 instead of DOUBLE COMPLEX.

In the following descriptions, the original BLAS are marked with an * in the left column.
Table 9.1: Level 1 Basic Linear Algebra Subprograms

Operation

Integer

Real

Double

Complex

Double
Complex

Pg.

xi � a ISET SSET DSET CSET ZSET 1369

yi � xi ICOPY SCOPY DCOPY CCOPY ZCOPY 1369

xi � axi

a � R

 SSCAL DSCAL CSCAL

CSSCAL

ZSCAL

ZDSCAL

1369

1368 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Operation

Integer

Real

Double

Complex

Double
Complex

Pg.

yi � axi

a � R

 SVCAL DVCAL CVCAL

CSVCAL

ZVCAL

ZDVCAL

1369

xi � xi + a IADD SADD DADD CADD ZADD 1370

xi � a � xi ISUB SSUB DSUB CSUB ZSUB 1370

yi � axi + yi SAXPY DAXPY CAXPY ZAXPY 1370

yi � xi ISWAP SSWAP DSWAP CSWAP ZSWAP 1370

x � y

x � y

 SDOT DDOT CDOTU

CDOTC

ZDOTU

ZDOTC

1370

x � y †

x � y †

 DSDOT CZDOTU

CZDOTC

ZQDOTU

ZQDOTC

1371

a + x � y †

a + x � y †

 SDSDOT DQDDOT CZUDOT

CZCDOT

ZQUDOT

ZQCDOT

1371

b + x � y †

ACC + b + x � y †

 SDDOTI

SDDOTA

DQDOTI

DQDOTA

CZDOTI

CZDOTA

ZQDOTI

ZQDOTA

1372

zi � xiyi SHPROD DHPROD 1372

	 xiyizi SXYZ DXYZ 1372

	 xi ISUM SSUM DSUM 1372

	 |xi| SASUM DASUM SCASUM DZASUM 1373

||x||� SNRM2 DNRM2 SCNRM2 DZNRM2 1373

� xi SPRDCT DPRDCT 1373

i : xi = minj xj IIMIN ISMIN IDMIN 1374

i : xi = maxj xj IIMAX ISMAX IDMAX 1374

i : |xi| = minj |xj| ISAMIN IDAMIN ICAMIN IZAMIN 1374

Operation

Integer

Real

Double

Complex

Double
Complex

Pg.

i : |xi| = maxj |xj| ISAMAX IDAMAX ICAMAX IZAMAX 1374

Construct Givens
rotation

 SROTG DROTG 1374

Apply Givens
rotation

 SROT DROT CSROT ZDROT 1375

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1369

Operation

Integer

Real

Double

Complex

Double
Complex

Pg.

Construct
modified Givens
transform

 SROTMG DROTMG 1376

Apply modified
Givens transform

 SROTM DROTM CSROTM ZDROTM 1377

†Higher precision accumulation used

Set a Vector to a Constant Value
CALL ISET (N, IA, IX, INCX)
CALL SSET (N, SA, SX, INCX)
CALL DSET (N, DA, DX, INCX)
CALL CSET (N, CA, CX, INCX)
CALL ZSET (N, ZA, ZX, INCX)

These subprograms set xi � a for i = 1, 2,
, N. If N � 0, then the subprograms return
immediately.

Copy a Vector
 CALL ICOPY (N, IX, INCX, IY, INCY)
*CALL SCOPY (N, SX, INCX, SY, INCY)
*CALL DCOPY (N, DX, INCX, DY, INCY)
*CALL CCOPY (N, CX, INCX, CY, INCY)
 CALL ZCOPY (N, ZX, INCX, ZY, INCY)

These subprograms set yi � xi for i = 1, 2,
, N. If N � 0, then the subprograms return
immediately.

Scale a Vector
*CALL SSCAL (N, SA, SX, INCX)
*CALL DSCAL (N, DA, DX, INCX)
*CALL CSCAL (N, CA, CX, INCX)
 CALL ZSCAL (N, ZA, ZX, INCX)
*CALL CSSCAL (N, SA, CX, INCX)
 CALL ZDSCAL (N, DA, ZX, INCX)

These subprograms set xi � axi for i = 1, 2,
, N. If N � 0, then the subprograms return
immediately. CAUTION: For CSSCAL and ZDSCAL, the scalar quantity a is real and the vector x is
complex.

Multiply a Vector by a Constant
CALL SVCAL (N, SA, SX, INCX, SY, INCY)
CALL DVCAL (N, DA, DX, INCX, DY, INCY)
CALL CVCAL (N, CA, CX, INCX, CY, INCY)
CALL ZVCAL (N, ZA, ZX, INCX, ZY, INCY)

1370 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

CALL CSVCAL (N, SA, CX, INCX, CY, INCY)
CALL ZDVCAL (N, DA, ZX, INCX, ZY, INCY)

These subprograms set yi � axi for i = 1, 2,
, N. If N � 0, then the subprograms return
immediately. CAUTION: For CSVCAL and ZDVCAL, the scalar quantity a is real and the vector x is
complex.

Add a Constant to a Vector
CALL IADD (N, IA, IX, INCX)
CALL SADD (N, SA, SX, INCX)
CALL DADD (N, DA, DX, INCX)
CALL CADD (N, CA, CX, INCX)
CALL ZADD (N, ZA, ZX, INCX)

These subprograms set xi � xi + a for i = 1, 2,
, N. If N � 0, then the subprograms return
immediately.

Subtract a Vector from a Constant
CALL ISUB (N, IA, IX, INCX)
CALL SSUB (N, SA, SX, INCX)
CALL DSUB (N, DA, DX, INCX)
CALL CSUB (N, CA, CX, INCX)
CALL ZSUB (N, ZA, ZX, INCX)

These subprograms set xi � a � xi for i = 1, 2,
, N. If N � 0, then the subprograms return
immediately.

Constant Times a Vector Plus a Vector
*CALL SAXPY (N, SA, SX, INCX, SY, INCY)
*CALL DAXPY (N, DA, DX, INCX, DY, INCY)
*CALL CAXPY (N, CA, CX, INCX, CY, INCY)
 CALL ZAXPY (N, ZA, ZX, INCX, ZY, INCY)

These subprograms set yi � axi + yi for i = 1, 2,
, N. If N � 0, then the subprograms return
immediately.

Swap Two Vectors
 CALL ISWAP (N, IX, INCX, IY, INCY)
*CALL SSWAP (N, SX, INCX, SY, INCY)
*CALL DSWAP (N, DX, INCX, DY, INCY)
*CALL CSWAP (N, CX, INCX, CY, INCY)
 CALL ZSWAP (N, ZX, INCX, ZY, INCY)

These subprograms perform the exchange yi � xi for i = 1, 2,
, N. If N � 0, then the
subprograms return immediately.

Dot Product
*SW = SDOT (N, SX, INCX, SY, INCY)
*DW = DDOT (N, DX, INCX, DY, INCY)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1371

*CW = CDOTU (N, CX, INCX, CY, INCY)
*CW = CDOTC (N, CX, INCX, CY, INCY)
 ZW = ZDOTU (N, ZX, INCX, ZY, INCY)
 ZW = ZDOTC (N, ZX, INCX, ZY, INCY)

The function subprograms SDOT, DDOT, CDOTU, and ZDOTU compute

1

N
i ii

x y
�

�

The function subprograms CDOTC and ZDOTC compute

1

N
i ii

x y
�

�

The suffix C indicates that the complex conjugates of xi are used. The suffix U indicates that the
unconjugated values of xi are used. If N � 0, then the subprograms return zero.

Dot Product with Higher Precision Accumulation
*DW = DSDOT (N, SX, INCX, SY, INCY)
 CW = CZDOTC (N, CX, INCX, CY, INCY)
 CW = CZDOTU (N, CX, INCX, CY, INCY)
 ZW = ZQDOTC (N, ZX, INCX, ZY, INCY)
 ZW = ZQDOTU (N, ZX, INCX, ZY, INCY)

The function subprogram DSDOT computes

1

N
i ii

x y
�

�

using double precision accumulation. The function subprograms CZDOTU and ZQDOTU compute

1

N
i ii

x y
�

�

using double and quadruple complex accumulation, respectively. The function subprograms
CZDOTC and ZQDOTC compute

1

N
i ii

x y
�

�

using double and quadruple complex accumulation, respectively. If N � 0, then the subprograms
return zero.

Constant Plus Dot Product with Higher Precision Accumulation
*SW = SDSDOT (N, SA, SX, INCX, SY, INCY)
 DW = DQDDOT (N, DA, DX, INCX, DY, INCY)
 CW = CZCDOT (N, CA, CX, INCX, CY, INCY)
 CW = CZUDOT (N, CA, CX, INCX, CY, INCY)
 ZW = ZQCDOT (N, ZA, ZX, INCX, ZY, INCY)
 ZW = ZQUDOT (N, ZA, ZX, INCX, ZY, INCY)

The function subprograms SDSDOT, DQDDOT, CZUDOT, and ZQUDOT compute

1

N
i ii

a x y
�

��

1372 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

using higher precision accumulation where SDSDOT uses double precision accumulation, DQDDOT
uses quadruple precision accumulation, CZUDOT uses double complex accumulation, and ZQUDOT
uses quadruple complex accumulation. The function subprograms CZCDOT and ZQCDOT compute

1

N
i ii

a x y
�

��

using double complex and quadruple complex accumulation, respectively. If N � 0, then the
subprograms return zero.

Dot Product Using the Accumulator
 SW = SDDOTI (N, SB, DACC, SX, INCX, SY, INCY)
 SW = SDDOTA (N, SB, DACC, SX, INCX, SY, INCY)
 CW = CZDOTI (N, CB, DACC, CX, INCX, CY, INCY)
 CW = CZDOTA (N, CB, DACC, CX, INCX, CY, INCY)
*DW = DQDOTI (N, DB, DACC, DX, INCX, DY, INCY)
*DW = DQDOTA (N, DB, DACC, DX, INCX, DY, INCY)
 ZW = ZQDOTI (N, ZB, DZACC, ZX, INCX, ZY, INCY)
 ZW = ZQDOTA (N, ZB, DZACC, ZX, INCX, ZY, INCY)

The variable DACC, a double precision array of length two, is used as a quadruple precision
accumulator. DZACC, a double precision array of length four, is its complex analog. The function
subprograms, with a name ending in I, initialize DACC to zero. All of the function subprograms
then compute

1
DACC N

i ii
b x y

�

� ��

and store the result in DACC. The result, converted to the precision of the function, is also returned
as the function value. If N � 0, then the function subprograms return zero.

Hadamard Product
CALL SHPROD (N, SX, INCX, SY, INCY, SZ, INCZ)
CALL DHPROD (N, DX, INCX, DY, INCY, DZ, INCZ)

These subprograms set zi � xiyi for i = 1, 2,
, N. If N � 0, then the subprograms return
immediately.

Triple Inner Product
SW = SXYZ (N, SX, INCX, SY, INCY, SZ, INCZ)
DW = DXYZ (N, DX, INCX, DY, INCY, DZ, INCZ)

These function subprograms compute

1

N
i i ii

x y z
�

�

If N � 0 then the subprograms return zero.

Sum of the Elements of a Vector
IW = ISUM (N, IX, INCX)
SW = SSUM (N, SX, INCX)
DW = DSUM (N, DX, INCX)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1373

These function subprograms compute

1

N
ii

x
�

�

If N � 0, then the subprograms return zero.

Sum of the Absolute Values of the Elements of a Vector
*SW = SASUM (N, SX, INCX)
*DW = DASUM (N, DX, INCX)
*SW = SCASUM (N, CX, INCX)
 DW = DZASUM (N, ZX, INCX)

The function subprograms SASUM and DASUM compute

1

N
ii

x
�

�

The function subprograms SCASUM and DZASUM compute

1

N
i ii

x x
�

� � � � �� ��

If N � 0, then the subprograms return zero. CAUTION: For SCASUM and DZASUM, the function
subprogram returns a real value.

Euclidean or � � Norm of a Vector
*SW = SNRM2 (N, SX, INCX)
*DW = DNRM2 (N, DX, INCX)
*SW = SCNRM2 (N, CX, INCX)
 DW = DZNRM2 (N, ZX, INCX)

These function subprograms compute
1 22

1

N
ii

x
�

� �
� ��

If N � 0, then the subprograms return zero. CAUTION: For SCNRM2 and DZNRM2, the function
subprogram returns a real value.

Product of the Elements of a Vector
SW = SPRDCT (N, SX, INCX)
DW = DPRDCT (N, DX, INCX)

These function subprograms compute

1

N
ii

x
�

�

If N � 0, then the subprograms return zero.

1374 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Index of Element Having Minimum Value
IW = IIMIN (N, IX, INCX)
IW = ISMIN (N, SX, INCX)
IW = IDMIN (N, DX, INCX)

These function subprograms compute the smallest index i such that xi = min��j�N xj. If N � 0, then
the subprograms return zero.

Index of Element Having Maximum Value
IW = IIMAX (N, IX, INCX)
IW = ISMAX (N, SX, INCX)
IW = IDMAX (N, DX, INCX)

These function subprograms compute the smallest index i such thatxi = max��j�N xj. If N � 0, then
the subprograms return zero.

Index of Element Having Minimum Absolute Value
IW = ISAMIN (N, SX, INCX)
IW = IDAMIN (N, DX, INCX)
IW = ICAMIN (N, CX, INCX)
IW = IZAMIN (N, ZX, INCX)

The function subprograms ISAMIN and IDAMIN compute the smallest index i such that |xi| =
min��j�N |xj|. The function subprograms ICAMIN and IZAMIN compute the smallest index i such
that

1
mini i j jj N

x x x x
� �

� �� � � � � � �� �

If N � 0, then the subprograms return zero.

Index of Element Having Maximum Absolute Value
*IW = ISAMAX (N, SX, INCX)
*IW = IDAMAX (N, DX, INCX)
*IW = ICAMAX (N, CX, INCX)
 IW = IZAMAX (N, ZX, INCX)

The function subprograms ISAMAX and IDAMAX compute the smallest index i such that |xi| =
max��j�N |xj|. The function subprograms ICAMAX and IZAMAX compute the smallest index i such
that

1
maxi i j jj N

x x x x
� �

� �� � � � � � �� �

If N � 0, then the subprograms return zero.

Construct a Givens Plane Rotation
*CALL SROTG (SA, SB, SC, SS)
*CALL DROTG (SA, SB, SC, SS)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1375

Given the values a and b, these subprograms compute

/ if 0
1 if 0
a r r

c
r
��

� �
��

and

/ if 0
1 if 0
b r r

s
r
��

� �
��

where r = �(a� + b�)��� and

sign() if
sign() otherwise

a a b
b

�

� ��
� �
��

Then, the values c, s and r satisfy the matrix equation

0
c s a r
s c b

� � � � � �
�� � � � � ��� � � � � �

The introduction of � is not essential to the computation of the Givens rotation matrix; but its use
permits later stable reconstruction of c and s from just one stored number, an idea due to Stewart
(1976). For this purpose, the subprogram also computes

if or 0

1/ if 0

s s c c
z

c c s

� � ��
� �

� ���

In addition to returning c and s, the subprograms return r overwriting a, and z overwriting b.

Reconstruction of c and s from z can be done as follows:

If z = 1, then set c = 0 and s = 1

If |z| < 1, then set

21 and c z s z� � �

If |z| > 1, then set

21/ and = 1-c z s c�

Apply a Plane Rotation
*CALL SROT (N, SX, INCX, SY, INCY, SC, SS)
*CALL DROT (N, DX, INCX, DY, INCY, DC, DS)
 CALL CSROT (N, CX, INCX, CY, INCY, SC, SS)
 CALL ZDROT (N, ZX, INCX, ZY, INCY, DC, DS)

These subprograms compute

for 1, ,i i

i i

x xc s
i N

y s c y
� � � �� �

� � �� � � �� ��� 	� 	 � 	
�

1376 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

If N � 0, then the subprograms return immediately. CAUTION: For CSROT and ZDROT, the scalar
quantities c and s are real, and x and y are complex.

Construct a Modified Givens Transformation
*CALL SROTMG (SD1, SD2, SX1, SY1, SPARAM)
*CALL DROTMG (DD1, DD2, DX1, DY1, DPARAM)

The input quantities d�, d�, x� and y� define a 2-vector [w�, z�]T by the following:

1

2

0

0
i i

i i

dw x
z yd

� �� � � �
� ��� � � �
� �� � � �� �

The subprograms determine the modified Givens rotation matrix H that transforms y�, and thus, z�
to zero. They also replace d�, d� and x� with

1 2 1, and d d x� � �

respectively. That is,

1 11 11 1

1 1
2 2

0 0
0 00 0

d dx xw x
H

y yd d

� � � �� � � �� � � �� � � �� � �� � � �� � � �� � � �� � � �� � � �� � � �

� �
� �

� �

A representation of this matrix is stored in the array SPARAM or DPARAM. The form of the matrix H
is flagged by PARAM(1).

PARAM(1) = 1. In this case,
2 2

1 1 2 1d x d y�

and

PARAM(2) 1
1 PARAM(5)

H
� �

� � ��� �

The elements PARAM(3) and PARAM(4) are not changed.

PARAM(1) = 0. In this case,
2 2

1 1 2 1d x d y�

and

1 PARAM(4)
PARAM(3) 1

H
� �

� � �
� �

The elements PARAM(2) and PARAM(5) are not changed.

PARAM(1) = �1. In this case, rescaling was done and

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1377

PARAM(2) PARAM(4)
PARAM(3) PARAM(5)

H
� �

� � �
� �

PARAM(1) = �2. In this case, H = I where I is the identity matrix. The elements PARAM(2),
PARAM(3), PARAM(4) and PARAM(5) are not changed.

The values of d�, d� and x� are changed to represent the effect of the transformation. The quantity
y�, which would be zeroed by the transformation, is left unchanged.

The input value of d� should be nonnegative, but d� can be negative for the purpose of removing
data from a least-squares problem.

See Lawson et al. (1979) for further details.

Apply a Modified Givens Transformation
*CALL SROTM (N, SX, INCX, SY, INCY, SPARAM)
*CALL DROTM (N, DX, INCX, DY, INCY, DPARAM)
 CALL CSROTM (N, CX, INCX, CY, INCY, SPARAM)
 CALL ZDROTM (N, ZX, INCX, ZY, INCY, DPARAM)

If PARAM(1) = 1.0, then these subprograms compute

PARAM(2) 1
for 1, ,

1 PARAM(5)
i i

i i

x x
i N

y y
� � � �� �

� �� � � �� ��� 	� 	 � 	
�

If PARAM(1) = 0.0, then the subprograms compute

1 PARAM(4)
for 1, ,

PARAM(3) 1
i i

i i

x x
i N

y y
� � � �� �

� �� � � �� �
� 	� 	 � 	

�

If PARAM(1) = �1.0, then the subprograms compute

PARAM(2) PARAM(4)
for 1, ,

PARAM(3) PARAM(5)
i i

i i

x x
i N

y y
� � � �� �

� �� � � �� �
� �� � � �

�

If N � 0 or if PARAM(1) = �2.0, then the subprograms return immediately. CAUTION: For CSROTM
and ZDROTM, the scalar quantities PARAM(*) are real and x and y are complex.

Programming Notes for Level 2 and Level 3 BLAS
For definitions of the matrix data structures used in the discussion below, see Reference Material.
The Level 2 and Level 3 BLAS, like the Level 1 BLAS, do not follow the IMSL naming
conventions. Instead, the names consist of a prefix of one of the letters “S,” “D,” “C” or “Z.” Next
is a root name denoting the kind of matrix. This is followed by a suffix indicating the type of the
operation.� The prefix denotes the type of operation according to the following table:

S Real C Complex

D Double Z Double Complex

1378 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

The root names for the kind of matrix:
GE General GB General Band

SY Symmetric SB Symmetric Band

HE Hermitian HB Hermitian Band

TR Triangular TB Triangular Band

The suffixes for the type of operation:
MV Matrix-Vector Product SV Solve for Vector
R Rank-One Update
RU Rank-One Update,

Unconjugated
RC Rank-One Update,

Conjugated
R2 Rank-Two Update
MM Matrix-Multiply SM Symmetric Matrix Multiply
RK Rank-K Update R2K Rank 2K Update

�IMSL does not support the Packed Symmetric, Packed-Hermitian, or Packed-Triangular data
structures, with respective root names SP, HP or TP, nor any extended precision versions of the
Level 2 BLAS.

The specifications of the operations are provided by subprogram arguments of CHARACTER*1 data
type. Both lower and upper case of the letter have the same meaning:

TRANS, TRANSA, TRANSB 'N' No Transpose
 'T' Transpose
 'C' Conjugage and Transpose
UPLO 'L' Lower Triangular
 'U' Upper Triangular
DIAGNL 'N' Non-unit Triangular
 'U' Unit Triangular
SIDE 'L' Multiply “A” Matrix on Left side or
 'R' Right side of the “B” matrix

Note: See the “Triangular Mode” section in the Reference Material for definitions of these terms.

Descriptions of the Level 2 and Level 3 BLAS
The subprograms for Level 2 and Level 3 BLAS that perform operations involving the expression

y or
C do not require that the contents of y or C be defined when
 = 0. In that case, the
expression
y or
C is defined to be zero. Note that for the _GEMV and _GBMV subprograms, the
dimensions of the vectors x and y are implied by the specification of the operation. If TRANS = ’N’
, the dimension of y is m; if TRANS = ’T’ or = ’C’, the dimension of y is n. The Level 2 and Level
3 BLAS are summarized in Table 9.2. This table also lists the page numbers where the
subprograms are described in more detail.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1379

Specification of the Level 2 BLAS
Type and dimension for variables occurring in the subprogram specifications are

INTEGER INCX, INCY, NCODA, NLCA, NUCA, LDA, M, N
CHARACTER*1 DIAGNL, TRANS, UPLO

REAL SALPHA, SBETA, SX(*), SY(*), SA(LDA,*)
DOUBLE PRECISION DALPHA, DBETA, DX(*), DY(*), DA(LDA,*)
COMPLEX CALPHA, CBETA, CX(*), CY(*), CA(LDA,*)
DOUBLE COMPLEX ZALPHA, ZBETA, ZX(*), ZY(*), ZA(LDA,*)

There is a lower bound on the leading dimension LDA. It must be � the number of rows in the
matrix that is contained in this array. Vector arguments have an increment parameter that specifies
the storage space or stride between elements. The correspondence between the vector x, y and the
arguments SX, SY and INCX, INCY is

� �� �

� �� �

� �� �

� �� �

SX I-1 INCX 1 if INCX 0

SX I-N INCX 1 if INCX 0

SY I-1 INCY 1 if INCY 0

SY I-N INCY 1 if INCY 0

i

i

x

y

� � � ��
� �

� � ��	

� � � ��
� �

� � ��	

In the Level 2 BLAS, only nonzero values of INCX, INCY are allowed for operations that have
vector arguments. The Level 3 BLAS do not refer to INCX, INCY.

Specification of the Level 3 BLAS
Type and dimension for variables occurring in the subprogram specifications are

INTEGER K, LDA, LDB, LDC, M, N
CHARACTER*1 DIAGNL, TRANS, TRANSA, TRANSB, SIDE, UPLO
REAL SALPHA, SBETA, SA(LDA,*), SB(LDB,*),
 SC(LDC,*)
DOUBLE PRECISION DALPHA, DBETA, DA(LDA,*), DB(LDB,*),
 DC(LDC,*)
COMPLEX CALPHA, CBETA, CA(LDA,*), CB(LDB,*),
 CC(LDC,*)
DOUBLE COMPLEX ZALPHA, ZBETA, ZA(LDA,*), ZB(LDB,*),
 ZC(LDC,*)

Each of the integers K, M, N must be � 0. It is an error if any of them are < 0. If any of them are = 0,
the subprograms return immediately. There are lower bounds on the leading dimensions LDA, LDB,
LDC. Each must be � the number of rows in the matrix that is contained in this array.
Table 9.2: Level 2 and 3 Basic Linear Algebra Subprograms

Operation

Real

Double

Complex

Double
Complex

Pg.

Matrix-Vector Multiply, General SGEMV DGEMV CGEMV ZGEMV 1381

Matrix-Vector Multiply, Banded SGBMV DGBMV CGBMV ZGBMV 1381

Matrix-Vector Multiply, Hermitian CHEMV ZHEMV 1381

1380 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Operation

Real

Double

Complex

Double
Complex

Pg.

Matrix-Vector Multiply,
Hermitian and Banded

 CHBMV ZHBMV 1381

Matrix-Vector Multiply
Symmetric and Real

SSYMV DSYMV 1382

Matrix-Vector Multiply,
Symmetric and Banded

SSBMV DSBMV 1382

Matrix-Vector Multiply, Triangular STRMV DTRMV CTRMV ZTRMV 1382

Matrix-Vector Multiply,
Triangular and Banded

STBMV DTBMV CTBMV ZTBMV 1382

Matrix-Vector Solve, Triangular STRSV DTRSV CTRSV ZTRSV 1383

Matrix-Vector Solve,
Triangular and Banded

STBSV DTBSV CTBSV ZTBSV 1383

Rank-One Matrix Update,
General and Real

SGER DGER 1383

Rank-One Matrix Update,
General, Complex and Transpose

 CGERU ZGERU 1384

Rank-One Matrix Update,
General, Complex, and Conjugate
Transpose

 CGERC ZGERC 1384

Rank-One Matrix Update,
Hermitian and Conjugate Transpose

 CHER ZHER 1384

Rank-Two Matrix Update,
Hermitian and Conjugate Transpose

 CHER2 ZHER2 1384

Rank-One Matrix Update,
Symmetric and Real

SSYR DSYR 1384

Operation

Real

Double

Complex

Double
Complex

Pg.

Rank-Two Matrix Update,
Symmetric and Real

SSYR2 DSYR2 1384

Matrix--Matrix Multiply, General SGEMM DGEMM CGEMM ZGEMM 1385

Matrix-Matrix Multiply, Symmetric SSYMM DSYMM CSYMM ZSYMM 1385

Matrix-Matrix Multiply, Hermitian CHEMM ZHEMM 1385

Rank - k Update, Symmetric SSYRK DSYRK CSYRK ZSYRK 1386

Rank - k Update, Hermitian CHERK ZHERK 1386

Rank - 2k Update, Symmetric SSYR2K DSYR2K CSYR2K ZSYR2K 1386

Rank - 2k Update, Hermitian CHER2K ZHER2K 1386

Matrix-Matrix Multiply, Triangular STRMM DTRMM CTRMM ZTRMM 1387

Matrix-Matrix solve, Triangular STRSM DTRSM CTRSM ZTRSM 1387

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1381

Matrix–Vector Multiply, General
CALL SGEMV (TRANS, M, N, SALPHA, SA, LDA, SX, INCX,
 SBETA,SY, INCY)
CALL DGEMV (TRANS, M, N, DALPHA, DA, LDA, DX, INCX, DBETA,
 DY, INCY)
CALL CGEMV (TRANS, M, N, CALPHA, CA, LDA, CX, INCX, CBETA,
 CY, INCY)
CALL ZGEMV (TRANS, M, N, ZALPHA, ZA, LDA, ZX, INCX, ZBETA,
 ZY, INCY)

For all data types, A is an M � N matrix. These subprograms set y to one of the expressions: y � �
Ax +
y, y � �ATx +
y, or for complex data,

Ty A y� �� �

The character flag TRANS determines the operation.

Matrix–Vector Multiply, Banded
CALL SGBMV (TRANS, M, N, NLCA, NUCA SALPHA, SA, LDA, SX,
 INCX, SBETA,SY, INCY)
CALL DGBMV (TRANS, M, N, NLCA, NUCA DALPHA, DA, LDA, DX,
 INCX, DBETA,DY, INCY)
CALL CGBMV (TRANS, M, N, NLCA, NUCA CALPHA, CA, LDA, CX,
 INCX, CBETA,CY, INCY)
CALL ZGBMV (TRANS, M, N, NLCA, NUCA ZALPHA, ZA, LDA, ZX,
 INCX, ZBETA,ZY, INCY)

For all data types, A is an M � N matrix with NLCA lower codiagonals and NUCA upper
codiagonals. The matrix is stored in band storage mode. These subprograms set y to one of the
expressions: y � �Ax +
y, y � �ATx +
y, or for complex data,

Ty A x y� �� �

The character flag TRANS determines the operation.

Matrix-Vector Multiply, Hermitian
CALL CHEMV (UPLO, N, CALPHA, CA, LDA, CX, INCX, CBETA,
 CY,INCY)
CALL ZHEMV (UPLO, N, ZALPHA, ZA, LDA, ZX, INCX, ZBETA, ZY,
 INCY)

For all data types, A is an N � N matrix. These subprograms set y � �Ax +
y where A is an
Hermitian matrix. The matrix A is either referenced using its upper or lower triangular part. The
character flag UPLO determines the part used.

Matrix-Vector Multiply, Hermitian and Banded
CALL CHBMV (UPLO, N, NCODA, CALPHA, CA, LDA, CX, INCX,
 CBETA, CY,INCY)
CALL ZHBMV (UPLO, N, NCODA, ZALPHA, ZA, LDA, ZX, INCX,
 ZBETA, ZY,INCY)

1382 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

For all data types, A is an N � N matrix with NCODA codiagonals. The matrix is stored in band
Hermitian storage mode. These subprograms set y � �Ax +
y. The matrix A is either referenced
using its upper or lower triangular part. The character flag UPLO determines the part used.

Matrix-Vector Multiply, Symmetric and Real
CALL SSYMV (UPLO, N, SALPHA, SA, LDA, SX, INCX, SBETA, SY,
 INCY)
CALL DSYMV (UPLO, N, DALPHA, DA, LDA, DX, INCX, DBETA, DY,
 INCY)

For all data types, A is an N � N matrix. These subprograms set y � �Ax +
y where A is a
symmetric matrix. The matrix A is either referenced using its upper or lower triangular part. The
character flag UPLO determines the part used.

Matrix-Vector Multiply, Symmetric and Banded
CALL SSBMV (UPLO, N, NCODA, SALPHA, SA, LDA, SX, INCX,
 SBETA, SY,INCY)
CALL DSBMV (UPLO, N, NCODA, DALPHA, DA, LDA, DX, INCX,
 DBETA, DY,INCY)

For all data types, A is an N � N matrix with NCODA codiagonals. The matrix is stored in band
symmetric storage mode. These subprograms set y � �Ax +
y. The matrix A is either referenced
using its upper or lower triangular part. The character flag UPLO determines the part used.

Matrix-Vector Multiply, Triangular
CALL STRMV (UPLO, TRANS, DIAGNL, N, SA, LDA, SX, INCX)
CALL DTRMV (UPLO, TRANS, DIAGNL, N, DA, LDA, DX, INCX)
CALL CTRMV (UPLO, TRANS, DIAGNL, N, CA, LDA, CX, INCX)
CALL ZTRMV (UPLO, TRANS, DIAGNL, N, ZA, LDA, ZX, INCX)

For all data types, A is an N � N triangular matrix. These subprograms set x to one of the
expressions: x � Ax, x �ATx, or for complex data,

Tx A x�

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit
triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used
and the operation performed.

Matrix-Vector Multiply, Triangular and Banded
CALL STBMV (UPLO, TRANS, DIAGNL, N, NCODA, SA, LDA, SX,
INCX)
CALL DTBMV (UPLO, TRANS, DIAGNL, N, NCODA, DA, LDA, DX,
INCX)
CALL CTBMV (UPLO, TRANS, DIAGNL, N, NCODA, CA, LDA, CX,
INCX)
CALL ZTBMV (UPLO, TRANS, DIAGNL, N, NCODA, ZA, LDA, ZX,
INCX)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1383

For all data types, A is an N � N matrix with NCODA codiagonals. The matrix is stored in band
triangular storage mode. These subprograms set x to one of the expressions: x � Ax, x � ATx, or
for complex data,

Tx A x�

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit
triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used
and the operation performed.

Matrix-Vector Solve, Triangular
CALL STRSV (UPLO, TRANS, DIAGNL, N, SA, LDA, SX, INCX)
CALL DTRSV (UPLO, TRANS, DIAGNL, N, DA, LDA, DX, INCX)
CALL CTRSV (UPLO, TRANS, DIAGNL, N, CA, LDA, CX, INCX)
CALL ZTRSV (UPLO, TRANS, DIAGNL, N, ZA, LDA, ZX, INCX)

For all data types, A is an N � N triangular matrix. These subprograms solve x for one of the
expressions: x � A���x, x � (A���)Tx, or for complex data,

� �
1Tx A x

�

�

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit
triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used
and the operation performed.

Matrix-Vector Solve, Triangular and Banded
CALL STBSV (UPLO, TRANS, DIAGNL, N, NCODA, SA, LDA, SX,
INCX)
CALL DTBSV (UPLO, TRANS, DIAGNL, N, NCODA, DA, LDA, DX,
INCX)
CALL CTBSV (UPLO, TRANS, DIAGNL, N, NCODA, CA, LDA, CX,
INCX)
CALL ZTBSV (UPLO, TRANS, DIAGNL, N, NCODA, ZA, LDA, ZX,
INCX)

For all data types, A is an N � N triangular matrix with NCODA codiagonals. The matrix is stored in
band triangular storage mode. These subprograms solve x for one of the expressions: x � A���x,
x � (A��)��x, or for complex data,

� �
1Tx A x

�

�

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit
triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used
and the operation performed.

Rank-One Matrix Update, General and Real
CALL SGER (M, N, SALPHA, SX, INCX, SY, INCY, SA, LDA)
CALL DGER (M, N, DALPHA, DX, INCX, DY, INCY, DA, LDA

For all data types, A is an M � N matrix. These subprograms set A � A + �xyT.

1384 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Rank-One Matrix Update, General, Complex, and Transpose
CALL CGERU (M, N, CALPHA, CX, INCX, CY, INCY, CA, LDA)
CALL ZGERU (M, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA)

For all data types, A is an M � N matrix. These subprograms set A � A + �xyT.

Rank-One Matrix Update, General, Complex, and Conjugate Transpose
CALL CGERC (M, N, CALPHA, CX, INCX, CY, INCY, CA, LDA)
CALL ZGERC (M, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA)

For all data types, A is an M � N matrix. These subprograms set
TA A xy�� �

Rank-One Matrix Update, Hermitian and Conjugate Transpose
CALL CHER (UPLO, N, SALPHA, CX, INCX, CA, LDA)
CALL ZHER (UPLO, N, DALPHA, ZX, INCX, ZA, LDA)

For all data types, A is an N � N matrix. These subprograms set
TA A xx�� �

where A is Hermitian. The matrix A is either referenced by its upper or lower triangular part. The
character flag UPLO determines the part used. CAUTION: Notice the scalar parameter � is real,
and the data in the matrix and vector are complex.

Rank-Two Matrix Update, Hermitian and Conjugate Transpose
CALL CHER2 (UPLO, N, CALPHA, CX, INCX, CY, INCY, CA, LDA)
CALL ZHER2 (UPLO, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA)

For all data types, A is an N � N matrix. These subprograms set
T TA A xy yx� �� � �

where A is an Hermitian matrix. The matrix A is either referenced by its upper or lower triangular
part. The character flag UPLO determines the part used.

Rank-One Matrix Update, Symmetric and Real
CALL SSYR (UPLO, N, SALPHA, SX, INCX, SA, LDA)
CALL DSYR (UPLO, N, DALPHA, DX, INCX, DA, LDA)

For all data types, A is an N � N matrix. These subprograms set A � A + �xxT where A is a
symmetric matrix. The matrix A is either referenced by its upper or lower triangular part. The
character flag UPLO determines the part used.

Rank-Two Matrix Update, Symmetric and Real
CALL SSYR2 (UPLO, N, SALPHA, SX, INCX, SY, INCY, SA, LDA)
CALL DSYR2 (UPLO, N, DALPHA, DX, INCX, DY, INCY, DA, LDA)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1385

For all data types, A is an N � N matrix. These subprograms set A � A + �xyT + �yxT where A is
a symmetric matrix. The matrix A is referenced by its upper or lower triangular part. The character
flag UPLO determines the part used.

Matrix-Matrix Multiply, General
CALL SGEMM (TRANSA, TRANSB, M, N, K, SALPHA, SA, LDA, SB,
 LDB, SBETA, SC, LDC)
CALL DGEMM (TRANSA, TRANSB, M, N, K, DALPHA, DA, LDA, DB,
 LDB, DBETA, DC, LDC)
CALL CGEMM (TRANSA, TRANSB, M, N, K, CALPHA, CA, LDA, CB,
 LDB, CBETA, CC, LDC)
CALL ZGEMM (TRANSA, TRANSB, M, N, K, ZALPHA, ZA, LDA, ZB,
 LDB, ZBETA, ZC, LDC)

For all data types, these subprograms set CM ��N to one of the expressions:

, , , ,
or for complex data, , , ,

,

T T T T

T T T T

T T T T

C AB C C A B C C AB C C A B C
C AB C C A B C C A B C

C A B C C A B C

� � � � � � � �

� � � � � �

� � � �

� � � � � � � �

� � � � � �

� � � �

The character flags TRANSA and TRANSB determine the operation to be performed. Each matrix
product has dimensions that follow from the fact that C has dimension M � N.

Matrix-Matrix Multiply, Symmetric
CALL SSYMM (SIDE, UPLO, M, N, SALPHA, SA, LDA, SB, LDB,
 SBETA, SC, LDC)
CALL DSYMM (SIDE, UPLO, M, N, DALPHA, DA, LDA, DB, LDB,
 DBETA, DC, LDC)
CALL CSYMM (SIDE, UPLO, M, N, CALPHA, CA, LDA, CB, LDB,
 CBETA, CC, LDC)
CALL ZSYMM (SIDE, UPLO, M, N, ZALPHA, ZA, LDA, ZB, LDB,
 ZBETA, ZC, LDC)

For all data types, these subprograms set CM ��N to one of the expressions: C � �AB +
C or
C � �BA +
C, where A is a symmetric matrix. The matrix A is referenced either by its upper or
lower triangular part. The character flags SIDE and UPLO determine the part of the matrix used
and the operation performed.

Matrix-Matrix Multiply, Hermitian
CALL CHEMM (SIDE, UPLO, M, N, CALPHA, CA, LDA, CB, LDB,
 CBETA, CC, LDC)
CALL ZHEMM (SIDE, UPLO, M, N, ZALPHA, ZA, LDA, ZB, LDB,
 ZBETA, ZC, LDC)

For all data types, these subprograms set CM���N to one of the expressions: C � �AB +
C or
C � �BA +
C, where A is an Hermitian matrix. The matrix A is referenced either by its upper or
lower triangular part. The character flags SIDE and UPLO determine the part of the matrix used
and the operation performed.

1386 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Rank-k Update, Symmetric
CALL SSYRK (UPLO, TRANS, N, K, SALPHA, SA, LDA, SBETA, SC,
 LDC)
CALL DSYRK (UPLO, TRANS, N, K, DALPHA, DA, LDA, DBETA, DC,
 LDC)
CALL CSYRK (UPLO, TRANS, N, K, CALPHA, CA, LDA, CBETA, CC,
 LDC)
CALL ZSYRK (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZBETA, ZC,
 LDC)

For all data types, these subprograms set CM ��N to one of the expressions: C � �AAT +
C or

C � �ATA +
C. The matrix C is referenced either by its upper or lower triangular part. The
character flags UPLO and TRANS determine the part of the matrix used and the operation
performed. In subprogram CSYRK and ZSYRK, only values ’N’ or ’T’ are allowed for TRANS;
’C’is not acceptable.

Rank-k Update, Hermitian
CALL CHERK (UPLO, TRANS, N, K, SALPHA, CA, LDA, SBETA, CC,
 LDC)
CALL ZHERK (UPLO, TRANS, N, K, DALPHA, ZA, LDA, DBETA, ZC,
 LDC)

For all data types, these subprograms set CN � N to one of the expressions:

 or T TC AA C C A A C� � � �� � � �

The matrix C is referenced either by its upper or lower triangular part. The character flags UPLO
and TRANS determine the part of the matrix used and the operation performed. CAUTION: Notice
the scalar parameters � and
 are real, and the data in the matrices are complex. Only values
’N’or ’C’are allowed for TRANS; ’T’is not acceptable.

Rank-2k Update, Symmetric
CALL SSYR2K (UPLO, TRANS, N, K, SALPHA, SA, LDA, SB, LDB,
 SBETA, SC, LDC)

CALL DSYR2K (UPLO, TRANS, N, K, DALPHA, DA, LDA, DB, LDB,
 DBETA, DC, LDC)

CALL CSYR2K (UPLO, TRANS, N, K, CALPHA, CA, LDA, CB, LDB,
 CBETA, CC, LDC)

CALL ZSYR2K (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZB, LDB,
 ZBETA, ZC, LDC)

For all data types, these subprograms set CN � N to one of the expressions:

+ C or T T T TC AB A C A B B A C� �� � � � �� � � � �

The matrix C is referenced either by its upper or lower triangular part. The character flags UPLO
and TRANS determine the part of the matrix used and the operation performed. In subprogram
CSYR2K and ZSYR2K, only values ’N’or ’T’ are allowed for TRANS; ’C’is not acceptable.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1387

Rank-2k Update, Hermitian
CALL CHER2K (UPLO, TRANS, N, K, CALPHA, CA, LDA, CB, LDB,
 SBETA, CC, LDC)
CALL ZHER2K (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZB, LDB,
 DBETA, ZC, LDC)

For all data types, these subprograms set CN � N to one of the expressions:

+ C or T T T TC AB BA C A B B A C� � � � � �� � � � �

The matrix C is referenced either by its upper or lower triangular part. The character flags UPLO
and TRANS determine the part of the matrix used and the operation performed. CAUTION: Notice
the scalar parameter
 is real, and the data in the matrices are complex. In subprogram CHER2K
and ZHER2K, only values ’N’ or ’C’are allowed for TRANS; ’T’is not acceptable.

Matrix-Matrix Multiply, Triangular
CALL STRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, SALPHA, SA,
 LDA, SB, LDB)
CALL DTRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, DALPHA, DA,
 LDA, DB, LDB)
CALL CTRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, CALPHA, CA,
 LDA, CB,LDB)
CALL ZTRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, ZALPHA, ZA,
 LDA, ZB, LDB)

For all data types, these subprograms set BM ��N to one of the_expressions:

, , , ,
or for complex data, , or

T T

T T

B AB B A B B BA B BA
B A B B BA

� � � �

� �

� � � �

� �

where A is a triangular matrix. The matrix A is either referenced using its upper or lower triangular
part and is unit or nonunit triangular. The character flags SIDE, UPLO, TRANSA, and DIAGNL
determine the part of the matrix used and the operation performed.

Matrix-Matrix Solve, Triangular
CALL STRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, SALPHA, SA,
 LDA, SB, LDB)
CALL DTRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, DALPHA, DA,
 LDA, DB, LDB)
CALL CTRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, CALPHA, CA,
 LDA, CB, LDB)
CALL ZTRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, ZALPHA, ZA,
 LDA, ZB, LDB)

For all data types, these subprograms set BM ��N to one of the expressions:

� � � �

� � � �

T1 1 1 1

1 1

, , , ,

or for complex data, , or

T

T T

B A B B BA B A B B B A

B A B B B A

� � � �

� �

� � � �

� �

� � � �

� �

1388 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

where A is a triangular matrix. The matrix A is either referenced using its upper or lower triangular
part and is unit or nonunit triangular. The character flags SIDE, UPLO, TRANSA, and DIAGNL
determine the part of the matrix used and the operation performed.

Other Matrix/Vector Operations
This section describes a set of routines for matrix/vector operations. The matrix copy and
conversion routines are summarized by the following table:

 To
From Real

General
Complex
General

Real
Band

Complex
Band

Real General CRGRG
p. 1389

CRGCG
p. 1402

CRGRB
p. 1395

Complex General CCGCG
p. 1390

 CCGCB
p. 1398

Real Band CRBRG
p. 1397

 CRBRB
p. 1392

CRBCB
p. 1405

Complex Band CCBCG
p. 1400

 CCBCB
p. 1393

Symmetric Full CSFRG
p. 1406

Hermitian Full CHFCG
p. 1408

Symmetric Band CSBRB
p. 1409

Hermitian Band CHBCB
p. 1411

The matrix multiplication routines are summarized as follows:

AB A
B Real

Rect.
Complex
Rect.

Real
Band

Complex
Band

Real Rectangular MRRRR
p. 1421

Complex Rect. MCRCR
p. 1423

Vector MURRV
p. 1431

MUCRV
p. 1435

MURBV
p. 1433

MUCBV
p. 1436

The matrix norm routines are summarized as follows:

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1389

||A|| Real
Rectangular

Real
Band

Complex
Band

�-norm NRIRR
p. 1443

1-norm NR1RR
p. 1444

NR1RB
p. 1447

NR1CB
p. 1449

Frobenius NR2RR
p. 1446

CRGRG
Copies a real general matrix.

Required Arguments
A — Matrix of order N. (Input)

B — Matrix of order N containing a copy of A. (Output)

Optional Arguments
N — Order of the matrices. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL CRGRG (A, B [,…])

Specific: The specific interface names are S_CRGRG and D_CRGRG.

FORTRAN 77 Interface
Single: CALL CRGRG (N, A, LDA, B, LDB)

Double: The double precision name is DCRGRG.

1390 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Example
A real 3 � 3 general matrix is copied into another real 3 � 3 general matrix.

 USE CRGRG_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDB, N
 PARAMETER (LDA=3, LDB=3, N=3)
!
 REAL A(LDA,N), B(LDB,N)
! Set values for A
! A = (0.0 1.0 1.0)
! (-1.0 0.0 1.0)
! (-1.0 -1.0 0.0)
!
 DATA A/0.0, 2* - 1.0, 1.0, 0.0, -1.0, 2*1.0, 0.0/
! Copy real matrix A to real matrix B
 CALL CRGRG (A, B)
! Print results
 CALL WRRRN (’B’, B)
 END

Output
 B
 1 2 3
1 0.000 1.000 1.000
2 -1.000 0.000 1.000
3 -1.000 -1.000 0.000

Description
The routine CRGRG copies the real N � N general matrix A into the real N � N general matrix B.

CCGCG
Copies a complex general matrix.

Required Arguments
A — Complex matrix of order N. (Input)

B — Complex matrix of order N containing a copy of A. (Output)

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1391

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL CCGCG (A, B [,…])

Specific: The specific interface names are S_CCGCG and D_CCGCG.

FORTRAN 77 Interface
Single: CALL CCGCG (N, A, LDA, B, LDB)

Double: The double precision name is DCCGCG.

Example
A complex 3 � 3 general matrix is copied into another complex 3 � 3 general matrix.

 USE CCGCG_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDB, N
 PARAMETER (LDA=3, LDB=3, N=3)
!
 COMPLEX A(LDA,N), B(LDB,N)
! Set values for A
! A = (0.0+0.0i 1.0+1.0i 1.0+1.0i)
! (-1.0-1.0i 0.0+0.0i 1.0+1.0i)
! (-1.0-1.0i -1.0-1.0i 0.0+0.0i)
!
 DATA A/(0.0,0.0), 2*(-1.0,-1.0), (1.0,1.0), (0.0,0.0), &
 (-1.0,-1.0), 2*(1.0,1.0), (0.0,0.0)/
! Copy matrix A to matrix B
 CALL CCGCG (A, B)
! Print results
 CALL WRCRN (’B’, B)
 END

Output
 B
 1 2 3
1 (0.000, 0.000) (1.000, 1.000) (1.000, 1.000)
2 (-1.000,-1.000) (0.000, 0.000) (1.000, 1.000)
3 (-1.000,-1.000) (-1.000,-1.000) (0.000, 0.000)

1392 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Description
The routine CCGCG copies the complex N � N general matrix A into the complex N � N general
matrix B.

CRBRB
Copies a real band matrix stored in band storage mode.

Required Arguments
A — Real band matrix of order N. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

B — Real band matrix of order N containing a copy of A. (Output)

NLCB — Number of lower codiagonals in B. (Input)
NLCB must be at least as large as NLCA.

NUCB — Number of upper codiagonals in B. (Input)
NUCB must be at least as large as NUCA.

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL CRBRB (A, NLCA, NUCA, B, NLCB, NUCB [,…])

Specific: The specific interface names are S_CRBRB and D_CRBRB.

FORTRAN 77 Interface
Single: CALL CRBRB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1393

Double: The double precision name is DCRBRB.

Example
A real band matrix of order 3, in band storage mode with one upper codiagonal, and one lower
codiagonal is copied into another real band matrix also in band storage mode.

 USE CRBRB_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDB, N, NLCA, NLCB, NUCA, NUCB
 PARAMETER (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1)
!
 REAL A(LDA,N), B(LDB,N)
! Set values for A (in band mode)
! A = (0.0 1.0 1.0)
! (1.0 1.0 1.0)
! (1.0 1.0 0.0)
!
 DATA A/0.0, 7*1.0, 0.0/
! Copy A to B
 CALL CRBRB (A, NLCA, NUCA, B, NLCB, NUCB)
! Print results
 CALL WRRRN (’B’, B)
 END

Output
 B
 1 2 3
1 0.000 1.000 1.000
2 1.000 1.000 1.000
3 1.000 1.000 0.000

Description
The routine CRBRB copies the real band matrix A in band storage mode into the real band matrix
B in band storage mode.

CCBCB
Copies a complex band matrix stored in complex band storage mode.

Required Arguments
A — Complex band matrix of order N. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

B — Complex matrix of order N containing a copy of A. (Output)

1394 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

NLCB — Number of lower codiagonals in B. (Input)
NLCB must be at least as large as NLCA.

NUCB — Number of upper codiagonals in B. (Input)
NUCB must be at least as large as NUCA.

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL CCBCB (A, NLCA, NUCA, B, NLCB, NUCB [,…])

Specific: The specific interface names are S_CCBCB and D_CCBCB.

FORTRAN 77 Interface
Single: CALL CCBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB)

Double: The double precision name is DCCBCB.

Example
A complex band matrix of order 3 in band storage mode with one upper codiagonal and one lower
codiagonal is copied into another complex band matrix in band storage mode.

 USE CCBCB_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDB, N, NLCA, NLCB, NUCA, NUCB
 PARAMETER (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1)
!
 COMPLEX A(LDA,N), B(LDB,N)
! Set values for A (in band mode)
! A = (0.0+0.0i 1.0+1.0i 1.0+1.0i)
! (1.0+1.0i 1.0+1.0i 1.0+1.0i)
! (1.0+1.0i 1.0+1.0i 0.0+0.0i)
!
 DATA A/(0.0,0.0), 7*(1.0,1.0), (0.0,0.0)/
! Copy A to B

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1395

 CALL CCBCB (A, NLCA, NUCA, B, NLCB, NUCB)
! Print results
 CALL WRCRN (’B’, B)
 END

Output
 B
 1 2 3
1 (0.000, 0.000) (1.000, 1.000) (1.000, 1.000)
2 (1.000, 1.000) (1.000, 1.000) (1.000, 1.000)
3 (1.000, 1.000) (1.000, 1.000) (0.000, 0.000)

Description
The routine CCBCB copies the complex band matrix A in band storage mode into the complex
band matrix B in band storage mode.

CRGRB
Converts a real general matrix to a matrix in band storage mode.

Required Arguments
A — Real N by N matrix. (Input)

NLC — Number of lower codiagonals in B. (Input)

NUC — Number of upper codiagonals in B. (Input)

B — Real (NUC + 1 + NLC) by N array containing the band matrix in band storage mode.
(Output)

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL CRGRB (A, NLC, NUC, B [,…])

1396 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Specific: The specific interface names are S_CRGRB and D_CRGRB.

FORTRAN 77 Interface
Single: CALL CRGRB (N, A, LDA, NLC, NUC, B, LDB)

Double: The double precision name is DCRGRB.

Example
A real 4 � 4 matrix with one upper codiagonal and three lower codiagonals is copied to a real
band matrix of order 4 in band storage mode.

 USE CRGRB_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDB, N, NLC, NUC
 PARAMETER (LDA=4, LDB=5, N=4, NLC=3, NUC=1)
!
 REAL A(LDA,N), B(LDB,N)
! Set values for A
! A = (1.0 2.0 0.0 0.0)
! (-2.0 1.0 3.0 0.0)
! (0.0 -3.0 1.0 4.0)
! (-7.0 0.0 -4.0 1.0)
!
 DATA A/1.0, -2.0, 0.0, -7.0, 2.0, 1.0, -3.0, 0.0, 0.0, 3.0, 1.0, &
 -4.0, 0.0, 0.0, 4.0, 1.0/
! Convert A to band matrix B
 CALL CRGRB (A, NLC, NUC, B)
! Print results
 CALL WRRRN (’B’, B)
 END

Output
 B
 1 2 3 4
1 0.000 2.000 3.000 4.000
2 1.000 1.000 1.000 1.000
3 -2.000 -3.000 -4.000 0.000
4 0.000 0.000 0.000 0.000
5 -7.000 0.000 0.000 0.000

Description
The routine CRGRB converts the real general N � N matrix A with mu = NUC upper codiagonals
and ml = NLC lower codiagonals into the real band matrix B of order N. The first mu rows of B
then contain the upper codiagonals of A, the next row contains the main diagonal of A, and the
last ml rows of B contain the lower codiagonals of A.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1397

CRBRG
Converts a real matrix in band storage mode to a real general matrix.

Required Arguments
A — Real (NUC + 1 + NLC) by N array containing the band matrix in band storage mode.

(Input)

NLC — Number of lower codiagonals in A. (Input)

NUC — Number of upper codiagonals in A. (Input)

B — Real N by N array containing the matrix. (Output)

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL CRBRG (A, NLC, NUC, B [,…])

Specific: The specific interface names are S_CRBRG and D_CRBRG.

FORTRAN 77 Interface
Single: CALL CRBRG (N, A, LDA, NLC, NUC, B, LDB)

Double: The double precision name is DCRBRG.

Example
A real band matrix of order 3 in band storage mode with one upper codiagonal and one lower
codiagonal is copied to a 3 � 3 real general matrix.

 USE CRBRG_INT
 USE WRRRN_INT
! Declare variables

1398 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

 INTEGER LDA, LDB, N, NLC, NUC
 PARAMETER (LDA=3, LDB=3, N=3, NLC=1, NUC=1)
!
 REAL A(LDA,N), B(LDB,N)
! Set values for A (in band mode)
! A = (0.0 1.0 1.0)
! (4.0 3.0 2.0)
! (2.0 2.0 0.0)
!
 DATA A/0.0, 4.0, 2.0, 1.0, 3.0, 2.0, 1.0, 2.0, 0.0/
! Convert band matrix A to matrix B
 CALL CRBRG (A, NLC, NUC, B)
! Print results
 CALL WRRRN (’B’, B)
 END

Output
 B
 1 2 3
1 4.000 1.000 0.000
2 2.000 3.000 1.000
3 0.000 2.000 2.000

Description
The routine CRBRG converts the real band matrix A of order N in band storage mode into the real
N � N general matrix B with mu = NUC upper codiagonals and ml = NLC lower codiagonals. The
first mu rows of A are copied to the upper codiagonals of B, the next row of A is copied to the
diagonal of B, and the last ml rows of A are copied to the lower codiagonals of B.

CCGCB
Converts a complex general matrix to a matrix in complex band storage mode.

Required Arguments
A — Complex N by N array containing the matrix. (Input)

NLC — Number of lower codiagonals in B. (Input)

NUC — Number of upper codiagonals in B. (Input)

B — Complex (NUC + 1 + NLC) by N array containing the band matrix in band storage mode.
(Output)

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1399

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL CCGCB (A, NLC, NUC, B [,…])

Specific: The specific interface names are S_CCGCB and D_CCGCB.

FORTRAN 77 Interface
Single: CALL CCGCB (N, A, LDA, NLC, NUC, B, LDB)

Double: The double precision name is DCCGCB.

Example
A complex general matrix of order 4 with one upper codiagonal and three lower codiagonals is
copied to a complex band matrix of order 4 in band storage mode.

 USE CCGCB_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDB, N, NLC, NUC
 PARAMETER (LDA=4, LDB=5, N=4, NLC=3, NUC=1)
!
 COMPLEX A(LDA,N), B(LDB,N)
! Set values for A
! A = (1.0+0.0i 2.0+1.0i 0.0+0.0i 0.0+0.0i)
! (-2.0+1.0i 1.0+0.0i 3.0+2.0i 0.0+0.0i)
! (0.0+0.0i -3.0+2.0i 1.0+0.0i 4.0+3.0i)
! (-7.0+1.0i 0.0+0.0i -4.0+3.0i 1.0+0.0i)
!
 DATA A/(1.0,0.0), (-2.0,1.0), (0.0,0.0), (-7.0,1.0), (2.0,1.0), &
 (1.0,0.0), (-3.0,2.0), (0.0,0.0), (0.0,0.0), (3.0,2.0), &
 (1.0,0.0), (-4.0,3.0), (0.0,0.0), (0.0,0.0), (4.0,3.0), &
 (1.0,0.0)/
! Convert A to band matrix B
 CALL CCGCB (A, NLC, NUC, B)
! Print results
 CALL WRCRN (’B’, B)
 END

Output
 B
 1 2 3 4

1400 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

1 (0.000, 0.000) (2.000, 1.000) (3.000, 2.000) (4.000, 3.000)
2 (1.000, 0.000) (1.000, 0.000) (1.000, 0.000) (1.000, 0.000)
3 (-2.000, 1.000) (-3.000, 2.000) (-4.000, 3.000) (0.000, 0.000)
4 (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)
5 (-7.000, 1.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

Description
The routine CCGCB converts the complex general matrix A of order N with mu = NUC upper
codiagonals and ml = NLC lower codiagonals into the complex band matrix B of order N in band
storage mode. The first mu rows of B then contain the upper codiagonals of A, the next row
contains the main diagonal of A, and the last ml rows of B contain the lower codiagonals of A.

CCBCG
Converts a complex matrix in band storage mode to a complex matrix in full storage mode.

Required Arguments
A — Complex (NUC + 1 + NLC) by N matrix containing the band matrix in band mode.

(Input)

NLC — Number of lower codiagonals in A. (Input)

NUC — Number of upper codiagonals in A. (Input)

B — Complex N by N matrix containing the band matrix in full mode. (Output)

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL CCBCG (A, NLC, NUC, B [,…])

Specific: The specific interface names are S_CCBCG and D_CCBCG.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1401

FORTRAN 77 Interface
Single: CALL CCBCG (N, A, LDA, NLC, NUC, B, LDB)

Double: The double precision name is DCCBCG.

Example
A complex band matrix of order 4 in band storage mode with one upper codiagonal and three
lower codiagonals is copied into a 4 � 4 complex general matrix.

 USE CCBCG_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDB, N, NLC, NUC
 PARAMETER (LDA=5, LDB=4, N=4, NLC=3, NUC=1)
!
 COMPLEX A(LDA,N), B(LDB,N)
! Set values for A (in band mode)
! A = (0.0+0.0i 2.0+1.0i 3.0+2.0i 4.0+3.0i)
! (1.0+0.0i 1.0+0.0i 1.0+0.0i 1.0+0.0i)
! (-2.0+1.0i -3.0+2.0i -4.0+3.0i 0.0+0.0i)
! (0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
! (-7.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
!
 DATA A/(0.0,0.0), (1.0,0.0), (-2.0,1.0), (0.0,0.0), (-7.0,1.0), &
 (2.0,1.0), (1.0,0.0), (-3.0,2.0), 2*(0.0,0.0), (3.0,2.0), &
 (1.0,0.0), (-4.0,3.0), 2*(0.0,0.0), (4.0,3.0), (1.0,0.0), &
 3*(0.0,0.0)/
! Convert band matrix A to matrix B
 CALL CCBCG (A, NLC, NUC, B)
! Print results
 CALL WRCRN (’B’, B)
 END

Output
 B
 1 2 3 4
1 (1.000, 0.000) (2.000, 1.000) (0.000, 0.000) (0.000, 0.000)
2 (-2.000, 1.000) (1.000, 0.000) (3.000, 2.000) (0.000, 0.000)
3 (0.000, 0.000) (-3.000, 2.000) (1.000, 0.000) (4.000, 3.000)
4 (-7.000, 1.000) (0.000, 0.000) (-4.000, 3.000) (1.000, 0.000)

Description
The routine CCBCG converts the complex band matrix A of order N with mu = NUC upper
codiagonals and ml = NLC lower codiagonals into the N � N complex general matrix B. The first
mu rows of A are copied to the upper codiagonals of B, the next row of A is copied to the
diagonal of B, and the last ml rows of A are copied to the lower codiagonals of B.

1402 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

CRGCG
Copies a real general matrix to a complex general matrix.

Required Arguments
A — Real matrix of order N. (Input)

B — Complex matrix of order N containing a copy of A. (Output)

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL CRGCG (A, B [,…])

Specific: The specific interface names are S_CRGCG and D_CRGCG.

FORTRAN 77 Interface
Single: CALL CRGCG (N, A, LDA, B, LDB)

Double: The double precision name is DCRGCG.

Example
A 3 � 3 real matrix is copied to a 3 � 3 complex matrix.

 USE CRGCG_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDB, N
 PARAMETER (LDA=3, LDB=3, N=3)
!
 REAL A(LDA,N)
 COMPLEX B(LDB,N)
! Set values for A

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1403

! A = (2.0 1.0 3.0)
! (4.0 1.0 0.0)
! (-1.0 2.0 0.0)
!
 DATA A/2.0, 4.0, -1.0, 1.0, 1.0, 2.0, 3.0, 0.0, 0.0/
! Convert real A to complex B
 CALL CRGCG (A, B)
! Print results
 CALL WRCRN (’B’, B)
 END

Output
 B
 1 2 3
1 (2.000, 0.000) (1.000, 0.000) (3.000, 0.000)
2 (4.000, 0.000) (1.000, 0.000) (0.000, 0.000)
3 (-1.000, 0.000) (2.000, 0.000) (0.000, 0.000)

Description
The routine CRGCG copies a real N � N matrix to a complex N � N matrix.

CRRCR
Copies a real rectangular matrix to a complex rectangular matrix.

Required Arguments
A — Real NRA by NCA rectangular matrix. (Input)

B — Complex NRB by NCB rectangular matrix containing a copy of A. (Output)

Optional Arguments
NRA — Number of rows in A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns in A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NRB — Number of rows in B. (Input)
It must be the same as NRA.
Default: NRB = size (B,1).

1404 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

NCB — Number of columns in B. (Input)
It must be the same as NCA.
Default: NCB = size (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL CRRCR (A, B [,…])

Specific: The specific interface names are S_CRRCR and D_CRRCR.

FORTRAN 77 Interface
Single: CALL CRRCR (NRA, NCA, A, LDA, NRB, NCB, B, LDB)

Double: The double precision name is DCRRCR.

Example
A 3 � 2 real matrix is copied to a 3 � 2 complex matrix.

 USE CRRCR_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDB, NCA, NCB, NRA, NRB
 PARAMETER (LDA=3, LDB=3, NCA=2, NCB=2, NRA=3, NRB=3)
!
 REAL A(LDA,NCA)
 COMPLEX B(LDB,NCB)
! Set values for A
! A = (1.0 4.0)
! (2.0 5.0)
! (3.0 6.0)
!
 DATA A/1.0, 2.0, 3.0, 4.0, 5.0, 6.0/
! Convert real A to complex B
 CALL CRRCR (A, B)
! Print results
 CALL WRCRN (’B’, B)
 END

Output
 B
 1 2
1 (1.000, 0.000) (4.000, 0.000)
2 (2.000, 0.000) (5.000, 0.000)
3 (3.000, 0.000) (6.000, 0.000)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1405

Description
The routine CRRCR copies a real rectangular matrix to a complex rectangular matrix.

CRBCB
Converts a real matrix in band storage mode to a complex matrix in band storage mode.

Required Arguments
A — Real band matrix of order N. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

B — Complex matrix of order N containing a copy of A. (Output)

NLCB — Number of lower codiagonals in B. (Input)
NLCB must be at least as large as NLCA.

NUCB — Number of upper codiagonals in B. (Input)
NUCB must be at least as large as NUCA.

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL CRBCB (A, NLCA, NUCA, B, NLCB, NUCB [,…])

Specific: The specific interface names are S_CRBCB and D_CRBCB.

FORTRAN 77 Interface
Single: CALL CRBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB)

1406 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Double: The double precision name is DCRBCB.

Example
A real band matrix of order 3 in band storage mode with one upper codiagonal and one lower
codiagonal is copied into another complex band matrix in band storage mode.

 USE CRBCB_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDB, N, NLCA, NLCB, NUCA, NUCB
 PARAMETER (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1)
!
 REAL A(LDA,N)
 COMPLEX B(LDB,N)
! Set values for A (in band mode)
! A = (0.0 1.0 1.0)
! (1.0 1.0 1.0)
! (1.0 1.0 0.0)
!
 DATA A/0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0/
! Convert real band matrix A
! to complex band matrix B
 CALL CRBCB (A, NLCA, NUCA, B, NLCB, NUCB)
! Print results
 CALL WRCRN (’B’, B)
 END

Output
 B
 1 2 3
1 (0.000, 0.000) (1.000, 0.000) (1.000, 0.000)
2 (1.000, 0.000) (1.000, 0.000) (1.000, 0.000)
3 (1.000, 0.000) (1.000, 0.000) (0.000, 0.000)

Description
The routine CRBCB converts a real band matrix in band storage mode with NUCA upper
codiagonals and NLCA lower codiagonals into a complex band matrix in band storage mode with
NUCB upper codiagonals and NLCB lower codiagonals.

CSFRG
Extends a real symmetric matrix defined in its upper triangle to its lower triangle.

Required Arguments
A — N by N symmetric matrix of order N to be filled out. (Input/Output)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1407

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL CSFRG (A [,…])

Specific: The specific interface names are S_CSFRG and D_CSFRG.

FORTRAN 77 Interface
Single: CALL CSFRG (N, A, LDA)

Double: The double precision name is DCSFRG.

Example
The lower triangular portion of a real 3 � 3 symmetric matrix is filled with the values defined in
its upper triangular portion.

 USE CSFRG_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
!
 REAL A(LDA,N)
! Set values for A
! A = (0.0 3.0 4.0)
! (1.0 5.0)
! (2.0)
!
 DATA A/3*0.0, 3.0, 1.0, 0.0, 4.0, 5.0, 2.0/
! Fill the lower portion of A
 CALL CSFRG (A)
! Print results
 CALL WRRRN (’A’, A)
 END

Output
 A
 1 2 3
1 0.000 3.000 4.000
2 3.000 1.000 5.000
3 4.000 5.000 2.000

1408 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Description
The routine CSFRG converts an N � N matrix A in symmetric mode into a general matrix by
filling in the lower triangular portion of A using the values defined in its upper triangular
portion.

CHFCG
Extends a complex Hermitian matrix defined in its upper triangle to its lower triangle.

Required Arguments
A — Complex Hermitian matrix of order N. (Input/Output)
On input, the upper triangle of A defines a Hermitian matrix. On output, the lower triangle of A
is defined so that A is Hermitian.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL CHFCG (A [,…])

Specific: The specific interface names are S_CHFCG and D_CHFCG.

FORTRAN 77 Interface
Single: CALL CHFCG (N, A, LDA)

Double: The double precision name is DCHFCG.

Comments
Informational errors

Type Code

 3 1 The matrix is not Hermitian. It has a diagonal entry with a small
 imaginary part.

 4 2 The matrix is not Hermitian. It has a diagonal entry with an imaginary
 part.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1409

Example
A complex 3 � 3 Hermitian matrix defined in its upper triangle is extended to its lower triangle.

 USE CHFCG_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
!
 COMPLEX A(LDA,N)
! Set values for A
! A = (1.0+0.0i 1.0+1.0i 1.0+2.0i)
! (2.0+0.0i 2.0+2.0i)
! (3.0+0.0i)
!
 DATA A/(1.0,0.0), 2*(0.0,0.0), (1.0,1.0), (2.0,0.0), (0.0,0.0), &
 (1.0,2.0), (2.0,2.0), (3.0,0.0)/
! Fill in lower Hermitian matrix
 CALL CHFCG (A)
! Print results
 CALL WRCRN (’A’, A)
 END

Output
 A
 1 2 3
1 (1.000, 0.000) (1.000, 1.000) (1.000, 2.000)
2 (1.000,-1.000) (2.000, 0.000) (2.000, 2.000)
3 (1.000,-2.000) (2.000,-2.000) (3.000, 0.000)

Description
The routine CHFCG converts an N � N complex matrix A in Hermitian mode into a complex
general matrix by filling in the lower triangular portion of A using the values defined in its upper
triangular portion.

CSBRB
Copies a real symmetric band matrix stored in band symmetric storage mode to a real band matrix
stored in band storage mode.

Required Arguments
A — Real band symmetric matrix of order N. (Input)

NUCA — Number of codiagonals in A. (Input)

B — Real band matrix of order N containing a copy of A. (Output)

NLCB — Number of lower codiagonals in B. (Input)
NLCB must be at least as large as NUCA.

1410 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

NUCB — Number of upper codiagonals in B. (Input)
NUCB must be at least as large as NUCA.

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL CSBRB (A, NUCA, B, NLCB, NUCB [,…])

Specific: The specific interface names are S_CSBRB and D_CSBRB.

FORTRAN 77 Interface
Single: CALL CSBRB (N, A, LDA, NUCA, B, LDB, NLCB, NUCB)

Double: The double precision name is DCSBRB.

Example
A real matrix of order 4 in band symmetric storage mode with 2 upper codiagonals is copied to
a real matrix in band storage mode with 2 upper codiagonals and 2 lower codiagonals.

 USE CSBRB_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDB, N, NLCB, NUCA, NUCB
 PARAMETER (N=4, NUCA=2, LDA=NUCA+1, NLCB=NUCA, NUCB=NUCA, &
 LDB=NLCB+NUCB+1)
!
 REAL A(LDA,N), B(LDB,N)
! Set values for A, in band mode
! A = (0.0 0.0 2.0 1.0)
! (0.0 2.0 3.0 1.0)
! (1.0 2.0 3.0 4.0)
!
 DATA A/2*0.0, 1.0, 0.0, 2.0, 2.0, 2.0, 3.0, 3.0, 1.0, 1.0, 4.0/
! Copy A to B
 CALL CSBRB (A, NUCA, B, NLCB, NUCB)
! Print results

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1411

 CALL WRRRN (’B’, B)
 END

Output
 B
 1 2 3 4
1 0.000 0.000 2.000 1.000
2 0.000 2.000 3.000 1.000
3 1.000 2.000 3.000 4.000
4 2.000 3.000 1.000 0.000
5 2.000 1.000 0.000 0.000

Description
The routine CSBRB copies a real matrix A stored in symmetric band mode to a matrix B stored in
band mode. The lower codiagonals of B are set using the values from the upper codiagonals of
A.

CHBCB
Copies a complex Hermitian band matrix stored in band Hermitian storage mode to a complex
band matrix stored in band storage mode.

Required Arguments
A — Complex band Hermitian matrix of order N. (Input)

NUCA — Number of codiagonals in A. (Input)

B — Complex band matrix of order N containing a copy of A. (Output)

NLCB — Number of lower codiagonals in B. (Input)
NLCB must be at least as large as NUCA.

NUCB — Number of upper codiagonals in B. (Input)
NUCB must be at least as large as NUCA.

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

1412 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL CHBCB (A, NUCA, B, NLCB, NUCB [,…])

Specific: The specific interface names are S_CHBCB and D_CHBCB.

FORTRAN 77 Interface
Single: CALL CHBCB (N, A, LDA, NUCA, B, LDB, NLCB, NUCB)

Double: The double precision name is DCHBCB.

Comments
Informational errors

Type Code

 3 1 An element on the diagonal has a complex part that is near zero, the complex
 part is set to zero.

 4 1 An element on the diagonal has a complex part that is not zero.

Example
A complex Hermitian matrix of order 3 in band Hermitian storage mode with one upper
codiagonal is copied to a complex matrix in band storage mode.

 USE CHBCB_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDB, N, NLCB, NUCA, NUCB
 PARAMETER (N=3, NUCA=1, LDA=NUCA+1, NLCB=NUCA, NUCB=NUCA, &
 LDB=NLCB+NUCB+1)
!
 COMPLEX A(LDA,N), B(LDB,N)
! Set values for A (in band mode)
! A = (0.0+0.0i -1.0+1.0i -2.0+2.0i)
! (1.0+0.0i 1.0+0.0i 1.0+0.0i)
!
 DATA A/(0.0,0.0), (1.0,0.0), (-1.0,1.0), (1.0,0.0), (-2.0,2.0), &
 (1.0,0.0)/
! Copy a complex Hermitian band matrix
! to a complex band matrix
 CALL CHBCB (A, NUCA, B, NLCB, NUCB)
! Print results
 CALL WRCRN (’B’, B)
 END

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1413

Output
 B
 1 2 3
1 (0.000, 0.000) (-1.000, 1.000) (-2.000, 2.000)
2 (1.000, 0.000) (1.000, 0.000) (1.000, 0.000)
3 (-1.000,-1.000) (-2.000,-2.000) (0.000, 0.000)

Description
The routine CSBRB copies a complex matrix A stored in Hermitian band mode to a matrix B
stored in complex band mode. The lower codiagonals of B are filled using the values in the
upper codiagonals of A.

TRNRR
Transposes a rectangular matrix.

Required Arguments
A — Real NRA by NCA matrix in full storage mode. (Input)

B — Real NRB by NCB matrix in full storage mode containing the transpose of A. (Output)

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NRB — Number of rows of B. (Input)
NRB must be equal to NCA.
Default: NRB = size (B,1).

NCB — Number of columns of B. (Input)
NCB must be equal to NRA.
Default: NCB = size (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL TRNRR (A, B [,…])

Specific: The specific interface names are S_TRNRR and D_TRNRR.

1414 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL TRNRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB)

Double: The double precision name is DTRNRR.

Example
Transpose the 5 � 3 real rectangular matrix A into the 3 � 5 real rectangular matrix B.

 USE TRNRR_INT
 USE WRRRN_INT
! Declare variables
 INTEGER NCA, NCB, NRA, NRB
 PARAMETER (NCA=3, NCB=5, NRA=5, NRB=3)
!
 REAL A(NRA,NCA), B(NRB,NCB)
! Set values for A
! A = (11.0 12.0 13.0)
! (21.0 22.0 23.0)
! (31.0 32.0 33.0)
! (41.0 42.0 43.0)
! (51.0 52.0 53.0)
!
 DATA A/11.0, 21.0, 31.0, 41.0, 51.0, 12.0, 22.0, 32.0, 42.0,&
 52.0, 13.0, 23.0, 33.0, 43.0, 53.0/
! B = transpose(A)
 CALL TRNRR (A, B)
! Print results
 CALL WRRRN (’B = trans(A)’, B)
 END

Output
 B = trans(A)
 1 2 3 4 5
1 11.00 21.00 31.00 41.00 51.00
2 12.00 22.00 32.00 42.00 52.00
3 13.00 23.00 33.00 43.00 53.00

Comments
If LDA = LDB and NRA = NCA, then A and B can occupy the same storage locations; otherwise, A
and B must be stored separately.

Description

The routine TRNRR computes the transpose B = AT of a real rectangular matrix A.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1415

MXTXF
Computes the transpose product of a matrix, ATA.

Required Arguments
A — Real NRA by NCA rectangular matrix. (Input)

The transpose product of A is to be computed.

B — Real NB by NB symmetric matrix containing the transpose product ATA. (Output)

Optional Arguments
NRA — Number of rows in A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns in A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NB — Order of the matrix B. (Input)
NB must be equal to NCA.
Default: NB = size (B,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL MXTXF (A, B [,…])

Specific: The specific interface names are S_MXTXF and D_MXTXF.

FORTRAN 77 Interface
Single: CALL MXTXF (NRA, NCA, A, LDA, NB, B, LDB)

Double: The double precision name is DMXTXF.

1416 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Example
Multiply the transpose of a 3 � 4 real matrix by itself. The output matrix will be a 4 � 4 real
symmetric matrix.

 USE MXTXF_INT
 USE WRRRN_INT
! Declare variables
 INTEGER NB, NCA, NRA
 PARAMETER (NB=4, NCA=4, NRA=3)
!
 REAL A(NRA,NCA), B(NB,NB)
! Set values for A
! A = (3.0 1.0 4.0 2.0)
! (0.0 2.0 1.0 -1.0)
! (6.0 1.0 3.0 2.0)
!
 DATA A/3.0, 0.0, 6.0, 1.0, 2.0, 1.0, 4.0, 1.0, 3.0, 2.0, -1.0, &
 2.0/
! Compute B = trans(A)*A
 CALL MXTXF (A, B)
! Print results
 CALL WRRRN (’B = trans(A)*A’, B)
 END

Output
 B = trans(A)*A
 1 2 3 4
1 45.00 9.00 30.00 18.00
2 9.00 6.00 9.00 2.00
3 30.00 9.00 26.00 13.00
4 18.00 2.00 13.00 9.00

Description

The routine MXTXF computes the real general matrix B = ATA given the real rectangular matrix
A.

MXTYF
Multiplies the transpose of matrix A by matrix B, ATB.

Required Arguments
A — Real NRA by NCA matrix. (Input)

B — Real NRB by NCB matrix. (Input)

C — Real NCA by NCB matrix containing the transpose product ATB. (Output)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1417

Optional Arguments
NRA — Number of rows in A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns in A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NRB — Number of rows in B. (Input)
NRB must be the same as NRA.
Default: NRB = size (B,1).

NCB — Number of columns in B. (Input)
Default: NCB = size (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

NRC — Number of rows of C. (Input)
NRC must be equal to NCA.
Default: NRC = size (C,1).

NCC — Number of columns of C. (Input)
NCC must be equal to NCB.
Default: NCC = size (C,2).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDC = size (C,1).

FORTRAN 90 Interface
Generic: CALL MXTYF (A, B, C [,…])

Specific: The specific interface names are S_MXTYF and D_MXTYF.

FORTRAN 77 Interface
Single: CALL MXTYF (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,

 C, LDC)

Double: The double precision name is DMXTYF.

1418 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Example
Multiply the transpose of a 3 � 4 real matrix by a 3 � 3 real matrix. The output matrix will be a
4 � 3 real matrix.

 USE MXTYF_INT
 USE WRRRN_INT
! Declare variables
 INTEGER NCA, NCB, NCC, NRA, NRB, NRC
 PARAMETER (NCA=4, NCB=3, NCC=3, NRA=3, NRB=3, NRC=4)
!
 REAL A(NRA,NCA), B(NRB,NCB), C(NRC,NCC)
! Set values for A
! A = (1.0 0.0 2.0 0.0)
! (3.0 4.0 -1.0 0.0)
! (2.0 1.0 2.0 1.0)
!
! Set values for B
! B = (-1.0 2.0 0.0)
! (3.0 0.0 -1.0)
! (0.0 5.0 2.0)
!
 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &
 1.0/
 DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0/
! Compute C = trans(A)*B
 CALL MXTYF (A, B, C)
! Print results
 CALL WRRRN (’C = trans(A)*B’, C)
 END

Output
 C = trans(A)*B
 1 2 3
1 8.00 12.00 1.00
2 12.00 5.00 -2.00
3 -5.00 14.00 5.00
4 0.00 5.00 2.00

Description

The routine MXTYF computes the real general matrix C = ATB given the real rectangular
matrices A and B.

MXYTF
Multiplies a matrix A by the transpose of a matrix B, ABT.

Required Arguments
A — Real NRA by NCA rectangular matrix. (Input)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1419

B — Real NRB by NCB rectangular matrix. (Input)

C — Real NRC by NCC rectangular matrix containing the transpose product ABT. (Output)

Optional Arguments
NRA — Number of rows in A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns in A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NRB — Number of rows in B. (Input)
Default: NRB = size (B,1).

NCB — Number of columns in B. (Input)
NCB must be the same as NCA.
Default: NCB = size (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

NRC — Number of rows of C. (Input)
NRC must be equal to NRA.
Default: NRC = size (C,1).

NCC — Number of columns of C. (Input)
NCC must be equal to NRB.
Default: NCC = size (C,2).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDC = size (C,1).

FORTRAN 90 Interface
Generic: CALL MXYTF (A, B, C [,…])

Specific: The specific interface names are S_MXYTF and D_MXYTF.

1420 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL MXYTF (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,

 C, LDC)

Double: The double precision name is DMXYTF.

Example
Multiply a 3 � 4 real matrix by the transpose of a 3 � 4 real matrix. The output matrix will be a
3 � 3 real matrix.

 USE MXYTF_INT
 USE WRRRN_INT
! Declare variables
 INTEGER NCA, NCB, NCC, NRA, NRB, NRC
 PARAMETER (NCA=4, NCB=4, NCC=3, NRA=3, NRB=3, NRC=3)
!
 REAL A(NRA,NCA), B(NRB,NCB), C(NRC,NCC)
! Set values for A
! A = (1.0 0.0 2.0 0.0)
! (3.0 4.0 -1.0 0.0)
! (2.0 1.0 2.0 1.0)
!
! Set values for B
! B = (-1.0 2.0 0.0 2.0)
! (3.0 0.0 -1.0 -1.0)
! (0.0 5.0 2.0 5.0)
!
 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &
 1.0/
 DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0, 2.0, -1.0, &
 5.0/
! Compute C = A*trans(B)
 CALL MXYTF (A, B, C)
! Print results
 CALL WRRRN (’C = A*trans(B)’, C)
 END

Output
 C = A*trans(B)
 1 2 3
1 -1.00 1.00 4.00
2 5.00 10.00 18.00
3 2.00 3.00 14.00

Description

The routine MXYTF computes the real general matrix C = ABT given the real rectangular
matrices A and B.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1421

MRRRR
Multiplies two real rectangular matrices, AB.

Required Arguments
A — Real NRA by NCA matrix in full storage mode. (Input)

B — Real NRB by NCB matrix in full storage mode. (Input)

C — Real NRC by NCC matrix containing the product AB in full storage mode. (Output)

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NRB — Number of rows of B. (Input)
NRB must be equal to NCA.
Default: NRB = size (B,1).

NCB — Number of columns of B. (Input)
Default: NCB = size (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

NRC — Number of rows of C. (Input)
NRC must be equal to NRA.
Default: NRC = size (C,1).

NCC — Number of columns of C. (Input)
NCC must be equal to NCB.
Default: NCC = size (C,2).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDC = size (C,1).

1422 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL MRRRR (A, B, C [,…])

Specific: The specific interface names are S_MRRRR and D_MRRRR.

FORTRAN 77 Interface
Single: CALL MRRRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,

C, LDC)

Double: The double precision name is DMRRRR.

Example
Multiply a 3 � 4 real matrix by a 4 � 3 real matrix. The output matrix will be a 3 � 3 real matrix.

 USE MRRRR_INT
 USE WRRRN_INT
! Declare variables
 INTEGER NCA, NCB, NCC, NRA, NRB, NRC
 PARAMETER (NCA=4, NCB=3, NCC=3, NRA=3, NRB=4, NRC=3)
!
 REAL A(NRA,NCA), B(NRB,NCB), C(NRC,NCC)
! Set values for A
! A = (1.0 0.0 2.0 0.0)
! (3.0 4.0 -1.0 0.0)
! (2.0 1.0 2.0 1.0)
!
! Set values for B
! B = (-1.0 0.0 2.0)
! (3.0 5.0 2.0)
! (0.0 0.0 -1.0)
! (2.0 -1.0 5.0)
!
 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &
 1.0/
 DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0, 2.0, -1.0, &
 5.0/
! Compute C = A*B
 CALL MRRRR (A, B, C)
! Print results
 CALL WRRRN (’C = A*B’, C)
 END

Output
 C = A*B
 1 2 3
1 -1.00 0.00 0.00
2 9.00 20.00 15.00
3 3.00 4.00 9.00

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1423

Description
Given the real rectangular matrices A and B, MRRRR computes the real rectangular matrix C =
AB.

MCRCR
Multiplies two complex rectangular matrices, AB.

Required Arguments
A — Complex NRA by NCA rectangular matrix. (Input)

B — Complex NRB by NCB rectangular matrix. (Input)

C — Complex NRC by NCC rectangular matrix containing the product A * B. (Output)

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NRB — Number of rows of B. (Input)
NRB must be equal to NCA.
Default: NRB = size (B,1).

NCB — Number of columns of B. (Input)
Default: NCB = size (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

NRC — Number of rows of C. (Input)
NRC must be equal to NRA.
Default: NRC = size (C,1).

NCC — Number of columns of C. (Input)
NCC must be equal to NCB.
Default: NCC = size (C,2).

1424 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDC = size (C,1).

FORTRAN 90 Interface
Generic: CALL MCRCR (A, B, C [,…])

Specific: The specific interface names are S_MCRCR and D_MCRCR.

FORTRAN 77 Interface
Single: CALL MCRCR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,

 C, LDC)

Double: The double precision name is DMCRCR.

Example
Multiply a 3 � 4 complex matrix by a 4 � 3 complex matrix. The output matrix will be a 3 � 3
complex matrix.

 USE MCRCR_INT
 USE WRCRN_INT
! Declare variables
 INTEGER NCA, NCB, NCC, NRA, NRB, NRC
 PARAMETER (NCA=4, NCB=3, NCC=3, NRA=3, NRB=4, NRC=3)
!
 COMPLEX A(NRA,NCA), B(NRB,NCB), C(NRC,NCC)
! Set values for A
! A = (1.0 + 1.0i -1.0+ 2.0i 0.0 + 1.0i 0.0 - 2.0i)
! (3.0 + 7.0i 6.0 - 4.0i 2.0 - 1.0i 0.0 + 1.0i)
! (1.0 + 0.0i 1.0 - 2.0i -2.0+ 0.0i 0.0 + 0.0i)
!
! Set values for B
! B = (2.0 + 1.0i 3.0 + 2.0i 3.0 + 1.0i)
! (2.0 - 1.0i 4.0 - 2.0i 5.0 - 3.0i)
! (1.0 + 0.0i 0.0 - 1.0i 0.0 + 1.0i)
! (2.0 + 1.0i 1.0 + 2.0i 0.0 - 1.0i)
!
 DATA A/(1.0,1.0), (3.0,7.0), (1.0,0.0), (-1.0,2.0), (6.0,-4.0), &
 (1.0,-2.0), (0.0,1.0), (2.0,-1.0), (-2.0,0.0), (0.0,-2.0), &
 (0.0,1.0), (0.0,0.0)/
 DATA B/(2.0,1.0), (2.0,-1.0), (1.0,0.0), (2.0,1.0), (3.0,2.0), &
 (4.0,-2.0), (0.0,-1.0), (1.0,2.0), (3.0,1.0), (5.0,-3.0), &
 (0.0,1.0), (0.0,-1.0)/
! Compute C = A*B
 CALL MCRCR (A, B, C)
! Print results
 CALL WRCRN (’C = A*B’, C)
 END

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1425

Output
 C = A*B
 1 2 3
1 (3.00, 5.00) (6.00, 13.00) (0.00, 17.00)
2 (8.00, 4.00) (8.00, -2.00) (22.00,-12.00)
3 (0.00, -4.00) (3.00, -6.00) (2.00,-14.00)

Description
Given the complex rectangular matrices A and B, MCRCR computes the complex rectangular
matrix C = AB.

HRRRR
Computes the Hadamard product of two real rectangular matrices.

Required Arguments
A — Real NRA by NCA rectangular matrix. (Input)

B — Real NRB by NCB rectangular matrix. (Input)

C — Real NRC by NCC rectangular matrix containing the Hadamard product of A and B.
(Output)
If A is not needed, then C can share the same storage locations as A. Similarly, if B is
not needed, then C can share the same storage locations as B.

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NRB — Number of rows of B. (Input)
NRB must be equal to NRA.
Default: NRB = size (B,1).

NCB — Number of columns of B. (Input)
NCB must be equal to NCA.
Default: NCB = size (B,2).

1426 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

NRC — Number of rows of C. (Input)
NRC must be equal to NRA.
Default: NRC = size (C,1).

NCC — Number of columns of C. (Input)
NCC must be equal to NCA.
Default: NCC = size (C,2).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDC = size (C,1).

FORTRAN 90 Interface
Generic: CALL HRRRR (A, B, C [,…])

Specific: The specific interface names are S_HRRRR and D_HRRRR.

FORTRAN 77 Interface
Single: CALL HRRRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,

 C, LDC)

Double: The double precision name is DHRRRR.

Example
Compute the Hadamard product of two 4 � 4 real matrices. The output matrix will be a 4 � 4
real matrix.

 USE HRRRR_INT
 USE WRRRN_INT
! Declare variables
 INTEGER NCA, NCB, NCC, NRA, NRB, NRC
 PARAMETER (NCA=4, NCB=4, NCC=4, NRA=4, NRB=4, NRC=4)
!
 REAL A(NRA,NCA), B(NRB,NCB), C(NRC,NCC)
! Set values for A
! A = (-1.0 0.0 -3.0 8.0)
! (2.0 1.0 7.0 2.0)
! (3.0 -2.0 2.0 -6.0)
! (4.0 1.0 -5.0 -8.0)
!
! Set values for B
! B = (2.0 3.0 0.0 -10.0)
! (1.0 -1.0 4.0 2.0)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1427

! (-1.0 -2.0 7.0 1.0)
! (2.0 1.0 9.0 0.0)
!
 DATA A/-1.0, 2.0, 3.0, 4.0, 0.0, 1.0, -2.0, 1.0, -3.0, 7.0, 2.0, &
 -5.0, 8.0, 2.0, -6.0, -8.0/
 DATA B/2.0, 1.0, -1.0, 2.0, 3.0, -1.0, -2.0, 1.0, 0.0, 4.0, 7.0, &
 9.0, -10.0, 2.0, 1.0, 0.0/
! Compute Hadamard product of A and B
 CALL HRRRR (A, B, C)
! Print results
 CALL WRRRN (’C = A (*) B’, C)
 END

Output
 C = A (*) B
 1 2 3 4
1 -2.00 0.00 0.00 -80.00
2 2.00 -1.00 28.00 4.00
3 -3.00 4.00 14.00 -6.00
4 8.00 1.00 -45.00 0.00

Description
The routine HRRRR computes the Hadamard product of two real matrices A and B and returns a
real matrix C, where Cij = AijBij.

BLINF
This function computes the bilinear form xTAy.

Function Return Value

BLINF — The value of xTAy is returned in BLINF. (Output)

Required Arguments
A — Real NRA by NCA matrix. (Input)

X — Real vector of length NRA. (Input)

Y — Real vector of length NCA. (Input)

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

1428 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: BLINF (A, X, Y [,…])

Specific: The specific interface names are S_BLINF and D_BLINF.

FORTRAN 77 Interface
Single: BLINF(NRA, NCA, A, LDA, X, Y)

Double: The double precision name is DBLINF.

Example

Compute the bilinear form xTAy, where x is a vector of length 5, A is a 5 � 2 matrix and y is a
vector of length 2.

 USE BLINF_INT
 USE UMACH_INT
! Declare variables
 INTEGER NCA, NRA
 PARAMETER (NCA=2, NRA=5)
!
 INTEGER NOUT
 REAL A(NRA,NCA), VALUE, X(NRA), Y(NCA)
! Set values for A
! A = (-2.0 2.0)
! (3.0 -6.0)
! (-4.0 7.0)
! (1.0 -8.0)
! (0.0 10.0)
! Set values for X
! X = (1.0 -2.0 3.0 -4.0 -5.0)
! Set values for Y
! Y = (-6.0 3.0)
!
 DATA A/-2.0, 3.0, -4.0, 1.0, 0.0, 2.0, -6.0, 7.0, -8.0, 10.0/
 DATA X/1.0, -2.0, 3.0, -4.0, -5.0/
 DATA Y/-6.0, 3.0/
! Compute bilinear form
 VALUE = BLINF(A,X,Y)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The bilinear form trans(x)*A*y = ’, VALUE
 END

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1429

Output
The bilinear form trans(x)*A*y = 195.000

Comments
The quadratic form can be computed by calling BLINF with the vector X in place of the vector Y.

Description
Given the real rectangular matrix A and two vectors x and y, BLINF computes the bilinear form
xTAy.

POLRG
Evaluates a real general matrix polynomial.

Required Arguments
A — N by N matrix for which the polynomial is to be computed. (Input)

COEF — Vector of length NCOEF containing the coefficients of the polynomial in order of
increasing power. (Input)

B — N by N matrix containing the value of the polynomial evaluated at A. (Output)

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NCOEF — Number of coefficients. (Input)
Default: NCOEF = size (COEF,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL POLRG (A, COEF, B [,…])

Specific: The specific interface names are S_POLRG and D_POLRG.

1430 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL POLRG (N, A, LDA, NCOEF, COEF, B, LDB)

Double: The double precision name is DPOLRG.

Example
This example evaluates the matrix polynomial 3I + A + 2A�, where A is a 3 � 3 matrix.

 USE POLRG_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDB, N, NCOEF
 PARAMETER (N=3, NCOEF=3, LDA=N, LDB=N)
!
 REAL A(LDA,N), B(LDB,N), COEF(NCOEF)
! Set values of A and COEF
!
! A = (1.0 3.0 2.0)
! (-5.0 1.0 7.0)
! (1.0 5.0 -4.0)
!
! COEF = (3.0, 1.0, 2.0)
!
 DATA A/1.0, -5.0, 1.0, 3.0, 1.0, 5.0, 2.0, 7.0, -4.0/
 DATA COEF/3.0, 1.0, 2.0/
!
! Evaluate B = 3I + A + 2*A**2
 CALL POLRG (A, COEF, B)
! Print B
 CALL WRRRN (’B = 3I + A + 2*A**2’, B)
 END

Output
 B = 3I + A + 2*A**2
 1 2 3
1 -20.0 35.0 32.0
2 -11.0 46.0 -55.0
3 -55.0 -19.0 105.0

Comments
Workspace may be explicitly provided, if desired, by use of P2LRG/DP2LRG. The reference is

CALL P2LRG (N, A, LDA, NCOEF, COEF, B, LDB, WORK)

The additional argument is

WORK — Work vector of length N * N.

Description
Let m = NCOEF and c = COEF.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1431

The routine POLRG computes the matrix polynomial

B c Ak
k

k

m

�
�

�

�
1

1

using Horner’s scheme

� �� �� �1 2 1m m mB c A c I A c I A c I
� �

� � � � �� �

where I is the N � N identity matrix.

MURRV
Multiplies a real rectangular matrix by a vector.

Required Arguments
A — Real NRA by NCA rectangular matrix. (Input)

X — Real vector of length NX. (Input)

Y — Real vector of length NY containing the product A * X if IPATH is equal to 1 and the
product trans(A) * X if IPATH is equal to 2. (Output)

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NX — Length of the vector X. (Input)
NX must be equal to NCA if IPATH is equal to 1. NX must be equal to NRA if IPATH is
equal to 2.
Default: NX = size (X,1).

IPATH — Integer flag. (Input)
IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product
Y = trans(A) * X is computed, where trans(A) is the transpose of A.
Default: IPATH =1.

NY — Length of the vector Y. (Input)
NY must be equal to NRA if IPATH is equal to 1. NY must be equal to NCA if IPATH is

1432 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

equal to 2.
Default: NY = size (Y,1).

FORTRAN 90 Interface
Generic: CALL MURRV (A, X, Y [,…])

Specific: The specific interface names are S_MURRV and D_MURRV.

FORTRAN 77 Interface
Single: CALL MURRV (NRA, NCA, A, LDA, NX, X, IPATH, NY, Y)

Double: The double precision name is DMURRV.

Example
Multiply a 3 � 3 real matrix by a real vector of length 3. The output vector will be a real vector
of length 3.

 USE MURRV_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, NCA, NRA, NX, NY
 PARAMETER (NCA=3, NRA=3, NX=3, NY=3)
!
 INTEGER IPATH
 REAL A(NRA,NCA), X(NX), Y(NY)
! Set values for A and X
! A = (1.0 0.0 2.0)
! (0.0 3.0 0.0)
! (4.0 1.0 2.0)
!
! X = (1.0 2.0 1.0)
!
!
 DATA A/1.0, 0.0, 4.0, 0.0, 3.0, 1.0, 2.0, 0.0, 2.0/
 DATA X/1.0, 2.0, 1.0/
! Compute y = Ax
 IPATH = 1
 CALL MURRV (A, X, Y)
! Print results
 CALL WRRRN (’y = Ax’, Y, 1, NY, 1)
 END

Output
 y = Ax
 1 2 3
3.000 6.000 8.000

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1433

Description
If IPATH = 1, MURRV computes y = Ax, where A is a real general matrix and x and y are real
vectors. If IPATH = 2, MURRV computes y = ATx.

MURBV
Multiplies a real band matrix in band storage mode by a real vector.

Required Arguments
A — Real NLCA + NUCA + 1 by N band matrix stored in band mode. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

X — Real vector of length NX. (Input)

Y — Real vector of length NY containing the product A * X if IPATH is equal to 1 and the
product trans(A) * X if IPATH is equal to 2. (Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NX — Length of the vector X. (Input)
NX must be equal to N.
Default: NX = size (X,1).

IPATH — Integer flag. (Input)
IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product Y =
trans(A) * X is computed, where trans(A) is the transpose of A.
Default: IPATH = 1.

NY — Length of vector Y. (Input)
NY must be equal to N.
Default: NY = size (Y,1).

FORTRAN 90 Interface
Generic: CALL MURBV (A, NLCA, NUCA, X, Y [,…])

1434 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Specific: The specific interface names are S_MURBV and D_MURBV.

FORTRAN 77 Interface
Single: CALL MURBV (N, A, LDA, NLCA, NUCA, NX, X, IPATH, NY, Y)

Double: The double precision name is DMURBV.

Example
Multiply a real band matrix of order 6, with two upper codiagonals and two lower codiagonals
stored in band mode, by a real vector of length 6. The output vector will be a real vector of
length 6.

 USE MURBV_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, N, NLCA, NUCA, NX, NY
 PARAMETER (LDA=5, N=6, NLCA=2, NUCA=2, NX=6, NY=6)
!
 INTEGER IPATH
 REAL A(LDA,N), X(NX), Y(NY)
! Set values for A (in band mode)
! A = (0.0 0.0 1.0 2.0 3.0 4.0)
! (0.0 1.0 2.0 3.0 4.0 5.0)
! (1.0 2.0 3.0 4.0 5.0 6.0)
! (-1.0 -2.0 -3.0 -4.0 -5.0 0.0)
! (-5.0 -6.0 -7.0 -8.0 0.0 0.0)
!
! Set values for X
! X = (-1.0 2.0 -3.0 4.0 -5.0 6.0)
!
 DATA A/0.0, 0.0, 1.0, -1.0, -5.0, 0.0, 1.0, 2.0, -2.0, -6.0, &
 1.0, 2.0, 3.0, -3.0, -7.0, 2.0, 3.0, 4.0, -4.0, -8.0, 3.0, &
 4.0, 5.0, -5.0, 0.0, 4.0, 5.0, 6.0, 0.0, 0.0/
 DATA X/-1.0, 2.0, -3.0, 4.0, -5.0, 6.0/
! Compute y = Ax
 IPATH = 1
 CALL MURBV (A, NLCA, NUCA, X, Y)
! Print results
 CALL WRRRN (’y = Ax’, Y, 1, NY, 1)
 END

Output
 y = Ax
 1 2 3 4 5 6
-2.00 7.00 -11.00 17.00 10.00 29.00

Description
If IPATH = 1, MURBV computes y = Ax, where A is a real band matrix and x and y are real
vectors. If IPATH = 2, MURBV computes y = ATx.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1435

MUCRV
Multiplies a complex rectangular matrix by a complex vector.

Required Arguments
A — Complex NRA by NCA rectangular matrix. (Input)

X — Complex vector of length NX. (Input)

Y — Complex vector of length NY containing the product A * X if IPATH is equal to 1 and the
product trans(A) * X if IPATH is equal to 2. (Output)

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NX — Length of the vector X. (Input)
NX must be equal to NCA if IPATH is equal to 1. NX must be equal to NRA if IPATH is
equal to 2.
Default: NX = size (X,1).

IPATH — Integer flag. (Input)
IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product Y =
trans(A) * X is computed, where trans(A) is the transpose of A.
Default: IPATH =1.

NY — Length of the vector Y. (Input)
NY must be equal to NRA if IPATH is equal to 1. NY must be equal to NCA if IPATH is
equal to 2.
Default: NY = size (Y,1).

FORTRAN 90 Interface
Generic: CALL MUCRV (A, X, Y [,…])

Specific: The specific interface names are S_MUCRV and D_MUCRV.

1436 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL MUCRV (NRA, NCA, A, LDA, NX, X, IPATH, NY, Y)

Double: The double precision name is DMUCRV.

Example
Multiply a 3 � 3 complex matrix by a complex vector of length 3. The output vector will be a
complex vector of length 3.

 USE MUCRV_INT
 USE WRCRN_INT
! Declare variables
 INTEGER NCA, NRA, NX, NY
 PARAMETER (NCA=3, NRA=3, NX=3, NY=3)
!
 INTEGER IPATH
 COMPLEX A(NRA,NCA), X(NX), Y(NY)
!
! Set values for A and X
! A = (1.0 + 2.0i 3.0 + 4.0i 1.0 + 0.0i)
! (2.0 + 1.0i 3.0 + 2.0i 0.0 - 1.0i)
! (2.0 - 1.0i 1.0 + 0.0i 0.0 + 1.0i)
!
! X = (1.0 - 1.0i 2.0 - 2.0i 0.0 - 1.0i)
!
 DATA A/(1.0,2.0), (2.0,1.0), (2.0,-1.0), (3.0,4.0), (3.0,2.0), &
 (1.0,0.0), (1.0,0.0), (0.0,-1.0), (0.0,1.0)/
 DATA X/(1.0,-1.0), (2.0,-2.0), (0.0,-1.0)/
! Compute y = Ax
 IPATH = 1
 CALL MUCRV (A, X, Y)
! Print results
 CALL WRCRN (’y = Ax’, Y, 1, NY, 1)
 END

Output
 y = Ax
 1 2 3
(17.00, 2.00) (12.00, -3.00) (4.00, -5.00)

Description
If IPATH = 1, MUCRV computes y = Ax, where A is a complex general matrix and x and y are
complex vectors. If IPATH = 2, MUCRV computes y = ATx.

MUCBV
Multiplies a complex band matrix in band storage mode by a complex vector.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1437

Required Arguments
A — Complex NLCA + NUCA + 1 by N band matrix stored in band mode. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

X — Complex vector of length NX. (Input)

Y — Complex vector of length NY containing the product A * X if IPATH is equal to 1 and the
product trans(A) * X if IPATH is equal to 2. (Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

NX — Length of the vector X. (Input)
NX must be equal to N.
Default: NX = size (X,1).

IPATH — Integer flag. (Input)
IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product
Y = trans(A) * X is computed, where trans(A) is the transpose of A.
Default: IPATH = 1.

NY — Length of vector Y. (Input)
NY must be equal to N.
Default: NY = size (Y,1).

FORTRAN 90 Interface
Generic: CALL MUCBV (A, NLCA, NUCA, X, Y [,…])

Specific: The specific interface names are S_MUCBV and D_MUCBV.

FORTRAN 77 Interface
Single: CALL MUCBV (N, A, LDA, NLCA, NUCA, NX, X, IPATH, NY, Y)

Double: The double precision name is DMUCBV.

1438 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Example
Multiply the transpose of a complex band matrix of order 4, with one upper codiagonal and two
lower codiagonals stored in band mode, by a complex vector of length 3. The output vector will
be a complex vector of length 3.

 USE MUCBV_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, N, NLCA, NUCA, NX, NY
 PARAMETER (LDA=4, N=4, NLCA=2, NUCA=1, NX=4, NY=4)
!
 INTEGER IPATH
 COMPLEX A(LDA,N), X(NX), Y(NY)
! Set values for A (in band mode)
! A = (0.0+ 0.0i 1.0+ 2.0i 3.0+ 4.0i 5.0+ 6.0i)
! (-1.0- 1.0i -1.0- 1.0i -1.0- 1.0i -1.0- 1.0i)
! (-1.0+ 2.0i -1.0+ 3.0i -2.0+ 1.0i 0.0+ 0.0i)
! (2.0+ 0.0i 0.0+ 2.0i 0.0+ 0.0i 0.0+ 0.0i)
!
! Set values for X
! X = (3.0 + 4.0i 0.0 + 0.0i 1.0 + 2.0i -2.0 - 1.0i)
!
 DATA A/(0.0,0.0), (-1.0,-1.0), (-1.0,2.0), (2.0,0.0), (1.0,2.0), &
 (-1.0,-1.0), (-1.0,3.0), (0.0,2.0), (3.0,4.0), (-1.0,-1.0), &
 (-2.0,1.0), (0.0,0.0), (5.0,6.0), (-1.0,-1.0), (0.0,0.0), &
 (0.0,0.0)/
 DATA X/(3.0,4.0), (0.0,0.0), (1.0,2.0), (-2.0,-1.0)/
! Compute y = Ax
 IPATH = 2
 CALL MUCBV (A, NLCA, NUCA, X, Y, IPATH=IPATH)
! Print results
 CALL WRCRN (’y = Ax’, Y, 1, NY, 1)
 END

Output
 y = Ax
 1 2 3 4
(3.00, -3.00) (-10.00, 7.00) (6.00, -3.00) (-6.00, 19.00)

Description
If IPATH = 1, MUCBV computes y = Ax, where A is a complex band matrix and x and y are
complex vectors. If IPATH = 2, MUCBV computes y = ATx.

ARBRB
Adds two band matrices, both in band storage mode.

Required Arguments
A — N by N band matrix with NLCA lower codiagonals and NUCA upper codiagonals stored in

band mode with dimension (NLCA + NUCA + 1) by N. (Input)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1439

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — N by N band matrix with NLCB lower codiagonals and NUCB upper codiagonals stored in
band mode with dimension (NLCB + NUCB + 1) by N. (Input)

NLCB — Number of lower codiagonals of B. (Input)

NUCB — Number of upper codiagonals of B. (Input)

C — N by N band matrix with NLCC lower codiagonals and NUCC upper codiagonals
containing the sum A + B in band mode with dimension (NLCC + NUCC + 1) by N.
(Output)

NLCC — Number of lower codiagonals of C. (Input)
NLCC must be at least as large as max(NLCA, NLCB).

NUCC — Number of upper codiagonals of C. (Input)
NUCC must be at least as large as max(NUCA, NUCB).

Optional Arguments
N — Order of the matrices A, B and C. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDC = size (C,1).

FORTRAN 90 Interface
Generic: CALL ARBRB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC,

 NUCC [,…])

Specific: The specific interface names are S_ARBRB and D_ARBRB.

1440 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL ARBRB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C,

 LDC, NLCC, NUCC)

Double: The double precision name is DARBRB.

Example
Add two real matrices of order 4 stored in band mode. Matrix A has one upper codiagonal and
one lower codiagonal. Matrix B has no upper codiagonals and two lower codiagonals. The
output matrix C, has one upper codiagonal and two lower codiagonals.

 USE ARBRB_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDB, LDC, N, NLCA, NLCB, NLCC, NUCA, NUCB, NUCC
 PARAMETER (LDA=3, LDB=3, LDC=4, N=4, NLCA=1, NLCB=2, NLCC=2, &
 NUCA=1, NUCB=0, NUCC=1)
!
 REAL A(LDA,N), B(LDB,N), C(LDC,N)
! Set values for A (in band mode)
! A = (0.0 2.0 3.0 -1.0)
! (1.0 1.0 1.0 1.0)
! (0.0 3.0 4.0 0.0)
!
! Set values for B (in band mode)
! B = (3.0 3.0 3.0 3.0)
! (1.0 -2.0 1.0 0.0)
! (-1.0 2.0 0.0 0.0)
!
 DATA A/0.0, 1.0, 0.0, 2.0, 1.0, 3.0, 3.0, 1.0, 4.0, -1.0, 1.0, &
 0.0/
 DATA B/3.0, 1.0, -1.0, 3.0, -2.0, 2.0, 3.0, 1.0, 0.0, 3.0, 0.0, &
 0.0/
! Add A and B to obtain C (in band
! mode)
 CALL ARBRB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC)
! Print results
 CALL WRRRN (’C = A+B’, C)
 END

Output
 C = A+B
 1 2 3 4
1 0.000 2.000 3.000 -1.000
2 4.000 4.000 4.000 4.000
3 1.000 1.000 5.000 0.000
4 -1.000 2.000 0.000 0.000

Description
The routine ARBRB adds two real matrices stored in band mode, returning a real matrix stored in
band mode.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1441

ACBCB
Adds two complex band matrices, both in band storage mode.

Required Arguments
A — N by N complex band matrix with NLCA lower codiagonals and NUCA upper codiagonals

stored in band mode with dimension (NLCA + NUCA + 1) by N. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — N by N complex band matrix with NLCB lower codiagonals and NUCB upper codiagonals
stored in band mode with dimension (NLCB + NUCB + 1) by N. (Input)

NLCB — Number of lower codiagonals of B. (Input)

NUCB — Number of upper codiagonals of B. (Input)

C — N by N complex band matrix with NLCC lower codiagonals and NUCC upper codiagonals
containing the sum A + B in band mode with dimension (NLCC + NUCC + 1) by N.
(Output)

NLCC — Number of lower codiagonals of C. (Input)
NLCC must be at least as large as max(NLCA, NLCB).

NUCC — Number of upper codiagonals of C. (Input)
NUCC must be at least as large as max(NUCA, NUCB).

Optional Arguments
N — Order of the matrices A, B and C. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDC = size (C,1).

1442 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL ACBCB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC,

 NUCC [,…])

Specific: The specific interface names are S_ACBCB and D_ACBCB.

FORTRAN 77 Interface
Single: CALL ACBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C,

 LDC, NLCC, NUCC)

Double: The double precision name is DACBCB.

Example
Add two complex matrices of order 4 stored in band mode. Matrix A has two upper codiagonals
and no lower codiagonals. Matrix B has no upper codiagonals and two lower codiagonals. The
output matrix C has two upper codiagonals and two lower codiagonals.

 USE ACBCB_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDB, LDC, N, NLCA, NLCB, NLCC, NUCA, NUCB, NUCC
 PARAMETER (LDA=3, LDB=3, LDC=5, N=3, NLCA=0, NLCB=2, NLCC=2, &
 NUCA=2, NUCB=0, NUCC=2)
!
 COMPLEX A(LDA,N), B(LDB,N), C(LDC,N)
! Set values for A (in band mode)
! A = (0.0 + 0.0i 0.0 + 0.0i 3.0 - 2.0i)
! (0.0 + 0.0i -1.0+ 3.0i 6.0 + 0.0i)
! (1.0 + 4.0i 5.0 - 2.0i 3.0 + 1.0i)
!
! Set values for B (in band mode)
! B = (3.0 + 1.0i 4.0 + 1.0i 7.0 - 1.0i)
! (-1.0- 4.0i 9.0 + 3.0i 0.0 + 0.0i)
! (2.0 - 1.0i 0.0 + 0.0i 0.0 + 0.0i)
!
 DATA A/(0.0,0.0), (0.0,0.0), (1.0,4.0), (0.0,0.0), (-1.0,3.0), &
 (5.0,-2.0), (3.0,-2.0), (6.0,0.0), (3.0,1.0)/
 DATA B/(3.0,1.0), (-1.0,-4.0), (2.0,-1.0), (4.0,1.0), (9.0,3.0), &
 (0.0,0.0), (7.0,-1.0), (0.0,0.0), (0.0,0.0)/
! Compute C = A+B
 CALL ACBCB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC)
! Print results
 CALL WRCRN (’C = A+B’, C)
 END

Output
 C = A+B
 1 2 3
1 (0.00, 0.00) (0.00, 0.00) (3.00, -2.00)
2 (0.00, 0.00) (-1.00, 3.00) (6.00, 0.00)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1443

3 (4.00, 5.00) (9.00, -1.00) (10.00, 0.00)
4 (-1.00, -4.00) (9.00, 3.00) (0.00, 0.00)
5 (2.00, -1.00) (0.00, 0.00) (0.00, 0.00)

Description
The routine ACBCB adds two complex matrices stored in band mode, returning a complex matrix
stored in band mode.

NRIRR
Computes the infinity norm of a real matrix.

Required Arguments
A — Real NRA by NCA matrix whose infinity norm is to be computed. (Input)

ANORM — Real scalar containing the infinity norm of A. (Output)

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL NRIRR (A, ANORM [,…])

Specific: The specific interface names are S_NRIRR and D_NRIRR.

FORTRAN 77 Interface
Single: CALL NRIRR (NRA, NCA, A, LDA, ANORM)

Double: The double precision name is DNRIRR.

Example
Compute the infinity norm of a 3 � 4 real rectangular matrix.

1444 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

 USE NRIRR_INT
 USE UMACH_INT
! Declare variables
 INTEGER NCA, NRA
 PARAMETER (NCA=4, NRA=3)
!
 INTEGER NOUT
 REAL A(NRA,NCA), ANORM
!
! Set values for A
! A = (1.0 0.0 2.0 0.0)
! (3.0 4.0 -1.0 0.0)
! (2.0 1.0 2.0 1.0)
!
 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &
 1.0/
! Compute the infinity norm of A
 CALL NRIRR (A, ANORM)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The infinity norm of A is ’, ANORM
 END

Output
The infinity norm of A is 8.00000

Description
The routine NRIRR computes the infinity norm of a real rectangular matrix A. If m = NRA and
n = NCA, then the �-norm of A is

1 1

max
n

iji m j

A A
�

� �
�

� �

This is the maximum of the sums of the absolute values of the row elements.

NR1RR
Computes the 1-norm of a real matrix.

Required Arguments
A — Real NRA by NCA matrix whose 1-norm is to be computed. (Input)

ANORM — Real scalar containing the 1-norm of A. (Output)

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1445

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL NR1RR (A, ANORM [,…])

Specific: The specific interface names are S_NR1RR and D_NR1RR.

FORTRAN 77 Interface
Single: CALL NR1RR (NRA, NCA, A, LDA, ANORM)

Double: The double precision name is DNR1RR.

Example
Compute the 1-norm of a 3 � 4 real rectangular matrix.

 USE NR1RR_INT
 USE UMACH_INT
! Declare variables
 INTEGER NCA, NRA
 PARAMETER (NCA=4, NRA=3)
!
 INTEGER NOUT
 REAL A(NRA,NCA), ANORM
!
! Set values for A
! A = (1.0 0.0 2.0 0.0)
! (3.0 4.0 -1.0 0.0)
! (2.0 1.0 2.0 1.0)
!
 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &
 1.0/
! Compute the L1 norm of A
 CALL NR1RR (A, ANORM)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The 1-norm of A is ’, ANORM
 END

Output
The 1-norm of A is 6.00000

1446 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Description
The routine NR1RR computes the 1-norm of a real rectangular matrix A. If m = NRA and n = NCA,
then the 1-norm of A is

1 1 1
max

m

ijj n i
A A

� �
�

� �

This is the maximum of the sums of the absolute values of the column elements.

NR2RR
Computes the Frobenius norm of a real rectangular matrix.

Required Arguments
A — Real NRA by NCA rectangular matrix. (Input)

ANORM — Frobenius norm of A. (Output)

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL NR2RR (A, ANORM [,…])

Specific: The specific interface names are S_NR2RR and D_NR2RR.

FORTRAN 77 Interface
Single: CALL NR2RR (NRA, NCA, A, LDA, ANORM)

Double: The double precision name is DNR2RR.

Example
Compute the Frobenius norm of a 3 � 4 real rectangular matrix.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1447

 USE NR2RR_INT
 USE UMACH_INT
! Declare variables
 INTEGER LDA, NCA, NRA
 PARAMETER (LDA=3, NCA=4, NRA=3)
!
 INTEGER NOUT
 REAL A(LDA,NCA), ANORM
!
! Set values for A
! A = (1.0 0.0 2.0 0.0)
! (3.0 4.0 -1.0 0.0)
! (2.0 1.0 2.0 1.0)
!
 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &
 1.0/
!
! Compute Frobenius norm of A
 CALL NR2RR (A, ANORM)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The Frobenius norm of A is ’, ANORM
 END

Output
The Frobenius norm of A is 6.40312

Description
The routine NR2RR computes the Frobenius norm of a real rectangular matrix A. If m = NRA and
n = NCA, then the Frobenius norm of A is

1 2

2
2

1 1

m n

ij
i j

A A
� �

� �
� � �
� �
��

NR1RB
Computes the 1-norm of a real band matrix in band storage mode.

Required Arguments
A — Real (NUCA + NLCA + 1) by N array containing the N by N band matrix in band storage

mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

ANORM — Real scalar containing the 1-norm of A. (Output)

1448 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL NR1RB (A, NLCA, NUCA, ANORM [,…])

Specific: The specific interface names are S_NR1RB and D_NR1RB.

FORTRAN 77 Interface
Single: CALL NR1RB (N, A, LDA, NLCA, NUCA, ANORM)

Double: The double precision name is DNR1RB.

Example
Compute the 1-norm of a 4 � 4 real band matrix stored in band mode.

 USE NR1RB_INT
 USE UMACH_INT
! Declare variables
 INTEGER LDA, N, NLCA, NUCA
 PARAMETER (LDA=4, N=4, NLCA=2, NUCA=1)
!
 INTEGER NOUT
 REAL A(LDA,N), ANORM
!
! Set values for A (in band mode)
! A = (0.0 2.0 2.0 3.0)
! (-2.0 -3.0 -4.0 -1.0)
! (2.0 1.0 0.0 0.0)
! (0.0 1.0 0.0 0.0)
!
 DATA A/0.0, -2.0, 2.0, 0.0, 2.0, -3.0, 1.0, 1.0, 2.0, -4.0, 0.0, &
 0.0, 3.0, -1.0, 2*0.0/
! Compute the L1 norm of A
 CALL NR1RB (A, NLCA, NUCA, ANORM)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The 1-norm of A is ’, ANORM
 END

Output
The 1-norm of A is 7.00000

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1449

Description
The routine NR1RB computes the 1-norm of a real band matrix A. The 1-norm of a matrix A is

1 1 1
max

N

ijj N i
A A

� �
�

� �

This is the maximum of the sums of the absolute values of the column elements.

NR1CB
Computes the 1-norm of a complex band matrix in band storage mode.

Required Arguments
A — Complex (NUCA + NLCA + 1) by N array containing the N by N band matrix in band

storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

ANORM — Real scalar containing the 1-norm of A. (Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL NR1CB (A, NLCA, NUCA, ANORM [,…])

Specific: The specific interface names are S_NR1CB and D_NR1CB.

FORTRAN 77 Interface
Single: CALL NR1CB (N, A, LDA, NLCA, NUCA, ANORM)

Double: The double precision name is DNR1CB.

1450 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Example
Compute the 1-norm of a complex matrix of order 4 in band storage mode.

 USE NR1CB_INT
 USE UMACH_INT
! Declare variables
 INTEGER LDA, N, NLCA, NUCA
 PARAMETER (LDA=4, N=4, NLCA=2, NUCA=1)
!
 INTEGER NOUT
 REAL ANORM
 COMPLEX A(LDA,N)
!
! Set values for A (in band mode)
! A = (0.0+0.0i 2.0+3.0i -1.0+1.0i -2.0-1.0i)
! (-2.0+3.0i 1.0+0.0i -4.0-1.0i 0.0-4.0i)
! (2.0+2.0i 4.0+6.0i 3.0+2.0i 0.0+0.0i)
! (0.0-1.0i 2.0+1.0i 0.0+0.0i 0.0+0.0i)
!
 DATA A/(0.0,0.0), (-2.0,3.0), (2.0,2.0), (0.0,-1.0), (2.0,3.0), &
 (1.0,0.0), (4.0,6.0), (2.0,1.0), (-1.0,1.0), (-4.0,-1.0), &
 (3.0,2.0), (0.0,0.0), (-2.0,-1.0), (0.0,-4.0), (0.0,0.0), &
 (0.0,0.0)/
! Compute the L1 norm of A
 CALL NR1CB (A, NLCA, NUCA, ANORM)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The 1-norm of A is ’, ANORM
 END

Output
The 1-norm of A is 19.0000

Description
The routine NR1CB computes the 1-norm of a complex band matrix A. The 1-norm of a complex
matrix A is

1 1 1
max

N

ij ijj N i
A A A

� �
�

� �� � � �� ��

DISL2
This function computes the Euclidean (2-norm) distance between two points.

Function Return Value
DISL2 — Euclidean (2-norm) distance between the points X and Y. (Output)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1451

Required Arguments
X — Vector of length max(N * |INCX|, 1). (Input)

Y — Vector of length max(N * |INCY|, 1). (Input)

Optional Arguments
N — Length of the vectors X and Y. (Input)

Default: N = size (X,1).

INCX — Displacement between elements of X. (Input)
The I-th element of X is X(1 + (I � 1) * INCX) if INCX is greater than or equal to zero
or X(1 + (I � N) * INCX) if INCX is less than zero.
Default: INCX = 1.

INCY — Displacement between elements of Y. (Input)
The I-th element of Y is Y(1 + (I � 1) * INCY) if INCY is greater than or equal to zero
or Y(1 + (I � N) * INCY) if INCY is less than zero.
Default: INCY = 1.

FORTRAN 90 Interface
Generic: DISL2 (X, Y [,…])

Specific: The specific interface names are S_DISL2 and D_DISL2.

FORTRAN 77 Interface
Single: DISL2(N, X, INCX, Y, INCY)

Double: The double precision function name is DDISL2.

Example
Compute the Euclidean (2-norm) distance between two vectors of length 4.

 USE DISL2_INT
 USE UMACH_INT
! Declare variables
 INTEGER INCX, INCY, N
 PARAMETER (N=4)
!
 INTEGER NOUT
 REAL VAL, X(N), Y(N)
!
! Set values for X and Y
! X = (1.0 -1.0 0.0 2.0)
!
! Y = (4.0 2.0 1.0 -3.0)

1452 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

!
 DATA X/1.0, -1.0, 0.0, 2.0/
 DATA Y/4.0, 2.0, 1.0, -3.0/
! Compute L2 distance
 VAL = DISL2(X,Y)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The 2-norm distance is ’, VAL
 END

Output
The 2-norm distance is 6.63325

Description
The function DISL2 computes the Euclidean (2-norm) distance between two points x and y. The
Euclidean distance is defined to be

� �
1 2

2

1

N

i i
i

x y
�

� �
	� �

� �
�

DISL1
This function computes the 1-norm distance between two points.

Function Return Value
DISL1 — 1-norm distance between the points X and Y. (Output)

Required Arguments
X — Vector of length max(N * |INCX|, 1). (Input)

Y — Vector of length max(N * |INCY|, 1). (Input)

Optional Arguments
N — Length of the vectors X and Y. (Input)

Default: N = size (X,1).

INCX — Displacement between elements of X. (Input)
The I-th element of X is X(1 + (I � 1) * INCX) if INCX is greater than or equal to zero
or X(1 + (I � N) * INCX) if INCX is less than zero.
Default: INCX = 1.

INCY — Displacement between elements of Y. (Input)
The I-th element of Y is Y(1 + (I � 1) * INCY) if INCY is greater than or equal to zero

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1453

or Y(1 + (I � N) * INCY) if INCY is less than zero.
Default: INCY = 1.

FORTRAN 90 Interface
Generic: DISL1 (X, Y [,…])

Specific: The specific interface names are S_DISL1 and D_DISL1.

FORTRAN 77 Interface
Single: DISL1(N, X, INCX, Y, INCY)

Double: The double precision function name is DDISL1.

Example
Compute the 1-norm distance between two vectors of length 4.

 USE DISL1_INT
 USE UMACH_INT
! Declare variables
 INTEGER INCX, INCY, N
 PARAMETER (N=4)
!
 INTEGER NOUT
 REAL VAL, X(N), Y(N)
!
! Set values for X and Y
! X = (1.0 -1.0 0.0 2.0)
!
! Y = (4.0 2.0 1.0 -3.0)
!
 DATA X/1.0, -1.0, 0.0, 2.0/
 DATA Y/4.0, 2.0, 1.0, -3.0/
! Compute L1 distance
 VAL = DISL1(X,Y)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The 1-norm distance is ’, VAL
 END

Output
The 1-norm distance is 12.0000

Description
The function DISL1 computes the 1-norm distance between two points x and y. The 1-norm
distance is defined to be

1454 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

1

N

i i
i

x y
�

��

DISLI
This function computes the infinity norm distance between two points.

Function Return Value
DISLI — Infinity norm distance between the points X and Y. (Output)

Required Arguments
X — Vector of length max(N * |INCX|, 1). (Input)

Y — Vector of length max(N * |INCY|, 1). (Input)

Optional Arguments
N — Length of the vectors X and Y. (Input)

Default: N = size (X,1).

INCX — Displacement between elements of X. (Input)
The I-th element of X is X(1 + (I � 1) *INCX) if INCX is greater than or equal to zero
or X(1 + (I � N) * INCX) if INCX is less than zero.
Default: INCX = 1.

INCY — Displacement between elements of Y. (Input)
The I-th element of Y is Y(1 + (I � 1) * INCY) if INCY is greater than or equal to zero
or Y(1 + (I � N) * INCY) if INCY is less than zero.
Default: INCY = 1.

FORTRAN 90 Interface
Generic: DISLI (X, Y [,…])

Specific: The specific interface names are S_DISLI and D_DISLI.

FORTRAN 77 Interface
Single: DISLI(N, X, INCX, Y, INCY)

Double: The double precision function function name is DDISLI.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1455

Example
Compute the �-norm distance between two vectors of length 4.

 USE DISLI_INT
 USE UMACH_INT
! Declare variables
 INTEGER INCX, INCY, N
 PARAMETER (N=4)
!
 INTEGER NOUT
 REAL VAL, X(N), Y(N)
!
! Set values for X and Y
! X = (1.0 -1.0 0.0 2.0)
!
! Y = (4.0 2.0 1.0 -3.0)
!
 DATA X/1.0, -1.0, 0.0, 2.0/
 DATA Y/4.0, 2.0, 1.0, -3.0/
! Compute L-infinity distance
 VAL = DISLI(X,Y)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The infinity-norm distance is ’, VAL
 END

Output
The infinity-norm distance is 5.00000

Description
The function DISLI computes the 1-norm distance between two points x and y. The 1norm
distance is defined to be

1
max i ii N

x y
� �

�

VCONR
Computes the convolution of two real vectors.

Required Arguments
X — Vector of length NX. (Input)

Y — Vector of length NY. (Input)

Z — Vector of length NZ containing the convolution Z = X * Y. (Output)

1456 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Optional Arguments
NX — Length of the vector X. (Input)

Default: NX = size (X,1).

NY — Length of the vector Y. (Input)
Default: NY = size (Y,1).

NZ — Length of the vector Z. (Input)
NZ must be at least NX + NY � 1.
Default: NZ = size (Z,1).

FORTRAN 90 Interface
Generic: CALL VCONR (X, Y, Z [,…])

Specific: The specific interface names are S_VCONR and D_VCONR.

FORTRAN 77 Interface
Single: CALL VCONR (NX, X, NY, Y, NZ, Z)

Double: The double precision name is DVCONR.

Example
In this example, the convolution of a vector x of length 8 and a vector y of length 3 is computed.
The resulting vector z is of length 8 + 3 � 1 = 10. (The vector y is sometimes called a filter.)

 USE VCONR_INT
 USE WRRRN_INT
 INTEGER NX, NY, NZ
 PARAMETER (NX=8, NY=3, NZ=NX+NY-1)
!
 REAL X(NX), Y(NY), Z(NZ)
! Set values for X
! X = (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0)
! Set values for Y
! Y = (0.0 0.0 1.0)
!
 DATA X/1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0/
 DATA Y/0.0, 0.0, 1.0/
! Compute vector convolution
! Z = X * Y
 CALL VCONR (X,Y,Z)
! Print results
 CALL WRRRN (’Z = X (*) Y’, Z, 1, NZ, 1)
 END

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1457

Output
 Z = X (*) Y
 1 2 3 4 5 6 7 8 9 10
0.000 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

Comments
Workspace may be explicitly provided, if desired, by use of V2ONR/DV2ONR. The reference is

CALL V2ONR (NX, X, NY, Y, NZ, Z, XWK, YWK, ZWK, WK)

The additional arguments are as follows:

XWK — Complex work array of length NX + NY � 1.

YWK — Complex work array of length NX + NY � 1.

ZWK — Complex work array of length NX + NY � 1.

WK — Real work array of length 6 * (NX + NY � 1) + 15.

Description
The routine VCONR computes the convolution z of two real vectors x and y. Let nx = NX, ny = NY
and nz = NZ. The vector z is defined to be

1
1

for = 1, 2, ,
xn

j j k k z
k

z x y j n
� �

�

�� �

where nz = nx + ny � 1. If the index j � k + 1 is outside the range 1, 2,
, nx, then xj � k � 1 is
taken to be zero.

The fast Fourier transform is used to compute the convolution. Define the complex vector u of
length nz = nx + ny � 1 to be

� �1 2, , , , 0, , 0
xnu x x x� � �

The complex vector v, also of length nz, is defined similarly using y. Then, by the Fourier
convolution theorem,

ˆ ˆ ˆ for = 1, 2, , i i i zw u v i n� �

where the û indicates the Fourier transform of u computed via IMSL routine FFTCF (see
Chapter 6, Transforms) IMSL routine FFTCB (see Chapter 6, Transforms) is used to compute the
complex vector w from ŵ . The vector z is then found by taking the real part of the vector w.

VCONC
Computes the convolution of two complex vectors.

1458 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Required Arguments
X — Complex vector of length NX. (Input)

Y — Complex vector of length NY. (Input)

Z — Complex vector of length NZ containing the convolution Z = X * Y. (Output)

Optional Arguments
NX — Length of the vector X. (Input)

Default: NX = size (X,1).

NY — Length of the vector Y. (Input)
Default: NY = size (Y,1).

NZ — Length of the vector Z. (Input)
NZ must be at least NX + NY � 1.
Default: NZ = size (Z,1).

FORTRAN 90 Interface
Generic: CALL VCONC (X, Y, Z [,…])

Specific: The specific interface names are S_VCONC and D_VCONC.

FORTRAN 77 Interface
Single: CALL VCONC (NX, X, NY, Y, NZ, Z)

Double: The double precision name is DVCONC.

Example
In this example, the convolution of a vector x of length 4 and a vector y of length 3 is computed.
The resulting vector z is of length 4 + 3 �y is sometimes called a filter.)

 USE VCONC_INT
 USE WRCRN_INT
 INTEGER NX, NY, NZ
 PARAMETER (NX=4, NY=3, NZ=NX+NY-1)
!
 COMPLEX X(NX), Y(NY), Z(NZ)
! Set values for X
! X = (1.0+2.0i 3.0+4.0i 5.0+6.0i 7.0+8.0i)
! Set values for Y
! Y = (0.0+0i 0.0+0i 1.0+0i)
!
 DATA X/(1.0,2.0), (3.0,4.0), (5.0,6.0), (7.0,8.0)/
 DATA Y/(0.0,0.0), (0.0,0.0), (1.0,1.0)/

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1459

! Compute vector convolution
! Z = X * Y
 CALL VCONC (X,Y,Z)
! Print results
 CALL WRCRN (’Z = X (*) Y’, Z, 1, NZ, 1)
 END

Output
 Z = X (*) Y
 1 2 3 4
(0.00, 0.00) (0.00, 0.00) (-1.00, 3.00) (-1.00, 7.00)

 5 6
(-1.00, 11.00) (-1.00, 15.00)

Comments
Workspace may be explicitly provided, if desired, by use of V2ONC/DV2ONC. The reference is
CALL V2ONC (NX, X, NY, Y, NZ, Z, XWK, YWK, WK)

The additional arguments are as follows:

XWK — Complex work array of length NX + NY � 1.

YWK — Complex work array of length NX + NY � 1.

WK — Real work arrary of length 6 * (NX + NY �1) + 15.

Description
The routine VCONC computes the convolution z of two complex vectors x and y. Let nx = NX, then
ny = NY and nz = NZ. The vector z is defined to be

1
1

for = 1, 2, ,
xn

j j k k z
k

z x y j n
� �

�

�� �

where nz = nx + ny � 1. If the index j � k + 1 is outside the range 1, 2,
, nx, then xj � k � 1 is taken
to be zero.

The fast Fourier transform is used to compute the convolution. Define the complex vector u of
length nz = nx + ny � 1 to be

� �1 2, , , , 0, , 0
znu x x x� � �

The complex vector v, also of length nz, is defined similarly using y. Then, by the Fourier
convolution theorem,

ˆ ˆˆ for = 1, 2, ,i i i zz u v i n� �

where the û indicates the Fourier transform of u computed using IMSL routine FFTCF (see
Chapter 6, Transforms). The complex vector z is computed from ŵ via IMSL routine FFTCB (see
Chapter 6, Transforms).

1460 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Extended Precision Arithmetic
This section describes a set of routines for mixed precision arithmetic. The routines are designed
to allow the computation and use of the full quadruple precision result from the multiplication of
two double precision numbers. An array called the accumulator stores the result of this
multiplication. The result of the multiplication is added to the current contents of the accumulator.
It is also possible to add a double precision number to the accumulator or to store a double
precision approximation in the accumulator.

The mixed double precision arithmetic routines are described below. The accumulator array,
QACC, is a double precision array of length 2. Double precision variables are denoted by DA and
DB. Available operations are:

Initialize a real accumulator, QACC � DA.
CALL DQINI (DA, QACC)

Store a real accumulator, DA � QACC.
CALL DQSTO (QACC, DA)

Add to a real accumulator, QACC � QACC + DA.
CALL DQADD (DA, QACC)

Add a product to a real accumulator, QACC � QACC + DA*DB.
CALL DQMUL (DA, DB, QACC)

There are also mixed double complex arithmetic versions of the above routines. The accumulator,
ZACC, is a double precision array of length 4. Double complex variables are denoted by ZA and ZB.
Available operations are:

Initialize a complex accumulator, ZACC � ZA.
CALL ZQINI (ZA, ZACC)

Store a complex accumulator, ZA � ZACC.
CALL ZQSTO (ZACC, ZA)

Add to a complex accumulator, ZACC � ZACC + ZA.
CALL ZQADD (ZA, ZACC)

Add a product to a complex accumulator, ZACC � ZACC + ZA * ZB.
CALL ZQMUL (ZA, ZB, ZACC)

Example
In this example, the value of 1.0D0/3.0D0 is computed in quadruple precision using Newton’s
method. Four iterations of

� �2
1k k k kx x x ax

�
� � �

with a = 3 are taken. The error ax � 1 is then computed. The results are accurate to approximately
twice the usual double precision accuracy, as given by the IMSL routine DMACH(4), in the

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations � 1461

Reference Material section of this manual. Since DMACH is machine dependent, the actual accuracy
obtained is also machine dependent.

 USE IMSL_LIBRARIES
 INTEGER I, NOUT
 DOUBLE PRECISION A, DACC(2), DMACH, ERROR, SACC(2), X(2), X1, X2, EPSQ
!
 CALL UMACH (2, NOUT)
 A = 3.0D0
 CALL DQINI (1.0001D0/A, X)
! Compute X(K+1) = X(K) - A*X(K)*X(K)
! + X(K)
 DO 10 I=1, 4
 X1 = X(1)
 X2 = X(2)
! Compute X + X
 CALL DQADD (X1, X)
 CALL DQADD (X2, X)
! Compute X*X
 CALL DQINI (0.0D0, DACC)
 CALL DQMUL (X1, X1, DACC)
 CALL DQMUL (X1, X2, DACC)
 CALL DQMUL (X1, X2, DACC)
 CALL DQMUL (X2, X2, DACC)
! Compute -A*(X*X)
 CALL DQINI (0.0D0, SACC)
 CALL DQMUL (-A, DACC(1), SACC)
 CALL DQMUL (-A, DACC(2), SACC)
! Compute -A*(X*X) + (X + X)
 CALL DQADD (SACC(1), X)
 CALL DQADD (SACC(2), X)
 10 CONTINUE
! Compute A*X - 1
 CALL DQINI (0.0D0, SACC)
 CALL DQMUL (A, X(1), SACC)
 CALL DQMUL (A, X(2), SACC)
 CALL DQADD (-1.0D0, SACC)
 CALL DQSTO (SACC, ERROR)
! ERROR should be less than MACHEPS**2
 EPSQ = AMACH(4)
 EPSQ = EPSQ * EPSQ
 WRITE (NOUT,99999) ERROR, ERROR/EPSQ
!
99999 FORMAT (’ A*X - 1 = ’, D15.7, ’ = ’, F10.5, ’*MACHEPS**2’)
 END

Output
A*X - 1 = 0.6162976D-32 = 0.12500*MACHEPS**2

1462 � Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1463

Chapter 10: Linear Algebra
Operators and Generic Functions

Routines

MPI REQUIRED

Matrix Algebra Operations..1464
Matrix and Utility Functions ..1466
Optional Data Changes ..1471
 Operators: .x., .tx., .xt., .hx., .xh..1471
 Operators: .t., .h..1472
 Operator: .i. ...1473
 Operators: .ix., .xi. ...1474
 CHOL..1475
 COND..1476
 DET ...1477
 DIAG..1479
 DIAGONALS..1479
 EIG ...1480
 EYE ...1481
 FFT ...1482
 FFT_BOX..1482
 IFFT..1483
 IFFT_BOX..1484
 isNaN..1485
 NaN ...1486
 NORM..1487
 ORTH..1488
 RAND..1489
 RANK..1490
 SVD ...1491
 UNIT..1492
Overloaded =, /=, etc., for Derived Types ..1493
Operator Examples ..1494
Parallel Examples...1528

1464 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

Introduction

MPI REQUIRED

This chapter describes numerical linear algebra software packaged as operations
that are executed with a function notation similar to standard mathematics. The
resulting interface is a great simplification. It alters the way libraries are
presented to the user. Many computations of numerical linear algebra are
documented here as operators and generic functions. A notation is developed
reminiscent of matrix algebra. This allows the Fortran 90 user to express
mathematical formulas in terms of operators. Thus, important aspects of “object-
oriented” programming are provided as a part of this chapter's design.

A comprehensive Fortran 90 module, linear_operators, defines the operators and
functions. Its use provides this simplification. Subroutine calls and the use of
type-dependent procedure names are largely avoided. This makes a rapid
development cycle possible, at least for the purposes of experiments and proof-
of-concept. The goal is to provide the Fortran 90 programmer with an interface,
operators, and functions that are useful and succinct. The modules can be used
with existing Fortran programs, but the operators provide a more readable
program. Frequently this approach requires more hidden working storage. The
size of the executable program may be larger than alternatives using subroutines.
There are applications wherein the operator and function interface does not have
the functionality that is available using subroutine libraries. To retain greater
flexibility, some users will continue to require the traditional techniques of
calling subroutines.

A parallel computation for many of the defined operators and functions has been
implemented. Most of the detailed communication is hidden from the user.
Those functions having this data type computed in parallel are marked in bold
type. The section “Parallelism Using MPI” (in this chapter) gives an
introduction on how users should write their codes to use other machines on a
network.

Matrix Algebra Operations
Consider a Fortran 90 code fragment that solves a linear system of algebraic equations, Ay = b, then
computes the residual r = b � Ay. A standard mathematical notation is often used to write the
solution,

 1y A b�

�

A user thinks: “matrix and right-hand side yields solution.” The code shows the computation of this
mathematical solution using a defined Fortran operator “.ix.”, and random data obtained with the
function, rand. This operator is read “inverse matrix times.” The residuals are computed with
another defined Fortran operator “.x.”, read “matrix times vector.” Once a user understands the
equivalence of a mathematical formula with the corresponding Fortran operator, it is possible to
write this program with little effort. The last line of the example before end is discussed below.

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1465

USE linear_operators

 integer,parameter :: n=3; real A(n,n), y(n), b(n), r(n)

 A=rand(A); b=rand(b); y = A .ix. b

 r = b - (A .x. y)

end

The IMSL Fortran Library provides additional lower-level software that implements the operation
“.ix.”, the function rand, matrix multiply “.x.”, and others not used in this example. Standard
matrix products and inverse operations of matrix algebra are shown in the following table:

Defined Array Operation Matrix Operation Alternative in Fortran 90

A .x. B AB matmul(A, B)

.i. A 1A� lin_sol_gen

lin_sol_lsq

.t. A, .h. A ,T HA A transpose(A)

conjg(transpose(A))

A .ix. B 1A B� lin_sol_gen

lin_sol_lsq

B .xi. A 1BA� lin_sol_gen

lin_sol_lsq

A .tx. B, or (.t. A) .x. B

A .hx. B, or (.h. A) .x. B
,T HA B A B matmul(transpose (A), B)

matmul(conjg(transpose(A)), B)

B .xt. A, or B .x. (.t. A)

B .xh. A, or B .x. (.h. A)
,T HBA BA matmul(B, transpose(A))

matmul(B, conjg(transpose(A)))

Operators apply generically to all precisions and floating-point data types and to objects that are
broader in scope than arrays. For example, the matrix product “.x..” applies to matrix times vector and
matrix times matrix represented as Fortran 90 arrays. It also applies to “independent matrix products.”
For this, use the notion: a box of problems to refer to independent linear algebra computations, of the
same kind and dimension, but different data. The racks of the box are the distinct problems. In terms of
Fortran 90 arrays, a rank-3, assumed-shape array is the data structure used for a box. The first two
dimensions are the data for a matrix problem; the third dimension is the rack number. Each problem is
independent of other problems in consecutive racks of the box. We use parallelism of an underlying
network of processors when computing these disjoint problems.

In addition to the operators .ix., .xi., .i., and .x., additional operators .t., .h., .tx., .hx.,

1466 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

.xt., and .xh. are provided for complex matrices. Since the transpose matrix is defined for
complex matrices, this meaning is kept for the defined operations. In order to write one defined opera-
tion for both real and complex matrices, use the conjugate-transpose in all cases. This will result in
only real operations when the data arrays are real.

For sums and differences of vectors and matrices, the intrinsic array operations “+” and “�” are
available. It is not necessary to have separate defined operations. A parsing rule in Fortran 90 states
that the result of a defined operation involving two quantities has a lower precedence than any intrinsic
operation. This explains the parentheses around the next-to-last line containing the sub-expression “A
.x. y” found in the example. Users are advised to always include parentheses around array
expressions that are mixed with defined operations, or whenever there is possible confusion without
them. The next-to-last line of the example results in computing the residual associated with the
solution, namely r = b � Ay. Ideally, this residual is zero when the system has a unique solution. It will
be computed as a non-zero vector due to rounding errors and conditioning of the problem.

Matrix and Utility Functions
Several decompositions and functions required for numerical linear algebra follow. The
convention of enclosing optional quantities in brackets, “[]” is used. The functions that use MPI
for parallel execution of the box data type are marked in bold.

Defined Array Functions Matrix Operation

S=SVD(A [,U=U, V=V]) TA USV�

E=EIG(A [[,B=B, D=D],
V=V, W=W])

(AV = VE), AVD = BVE
(AW = WE), AWD = BWE

R=CHOL(A) TA R R�
Q=ORTH(A [,R=R]) � � , TA QR Q Q I� �

U=UNIT(A) � �1 1 1, / ,u a a� � �� �� �

F=DET(A) det(A) = determinant
K=RANK(A) rank(A) = rank
P=NORM(A[,[type=]i])

� �

1
1

12

1
=1

max ()

largest singular value

max ()

m

j ij
i

n

i ijhuge
j

p A a

p A s

p A a

�

��

� �

� � �

� �

�

�

C=COND(A)
� �1 / rank As s

Z=EYE(N)
NZ I�

A=DIAG(X) � �1,A diag x� �

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1467

Defined Array Functions Matrix Operation

X=DIAGONALS(A) � �11,x a� �

Y=FFT (X,[WORK=W]);
X=IFFT(Y,[WORK=W])

Discrete Fourier Transform, Inverse

Y=FFT_BOX (X,[WORK=W]);
X=IFFT_BOX(Y,[WORK=W])

Discrete Fourier Transform for Boxes, Inverse

A=RAND(A) random numbers, 0 < A < 1
L=isNaN(A) test for NaN, if (l) then�

In certain functions, the optional arguments are inputs while other optional arguments are outputs.
To illustrate the example of the box SVD function, a code is given that computes the singular
value decomposition and the reconstruction of the random matrix box, A. Using the computed
factors, R = USVT. Mathematically R = A, but this will be true, only approximately, due to
rounding errors. The value units_of_error = ||A � R||/(||A||�), shows the merit of this
approximation.

USE linear_operators

USE mpi_setup_int

 integer,parameter :: n=3, k=16

 real, dimension(n,n,k) :: A,U,V,R,S(n,k), units_of_error(k)

 MP_NPROCS=MP_SETUP() ! Set up MPI.

 A=rand(A); S=SVD(A, U=U, V=V)

 R = U .x. diag(S) .xt. V; units_of_error =
 norm(A-R)/S(1,1:k)/epsilon(A)

 MP_NPROCS=MP_SETUP(‘Final’) ! Shut down MPI.

 end

Parallelism Using MPI

MPI REQUIRED

General Remarks
The central theme we use for the computing functions of the box data type is
that of delivering results to a distinguished node of the machine. One of the
design goals was to shield much of the complexity of distributed computing
from the user.

The nodes are numbered by their “ranks.” Each node has rank value
MP_RANK. There are MP_NPROCS nodes, so MP_RANK = 0,
1,...,MP_NPROCS-1. The root node has MP_RANK = 0. Most of the
elementary MPI material is found in Gropp, Lusk, and Skjellum (1994) and
Snir, Otto, Huss-Lederman, Walker, and Dongarra (1996). Although Fortran
Library users are for the most part shielded from the complexity of MPI, it is

1468 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

desirable for some users to learn this important topic. Users should become
familiar with any referenced MPI routines and the documentation of their
usage. MPI routines are not discussed here, because that is best found in the
above references.

The Fortran Library algorithm for allocating the racks of the box to the
processors consists of creating a schedule for the processors, followed by
communication and execution of this schedule. The efficiency may be
improved by using the nodes according to a specific priority order. This order
can reflect information such as a powerful machine on the network other than
the user’s work station, or even complex or transient network behavior. The
Fortran Library allows users to define this order, including using a default.
A setup function establishes an order based on timing matrix products of a size
given by the user. Parallel Example 4 illustrates this usage.

Getting Started with Modules MPI_setup_int and
MPI_node_int
The MPI_setup_int and MPI_node_int modules are part of the
Fortran Library and not part of MPI itself. Following a call to the function
MP_SETUP(), the module MPI_node_int will contain information about
the number of processors, the rank of a processor, the communicator for
Fortran Library, and the usage priority order of the node machines. Since
MPI_node_int is used by MPI_setup_int, it is not necessary to
explicitly use this module. If neither MP_SETUP() nor MPI_Init() is
called, then the box data type will compute entirely on one node. No routine
from MPI will be called.
MODULE MPI_NODE_INT

 INTEGER, ALLOCATABLE :: MPI_NODE_PRIORITY(:)

 INTEGER, SAVE :: MP_LIBRARY_WORLD = huge(1)

 LOGICAL, SAVE :: MPI_ROOT_WORKS = .TRUE.

 INTEGER, SAVE :: MP_RANK = 0, MP_NPROCS = 1

END MODULE

When the function MP_SETUP() is called with no arguments, the following
events occur:

�� If MPI has not been initialized, it is first initialized. This step uses the
routines MPI_Initialized() and possibly MPI_Init(). Users
who choose not to call MP_SETUP() must make the required
initialization call before using any Fortran Library code that relies on MPI
for its execution. If the user’s code calls a Fortran Library function
utilizing the box data type and MPI has not been initialized, then the
computations are performed on the root node. The only MPI routine
always called in this context is MPI_Initialized(). The name
MP_SETUP is pushed onto the subprogram or call stack.

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1469

�� If MP_LIBRARY_WORLD equals its initial value (=huge(1)) then
MPI_COMM_WORLD, the default MPI communicator, is duplicated and
becomes its handle. This uses the routine MPI_Comm_dup(). Users can
change the handle of MP_LIBRARY_WORLD as required by their
application code. Often this issue can be ignored.

�� The integers MP_RANK and MP_NPROCS are respectively the node’s
rank and the number of nodes in the communicator,
MP_LIBRARY_WORLD. Their values require the routines
MPI_Comm_size() and MPI_Comm_rank(). The default values are
important when MPI is not initialized and a box data type is computed. In
this case the root node is the only node and it will do all the work. No
calls to MPI communication routines are made when MP_NPROCS = 1
when computing the box data type functions. A program can temporarily
assign this value to force box data type computation entirely at the root
node. This is desirable for problems where using many nodes would be
less efficient than using the root node exclusively.

�� The array MPI_NODE_PRIORITY(:) is unallocated unless the user
allocates it. The Fortran Library codes use this array for assigning tasks to
processors, if it is allocated. If it is not allocated, the default priority of the
nodes is (0,1,...,MP_NPROCS-1). Use of the function call
MP_SETUP(N) allocates the array, as explained below. Once the array is
allocated its size is MP_NPROCS. The contents of the array is a
permutation of the integers 0,...,MP_NPROCS-1. Nodes appearing at
the start of the list are used first for parallel computing. A node other than
the root can avoid any computing, except receiving the schedule, by setting
the value MPI_NODE_PRIORITY(I) < 0. This means that node
|MPI_NODE_PRIORITY(I)| will be sent the task schedule but will
not perform any significant work as part of box data type function
evaluations.

�� The LOGICAL flag MPI_ROOT_WORKS designates whether or not the
root node participates in the major computation of the tasks. The root
node communicates with the other nodes to complete the tasks but can be
designated to do no other work. Since there may be only one processor,
this flag has the default value .TRUE., assuring that one node exists to do
work. When more than one processor is available users can consider
assigning MPI_ROOT_WORKS=.FALSE. This is desirable when the
alternate nodes have equal or greater computational resources compared
with the root node. Example 4 illustrates this usage. A single problem is
given a box data type, with one rack. The computing is done at the node,
other than the root, with highest priority. This example requires more than
one processor since the root does not work.

When the generic function MP_SETUP(N) is called, where N is a positive
integer, a call to MP_SETUP() is first made, using no argument. Use just one

1470 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

of these calls to MP_SETUP(). This initializes the MPI system and the other
parameters described above. The array MPI_NODE_PRIORITY(:) is
allocated with size MP_NPROCS. Then DOUBLE PRECISION matrix
products C = AB, where A and B are N by N matrices, are computed at each
node and the elapsed time is recorded. These elapsed times are sorted and the
contents of MPI_NODE_PRIORITY(:) permuted in accordance with the
shortest times yielding the highest priority. All the nodes in the communicator
MP_LIBRARY_WORLD are timed. The array MPI_NODE_PRIORITY(:) is
then broadcast from the root to the remaining nodes of MP_LIBRARY_WORLD
using the routine MPI_Bcast(). Timing matrix products to define the node
priority is relevant because the effort to compute C is comparable to that of
many linear algebra computations of similar size. Users are free to define their
own node priority and broadcast the array MPI_NODE_PRIORITY(:) to
the alternate nodes in the communicator.

To print any IMSL Fortran Library error messages that have occurred at any
node, and to finalize MPI, use the function call MP_SETUP(‘Final’). Case
of the string ‘Final’ is not important. Any error messages pending will be
discarded after printing on the root node. This is triggered by popping the
name ‘MP_SETUP’ from the subprogram stack or returning to Level 1 in the
stack. Users can obtain error messages by popping the stack to Level 1 and still
continuing with MPI calls. This requires executing call e1pop (‘MP_SETUP’).
To continue on after summarizing errors execute call e1psh (‘MP_SETUP’).
More details about the error processor are found in Reference Material chapter
of this manual.

Messages are printed by nodes from largest rank to smallest, which is the root
node. Use of the routine MPI_Finalize() is made within
MP_SETUP(‘Final’), which shuts down MPI. After MPI_Finalize()
is called, the value of MP_NPROCS = 0. This flags that MPI has been
initialized and terminated. It cannot be initialized again in the same program
unit execution. No MPI routine is defined when MP_NPROCS has this value.

Using Processors
There are certain pitfalls to avoid when using Fortran Library and box data
types as implemented with MPI. A fundamental requirement is to allow all
processors to participate in parts of the program where their presence is needed
for correctness. It is incorrect to have a program unit that restricts nodes from
executing a block of code required when computing with the box data type.
On the other hand it is appropriate to restrict computations with rank-2 arrays
to the root node. This is not required, but the results for the alternate nodes are
normally discarded. This will avoid gratuitous error messages that may appear
at alternate nodes.

Observe that only the root has a correct result for a box data type function.
Alternate nodes have the constant value one as the result. The reason for this is
that during the computation of the functions, sub-problems are allocated to the
alternate nodes by the root, but for only the root to utilize the result. If a user

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1471

needs a value at the other nodes, then the root must send it to the nodes. This
principle is illustrated in Parallel Example 3: Convergence information is
computed at the root node and broadcast to the others. Without this step some
nodes would not terminate the loop even when corrections at the root become
small. This would cause the program to be incorrect.

Optional Data Changes
To reset tolerances for determining singularity and to allow for other data changes, non-allocated
“hidden” variables are defined within the modules. These variables can be allocated first, then
assigned values which result in the use of different tolerances or greater efficiency in the execut-
able program. The non-allocated variables, whose scope is limited to the module, are hidden from
the casual user. Default values or rules are applied if these arrays are not allocated. In more
detail, the inverse matrix operator “.i.” applied to a square matrix first uses the LU factorization
code lin_sol_gen and row pivoting. The default value for a small diagonal term is defined to
be:

sqrt(epsilon(A))*sum(abs(A))/(n*n+1)

If the system is singular, a generalized matrix inverse is computed with the QR factorization code
lin_sol_lsq using this same tolerance. Both row and column pivoting are used. If the system
is singular, an error message will be printed and a Fortran 90 STOP is executed. Users may want
to change this rule. This is illustrated by continuing and not printing the error message. The
following is an additional source to accomplish this, for all following invocations of the operator
“.i.”:

allocate(inverse_options(1))

inverse_options(1)=skip_error_processing

B=.i. A

There are additional self-documenting integer parameters, packaged in the module
linear_operators, that allow users other choices, such as changing the value of the tolerance, as
noted above. Included will be the ability to have the option apply for just the next invocation of
the operator. Options are available that allow optional data to be passed to supporting Fortran 90
subroutines. This is illustrated with an example in operator_ex36 in this chapter.

Operators: .x., .tx., .xt., .hx., .xh.
Computes matrix-vector and matrix-matrix products. The results are in a precision and data type
that ascends to the most accurate or complex operand. The operators apply when one or both
operands are rank-1, rank-2 or rank-3 arrays.

Required Operands
Each of these operators requires two operands. Mixing of intrinsic floating-point data types arrays
is permitted. There is no distinction made between a rank-1 array, considered a slim matrix, and
the transpose of this matrix. Defined operations have lower precedence than any intrinsic
operation, so the liberal use of parentheses is suggested when mixing them.

1472 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

Optional Variables, Reserved Names
These operators have neither packaged optional variables nor reserved names.

Modules
Use the appropriate one of the modules:

operation_x

operation_tx

operation_xt

operation_hx

operation_xh

or linear_operators

Examples
Compute the matrix times vector y = Ax: y = A .x. x

Compute the vector times matrix Ty x A� : y = x .x.A; y = A .tx. x

Compute the matrix expression D = B � AC: D = B � (A .x. C)

Operators: .t., .h.
Computes transpose and conjugate transpose of a matrix. The operation may be read transpose or
adjoint, and the results are the mathematical objects in a precision and data type that matches the
operand. The operators apply when the single operand is a rank-2 or rank-3 array.

Required Operand
Each of these operators requires a single operand. Since these are unary operations, they have
higher Fortran 90 precedence than any other intrinsic unary array operation.

Optional Variables, Reserved Names
These operators have neither packaged optional variables nor reserved names.

Modules
Use the appropriate one of the modules:

operation_t

operation_h

or linear_operators

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1473

Examples
Compute the matrix times vector

Ty A x� : y = .t.A .x. x; y = A .tx. x

Compute the vector times matrix
Ty x A� : y = x .x. A; y = A .tx. x

Compute the matrix expression
HD B A C� � : D = B � (A .hx. C); D = B � (.h.A .x. C)

Operator: .i.
Computes the inverse matrix, for square non-singular matrices, or the Moore-Penrose generalized
inverse matrix for singular square matrices or rectangular matrices. The operation may be read in-
verse or generalized inverse, and the results are in a precision and data type that matches the
operand. The operator can be applied to any rank-2 or rank-3 array.

Required Operand
This operator requires a single operand. Since this is a unary operation, it has higher Fortran 90
precedence than any other intrinsic array operation.

Optional Variables, Reserved Names
This operator uses the routines lin_sol_gen or lin_sol_lsq (See Chapter 1, “Linear
Solvers” lin_sol_gen and lin_sol_lsq).

The option and derived type names are given in the following tables:

Option Names for .i. Option Value

use_lin_sol_gen_only 1
use_lin_sol_lsq_only 2
i_options_for_lin_sol_gen 3
i_options_for_lin_sol_lsq 4
skip_error_processing 5

Derived Type Name of Unallocated Array
s_options s_inv_options(:)

s_options s_inv_iptions_once(:)

d_options d_inv_options(:)

d_options d_inv_options_once(:)

1474 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

Modules
Use the appropriate one of the modules:

operation_i

or linear_operators

Examples
Compute the matrix times vector
y = A-1x: y = .i.A .x. x ; y = A .ix. x

Compute the vector times matrix
y = xTA-1: y = x .x. .i.A; y = x .xi. A

Compute the matrix expression
D = B - A-1C: D = B � (.i.A .x. C); D = B � (A .ix. C)

Operators: .ix., .xi.
Computes the inverse matrix times a vector or matrix for square non-singular matrices or the cor-
responding Moore-Penrose generalized inverse matrix for singular square matrices or rectangular
matrices. The operation may be read generalized inverse times or times generalized inverse. The
results are in a precision and data type that matches the most accurate or complex operand.

Required Operand
This operator requires two operands. In the template for usage, y = A .ix. b, the first operand
A can be rank-2 or rank-3. The second operand b can be rank-1, rank-2 or rank-3. For the alternate
usage template, y = b .xi. A, the first operand b can be rank-1, rank-2 or rank-3. The second
operand A can be rank-2 or rank-3.

Optional Variables, Reserved Names
This operator uses the routines lin_sol_gen or lin_sol_lsq
(See Chapter 1, “Linear Solvers”, lin_sol_gen and lin_sol_lsq).

The option and derived type names are given in the following tables:

Option Names for .ix., .xi. Option Value
use_lin_sol_gen_only 1
use_lin_sol_lsq_only 2
xi_, ix_options_for_lin_sol_gen 3
xi_, ix_options_for_lin_sol_lsq 4
skip_error_processing 5

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1475

Derived Type Name of Unallocated Array
s_options s_invx_options(:)

s_options s_invx_options_once(:)

d_options d_invx_options(:)

d_options d_invx_options_once(:)

s_options s_xinv_options(:)

s_options s_xinv_options_once(:)

d_options d_xinv_options(:)

d_options d_xinv_options_once(:)

Modules
Use the appropriate one of the modules:

operation_ix

operation_xi

or linear_operators

Examples

Compute the matrix times vector y = A-1x: y = A .ix. x

Compute the vector times matrix y = xTA-1: y = x .xi. A

Compute the matrix expression D = B - A-1C: D = B - (A .ix. C)

CHOL
Computes the Cholesky factorization of a positive-definite, symmetric or self-adjoint matrix, A.
The factor is upper triangular, RTR = A.

Required Argument
This function requires one argument. This argument must be a rank-2 or rank-3 array that contains
a positive-definite, symmetric or self-adjoint matrix. For rank-3 arrays each rank-2 array, (for
fixed third subscript), is a positive-definite, symmetric or self-adjoint matrix. In this case, the
output is a rank-3 array of Cholesky factors for the individual problems.

Optional Variables, Reserved Names
This function uses lin_sol_self (See Chapter 1, “Linear Solvers,” lin_sol_self), using the
appropriate options to obtain the Cholesky factorization.

1476 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

The option and derived type names are given in the following tables:

Option Name for CHOL Option Value
use_lin_sol_gen_only 4
use_lin_sol_lsq_only 5

Derived Type Name of Unallocated Array
s_options s_chol_options(:)

s_options s_chol_options_once(:)

d_options d_chol_options(:)

d_options d_chol_options_once(:)

Modules
Use the appropriate one of the modules:

chol_int

or linear_operators

Example
Compute the Cholesky factor of a positive-definite symmetric matrix:
B = A .tx. A; R = CHOL(B); B = R .tx. R

COND
Computes the condition number of a rectangular matrix, A. The condition number is the ratio of
the largest and the smallest positive singular values,

� �
/1s s

rank A

or huge(A), whichever is smaller.

Required Argument
This function requires one argument. This argument must be a rank-2 or rank-3 array. For rank-3
arrays, each rank-2 array section, (for fixed third subscript), is a separate problem. In this case, the
output is a rank-1 array of condition numbers for each problem.

Optional Variables, Reserved Names
This function uses lin_sol_svd (see Chapter 1, “Linear Solvers,” lin_sol_svd), to compute
the singular values of A.

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1477

The option and derived type names are given in the following tables:

Option Name for COND Option Value
s_cond_set_small 1
s_cond_for_lin_sol_svd 2
d_cond_set_small 1
d_cond_for_lin_sol_svd 2
c_cond_set_small 1
c_cond_for_lin_sol_svd 2
z_cond_set_small 1
z_cond_for_lin_sol_svd 2

Derived Type Name of Unallocated Array
s_options s_cond_options(:)

s_options s_cond_options_once(:)

d_options d_cond_options(:)

d_options d_cond_options_once(:)

Modules
Use the appropriate one of the modules:

cond_int

or linear_operators

Example
Compute the condition number:
B = A .tx. A; c = COND(B); c = COND(A)**2

DET
Computes the determinant of a rectangular matrix, A. The evaluation is based on the QR decompo-
sition,

0
0 0
k kR

QAP �
� �

� � �
� �

and k = rank(A). Thus det(A) = s � det(R) where s = det(Q) � det(P) = �1.

Required Argument
This function requires one argument. This argument must be a rank-2 or rank-3 array that contains
a rectangular matrix. For rank-3 arrays, each rank-2 array (for fixed third subscript), is a separate

1478 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

matrix. In this case, the output is a rank-1 array of determinant values for each problem. Even
well-conditioned matrices can have determinants with values that have very large or very tiny
magnitudes. The values may overflow or underflow. For this class of problems, the use of the
logarithmic representation of the determinant found in lin_sol_gen or lin_sol_lsq is
required.

Optional Variables, Reserved Names
This function uses lin_sol_lsq (see Chapter 1, “Linear Solvers” lin_sol_lsq) to compute
the QR decomposition of A, and the logarithmic value of det(A), which is exponentiated for the
result.

The option and derived type names are given in the following tables:

Option Name for DET Option Value
s_det_for_lin_sol_lsq 1
d_det_for_lin_sol_lsq 1

c_det_for_lin_sol_lsq 1
z_det_for_lin_sol_lsq 1

Derived Type Name of Unallocated Array
S_options s_det_options(:)

S_options s_det_options_once(:)

D_options d_det_options(:)

D_options d_det_options_once(:)

Modules
Use the appropriate one of the modules:

det_int

or linear_operators

Example
Compute the determinant of a matrix and its inverse:
b = DET(A); c = DET(.i.A); b=1./c

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1479

DIAG
Constructs a square diagonal matrix from a rank-1 array or several diagonal matrices from a rank-
2 array. The dimension of the matrix is the value of the size of the rank-1 array.

Required Argument
This function requires one argument, and the argument must be a rank-1 or rank-2 array. The
output is a rank-2 or rank-3 array, respectively. The use of DIAG may be obviated by observing
that the defined operations C = diag(x) .x. A or D = B .x. diag(x) are respectively the
array operations C = spread(x, DIM=1,NCOPIES=size(A,1))*A, and
D = B*spread(x,DIM=2,NCOPIES=size(B,2)). These array products are not as easy to read
as the defined operations using DIAG and matrix multiply, but their use results in a more efficient
code.

Optional Variables, Reserved Names
This function has neither packaged optional variables nor reserved names.

Modules
Use the appropriate module:

diag_int

or linear_operators

Example
Compute the singular value decomposition of a square matrix A:
S = SVD(A,U=U,V=V)

Then reconstruct TA USV� :
A = U .x.diag(S) .xt. V

DIAGONALS
Extracts a rank-1 array whose values are the diagonal terms of a rank-2 array argument. The size
of the array is the smaller of the two dimensions of the rank-2 array. When the argument is a rank-
3 array, the result is a rank-2 array consisting of each separate set of diagonals.

Required Argument
This function requires one argument, and the argument must be a rank-2 or rank-3 array. The
output is a rank-1 or rank-2 array, respectively.

Optional Variables, Reserved Names
This function has neither packaged optional variables nor reserved names.

1480 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

Modules
Use the appropriate one of the modules:

diagonals_int

or linear_operators

Example

Compute the diagonals of the matrix product RRT:
x = DIAGONALS(R .xt. R)

EIG
Computes the eigenvalue-eigenvector decomposition of an ordinary or generalized eigenvalue
problem.

For the ordinary eigenvalue problem, Ax = ex, the optional input “B=” is not used. With the
generalized problem, Ax = eBx, the matrix B is passed as the array in the right-side of “B=”. The
optional output “D=” is an array required only for the generalized problem and then only when
the matrix B is singular.

The array of real eigenvectors is an optional output for both the ordinary and the generalized
problem. It is used as “V=” where the right-side array will contain the eigenvectors. If any
eigenvectors are complex, the optional output “W=” must be present. In that case “V=” should not
be used.

Required Argument
This function requires one argument, and the argument must be a square rank-2 array or a rank-3
array with square first rank-2 sections. The output is a rank-1 or rank-2 complex array of eigenval-
ues.

Optional Variables, Reserved Names
This function uses lin_eig_self, lin_eig_gen, and lin_geig_gen, to compute the
decompositions. See Chapter 1, “Linear Solvers” lin_eig_self, lin_eig_gen, and
lin_geig_gen.

The option and derived type names are given in the following tables:

Option Name for EIG Option Value
options_for_lin_eig_self 1
options_for_lin_eig_gen 2
options_for_lin_geig_gen 3
Skip_error_processing 5

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1481

Derived Type Name of Unallocated Array
s_options s_eig_options(:)

s_options s_eig_options_once(:)

d_options d_eig_options(:)

d_options d_eig_options_once(:)

Modules
Use the appropriate module:

eig_int

or linear_operators

Example
Compute the maximum magnitude eigenvalue of a square matrix A. (The values are sorted by
EIG() to be non-increasing in magnitude).
E = EIG(A); max_magnitude = abs(E(1))

Compute the eigenexpansion of a square matrix B:
E = EIG(B, W = W); B = W .x. diag(E) .xi. W

EYE
Creates a rank-2 square array whose diagonals are all the value one. The off-diagonals all have
value zero.

Required Argument
This function requires one integer argument, the dimension of the rank-2 array. The output array is
of type and kind REAL(KIND(1E0)).

Optional Variables, Reserved Names
This function has neither packaged optional variables nor reserved names.

Modules
Use the appropriate module:

eye_int

or linear_operators

Example
Check the orthogonality of a set of n vectors, Q:

e = norm(EYE(n) � (Q .hx. Q))

1482 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

FFT
The Discrete Fourier Transform of a complex sequence and its inverse transform.

Required Argument
The function requires one argument, x. If x is an assumed shape complex array of rank 1, 2 or 3,
the result is the complex array of the same shape and rank consisting of the DFT.

Optional Variables, Reserved Names
The optional argument is “WORK=,”3 a COMPLEX array of the same precision as the data. For
rank-1 transforms the size of WORK is n+15. To define this array for each problem, set WORK(1)
= 0. Each additional rank adds the dimension of the transform plus 15. Using the optional
argument WORK increases the efficiency of the transform. This function uses fast_dft,
fast_2dft, and fast_3dft from Chapter 3.

The option and derived type names are given in the following tables:

Option Name for FFT Option Value
options_for_fast_dft 1

Derived Type Name of Unallocated Array
s_options s_fft_options(:)

s_options s_fft_options_once(:)

d_options d_fft_options(:)

d_options d_fft_options_once(:)

Modules
Use the appropriate module:

fft_int

or linear_operators

Example
Compute the DFT of a random complex array:
x=rand(x); y=fft(x)

FFT_BOX
The Discrete Fourier Transform of several complex or real sequences.

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1483

Required Argument
The function requires one argument, x. If x is an assumed shape complex array of rank 2, 3 or 4,
the result is the complex array of the same shape and rank consisting of the DFT for each of the
last rank’s indices.

Optional Variables, Reserved Names
The optional argument is “WORK=,” a COMPLEX array of the same precision as the data. For
rank-1 transforms the size of WORK is n+15. To define this array for each problem, set
WORK(1) = 0. Each additional rank adds the dimension of the transform plus 15. Using the
optional argument WORK increases the efficiency of the transform. This function uses routines
fast_dft, fast_2dft, and fast_3dft from this chapter.

The option and derived type names are given in the following tables:

Option Name for FFT Option Value
options_for_fast_dft 1

Derived Type Name of Unallocated Array
S_options s_fft_box_options(:)

S_options s_fft_box_options_once(:)

D_options d_fft_box_options(:)

D_options d_fft_box_options_once(:)

Modules
Use the appropriate module:

fft_box_int

or linear_operators

Example
Compute the DFT of a random complex array:
x=rand(x); y=fft_box(x)

IFFT
The inverse of the Discrete Fourier Transform of a complex sequence.

Required Argument
The function requires one argument, x. If x is an assumed shape complex array of rank 1, 2 or 3,
the result is the complex array of the same shape and rank consisting of the inverse DFT.

1484 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

Optional Variables, Reserved Names
The optional argument is “WORK=,” a COMPLEX array of the same precision as the data. For
rank-1 transforms the size of WORK is n+15. To define this array for each problem, set
WORK(1) = 0. Each additional rank adds the dimension of the transform plus 15. Using the
optional argument WORK increases the efficiency of the transform. This function uses routines
fast_dft, fast_2dft, and fast_3dft from Chapter 3.

The option and derived type names are given in the following tables:

Option Name for IFFT Option Value
options_for_fast_dft 1

Derived Type Name of Unallocated Array
s_options s_ifft_options(:)

s_options S_ifft_options_once(:)

d_options D_ifft_options(:)

d_options D_ifft_options_once(:)

Modules
Use the appropriate module:

ifft_int

or linear_operators

Example
Computes the DFT of a random complex array and its inverse transform:
x=rand(x); y=fft(x); x=ifft(y)

IFFT_BOX
The inverse Discrete Fourier Transform of several complex or real sequences.

Required Argument
The function requires one argument, x. If x is an assumed shape complex array of rank 2, 3 or 4,
the result is the complex array of the same shape and rank consisting of the inverse DFT.

Optional Variables, Reserved Names
The optional argument is “WORK=,” a COMPLEX array of the same precision as the data. For
rank-1 transforms the size of WORK is n+15. To define this array for each problem, set WORK(1)
= 0. Each additional rank adds the dimension of the transform plus 15. Using the optional

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1485

argument WORK increases the efficiency of the transform. This function uses routines fast_dft,
fast_2dft, and fast_3dft from Chapter 3.

The option and derived type names are given in the following tables:

Option Name for IFFT Option Value

Options_for_fast_dft 1

Derived Type Name of Unallocated Array

S_options s_ifft_box_options(:)

S_options s_ifft_box_options_once(:)

D_options d_ifft_box_options(:)

D_options d_ifft_box_options_once(:)

Modules
Use the appropriate module:

ifft_box_int

or linear_operators

Example
Computes the inverse DFT of a random complex array:
x=rand(x); x=ifft_box(y)

isNaN
This is a generic logical function used to test scalars or arrays for occurrence of an IEEE 754
Standard format of floating point (ANSI/IEEE 1985) NaN, or not-a-number. Either quiet or
signaling NaNs are detected without an exception occurring in the test itself. The individual array
entries are each examined, with bit manipulation, until the first NaN is located. For non-IEEE
formats, the bit pattern tested for single precision is transfer(not(0),1). For double
precision numbers x, the bit pattern tested is equivalent to assigning the integer array
i(1:2) = not(0), then testing this array with the bit pattern of the integer array
transfer(x,i). This function is likely to be required whenever there is the possibility that a
subroutine blocked the output with NaNs in the presence of an error condition.

Required Arguments
The argument can be a scalar or array of rank-1, rank-2 or rank-3. The output value tests .true.
only if there is at least one NaN in the scalar or array. The values can be any of the four intrinsic
floating-point types.

1486 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

Optional Variables, Reserved Names
This function has neither packaged optional variables nor reserved names.

Modules
Use one of the modules:

isNaN_int

or linear_operators

Example
If there is not a NaN in an array A it is used to solve a linear system:
if(.not. isNaN(A)) x = A .ix. b

NaN
Returns, as a scalar function, a value corresponding to the IEEE 754 Standard format of floating
point (ANSI/IEEE 1985) for NaN. For other floating point formats a special pattern is returned
that tests .true. using the function isNaN().

Required Arguments
X (Input)

Scalar value of the same type and precision as the desired result, NaN. This input value
is used only to match the type of output.

Optional Arguments
There are no optional arguments for this routine.

Example: Blocking Output
Arrays are assigned all NaN values, using single and double-precision formats. These are tested
using the logical function routine, isNaN.

 use isnan_int

 implicit none

! This is Example 1 for NaN.
 integer, parameter :: n=3
 real(kind(1e0)) A(n,n); real(kind(1d0)) B(n,n)
 real(kind(1e0)), external :: s_NaN
 real(kind(1d0)), external :: d_NaN

! Assign NaNs to both A and B:
 A = s_Nan(1e0); B = d_Nan(1d0)

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1487

! Check that NaNs are noted in both A and B:
 if (isNan(A) .and. isNan(B)) then

 write (*,*) 'Example 1 for NaN is correct.'
 end if

 end

Description
The bit pattern used for single precision is transfer (not(0),1). For double precision, the bit
pattern for single precision is replicated by assigning the temporary integer array
i(1:2) = not(0), and then using the double-precision bit pattern transfer(i,x) for the
output value.

Fatal and Terminal Error Messages
This routine has no error messages.

NORM
Computes the norm of a rank-1 or rank-2 array. For rank-3 arrays, the norms of each rank-2 array,
in dimension 3, are computed.

Required Arguments
The first argument must be an array of rank-1, rank-2, or rank-3. An optional, second position
argument can be used that provides a choice between the norms

1 2, , and l l l
�

If this optional argument, with keyword “ type=” is not present, the 2l norm is computed. The

1 and l l
�

 norms are likely to be less expensive to compute than the l2 norm. Use of the option
number ?_reset_default_norm will switch the default from the 2l to the 1 or l l

�
 norms.

Optional Variables, Reserved Names
If the 2l norm is required, this function uses lin_sol_svd (see Chapter 1, “Linear Solvers,”
lin_sol_svd), to compute the largest singular value of A. For the other norms, Fortran 90
intrinsics are used.

The option and derived type names are given in the following tables:

Option Name for NORM Option Value
s_norm_for_lin_sol_svd 1
s_reset_default_norm 2
d_norm_for_lin_sol_svd 1

1488 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

Option Name for NORM Option Value
d_reset_default_norm 2
c_norm_for_lin_sol_svd 1
c_reset_default_norm 2
z_norm_for_lin_sol_svd 1
z_reset_default_norm 2

Derived Type Name of Unallocated Array
s_options s_norm_options(:)

s_options s_norm_options_once(:)

d_options d_norm_options(:)

d_options d_norm_options_once(:)

Modules
Use the appropriate modules:

norm_int

or linear_operators

Example

Compute three norms of an array. (Both assignments of n_2 yield the same value).
A: n_1 = norm(A,1); n_2 = norm(A,type=2); n_2=norm(A);
n_inf = norm(A,huge(1))

ORTH
Orthogonalizes the columns of a rank-2 or rank-3 array. The decomposition A = QR is computed
using a forward and backward sweep of the Modified Gram-Schmidt algorithm.

Required Arguments
The first argument must be an array of rank-2 or rank-3. An optional argument can be used to
obtain the upper-triangular or upper trapezoidal matrix R. If this optional argument, with keyword
“R=”, is present, the decomposition is complete. The array output contains the matrix Q. If the
first argument is rank-3, the output array and the optional argument are rank-3.

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1489

Optional Variables, Reserved Names

The option and derived type names are given in the following tables:

Option Name for ORTH Option Value
skip_error_processing 5

Derived Type Name of Unallocated Array
s_options s_orth_options(:)

s_options s_orth_options_once(:)

d_options d_orth_options(:)

d_options d_orth_options_once(:)

Modules
Use the appropriate one of the modules:
 orth_int

 or linear_operators

Example
Compute the scaled sample variances, v, of an m � n linear least squares system, (m > n), Ax � b
: Q = ORTH(A,R=R); G=.i. R; x = G .x. (Q .hx. b); v=DIAGONALS(G .xh. G);
v=v*sum((b-(A .x. x))**2)/(m�n)

RAND
Computes a scalar, rank-1, rank-2 or rank-3 array of random numbers. Each component number is
positive and strictly less than one in value.

Required Arguments
The argument must be a scalar, rank-1, rank-2, or rank-3 array of any intrinsic floating-point type.
The output function value matches the required argument in type, kind and rank. For complex
arguments, the output values will be real and imaginary parts with random values of the same
type, kind, and rank.

Optional Variables, Reserved Names
This function uses rand_gen to obtain the number of values required by the argument. The
values are then copied using the RESHAPE intrinsic.

Note: If any of the arrays s_rand_options(:), s_rand_options_once(:),
d_rand_options(:), or d_rand_options_once(:) are allocated, they are passed as
arguments to rand_gen using the keyword “iopt=”.

1490 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

The option and derived type names are given in the following table:

Derived Type Name of Unallocated Array

S_options s_rand_options(:)

S_options s_rand_options_once(:)

D_options d_rand_options(:)

D_options d_rand_options_once(:)

Modules
Use the appropriate modules:

rand_int

or linear_operators

Examples
Compute a random digit:

1 � i � n : i=rand(1e0)*n+1

Compute a random vector:

x : x=rand(x)

RANK
Computes the mathematical rank of a rank-2 or rank-3 array.

Required Arguments
The argument must be rank-2 or rank-3 array of any intrinsic floating-point type. The output
function value is an integer with a value equal to the number of singular values that are greater
than a tolerance. The default value for this tolerance is 1/ 2

1s� , where � is machine precision and

1s is the largest singular value of the matrix.

Optional Variables, Reserved Names
This function uses lin_sol_svd to compute the singular values of the argument. The singular
values are then compared with the value of the tolerance to compute the rank.

The option and derived type names are given in the following tables:

Option Name for RANK Option Value
S_rank_set_small 1

S_rank_for_lin_sol_svd 2

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1491

Option Name for RANK Option Value
D_rank_set_small 1
D_rank_for_lin_sol_svd 2
C_rank_set_small 1
C_rank_for_lin_sol_svd 2
Z_rank_set_small 1
Z_rank_for_lin_sol_svd 2

Derived Type Name of Unallocated Array
S_options s_rank_options(:)

S_options s_rank_options_once(:)

D_options d_rank_options(:)

d_options d_rank_options_once(:)

Modules
Use the appropriate one of the modules:

rank_int

or linear_operators

Example
Compute the rank of an array of random numbers and then the rank of an array where each entry
is the value one:
A=rand(A); k=rank(A); A=1; k=rank(A)

SVD
Computes the singular value decomposition of a rank-2 or rank-3 array, TA USV� .

Required Arguments
The argument must be rank-2 or rank-3 array of any intrinsic floating-point type. The keyword
arguments “U=” and “V=” are optional. The output array names used on the right-hand side must
have sizes that are large enough to contain the right and left singular vectors, U and V.

Optional Variables, Reserved Names
This function uses one of the routines lin_svd and lin_sol_svd. If a complete decomposition
is required, lin_svd is used. If singular values only, or singular values and one of the right and
left singular vectors are required, then lin_sol_svd is called.

1492 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

The option and derived type names are given in the following tables:

Option Name for SVD Option Value

options_for_lin_svd 1
options_for_lin_sol_svd 2
skip_error_processing 5

Derived Type Name of Unallocated Array
s_options s_svd_options(:)

s_options s_svd_options_once(:)

d_options d_svd_options(:)

d_options d_svd_options_once(:)

Modules
Use the appropriate module:

svd_int

or linear_operators

Example
Compute the singular value decomposition of a random square matrix:
A=rand(A); S=SVD(A,U=U,V=V); A=U .x. diag(S) .xt. V

UNIT
 Normalizes the columns of a rank-2 or rank-3 array so each has Euclidean length of value one.

Required Arguments
The argument must be a rank-2 or rank-3 array of any intrinsic floating-point type. The output
function value is an array of the same type and kind, where each column of each rank-2 principal
section has Euclidean length of value one.

Optional Variables, Reserved Names
This function uses a rank-2 Euclidean length subroutine to compute the lengths of the nonzero
columns, which are then normalized to have lengths of value one. The subroutine carefully avoids
overflow or damaging underflow by rescaling the sums of squares as required. There are no
reserved names.

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1493

Modules
Use the appropriate one of the modules:

unit_int

or linear_operators

Example
Normalizes a set of random vectors: A=UNIT(RAND(A)).

Overloaded =, /=, etc., for Derived Types
To assist users in writing compact and readable code, the IMSL Fortran Library provides
overloaded assignment and logical operations for the derived types s_options, d_options,
s_error, and d_error. Each of these derived types has an individual record consisting of an
integer and a floating-point number. The components of the derived types, in all cases, are named
idummy followed by rdummy. In many cases, the item referenced is the component idummy. This
integer value can be used exactly as any integer by use of the component selector character
(%). Thus, a program could assign a value and test after calling a routine:

s_epack(1)%idummy = 0
call lin_sol_gen(A,b,x,epack=s_epack)
if (s_epack(1)%idummy > 0) call error_post(s_epack)

Using the overloaded assignment and logical operations, this code fragment can be written in the
more readable form:

s_epack(1) = 0
call lin_sol_gen(A,b,x,epack=s_epack)
if (s_epack(1) > 0) call error_post(s_epack)

Generally the assignments and logical operations refer only to component idummy. The
assignment “s_epack(1)=0” is equivalent to “s_epack(1)=s_error(0,0E0)”. Thus, the
floating-point component rdummy is assigned the value 0E0. The assignment statement
“I=s_epack(1)”, for I an integer type, is equivalent to “I=s_epack(1)%idummy”. The value
of component rdummy is ignored in this assignment. For the logical operators, a single element of
any of the IMSL Fortran Library derived types can be in either the first or second operand.

Derived Type Overloaded Assignments and Tests
s_options I=s_options(1);s_options(1)=I = = /= < <= > >=

s_options I=d_options(1);d_options(1)=I = = /= < <= > >=

d_epack I=s_epack(1);s_epack(1)=I = = /= < <= > >=

d_epack I=d_epack(1);d_epack(1)=I = = /= < <= > >=

In the examples, operator_ex01, 	, _ex37, the overloaded assignments and tests have been
used whenever they improve the readability of the code.

1494 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

Operator Examples
This section presents an equivalent implementation of the examples in “Linear Solvers, “Singular
Value and Eigenvalue Decomposition,” and a single example from “Fourier Tranforms Chapters 1
and 2, and a single example from Chapter 3.” In all cases, the examples have been tested for
correctness using equivalent mathematical criteria. On the other hand, these criteria are not
identical to the corresponding examples in all cases. In Example 1 for lin_sol_gen,
err = maxval(abs(res))/sum(abs(A) + abs(b))is computed. In the operator revision of
this example, operator_ex01, err = norm(b �
(A .x. x))/(norm(A)*norm(x) + norm(b)) is computed.

Both formulas for err yield values that are about epsilon(A). To be safe, the larger value
sqrt(epsilon(A)) is used as the tolerance.

The operator version of the examples are shorter and intended to be easier to read.

To match the corresponding examples in Chapters 1, 2, and 10 to those using the operators,
consult the following table:

Chapters 1, 2 and 3 Examples Corresponding Operators
Lin_sol_gen_ex1,_ex2,_ex3,_ex4 operator_ex01,_ex02,_ex03,_ex04

Lin_sol_self_ex1,_ex2,_ex3,_ex4 operator_ex05,_ex06,_ex07,_ex08

Lin_sol_lsq_ex1,_ex2,_ex3,_ex4 operator_ex09,_ex10,_ex11,_ex12

Lin_sol_svd_ex1,_ex2,_ex3,_ex4 operator_ex13,_ex14,_ex15,_ex16

Lin_sol_tri_ex1,_ex2,_ex3,_ex4 operator_ex17,_ex18,_ex19,_ex20

Lin_svd_ex1,_ex2,_ex3,_ex4 operator_ex21,_ex22,_ex23,_ex24

Lin_eig_self_ex1,_ex2,_ex3,_ex4 operator_ex25,_ex26,_ex27,_ex28

Lin_eig_gen_ex1,_ex2,_ex3,_ex4 operator_ex29,_ex30,_ex31,_ex32

Lin_geig_gen_ex1,_ex2,_ex3,_ex4 operator_ex33,_ex34,_ex35,_ex36

fast_dft_ex4 operator_ex37

Table A: Examples and Corresponding Operators

Operator_ex01

 use linear_operators
 implicit none

! This is Example 1 for LIN_SOL_GEN, with operators and functions.

 integer, parameter :: n=32
 real(kind(1e0)) :: one=1.0e0, err
 real(kind(1e0)), dimension(n,n) :: A, b, x

! Generate random matrices for A and b:
 A = rand(A); b=rand(b)

! Compute the solution matrix of Ax = b.
 x = A .ix. b

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1495

! Check the results.
 err = norm(b - (A .x. x))/(norm(A)*norm(x)+norm(b))
 if (err <= sqrt(epsilon(one))) &
 write (*,*) 'Example 1 for LIN_SOL_GEN (operators) is correct.'
 end

Operator_ex02

 use linear_operators
 implicit none

! This is Example 2 for LIN_SOL_GEN using operators and functions.

 integer, parameter :: n=32
 real(kind(1e0)) :: one=1e0, err, det_A, det_i
 real(kind(1e0)), dimension(n,n) :: A, inv

! Generate a random matrix.
 A = rand(A)
! Compute the matrix inverse and its determinant.
 inv = .i.A; det_A = det(A)
! Compute the determinant for the inverse matrix.
 det_i = det(inv)
! Check the quality of both left and right inverses.
 err = (norm(EYE(n)-(A .x. inv))+norm(EYE(n)-(inv.x.A)))/cond(A)
 if (err <= sqrt(epsilon(one)) .and. abs(det_A*det_i - one) <= &
 sqrt(epsilon(one))) &
 write (*,*) 'Example 2 for LIN_SOL_GEN (operators) is correct.'
 end

Operator_ex03

 use linear_operators
 implicit none

! This is Example 3 for LIN_SOL_GEN using operators.
 integer, parameter :: n=32
 real(kind(1e0)) :: one=1e0, zero=0e0, A(n,n), b(n), x(n)
 real(kind(1e0)) change_new, change_old
 real(kind(1d0)) :: d_zero=0d0, c(n), d(n,n), y(n)

! Generate a random matrix and right-hand side.
 A = rand(A); b= rand(b)

! Save double precision copies of the matrix and right-hand side.
 D = A
 c = b
! Compute single precision inverse to compute the iterative refinement.
 A = .i. A

! Start solution at zero. Update it to an accurate solution
! with each iteration.
 y = d_zero

1496 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

 change_old = huge(one)

 iterative_refinement: do
! Compute the residual with higher accuracy than the data.
 b = c - (D .x. y)

! Compute the update in single precision.
 x = A .x. b
 y = x + y
 change_new = norm(x)

! Exit when changes are no longer decreasing.
 if (change_new >= change_old) exit iterative_refinement
 change_old = change_new
 end do iterative_refinement

 write (*,*) 'Example 3 for LIN_SOL_GEN (operators) is correct.'
 end

Operator_ex04

 use linear_operators

 implicit none

! This is Example 4 for LIN_SOL_GEN using operators.

 integer, parameter :: n=32, k=128
 integer i
 real(kind(1e0)), parameter :: one=1e0, t_max=1, delta_t=t_max/(k-1)
 real(kind(1e0)) err, A(n,n)
 real(kind(1e0)) t(k), y(n,k), y_prime(n,k)
 complex(kind(1e0)) x(n,n), z_0(n), y_0(n), d(n)

! Generate a random coefficient matrix.
 A = rand(A)

! Compute the eigenvalue-eigenvector decomposition
! of the system coefficient matrix.
 D = EIG(A, W=X)

! Generate a random initial value for the ODE system.
 y_0 = rand(y_0)

! Solve complex data system that transforms the initial
! values, X z_0=y_0.
 z_0 = X .ix. y_0

! The grid of points where a solution is computed:
 t = (/(i*delta_t,i=0,k-1)/)

! Compute y and y' at the values t(1:k).
! With the eigenvalue-eigenvector decomposition AX = XD, this
! is an evaluation of EXP(A t)y_0 = y(t).
 y = X .x. exp(spread(d,2,k)*spread(t,1,n))*spread(z_0,2,k)

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1497

! This is y', derived by differentiating y(t).
 y_prime = X .x. spread(d,2,k)*exp(spread(d,2,k)*spread(t,1,n))* &
 spread(z_0,2,k)

! Check results. Is y' - Ay = 0?
 err = norm(y_prime-(A .x. y))/(norm(y_prime)+norm(A)*norm(y))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 4 for LIN_SOL_GEN (operators) is correct.'
 end if

 end

Operator_ex05

 use linear_operators
 implicit none

! This is Example 1 for LIN_SOL_SELF using operators and functions.
 integer, parameter :: m=64, n=32
 real(kind(1e0)) :: one=1.0e0, err
 real(kind(1e0)) A(n,n), b(n,n), C(m,n), d(m,n), x(n,n)

! Generate two rectangular random matrices.
 C = rand(C); d=rand(d)

! Form the normal equations for the rectangular system.
 A = C .tx. C; b = C .tx. d

! Compute the solution for Ax = b, A is symmetric.
 x = A .ix. b

! Check the results.
 err = norm(b - (A .x. x))/(norm(A)+norm(b))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for LIN_SOL_SELF (operators) is correct.'
 end if

 end

Operator_ex06

 use linear_operators

 implicit none

! This is Example 2 for LIN_SOL_SELF using operators and functions.

 integer, parameter :: m=64, n=32
 real(kind(1e0)) :: one=1e0, zero=0e0, err
 real(kind(1e0)) A(n,n), b(n), C(m,n), d(m), cov(n,n), x(n)

! Generate a random rectangular matrix and right-hand side.
 C = rand(C); d=rand(d)

1498 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

! Form the normal equations for the rectangular system.
 A = C .tx. C; b = C .tx. d
 COV = .i. CHOL(A); COV = COV .xt. COV

! Compute the least-squares solution.
 x = C .ix. d

! Compare with solution obtained using the inverse matrix.
 err = norm(x - (COV .x. b))/norm(cov)

! Scale the inverse to obtain the sample covariance matrix.
 COV = sum((d - (C .x. x))**2)/(m-n) * COV
! Check the results.
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 2 for LIN_SOL_SELF (operators) is correct.'
 end if

 end

Operator_ex07

 use linear_operators

 implicit none

! This is Example 3 (using operators) for LIN_SOL_SELF.

 integer tries
 integer, parameter :: m=8, n=4, k=2
 integer ipivots(n+1)
 real(kind(1d0)) :: one=1.0d0, err
 real(kind(1d0)) a(n,n), b(n,1), c(m,n), x(n,1), &
 e(n), ATEMP(n,n)
 type(d_options) :: iopti(4)

! Generate a random rectangular matrix.
 C = rand(C)

! Generate a random right hand side for use in the inverse
! iteration.
 b = rand(b)

! Compute the positive definite matrix.
 A = C .tx. C; A = (A+.t.A)/2

! Obtain just the eigenvalues.
 E = EIG(A)

! Use packaged option to reset the value of a small diagonal.
 iopti(4) = 0
 iopti(1) = d_options(d_lin_sol_self_set_small,&
 epsilon(one)*abs(E(1)))

! Use packaged option to save the factorization.

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1499

 iopti(2) = d_lin_sol_self_save_factors

! Suppress error messages and stopping due to singularity
! of the matrix, which is expected.
 iopti(3) = d_lin_sol_self_no_sing_mess

 ATEMP = A

! Compute A-eigenvalue*I as the coefficient matrix.
! Use eigenvalue number k.
 A = A - e(k)*EYE(n)

 do tries=1,2
 call lin_sol_self(A, b, x, &
 pivots=ipivots, iopt=iopti)
! When code is re-entered, the already computed factorization
! is used.
 iopti(4) = d_lin_sol_self_solve_A

! Reset right-hand side in the direction of the eigenvector.
 B = UNIT(x)
 end do

! Normalize the eigenvector.
 x = UNIT(x)

! Check the results.
 b=ATEMP .x. x
 err = dot_product(x(1:n,1), b(1:n,1)) - e(k)

! If any result is not accurate, quit with no printing.
 if (abs(err) <= sqrt(epsilon(one))*E(1)) then
 write (*,*) 'Example 3 for LIN_SOL_SELF (operators) is correct.'
 end if

 end

Operator_ex08

 use linear_operators
 implicit none

! This is Example 4 for LIN_SOL_SELF using operators and functions.

 integer, parameter :: m=8, n=4
 real(kind(1e0)) :: one=1e0, zero=0e0
 real(kind(1d0)) :: d_zero=0d0
 integer ipivots((n+m)+1)
 real(kind(1e0)) A(m,n), b(m,1), F(n+m,n+m),&
 g(n+m,1), h(n+m,1)
 real(kind(1e0)) change_new, change_old
 real(kind(1d0)) c(m,1), D(m,n), y(n+m,1)
 type(s_options) :: iopti(2)

! Generate a random matrix and right-hand side.

1500 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

 A = rand(A); b = rand(b)

! Save double precision copies of the matrix and right hand side.
 D = A; c = b

! Fill in augmented matrix for accurately solving the least-squares
! problem using iterative refinement.
 F = zero; F(1:m,1:m)=EYE(m)
 F(1:m,m+1:) = A; F(m+1:,1:m) = .t. A

! Start solution at zero.
 y = d_zero
 change_old = huge(one)

! Use packaged option to save the factorization.
 iopti(1) = s_lin_sol_self_save_factors
 iopti(2) = 0

 iterative_refinement: do
 g(1:m,1) = c(1:m,1) - y(1:m,1) - (D .x. y(m+1:m+n,1))
 g(m+1:m+n,1) = - D .tx. y(1:m,1)
 call lin_sol_self(F, g, h, &
 pivots=ipivots, iopt=iopti)
 y = h + y
 change_new = norm(h)

! Exit when changes are no longer decreasing.
 if (change_new >= change_old)&
 exit iterative_refinement
 change_old = change_new

! Use option to re-enter code with factorization saved; solve only.
 iopti(2) = s_lin_sol_self_solve_A
 end do iterative_refinement
 write (*,*) 'Example 4 for LIN_SOL_SELF (operators) is correct.'
 end

Operator_ex09

 use linear_operators
 use Numerical_Libraries
 implicit none

! This is Example 1 for LIN_SOL_LSQ using operators and functions.

 integer i
 integer, parameter :: m=128, n=8
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) A(m,0:n), c(0:n), pi_over_2, x(m), y(m), &
 u(m), v(m), w(m), delta_x
 CHARACTER(2) :: PI(1)

! Generate a random grid of points and transform
! to the interval -1,1.
 x = rand(x); x = x*2 - one

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1501

! Get the constant 'PI/2' from IMSL Numerical Libraries.
 PI='pi'; pi_over_2 = DCONST(PI)/2

! Generate function data on the grid.
 y = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.
 A(:,0) = one; A(:,1) = x

 do i=2, n
 A(:,i) = 2*x*A(:,i-1) - A(:,i-2)
 end do

! Solve for the series coefficients.
 c = A .ix. y

! Generate an equally spaced grid on the interval.
 delta_x = 2/real(m-1,kind(one))
 x = (/(-one + i*delta_x,i=0,m-1)/)

! Evaluate residuals using backward recurrence formulas.
 u = zero; v = zero
 do i=n, 0, -1
 w = 2*x*u - v + c(i)
 v = u
 u = w
 end do

! Compute residuals at the grid:
 y = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+1 sign changes in the residual curve occur.
! (This test will fail when n is larger.)
 x = one
 x = sign(x,y)

 if (count(x(1:m-1) /= x(2:m)) >= n+1) then
 write (*,*) 'Example 1 for LIN_SOL_LSQ (operators) is correct.'
 end if

 end

Operator_ex10

 use linear_operators
 implicit none

! This is Example 2 for LIN_SOL_LSQ using operators and functions.

 integer i
 integer, parameter :: m=128, n=8
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) A(m,0:n), c(0:n), pi_over_2, x(m), y(m), &

1502 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

 u(m), v(m), w(m), delta_x, inv(0:n, m)
 real(kind(1d0)), external :: DCONST

! Generate an array of equally spaced points on the interval -1,1.
 delta_x = 2/real(m-1,kind(one))
 x = (/(-one + i*delta_x,i=0,m-1)/)

! Get the constant 'PI/2' from IMSL Numerical Libraries.
 pi_over_2 = DCONST('PI')/2

! Compute data values on the grid.
 y = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.
 A(:,0) = one
 A(:,1) = x

 do i=2, n
 A(:,i) = 2*x*A(:,i-1) - A(:,i-2)
 end do

! Compute the generalized inverse of the least-squares matrix.
! Compute the series coefficients using the generalized inverse
! as 'smoothing formulas.'
 inv = .i. A; c = inv .x. y

! Evaluate residuals using backward recurrence formulas.

 u = zero
 v = zero
 do i=n, 0, -1
 w = 2*x*u - v + c(i)
 v = u
 u = w
 end do

! Compute residuals at the grid:
 y = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+2 sign changes in the residual curve occur.
! (This test will fail when n is larger.)

 x = one; x = sign(x,y)

 if (count(x(1:m-1) /= x(2:m)) == n+2) then
 write (*,*) 'Example 2 for LIN_SOL_LSQ (operators) is correct.'
 end if

 end

Operator_ex11

 use operation_ix
 use operation_tx
 use operation_x

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1503

 use rand_int
 use norm_int
 implicit none

! This is Example 3 for LIN_SOL_LSQ using operators and functions.
 integer i, j
 integer, parameter :: m=128, n=32, k=2, n_eval=16
 real(kind(1d0)), parameter :: one=1d0, delta_sqr=1d0
 real(kind(1d0)) A(m,n), b(m), c(n), p(k,m), q(k,n), &
 res(n_eval,n_eval), w(n_eval), delta

! Generate a random set of data and center points in k=2 space.
 p = rand(p); q=rand(q)

! Compute the coefficient matrix for the least-squares system.
 A = sqrt(sum((spread(p,3,n) - spread(q,2,m))**2,dim=1) + delta_sqr)

! Compute the right-hand side of function values.
 b = exp(-sum(p**2,dim=1))

! Compute the least-squares solution. An error message due
! to rank deficiency is ignored with the flags:

 allocate (d_invx_options(1))
 d_invx_options(1)=skip_error_processing
 c = A .ix. b

! Check the results.
 if (norm(A .tx. (b - (A .x. c)))/(norm(A)+norm(c)) &
 <= sqrt(epsilon(one))) then
 write (*,*) 'Example 3 for LIN_SOL_LSQ (operators) is correct.'
 end if

! Evaluate residuals, known function - approximation at a square
! grid of points. (This evaluation is only for k=2.)

 delta = one/real(n_eval-1,kind(one))
 w = (/(i*delta,i=0,n_eval-1)/)

 res = exp(-(spread(w,1,n_eval)**2 + spread(w,2,n_eval)**2))
 do j=1, n
 res = res - c(j)*sqrt((spread(w,1,n_eval) - q(1,j))**2 + &
 (spread(w,2,n_eval) - q(2,j))**2 + delta_sqr)
 end do
! Unload option type for good housekeeping.
 deallocate (d_invx_options)
 end

Operator_ex12

 use linear_operators
 implicit none

! This is Example 4 for LIN_SOL_LSQ using operators and functions.

1504 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

 integer, parameter :: m=64, n=32
 real(kind(1e0)) :: one=1e0, A(m+1,n), b(m+1), x(n)

! Generate a random matrix and right-hand side.
 A=rand(A); b = rand(b)

! Heavily weight desired constraint. All variables sum to one.
 A(m+1,:) = one/sqrt(epsilon(one))
 b(m+1) = one/sqrt(epsilon(one))

! Compute the least-squares solution with this heavy weight.
 x = A .ix. b

! Check the constraint.
 if (abs(sum(x) - one)/norm(x) <= sqrt(epsilon(one))) then
 write (*,*) 'Example 4 for LIN_SOL_LSQ (operators) is correct.'
 end if

 end

Operator_ex13

 use linear_operators
 implicit none

! This is Example 1 for LIN_SOL_SVD using operators and functions.
 integer, parameter :: m=128, n=32
 real(kind(1d0)) :: one=1d0, err
 real(kind(1d0)) A(m,n), b(m), x(n), U(m,m), V(n,n), S(n), g(m)

! Generate a random matrix and right-hand side.
 A = rand(A); b = rand(b)

! Compute the least-squares solution matrix of Ax=b.
 S = SVD(A, U = U, V = V)
 g = U .tx. b; x = V .x. diag(one/S) .x. g(1:n)

! Check the results.
 err = norm(A .tx. (b - (A .x. x)))/(norm(A)+norm(x))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for LIN_SOL_SVD (operators) is correct.'
 end if

 end

Operator_ex14

 use linear_operators
 implicit none

! This is Example 2 for LIN_SOL_SVD using operators and functions.
 integer, parameter :: n=32
 real(kind(1d0)) :: one=1d0, zero=0d0
 real(kind(1d0)) A(n,n), P(n,n), Q(n,n), &

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1505

 S_D(n), U_D(n,n), V_D(n,n)

! Generate a random matrix.
 A = rand(A)

! Compute the singular value decomposition.
 S_D = SVD(A, U=U_D, V=V_D)

! Compute the (left) orthogonal factor.
 P = U_D .xt. V_D

! Compute the (right) self-adjoint factor.
 Q = V_D .x. diag(S_D) .xt. V_D

! Check the results.
 if (norm(EYE(n) - (P .xt. P)) &
 <= sqrt(epsilon(one))) then
 if (norm(A - (P .x. Q))/norm(A) &
 <= sqrt(epsilon(one))) then
 write (*,*) 'Example 2 for LIN_SOL_SVD (operators) is correct.'
 end if
 end if
 end

Operator_ex15

 use linear_operators

 implicit none

! This is Example 3 for LIN_SOL_SVD.
 integer i, j, k
 integer, parameter :: n=32
 real(kind(1e0)), parameter :: half=0.5e0, one=1e0, zero=0e0
 real(kind(1e0)), dimension(n,n) :: A, S(n), U, V, C

! Fill in value one for points inside the circle,
! zero on the outside.
 A = zero
 DO i=1, n
 DO j=1, n
 if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) A(i,j) = one
 END DO
 END DO

! Compute the singular value decomposition.
 S = SVD(A, U=U, V=V)

! How many terms, to the nearest integer, match the circle?
 k = count(S > half)
 C = U(:,1:k) .x. diag(S(1:k)) .xt. V(:,1:k)

1506 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

if (count(int(C-A) /= 0) == 0) then
 write (*,*) 'Example 3 for LIN_SOL_SVD (operators) is correct.'
 end if

 end

Operator_ex16

 use linear_operators

 implicit none

! This is Example 4 (operators) for LIN_SOL_SVD.

 integer i, j, k
 integer, parameter :: m=64, n=16
 real(kind(1e0)), parameter :: one=1e0, zero=0e0
 real(kind(1e0)) :: g(m), s(m), t(n+1), a(m,n), f(n), U_S(m,m), &
 V_S(n,n), S_S(n)
 real(kind(1e0)) :: delta_g, delta_t, rms, oldrms

! Compute collocation equations to solve.
 delta_g = one/real(m+1,kind(one))
 g = (/(i*delta_g,i=1,m)/)

! Compute equally spaced quadrature points.
 delta_t =one/real(n,kind(one))
 t=(/((j-1)*delta_t,j=1,n+1)/)

! Compute collocation points with an array form of
! Newton's method.
 s=m
 SOLVE_EQUATIONS: do
 s=s-(exp(-s)-(one-s*g))/(g-exp(-s))
 if (sum(abs((one-exp(-s))/s - g)) <= &
 epsilon(one)*sum(g))exit SOLVE_EQUATIONS
 end do SOLVE_EQUATIONS

! Evaluate the integrals over the quadrature points.
 A = (exp(-spread(t(1:n),1,m) *spread(s,2,n)) &
 - exp(-spread(t(2:n+1),1,m)*spread(s,2,n))) / &
 spread(s,2,n)

! Compute the singular value decomposition.
 S_S = SVD(A, U=U_S, V=V_S)

! Singular values, larger than epsilon, determine
! the rank, k.
 k = count(S_S > epsilon(one))

! Compute U_S**T times right-hand side, g.
 g = U_S .tx. g

! Use the minimum number of singular values that give a good
! approximation to f(t) = 1.

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1507

 oldrms = huge(one)
 do i=1,k
 f = V_S(:,1:i) .x. (g(1:i)/S_S(1:i))
 rms = sum((f-one)**2)/n
 if (rms > oldrms) exit
 oldrms = rms
 end do

 write (*,"(' Using this number of singular values, ', &
 &i4 / ' the approximate R.M.S. error is ', 1pe12.4)") &
 i-1, oldrms

 if (sqrt(oldrms) <= delta_t**2) then
 write (*,*) 'Example 4 for LIN_SOL_SVD (operators) is correct.'
 end if

 end

Operator_ex17

 use linear_operators
 use lin_sol_tri_int

 implicit none
! This is Example 1 (using operators) for LIN_SOL_TRI.
integer, parameter :: n=128
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) err
 real(kind(1d0)), dimension(2*n,n) :: d, b, c, x, y, t(n)
 type(d_error) :: d_lin_sol_tri_epack(08) = d_error(0,zero)

! Generate the upper, main, and lower diagonals of the
! n matrices A_i. For each system a random vector x is used
! to construct the right-hand side, Ax = y. The lower part
! of each array remains zero as a result.

 c = zero; d=zero; b=zero; x=zero
 c(1:n,:)=rand(c(1:n,:)); d(1:n,:)=rand(d(1:n,:))
 b(1:n,:)=rand(b(1:n,:)); x(1:n,:)=rand(x(1:n,:))

! Add scalars to the main diagonal of each system so that
! all systems are positive definite.
 t = sum(c+d+b,DIM=1)
 d(1:n,1:n) = d(1:n,1:n) + spread(t,DIM=1,NCOPIES=n)

! Set Ax = y. The vector x generates y. Note the use
! of EOSHIFT and array operations to compute the matrix
! product, n distinct copies, as one array operation.

 y(1:n,1:n)=d(1:n,1:n)*x(1:n,1:n) + &
 c(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=+1,DIM=1) + &
 b(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=-1,DIM=1)

! Compute the solution returned in y. (The input values of c,
! d, b, and y are overwritten by lin_sol_tri.) Check for any

1508 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

! errors. This is not recessary but illustrates control
! returning to the calling program unit.
 call lin_sol_tri (c, d, b, y, &
 epack=d_lin_sol_tri_epack)
 call error_post(d_lin_sol_tri_epack)

! Check the size of the residuals, y-x. They should be small,
! relative to the size of values in x.

 err = norm(x(1:n,1:n) - y(1:n,1:n),1)/norm(x(1:n,1:n),1)
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for LIN_SOL_TRI (operators) is correct.'
 end if

 end

Operator_ex18

 use linear_operators
 use lin_sol_tri_int

 implicit none

! This is Example 2 (using operators) for LIN_SOL_TRI.
 integer nopt
 integer, parameter :: n=128
 real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0
 real(kind(1d0)), parameter :: d_one=1d0, d_zero=0d0
 real(kind(1e0)), dimension(2*n,n) :: d, b, c, x, y
 real(kind(1e0)) change_new, change_old, err
 type(s_options) :: iopt(2) = s_options(0,s_zero)
 real(kind(1d0)), dimension(n,n) :: d_save, b_save, c_save, &
 x_save, y_save, x_sol
 logical solve_only

 c = s_zero; d=s_zero; b=s_zero; x=s_zero

! Generate the upper, main, and lower diagonals of the
! matrices A. A random vector x is used to construct the
! right-hand sides: y=A*x.
 c(1:n,:)=rand(c(1:n,:)); d(1:n,:)=rand(d(1:n,:))
 d(1:n,:)=rand(c(1:n,:)); x(1:n,:)=rand(d(1:n,:))

! Save double precision copies of the diagonals and the
! right-hand side.
 c_save = c(1:n,1:n); d_save = d(1:n,1:n)
 b_save = b(1:n,1:n); x_save = x(1:n,1:n)
 y_save(1:n,1:n) = d(1:n,1:n)*x_save + &
 c(1:n,1:n)*EOSHIFT(x_save,SHIFT=+1,DIM=1) + &
 b(1:n,1:n)*EOSHIFT(x_save,SHIFT=-1,DIM=1)

! Iterative refinement loop.
 factorization_choice: do nopt=0, 1

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1509

! Set the logical to flag the first time through.

 solve_only = .false.
 x_sol = d_zero
 change_old = huge(s_one)

 iterative_refinement: do

! This flag causes a copy of data to be moved to work arrays
! and a factorization and solve step to be performed.
 if (.not. solve_only) then
 c(1:n,1:n)=c_save; d(1:n,1:n)=d_save
 b(1:n,1:n)=b_save
 end if

! Compute current residuals, y - A*x, using current x.
 y(1:n,1:n) = -y_save + &
 d_save*x_sol + &
 c_save*EOSHIFT(x_sol,SHIFT=+1,DIM=1) + &
 b_save*EOSHIFT(x_sol,SHIFT=-1,DIM=1)

 call lin_sol_tri (c, d, b, y, iopt=iopt)

 x_sol = x_sol + y(1:n,1:n)

 change_new = sum(abs(y(1:n,1:n)))

! If size of change is not decreasing, stop the iteration.
 if (change_new >= change_old) exit iterative_refinement

 change_old = change_new
 iopt(nopt+1) = s_lin_sol_tri_solve_only
 solve_only = .true.

 end do iterative_refinement

! Use Gaussian Elimination if Cyclic Reduction did not get an
! accurate solution.
! It is an exceptional event when Gaussian Elimination is required.
 if (norm(x_sol - x_save,1) / norm(x_save,1) &
 <= sqrt(epsilon(d_one))) exit factorization_choice

 iopt(nopt+1) = s_lin_sol_tri_use_Gauss_elim

 end do factorization_choice

! Check on accuracy of solution.

 err = norm(x(1:n,1:n)- x_save,1)/norm(x_save,1)
 if (err <= sqrt(epsilon(d_one))) then
 write (*,*) 'Example 2 for LIN_SOL_TRI (operators) is correct.'
 end if

 end

1510 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

Operator_ex19

 use linear_operators
 use lin_sol_tri_int
 use rand_int
 use Numerical_Libraries

 implicit none

! This is Example 3 (using operators) for LIN_SOL_TRI.

 integer i, nopt
 integer, parameter :: n=128, k=n/4, ncoda=1, lda=2
 real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0
 real(kind(1e0)) A(lda,n), EVAL(k)
 type(s_options) :: iopt(2)
 real(kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &
 b_t(2*n,k), y_t(2*n,k), eval_t(k), res(n,k)
 logical small

! This flag is used to get the k largest eigenvalues.
 small = .false.

! Generate the main diagonal and the co-diagonal of the
! tridiagonal matrix.
 b=rand(b); d=rand(d)
 A(1,1:)=b; A(2,1:)=d

! Use Numerical Libraries routine for the calculation of k
! largest eigenvalues.
 CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)
 EVAL_T = EVAL

! Use Fortran Librarytridiagonal solver for inverse iteration
! calculation of eigenvectors.
 factorization_choice: do nopt=0,1

! Create k tridiagonal problems, one for each inverse
! iteration system.
 b_t(1:n,1:k) = spread(b,DIM=2,NCOPIES=k)
 c_t(1:n,1:k) = EOSHIFT(b_t(1:n,1:k),SHIFT=1,DIM=1)
 d_t(1:n,1:k) = spread(d,DIM=2,NCOPIES=k) - &
 spread(EVAL_T,DIM=1,NCOPIES=n)

! Start the right-hand side at random values, scaled downward
! to account for the expected 'blowup' in the solution.
 y_t=rand(y_t)

! Do two iterations for the eigenvectors.
 do i=1, 2
 y_t(1:n,1:k) = y_t(1:n,1:k)*epsilon(s_one)
 call lin_sol_tri(c_t, d_t, b_t, y_t, &
 iopt=iopt)
 iopt(nopt+1) = s_lin_sol_tri_solve_only
 end do

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1511

! Orthogonalize the eigenvectors. (This is the most
! intensive part of the computing.)
 y_t(1:n,1:k) = ORTH(y_t(1:n,1:k))

! See if the performance ratio is smaller than the value one.
! If it is not the code will re-solve the systems using Gaussian
! Elimination. This is an exceptional event. It is a necessary
! complication for achieving reliable results.

 res(1:n,1:k) = spread(d,DIM=2,NCOPIES=k)*y_t(1:n,1:k) + &
 spread(b,DIM=2,NCOPIES=k)* &
 EOSHIFT(y_t(1:n,1:k),SHIFT=-1,DIM=1) + &
 EOSHIFT(spread(b,DIM=2,NCOPIES=k)*y_t(1:n,1:k),SHIFT=1) &
 - y_t(1:n,1:k)*spread(EVAL_T(1:k),DIM=1,NCOPIES=n)

! If the factorization method is Cyclic Reduction and perf_ratio is
! larger than one, re-solve using Gaussian Elimination. If the
! method is already Gaussian Elimination, the loop exits
! and perf_ratio is checked at the end.
 perf_ratio = norm(res(1:n,1:k),1) / &
 norm(EVAL_T(1:k),1) / &
 epsilon(s_one) / (5*n)
 if (perf_ratio <= s_one) exit factorization_choice
 iopt(nopt+1) = s_lin_sol_tri_use_Gauss_elim

 end do factorization_choice

 if (perf_ratio <= s_one) then
 write (*,*) 'Example 3 for LIN_SOL_TRI (operators) is correct.'
 end if

 end

Operator_ex20

 use lin_sol_tri_int
 use Numerical_Libraries

 implicit none

! This is Example 4 (using operators) for LIN_SOL_TRI.

 integer, parameter :: n=1000, ichap=5, iget=1, iput=2, &
 inum=6, irnum=7
 real(kind(1e0)), parameter :: zero=0e0, one = 1e0
 integer i, ido, in(50), inr(20), iopt(6), ival(7), &
 iwk(35+n)
 real(kind(1e0)) hx, pi_value, t, u_0, u_1, atol, rtol, sval(2), &
 tend, wk(41+11*n), y(n), ypr(n), a_diag(n), &
 a_off(n), r_diag(n), r_off(n), t_y(n), t_ypr(n), &
 t_g(n), t_diag(2*n,1), t_upper(2*n,1), &
 t_lower(2*n,1), t_sol(2*n,1)
 type(s_options) :: iopti(1)=s_options(0,zero)

1512 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

! Define initial data.
 t = 0e0; u_0 = one
 u_1 = 0.5; tend = one

! Initial values for the variational equation.
 y = -one; ypr= zero
 pi_value = const((/'pi'/))
 hx = pi_value/(n+1)

 a_diag = 2*hx/3
 a_off = hx/6
 r_diag = -2/hx
 r_off = 1/hx

! Get integer and floating point option numbers.
 iopt(1) = inum
 call iumag ('math', ichap, iget, 1, iopt, in)
 iopt(1) = irnum
 call iumag ('math', ichap, iget, 1, iopt, inr)

! Set for reverse communication evaluation of the DAE.
 iopt(1) = in(26)
 ival(1) = 0
! Set for use of explicit partial derivatives.
 iopt(2) = in(5)
 ival(2) = 1
! Set for reverse communication evaluation of partials.
 iopt(3) = in(29)
 ival(3) = 0
! Set for reverse communication solution of linear equations.
 iopt(4) = in(31)
 ival(4) = 0
! Storage for the partial derivative array are not allocated or
! required in the integrator.
 iopt(5) = in(34)
 ival(5) = 1
! Set the sizes of iwk, wk for internal checking.
 iopt(6) = in(35)
 ival(6) = 35 + n
 ival(7) = 41 + 11*n
! Set integer options:
 call iumag ('math', ichap, iput, 6, iopt, ival)
! Reset tolerances for integrator:
 atol = 1e-3; rtol= 1e-3
 sval(1) = atol; sval(2) = rtol
 iopt(1) = inr(5)
! Set floating point options:
 call sumag ('math', ichap, iput, 1, iopt, sval)
! Integrate ODE/DAE. Use dummy external names for g(y,y')
! and partials: DGSPG, DJSPG.
 ido = 1
 Integration_Loop: do

 call d2spg (n, t, tend, ido, y, ypr, dgspg, djspg, iwk, wk)

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1513

! Find where g(y,y') goes. (It only goes in one place here, but can
! vary where divided differences are used for partial derivatives.)
 iopt(1) = in(27)
 call iumag ('math', ichap, iget, 1, iopt, ival)
! Direct user response:
 select case(ido)

 case(1,4)
! This should not occur.
 write (*,*) ' Unexpected return with ido = ', ido
 stop

 case(3)
! Reset options to defaults. (This is good housekeeping but not
! required for this problem.)
 in = -in
 call iumag ('math', ichap, iput, 50, in, ival)
 inr = -inr
 call sumag ('math', ichap, iput, 20, inr, sval)
 exit Integration_Loop
 case(5)
! Evaluate partials of g(y,y').
 t_y = y; t_ypr = ypr

 t_g = r_diag*t_y + r_off*EOSHIFT(t_y,SHIFT=+1) &
 + EOSHIFT(r_off*t_y,SHIFT=-1) &
 - (a_diag*t_ypr + a_off*EOSHIFT(t_ypr,SHIFT=+1) &
 + EOSHIFT(a_off*t_ypr,SHIFT=-1))
! Move data from assumed size to assumed shape arrays.
 do i=1, n
 wk(ival(1)+i-1) = t_g(i)
 end do
 cycle Integration_Loop

 case(6)
! Evaluate partials of g(y,y').
! Get value of c_j for partials.
 iopt(1) = inr(9)
 call sumag ('math', ichap, iget, 1, iopt, sval)

! Subtract c_j from diagonals to compute (partials for y')*c_j.
! The linear system is tridiagonal.
 t_diag(1:n,1) = r_diag - sval(1)*a_diag
 t_upper(1:n,1) = r_off - sval(1)*a_off
 t_lower = EOSHIFT(t_upper,SHIFT=+1,DIM=1)

 cycle Integration_Loop

 case(7)
! Compute the factorization.
 iopti(1) = s_lin_sol_tri_factor_only
 call lin_sol_tri (t_upper, t_diag, t_lower, &
 t_sol, iopt=iopti)
 cycle Integration_Loop

1514 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

 case(8)
! Solve the system.
 iopti(1) = s_lin_sol_tri_solve_only
! Move data from the assumed size to assumed shape arrays.
 t_sol(1:n,1)=wk(ival(1):ival(1)+n-1)

 call lin_sol_tri (t_upper, t_diag, t_lower, &
 t_sol, iopt=iopti)

! Move data from the assumed shape to assumed size arrays.
 wk(ival(1):ival(1)+n-1)=t_sol(1:n,1)

 cycle Integration_Loop

 case(2)
! Correct initial value to reach u_1 at t=tend.
 u_0 = u_0 - (u_0*y(n/2) - (u_1-u_0)) / (y(n/2) + 1)

! Finish up internally in the integrator.
 ido = 3
 cycle Integration_Loop
 end select
 end do Integration_Loop

 write (*,*) 'The equation u_t = u_xx, with u(0,t) = ', u_0
 write (*,*) 'reaches the value ',u_1, ' at time = ', tend, '.'
 write (*,*) 'Example 4 for LIN_SOL_TRI (operators) is correct.'

 end

Operator_ex21

 use linear_operators

 implicit none

! This is Example 1 (using operators) for LIN_SVD.

 integer, parameter :: n=32
 real(kind(1d0)), parameter :: one=1d0
 real(kind(1d0)) err
 real(kind(1d0)), dimension(n,n) :: A, U, V, S(n)

! Generate a random n by n matrix.
 A = rand(A)

! Compute the singular value decomposition.
 S=SVD(A, U=U, V=V)

! Check for small residuals of the expression A*V - U*S.
 err = norm((A .x. V) - (U .x. diag(S)))/norm(S)
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for LIN_SVD (operators) is correct.'

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1515

 end if

 end

Operator_ex22

 use linear_operators

 implicit none

! This is Example 2 (using operators) for LIN_SVD.

 integer, parameter :: m=64, n=32, k=4
 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
 real(kind(1d0)) a(m,n), s(n), u(m,m), v(n,n), &
 b(m,k), x(n,k), g(m,k), alpha(k), lamda(k), &
 delta_lamda(k), t_g(n,k), s_sq(n), phi(n,k), &
 phi_dot(n,k), move(k), err

! Generate a random matrix for both A and B.
 A=rand(A); b=rand(b)

! Compute the singular value decomposition.
 S = SVD(A, U=u, V=v)

! Choose alpha so that the lengths of the regularized solutions
! are 0.25 times lengths of the non-regularized solutions.

 g = u .tx. b; x = v .x. diag(one/S) .x. g(1:n,:)
 alpha = 0.25*sqrt(sum(x**2,DIM=1))
 t_g = diag(S) .x. g(1:n,:); s_sq = s**2; lamda = zero

 solve_for_lamda: do
 x = one/(spread(s_sq,DIM=2,NCOPIES=k)+ &
 spread(lamda,DIM=1,NCOPIES=n))

 phi = (t_g*x)**2; phi_dot = -2*phi*x
 delta_lamda = (sum(phi,DIM=1)-alpha**2)/sum(phi_dot,DIM=1)

! Make Newton method correction to solve the secular equations for
! lamda.
 lamda = lamda - delta_lamda

! Test for convergence and quit when it happens.
 if (norm(delta_lamda) <= &
 sqrt(epsilon(one))*norm(lamda)) EXIT solve_for_lamda

! Correct any bad moves to a positive restart.
 move = rand(move); where (lamda < 0) lamda = s(1) * move

 end do solve_for_lamda

! Compute solutions and check lengths.
 x = v .x. (t_g/(spread(s_sq, DIM=2,NCOPIES=k)+ &
 spread(lamda,DIM=1,NCOPIES=n)))

1516 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

 err = norm(sum(x**2,DIM=1) - alpha**2)/norm(alpha)**2
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 2 for LIN_SVD (operators) is correct.'
 end if

 end

Operator_ex23

 use linear_operators

 implicit none

! This is Example 3 (using operators) for LIN_SVD.

 integer, parameter :: n=32
 integer i
 real(kind(1d0)), parameter :: one=1d0
 real(kind(1d0)), dimension(n,n) :: d(2*n,n), x, u_d(2*n,2*n), &
 v_d, v_c, u_c, v_s, u_s, &
 s_d(n), c(n), s(n), sc_c(n), sc_s(n)
 real(kind(1d0)) err1, err2

! Generate random square matrices for both A and B.
! Construct D; A is on the top; B is on the bottom.
 D = rand(D)! D(1:n,:) = A; D(n+1:,:) = B

! Compute the singular value decompositions used for the GSVD.
 S_D= SVD(D,U=u_d,V=v_d)
 C = SVD(u_d(1:n, 1:n), u=u_c,v=v_c)
 S = SVD(u_d(n+1:,1:n), u=u_s,v=v_s)

! Rearrange c(:) so it is non-increasing. Move singular
! vectors accordingly. (The use of temporary objects sc_c and
! x is required.)
 sc_c = c(n:1:-1); c = sc_c
 x = u_c(1:n,n:1:-1); u_c = x; x = v_c(1:n,n:1:-1); v_c = x

! The columns of v_c and v_s have the same span. They are
! equivalent by taking the signs of the largest magnitude values
! positive.
 do i=1, n
 sc_c(i) = sign(one,v_c(sum(maxloc(abs(v_c(1:n,i)))),i))
 sc_s(i) = sign(one,v_s(sum(maxloc(abs(v_s(1:n,i)))),i))
 end do

 v_c = v_c .x. diag(sc_c); u_c = u_c .x. diag(sc_c)
 v_s = v_s .x. diag(sc_s); u_s = u_s .x. diag(sc_s)

! In this form of the GSVD, the matrix X can be unstable if D
! is ill-conditioned.
 X = v_d .x. diag(one/s_d) .x. v_c

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1517

! Check residuals for GSVD, A*X = u_c*diag(c_1, ..., c_n), and
! B*X = u_s*diag(s_1, ..., s_n).

 err1 = norm((D(1:n, :) .x. X) - (u_c .x. diag(C)))/s_d(1)
 err2 = norm((D(n+1:,:) .x. X) - (u_s .x. diag(S)))/s_d(1)

 if (err1 <= sqrt(epsilon(one)) .and. &
 err2 <= sqrt(epsilon(one))) then
 write (*,*) 'Example 3 for LIN_SVD (operators) is correct.'
 end if

 end

Operator_ex24

 use linear_operators

 implicit none

! This is Example 4 (using operators) for LIN_SVD.

 integer i
 integer, parameter :: m=32, n=16, p=10, k=4
 real(kind(1d0)), parameter :: one=1d0
 real(kind(1d0)) log_lamda, log_lamda_t, delta_log_lamda
 real(kind(1d0)) a(m,n), b(m,k), w(m,k), g(m,k), t(n), s(n), &
 s_sq(n), u(m,m), v(n,n), c_lamda(p,k), &
 lamda(k), x(n,k), res(n,k)

! Generate random rectangular matrices for A and right-hand
! sides, b. Generate random weights for each of the
! right-hand sides.
 A=rand(A); b=rand(b); w=rand(w)

! Compute the singular value decomposition.
 S = SVD(A, U=U, V=V)
 g = U .tx. b; s_sq = s**2

 log_lamda = log(10.*s(1)); log_lamda_t=log_lamda
 delta_log_lamda = (log_lamda - log(0.1*s(n))) / (p-1)

! Choose lamda to minimize the "cross-validation" weighted
! square error. First evaluate the error at a grid of points,
! uniform in log_scale.

 cross_validation_error: do i=1, p
 t = s_sq/(s_sq+exp(log_lamda))
 c_lamda(i,:) = sum(w*((b-(U(1:m,1:n) .x. g(1:n,1:k)* &
 spread(t,DIM=2,NCOPIES=k)))/ &
 (one-(u(1:m,1:n)**2 .x. spread(t,DIM=2,NCOPIES=k))))**2,DIM=1)
 log_lamda = log_lamda - delta_log_lamda
 end do cross_validation_error

! Compute the grid value and lamda corresponding to the minimum.
 do i=1, k

1518 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

 lamda(i) = exp(log_lamda_t - delta_log_lamda* &
 (sum(minloc(c_lamda(1:p,i)))-1))
 end do

! Compute the solution using the optimum "cross-validation"
! parameters.
 x = V .x. g(1:n,1:k)*spread(s,DIM=2,NCOPIES=k)/ &
 (spread(s_sq,DIM=2,NCOPIES=k)+ &
 spread(lamda,DIM=1,NCOPIES=n))
! Check the residuals, using normal equations.
 res = (A .tx. (b - (A .x. x))) - &
 spread(lamda,DIM=1,NCOPIES=n)*x
 if (norm(res)/s_sq(1) <= sqrt(epsilon(one))) then
 write (*,*) 'Example 4 for LIN_SVD (operators) is correct.'
 end if

 end

Operator_ex25

 use linear_operators

 implicit none

! This is Example 1 (using operators) for LIN_EIG_SELF.

 integer, parameter :: n=64
 real(kind(1e0)), parameter :: one=1e0
 real(kind(1e0)) :: A(n,n), D(n), S(n)

! Generate a random matrix and from it
! a self-adjoint matrix.
 A = rand(A); A = A + .t.A

! Compute the eigenvalues of the matrix.
 D = EIG(A)

! For comparison, compute the singular values and check for
! any error messages for either decomposition.
 S = SVD(A)

! Check the results: Magnitude of eigenvalues should equal
! the singular values.

 if (norm(abs(D) - S) <= sqrt(epsilon(one))*S(1)) then
 write (*,*) 'Example 1 for LIN_EIG_SELF (operators) is correct.'
 end if

 end

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1519

Operator_ex26

 use linear_operators

 implicit none

! This is Example 2 (using operators) for LIN_EIG_SELF.

 integer, parameter :: n=8
 real(kind(1e0)), parameter :: one=1e0
 real(kind(1e0)), dimension(n,n) :: A, d(n), v_s

! Generate a random self-adjoint matrix.
 A = rand(A); A = A + .t.A

! Compute the eigenvalues and eigenvectors.
 D = EIG(A,V=v_s)

! Check the results for small residuals.
 if (norm((A .x. v_s) - (v_s .x. diag(D)))/abs(d(1)) <= &
 sqrt(epsilon(one))) then
 write (*,*) 'Example 2 for LIN_EIG_SELF (operators) is correct.'
 end if

 end

Operator_ex27

 use linear_operators

 implicit none

! This is Example 3 (using operators) for LIN_EIG_SELF.

 integer i
 integer, parameter :: n=64, k=08
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) err
 real(kind(1d0)), dimension(n,n) :: A, D(n),&
 res(n,k), v(n,k)

! Generate a random self-adjoint matrix.
 A = rand(A); A = A + .t.A

! Compute just the eigenvalues.
 D = EIG(A); V = rand(V)

! Ready options to skip error processing and reset
! tolerance for linear solver.
 allocate (d_invx_options(5))

 do i=1, k

! Use packaged option to reset the value of a small diagonal.

1520 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

 d_invx_options(1) = skip_error_processing
 d_invx_options(2) = ix_options_for_lin_sol_gen
 d_invx_options(3) = 2
 d_invx_options(4) = d_options&
 (d_lin_sol_gen_set_small, epsilon(one)*abs(d(i)))
 d_invx_options(5) = d_lin_sol_gen_no_sing_mess

! Compute the eigenvectors with inverse iteration.
 V(1:,i)= (A - EYE(n)*d(i)).ix. V(1:,i)
 end do
 deallocate (d_invx_options)

! Orthogonalize the eigenvectors.
 V = ORTH(V)

! Check the results for both orthogonality of vectors and small
! residuals.

 res(1:k,1:k) = (V .tx. V) - EYE(k)
 err = norm(res(1:k,1:k)); res= (A .x. V) - (V .x. diag(D(1:k)))
 if (err <= sqrt(epsilon(one)) .and. &
 norm(res)/abs(d(1)) <= sqrt(epsilon(one))) then
 write (*,*) 'Example 3 for LIN_EIG_SELF (operators) is correct.'
 end if
 end

Operator_ex28

 use linear_operators

 implicit none

! This is Example 4 (using operators) for LIN_EIG_SELF.

 integer, parameter :: n=64
 real(kind(1e0)), parameter :: one=1d0
 real(kind(1e0)), dimension(n,n) :: A, B, C, D(n), lambda(n), &
 S(n), vb_d, X, res

! Generate random self-adjoint matrices.
 A = rand(A); A = A + .t.A
 B = rand(B); B = B + .t.B

! Add a scalar matrix so B is positive definite.
 B = B + norm(B)*EYE(n)

! Get the eigenvalues and eigenvectors for B.
 S = EIG(B,V=vb_d)

! For full rank problems, convert to an ordinary self-adjoint
! problem. (All of these examples are full rank.)
 if (S(n) > epsilon(one)) then
 D = one/sqrt(S)
 C = diag(D) .x. (vb_d .tx. A .x. vb_d) .x. diag(D)
 C = (C + .t.C)/2

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1521

! Get the eigenvalues and eigenvectors for C.
 lambda = EIG(C,v=X)

! Compute and normalize the generalized eigenvectors.
 X = UNIT(vb_d .x. diag(D) .x. X)
 res = (A .x. X) - (B .x. X .x. diag(lambda))

! Check the results.
 if(norm(res)/(norm(A)+norm(B)) <= &
 sqrt(epsilon(one))) then
 write (*,*) 'Example 4 for LIN_EIG_SELF (operators) is correct.'
 end if

 end if

 end

Operator_ex29

 use linear_operators

 implicit none

! This is Example 1 (using operators) for LIN_EIG_GEN.

 integer, parameter :: n=32
 real(kind(1d0)), parameter :: one=1d0
 real(kind(1d0)) err
 real(kind(1d0)), dimension(n,n) :: A
 complex(kind(1d0)), dimension(n) :: E, E_T, V(n,n)

! Generate a random matrix.
 A = rand(A)

! Compute only the eigenvalues.
 E = EIG(A)

! Compute the decomposition, A*V = V*values,
! obtaining eigenvectors.
 E_T = EIG(A, W = V)

! Use values from the first decomposition, vectors from the
! second decomposition, and check for small residuals.
 err = norm((A .x. V) - (V .x. diag(E)))/&
 (norm(A)+norm(E))

 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for LIN_EIG_GEN (operators) is correct.'
 end if

 end

1522 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

Operator_ex30

 use linear_operators

 implicit none

! This is Example 2 (using operators) for LIN_EIG_GEN.

 integer i
 integer, parameter :: n=12
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 complex(kind(1d0)), dimension(n) :: a(n,n), b, e, f, fg

 b = rand(b)

! Define the companion matrix with polynomial coefficients
! in the first row.
 A = zero; A = EOSHIFT(EYE(n),SHIFT=1,DIM=2); a(1,1:) = - b

! Compute complex eigenvalues of the companion matrix.
 E = EIG(A)

! Use Horner's method for evaluation of the complex polynomial
! and size gauge at all roots.
 f=one; fg=one
 do i=1, n
 f = f*E + b(i)
 fg = fg*abs(E) + abs(b(i))
 end do

! Check for small errors at all roots.
 if (norm(f/fg) <= sqrt(epsilon(one))) then
 write (*,*) 'Example 2 for LIN_EIG_GEN (operators) is correct.'
 end if

 end

Operator_ex31

 use linear_operators

 implicit none

! This is Example 3 (using operators) for LIN_EIG_GEN.

 integer, parameter :: n=32, k=2
 real(kind(1e0)), parameter :: one=1e0, zero=0e0
 real(kind(1e0)) a(n,n), b(n,k), x(n,k), h
 complex(kind(1e0)),dimension(n,n) :: W, T, e(n), z(n,k)
 type(s_options) :: iopti(2)

 A = rand(A); b=rand(b)

 iopti(1) = s_lin_eig_gen_out_tri_form

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1523

 iopti(2) = s_lin_eig_gen_no_balance

! Compute the Schur decomposition of the matrix.
 call lin_eig_gen(a, e, v=w, &
 tri=t,iopt=iopti)

! Choose a value so that A+h*I is non-singular.
 h = one

! Solve for (A+h*I)x=b using the Schur decomposition.
 z = W .hx. b

! Solve intermediate upper-triangular system with implicit
! additive diagonal, h*I. This is the only dependence on
! h in the solution process.
 z = (T + h*EYE(n)) .ix. z

! Compute the solution. It should be the same as x, but will not be
! exact due to rounding errors. (The quantity real(z,kind(one)) is
! the real-valued answer when the Schur decomposition method is used.)
 z = W .x. z

! Compute the solution by solving for x directly.
 x = (A + EYE(n)*h) .ix. b

! Check that x and z agree approximately.
 if (norm(x-z)/norm(z) <= sqrt(epsilon(one))) then
 write (*,*) 'Example 3 for LIN_EIG_GEN (operators) is correct.'
 end if

 end

Operator_ex32

 use linear_operators

 implicit none
! This is Example 4 (using operators) for LIN_EIG_GEN.

 integer, parameter :: n=17
 real(kind(1d0)), parameter :: one=1d0
 real(kind(1d0)), dimension(n,n) :: A, C
 real(kind(1d0)) variation(n), eta
 complex(kind(1d0)), dimension(n,n) :: U, V, e(n), d(n)

! Generate a random matrix.
 A = rand(A)

! Compute the eigenvalues, left- and right- eigenvectors.
 D = EIG(A, W=V); E = EIG(.t.A, W=U)

! Compute condition numbers and variations of eigenvalues.
 variation = norm(A)/abs(diagonals(U .hx. V))

! Now perturb the data in the matrix by the relative factors
! eta=sqrt(epsilon) and solve for values again. Check the

1524 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

! differences compared to the estimates. They should not exceed
! the bounds.
 eta = sqrt(epsilon(one))
 C = A + eta*(2*rand(A)-1)*A
 D = EIG(C)

! Looking at the differences of absolute values accounts for
! switching signs on the imaginary parts.
 if (count(abs(d)-abs(e) > eta*variation) == 0) then
 write (*,*) 'Example 4 for LIN_EIG_GEN (operators) is correct.'
 end if

 end

Operator_ex33

 use linear_operators

 implicit none

! This is Example 1 (using operators) for LIN_GEIG_GEN.

 integer, parameter :: n=32
 real(kind(1d0)), parameter :: one=1d0
 real(kind(1d0)) A(n,n), B(n,n), bta(n), beta_t(n), err
 complex(kind(1d0)) alpha(n), alpha_t(n), V(n,n)

! Generate random matrices for both A and B.
 A = rand(A); B = rand(B)

! Compute the generalized eigenvalues.
 alpha = EIG(A, B=B, D=bta)

! Compute the full decomposition once again, A*V = B*V*values,
! and check for any error messages.
 alpha_t = EIG(A, B=B, D=beta_t, W = V)

! Use values from the first decomposition, vectors from the
! second decomposition, and check for small residuals.
 err = norm((A .x. V .x. diag(bta)) - (B .x. V .x. diag(alpha)),1)/&
 (norm(A,1)*norm(bta,1) + norm(B,1)*norm(alpha,1))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for LIN_GEIG_GEN (operators) is correct.'
 end if

 end

Operator_ex34

 use linear_operators

 implicit none

! This is Example 2 (using operators) for LIN_GEIG_GEN.

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1525

 integer, parameter :: n=32
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) err, alpha(n)
 complex(kind(1d0)), dimension(n,n) :: A, B, C, D, V

! Generate random matrices for both A and B.
 C = rand(C); D = rand(D)
 A = C + .h.C; B = D .hx. D; B = (B + .h.B)/2

 ALPHA = EIG(A, B=B, W=V)

! Check that residuals are small. Use a real array for alpha
! since the eigenvalues are known to be real.
 err= norm((A .x. V) - (B .x. V .x. diag(alpha)),1)/&
 (norm(A,1)+norm(B,1)*norm(alpha,1))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 2 for LIN_GEIG_GEN (operators) is correct.'
 end if

 end

Operator_ex35

 use rand_int
 use eig_int
 use isnan_int
 use norm_int
 use lin_sol_lsq_int

 implicit none

! This is Example 3 (using operators) for LIN_GEIG_GEN.

 integer, parameter :: n=6
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)), dimension(n,n) :: A, B, d_beta(n)
 complex(kind(1d0)) alpha(n)

! Generate random matrices for both A and B.
 A = rand(A); B = rand(B)

! Make columns of A and B zero, so both are singular.
 A(1:n,n) = 0; B(1:n,n) = 0

! Set the option, a larger tolerance than default for lin_sol_lsq.
! Skip showing any error messages.
 allocate(d_eig_options(6))
 d_eig_options(1) = skip_error_processing
 d_eig_options(2) = options_for_lin_geig_gen
 d_eig_options(3) = 3
 d_eig_options(4) = d_lin_geig_gen_for_lin_sol_lsq
 d_eig_options(5) = 1
 d_eig_options(6) = d_options(d_lin_sol_lsq_set_small,&

1526 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

 sqrt(epsilon(one))*norm(B,1))

! Compute the generalized eigenvalues.
 ALPHA = EIG(A, B=B, D=d_beta)

! See if singular DAE system is detected.
 if (isNaN(ALPHA)) then
 write (*,*) 'Example 3 for LIN_GEIG_GEN (operators) is correct.'
 end if
! Clean up allocated option arrays for good housekeeping.
 deallocate(d_eig_options)
 end

Operator_ex36

 use linear_operators

 implicit none

! This is Example 4 for LIN_GEIG_GEN (using operators).

 integer, parameter :: n=32
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) a(n,n), b(n,n), bta(n), err
 complex(kind(1d0)) alpha(n), v(n,n)

! Generate random matrices for both A and B.
 A = rand(A); B = rand(B)

! Set the option, a larger tolerance than default for lin_sol_lsq.
 allocate(d_eig_options(6))
 d_eig_options(1) = options_for_lin_geig_gen
 d_eig_options(2) = 4
 d_eig_options(3) = d_lin_geig_gen_for_lin_sol_lsq
 d_eig_options(4) = 2
 d_eig_options(5) = d_options(d_lin_sol_lsq_set_small,&
 sqrt(epsilon(one))*norm(B,1))
 d_eig_options(6) = d_lin_sol_lsq_no_sing_mess

! Compute the generalized eigenvalues.
 alpha = EIG(A, B=B, D=bta, W=V)

! Check the residuals.
 err = norm((A .x. V .x. diag(bta)) - (B .x. V .x. diag(alpha)),1)/&
 (norm(A,1)*norm(bta,1)+norm(B,1)*norm(alpha,1))

 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 4 for LIN_GEIG_GEN (operators) is correct.'
 end if
! Clean up the allocated array. This is good housekeeping.
 deallocate(d_eig_options)
 end

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1527

Operator_ex37

 use rand_gen_int
 use fft_int
 use ifft_int
 use linear_operators

 implicit none

! This is Example 4 for FAST_DFT (using operators).

 integer j
 integer, parameter :: n=40
 real(kind(1e0)) :: err, one=1e0
 real(kind(1e0)), dimension(n) :: a, b, c, yy(n,n)
 complex(kind(1e0)), dimension(n) :: f

! Generate two random periodic sequences 'a' and 'b'.
 a=rand(a); b=rand(b)

! Compute the convolution 'c' of 'a' and 'b'.
 yy(1:,1)=b
 do j=2,n
 yy(2:,j)=yy(1:n-1,j-1)
 yy(1,j)=yy(n,j-1)
 end do

 c=yy .x. a

! Compute f=inverse(transform(a)*transform(b)).
 f=ifft(fft(a)*fft(b))

! Check the Convolution Theorem:
! inverse(transform(a)*transform(b)) = convolution(a,b).
 err = norm(c-f)/norm(c)
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 4 for FAST_DFT (operators) is correct.'
 end if

 end

1528 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

Parallel Examples

MPI REQUIRED

This section presents a variation of key examples listed above or in other parts
of the document. In all cases the examples appear to be simple, use parallel
computing, deliver results to the root, and have been tested for correctness by
validating small residuals or other first principles. Program names are
parallel_exnn, where nn=01,02,... The numerical digit part of the
name matches the example number.

Parallel Examples 1-2 comments
These show the box data type used for solving several systems and then
checking the results using matrix products and norms or other mathematical
relationships. Note the first call to the function MP_SETUP() that initiates
MPI. The call to the function MP_SETUP('Final') shuts down MPI and
retrieves any error messages from the nodes. It is only here that error messages
will print, in reverse node order, at the root node. Note that the results are
checked for correctness at the root node. (This is common to all the parallel
examples.)

Parallel Example 1
 use linear_operators
 use mpi_setup_int

 implicit none

! This is Parallel Example 1 for .ix., with box data types
! and functions.

 integer, parameter :: n=32, nr=4
 real(kind(1e0)) :: one=1e0
 real(kind(1e0)), dimension(n,n,nr) :: A, b, x, err(nr)

! Setup for MPI.
 MP_NPROCS=MP_SETUP()

! Generate random matrices for A and b:
 A = rand(A); b=rand(b)

! Compute the box solution matrix of Ax = b.
 x = A .ix. b

! Check the results.
 err = norm(b - (A .x. x))/(norm(A)*norm(x)+norm(b))
 if (ALL(err <= sqrt(epsilon(one))) .and. MP_RANK == 0) &
 write (*,*) 'Parallel Example 1 is correct.'

! See to any error messages and quit MPI.
 MP_NPROCS=MP_SETUP('Final')

 end

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1529

Parallel Example 2
 use linear_operators
 use mpi_setup_int

 implicit none

! This is Parallel Example 2 for .i. and det() with box
! data types, operators and functions.

 integer, parameter :: n=32, nr=4
 integer J
 real(kind(1e0)) :: one=1e0
 real(kind(1e0)), dimension(nr) :: err, det_A, det_i
 real(kind(1e0)), dimension(n,n,nr) :: A, inv, R, S

! Setup for MPI.
 MP_NPROCS=MP_SETUP()
! Generate a random matrix.
 A = rand(A)
! Compute the matrix inverse and its determinant.
 inv = .i.A; det_A = det(A)
! Compute the determinant for the inverse matrix.
 det_i = det(inv)
! Check the quality of both left and right inverses.
 DO J=1,nr; R(:,:,J)=EYE(N); END DO

 S=R; R=R-(A .x. inv); S=S-(inv .x. A)
 err = (norm(R)+norm(S))/cond(A)
 if (ALL(err <= sqrt(epsilon(one)) .and. &
 abs(det_A*det_i - one) <= sqrt(epsilon(one)))&
 .and. MP_RANK == 0) &
 write (*,*) 'Parallel Example 2 is correct.'

! See to any error messages and quit MPI.
 MP_NPROCS=MP_SETUP('Final')

 end

 Parallel Example 3
This example shows the box data type used while obtaining an accurate
solution of several systems. Important in this example is the fact that only the
root will achieve convergence, which controls program flow out of the loop.
Therefore the nodes must share the root’s view of convergence, and that is the
reason for the broadcast of the update from root to the nodes. Note that when
writing an explicit call to an MPI routine there must be the line INCLUDE
‘mpif.h’, placed just after the IMPLICIT NONE statement. Any number of
nodes can be used.

 use linear_operators
 use mpi_setup_int

1530 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

 implicit none
 INCLUDE 'mpif.h'

! This is Parallel Example 3 for .i. and iterative
! refinement with box date types, operators and functions.
 integer, parameter :: n=32, nr=4
 integer IERROR
 real(kind(1e0)) :: one=1e0, zero=0e0
 real(kind(1e0)) :: A(n,n,nr), b(n,1,nr), x(n,1,nr)
 real(kind(1e0)) change_old(nr), change_new(nr)
 real(kind(1d0)) :: d_zero=0d0, c(n,1,nr), D(n,n,nr), y(n,1,nr)

! Setup for MPI.
 MP_NPROCS=MP_SETUP()

! Generate a random matrix and right-hand side.
 A = rand(A); b= rand(b)

! Save double precision copies of the matrix and right-hand side.
 D = A
 c = b

! Get single precision inverse to compute the iterative refinement.
 A = .i. A

! Start solution at zero. Update it to a more accurate solution
! with each iteration.
 y = d_zero
 change_old = huge(one)

 ITERATIVE_REFINEMENT: DO

! Compute the residual with higher accuracy than the data.
 b = c - (D .x. y)

! Compute the update in single precision.
 x = A .x. b
 y = x + y
 change_new = norm(x)

! All processors must share the root's test of convergence.
 CALL MPI_BCAST(change_new, nr, MPI_REAL, 0, &
 MP_LIBRARY_WORLD, IERROR)

! Exit when changes are no longer decreasing.
 if (ALL(change_new >= change_old)) exit iterative_refinement
 change_old = change_new
 end DO ITERATIVE_REFINEMENT

 IF(MP_RANK == 0) write (*,*) 'Parallel Example 3 is correct.'

! See to any error messages and quit MPI.
 MP_NPROCS=MP_SETUP('Final')
 end

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1531

 Parallel Example 4
Here an alternate node is used to compute the majority of a single application,
and the user does not need to make any explicit calls to MPI routines. The
time-consuming parts are the evaluation of the eigenvalue-eigenvector
expansion, the solving step, and the residuals. To do this, the rank-2 arrays are
changed to a box data type with a unit third dimension. This uses parallel
computing. The node priority order is established by the initial function call,
MP_SETUP(n). The root is restricted from working on the box data type by
assigning MPI_ROOT_WORKS=.false. This example anticipates that the
most efficient node, other than the root, will perform the heavy computing.
Two nodes are required to execute.

 use linear_operators
 use mpi_setup_int

 implicit none

! This is Parallel Example 4 for matrix exponential.
! The box dimension has a single rack.
 integer, parameter :: n=32, k=128, nr=1
 integer i
 real(kind(1e0)), parameter :: one=1e0, t_max=one, delta_t=t_max/(k-1)
 real(kind(1e0)) err(nr), sizes(nr), A(n,n,nr)
 real(kind(1e0)) t(k), y(n,k,nr), y_prime(n,k,nr)
 complex(kind(1e0)), dimension(n,nr) :: x(n,n,nr), z_0, &
 Z_1(n,nr,nr), y_0, d

! Setup for MPI. Establish a node priority order.
! Restrict the root from significant computing.
! Illustrates using the 'best' performing node that
! is not the root for a single task.
 MP_NPROCS=MP_SETUP(n)

 MPI_ROOT_WORKS=.false.

! Generate a random coefficient matrix.
 A = rand(A)

! Compute the eigenvalue-eigenvector decomposition
! of the system coefficient matrix on an alternate node.
 D = EIG(A, W=X)

! Generate a random initial value for the ODE system.
 y_0 = rand(y_0)

! Solve complex data system that transforms the initial
! values, X z_0=y_0.

 z_1= X .ix. y_0 ; z_0(:,nr) = z_1(:,nr,nr)

! The grid of points where a solution is computed:
 t = (/(i*delta_t,i=0,k-1)/)

1532 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

! Compute y and y' at the values t(1:k).
! With the eigenvalue-eigenvector decomposition AX = XD, this
! is an evaluation of EXP(A t)y_0 = y(t).
 y = X .x.exp(spread(d(:,nr),2,k)*spread(t,1,n))*spread(z_0(:,nr),2,k)

! This is y', derived by differentiating y(t).
 y_prime = X .x. &
spread(d(:,nr),2,k)*exp(spread(d(:,nr),2,k)*spread(t,1,n))* &
 spread(z_0(:,nr),2,k)

! Check results. Is y' - Ay = 0?
 err = norm(y_prime-(A .x. y))
 sizes=norm(y_prime)+norm(A)*norm(y)
 if (ALL(err <= sqrt(epsilon(one))*sizes) .and. MP_RANK == 0) &
 write (*,*) 'Parallel Example 4 is correct.'

! See to any error messages and quit MPI.
 MP_NPROCS=MP_SETUP('Final')

 end

 Parallel Example 5-6 comments
The computations performed in these examples are for linear least-squares
solutions. There is use of the box data type and MPI. Otherwise these are
similar to Parallel Examples 1-2 except they use alternate operators and
functions. Any number of nodes can be used.

Parallel Example 5

 use linear_operators
 use mpi_setup_int

 implicit none

! This is Parallel Example 5 using box data types, operators
! and functions.

 integer, parameter :: m=64, n=32, nr=4
 real(kind(1e0)) :: one=1e0, err(nr)
 real(kind(1e0)), dimension(n,n,nr) :: A, b, x
 real(kind(1e0)), dimension(m,n,nr) :: C, d

! Setup for MPI.
 mp_nprocs = mp_setup()

! Generate two rectangular random matrices, only

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1533

! at the root node.
 if (mp_rank == 0) then
 C = rand(C); d=rand(d)
 endif

! Form the normal equations for the rectangular system.
 A = C .tx. C; b = C .tx. d

! Compute the solution for Ax = b.
 x = A .ix. b

! Check the results.
 err = norm(b - (A .x. x))/(norm(A)+norm(b))
 if (ALL(err <= sqrt(epsilon(one))) .AND. MP_RANK == 0) &
 write (*,*) 'Parallel Example 5 is correct.'

! See to any error messages and quit MPI.
 mp_nprocs = mp_setup('Final')

 end

Parallel Example 6

 use linear_operators
 use mpi_setup_int

 implicit none

! This is Parallel Example 6 for box data types, operators and
! functions.

 integer, parameter :: m=64, n=32, nr=4
 real(kind(1e0)) :: one=1e0, zero=0e0, err(nr)
 real(kind(1e0)), dimension(m,n,nr) :: C, d(m,1,nr)
 real(kind(1e0)), dimension(n,n,nr) :: A, cov
 real(kind(1e0)), dimension(n,1,nr) :: b, x

! Setup for MPI:
 mp_nprocs=mp_setup()

! Generate a random rectangular matrix and right-hand side.
 if(mp_rank == 0) then
 C = rand(C); d=rand(d)
 endif

! Form the normal equations for the rectangular system.
 A = C .tx. C; b = C .tx. d
 COV = .i. CHOL(A); COV = COV .xt. COV

! Compute the least-squares solution.
 x = C .ix. d

! Compare with solution obtained using the inverse matrix.
 err = norm(x - (COV .x. b))/norm(cov)

1534 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

! Check the results.
 if (ALL(err <= sqrt(epsilon(one))) .and. mp_rank == 0) &
 write (*,*) 'Parallel Example 6 is correct.'

! See to any eror messages and quit MPI
 mp_nprocs=mp_setup('Final')

 end

 Parallel Example 7
In this example alternate nodes are used for computing with the EIG()
function. Inverse iteration is used to obtain eigenvectors for the second most
dominant eigenvalue for each rack of the box. The factorization and solving
steps for the eigenvectors are executed only at the root node.

 use linear_operators
 use mpi_setup_int

 implicit none

! This is Parallel Example 7 for box data types, operators
! and functions.

 integer tries, nrack
 integer, parameter :: m=8, n=4, k=2, nr=4
 integer ipivots(n+1)
 real(kind(1d0)) :: one=1D0, err(nr), E(n,nr)
 real(kind(1d0)), dimension(m,n,nr) :: C
 real(kind(1d0)), dimension(n,n,nr) :: A, ATEMP
 real(kind(1d0)), dimension(n,1,nr) :: b, x
 type(d_options) :: iopti(4)
 logical, dimension(nr) :: results_are_true

! Setup for MPI:
 mp_nprocs = mp_setup()

! Generate a random rectangular matrix.
 if (mp_rank == 0) C = rand(C)

! Generate a random right hand side for use in the
! inverse iteration.
 if (mp_rank == 0) b = rand(b)

! Compute a positive definite matrix.
 A = C .tx. C; A = (A + .t.A)/2

! Obtain just the eigenvalues.
 E = EIG(A)

 ATEMP = A

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1535

! Compute A-eigenvalue*I as the coefficient matrix.
! Use eigenvalue number k.

 do nrack = 1,nr
 IF(MP_RANK > 0) EXIT
! Use packaged option to reset the value of a small diagonal.

 iopti(1) = d_options(d_lin_sol_self_set_small,&
 epsilon(one)*abs(E(1,nrack)))

! Use packaged option to save the factorization.
 iopti(2) = d_lin_sol_self_save_factors

! Suppress error messages and stopping due to singularity
! of the matrix, which is expected.
 iopti(3) = d_lin_sol_self_no_sing_mess
 iopti(4) = 0
 A(:,:,nrack) = A(:,:,nrack) - E(k,nrack)*EYE(n)

 do tries=1,2
 call lin_sol_self(A(:,:,nrack), &
 b(:,:,nrack), x(:,:,nrack), &
 pivots=ipivots, iopt=iopti)
! When code is re-entered, the already computed factorization
! is used.
 iopti(4) = d_lin_sol_self_solve_A

! Reset right-hand side in the direction of the eigenvector.
 B(:,:,nrack) = UNIT(x(:,:,nrack))
 end do

 end do

! Normalize the eigenvector.

 IF(MP_RANK == 0) x = UNIT(x)

! Check the results.
 b = ATEMP .x. x

 do nrack = 1,nr
 err(nrack) = &
 dot_product(x(1:n,1,nrack), b(1:n,1,nrack)) - E(k,nrack)
 results_are_true(nrack) = &
 (abs(err(nrack)) <= sqrt(epsilon(one))*E(1,nrack))
 enddo

! Check the results.
 if (ALL(results_are_true) .and. MP_RANK == 0) &
 write (*,*) 'Parallel Example 7 is correct.'

1536 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

! See to any error messages and quit MPI.
 mp_nprocs = mp_setup('Final')
 end

 Parallel Example 8
This example, similar to Parallel Example 3, shows the box data type used
while obtaining an accurate solution of several linear least-squares systems.
Computation of the residuals for the box data type is executed in parallel. Only
the root node performs the factorization and update step during iterative
refinement.

 use linear_operators
 use mpi_setup_int

 implicit none

 INCLUDE 'mpif.h'

! This is Parallel Example 8. All nodes share in
! just part of the work.

 integer, parameter :: m=8, n=4 , nr=4
 real(kind(1e0)) :: one=1e0, zero=0e0
 real(kind(1d0)) :: d_zero=0d0
 integer ipivots((n+m)+1), ierror, nrack
 real(kind(1e0)) A(m,n,nr), b(m,1,nr), F(n+m,n+m,nr),&
 g(n+m,1,nr), h(n+m,1,nr)
 real(kind(1e0)) change_new(nr), change_old(nr)
 real(kind(1d0)) c(m,1,nr), D(m,n,nr), y(n+m,1,nr)
 type(s_options) :: iopti(2)

! Setup for MPI:
 mp_nprocs=mp_setup()

! Generate a random matrix and right-hand side.
 if(mp_rank == 0) then
 A = rand(A); b = rand(b)
 endif

! Save double precision copies of the matrix and right hand side.
 D = A; c = b

! Fill in augmented matrix for accurately solving the least-squares
! problem using iterative refinement.
 F = zero
 do nrack = 1,nr
 F(1:m,1:m,nrack)=EYE(m)
 enddo
 F(1:m,m+1:,:) = A; F(m+1:,1:m,:) = .t. A

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1537

! Start solution at zero.
 y = d_zero
 change_old = huge(one)

! Use packaged option to save the factorization.
 iopti(1) = s_lin_sol_self_save_factors
 iopti(2) = 0
 h = zero

 ITERATIVE_REFINEMENT: DO
 g(1:m,:,:) = c(1:m,:,:) - y(1:m,:,:) &
 - (D .x. y(m+1:m+n,:,:))
 g(m+1:m+n,:,:) = - D .tx. y(1:m,:,:)
 if(mp_rank == 0) then
 do nrack = 1,nr
 call lin_sol_self(F(:,:,nrack), &
 g(:,:,nrack), h(:,:,nrack), pivots=ipivots, iopt=iopti)
 enddo
 y = h + y
 endif

 change_new = norm(h)

! All processors share the root's test for convergence
 call mpi_bcast(change_new, nr, MPI_REAL,0, MP_LIBRARY_WORLD,
IERROR)

! Exit when changes are no longer decreasing.
 if (ALL(change_new >= change_old))&
 exit iterative_refinement
 change_old = change_new

! Use option to re-enter code with factorization saved; solve only.
 iopti(2) = s_lin_sol_self_solve_A
 end do iterative_refinement

 if(mp_rank == 0)&
 write (*,*) 'Parallel Example 8 is correct.'

! See to any error message and quit MPI.
 mp_nprocs=mp_setup('Final')

 end

 Parallel Example 9
This is a variation of Parallel Example 8. A single problem is converted to a
box data type with one rack. The use of the function call MP_SETUP(M+N)
allocates and defines the array MPI_NODE_PRIORITY(:), the node priority
order. By setting MPI_ROOT_WORKS=.false., the computation of the
residual is off-loaded to the node with highest priority, wherein we expect the

1538 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

results to be computed the fastest. The remainder of the computation,
including the factorization and solve step, are executed at the root node. This
example requires two nodes to execute.

Use linear_operators
 use mpi_setup_int
 implicit none

 INCLUDE 'mpif.h'

! This is Parallel Example 9, showing iterative
! refinement with only one non-root node working.
! There is only one problem in this example.
 integer, parameter :: m=8, n=4, nr=1
 real(kind(1e0)) :: one=1e0, zero=0e0
 real(kind(1d0)) :: d_zero=0d0
 integer ipivots((n+m)+1), nrack, ierror
 real(kind(1e0)) A(m,n,nr), b(m,1,nr), F(n+m,n+m,nr),&
 g(n+m,1,nr), h(n+m,1,nr)
 real(kind(1e0)) change_new(nr), change_old(nr)
 real(kind(1d0)) c(m,1,nr), D(m,n,nr), y(n+m,1,nr)
 type(s_options) :: iopti(2)
!
! Setup for MPI. Establish a node priority order.
! Restrict the root from significant computing.
! Illustrates the "best" performing non-root node
! computing a single task.
 mp_nprocs=mp_setup(m+n)

 MPI_ROOT_WORKS = .false.

! Generate a random matrix and right-hand side.
 A = rand(A); b = rand(b)

! Save double precision copies of the matrix and right hand side.
 D = A; c = b

! Fill in augmented matrix for accurately solving the least-squares
! problem using iterative refinement.
 F = zero;

 do nrack = 1,nr; F(1:m,1:m,nrack)=EYE(m); end do

 F(1:m,m+1:,:) = A; F(m+1:,1:m,:) = .t. A

! Start solution at zero.
 y = d_zero
 change_old = huge(one)

! Use packaged option to save the factorization.
 iopti(1) = s_lin_sol_self_save_factors
 iopti(2) = 0

 h = zero
 ITERATIVE_REFINEMENT: DO

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1539

 g(1:m,:,:) = c(1:m,:,:) - y(1:m,:,:) - (D .x. y(m+1:m+n,:,:))
 g(m+1:m+n,:,:) = - D .tx. y(1:m,:,:)
 IF (MP_RANK == 0) THEN

 call lin_sol_self(F(:,:,nr), g(:,:,nr), &
 h(:,:,nr), pivots=ipivots, iopt=iopti)

 y = h + y
 END IF

 change_new = norm(h)
!
! All processors share the root's test for convergence
 call mpi_bcast(change_new, nr, mpi_real, 0, mp_library_world,
ierror)

! Exit when changes are no longer decreasing.
 if (ALL(change_new >= change_old))&
 exit ITERATIVE_REFINEMENT
 change_old = change_new

! Use option to re-enter code with factorization saved; solve only.
 iopti(2) = s_lin_sol_self_solve_A
 end do ITERATIVE_REFINEMENT

 if(mp_rank == 0) &
 write (*,*) 'Parallel Example 9 is correct.'
! See to any error messages and quit MPI.
 mp_nprocs = mp_setup('Final')
 end

 Parallel Example 10
This illustrates the computation of a box data type least-squares
polynomial data fitting problem. The problem is generated at
the root node. The alternate nodes are used to solve the least-
squares problems. Results are checked at the root node. Any
number of nodes can be used.

 use linear_operators
 use mpi_setup_int
 use Numerical_Libraries, only : DCONST
 implicit none

! This is Parallel Example 10 for .ix..
 integer i, nrack
 integer, parameter :: m=128, n=8, nr=4
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) A(m,0:n,nr), c(0:n,1,nr), pi_over_2, &
 x(m,1,nr), y(m,1,nr), u(m,1,nr), v(m,1,nr), &
 w(m,1,nr), delta_x

! Setup for MPI:
 mp_nprocs = mp_setup()

! Generate a random grid of points and transform

1540 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

! to the interval (-1,1).
 if(mp_rank == 0) x = rand(x)
 x = x*2 - one

! Get the constant 'PI'/2 from IMSL Numerical Libraries.
 pi_over_2 = DCONST((/'PI'/))/2

! Generate function data on the grid.
 y = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.
 A(:,0,:) = one; A(:,1,:) = x(:,1,:)

 do i=2, n
 A(:,i,:) = 2*x(:,1,:)*A(:,i-1,:) - A(:,i-2,:)
 end do

! Solve for the series coefficients.
 c = A .ix. y

! Generate an equally spaced grid on the interval.
 delta_x = 2/real(m-1,kind(one))
 do nrack = 1,nr
 x(:,1,nrack) = (/(-one + i*delta_x,i=0,m-1)/)
 enddo

! Evaluate residuals using backward recurrence formulas.
 u = zero; v = zero
 do nrack =1,nr
 do i=n, 0, -1
 w(:,:,nrack) = 2*x(:,:,nrack)*u(:,:,nrack) - &
 v(:,:,nrack) + c(i,1,nrack)
 v(:,:,nrack) = u(:,:,nrack)
 u(:,:,nrack) = w(:,:,nrack)
 end do
 enddo

! Compute residuals at the grid:
 y = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+1 sign changes in the residual curve occur.
 x = one
 x = sign(x,y)

 if (count(x(1:m-1,1,:) /= x(2:m,1,:)) >= n+1) then
 if(mp_rank == 0)&
 write (*,*) 'Parallel Example 10 is correct.'
 end if

! See to any error messages and exit MPI.
 MP_NPROCS = MP_SETUP('Final')
 end

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1541

 Parallel Example 11
In this example a single problem is elevated by using the box data type with one
rack. The function call MP_SETUP(M) may take longer to compute than the
computation of the generalized inverse, which follows. Other methods for
determining the node priority order, perhaps based on specific knowledge of the
network environment, may be better suited for this application. This example
requires two nodes to execute.

 use linear_operators
 use mpi_setup_int
 use Numerical_Libraries, only : DCONST
 implicit none

! This is Parallel Example 11 using a priority order with
! only the fastest alternate node working.

 integer i
 integer, parameter :: m=128, n=8, nr=1
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) A(m,0:n,nr), c(0:n,1,nr), pi_over_2, x(m), &
 y(m,1,nr), u(m), v(m), w(m), delta_x, inv(0:n, m, nr)

! Setup for MPI. Create a priority order list. Force the
! problem to work on the fastest non-root machine.
 mp_nprocs = mp_setup(m)
 MPI_ROOT_WORKS = .false.

! Generate an array of equally spaced points on the interval (-1,1).
 delta_x = 2/real(m-1,kind(one))
 x = (/(-one + i*delta_x,i=0,m-1)/)

! Get the constant 'PI'/2 from IMSL Numerical Libraries.
 pi_over_2 = DCONST((/'PI'/))/2

! Compute data values on the grid.
 y(:,1,1) = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.
 A(:,0,1) = one
 A(:,1,1) = x

 do i=2, n
 A(:,i,1) = 2*x*A(:,i-1,1) - A(:,i-2,1)
 end do

! Compute the generalized inverse of the least-squares matrix.
! Compute the series coefficients using the generalized inverse
! as 'smoothing formulas.'
 inv = .i. A; c = inv .x. y
! Evaluate residuals using backward recurrence formulas.

 u = zero
 v = zero
 do i=n, 0, -1
 w = 2*x*u - v + c(i,1,1)
 v = u
 u = w
 end do

1542 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

! Compute residuals at the grid:
 y(:,1,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+2 sign changes in the residual curve occur.
 x = one; x = sign(x,y(:,1,1))

 if (count(x(1:m-1) /= x(2:m)) == n+2) then
 if(mp_rank == 0)&
 write (*,*) 'Parallel Example 11 is correct.'
 end if

! See to any error messages and exit MPI
 mp_nprocs = mp_setup('Final')
 end

 Parallel Example 12
This illustrates a surface fitting problem using radial basis functions and a box data
type. It is of interest because this problem fits three component functions of the
same form in a space of dimension two. The racks of the box represent the
separate problems for the three coordinate functions. The coefficients are obtained
with the .ix. operator. When the least-squares fitting process requires more
elaborate software, it may be necessary to send the data to the nodes, compute, and
send the results back to the root. See Parallel Example 18 for more details. Any
number of nodes can be used.

 use linear_operators
 use mpi_setup_int
 implicit none

! This is Parallel Example 12 for
! .ix. , NORM, .tx. and .x. operators.
 integer i, j, nrack
 integer, parameter :: m=128, n=32, k=2, n_eval=16, nr=3
 real(kind(1d0)), parameter :: one=1d0, delta_sqr=1d0
 real(kind(1d0)) A(m,n,nr), b(m,1,nr), c(n,1,nr), p(k,m,nr), q(k,n,nr)

! Setup for MPI:
 mp_nprocs = mp_setup()

! Generate a random set of data and center points in k=2 space.
 if(mp_rank == 0) then
 p = rand(p); q=rand(q)

! Compute the coefficient matrix for the least-squares system.
 do nrack=1,nr
 A(:,:,nrack) = sqrt(sum((spread(p(:,:,nrack),3,n) - &
 spread(q(:,:,nrack),2,m))**2,dim=1) + delta_sqr)

! Compute the right-hand side of function values.
 b(:,1,nrack) = exp(-sum(p(:,:,nrack)**2,dim=1))
 enddo

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1543

 endif

! Compute the least-squares solution. An error message due
! to rank deficiency is ignored with the flags:

 allocate (d_invx_options(1))
 d_invx_options(1)=skip_error_processing
 c = A .ix. b

! Check the results.
 if (ALL(norm(A .tx. (b - (A .x. c)))/(norm(A)+norm(c)) &
 <= sqrt(epsilon(one)))) then
 if(mp_rank == 0) &
 write (*,*) 'Parallel Example 12 is correct.'
 end if

! Unload option type for good housekeeping.
 deallocate (d_invx_options)

! See to any error messages and quit MPI.

 mp_nprocs = mp_setup('Final')

 end

 Parallel Example 13
Here least-squares problems are solved, each with an equality constraint that
the variables sum to the value one. A box data type is used and the solution
obtained with the .ix. operator. Any number of nodes can be used.

 use linear_operators
 use mpi_setup_int
 implicit none

! This is Parallel Example 13 for .ix. and NORM

 integer, parameter :: m=64, n=32, nr=4
 real(kind(1e0)) :: one=1e0, A(m+1,n,nr), b(m+1,1,nr), x(n,1,nr)

! Setup for MPI:
 mp_nprocs=mp_setup()

 if(mp_rank == 0) then
! Generate a random matrix and right-hand side.
 A=rand(A); b = rand(b)

! Heavily weight desired constraint. All variables sum to one.
 A(m+1,:,:) = one/sqrt(epsilon(one))
 b(m+1,:,:) = one/sqrt(epsilon(one))

 endif

1544 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

! Compute the least-squares solution with this heavy weight.
 x = A .ix. b

! Check the constraint.
 if (ALL(abs(sum(x(:,1,:),dim=1) - one)/norm(x) &
 <= sqrt(epsilon(one)))) then
 if(mp_rank == 0) &
 write (*,*) 'Parallel Example 13 is correct.'
 endif

! See to any error messages and exit MPI
 mp_nprocs=mp_setup('Final')

 end

 Parallel Example 14
Systems of least-squares problems are solved, but now using the SVD()
function. A box data type is used. This is an example which uses optional
arguments and a generic function overloaded for parallel execution of a box
data type. Any number of nodes can be used.

 use linear_operators
 use mpi_setup_int
 implicit none

! This is Parallel Example 14
! for SVD, .tx. , .x. and NORM.
 integer, parameter :: m=128, n=32, nr=4
 real(kind(1d0)) :: one=1d0, err(nr)
 real(kind(1d0)) A(m,n,nr), b(m,1,nr), x(n,1,nr), U(m,m,nr), &
 V(n,n,nr), S(n,nr), g(m,1,nr)

! Setup for MPI:
 mp_nprocs=mp_setup()

 if(mp_rank == 0) then
! Generate a random matrix and right-hand side.
 A = rand(A); b = rand(b)
 endif

! Compute the least-squares solution matrix of Ax=b.
 S = SVD(A, U = U, V = V)
 g = U .tx. b
 x = V .x. (diag(one/S) .x. g(1:n,:,:))

! Check the results.
 err = norm(A .tx. (b - (A .x. x)))/(norm(A)+norm(x))
 if (ALL(err <= sqrt(epsilon(one)))) then
 if(mp_rank == 0) &
 write (*,*) 'Parallel Example 14 is correct.'
 end if

! See to any error messages and quit MPI

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1545

 mp_nprocs = mp_setup('Final')

 end

 Parallel Example 15
A “Polar Decomposition” of several matrices are computed. The box data type
and the SVD() function are used. Orthogonality and small residuals are
checked to verify that the results are correct.

 use linear_operators
 use mpi_setup_int
 implicit none

! This is Parallel Example 15 using operators and
! functions for a polar decomposition.
 integer, parameter :: n=33, nr=3
 real(kind(1d0)) :: one=1d0, zero=0d0
 real(kind(1d0)),dimension(n,n,nr) :: A, P, Q, &
 S_D(n,nr), U_D, V_D
 real(kind(1d0)) TEMP1(nr), TEMP2(nr)

! Setup for MPI:
 mp_nprocs = mp_setup()

! Generate a random matrix.
 if(mp_rank == 0) A = rand(A)

! Compute the singular value decomposition.
 S_D = SVD(A, U=U_D, V=V_D)

! Compute the (left) orthogonal factor.
 P = U_D .xt. V_D

! Compute the (right) self-adjoint factor.
 Q = V_D .x. diag(S_D) .xt. V_D
! Check the results for orthogonality and
! small residuals.
 TEMP1 = NORM(spread(EYE(n),3,nr) - (p .xt. p))
 TEMP2 = NORM(A -(P .X. Q)) / NORM(A)
 if (ALL(TEMP1 <= sqrt(epsilon(one))) .and. &
 ALL(TEMP2 <= sqrt(epsilon(one)))) then
 if(mp_rank == 0)&
 write (*,*) 'Parallel Example 15 is correct.'
 end if

! See to any error messages and exit MPI.
 mp_nprocs = mp_setup('Final')

 end

1546 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

 Parallel Example 16
A compute-intensive single task, in this case the singular values decomposition
of a matrix, is computed and partially reconstructed with matrix products. This
result is sent back to the root node. The node of highest priority, not the root, is
used for the computation except when only the root is available.

 use linear_operators
 use mpi_setup_int
 implicit none
 INCLUDE 'mpif.h'

! This is Parallel Example 16 for SVD.
 integer i, j, IERROR, BEST
 integer, parameter :: n=32
 real(kind(1e0)), parameter :: half=5e-1, one=1e0, zero=0e0
 real(kind(1e0)), dimension(n,n) :: A, S(n), U, V, C
 integer k, STATUS(MPI_STATUS_SIZE)

! Setup for MPI:
 mp_nprocs = mp_setup(n)

BEST=1
BLOCK: DO

! Fill in value one for points inside the circle,
! zero on the outside.
 A = zero
 DO i=1, n
 DO j=1, n
 if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) A(i,j) = one
 END DO
 END DO
IF(MP_NPROCS > 1 .and. MPI_NODE_PRIORITY(1) == 0) BEST=2

! Only the most effective node does this job.
! The rest set idle.
 IF(MP_RANK /= MPI_NODE_PRIORITY(BEST)) EXIT BLOCK

! Compute the singular value decomposition.
 S = SVD(A, U=U, V=V)

! How many terms, to the nearest integer, match the circle?
 k = count(S > half)
 C = U(:,1:k) .x. diag(S(1:k)) .xt. V(:,1:k)

! If root is not the most efficient node, send C back.
 IF(MPI_NODE_PRIORITY(BEST) > 0) &
 CALL MPI_SEND(C, N**2, MPI_REAL, 0, MP_RANK, MP_LIBRARY_WORLD, IERROR)
 EXIT BLOCK
END DO BLOCK

! There may be a matrix to receive from the "best" node.
 IF(MPI_NODE_PRIORITY(BEST) > 0 .and. MP_RANK == 0) &

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1547

 CALL MPI_RECV (C, N**2, MPI_REAL, MPI_ANY_SOURCE, MPI_ANY_TAG, &
 MP_LIBRARY_WORLD, STATUS, IERROR)

 if (count(int(C-A) /= 0) == 0 .and. MP_RANK == 0) &
 write (*,*) 'Parallel Example 16 is correct.'

! See to any error messages and exit MPI.
 mp_nprocs = mp_setup('Final')
 end

 Parallel Example 17
Occasionally it is necessary to print output from all nodes of a communicator.
This example has each non-root node prepare the output it will print in a
character buffer. Then, each node in turn, the character buffer is transmitted to
the root. The root prints the buffer, line-by-line, which contains an indication
of where the output originated. Note that the root directs the order of results by
broadcasting an integer value (BATON) giving the index of the node to
transmit. The random numbers generated at the nodes and then listed are not
checked. There is a final printed line indicating that the example is completed.

use show_int
 use rand_int
 use mpi_setup_int

 implicit none
 INCLUDE 'mpif.h'

! This is Parallel Example 17. Each non-root node transmits
! the contents of an array that is the output of SHOW.
! The root receives the characters and prints the lines from
! alternate nodes.
 integer, parameter :: n=7, BSIZE=(72+2)*4
 integer k, p, q, ierror, status(MPI_STATUS_SIZE)
 integer I, BATON
 real(kind(1e0)) s_x(-1:n)
 type (s_options) options(7)
 CHARACTER (LEN=BSIZE) BUFFER
 character (LEN=12) PROC_NUM

! Setup for MPI:
 mp_nprocs = mp_setup()
if (mp_rank > 0) then
! The data types printed are real(kind(1e0)) random numbers.
 s_x=rand(s_x)

! Convert node rank to CHARACTER data.
 write(proc_num,'(I3)') mp_rank

! Show 7 digits per number and according to the
! natural or declared size of the array.
! Prepare the output lines in array BUFFER.

1548 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

! End each line with ASCII sequence CR-NL.
 options(1)=show_significant_digits_is_7

 options(2)=show_starting_index_is
 options(3)= -1 ! The starting value.

 options(4)=show_end_of_line_sequence_is
 options(5)= 2 ! Use 2 EOL characters.
 options(6)= 10 ! The ASCII code for CR.
 options(7)= 13 ! The ASCII code for NL.

 BUFFER= ' ' ! Blank out the buffer.

! Prepare the output in BUFFER.
 call show (s_x, &
 'Rank-1, REAL with 7 digits, natural indexing from rank # '//&
 trim(adjustl(PROC_NUM)), IMAGE=BUFFER, IOPT=options)

 do i=1,mp_nprocs-1
! A handle or baton is received by the non-root nodes.
 call mpi_bcast(BATON, 1, MPI_INTEGER, 0, &
 MP_LIBRARY_WORLD, ierror)

! If this node has the baton, it transmits its buffer.
 if(BATON == mp_rank)&
 call mpi_send(buffer, BSIZE, MPI_CHARACTER, 0, mp_rank, &
 MP_LIBRARY_WORLD, ierror)
 end do

else
 DO I=1,MP_NPROCS-1

! The root sends out a handle to a node. It is received as
! the value BATON.
 call mpi_bcast(I, 1, MPI_INTEGER, 0, &
 MP_LIBRARY_WORLD, ierror)

! A buffer of data arrives from a node.
 call mpi_recv(buffer, BSIZE, MPI_CHARACTER, MPI_ANY_SOURCE, &
 MPI_ANY_TAG, MP_LIBRARY_WORLD, STATUS, IERROR)

! Display BUFFER as a CHARACTER array. Discard blanks
! on the ends. Look for non-printable characters as limits.
 p=0
 k=LEN(TRIM(BUFFER))
 DISPLAY:DO
 DO
 IF (p >= k) EXIT DISPLAY
 p=p+1
 IF(ICHAR(BUFFER(p:p)) >= ICHAR(' ')) EXIT
 END DO
 q=p-1
 DO
 q=q+1
 IF (ICHAR(BUFFER(q:q)) < ICHAR(' ')) EXIT

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1549

 END DO
 WRITE(*,'(1x,A)') BUFFER(p:q-1)
 p=q
 END DO DISPLAY
 END DO
end if
 IF(MP_RANK ==0) &
 write(*,*) 'Parallel Example 17 is finished.'

! See to any error messages and quit MPI
 mp_nprocs = mp_setup('Final')

 end

 Parallel Example 18
Here we illustrate a surface fitting problem implemented using tensor product
B-splines with constraints. There are three functions, each depending on two
parametric variables, for the spatial coordinates. Fitting each coordinate
function to the data is a natural example of parallel computing in the sense that
there are three separate problems of the same type. The approach is to break
the problem into three data fitting computations. Each of these computations
are allocated to nodes. Note that the data is sent from the root to the nodes.

Every node completes the least-squares fitting, and sends the spline coefficients
back to the root node. This example requires four nodes to execute.

 USE surface_fitting_int
 USE rand_int
 USE norm_int
 USE Numerical_Libraries, only : DCONST
 USE mpi_setup_int
 implicit none

 INCLUDE 'mpif.h'

! This is a Parallel Example 18 for SURFACE_FITTING, or
! tensor product B-splines approximation. Fit x, y, z parametric
! functions for points on the surface of a sphere of radius "A".
! Random values of latitude and longitude are used to generate
! data. The functions are evaluated at a rectangular grid
! in latitude and longitude and checked so they lie on the
! surface of the sphere.

 integer :: i, j, ierror, status(MPI_STATUS_SIZE)
 integer, parameter :: ngrid=5, nord=8, ndegree=nord-1, &
 nbkpt=ngrid+2*ndegree, ndata =400, nvalues=50, NOPT=4
 real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0
 real(kind(1d0)), parameter :: TOLERANCE=1d-3
 real(kind(1d0)), target :: spline_data (4, ndata, 3), bkpt(nbkpt), &
 coeff(ngrid+ndegree-1,ngrid+ndegree-1, 3), delta, sizev, &
 pi, A, x(nvalues), y(nvalues), values(nvalues, nvalues), &
 data(4,ndata)

 real(kind(1d0)), pointer :: pointer_bkpt(:)

1550 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

 type (d_surface_constraints), allocatable :: C(:)
 type (d_spline_knots) knotsx, knotsy
 type (d_options) OPTIONS(NOPT)

! Setup for MPI:
 MP_NPROCS = MP_SETUP()
BLOCK: DO
! This program needs at least three nodes plus a root to execute.
! As many as three error messages may print.
 if(mp_nprocs < 4) then
 call e1sti (1, MP_NPROCS)
 call e1mes (5, 1, "Parallel Example 18 requires FOUR nodes"//&
 ' to execute. Number of nodes is now %(I1).')
 EXIT BLOCK
 endif

! Get the constant "pi" and a random radius, > 1.
 pi = DCONST((/'pi'/)); A=one+rand(A)

! Generate random (latitude, longitude) pairs and evaluate the
! surface parameters at these points.
 spline_data(1:2,:,1)=pi*(two*rand(spline_data(1:2,:,1))-one)
 spline_data(1:2,:,2)=spline_data(1:2,:,1)
 spline_data(1:2,:,3)=spline_data(1:2,:,1)

! Evaluate x, y, z parametric points.
 spline_data(3,:,1)=A*cos(spline_data(1,:,1))*cos(spline_data(2,:,1))
 spline_data(3,:,2)=A*cos(spline_data(1,:,2))*sin(spline_data(2,:,2))
 spline_data(3,:,3)=A*sin(spline_data(1,:,3))

! The values are equally uncertain.
 spline_data(4,:,:)=one

! Define the knots for the tensor product data fitting problem.
 delta = two*pi/(ngrid-1)
 bkpt(1:ndegree) = -pi
 bkpt(nbkpt-ndegree+1:nbkpt) = pi
 bkpt(nord:nbkpt-ndegree)=(/(-pi+i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots.
 pointer_bkpt => bkpt
 knotsx=d_spline_knots(ndegree, pointer_bkpt)
 knotsy=knotsx

! Fit a data surface for each coordinate.
! Set default regularization parameters to zero and compute
! residuals of the individual points. These are returned
! in DATA(4,:).
 allocate (C(2*ngrid))
! "Sew" the ends of the parametric surfaces together:
 do i=0,ngrid-1
 C(i+1)=surface_constraints(point=(/-pi,-pi+i*delta/),&
 type='.=.', periodic=(/pi,-pi+i*delta/))
 end do
 do i=0,ngrid-1
 C(ngrid+i+1)=surface_constraints(point=(/-pi+i*delta,-pi/),&
 type='.=.', periodic=(/-pi+i*delta,pi/))
 end do

 if (mp_rank == 0) then
! Send the data to a node.
 do j=1,3
 call mpi_send(spline_data(:,:,j), 4*ndata, &

IMSL MATH/LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions � 1551

 MPI_DOUBLE_PRECISION, j, j, MP_LIBRARY_WORLD, ierror)
 enddo
 do i=1,3
! Receive the coefficients back.
 call mpi_recv(coeff(:,:,i), (ngrid+ndegree-1)**2, &
 MPI_DOUBLE_PRECISION, i, i, MP_LIBRARY_WORLD, &
 status, ierror)
 enddo
 else if (mp_rank < 4) then

! Receive the data from the root.
 call mpi_recv(data, 4*ndata, MPI_DOUBLE_PRECISION, 0, &
 mp_rank, MP_LIBRARY_WORLD, status, ierror)
 OPTIONS(1)=d_options(surface_fitting_thinness,zero)
 OPTIONS(2)=d_options(surface_fitting_flatness,zero)
 OPTIONS(3)=d_options(surface_fitting_smallness,zero)
 OPTIONS(4)=surface_fitting_residuals

! Compute the coefficients at this node.
 coeff(:,:,mp_rank) = surface_fitting(data, knotsx, knotsy,&
 CONSTRAINTS=C, IOPT=OPTIONS)

! Send the coefficients back to the root.
 call mpi_send(coeff(:,:,mp_rank),(ngrid+ndegree-1)**2,&
 MPI_DOUBLE_PRECISION, 0, mp_rank, MP_LIBRARY_WORLD,IERROR)
 end if

! Evaluate the function at a grid of points inside the rectangle of
! latitude and longitude covering the sphere just once. Add the
! sum of squares. They should equal "A**2" but will not due to
! truncation and rounding errors.
 delta=pi/(nvalues+1)
 x=(/(-pi/two+i*delta,i=1,nvalues)/); y=two*x
 values=zero
 do j=1,3
 values=values + surface_values((/0,0/), x, y, knotsx, knotsy,&
 coeff(:,:,j))**2
 end do
 values=values-A**2

! Compute the R.M.S. error:
 sizev=norm(pack(values, (values == values)))/nvalues
 if (sizev <= TOLERANCE) then
 if(mp_rank == 0) &
 write(*,*) "Parallel Example 18 is correct."
 end if
 EXIT BLOCK
END DO BLOCK

! See to any error messages and exit MPI.
 mp_nprocs = mp_setup('Final')
 end

1552 � Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH/LIBRARY

IMSL MATH/LIBRARY Chapter 11: Utilities � 1553

Chapter 11: Utilities

Routines
11.1. ScaLAPACK Utilities

Reads matrix data from a file and transmits it into the
two-dimensional block-cyclic form ScaLAPACK_READ 1557
Writes the matrix data to a fileScaLAPACK_WRITE 1559

11.2. Print
Prints error messages .. ERROR_POST 1568
Prints rank-1 or rank-2 arrays of numbers in a
readable format...SHOW 1571
Real rectangular matrix
with integer row and column labels.................................... WRRRN 1575
Real rectangular matrix with given format and labels.........WRRRL 1577
Integer rectangular matrix
with integer row and column labels......................................WRIRN 1581
Integer rectangular matrix with given format and labels...... WRIRL 1583
Complex rectangular matrix
with row and column labels.. WRCRN 1586
Complex rectangular matrix
with given format and labels ...WRCRL 1588
Sets or retrieves options for printing a matrixWROPT 1591
Sets or retrieves page width and length PGOPT 1599

11.3. Permute
Elements of a vector ...PERMU 1600
Rows/columns of a matrix... PERMA 1602

11.4. Sort
Sorts a rank-1 array of real numbers x so the y results
are algebraically nondecreasing, y1 � y2 � � yn SORT_REAL 1604
Real vector by algebraic value.. SVRGN 1607
Real vector by algebraic value
and permutations returned.. SVRGP 1608
Integer vector by algebraic value..SVIGN 1610
Integer vector by algebraic value
and permutations returned..SVIGP 1611

1554 � Chapter 11: Utilities IMSL MATH/LIBRARY

Real vector by absolute value ...SVRBN 1612
Real vector by absolute value
and permutations returned .. SVRBP 1614
Integer vector by absolute value ...SVIBN 1615
Integer vector by absolute value
and permutations returned ..SVIBP 1617

11.5. Search
Sorted real vector for a number .. SRCH 1618
Sorted integer vector for a number ISRCH 1620
Sorted character vector for a string.....................................SSRCH 1622

11.6. Character String Manipulation
Gets the character corresponding to a
given ASCII value..ACHAR 1624
Get the integer ASCII value for a given characterIACHAR 1625
Gets upper case integer ASCII value for a characterICASE 1626
Case-insensitive version comparing two strings IICSR 1627
Case-insensitive version of intrinsic function INDEX IIDEX 1629
Converts a character string with digits to an integerCVTSI 1630

11.7. Time, Date, and Version
CPU time ...CPSEC 1631
Time of day... TIMDY 1632
Today’s date...TDATE 1633
Number of days from January 1, 1900, to the given date ...NDAYS 1634
Date for the number of days from January 1, 1900 NDYIN 1636
Day of week for given date...IDYWK 1637
Version, system, and serial numbersVERML 1638

11.8. Random Number Generation
Generates a rank-1 array of random numbers............ RAND_GEN 1639
Retrieves the current value of the seedRNGET 1648
Initializes a random seed... RNSET 1649
Selects the uniform (0,1) generator.....................................RNOPT 1650
Generates pseudorandom numbers (function form)RNUNF 1651
Generates pseudorandom numbersRNUN 1653

11.9 Low Discrepancy Sequences
Shuffled Faure sequence initialization FAURE_INIT 1655
Frees the structure containing information
about the Faure sequenceFAURE_FREE 1655
Computes a shuffled Faure sequenceFAURE_NEXT 1656

11.10. Options Manager
Gets and puts type INTEGER options....................................IUMAG 1658
Gets and puts type REAL options...UMAG 1661
Gets and puts type DOUBLE PRECISION optionsDUMAG 1664

11.11. Line Printer Graphics
Prints plot of up to 10 sets of pointsPLOTP 1664

IMSL MATH/LIBRARY Chapter 11: Utilities � 1555

11.12. Miscellaneous
Decomposes an integer into its prime factorsPRIME 1668
Returns mathematical and physical constants CONST 1669
Converts a quantity to different unitsCUNIT 1672
Computes 2 2

�a b without underflow or overflowHYPOT 1675

Usage Notes for ScaLAPACK Utilities

MPI REQUIRED

This section describes the use of ScaLAPACK, a suite of dense linear algebra solvers,
applicable when a single problem size is large. We have integrated usage of IMSL Fortran
Library with ScaLAPACK. However, the ScaLAPACK library, including libraries for
BLACS and PBLAS, are not part of this Library. To use ScaLAPACK software, the required
libraries must be installed on the user’s computer system. We adhered to the specification
of Blackford, et al. (1997), but use only MPI for communication. The ScaLAPACK library
includes certain LAPACK routines, Anderson, et al. (1995), redesigned for distributed
memory parallel computers. It is written in a Single Program, Multiple Data (SPMD) style
using explicit message passing for communication. Matrices are laid out in a two-
dimensional block-cyclic decomposition. Using High Performance Fortran (HPF)
directives, Koelbel, et al. (1994), and a static p q� processor array, and following
declaration of the array, A(*,*), this is illustrated by:

INTEGER, PARAMETER :: N=500, P= 2, Q=3, MB=32, NB=32

!HPF$ PROCESSORS PROC(P,Q)

!HPF$ DISTRIBUTE A(cyclic(MB), cyclic(NB)) ONTO PROC

Our integration work provides modules that describe the interface to the ScaLAPACK
library. We recommend that users include these modules when using ScaLAPACK or
ancillary packages, including BLACS and PBLAS. For the job of distributing data within a
user’s application to the block-cyclic decomposition required by ScaLAPACK solvers, we
provide a utility that reads data from an external file and arranges the data within the
distributed machines for a computational step. Another utility writes the results into an
external file.
The data types supported for these utilities are integer; single
precision, real; double precision, real; single precision,
complex, and double precision, complex.

A ScaLAPACK library normally includes routines for:

�� the solution of full-rank linear systems of equations,

�� general and symmetric, positive-definite, banded linear systems of
equations,

�� general and symmetric, positive-definite, tri-diagonal, linear systems of
equations,

�� condition number estimation and iterative refinement for LU and
Cholesky factorization,

�� matrix inversion,

1556 � Chapter 11: Utilities IMSL MATH/LIBRARY

�� full-rank linear least-squares problems,

�� orthogonal and generalized orthogonal factorizations,

�� orthogonal transformation routines,

�� reductions to upper Hessenberg, bidiagonal and tridiagonal form,

�� reduction of a symmetric-definite, generalized eigenproblem to
standard form,

�� the self-adjoint or Hermitian eigenproblem,

�� the generalized self-adjoint or Hermitian eigenproblem, and

�� the non-symmetric eigenproblem

ScaLAPACK routines are available in four data types: single precision,
real; double precision; real, single precision, complex, and double
precision, complex. At present, the non-symmetric eigenproblem is only
available in single and double precision. More background information and
user documentation is available on the World Wide Web at location
http://www.netlib.org/scalapack/slug/scalapack_slug.html

�� For users with rank deficiency or simple constraints in their linear
systems or least-squares problem, we have routines for:

�� full or deficient rank least-squares problems with non-negativity
constraints

�� full or deficient rank least-squares problems with simple upper and
lower bound constraints

These are available in two data types: single precision, real, and double
precision, real, and they are not part of ScaLAPACK. The matrices are
distributed in a general block-column layout.

ScaLAPACK Supporting Modules

MPI REQUIRED

We recommend that users needing routines from ScaLAPACK, PBLAS or
BLACS, Version 1.4, use modules that describe the interface to individual
codes. This practice, including use of the declaration directive, IMPLICIT
NONE, is a reliable way of writing ScaLAPACK application code, since the
routines may have lengthy lists of arguments. Using the modules is helpful
to avoid the mistakes such as missing arguments or mismatches involving
Type, Kind or Rank (TKR). The modules are part of the Fortran Library
product. There is a comprehensive module, ScaLAPACK_Support, that
includes use of all the modules in the table below. This module decreases
the number of lines of code for checking the interface, but at the cost of
increasing source compilation time compared with using individual
modules.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1557

Module Name Contents of the Module
ScaLAPACK_Support All of the following modules
ScaLAPACK_Int All interfaces to ScaLAPACK routines
PBLAS_Int All interfaces to parallel BLAS, or PBLAS
BLACS_Int All interfaces to basic linear algebra communication routines, or BLACS
TOOLS_Int Interfaces to ancillary routines used by ScaLAPACK, but not in other

packages
LAPACK_Int All interfaces to LAPACK routines required by ScaLAPACK
ScaLAPACK_IO_Int All interfaces to ScaLAPACK_Read, ScaLAPACK_Write utility routines.

See this Chapter.
MPI_Node_Int The module holding data describing the MPI communicator,

MP_LIBRARY_WORLD. See Chapter 10.

ScaLAPACK_READ

MPI REQUIRED

This routine reads matrix data from a file and transmits it into the two-dimensional
block-cyclic form required by ScaLAPACK routines. This routine contains a call to a
barrier routine so that if one process is writing the file and an alternate process is to
read it, the results will be synchronized.
All processors in the BLACS context call the routine.

Required Arguments
File_Name—(Input)

A character variable naming the file containing the matrix data. This file is opened
with STATUS=“OLD.” If the name is misspelled or the file does not exist, or any
access violation happens, a type = terminal error message will occur. After the
contents are read, the file is closed. This file is read with a loop logically equivalent
to groups of reads:

READ() ((BUFFER(I,J), I=1,M), J=1, NB)
or (optionally):

READ() ((BUFFER(I,J), J=1,N), I=1, MB)

DESC_A(*)—(Input)
The nine integer parameters associated with the ScaLAPACK matrix descriptor.
Values for NB,MB,LDA are contained in this array.

A(LDA,*)—(Output)
This is an assumed-size array, with leading dimension LDA, that will contain
this processor’s piece of the block-cyclic matrix. The data type for A(*,*) is any
of five Fortran intrinsic types, integer, single precision, real; double
precision, real; single precision, complex, and double precision-complex.

1558 � Chapter 11: Utilities IMSL MATH/LIBRARY

Optional Arguments
Format—(Input)

A character variable containing a format to be used for reading the file containing
matrix data. If this argument is not present, an unformatted, or list-directed read is
used.

iopt—(Input)
Derived type array with the same precision as the array A(*,*), used for passing
optional data to ScaLAPACK_READ. The options are as follows:

Packaged Options for ScaLAPACK_READ
Option Prefix = ? Option Name Option Value

s_, d_ ScaLAPACK_READ_UNIT 1
s_, d_ ScaLAPACK_READ_FROM_PROCESS 2
s_, d_ ScaLAPACK_READ_BY_ROWS 3

MPI REQUIRED

iopt(IO) = ScaLAPACK_READ_UNIT

Sets the unit number to the value in iopt(IO + 1)%idummy. The default unit
number is the value 11.

iopt(IO) = ScaLAPACK_READ_FROM_PROCESS

Sets the process number that reads the named file to the value in
iopt(IO + 1)%idummy. The default process number is the value 0.

iopt(IO) = ScaLAPACK_READ_BY_ROWS
Read the matrix by rows from the named file. By default the matrix is read by
columns.

FORTRAN 90 Interface
Generic: CALL ScaLAPACK_READ (File_Name, DESC_A, A [,…])

Specific: The specific interface names are S_ScaLAPACK_READ and
D_ScaLAPACK_READ.

Description
Subroutine ScaLAPACK_READ reads columns or rows of a problem matrix so that it
is usable by a ScaLAPACK routine. It uses the two-dimensional block-cyclic array
descriptor for the matrix to place the data in the desired assumed-size arrays on the
processors. The blocks of data are read, then transmitted and received. The block
sizes, contained in the array descriptor, determines the data set size for each blocking
send and receive pair. The number of these synchronization points is proportional to

/()M N MB NB� �� �� � . A temporary local buffer is allocated for staging the matrix

IMSL MATH/LIBRARY Chapter 11: Utilities � 1559

data. It is of size M by NB, when reading by columns, or N by MB, when reading by
rows.

ScaLAPACK_WRITE

MPI REQUIRED

This routine writes the matrix data to a file. The data is transmitted from the two-
dimensional block-cyclic form used by ScaLAPACK. This routine contains a call to
a barrier routine so that if one process is writing the file
and an alternate process is to read it, the results will be synchronized. All processors
in the BLACS context call the routine.

Required Arguments
File_Name—(Input)

A character variable naming the file to receive the matrix data. This file is
opened with “STATUS=”UNKNOWN.” If any access violation happens, a
type = terminal error message will occur. If the file already exists it will be
overwritten. After the contents are written, the file is closed. This file is
written with a loop logically equivalent to groups of writes:

WRITE() ((BUFFER(I,J), I=1,M), J=1, NB)
or (optionally):

WRITE() ((BUFFER(I,J), J=1,N), I=1, MB)

DESC_A(*)—(Input)
The nine integer parameters associated with the ScaLAPACK matrix
descriptor. Values for NB,MB,LDA are contained in this array.

A(LDA,*) —(Input)
This is an assumed-size array, with leading dimension LDA, containing
this processor’s piece of the block-cyclic matrix. The data type for
A(*,*) is any of five Fortran intrinsic types, integer, single precision,
real, double precision, real, single precision, complex, and double
precision-complex.

Optional Arguments
Format—(Input)

A character variable containing a format to be used for writing the file that
receives matrix data. If this argument is not present, an unformatted, or list-
directed write is used.

iopt—(Input)
Derived type array with the same precision as the array A(*,*), used for

1560 � Chapter 11: Utilities IMSL MATH/LIBRARY

passing optional data to ScaLAPACK_WRITE. Use single precision when
A(*,*) is type INTEGER. The options are as follows:

Packaged Options for ScaLAPACK_WRITE

Option Prefix = ? Option Name Option Value
S_, d_ ScaLAPACK_WRITE_UNIT 1
S_, d_ ScaLAPACK_WRITE_FROM_PROCESS 2
S_, d_ ScaLAPACK_WRITE_BY_ROWS 3

MPI REQUIRED

iopt(IO) =ScaLAPACK_WRITE_UNIT
Sets the unit number to the integer component of
iopt(IO + 1)%idummy. The default unit number is the value 11.

iopt(IO) = ScaLAPACK_WRITE_FROM_PROCESS
Sets the process number that writes the named file to the integer component of
iopt(IO + 1)%idummy. The default process number is the value 0.

iopt(IO) = ScaLAPACK_WRITE_BY_ROWS
Write the matrix by rows to the named file. By default the matrix is written by
columns.

FORTRAN 90 Interface
Generic: CALL ScaLAPACK_WRITE (File_Name, DESC_A, A [,…])

Specific: The specific interface names are S_ScaLAPACK_WRITE and
D_ScaLAPACK_WRITE.

Description
Subroutine ScaLAPACK_WRITE writes columns or rows of a problem matrix output
by a ScaLAPACK routine. It uses the two-dimensional block-cyclic array descriptor
for the matrix to extract the data from the assumed-size arrays on the processors.
The blocks of data are transmitted and received, then written. The block sizes,
contained in the array descriptor, determines the data set size for each blocking send
and receive pair. The number of these synchronization points is proportional to

/()M N MB NB� �� �� � . A temporary local buffer is allocated for staging the matrix
data. It is of size M by NB, when writing by columns, or N by MB, when writing by
rows.

Example 1: Distributed Transpose of a Matrix, In Place
The program SCPK_EX1 illustrates an in-situ transposition of a matrix. An m n� matrix, A , is written to a
file, by rows. The n m� matrix, TB A� , overwrites storage for A . Two temporary files are created and

IMSL MATH/LIBRARY Chapter 11: Utilities � 1561

deleted. There is usage of the BLACS to define the process grid and provide further information identifying
each process. This algorithm for transposing a matrix is not efficient. We use it to illustrate the read and
write routines and optional arguments for writing of data by matrix rows.

 program scpk_ex1
! This is Example 1 for ScaLAPACK_READ and ScaLAPACK_WRITE.
! It shows in-situ or in-place transposition of a
! block-cyclic matrix.
USE ScaLAPACK_SUPPORT
USE ERROR_OPTION_PACKET
USE MPI_SETUP_INT

IMPLICIT NONE
INCLUDE "mpif.h"

INTEGER, PARAMETER :: M=6, N=6, MB=2, NB=2, NIN=10
INTEGER CONTXT, DESC_A(9), NPROW, NPCOL, MYROW, &
 MYCOL, IERROR, I, J, K, L, LDA, TDA
real(kind(1d0)), allocatable :: A(:,:), d_A(:,:)
real(kind(1d0)) ERROR
TYPE(d_OPTIONS) IOPT(1)
 MP_NPROCS=MP_SETUP()

 CALL BLACS_PINFO(MP_RANK, MP_NPROCS)
! Make initialization for BLACS.
 CALL BLACS_GET(0,0, CONTXT)

! Approximate processor grid to be nearly square.
 NPROW=sqrt(real(MP_NPROCS)); NPCOL=MP_NPROCS/NPROW
 IF(NPROW*NPCOL < MP_NPROCS) THEN
 NPROW=1; NPCOL=MP_NPROCS
 END IF
 CALL BLACS_GRIDINIT(CONTXT, 'Rows', NPROW, NPCOL)
! Get this processor's role in the process grid.
 CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYROW, MYCOL)
BLOCK: DO

LDA=NUMROC(M, MB, MYROW, 0, NPROW)
TDA=NUMROC(N, NB, MYCOL, 0, NPCOL)
 ALLOCATE(d_A(LDA,TDA))

! A root process is used to create the matrix data for the test.
IF(MP_RANK == 0) THEN
 ALLOCATE(A(M,N))
! Fill array with a pattern that is easy to recognize.
 K=0
 DO
 K=K+1; IF(10**K > N) EXIT
 END DO

 DO J=1,N
 DO I=1,M
! The values will appear, as decimals I.J, where I is
! the row and J is the column.
 A(I,J)=REAL(I)+REAL(J)*10d0**(-K)
 END DO
 END DO

 OPEN(UNIT=NIN, FILE='test.dat', STATUS='UNKNOWN')
! Write the data by columns.
 DO J=1,N,NB
 WRITE(NIN,*) ((A(I,L),I=1,M),L=J,min(N,J+NB-1))

1562 � Chapter 11: Utilities IMSL MATH/LIBRARY

 END DO
 CLOSE(NIN)
END IF

IF(MP_RANK == 0) THEN
 DEALLOCATE(A)
 ALLOCATE(A(N,M))
END IF

! Define the descriptor for the global matrix.
DESC_A=(/1, CONTXT, M, N, MB, NB, 0, 0, LDA/)

! Read the matrix into the local arrays.
CALL ScaLAPACK_READ('test.dat', DESC_A, d_A)

! To transpose, write the matrix by rows as the first step.
! This requires an option since the default is to write
! by columns.
IOPT(1)=ScaLAPACK_WRITE_BY_ROWS
CALL ScaLAPACK_WRITE("TEST.DAT", DESC_A, &
 d_A, IOPT=IOPT)

! Resize the local storage and read the transpose matrix.
 DEALLOCATE(d_A)
 LDA=NUMROC(N, MB, MYROW, 0, NPROW)
 TDA=NUMROC(M, NB, MYCOL, 0, NPCOL)
 ALLOCATE(d_A(LDA,TDA))

! Reshape the descriptor for the transpose of the matrix.
! The number of rows and columns are swapped.
DESC_A=(/1, CONTXT, N, M, MB, NB, 0, 0, LDA/)

CALL ScaLAPACK_READ("TEST.DAT", DESC_A, d_A)

IF(MP_RANK == 0) THEN

! Open the used files and delete when closed.
 OPEN(UNIT=NIN, FILE='test.dat', STATUS='OLD')
 CLOSE(NIN,STATUS='DELETE')
 OPEN(UNIT=NIN, FILE='TEST.DAT', STATUS='OLD')
 DO J=1,M,MB
 READ(NIN,*) ((A(I,L), I=1,N),L=J,min(M,J+MB-1))
 END DO
 CLOSE(NIN,STATUS='DELETE')
 DO I=1,N
 DO J=1,M
! The values will appear, as decimals I.J, where I is the row
! and J is the column.
 A(I,J)=REAL(J)+REAL(I)*10d0**(-K) - A(I,J)
 END DO
 END DO
 ERROR=SUM(ABS(A))
 END IF

! The processors in use now exit the loop.
 EXIT BLOCK
END DO BLOCK

! See to any error messages.
 call e1pop("Mp_setup")

! Check results on just one process.
IF(ERROR <= SQRT(EPSILON(ERROR)) .and. &

IMSL MATH/LIBRARY Chapter 11: Utilities � 1563

 MP_RANK == 0) THEN
 write(*,*) " Example 1 for BLACS is correct."
END IF

! Deallocate storage arrays and exit from BLACS.
IF(ALLOCATED(A)) DEALLOCATE(A)
IF(ALLOCATED(d_A)) DEALLOCATE(d_A)

! Exit from using this process grid.
 CALL BLACS_GRIDEXIT(CONTXT)
 CALL BLACS_EXIT(0)
END

Output
Example 1 for BLACS is correct.

Example 2: Distributed Matrix Product with PBLAS

The program SCPK_EX2 illustrates computation of the matrix product m n m k k nC A B
� � �

� . The
matrices on the right-hand side are random. Three temporary files are created and deleted. There
is usage of the BLACS and PBLAS. The problem sizes is such that the results are checked on one
process.
 program scpk_ex2
! This is Example 2 for ScaLAPACK_READ and ScaLAPACK_WRITE.
! The product of two matrices is computed with PBLAS
! and checked for correctness.

USE ScaLAPACK_SUPPORT
USE MPI_SETUP_INT

IMPLICIT NONE
INCLUDE "mpif.h"

INTEGER, PARAMETER :: &
 K=32, M=33, N=34, MB=16, NB=16, NIN=10
INTEGER CONTXT, NPROW, NPCOL, MYROW, MYCOL, &
 INFO, IA, JA, IB, JB, IC, JC, LDA_A, TDA_A,&
 LDA_B, TDA_B, LDA_C, TDA_C, IERROR, I, J, L,&
 DESC_A(9), DESC_B(9), DESC_C(9)

real(kind(1d0)) :: ALPHA, BETA, ERROR=1d0, SIZE_C
real(kind(1d0)), allocatable, dimension(:,:) :: A,B,C,X(:),&
d_A, d_B, d_C

 MP_NPROCS=MP_SETUP()
! Routines with the "BLACS_" prefix are from the BLACS library.
! This is an adjunct library to the ScaLAPACK library.
 CALL BLACS_PINFO(MP_RANK, MP_NPROCS)

! Make initialization for BLACS.
 CALL BLACS_GET(0,0, CONTXT)

! Approximate processor grid to be nearly square.
 NPROW=sqrt(real(MP_NPROCS)); NPCOL=MP_NPROCS/NPROW
 IF(NPROW*NPCOL < MP_NPROCS) THEN
 NPROW=1; NPCOL=MP_NPROCS

1564 � Chapter 11: Utilities IMSL MATH/LIBRARY

 END IF
 CALL BLACS_GRIDINIT(CONTXT, 'Rows', NPROW, NPCOL)

! Get this processor's role in the process grid.
 CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYROW, MYCOL)

! Associate context (BLACS) with IMSL communicator:
 CALL BLACS_GET(CONTXT, 10, MP_LIBRARY_WORLD)

BLOCK: DO

! Allocate local space for each array.
LDA_A=NUMROC(M, MB, MYROW, 0, NPROW)
TDA_A=NUMROC(K, NB, MYCOL, 0, NPCOL)
LDA_B=NUMROC(K, NB, MYROW, 0, NPROW)
TDA_B=NUMROC(N, NB, MYCOL, 0, NPCOL)
LDA_C=NUMROC(M, MB, MYROW, 0, NPROW)
TDA_C=NUMROC(N, NB, MYCOL, 0, NPCOL)

ALLOCATE(d_A(LDA_A,TDA_A), d_B(LDA_B,TDA_B),&
 d_C(LDA_C,TDA_C))

! A root process is used to create the matrix data for the test.
IF(MP_RANK == 0) THEN
 ALLOCATE(A(M,K), B(K,N), C(M,N), X(M))
 CALL RANDOM_NUMBER(A); CALL RANDOM_NUMBER(B)

 OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN')
! Write the data by columns.
 DO J=1,K,NB
 WRITE(NIN,*) ((A(I,L),I=1,M),L=J,min(K,J+NB-1))
 END DO
 CLOSE(NIN)

 OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='UNKNOWN')
! Write the data by columns.
 DO J=1,N,NB
 WRITE(NIN,*) ((B(I,L),I=1,K),L=J,min(N,J+NB-1))
 END DO
 CLOSE(NIN)
END IF

! Define the descriptor for the global matrices.
DESC_A=(/1, CONTXT, M, K, MB, NB, 0, 0, LDA_A/)
DESC_B=(/1, CONTXT, K, N, NB, NB, 0, 0, LDA_B/)
DESC_C=(/1, CONTXT, M, N, MB, NB, 0, 0, LDA_C/)

! Read the factors into the local arrays.
CALL ScaLAPACK_READ('Atest.dat', DESC_A, d_A)
CALL ScaLAPACK_READ('Btest.dat', DESC_B, d_B)

! Compute the distributed product C = A x B.
ALPHA=1d0; BETA=0d0
IA=1; JA=1; IB=1; JB=1; IC=1; JC=1
d_C=0
CALL pdGEMM &
 ("No", "No", M, N, K, ALPHA, d_A, IA, JA,&
 DESC_A, d_B, IB, JB, DESC_B, BETA,&
 d_C, IC, JC, DESC_C)

! Put the product back on the root node.
Call ScaLAPACK_WRITE('Ctest.dat', DESC_C, d_C)

IMSL MATH/LIBRARY Chapter 11: Utilities � 1565

IF(MP_RANK == 0) THEN

! Read the residuals and check them for size.
 OPEN(UNIT=NIN, FILE='Ctest.dat', STATUS='OLD')

! Read the data by columns.
 DO J=1,N,NB
 READ(NIN,*) ((C(I,L),I=1,M),L=J,min(N,J+NB-1))
 END DO

 CLOSE(NIN,STATUS='DELETE')
 SIZE_C=SUM(ABS(C)); C=C-matmul(A,B)
 ERROR=SUM(ABS(C))/SIZE_C

! Open other temporary files and delete them.
 OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='OLD')
 CLOSE(NIN,STATUS='DELETE')
 OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='OLD')
 CLOSE(NIN,STATUS='DELETE')

END IF

! The processors in use now exit the loop.
 EXIT BLOCK
END DO BLOCK

! See to any error messages.
 call e1pop("Mp_Setup")
! Deallocate storage arrays and exit from BLACS.
IF(ALLOCATED(A)) DEALLOCATE(A)
IF(ALLOCATED(B)) DEALLOCATE(B)
IF(ALLOCATED(C)) DEALLOCATE(C)
IF(ALLOCATED(X)) DEALLOCATE(X)
IF(ALLOCATED(d_A)) DEALLOCATE(d_A)
IF(ALLOCATED(d_B)) DEALLOCATE(d_B)
IF(ALLOCATED(d_C)) DEALLOCATE(d_C)

! Check the results.
IF(ERROR <= SQRT(EPSILON(ALPHA)) .and. &
 MP_RANK == 0) THEN
 write(*,*) " Example 2 for BLACS and PBLAS is correct."
END IF

! Exit from using this process grid.
 CALL BLACS_GRIDEXIT(CONTXT)
 CALL BLACS_EXIT(0)
END

Output
Example 2 for BLACS and PBLAS is correct.

1566 � Chapter 11: Utilities IMSL MATH/LIBRARY

Example 3: Distributed Linear Solver with ScaLAPACK

The program SCPK_EX3 illustrates solving a system of linear-algebraic equations, Ax b� .
The right-hand side is produced by defining A and y to have random values. Then the
matrix-vector product b Ay� is computed. The problem size is such that the residuals,

0x y� � are checked on one process. Three temporary files are created and deleted. There
is usage of the BLACS to define the process grid and provide further information identifying
each process. Then ScaLAPACK is used to compute the approximate solution, x .
 program scpk_ex3
! This is Example 3 for ScaLAPACK_READ and ScaLAPACK_WRITE.
! A linear system is solved with ScaLAPACK and checked.
USE ScaLAPACK_SUPPORT
USE ERROR_OPTION_PACKET
USE MPI_SETUP_INT

IMPLICIT NONE

INCLUDE "mpif.h"
INTEGER, PARAMETER :: N=9, MB=3, NB=3, NIN=10
INTEGER CONTXT, NPROW, NPCOL, MYROW, MYCOL, &
 INFO, IA, JA, IB, JB, LDA_A, TDA_A,&
 LDA_B, TDA_B, IERROR, I, J, L, DESC_A(9),&
 DESC_B(9), DESC_X(9), BUFF(3), RBUF(3)

LOGICAL :: COMMUTE = .true.
INTEGER, ALLOCATABLE :: IPIV(:)
real(kind(1d0)) :: ERROR=0d0, SIZE_X
real(kind(1d0)), allocatable, dimension(:,:) :: A, B(:), &
 X(:), d_A, d_B

 MP_NPROCS=MP_SETUP()
! Routines with the "BLACS_" prefix are from the BLACS library.
 CALL BLACS_PINFO(MP_RANK, MP_NPROCS)
! Make initialization for BLACS.
 CALL BLACS_GET(0,0, CONTXT)

! Approximate processor grid to be nearly square.
 NPROW=sqrt(real(MP_NPROCS)); NPCOL=MP_NPROCS/NPROW
 IF(NPROW*NPCOL < MP_NPROCS) THEN
 NPROW=1; NPCOL=MP_NPROCS
 END IF
 CALL BLACS_GRIDINIT(CONTXT, 'Rows', NPROW, NPCOL)

! Get this processor's role in the process grid.
 CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYROW, MYCOL)

! Associate context (BLACS) with DNFL communicator:
 CALL BLACS_GET(CONTXT, 10, MP_LIBRARY_WORLD)

BLOCK: DO

! Allocate local space for each array.
LDA_A=NUMROC(N, MB, MYROW, 0, NPROW)
TDA_A=NUMROC(N, NB, MYCOL, 0, NPCOL)
LDA_B=NUMROC(N, MB, MYROW, 0, NPROW)
TDA_B=1

IMSL MATH/LIBRARY Chapter 11: Utilities � 1567

ALLOCATE(d_A(LDA_A,TDA_A), d_B(LDA_B,TDA_B),&
 IPIV(LDA_A+MB))

! A root process is used to create the matrix data for the test.
IF(MP_RANK == 0) THEN
 ALLOCATE(A(N,N), B(N), X(N))
 CALL RANDOM_NUMBER(A); CALL RANDOM_NUMBER(X)

! Compute the correct result.
 B=MATMUL(A,X); SIZE_X=SUM(ABS(X))
 OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN')

! Write the data by columns.
 DO J=1,N,NB
 WRITE(NIN,*) ((A(I,L),I=1,N),L=J,min(N,J+NB-1))
 END DO
 CLOSE(NIN)

 OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='UNKNOWN')
! Write the data by columns.
 WRITE(NIN,*) (B(I),I=1,N)
 CLOSE(NIN)
END IF

! Define the descriptor for the global matrices.
DESC_A=(/1, CONTXT, N, N, MB, NB, 0, 0, LDA_A/)
DESC_B=(/1, CONTXT, N, 1, MB, NB, 0, 0, LDA_B/)
DESC_X=DESC_B

! Read the factors into the local arrays.
CALL ScaLAPACK_READ('Atest.dat', DESC_A, d_A)
CALL ScaLAPACK_READ('Btest.dat', DESC_B, d_B)

! Compute the distributed product solution to A x = b.
IA=1; JA=1; IB=1; JB=1

CALL pdGESV &
 (N, 1, d_A, IA, JA, DESC_A, IPIV, &
 d_B, IB, JB, DESC_B, INFO)

! Put the result on the root node.
Call ScaLAPACK_WRITE('Xtest.dat', DESC_B, d_B)

IF(MP_RANK == 0) THEN

! Read the residuals and check them for size.
 OPEN(UNIT=NIN, FILE='Xtest.dat', STATUS='OLD')

! Read the approximate solution data.
 READ(NIN,*) B
 B=B-X

 CLOSE(NIN,STATUS='DELETE')
 ERROR=SUM(ABS(B))/SIZE_X

! Delete temporary files.
 OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='OLD')
 CLOSE(NIN,STATUS='DELETE')
 OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='OLD')
 CLOSE(NIN,STATUS='DELETE')

END IF

1568 � Chapter 11: Utilities IMSL MATH/LIBRARY

! The processors in use now exit the loop.
 EXIT BLOCK
END DO BLOCK

! See to any error messages.
 call e1pop("Mp_Setup")

! Deallocate storage arrays and exit from BLACS.
IF(ALLOCATED(A)) DEALLOCATE(A)
IF(ALLOCATED(B)) DEALLOCATE(B)
IF(ALLOCATED(X)) DEALLOCATE(X)
IF(ALLOCATED(d_A)) DEALLOCATE(d_A)
IF(ALLOCATED(d_B)) DEALLOCATE(d_B)
IF(ALLOCATED(IPIV)) DEALLOCATE(IPIV)

IF(ERROR <= SQRT(EPSILON(ERROR)) .and.&
 MP_RANK == 0) THEN
 write(*,*) &
 " Example 3 for BLACS and ScaLAPACK solver is correct."
END IF

! Exit from using this process grid.
 CALL BLACS_GRIDEXIT(CONTXT)
 CALL BLACS_EXIT(0)
END

Output
Example 3 for BLACS and ScaLAPACK is correct.

ERROR_POST
Prints error messages that are generated by IMSL routines using EPACK.

Required Argument
EPACK — (Input [/Output])

Derived type array of size p containing the array of message numbers and associated
data for the messages. The definition of this derived type is packaged within the
modules used as interfaces for each suite of routines. The declaration is:
type ?_error

integer idummy; real(kind(?_)) rdummy
end type

The choice of “?_” is either “s_” or “d_” depending on the accuracy of the data. This
array gets additional messages and data from each routine that uses the “epack=” optional
argument, provided p is large enough to hold data for a new message. The value p = 8 is
sufficient to hold the longest single terminal, fatal, or warning message that an IMSL Fortran
Library routine generates.

The location at entry epack (1)%idummy contains the number of data items for all messages.
When the error_post routine exits, this value is set to zero. Locations in array positions
(2:) %idummy contain groups of integers consisting of a message number, the error severity

IMSL MATH/LIBRARY Chapter 11: Utilities � 1569

level, then the required integer data for the message. Floating-point data, if required in the
message, is passed in locations(:)%rdummy matched with the starting point for integer data.
The extent of the data for each message is determined by the requirements of the larger of
each group of integer or floating-point values.

Optional Arguments
new_unit = nunit (Input)

Unit number, of type integer, associated for reading the direct-access file of error
messages for the IMSL Fortran 90 routines.
Default: nunit = 4

new_path = path (Input)
Pathname in the local file space, of type character*64, needed for reading the direct-
access file of error messages. Default string for path is defined during the installation
procedure for certain IMSL Fortran Library routines.

FORTRAN 90 Interface
Generic: CALL ERROR_POST (EPACK [,…])

Specific: The specific interface names are S_ERROR_POST and D_ERROR_POST.

Description
A default direct-access error message file (.daf file) is supplied with this product. This file is read
by error_post using the contents of the derived type argument epack, containing the message
number, error severity level, and associated data. The message is converted into character strings
accepted by the error processor and then printed. The number of pending messages that print
depends on the settings of the parameters PRINT and STOP IMSL MATH/LIBRARY User's
Manual (IMSL 1994, pp. 1194�1195). These values are initialized to defaults such that any Level
5 or Level 4 message causes a STOP within the error processor after a print of the text. To change
these defaults so that more than one error message prints, use the routine ERSET documented and
illustrated with examples in IMSL MATH/LIBRARY User's Manual (IMSL 1994, pp. 1196�1198).
The method of using a message file to store the messages is required to support “shared-memory
parallelism.”

Managing the Message File
For most applications of this product, there will be no need to manage this file. However, there
are a few situations which may require changing or adding messages:

�� New system-wide messages have been developed for applications using this Library.

�� All or some of the existing messages need to be translated to another language

�� A subset of users need to add a specific message file for their applications using this Library.

Following is information on changing the contents of the message file, and information on how to
create and access a message file for a private application.

1570 � Chapter 11: Utilities IMSL MATH/LIBRARY

Changing Messages
In order to change messages, two files are required:

�� An editable message glossary, messages.gls, supplied with this product.

�� A source program, prepmess.f, used to generate an executable which builds messages.daf
from messages.gls.

To change messages, first make a backup copy of messages.gls. Use a text editor to edit
messages.gls. The format of this file is a series of pairs of statements:

�� message_number=<nnnn>

�� message='message string'

(Note that neither of these lines should begin with a tab.)

The variable <nnnn> is an integer message number (see below for ranges and reserved message
numbers).

The 'message string' is any valid message string not to exceed 255 characters. If a message
line is too long for a screen, the standard Fortran 90 concatenation operator // with the line
continuation character & may be used to wrap the text.

Most strings have substitution parameters embedded within them. These may be in the following
forms:

�� %(i<n>) for an integer substitution, where n is the nth integer output in this message.

�� %(r<n>) for single precision real number substitution, where n is the nth real number output
in this message.

�� %(d<n>) for double precision real number substitution, where n is the nth double precision
number output in this message.

New messages added to the system-wide error message file should be placed at the end of the file.
Message numbers 5000 through 10000 have been reserved for user-added messages. Currently,
messages 1 through 1400 are used by IMSL. Gaps in message number ranges are permitted;
however, the message numbers must be in ascending order within the file. The message numbers
used for each IMSL Fortran Library subroutine are documented in this manual and in online help.

If existing messages are being edited or translated, make sure not to alter the message_number
lines. (This prevents conflicts with any new messages.gls file supplied with future versions of this
Library.)

Building a New Direct-access Message File
The prepmess executable must be available to complete the message changing process. For
information on building the prepmess executable from prepmess.f , consult the installation
guide for this product.

Once new messages have been placed in the messages.gls file, make a backup copy of the
messages.daf file. Then remove messages.daf from the current directory. Now enter the
following command:

prepmess > prepmess_output

IMSL MATH/LIBRARY Chapter 11: Utilities � 1571

A new messages.daf file is created. Edit the prepmess_output file and look near the end of
the file for the new error messages. The prepmess program processes each message through the
error message system as a validity check. There should be no FATAL error announcement within
the prepmess_output file.

Private Message Files
Users can create a private message file within their own messages. This file would generally be
used by an application that calls this Library. Follow the steps outlined above to created a private
messages.gls file. The user should then be given a copy of the prepmess executable. In the
application code, call the error_post subprogram with the new_unit/new_path optional
arguments. The new path should point to the directory in which the private messages.daf file
resides.

SHOW
Prints rank-1 or rank-2 arrays of numbers in a readable format.

Required Arguments
X — Rank-1 or rank-2 array containing the numbers to be printed. (Input)

Optional Arguments
text = CHARACTER (Input)

CHARACTER(LEN=*) string used for labeling the array.

image = buffer (Output)
CHARACTER(LEN=*) string used for an internal write buffer. With this argument
present the output is converted to characters and packed. The lines are separated by an
end-of-line sequence. The length of buffer is estimated by the line width in effect,
time the number of lines for the array.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input array; used for passing optional
data to the routine. Use the REAL(KIND(1E0)) precision for output of INTEGER
arrays. The options are as follows:

Packaged Options for SHOW
Prefix is blank Option Name Option Value

 show_significant_digits_is_4 1

 show_significant_digits_is_7 2

 show_significant_digits_is_16 3

 show_line_width_is_44 4

 show_line_width_is_72 5

 show_line_width_is_128 6

1572 � Chapter 11: Utilities IMSL MATH/LIBRARY

Packaged Options for SHOW
 show_end_of_line_sequence_is 7

 show_starting_index_is 8

 show_starting_row_index_is 9

 show_starting_col_index_is 10

iopt(IO) = show_significant_digits_is_4

iopt(IO) = show_significant_digits_is_7

iopt(IO) = show_significant_digits_is_16

These options allow more precision to be displayed. The default is 4D for each
value. The other possible choices display 7D or 16D.

iopt(IO) = show_line_width_is_44

iopt(IO) = show_line_width_is_72

iopt(IO) = show_line_width_is_128

These options allow varying the output line width. The default is 72 characters per
line. This allows output on many work stations or terminals to be read without
wrapping of lines.

iopt(IO) = show_end-of_line_sequence_is

The sequence of characters ending a line when it is placed into the internal
character buffer corresponding to the optional argument ‘IMAGE = buffer‘.
The value of iopt(IO+1)%idummy is the number of characters. These are
followed, starting at iopt(IO+2)%idummy, by the ASCII codes of the characters
themselves. The default is the single character, ASCII value 10 or New Line.

iopt(IO) = show_starting_index_is

This are used to reset the starting index for a rank-1 array to a value different from
the default value, which is 1.

iopt(IO) = show_starting_row_index_is

iopt(IO) = show_starting_col_index_is

These are used to reset the starting row and column indices to values different from
their defaults, each 1.

FORTRAN 90 Interface
Generic: CALL SHOW (X [,…])

Specific: The specific interface names are S_SHOW and D_SHOW.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1573

Example 1: Printing an Array
Array of random numbers for all the intrinsic data types are printed. For REAL(KIND(1E0))
rank-1 arrays, the number of displayed digits is reset from the default value of 4 to the value 7 and
the subscripts for the array are reset so they match their declared extent when printed. The output
is not shown.

 use show_int
 use rand_int

 implicit none

! This is Example 1 for SHOW.

 integer, parameter :: n=7, m=3
 real(kind(1e0)) s_x(-1:n), s_m(m,n)
 real(kind(1d0)) d_x(n), d_m(m,n)
 complex(kind(1e0)) c_x(n), c_m(m,n)
 complex(kind(1d0)) z_x(n),z_m(m,n)
 integer i_x(n), i_m(m,n)
 type (s_options) options(3)

! The data types printed are real(kind(1e0)), real(kind(1d0)), complex(kind(1e0)),
!complex(kind(1d0)), and INTEGER. Fill with randsom numbers
! and then print the contents, in each case with a label.
 s_x=rand(s_x); s_m=rand(s_m)
 d_x=rand(d_x); d_m=rand(d_m)
 c_x=rand(c_x); c_m=rand(c_m)
 z_x=rand(z_x); z_m=rand(z_m)
 i_x=100*rand(s_x(1:n)); i_m=100*rand(s_m)

 call show (s_x, 'Rank-1, REAL')
 call show (s_m, 'Rank-2, REAL')
 call show (d_x, 'Rank-1, DOUBLE')
 call show (d_m, 'Rank-2, DOUBLE')
 call show (c_x, 'Rank-1, COMPLEX')
 call show (c_m, 'Rank-2, COMPLEX')
 call show (z_x, 'Rank-1, DOUBLE COMPLEX')
 call show (z_m, 'Rank-2, DOUBLE COMPLEX')
 call show (i_x, 'Rank-1, INTEGER')
 call show (i_m, 'Rank-2, INTEGER')

! Show 7 digits per number and according to the
! natural or declared size of the array.
 options(1)=show_significant_digits_is_7
 options(2)=show_starting_index_is
 options(3)= -1 ! The starting value.
 call show (s_x, &
'Rank-1, REAL with 7 digits, natural indexing', IOPT=options)
 end

Output
Example 1 for SHOW is correct.

1574 � Chapter 11: Utilities IMSL MATH/LIBRARY

Description
The show routine is a generic subroutine interface to separate low-level subroutines for each data
type and array shape. Output is directed to the unit number IUNIT. That number is obtained with
the subroutine UMACH, IMSL MATH/LIBRARY User's Manual (IMSL 1994, pp. 1204�1205. Thus
the user must open this unit in the calling program if it desired to be different from the standard
output unit. If the optional argument ‘IMAGE = buffer‘ is present, the output is not sent to a
file but to a character string within buffer. These characters are available to output or be used in
the application.

Additional Examples

Example 2: Writing an Array to a Character Variable
This example prepares a rank-1 array for further processing, in this case delayed writing to the
standard output unit. The indices and the amount of precision are reset from their defaults, as in
Example 1. An end-of-line sequence of the characters CR-NL (ASCII 10,13) is used in place of
the standard ASCII 10. This is not required for writing this array, but is included for an illustration
of the option.

 use show_int
 use rand_int

 implicit none

! This is Example 2 for SHOW.
 integer, parameter :: n=7
 real(kind(1e0)) s_x(-1:n)
 type (s_options) options(7)
 CHARACTER (LEN=(72+2)*4) BUFFER
! The data types printed are real(kind(1e0)) random numbers.
 s_x=rand(s_x)

! Show 7 digits per number and according to the
! natural or declared size of the array.
! Prepare the output lines in array BUFFER.
! End each line with ASCII sequence CR-NL.
 options(1)=show_significant_digits_is_7

 options(2)=show_starting_index_is
 options(3)= -1 ! The starting value.

 options(4)=show_end_of_line_sequence_is
 options(5)= 2 ! Use 2 EOL characters.
 options(6)= 10 ! The ASCII code for CR.
 options(7)= 13 ! The ASCII code for NL.

 BUFFER= ' ' ! Blank out the buffer.

! Prepare the output in BUFFER.
 call show (s_x, &
 'Rank-1, REAL with 7 digits, natural indexing '//&

IMSL MATH/LIBRARY Chapter 11: Utilities � 1575

 'internal BUFFER, CR-NL EOLs.',&
 IMAGE=BUFFER, IOPT=options)

! Display BUFFER as a CHARACTER array. Discard blanks
! on the ends.
 WRITE(*,'(1x,A)') TRIM(BUFFER)

 end

Output
Example 2 for SHOW is correct.

Fatal and Terminal Error Messages
See the messages.gls file for error messages for show. These error messages are numbered
601�606; 611�617; 621�627; 631�636; 641�646.

WRRRN
Prints a real rectangular matrix with integer row and column labels.

Required Arguments
TITLE — Character string specifying the title. (Input)

TITLE set equal to a blank character(s) suppresses printing of the title. Use “% /”
within the title to create a new line. Long titles are automatically wrapped.

A — NRA by NCA matrix to be printed. (Input)

Optional Arguments
NRA — Number of rows. (Input)

Default: NRA = size (A,1).

NCA — Number of columns. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

ITRING — Triangle option. (Input)
Default: ITRING = 0.

1576 � Chapter 11: Utilities IMSL MATH/LIBRARY

ITRING Action

0 Full matrix is printed.

1 Upper triangle of A is printed, including the diagonal.

2 Upper triangle of A excluding the diagonal of A is printed.

�1 Lower triangle of A is printed, including the diagonal.

�2 Lower triangle of A excluding the diagonal of A is printed.

FORTRAN 90 Interface
Generic: CALL WRRRN (TITLE, A [,…])

Specific: The specific interface names are S_WRRRN and D_WRRRN for two dimensional
arrays, and S_WRRRN1D and D_WRRRN1D for one dimensional arrays.

FORTRAN 77 Interface
Single: CALL WRRRN (TITLE, NRA, NCA, A, LDA, ITRING)

Double: The double precision name is DWRRRN.

Example
The following example prints all of a 3 � 4 matrix A where aij= i + j/10.

 USE WRRRN_INT

 INTEGER ITRING, LDA, NCA, NRA
 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)
!
 INTEGER I, J
 REAL A(LDA,NCA)
!
 DO 20 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = I + J*0.1
 10 CONTINUE
 20 CONTINUE
! Write A matrix.
 CALL WRRRN (’A’, A, NRA=NRA)
 END

Output
 A
 1 2 3 4
1 1.100 1.200 1.300 1.400

IMSL MATH/LIBRARY Chapter 11: Utilities � 1577

2 2.100 2.200 2.300 2.400
3 3.100 3.200 3.300 3.400

Comments
1. A single D, E, or F format is chosen automatically in order to print 4 significant digits

for the largest element of A in absolute value. Routine WROPT (page 1591) can be used
to change the default format.

2. Horizontal centering, a method for printing large matrices, paging, printing a title on
each page, and many other options can be selected by invoking WROPT.

3. A page width of 78 characters is used. Page width and page length can be reset by
invoking PGOPT (page 1599).

4. Output is written to the unit specified by UMACH (see the Reference Material).

Description
Routine WRRRN prints a real rectangular matrix with the rows and columns labeled 1, 2, 3, and so
on. WRRRN can restrict printing to the elements of the upper or lower triangles of matrices via the
ITRING option. Generally, ITRING � 0 is used with symmetric matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For a column
vector, set NRA to the length of the array and set NCA = 1. For a row vector, set NRA = 1 and set
NCA to the length of the array. In both cases, set LDA = NRA and set ITRING = 0.

WRRRL
Print a real rectangular matrix with a given format and labels.

Required Arguments
TITLE — Character string specifying the title. (Input)

TITLE set equal to a blank character(s) suppresses printing of the title.

A — NRA by NCA matrix to be printed. (Input)

RLABEL — CHARACTER * (*) vector of labels for rows of A. (Input)
If rows are to be numbered consecutively 1, 2, �, NRA, use RLABEL(1) = ’NUMBER’. If
no row labels are desired, use RLABEL(1) = ’NONE’. Otherwise, RLABEL is a vector of
length NRA containing the labels.

CLABEL — CHARACTER * (*) vector of labels for columns of A. (Input)
If columns are to be numbered consecutively 1, 2, �, NCA, use
CLABEL(1) = ’NUMBER’. If no column labels are desired, use CLABEL(1) = ’NONE’.
Otherwise, CLABEL(1) is the heading for the row labels, and either CLABEL(2) must be

1578 � Chapter 11: Utilities IMSL MATH/LIBRARY

’NUMBER’or ’NONE’, or CLABEL must be a vector of length NCA + 1 with
CLABEL(1 + j) containing the column heading for the j-th column.

Optional Arguments
NRA — Number of rows. (Input)

Default: NRA = size (A,1).

NCA — Number of columns. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

ITRING — Triangle option. (Input)
Default: ITRING = 0.

ITRING Action

0 Full matrix is printed.

1 Upper triangle of A is printed, including the diagonal.

2 Upper triangle of A excluding the diagonal of A is printed.

�1 Lower triangle of A is printed, including the diagonal.

�2 Lower triangle of A excluding the diagonal of A is printed.

FMT — Character string containing formats. (Input)
If FMT is set to a blank character(s), the format used is specified by WROPT (page 1591).
Otherwise, FMT must contain exactly one set of parentheses and one or more edit
descriptors. For example, FMT = ’(F10.3)’ specifies this F format for the entire
matrix. FMT = ’(2E10.3, 3F10.3)’ specifies an E format for columns 1 and 2 and an
F format for columns 3, 4 and 5. If the end of FMT is encountered and if some columns
of the matrix remain, format control continues with the first format in FMT. Even
though the matrix A is real, an I format can be used to print the integer part of matrix
elements of A. The most useful formats are special formats, called the “V and W
formats,” that can be used to specify pretty formats automatically. Set FMT =
’(V10.4)’ if you want a single D, E, or F format selected automatically with field
width 10 and with 4 significant digits. Set FMT = ’(W10.4)’ if you want a single D, E,
F, or I format selected automatically with field width 10 and with 4 significant digits.
While the V format prints trailing zeroes and a trailing decimal point, the W format does
not. See Comment 4 for general descriptions of the V and W formats. FMT may contain
only D, E, F, G, I, V, or W edit descriptors, e.g., the X descriptor is not allowed.
Default: FMT = ‘ ‘.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1579

FORTRAN 90 Interface
Generic: CALL WRRRL (TITLE, A, RLABEL, CLABEL [,…])

Specific: The specific interface names are S_WRRRL and D_WRRRL for two dimensional
arrays, and S_WRRRL1D and D_WRRRL1D for one dimensional arrays.

FORTRAN 77 Interface
Single: CALL WRRRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL,

 CLABEL)

Double: The double precision name is DWRRRL.

Example

The following example prints all of a 3 � 4 matrix A where aij = (i + j/10)10j��.
 USE WRRRL_INT
 INTEGER ITRING, LDA, NCA, NRA
 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)
!
 INTEGER I, J
 REAL A(LDA,NCA)
 CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5
!
 DATA FMT/’(W10.6)’/
 DATA CLABEL/’ ’, ’Col 1’, ’Col 2’, ’Col 3’, ’Col 4’/
 DATA RLABEL/’Row 1’, ’Row 2’, ’Row 3’/
!
 DO 20 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = (I+J*0.1)*10.0**(J-3)
 10 CONTINUE
 20 CONTINUE
! Write A matrix.
 CALL WRRRL (’A’, A, RLABEL, CLABEL, NRA=NRA, FMT=FMT)
 END

Output
 A
 Col 1 Col 2 Col 3 Col 4
Row 1 0.011 0.120 1.300 14.000
Row 2 0.021 0.220 2.300 24.000
Row 3 0.031 0.320 3.300 34.000

Comments
1. Workspace may be explicitly provided, if desired, by use of W2RRL/DW2RRL. The

reference is:

1580 � Chapter 11: Utilities IMSL MATH/LIBRARY

CALL W2RRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT,
 RLABEL, CLABEL, CHWK)

The additional argument is:

CHWK — CHARACTER * 10 work vector of length NCA. This workspace is referenced
only if all three conditions indicated at the beginning of this comment are met.
Otherwise, CHWK is not referenced and can be a CHARACTER * 10 vector of
length one.

2. The output appears in the following form:

TITLE
CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4)

RLABEL(1) Xxxxx Xxxxx Xxxxx

RLABEL(2) Xxxxx Xxxxx Xxxxx

3. Use “% /” within titles or labels to create a new line. Long titles or labels are
automatically wrapped.

4. For printing numbers whose magnitudes are unknown, the G format in FORTRAN is
useful; however, the decimal points will generally not be aligned when printing a
column of numbers. The V and W formats are special formats used by this routine to
select a D, E, F, or I format so that the decimal points will be aligned. The V and W
formats are specified as Vn.d and Wn.d. Here, n is the field width and d is the number
of significant digits generally printed. Valid values for n are 3, 4,�, 40. Valid values
for d are 1, 2, �, n � 2. If FMT specifies one format and that format is a V or W format,
all elements of the matrix A are examined to determine one FORTRAN format for
printing. If FMT specifies more than one format, FORTRAN formats are generated
separately from each V or W format.

5. A page width of 78 characters is used. Page width and page length can be reset by
invoking PGOPT (page 1599).

6. Horizontal centering, method for printing large matrices, paging, method for printing
NaN (not a number), printing a title on each page, and many other options can be
selected by invoking WROPT (page 1591).

7. Output is written to the unit specified by UMACH (see Reference Material).

Description
Routine WRRRL prints a real rectangular matrix (stored in A) with row and column labels
(specified by RLABEL and CLABEL, respectively) according to a given format (stored in FMT).
WRRRL can restrict printing to the elements of upper or lower triangles of matrices via the
ITRING option. Generally, ITRING � 0 is used with symmetric matrices.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1581

In addition, one-dimensional arrays can be printed as column or row vectors. For a column
vector, set NRA to the length of the array and set NCA = 1. For a row vector, set NRA = 1 and set
NCA to the length of the array. In both cases, set LDA = NRA, and set ITRING = 0.

WRIRN
Prints an integer rectangular matrix with integer row and column labels.

Required Arguments
TITLE — Character string specifying the title. (Input)

TITLE set equal to a blank character(s) suppresses printing of the title. Use “% /”
within the title to create a new line. Long titles are automatically wrapped.

MAT — NRMAT by NCMAT matrix to be printed. (Input)

Optional Arguments
NRMAT — Number of rows. (Input)

Default: NRMAT = size (MAT,1).

NCMAT — Number of columns. (Input)
Default: NCMAT = size (MAT,2).

LDMAT — Leading dimension of MAT exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDMAT = size (MAT,1).

ITRING — Triangle option. (Input)
Default: ITRING = 0.

ITRING Action

0 Full matrix is printed.

1 Upper triangle of MAT is printed, including the diagonal.

2 Upper triangle of MAT excluding the diagonal of MAT is printed.

�1 Lower triangle of MAT is printed, including the diagonal.

�2 Lower triangle of MAT excluding the diagonal of MAT is printed.

FORTRAN 90 Interface
Generic: CALL WRIRN (TITLE, MAT [,…])

1582 � Chapter 11: Utilities IMSL MATH/LIBRARY

Specific: The specific interface name is S_WRIRN.

FORTRAN 77 Interface
Single: CALL WRIRN (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING)

Example
The following example prints all of a 3 � 4 matrix A = MAT where aij = 10i + j.

 USE WRIRN_INT
 INTEGER ITRING, LDMAT, NCMAT, NRMAT
 PARAMETER (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3)
!
 INTEGER I, J, MAT(LDMAT,NCMAT)
!
 DO 20 I=1, NRMAT
 DO 10 J=1, NCMAT
 MAT(I,J) = I*10 + J
 10 CONTINUE
 20 CONTINUE
! Write MAT matrix.
 CALL WRIRN (’MAT’, MAT, NRMAT=NRMAT)
 END

Output
 MAT
 1 2 3 4
1 11 12 13 14
2 21 22 23 24
3 31 32 33 34

Comments
1. All the entries in MAT are printed using a single I format. The field width is determined

by the largest absolute entry.

2. Horizontal centering, a method for printing large matrices, paging, printing a title on
each page, and many other options can be selected by invoking WROPT (page 1591).

3. A page width of 78 characters is used. Page width and page length can be reset by
invoking PGOPT (page 1599).

4. Output is written to the unit specified by UMACH (see Reference Material).

Description
Routine WRIRN prints an integer rectangular matrix with the rows and columns labeled 1, 2, 3,
and so on. WRIRN can restrict printing to elements of the upper and lower triangles of matrices
via the ITRING option. Generally, ITRING � 0 is used with symmetric matrices.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1583

In addition, one-dimensional arrays can be printed as column or row vectors. For a column
vector, set NRMAT to the length of the array and set NCMAT = 1. For a row vector, set NRMAT = 1
and set NCMAT to the length of the array. In both cases, set LDMAT = NRMAT and set ITRING = 0:

WRIRL
Print an integer rectangular matrix with a given format and labels.

Required Arguments
TITLE — Character string specifying the title. (Input)

TITLE set equal to a blank character(s) suppresses printing of the title.

MAT — NRMAT by NCMAT matrix to be printed. (Input)

RLABEL — CHARACTER * (*) vector of labels for rows of MAT. (Input)
If rows are to be numbered consecutively 1, 2, �, NRMAT, use
RLABEL(1) = ’NUMBER’. If no row labels are desired, use RLABEL(1) = ’NONE’.
Otherwise, RLABEL is a vector of length NRMAT containing the labels.

CLABEL — CHARACTER * (*) vector of labels for columns of MAT. (Input)
If columns are to be numbered consecutively 1, 2, �, NCMAT, use
CLABEL(1) = ’NUMBER’. If no column labels are desired, use CLABEL(1) = ’NONE’.
Otherwise, CLABEL(1) is the heading for the row labels, and either CLABEL(2) must be
’NUMBER’ or ’NONE’, or CLABEL must be a vector of length

NCMAT + 1 with CLABEL(1 + j) containing the column heading for the j-th column.

Optional Arguments
NRMAT — Number of rows. (Input)

Default: NRMAT = size (MAT,1).

NCMAT — Number of columns. (Input)
Default: NCMAT = size (MAT,2).

LDMAT — Leading dimension of MAT exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDMAT = size (MAT,1).

ITRING — Triangle option. (Input)
Default: ITRING = 0.

1584 � Chapter 11: Utilities IMSL MATH/LIBRARY

ITRING Action

0 Full matrix is printed.

1 Upper triangle of MAT is printed, including the diagonal.

2 Upper triangle of MAT excluding the diagonal of MAT is printed.

�1 Lower triangle of MAT is printed, including the diagonal.

�2 Lower triangle of MAT excluding the diagonal of MAT is printed.

FMT — Character string containing formats. (Input)
 If FMT is set to a blank character(s), the format used is a single I format with field
width determined by the largest absolute entry. Otherwise, FMT must contain exactly
one set of parentheses and one or more I edit descriptors. For example, FMT =
’(I10)’ specifies this I format for the entire matrix. FMT = ’(2I10, 3I5)’
specifies an I10 format for columns 1 and 2 and an I5 format for columns 3, 4 and 5.
If the end of FMT is encountered and if some columns of the matrix remain, format
control continues with the first format in FMT. FMT may only contain the I edit
descriptor, e.g., the X edit descriptor is not allowed.
Default: FMT = ‘ ‘.

FORTRAN 90 Interface
Generic: CALL WRIRL (TITLE, MAT, RLABEL, CLABEL [,…])

Specific: The specific interface name is S_WRIRL.

FORTRAN 77 Interface
Single: CALL WRIRL (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING, FMT,

 RLABEL, CLABEL)

Example
The following example prints all of a 3 � 4 matrix A = MAT where aij= 10i + j.

 USE WRIRL_INT
 INTEGER ITRING, LDMAT, NCMAT, NRMAT

 PARAMETER (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3)
!
 INTEGER I, J, MAT(LDMAT,NCMAT)
 CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5
!
 DATA FMT/’(I2)’/
 DATA CLABEL/’ ’, ’Col 1’, ’Col 2’, ’Col 3’, ’Col 4’/
 DATA RLABEL/’Row 1’, ’Row 2’, ’Row 3’/

IMSL MATH/LIBRARY Chapter 11: Utilities � 1585

!
 DO 20 I=1, NRMAT
 DO 10 J=1, NCMAT
 MAT(I,J) = I*10 + J
 10 CONTINUE
 20 CONTINUE
! Write MAT matrix.
 CALL WRIRL (’MAT’, MAT, RLABEL, CLABEL, NRMAT=NRMAT)
 END

Output
 MAT
 Col 1 Col 2 Col 3 Col 4
Row 1 11 12 13 14
Row 2 21 22 23 24
Row 3 31 32 33 34

Comments
1. The output appears in the following form:

TITLE
CLABEL(1) CLABEL(2) CALBEL(3) CLABEL 4)
RLABEL(1) Xxxxx xxxxx xxxxx
RLABEL(2) Xxxxx xxxxx xxxxx

2. Use “% /” within titles or labels to create a new line. Long titles or labels are
automatically wrapped.

3. A page width of 78 characters is used. Page width and page length can be reset by
invoking PGOPT (page 1599).

4. Horizontal centering, a method for printing large matrices, paging, printing a title on
each page, and many other options can be selected by invoking WROPT (page 1591).

5. Output is written to the unit specified by UMACH (see the Reference Material).

Description
Routine WRIRL prints an integer rectangular matrix (stored in MAT) with row and column labels
(specified by RLABEL and CLABEL, respectively), according to a given format (stored in FMT).
WRIRL can restrict printing to the elements of upper or lower triangles of matrices via the
ITRING option. Generally, ITRING � 0 is used with symmetric matrices. In addition, one-
dimensional arrays can be printed as column or row vectors. For a column vector, set NRMAT to
the length of the array and set NCMAT = 1. For a row vector, set NRMAT = 1 and set NCMAT to the
length of the array. In both cases, set LDMAT = NRMAT, and set ITRING = 0.

1586 � Chapter 11: Utilities IMSL MATH/LIBRARY

WRCRN
Prints a complex rectangular matrix with integer row and column labels.

Required Arguments
TITLE — Character string specifying the title. (Input)

TITLE set equal to a blank character(s) suppresses printing of the title. Use “% /”
within the title to create a new line. Long titles are automatically wrapped.

A — Complex NRA by NCA matrix to be printed. (Input)

Optional Arguments
NRA — Number of rows. (Input)

Default: NRA = size (A,1).

NCA — Number of columns. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

ITRING — Triangle option. (Input)
Default: ITRING = 0.

ITRING Action

 0 Full matrix is printed.

 1 Upper triangle of A is printed, including the diagonal.

 2 Upper triangle of A excluding the diagonal of A is printed.

�1 Lower triangle of A is printed, including the diagonal.

�2 Lower triangle of A excluding the diagonal of A is printed.

FORTRAN 90 Interface
Generic: CALL WRCRN (TITLE, A [,…])

Specific: The specific interface names are S_WRCRN and D_WRCRN for two dimensional
arrays, and S_WRCRN1D and D_WRCRN1D for one dimensional arrays.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1587

FORTRAN 77 Interface
Single: CALL WRCRN (TITLE, NRA, NCA, A, LDA, ITRING)

Double: The double precision name is DWRCRN.

Example
This example prints all of a 3 � 4 complex matrix A with elements

, where = 1mna m ni i� � �

 USE WRCRN_INT
 INTEGER ITRING, LDA, NCA, NRA
 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)
!
 INTEGER I, J
 COMPLEX A(LDA,NCA), CMPLX
 INTRINSIC CMPLX
!
 DO 20 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = CMPLX(I,J)
 10 CONTINUE
 20 CONTINUE
! Write A matrix.
 CALL WRCRN (’A’, A, NRA=NRA)
 END

Output
 A
 1 2 3 4
1 (1.000, 1.000) (1.000, 2.000) (1.000, 3.000) (1.000, 4.000)
2 (2.000, 1.000) (2.000, 2.000) (2.000, 3.000) (2.000, 4.000)
3 (3.000, 1.000) (3.000, 2.000) (3.000, 3.000) (3.000, 4.000)

Comments
1. A single D, E, or F format is chosen automatically in order to print 4 significant digits

for the largest real or imaginary part in absolute value of all the complex numbers in A.
Routine WROPT (page 1591) can be used to change the default format.

2. Horizontal centering, a method for printing large matrices, paging, method for printing
NaN (not a number), and printing a title on each page can be selected by invoking
WROPT.

3. A page width of 78 characters is used. Page width and page length can be reset by
invoking subroutine PGOPT (page 1599).

4. Output is written to the unit specified by UMACH (see Reference Material).

1588 � Chapter 11: Utilities IMSL MATH/LIBRARY

Description
Routine WRCRN prints a complex rectangular matrix with the rows and columns labeled 1, 2, 3,
and so on. WRCRN can restrict printing to the elements of the upper or lower triangles of matrices
via the ITRING option. Generally, ITRING � 0 is used with Hermitian matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For a column
vector, set NRA to the length of the array, and set NCA = 1. For a row vector, set NRA = 1, and set
NCA to the length of the array. In both cases, set LDA = NRA, and set ITRING = 0.

WRCRL
Prints a complex rectangular matrix with a given format and labels.

Required Arguments
TITLE — Character string specifying the title. (Input)

TITLE set equal to a blank character(s) suppresses printing of the title.

A — Complex NRA by NCA matrix to be printed. (Input)

RLABEL — CHARACTER * (*) vector of labels for rows of A. (Input)
If rows are to be numbered consecutively 1, 2, �, NRA, use RLABEL(1) = ’NUMBER’. If
no row labels are desired, use RLABEL(1) = ’NONE’. Otherwise, RLABEL is a vector of
length NRA containing the labels.

CLABEL — CHARACTER * (*) vector of labels for columns of A. (Input)
If columns are to be numbered consecutively 1, 2, �, NCA, use CLABEL(1) =
’NUMBER’. If no column labels are desired, use CLABEL(1) = ’NONE’. Otherwise,
CLABEL(1) is the heading for the row labels, and either CLABEL(2) must be ’NUMBER’
or ’NONE’, or CLABEL must be a vector of length NCA + 1 with CLABEL(1 + j)
containing the column heading for the j-th column.

Optional Arguments
NRA — Number of rows. (Input)

Default: NRA = size (A,1).

NCA — Number of columns. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

ITRING — Triangle option. (Input)
Default: ITRING = 0.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1589

ITRING Action

0 Full matrix is printed.

1 Upper triangle of A is printed, including the diagonal.

2 Upper triangle of A excluding the diagonal of A is printed.

�1 Lower triangle of A is printed, including the diagonal.

�2 Lower triangle of A excluding the diagonal of A is printed.

FMT — Character string containing formats. (Input)
 If FMT is set to a blank character(s), the format used is specified by WROPT
(page 1591). Otherwise, FMT must contain exactly one set of parentheses and
one or more edit descriptors. Because a complex number consists of two parts (a real
and an imaginary part), two edit descriptors are used for printing a single complex
number. FMT = ’(E10.3, F10.3)’ specifies an E format for the real part and an
F format for the imaginary part. FMT = ’(F10.3)’ uses an F
format for both the real and imaginary parts. If the end of FMT is encountered
and if all columns of the matrix have not been printed, format control continues with
the first format in FMT. Even though the matrix A is complex, an I format can be used
to print the integer parts of the real and imaginary components of each complex
number. The most useful formats are special formats, called the
“V and W formats,” that can be used to specify pretty formats automatically. Set
FMT = ’(V10.4)’ if you want a single D, E, or F format selected automatially with
field width 10 and with 4 significant digits. Set FMT = ’(W10.4)’ if you want a single
D, E, F, or I format selected automatically with field width 10 and with 4 significant
digits. While the V format prints trailing zeroes and a trailing decimal point, the W
format does not. See Comment 4 for general descriptions of the V and W formats. FMT
may contain only D, E, F, G, I, V, or W edit descriptors, e.g., the X descriptor is not
allowed.
Default: FMT = ‘ ‘.

FORTRAN 90 Interface
Generic: CALL WRCRL (TITLE, A, RLABEL, CLABEL[,…])

Specific: The specific interface names are S_WRCRL and D_WRCRL for two dimensional
arrays, and S_WRCRL1D and D_WRCRL1D for one dimensional arrays.

FORTRAN 77 Interface
Single: CALL WRCRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL,

 CLABEL)

Double: The double precision name is DWRCRL.

1590 � Chapter 11: Utilities IMSL MATH/LIBRARY

Example
The following example prints all of a 3 � 4 matrix A with elements

� �.123456 , where = 1mna m ni i� � � �

 USE WRCRL_INT
 INTEGER ITRING, LDA, NCA, NRA
 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)
!
 INTEGER I, J
 COMPLEX A(LDA,NCA), CMPLX
 CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5
 INTRINSIC CMPLX
!
 DATA FMT/’(W12.6)’/
 DATA CLABEL/’ ’, ’Col 1’, ’Col 2’, ’Col 3’, ’Col 4’/
 DATA RLABEL/’Row 1’, ’Row 2’, ’Row 3’/
!
 DO 20 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = CMPLX(I,J) + 0.123456
 10 CONTINUE
 20 CONTINUE
! Write A matrix.
 CALL WRCRL (’A’, A, RLABEL, CLABEL, NRA=NRA, FMT=FMT)
 END

Output
 A
 Col 1 Col 2
Row 1 (1.12346, 1.00000) (1.12346, 2.00000)
Row 2 (2.12346, 1.00000) (2.12346, 2.00000)
Row 3 (3.12346, 1.00000) (3.12346, 2.00000)

 Col 3 Col 4
Row 1 (1.12346, 3.00000) (1.12346, 4.00000)
Row 2 (2.12346, 3.00000) (2.12346, 4.00000)
Row 3 (3.12346, 3.00000) (3.12346, 4.00000)

Comments
1. Workspace may be explicitly provided, if desired, by use of W2CRL/DW2CRL. The

reference is:

CALL W2CRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT,
 RLABEL, CLABEL, CHWK)

The additional argument is:

CHWK — CHARACTER * 10 work vector of length 2 * NCA. This workspace is
referenced only if all three conditions indicated at the beginning of this comment
are met. Otherwise, CHWK is not referenced and can be a CHARACTER * 10 vector
of length one.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1591

2. The output appears in the following form:

 TITLE
CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4)

RLABEL(1) (xxxxx,xxxxx) (xxxxx,xxxxx) (xxxxx,xxxxx)

RLABEL(2) (xxxxx,xxxxx) (xxxxx,xxxxx) (xxxxx,xxxxx)

3. Use “% /” within titles or labels to create a new line. Long titles or labels are
automatically wrapped.

4. For printing numbers whose magnitudes are unknown, the G format in FORTRAN is
useful; however, the decimal points will generally not be aligned when printing a
column of numbers. The V and W formats are special formats used by this routine to
select a D, E, F, or I format so that the decimal points will be aligned. The V and W
formats are specified as Vn.d and Wn.d. Here, n is the field width, and d is the number
of significant digits generally printed. Valid values for n are 3, 4, �, 40. Valid values
for d are 1, 2, �, n � 2. If FMT specifies one format and that format is a V or W format,
all elements of the matrix A are examined to determine one FORTRAN format for
printing. If FMT specifies more than one format, FORTRAN formats are generated
separately from each V or W format.

5. A page width of 78 characters is used. Page width and page length can be reset by
invoking PGOPT (page 1599).

6. Horizontal centering, a method for printing large matrices, paging, method for printing
NaN (not a number), printing a title on each page, and may other options can be
selected by invoking WROPT (page 1591).

7. Output is written to the unit specified by UMACH (see the Reference Material).

Description
Routine WRCRL prints a complex rectangular matrix (stored in A) with row and column labels
(specified by RLABEL and CLABEL, respectively) according to a given format (stored in FMT).
Routine WRCRL can restrict printing to the elements of upper or lower triangles of matrices via
the ITRING option. Generally, the ITRING � 0 is used with Hermitian matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For a column
vector, set NRA to the length of the array, and set NCA = 1. For a row vector, set NRA = 1, and set
NCA to the length of the array. In both cases, set LDA = NRA, and set ITRING = 0.

WROPT
Sets or retrieves an option for printing a matrix.

Required Arguments
IOPT — Indicator of option type. (Input)

1592 � Chapter 11: Utilities IMSL MATH/LIBRARY

IOPT Description of Option Type

�1, 1 Horizontal centering or left justification of matrix to be printed

�2, 2 Method for printing large matrices

�3, 3 Paging

�4, 4 Method for printing NaN (not a number), and negative and positive
 machine infinity.

�5, 5 Title option

�6, 6 Default format for real and complex numbers

�7, 7 Spacing between columns

�8, 8 Maximum horizontal space reserved for row labels

�9, 9 Indentation of continuation lines for row labels

�10, 10 Hot zone option for determining line breaks for row labels

�11, 11 Maximum horizontal space reserved for column labels

�12, 12 Hot zone option for determining line breaks for column labels

�13, 13 Hot zone option for determining line breaks for titles

�14, 14 Option for the label that appears in the upper left hand corner that can be
 used as a heading for the row numbers or a label for the column headings
 for WR**N routines

�15, 15 Option for skipping a line between invocations of WR**N routines, provided
 a new page is not to be issued

�16, 16 Option for vertical alignment of the matrix values relative to the associated
 row labels that occupy more than one line

0 Reset all the current settings saved in internal variables back to their last
 setting made with an invocation of WROPT with ISCOPE = 1. (This option is
 used internally by routines printing a matrix and is not useful otherwise.)

If IOPT is negative, ISETNG and ISCOPE are input and are saved in internal variables. If IOPT
is positive, ISETNG is output and receives the currently active setting for the option

IMSL MATH/LIBRARY Chapter 11: Utilities � 1593

(if ISCOPE = 0) or the last global setting for the option (if ISCOPE = 1). If IOPT = 0, ISETNG
and ISCOPE are not referenced.

ISETNG — Setting for option selected by IOPT. (Input, if IOPT is negative; output, if IOPT
is positive; not referenced if IOPT = 0)

IOPT ISETNG Meaning
�1, 1 0 Matrix is left justified
 1 Matrix is centered horizontally on page
�2, 2 0 A complete row is printed before the next row is

printed. Wrapping is used if necessary.
 M Here, m is a positive integer. Let n be the

maximum number of columns beginning with
column 1 that fit across the page (as determined by
the widths of the printing formats). First, columns
1 through n are printed for rows 1 through m. Let
n� be the maximum number of columns
beginning with column n + 1 that fit across the
page. Second, columns n + 1 through n + n� are
printed for rows 1 through m. This continues until
the last columns are printed for rows 1 through m.
Printing continues in this fashion for the next m
rows, etc.

�3, 3 �2 Printing begins on the next line, and no paging
occurs.

 �1 Paging is on. Every invocation of a WR*** routine
begins on a new page, and paging occurs within
each invocation as is needed

 0 Paging is on. The first invocation of a WR***
routine begins on a new page, and subsequent
paging occurs as is needed. With this option, every
invocation of a WR*** routine ends with a call to
WROPT to reset this option to k, a positive integer
giving the number of lines printed on the current
page.

1594 � Chapter 11: Utilities IMSL MATH/LIBRARY

 K Here, k is a positive integer. Paging is on, and k
lines have been printed on the current page. If k is
less than the page length IPAGE (see PGOPT,
page 1599), then IPAGE � k lines are printed
before a new page instruction is issued. If k is
greater than or equal to IPAGE, then the first
invocation of a WR*** routine begins on a new
page. In any case, subsequent paging occurs as is
needed. With this option, every invocation of a
WR*** routine ends with a call to WROPT to reset
the value of k.

�4, 4 0 NaN is printed as a series of decimal points,
negative machine infinity is printed as a series of
minus signs, and positive machine infinity is
printed as a series of plus signs.

 1 NaN is printed as a series of blank characters,
negative machine infinity is printed as a series of
minus signs, and positive machine infinity is
printed as a series of plus signs.

 2 NaN is printed as “NaN,” negative machine
infinity is printed as “-Inf” and positive machine
infinity is printed as “Inf.”

 3 NaN is printed as a series of blank characters,
negative machine infinity is printed as “-Inf,” and
positive machine infinity is printed as “Inf.”

�5, 5 0 Title appears only on first page.
 1 Title appears on the first page and all continuation

pages.
�6, 6 0 Format is (W10.4). See Comment 2.
 1 Format is (W12.6). See Comment 2.
 2 Format is (1PE12.5).
 3 Format is Vn.4 where the field width n is

determined. See Comment 2.
 4 Format is Vn.6 where the field width n is determined.

Comment 2.
 5 Format is 1PEn.d where n = d + 7, and d + 1 is the

maximum number of significant digits.
�7, 7 K Number of characters left blank between columns.

k must be between 0 and 5, inclusively.
�8, 8 K� Maximum width (in characters) reserved for row

labels. K� = 0 means use the default.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1595

�9, 9 K� Number of characters used to indent continuation
lines for row labels. k� must be between 0 and 10,
inclusively.

�10, 10 K� Width (in characters) of the hot zone where line
breaks in row labels can occur. k� = 0 means use
the default. k� must not exceed 50.

�11, 11 K� Maximum width (in characters) reserved for
column labels. k� = 0 means use the default.

�12, 12 K� Width (in characters) of the hot zone where line
breaks in column labels can occur. k� = 0 means
use the default. k� must not exceed 50.

�13, 13 K� Width (in characters) of the hot zone where line
breaks in titles can occur. k� must be between 1
and 50, inclusively.

�14 0 There is no label in the upper left hand corner.
 1 The label in the upper left hand corner is

“Component” if a row vector or column vector is
printed; the label is “Row/Column” if both the
number of rows and columns are greater than one;
otherwise, there is no label.

�15 0 A blank line is printed on each invocation of a
WR**N routine before the matrix title provided a
new page is not to be issued.

 1 A blank line is not printed on each invocation of a
WR**N routine before the matrix title.

�16, 16 0 The matrix values are aligned vertically with the
last line of the associated row label for the case
IOPT = 2 and ISET is positive.

 1 The matrix values are aligned vertically with the
first line of the associated row label.

ISCOPE — Indicator of the scope of the option. (Input if IOPT is nonzero; not referenced if
IOPT = 0)

ISCOPE Action

0 Setting is temporarily active for the next invocation of a WR*** matrix
 printing routine.

1 Setting is active until it is changed by another invocation of WROPT.

FORTRAN 90 Interface
Generic: CALL WROPT (IOPT, ISETNG, ISCOPE)

1596 � Chapter 11: Utilities IMSL MATH/LIBRARY

Specific: The specific interface name is WROPT.

FORTRAN 77 Interface
Single: CALL WROPT (IOPT, ISETNG, ISCOPE)

Example
The following example illustrates the effect of WROPT when printing a 3 � 4 real matrix A with
WRRRN (page 1553) where aij = i + j/10. The first call to WROPT sets horizontal printing so that
the matrix is first printed horizontally centered on the page. In the next invocation of WRRRN, the
left-justification option has been set via routine WROPT so the matrix is left justified when
printed. Finally, because the scope of left justification was only for the next call to a printing
routine, the last call to WRRRN results in horizontally centered printing.

 USE WROPT_INT
 USE WRRRN_INT
 INTEGER ITRING, LDA, NCA, NRA
 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)
!
 INTEGER I, IOPT, ISCOPE, ISETNG, J
 REAL A(LDA,NCA)
!
 DO 20 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = I + J*0.1
 10 CONTINUE
 20 CONTINUE
! Activate centering option.
! Scope is global.
 IOPT = -1
 ISETNG = 1
 ISCOPE = 1
!
 CALL WROPT (IOPT, ISETNG, ISCOPE)
! Write A matrix.
 CALL WRRRN (’A’, A, NRA=NRA)
! Activate left justification.
! Scope is local.
 IOPT = -1
 ISETNG = 0
 ISCOPE = 0
 CALL WROPT (IOPT, ISETNG, ISCOPE)
 CALL WRRRN (’A’, A, NRA=NRA)
 CALL WRRRN (’A’, A, NRA=NRA)
 END

Output
 A
 1 2 3 4
 1 1.100 1.200 1.300 1.400
 2 2.100 2.200 2.300 2.400

IMSL MATH/LIBRARY Chapter 11: Utilities � 1597

 3 3.100 3.200 3.300 3.400

 A
 1 2 3 4
1 1.100 1.200 1.300 1.400
2 2.100 2.200 2.300 2.400
3 3.100 3.200 3.300 3.400

 A
 1 2 3 4
 1 1.100 1.200 1.300 1.400
 2 2.100 2.200 2.300 2.400
 3 3.100 3.200 3.300 3.400

Comments
1. This program can be invoked repeatedly before using a WR*** routine to print a matrix.

The matrix printing routines retrieve these settings to determine the printing options. It
is not necessary to call WROPT if a default value of a printing option is desired. The
defaults are as follows.

IOPT Default
Value for
ISET

Meaning

1 0 Left justified
2 1000000 Number lines before wrapping
3 �2 No paging
4 2 NaN is printed as “NaN,” negative machine

infinity is printed as “-Inf” and positive
machine infinity is printed as “Inf.”

5 0 Title only on first page.
6 3 Default format is Vn.4.
7 2 2 spaces between columns.
8 0 Maximum row label width MAXRLW = 2 *

IPAGEW/3 if matrix has one column;
MAXRLW = IPAGEW/4 otherwise.

9 3 3 character indentation of row labels
continued beyond one line.

10 0 Width of row label hot zone is MAXRLW/3
characters.

1598 � Chapter 11: Utilities IMSL MATH/LIBRARY

11 0 Maximum column label width
MAXCLW = min{max (NW + NW/2, 15), 40}
for integer and real matrices, where NW is
the field width for the format corresponding
to the particular column.
MAXCLW = min{max(NW + NW/2, 15), 83} for
complex matrices, where NW is the sum of
the two field widths for the formats
corresponding to the particular column plus
3.

12 0 Width of column label hot zone is
MAXCLW/3 characters.

13 10 Width of hot zone for titles is 10 characters.
14 0 There is no label in the upper left hand

corner.
15 0 Blank line is printed.
16 0 The matrix values are aligned vertically

with the last line of the associated row label.

For IOPT = 8, the default depends on the current value for the page width, IPAGEW (see
PGOPT, page 1599).

2. The V and W formats are special formats that can be used to select a D, E, F, or I format
so that the decimal points will be aligned. The V and W formats are specified as Vn.d
and Wn.d. Here, n is the field width and d is the number of significant digits generally
printed. Valid values for n are 3, 4, �, 40. Valid values for d are 1, 2, �,
n � 2. While the V format prints trailing zeroes and a trailing decimal point, the W
format does not.

Description
Routine WROPT allows the user to set or retrieve an option for printing a matrix. The options
controlled by WROPT include the following: horizontal centering, a method for printing large
matrices, paging, method for printing NaN (not a number) and positive and negative machine
infinities, printing titles, default formats for numbers, spacing between columns, maximum
widths reserved for row and column labels, indentation of row labels that continue beyond one
line, widths of hot zones for breaking of labels and titles, the default heading for row labels,
whether to print a blank line between invocations of routines, and vertical alignment of matrix
entries with respect to row labels continued beyond one
line. (NaN and positive and negative machine infinities can be retrieved by AMACH and DMACH
that are documented in the section “Machine-Dependent Constants” in the Reference Material.)
Options can be set globally

(ISCOPE = 1) or temporarily for the next call to a printing routine
(ISCOPE = 0).

IMSL MATH/LIBRARY Chapter 11: Utilities � 1599

PGOPT
Sets or retrieves page width and length for printing.

Required Arguments
IOPT — Page attribute option. (Input)

IOPT Description of Attribute

�1, 1 Page width.

�2, 2 Page length.

Negative values of IOPT indicate the setting IPAGE is input. Positive values

of IOPT indicate the setting IPAGE is output.

IPAGE — Value of page attribute. (Input, if IOPT is negative; output, if IOPT is positive.)

IOPT Description of Attribute Settings for IPAGE

�1, 1 Page width (in characters) 10, 11, �

�2, 2 Page length (in lines) 10, 11, �

FORTRAN 90 Interface
Generic: CALL PGOPT (IOPT, IPAGE)

Specific: The specific interface name is PGOPT.

FORTRAN 77 Interface
Single: CALL PGOPT (IOPT, IPAGE)

Example
The following example illustrates the use of PGOPT to set the page width at 20 characters.
Routine WRRRN (page 1553) is then used to print a 3 � 4 matrix A where aij= i + j/10.

 USE PGOPT_INT
 USE WRRRN_INT
 INTEGER ITRING, LDA, NCA, NRA
 PARAMETER (ITRING=0, LDA=3, NCA=4, NRA=3)
!
 INTEGER I, IOPT, IPAGE, J
 REAL A(LDA,NCA)

1600 � Chapter 11: Utilities IMSL MATH/LIBRARY

!
 DO 20 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = I + J*0.1
 10 CONTINUE
 20 CONTINUE
! Set page width.
 IOPT = -1
 IPAGE = 20
 CALL PGOPT (IOPT, IPAGE)
! Print the matrix A.
 CALL WRRRN (’A’, A)
 END

Output
 A
 1 2
1 1.100 1.200
2 2.100 2.200
3 3.100 3.200

 3 4
1 1.300 1.400
2 2.300 2.400
3 3.300 3.400

Description
Routine PGOPT is used to set or retrieve the page width or the page length for routines that
perform printing.

PERMU
Rearranges the elements of an array as specified by a permutation.

Required Arguments
X — Real vector of length N containing the array to be permuted. (Input)

IPERMU — Integer vector of length N containing a permutation
IPERMU(1), �, IPERMU(N) of the integers 1, �, N. (Input)

XPERMU — Real vector of length N containing the array X permuted. (Output)
If X is not needed, X and XPERMU can share the same storage locations.

Optional Arguments
N — Length of the arrays X and XPERMU. (Input)

Default: N = size (IPERMU,1).

IMSL MATH/LIBRARY Chapter 11: Utilities � 1601

IPATH — Integer flag. (Input)
Default: IPATH = 1.
IPATH = 1 means IPERMU represents a forward permutation, i.e., X(IPERMU(I)) is
moved to XPERMU(I). IPATH = 2 means IPERMU represents a backward permutation,
i.e., X(I) is moved to XPERMU(IPERMU(I)).

FORTRAN 90 Interface
Generic: CALL PERMU (X, IPERMU, XPERMU [,…])

Specific: The specific interface names are S_PERMU and D_PERMU.

FORTRAN 77 Interface
Single: CALL PERMU (N, X, IPERMU, IPATH, XPERMU)

Double: The double precision name is DPERMU.

Example
This example rearranges the array X using IPERMU; forward permutation is performed.

 USE PERMU_INT
 USE UMACH_INT
! Declare variables
 INTEGER IPATH, N
 PARAMETER (IPATH=1, N=4)
!
 INTEGER IPERMU(N), J, NOUT
 REAL X(N), XPERMU(N)
! Set values for X, IPERMU
!
! X = (5.0 6.0 1.0 4.0)
! IPERMU = (3 1 4 2)
!
 DATA X/5.0, 6.0, 1.0, 4.0/, IPERMU/3, 1, 4, 2/
! Permute X into XPERMU
 CALL PERMU (X, IPERMU, XPERMU)
! Get output unit number
 CALL UMACH (2, NOUT)
! Print results
 WRITE (NOUT,99999) (XPERMU(J),J=1,N)
!
99999 FORMAT (’ The output vector is:’, /, 10(1X,F10.2))
 END

Output
The Output vector is:
1.00 5.00 4.00 6.00

1602 � Chapter 11: Utilities IMSL MATH/LIBRARY

Description
Routine PERMU rearranges the elements of an array according to a permutation vector. It has the
option to do both forward and backward permutations.

PERMA
Permutes the rows or columns of a matrix.

Required Arguments
A — NRA by NCA matrix to be permuted. (Input)

IPERMU — Vector of length K containing a permutation IPERMU(1), �, IPERMU(K) of the
integers 1, �, K where K = NRA if the rows of A are to be permuted and K = NCA if the
columns of A are to be permuted. (Input)

APER — NRA by NCA matrix containing the permuted matrix. (Output)
If A is not needed, A and APER can share the same storage locations.

Optional Arguments
NRA — Number of rows. (Input)

Default: NRA = size (A,1).

NCA — Number of columns. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Option parameter. (Input)
IPATH = 1 means the rows of A will be permuted. IPATH = 2 means the columns of A
will be permuted.
Default: IPATH = 1.

LDAPER — Leading dimension of APER exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDAPER = size (APER,1).

FORTRAN 90 Interface
Generic: CALL PERMA (A, IPERMU, APER [,…])

Specific: The specific interface names are S_PERMA and D_PERMA.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1603

FORTRAN 77 Interface
Single: CALL PERMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER)

Double: The double precision name is DPERMA.

Example
This example permutes the columns of a matrix A.

 USE PERMA_INT
 USE UMACH_INT
! Declare variables
 INTEGER IPATH, LDA, LDAPER, NCA, NRA
 PARAMETER (IPATH=2, LDA=3, LDAPER=3, NCA=5, NRA=3)
!
 INTEGER I, IPERMU(5), J, NOUT
 REAL A(LDA,NCA), APER(LDAPER,NCA)
! Set values for A, IPERMU
! A = (3.0 5.0 1.0 2.0 4.0)
! (3.0 5.0 1.0 2.0 4.0)
! (3.0 5.0 1.0 2.0 4.0)
!
! IPERMU = (3 4 1 5 2)
!
 DATA A/3*3.0, 3*5.0, 3*1.0, 3*2.0, 3*4.0/, IPERMU/3, 4, 1, 5, 2/
! Perform column permutation on A,
! giving APER
 CALL PERMA (A, IPERMU, APER, IPATH=IPATH)
! Get output unit number
 CALL UMACH (2, NOUT)
! Print results
 WRITE (NOUT,99999) ((APER(I,J),J=1,NCA),I=1,NRA)
!
99999 FORMAT (’ The output matrix is:’, /, 3(5F8.1,/))
 END

Output
The Output matrix is:
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0

Comments
1. Workspace may be explicitly provided, if desired, by use of P2RMA/DP2RMA. The

reference is:

 CALL P2RMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER, WORK)

The additional argument is:

WORK — Real work vector of length NCA.

1604 � Chapter 11: Utilities IMSL MATH/LIBRARY

Description
Routine PERMA interchanges the rows or columns of a matrix using a permutation vector such as
the one obtained from routines SVRBP (page 1614) or SVRGP (page 1608).

The routine PERMA permutes a column (row) at a time by calling PERMU (page 1600). This
process is continued until all the columns (rows) are permuted. On completion, let B = APER and
pi = IPERMU(I), then

iij p jB A�

for all i, j.

SORT_REAL
Sorts a rank-1 array of real numbers x so the y results are algebraically nondecreasing,
y1 � y2 � � yn.

Required Arguments
X — Rank-1 array containing the numbers to be sorted. (Output)

Y — Rank-1 array containing the sorted numbers. (Output)

Optional Arguments
NSIZE = n (Input)

Uses the sub-array of size n for the numbers.
Default value: n = size(x)

IPERM = iperm (Input/Output)
Applies interchanges of elements that occur to the entries of iperm(:). If the values
iperm(i)=i,i=1,n are assigned prior to call, then the output array is moved to its
proper order by the subscripted array assignment y = x(iperm(1:n)).

ICYCLE = icycle (Output)
Permutations applied to the input data are converted to cyclic interchanges. Thus, the
output array y is given by the following elementary interchanges, where :=: denotes a
swap:

j = icycle(i)
y(j) :=: y(i), i = 1,n

IOPT = iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for passing
optional data to the routine. The options are as follows:

IMSL MATH/LIBRARY Chapter 11: Utilities � 1605

Packaged Options for SORT_REAL

Option Prefix = ? Option Name Option Value

s_, d_ Sort_real_scan_for_NaN 1

iopt(IO) = ?_options(?_sort_real_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(x(i)) == .true.
See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs.

FORTRAN 90 Interface
Generic: CALL SORT_REAL (X, Y [,…])

Specific: The specific interface names are S_SORT_REAL and D_SORT_REAL.

Example 1: Sorting an Array
An array of random numbers is obtained. The values are sorted so they are nondecreasing.

 use sort_real_int
 use rand_gen_int

 implicit none

! This is Example 1 for SORT_REAL.

 integer, parameter :: n=100
 real(kind(1e0)), dimension(n) :: x, y

! Generate random data to sort.
 call rand_gen(x)

! Sort the data so it is non-decreasing.
 call sort_real(x, y)

! Check that the sorted array is not decreasing.
 if (count(y(1:n-1) > y(2:n)) == 0) then
 write (*,*) 'Example 1 for SORT_REAL is correct.'
 end if

 end

Output
Example 1 for SORT_REAL is correct.

1606 � Chapter 11: Utilities IMSL MATH/LIBRARY

Description
For a detailed description, see the “Description” section of routine SVRGN on page 1607, which
appears later in this chapter.

Additional Examples

Example 2: Sort and Final Move with a Permutation
A set of n random numbers is sorted so the results are nonincreasing. The columns of an n � n
random matrix are moved to the order given by the permutation defined by the interchange of the
entries. Since the routine sorts the results to be algebraically nondecreasing, the array of negative
values is used as input. Thus, the negative value of the sorted output order is nonincreasing. The
optional argument “iperm=” records the final order and is used to move the matrix columns to
that order. This example illustrates the principle of sorting record keys, followed by direct
movement of the records to sorted order.

 use sort_real_int
 use rand_gen_int

 implicit none

! This is Example 2 for SORT_REAL.

 integer i
 integer, parameter :: n=100
 integer ip(n)
 real(kind(1e0)) a(n,n), x(n), y(n), temp(n*n)

! Generate a random array and matrix of values.
 call rand_gen(x)
 call rand_gen(temp)
 a = reshape(temp,(/n,n/))

! Initialize permutation to the identity.
 do i=1, n
 ip(i) = i
 end do

! Sort using negative values so the final order is
! non-increasing.
 call sort_real(-x, y, iperm=ip)

! Final movement of keys and matrix columns.
 y = x(ip(1:n))
 a = a(:,ip(1:n))

! Check the results.
 if (count(y(1:n-1) < y(2:n)) == 0) then
 write (*,*) 'Example 2 for SORT_REAL is correct.'
 end if

 end

IMSL MATH/LIBRARY Chapter 11: Utilities � 1607

Output
Example 2 for SORT_REAL is correct.

Fatal and Terminal Error Messages
See the messages.gls file for error messages for sort_real. These error messages are numbered
561�567; 581�587.

SVRGN
Sorts a real array by algebraically increasing value.

Required Arguments
RA — Vector of length N containing the array to be sorted. (Input)

RB — Vector of length N containing the sorted array. (Output)
If RA is not needed, RA and RB can share the same storage locations.

Optional Arguments
N — Number of elements in the array to be sorted. (Input)

Default: N = size (RA,1).

FORTRAN 90 Interface
Generic: CALL SVRGN (RA, RB [,…])

Specific: The specific interface names are S_SVRGN and D_SVRGN.

FORTRAN 77 Interface
Single: CALL SVRGN (N, RA, RB)

Double: The double precision name is DSVRGN.

Example
This example sorts the 10-element array RA algebraically.

 USE SVRGN_INT
 USE UMACH_INT
! Declare variables
 PARAMETER (N=10)
 REAL RA(N), RB(N)
! Set values for RA
! RA = (-1.0 2.0 -3.0 4.0 -5.0 6.0 -7.0 8.0 -9.0 10.0)
!
 DATA RA/-1.0, 2.0, -3.0, 4.0, -5.0, 6.0, -7.0, 8.0, -9.0, 10.0/

1608 � Chapter 11: Utilities IMSL MATH/LIBRARY

! Sort RA by algebraic value into RB
 CALL SVRGN (RA, RB)
! Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99999) (RB(J),J=1,N)
!
99999 FORMAT (’ The output vector is:’, /, 10(1X,F5.1))
 END

Output
The Output vector is:
-9.0 -7.0 -5.0 -3.0 -1.0 2.0 4.0 6.0 8.0 10.0

Description
Routine SVRGN sorts the elements of an array, A, into ascending order by algebraic value. The
array A is divided into two parts by picking a central element T of the array. The first and last
elements of A are compared with T and exchanged until the three values appear in the array in
ascending order. The elements of the array are rearranged until all elements greater than or
equal to the central element appear in the second part of the array and all those less than or equal
to the central element appear in the first part. The upper and lower subscripts of one of the
segments are saved, and the process continues iteratively on the other segment. When one
segment is finally sorted, the process begins again by retrieving the subscripts of another
unsorted portion of the array. On completion, Aj � Ai for j < i. For more details, see Singleton
(1969), Griffin and Redish (1970), and Petro (1970).

SVRGP
Sorts a real array by algebraically increasing value and return the permutation that rearranges the
array.

Required Arguments
RA — Vector of length N containing the array to be sorted. (Input)

RB — Vector of length N containing the sorted array. (Output)
If RA is not needed, RA and RB can share the same storage locations.

IPERM — Vector of length N. (Input/Output)
On input, IPERM should be initialized to the values 1, 2, �, N. On output, IPERM
contains a record of permutations made on the vector RA.

Optional Arguments
N — Number of elements in the array to be sorted. (Input)

Default: N = size (IPERM,1).

IMSL MATH/LIBRARY Chapter 11: Utilities � 1609

FORTRAN 90 Interface
Generic: CALL SVRGP (RA, RB, IPERM [,…])

Specific: The specific interface names are S_SVRGP and D_SVRGP.

FORTRAN 77 Interface
Single: CALL SVRGP (N, RA, RB, IPERM)

Double: The double precision name is DSVRGP.

Example
This example sorts the 10-element array RA algebraically.

 USE SVRGP_INT
 USE UMACH_INT
! Declare variables
 PARAMETER (N=10)
 REAL RA(N), RB(N)
 INTEGER IPERM(N)
! Set values for RA and IPERM
! RA = (10.0 -9.0 8.0 -7.0 6.0 5.0 4.0 -3.0 -2.0 -1.0)
!
! IPERM = (1 2 3 4 5 6 7 8 9 10)
!
 DATA RA/10.0, -9.0, 8.0, -7.0, 6.0, 5.0, 4.0, -3.0, -2.0, -1.0/
 DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
! Sort RA by algebraic value into RB
 CALL SVRGP (RA, RB, IPERM)
! Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99998) (RB(J),J=1,N)
 WRITE (NOUT, 99999) (IPERM(J),J=1,N)
!
99998 FORMAT (’ The output vector is:’, /, 10(1X,F5.1))
99999 FORMAT (’ The permutation vector is:’, /, 10(1X,I5))
 END

Output
The output vector is:
-9.0 -7.0 -3.0 -2.0 -1.0 4.0 5.0 6.0 8.0 10.0

The permutation vector is:
2 4 8 9 10 7 6 5 3 1

Comments
For wider applicability, integers (1, 2, �, N) that are to be associated with RA(I) for I = 1, 2, �,
N may be entered into IPERM(I) in any order. Note that these integers must be unique.

1610 � Chapter 11: Utilities IMSL MATH/LIBRARY

Description
Routine SVRGP sorts the elements of an array, A, into ascending order by algebraic value,
keeping a record in P of the permutations to the array A. That is, the elements of P are moved in
the same manner as are the elements in A as A is being sorted. The routine SVRGP uses the
algorithm discussed in SVRGN (page 1604). On completion, Aj � Ai for j < i.

SVIGN
Sorts an integer array by algebraically increasing value.

Required Arguments
IA — Integer vector of length N containing the array to be sorted. (Input)

IB — Integer vector of length N containing the sorted array. (Output)
If IA is not needed, IA and IB can share the same storage locations.

Optional Arguments
N — Number of elements in the array to be sorted. (Input)

Default: N = size (IA,1).

FORTRAN 90 Interface
Generic: CALL SVIGN (IA, IB [,…])

Specific: The specific interface name is S_SVIGN .

FORTRAN 77 Interface
Single: CALL SVIGN (N, IA, IB)

Example
This example sorts the 10-element array IA algebraically.

 USE SVIGN_INT
 USE UMACH_INT
! Declare variables
 PARAMETER (N=10)
 INTEGER IA(N), IB(N)
! Set values for IA
! IA = (-1 2 -3 4 -5 6 -7 8 -9 10)
!
 DATA IA/-1, 2, -3, 4, -5, 6, -7, 8, -9, 10/
! Sort IA by algebraic value into IB
 CALL SVIGN (IA, IB)
! Print results

IMSL MATH/LIBRARY Chapter 11: Utilities � 1611

 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99999) (IB(J),J=1,N)
!
99999 FORMAT (’ The output vector is:’, /, 10(1X,I5))
 END

Output
The Output vector is:
-9 -7 -5 -3 -1 2 4 6 8 10

Description
Routine SVIGN sorts the elements of an integer array, A, into ascending order by algebraic
value. The routine SVIGN uses the algorithm discussed in SVRGN (page 1604). On completion,
Aj � Ai for j < i.

SVIGP
Sorts an integer array by algebraically increasing value and return the permutation that rearranges
the array.

Required Arguments
IA — Integer vector of length N containing the array to be sorted. (Input)

IB — Integer vector of length N containing the sorted array. (Output)
If IA is not needed, IA and IB can share the same storage locations.

IPERM — Vector of length N. (Input/Output)
On input, IPERM should be initialized to the values 1, 2, �, N. On output, IPERM
contains a record of permutations made on the vector IA.

Optional Arguments
N — Number of elements in the array to be sorted. (Input)

Default: N = size (IPERM,1).

FORTRAN 90 Interface
Generic: CALL SVIGP (IA, IB, IPERM [,…])

Specific: The specific interface name is S_SVIGP.

FORTRAN 77 Interface
Single: CALL SVIGP (N, IA, IB, IPERM)

1612 � Chapter 11: Utilities IMSL MATH/LIBRARY

Example
This example sorts the 10-element array IA algebraically.

 USE SVIGP_INT
 USE UMACH_INT
! Declare variables
 PARAMETER (N=10)
 INTEGER IA(N), IB(N), IPERM(N)
! Set values for IA and IPERM
! IA = (10 -9 8 -7 6 5 4 -3 -2 -1)
!
! IPERM = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
!
 DATA IA/10, -9, 8, -7, 6, 5, 4, -3, -2, -1/
 DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
! Sort IA by algebraic value into IB
 CALL SVIGP (IA, IB, IPERM)
! Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99998) (IB(J),J=1,N)
 WRITE (NOUT, 99999) (IPERM(J),J=1,N)
!
99998 FORMAT (’ The output vector is:’, /, 10(1X,I5))
99999 FORMAT (’ The permutation vector is:’, /, 10(1X,I5))
 END

Output
The Output vector is:
-9 -7 -3 -2 -1 4 5 6 8 10

The permutation vector is:
2 4 8 9 10 7 6 5 3 1

Comments
For wider applicability, integers (1, 2, �, N) that are to be associated with IA(I) for I = 1, 2, �,
N may be entered into IPERM(I) in any order. Note that these integers must be unique.

Description
Routine SVIGP sorts the elements of an integer array, A, into ascending order by algebraic
value, keeping a record in P of the permutations to the array A. That is, the elements of P are
moved in the same manner as are the elements in A as A is being sorted. The routine SVIGP uses
the algorithm discussed in SVRGN (page 1604). On completion, Aj � Ai for j < i.

SVRBN
Sorts a real array by nondecreasing absolute value.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1613

Required Arguments
RA — Vector of length N containing the array to be sorted. (Input)

RB — Vector of length N containing the sorted array. (Output)
If RA is not needed, RA and RB can share the same storage locations.

Optional Arguments
N — Number of elements in the array to be sorted. (Input)

Default: N = size (RA,1).

FORTRAN 90 Interface
Generic: CALL SVRBN (RA, RB [,…])

Specific: The specific interface names are S_SVRBN and D_SVRBN.

FORTRAN 77 Interface
Single: CALL SVRBN (N, RA, RB)

Double: The double precision name is DSVRBN.

Example
This example sorts the 10-element array RA by absolute value.

 USE SVRBN_INT
 USE UMACH_INT
! Declare variables
 PARAMETER (N=10)
 REAL RA(N), RB(N)
! Set values for RA
! RA = (-1.0 3.0 -4.0 2.0 -1.0 0.0 -7.0 6.0 10.0 -7.0)
!
 DATA RA/-1.0, 3.0, -4.0, 2.0, -1.0, 0.0, -7.0, 6.0, 10.0, -7.0/
! Sort RA by absolute value into RB
 CALL SVRBN (RA, RB)
! Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99999) (RB(J),J=1,N)
!
99999 FORMAT (’ The output vector is :’, /, 10(1X,F5.1))
 END

Output
The Output vector is :
0.0 -1.0 -1.0 2.0 3.0 -4.0 6.0 -7.0 -7.0 10.0

1614 � Chapter 11: Utilities IMSL MATH/LIBRARY

Description
Routine SVRBN sorts the elements of an array, A, into ascending order by absolute value. The
routine SVRBN uses the algorithm discussed in SVRGN (page 1604). On completion, |Aj| � |Ai| for
j < i.

SVRBP
Sorts a real array by nondecreasing absolute value and return the permutation that rearranges the
array.

Required Arguments
RA — Vector of length N containing the array to be sorted. (Input)

RB — Vector of length N containing the sorted array. (Output)
If RA is not needed, RA and RB can share the same storage locations.

IPERM — Vector of length N. (Input/Output)
On input, IPERM should be initialized to the values 1, 2, �, N. On output, IPERM
contains a record of permutations made on the vector IA.

Optional Arguments
N — Number of elements in the array to be sorted. (Input)

Default: N = size (IPERM,1).

FORTRAN 90 Interface
Generic: CALL SVRBP (RA, RB, IPERM[,…])

Specific: The specific interface names are S_SVRBP and D_SVRBP.

FORTRAN 77 Interface
Single: CALL SVRBP (N, RA, RB, IPERM)

Double: The double precision name is DSVRBP.

Example
This example sorts the 10-element array RA by absolute value.

 USE SVRBP_INT
 USE UMACH_INT
! Declare variables
 PARAMETER (N=10)
 REAL RA(N), RB(N)

IMSL MATH/LIBRARY Chapter 11: Utilities � 1615

 INTEGER IPERM(N)
! Set values for RA and IPERM
! RA = (10.0 9.0 8.0 7.0 6.0 5.0 -4.0 3.0 -2.0 1.0)
!
! IPERM = (1 2 3 4 5 6 7 8 9 10)
!
 DATA RA/10.0, 9.0, 8.0, 7.0, 6.0, 5.0, -4.0, 3.0, -2.0, 1.0/
 DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
! Sort RA by absolute value into RB
 CALL SVRBP (RA, RB, IPERM)
! Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99998) (RB(J),J=1,N)
 WRITE (NOUT, 99999) (IPERM(I),I=1,N)
!
99998 FORMAT (’ The output vector is:’, /, 10(1X,F5.1))
99999 FORMAT (’ The permutation vector is:’, /, 10(1X,I5))
 END

Output
The output vector is:
1.0 -2.0 3.0 -4.0 5.0 6.0 7.0 8.0 9.0 10.0
The permutation vector is:
10 9 8 7 6 5 4 3 2 1

Comments
For wider applicability, integers (1, 2, �, N) that are to be associated with RA(I) for I = 1, 2, �,
N may be entered into IPERM(I) in any order. Note that these integers must be unique.

Description
Routine SVRBP sorts the elements of an array, A, into ascending order by absolute value,
keeping a record in P of the permutations to the array A. That is, the elements of P are moved in
the same manner as are the elements in A as A is being sorted. The routine SVRBP uses the
algorithm discussed in SVRGN (page 1604). On completion, Aj � Ai for j < i.

SVIBN
Sorts an integer array by nondecreasing absolute value.

Required Arguments
IA — Integer vector of length N containing the array to be sorted. (Input)

IB — Integer vector of length N containing the sorted array. (Output)
If IA is not needed, IA and IB can share the same storage locations.

1616 � Chapter 11: Utilities IMSL MATH/LIBRARY

Optional Arguments
N — Number of elements in the array to be sorted. (Input)

Default: N = size (IA,1).

FORTRAN 90 Interface
Generic: CALL SVIBN (IA, IB [,…])

Specific: The specific interface name is S_SVIBN.

FORTRAN 77 Interface
Single: CALL SVIBN (N, IA, IB)

Example
This example sorts the 10-element array IA by absolute value.

 USE SVIBN_INT
 USE UMACH_INT
! Declare variables
 PARAMETER (N=10)
 INTEGER IA(N), IB(N)
! Set values for IA
! IA = (-1 3 -4 2 -1 0 -7 6 10 -7)
!
 DATA IA/-1, 3, -4, 2, -1, 0, -7, 6, 10, -7/
! Sort IA by absolute value into IB
 CALL SVIBN (IA, IB)
! Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99999) (IB(J),J=1,N)
!
99999 FORMAT (’ The output vector is:’, /, 10(1X,I5))
 END

Output
The Output vector is:
0 -1 -1 2 3 -4 6 -7 -7 10

Description
Routine SVIBN sorts the elements of an integer array, A, into ascending order by absolute value.
This routine SVIBN uses the algorithm discussed in SVRGN (page 1604). On completion,
 Aj � Ai for j < i.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1617

SVIBP
Sorts an integer array by nondecreasing absolute value and return the permutation that rearranges
the array.

Required Arguments
IA — Integer vector of length N containing the array to be sorted. (Input)

IB — Integer vector of length N containing the sorted array. (Output)
If IA is not needed, IA and IB can share the same storage locations.

IPERM — Vector of length N. (Input/Output)
On input, IPERM should be initialized to the values 1, 2, �, N. On output, IPERM
contains a record of permutations made on the vector IA.

Optional Arguments
N — Number of elements in the array to be sorted. (Input)

Default: N = size (IA,1).

FORTRAN 90 Interface
Generic: CALL SVIBP (IA, IB, IPERM [,…])

Specific: The specific interface name is S_SVIBP.

FORTRAN 77 Interface
Single: CALL SVIBP (N, IA, IB, IPERM)

Example
This example sorts the 10-element array IA by absolute value.

 USE SVIBP_INT
 USE UMACH_INT
! Declare variables
 PARAMETER (N=10)
 INTEGER IA(N), IB(N), IPERM(N)
! Set values for IA
! IA = (10 9 8 7 6 5 -4 3 -2 1)
!
! IPERM = (1 2 3 4 5 6 7 8 9 10)
!
 DATA IA/10, 9, 8, 7, 6, 5, -4, 3, -2, 1/
 DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
! Sort IA by absolute value into IB
 CALL SVIBP (IA, IB, IPERM)

1618 � Chapter 11: Utilities IMSL MATH/LIBRARY

! Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99998) (IB(J),J=1,N)
 WRITE (NOUT, 99999) (IPERM(J),J=1,N)
!
99998 FORMAT (’ The output vector is:’, /, 10(1X,I5))
99999 FORMAT (’ The permutation vector is:’, /, 10(1X,I5))
 END

Output
The Output vector is:
1 -2 3 -4 5 6 7 8 9 10

The permutation vector is:
10 9 8 7 6 5 4 3 2 1

Comments
For wider applicability, integers (1, 2, �, N) that are to be associated with IA(I) for I = 1, 2, �,
N may be entered into IPERM(I) in any order. Note that these integers must be unique.

Description
Routine SVIBP sorts the elements of an integer array, A, into ascending order by absolute value,
keeping a record in P of the permutations to the array A. That is, the elements of P are moved in
the same manner as are the elements in A as A is being sorted. The routine SVIBP uses the
algorithm discussed in SVRGN (page 1604). On completion, Aj � Ai for j < i.

SRCH
Searches a sorted vector for a given scalar and return its index.

Required Arguments
VALUE — Scalar to be searched for in Y. (Input)

X — Vector of length N * INCX. (Input)
Y is obtained from X for I = 1, 2, �, N by Y(I) = X(1 + (I � 1) * INCX). Y(1), Y(2), �,
Y(N) must be in ascending order.

INDEX — Index of Y pointing to VALUE. (Output)
If INDEX is positive, VALUE is found in Y. If INDEX is negative, VALUE is not found in
Y.

INDEX Location of VALUE

1 thru N VALUE = Y(INDEX)

IMSL MATH/LIBRARY Chapter 11: Utilities � 1619

�1 VALUE < Y(1) or N = 0

�N thru �2 Y(�INDEX � 1) < VALUE < Y(INDEX)

�(N + 1) VALUE > Y(N)

Optional Arguments
N — Length of vector Y. (Input)

Default: N = (size (X,1)) / INCX.

INCX — Displacement between elements of X. (Input)
INCX must be greater than zero.
Default: INCX = 1.

FORTRAN 90 Interface
Generic: CALL SRCH (VALUE, X, INDEX [,…])

Specific: The specific interface names are S_SRCH and D_SRCH.

FORTRAN 77 Interface
Single: CALL SRCH (N, VALUE, X, INCX, INDEX)

Double: The double precision name is DSRCH.

Example
This example searches a real vector sorted in ascending order for the value 653.0. The problem
is discussed by Knuth (1973, pages 407�409).

 USE SRCH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=16)
!
 INTEGER INDEX, NOUT
 REAL VALUE, X(N)
!
 DATA X/61.0, 87.0, 154.0, 170.0, 275.0, 426.0, 503.0, 509.0, &
 512.0, 612.0, 653.0, 677.0, 703.0, 765.0, 897.0, 908.0/
!
 VALUE = 653.0
 CALL SRCH (VALUE, X, INDEX)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’INDEX = ’, INDEX
 END

1620 � Chapter 11: Utilities IMSL MATH/LIBRARY

Output
INDEX = 11

Description
Routine SRCH searches a real vector x (stored in X), whose n elements are sorted in ascending
order for a real number c (stored in VALUE). If c is found in x, its index i (stored in INDEX) is
returned so that xi = c. Otherwise, a negative number i is returned for the index. Specifically,

if 1 � i � n then xi = c

if i = �1 then c < x� or n = 0

if � n � I � � 2 then x�i�� < c < x�i

if i = �(n + 1) then c > xn

The argument INCX is useful if a row of a matrix, for example, row number I of a matrix X,
must be searched. The elements of row I are assumed to be in ascending order. In this case, set
INCX equal to the leading dimension of X exactly as specified in the dimension statement in the
calling program. With X declared

REAL X(LDX,N)

the invocation
CALL SRCH (N, VALUE, X(I,1), LDX, INDEX)

returns an index that will reference a column number of X.

Routine SRCH performs a binary search. The routine is an implementation of algorithm B
discussed by Knuth (1973, pages 407�411).

ISRCH
Searches a sorted integer vector for a given integer and return its index.

Required Arguments
IVALUE — Scalar to be searched for in IY. (Input)

IX — Vector of length N * INCX. (Input)
IY is obtained from IX for I = 1, 2, �, N by IY(I) = IX(1 + (I � 1) * INCX). IY(1),
IY(2), �, IY(N) must be in ascending order.

INDEX — Index of IY pointing to IVALUE. (Output)
If INDEX is positive, IVALUE is found in IY. If INDEX is negative, IVALUE is not found
in IY.

INDEX Location of VALUE

IMSL MATH/LIBRARY Chapter 11: Utilities � 1621

1 thru N IVALUE = IY(INDEX)

�1 IVALUE < IY(1) or N = 0

�N thru �2 IY(�INDEX � 1) < IVALUE < IY(�INDEX)

�(N + 1) IVALUE > Y(N)

Optional Arguments
N — Length of vector IY. (Input)

Default: N = size (IX,1) / INCX.

INCX — Displacement between elements of IX. (Input)
INCX must be greater than zero.
Default: INCX = 1.

FORTRAN 90 Interface
Generic: CALL ISRCH (IVALUE, IX, INDEX [,…])

Specific: The specific interface name is S_ISRCH.

FORTRAN 77 Interface
Single: CALL ISRCH (N, IVALUE, IX, INCX, INDEX)

Example
This example searches an integer vector sorted in ascending order for the value 653. The
problem is discussed by Knuth (1973, pages 407�409).

 USE ISRCH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=16)
!
 INTEGER INDEX, NOUT
 INTEGER IVALUE, IX(N)
!
 DATA IX/61, 87, 154, 170, 275, 426, 503, 509, 512, 612, 653, 677, &
 703, 765, 897, 908/
!
 IVALUE = 653
 CALL ISRCH (IVALUE, IX, INDEX)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’INDEX = ’, INDEX
 END

1622 � Chapter 11: Utilities IMSL MATH/LIBRARY

Output
INDEX = 11

Description
Routine ISRCH searches an integer vector x (stored in IX), whose n elements are sorted in
ascending order for an integer c (stored in IVALUE). If c is found in x, its index i (stored in
INDEX) is returned so that xi = c. Otherwise, a negative number i is returned for the index.
Specifically,

if 1 � i � n Then xi = c

if i = �1 Then c < x� or n = 0

if �n � i � �2 Then x�i��< c < x�i

if i = �(n + 1) Then c > xn

The argument INCX is useful if a row of a matrix, for example, row number I of a matrix IX,
must be searched. The elements of row I are assumed to be in ascending order. Here, set INCX
equal to the leading dimension of IX exactly as specified in the dimension statement in the
calling program. With IX declared
INTEGER IX(LDIX,N)

the invocation
CALL ISRCH (N, IVALUE, IX(I,1), LDIX, INDEX)

returns an index that will reference a column number of IX.

The routine ISRCH performs a binary search. The routine is an implementation of algorithm B
discussed by Knuth (1973, pages 407�411).

SSRCH
Searches a character vector, sorted in ascending ASCII order, for a given string and return its
index.

Required Arguments
N — Length of vector CHY. (Input)

Default: N = size (CHX,1) / INCX.

STRING — Character string to be searched for in CHY. (Input)

CHX — Vector of length N * INCX containing character strings. (Input)
CHY is obtained from CHX for I = 1, 2, �, N by CHY(I) = CHX(1 + (I � 1) * INCX).
CHY(1), CHY(2), �, CHY(N) must be in ascending ASCII order.

INCX — Displacement between elements of CHX. (Input)
INCX must be greater than zero.
Default: INCX = 1.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1623

INDEX — Index of CHY pointing to STRING. (Output)
If INDEX is positive, STRING is found in CHY. If INDEX is negative, STRING is not
found in CHY.

INDEX Location of STRING

1 thru N STRING = CHY(INDEX)

�1 STRING < CHY(1) or N = 0

�N thru �2 CHY(�INDEX � 1) < STRING < CHY(�INDEX)

�(N + 1) STRING > CHY(N)

FORTRAN 90 Interface
Generic: CALL SSRCH (N, STRING, CHX, INCX, INDEX)

Specific: The specific interface name is SSRCH.

FORTRAN 77 Interface
Single: CALL SSRCH (N, STRING, CHX, INCX, INDEX)

Example
This example searches a CHARACTER * 2 vector containing 9 character strings, sorted in
ascending ASCII order, for the value ’CC’.

 USE SSRCH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=9)

!
 INTEGER INDEX, NOUT
 CHARACTER CHX(N)*2, STRING*2
!
 DATA CHX/’AA’, ’BB’, ’CC’, ’DD’, ’EE’, ’FF’, ’GG’, ’HH’, &
 ’II’/
!
 INCX = 1
 STRING = ’CC’
 CALL SSRCH (N, STRING, CHX, INCX, INDEX)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’INDEX = ’, INDEX
 END

1624 � Chapter 11: Utilities IMSL MATH/LIBRARY

Output
INDEX = 3

Description
Routine SSRCH searches a vector of character strings x (stored in CHX), whose n elements are
sorted in ascending ASCII order, for a character string c (stored in STRING). If c is found in x,
its index i (stored in INDEX) is returned so that xi = c. Otherwise, a negative number i is returned
for the index. Specifically,

if 1 � i � n Then xi = c

if i = �1 Then c < x� or n = 0

if �n � I � � 2 Then x�i��< c < x�i

if i = �(n + 1) Then c > xn

Here, “<“ and “>” are in reference to the ASCII collating sequence. For comparisons made
between character strings c and xi with different lengths, the shorter string is considered as if it
were extended on the right with blanks to the length of the longer string. (SSRCH uses
FORTRAN intrinsic functions LLT and LGT.)

The argument INCX is useful if a row of a matrix, for example, row number I of a matrix CHX,
must be searched. The elements of row I are assumed to be in ascending ASCII order. In this
case, set INCX equal to the leading dimension of CHX exactly as specified in the dimension
statement in the calling program. With CHX declared
CHARACTER * 7 CHX(LDCHX,N)

the invocation
CALL SSRCH (N, STRING, CHX(I,1), LDCHX, INDEX)

returns an index that will reference a column number of CHX.

Routine SSRCH performs a binary search. The routine is an implementation of algorithm B
discussed by Knuth (1973, pages 407�411).

ACHAR
This function returns a character given its ASCII value.

Function Return Value
ACHAR — CHARACTER * 1 string containing the character in the I-th position of the ASCII

collating sequence. (Output)

Required Arguments
I — Integer ASCII value of the character desired. (Input)

I must be greater than or equal to zero and less than or equal to 127.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1625

FORTRAN 90 Interface
Generic: ACHAR (I)

Specific: The specific interface name is ACHAR.

FORTRAN 77 Interface
Single: ACHAR (I)

Example
This example returns the character of the ASCII value 65.

 USE ACHAR_INT
 USE UMACH_INT
 INTEGER I, NOUT
!
 CALL UMACH (2, NOUT)
! Get character for ASCII value
! of 65 (’A’)
 I = 65
 WRITE (NOUT,99999) I, ACHAR(I)
!
99999 FORMAT (’ For the ASCII value of ’, I2, ’, the character is : ’, &
 A1)
 END

Output
For the ASCII value of 65, the character is : A

Description
Routine ACHAR returns the character of the input ASCII value. The input value should be
between 0 and 127. If the input value is out of range, the value returned in ACHAR is machine
dependent.

IACHAR
This function returns the integer ASCII value of a character argument.

Function Return Value
IACHAR — Integer ASCII value for CH. (Output)

The character CH is in the IACHAR-th position of the ASCII collating sequence.

Required Arguments
CH — Character argument for which the integer ASCII value is desired. (Input)

1626 � Chapter 11: Utilities IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: IACHAR(CH)

Specific: The specific interface name is IACHAR.

FORTRAN 77 Interface
Single: IACHAR(CH)

Example
This example gives the ASCII value of character A.

 USE IACHAR_INT
 INTEGER NOUT
 CHARACTER CH
!
 CALL UMACH (2, NOUT)
! Get ASCII value for the character
! ’A’.
 CH = ’A’
 WRITE (NOUT,99999) CH, IACHAR(CH)
!
99999 FORMAT (’ For the character ’, A1, ’ the ASCII value is : ’, &
 I3)
 END

Output
For the character A the ASCII value is : 65

Description
Routine IACHAR returns the ASCII value of the input character.

ICASE
This function returns the ASCII value of a character converted to uppercase.

Function Return Value
ICASE — Integer ASCII value for CH without regard to the case of CH. (Output)

Routine ICASE returns the same value as IACHAR (page 1625) for all but lowercase
letters. For these, it returns the IACHAR value for the corresponding uppercase letter.

Required Arguments
CH — Character to be converted. (Input)

IMSL MATH/LIBRARY Chapter 11: Utilities � 1627

FORTRAN 90 Interface
Generic: ICASE(CH)

Specific: The specific interface name is ICASE.

FORTRAN 77 Interface
Single: ICASE(CH)

Example
This example shows the case insensitive conversion.

 USE ICASE_INT
 USE UMACH_INT
 INTEGER NOUT
 CHARACTER CHR
! Get output unit number
 CALL UMACH (2, NOUT)
! Get ASCII value for the character
! ’a’.
 CHR = ’a’
 WRITE (NOUT,99999) CHR, ICASE(CHR)
!
99999 FORMAT (’ For the character ’, A1, ’ the ICASE value is : ’, &
 I3)
 END

Output
For the character a the ICASE value is : 65

Description
Routine ICASE converts a character to its integer ASCII value. The conversion is case
insensitive; that is, it returns the ASCII value of the corresponding uppercase letter for a
lowercase letter.

IICSR
This function compares two character strings using the ASCII collating sequence but without
regard to case.

Function Return Value
IICSR — Comparison indicator. (Output)

Let USTR1 and USTR2 be the uppercase versions of STR1 and STR2, respectively. The
following table indicates the relationship between USTR1 and USTR2 as determined by
the ASCII collating sequence.

1628 � Chapter 11: Utilities IMSL MATH/LIBRARY

IICSR Meaning

�1 USTR1 precedes USTR2

0 USTR1 equals USTR2

1 USTR1 follows USTR2

Required Arguments
STR1 — First character string. (Input)

STR2 — Second character string. (Input)

FORTRAN 90 Interface
Generic: IICSR(STR1, STR2)

Specific: The specific interface name is IICSR.

FORTRAN 77 Interface
Single: IICSR(STR1, STR2)

Example
This example shows different cases on comparing two strings.

 USE IICSR_INT
 USE UMACH_INT
 INTEGER NOUT
 CHARACTER STR1*6, STR2*6
! Get output unit number
 CALL UMACH (2, NOUT)
! Compare String1 and String2
! String1 is ’bigger’ than String2
 STR1 = ’ABc 1’
 STR2 = ’ ’
 WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)
!
! String1 is ’equal’ to String2
 STR1 = ’AbC’
 STR2 = ’ABc’
 WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)
!
! String1 is ’smaller’ than String2
 STR1 = ’ABc’
 STR2 = ’aBC 1’
 WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)
!
99999 FORMAT (’ For String1 = ’, A6, ’and String2 = ’, A6, &

IMSL MATH/LIBRARY Chapter 11: Utilities � 1629

 ’ IICSR = ’, I2, /)
 END

Output
For String1 = ABc 1 and String2 = IICSR = 1

For String1 = AbC and String2 = ABc IICSR = 0

For String1 = ABc and String2 = aBC 1 IICSR = -1

Comments
If the two strings, STR1 and STR2, are of unequal length, the shorter string is considered as if it
were extended with blanks to the length of the longer string.

Description
Routine IICSR compares two character strings. It returns �1 if the first string is less than the
second string, 0 if they are equal, and 1 if the first string is greater than the second string. The
comparison is case insensitive.

IIDEX
This funcion determines the position in a string at which a given character sequence begins
without regard to case.

Function Return Value
IIDEX — Position in CHRSTR where KEY begins. (Output)

If KEY occurs more than once in CHRSTR, the starting position of the first occurrence is
returned. If KEY does not occur in CHRSTR, then IIDEX returns a zero.

Required Arguments
CHRSTR — Character string to be searched. (Input)

KEY — Character string that contains the key sequence. (Input)

FORTRAN 90 Interface
Generic: IIDEX(CHRSTR, KEY)

Specific: The specific interface name is IIDEX.

FORTRAN 77 Interface
Single: IIDEX(CHRSTR, KEY)

1630 � Chapter 11: Utilities IMSL MATH/LIBRARY

Example
This example locates a key string.

 USE IIDEX_INT
 USE UMACH_INT
 INTEGER NOUT
 CHARACTER KEY*5, STRING*10
! Get output unit number
 CALL UMACH (2, NOUT)
! Locate KEY in STRING
 STRING = ’a1b2c3d4e5’
 KEY = ’C3d4E’
 WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY)
!
 KEY = ’F’
 WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY)
!
99999 FORMAT (’ For STRING = ’, A10, ’ and KEY = ’, A5, ’ IIDEX = ’, I2, &
 /)
 END

Output
For STRING = a1b2c3d4e5 and KEY = C3d4E IIDEX = 5

For STRING = a1b2c3d4e5 and KEY = F IIDEX = 0

Comments
If the length of KEY is greater than the length CHRSTR, IIDEX returns a zero.

Description
Routine IIDEX searches for a key string in a given string and returns the index of the starting
element at which the key character string begins. It returns 0 if there is no match. The
comparison is case insensitive. For a case-sensitive version, use the FORTRAN 77 intrinsic
function INDEX.

CVTSI
Converts a character string containing an integer number into the corresponding integer form.

Required Arguments
STRING — Character string containing an integer number. (Input)

NUMBER — The integer equivalent of STRING. (Output)

FORTRAN 90 Interface
Generic: CALL CVTSI (STRING, NUMBER)

IMSL MATH/LIBRARY Chapter 11: Utilities � 1631

Specific: The specific interface name is CVTSI.

FORTRAN 77 Interface
Single: CALL CVTSI (STRING, NUMBER)

Example
The string “12345” is converted to an INTEGER variable.

 USE CVTSI_INT
 USE UMACH_INT
 INTEGER NOUT, NUMBER
 CHARACTER STRING*10
!
 DATA STRING/’12345’/
!
 CALL CVTSI (STRING, NUMBER)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’NUMBER = ’, NUMBER
 END

Output
NUMBER = 12345

Description
Routine CVTSI converts a character string containing an integer to an INTEGER variable.
Leading and trailing blanks in the string are ignored. If the string contains something other than
an integer, a terminal error is issued. If the string contains an integer larger than can be
represented by an INTEGER variable as determined from routine IMACH (see the Reference
Material), a terminal error is issued.

CPSEC
This fuction returns CPU time used in seconds.

Function Return Value
CPSEC — CPU time used (in seconds) since first call to CPSEC. (Output)

Required Arguments
None

FORTRAN 90 Interface
Generic: CPSEC ()

1632 � Chapter 11: Utilities IMSL MATH/LIBRARY

Specific: The specific interface name is CPSEC.

FORTRAN 77 Interface
Single: CPSEC (1)

Comments
1. The first call to CPSEC returns 0.0.

2. The accuracy of this routine depends on the hardware and the operating system. On some
systems, identical runs can produce timings differing by more than 10 percent.

TIMDY
Gets time of day.

Required Arguments
IHOUR — Hour of the day. (Output)

IHOUR is between 0 and 23 inclusive.

MINUTE — Minute within the hour. (Output)
MINUTE is between 0 and 59 inclusive.

ISEC — Second within the minute. (Output)
ISEC is between 0 and 59 inclusive.

FORTRAN 90 Interface
Generic: CALL TIMDY (IHOUR, MINUTE, ISEC)

Specific: The specific interface name is TIMDY.

FORTRAN 77 Interface
Single: CALL TIMDY (IHOUR, MINUTE, ISEC)

Example
The following example uses TIMDY to return the current time. Obviously, the output is
dependent upon the time at which the program is run.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1633

 USE TIMDY_INT
 USE UMACH_INT
 INTEGER IHOUR, IMIN, ISEC, NOUT
!
 CALL TIMDY (IHOUR, IMIN, ISEC)
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’Hour:Minute:Second = ’, IHOUR, ’:’, IMIN, &
 ’:’, ISEC
 IF (IHOUR .EQ. 0) THEN
 WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC, &
 ’ second(s) past midnight.’
 ELSE IF (IHOUR .LT. 12) THEN
 WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC, &
 ’ second(s) past ’, IHOUR, ’ am.’
 ELSE IF (IHOUR .EQ. 12) THEN
 WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC, &
 ’ second(s) past noon.’
 ELSE
 WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC, &
 ’ second(s) past ’, IHOUR-12, ’ pm.’
 END IF
 END

Output
Hour:Minute:Second = 16: 52: 29
The time is 52 minute(s), 29 second(s) past 4 pm.

Description
Routine TIMDY is used to retrieve the time of day.

TDATE
Gets today’s date.

Required Arguments
IDAY — Day of the month. (Output)

IDAY is between 1 and 31 inclusive.

MONTH — Month of the year. (Output)
MONTH is between 1 and 12 inclusive.

IYEAR — Year. (Output)
For example, IYEAR = 1985.

FORTRAN 90 Interface
Generic: CALL TDATE (IDAY, MONTH, IYEAR)

Specific: The specific interface name is TDATE.

1634 � Chapter 11: Utilities IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL TDATE (IDAY, MONTH, IYEAR)

Example
The following example uses TDATE to return today’s date.

 USE TDATE_INT
 USE UMACH_INT
 INTEGER IDAY, IYEAR, MONTH, NOUT
!
 CALL TDATE (IDAY, MONTH, IYEAR)
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’Day-Month-Year = ’, IDAY, ’-’, MONTH, &
 ’-’, IYEAR
 END

Output
 Day-Month-Year = 3 - 12 - 2002

Description
Routine TDATE is used to retrieve today’s date. Obviously, the output is dependent upon the date
the program is run.

NDAYS
This function computes the number of days from January 1, 1900, to the given date.

Function Return Value
NDAYS — Function value. (Output)

If NDAYS is negative, it indicates the number of days prior to January 1, 1900.

Required Arguments
IDAY — Day of the input date. (Input)

MONTH — Month of the input date. (Input)

IYEAR — Year of the input date. (Input)
1950 would correspond to the year 1950 A.D. and 50 would correspond to year 50
A.D.

FORTRAN 90 Interface
Generic: NDAYS(IDAY, MONTH, IYEAR)

IMSL MATH/LIBRARY Chapter 11: Utilities � 1635

Specific: The specific interface name is NDAYS.

FORTRAN 77 Interface
Single: NDAYS(IDAY, MONTH, IYEAR)

Example
The following example uses NDAYS to compute the number of days from January 15, 1986, to
February 28, 1986:

 USE NDAYS_INT
 USE UMACH_INT
 INTEGER IDAY, IYEAR, MONTH, NDAY0, NDAY1, NOUT
!
 IDAY = 15
 MONTH = 1
 IYEAR = 1986
 NDAY0 = NDAYS(IDAY,MONTH,IYEAR)
 IDAY = 28
 MONTH = 2
 IYEAR = 1986
 NDAY1 = NDAYS(IDAY,MONTH,IYEAR)
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’Number of days = ’, NDAY1 - NDAY0
 END

Output
Number of days = 44

Comments
1. Informational error

Type Code
 1 1 The Julian calendar, the first modern calendar, went into use in 45

B.C. No calendar prior to 45 B.C. was as universally used nor as
accurate as the Julian. Therefore, it is assumed that the Julian
calendar was in use prior to 45 B.C.

2. The number of days from one date to a second date can be computed by two references
to NDAYS and then calculating the difference.

3. The beginning of the Gregorian calendar was the first day after October 4, 1582, which
became October 15, 1582. Prior to that, the Julian calendar was in use. NDAYS makes
the proper adjustment for the change in calendars.

Description
Function NDAYS returns the number of days from January 1, 1900, to the given date. The
function NDAYS returns negative values for days prior to January 1, 1900. A negative IYEAR

1636 � Chapter 11: Utilities IMSL MATH/LIBRARY

can be used to specify B.C. Input dates in year 0 and for October 5, 1582, through October 14,
1582, inclusive, do not exist; consequently, in these cases, NDAYS issues a terminal error.

NDYIN
Gives the date corresponding to the number of days since January 1, 1900.

Required Arguments
NDAYS — Number of days since January 1, 1900. (Input)

IDAY — Day of the input date. (Output)

MONTH — Month of the input date. (Output)

IYEAR — Year of the input date. (Output)
1950 would correspond to the year 195 A.D. and �50 would correspond to year 50
B.C.

FORTRAN 90 Interface
Generic: CALL NDYIN (NDAYS, IDAY, MONTH, IYEAR)

Specific: The specific interface name is NDYIN.

FORTRAN 77 Interface
Single: CALL NDYIN (NDAYS, IDAY, MONTH, IYEAR)

Example
The following example uses NDYIN to compute the date for the 100th day of 1986. This is
accomplished by first using NDAYS (page 1634) to get the “day number” for December 31, 1985.

 USE NDYIN_INT
 USE NDAYS_INT
 USE UMACH_INT
 INTEGER IDAY, IYEAR, MONTH, NDAYO, NOUT
!
 NDAY0 = NDAYS(31,12,1985)
 CALL NDYIN (NDAY0+100, IDAY, MONTH, IYEAR)
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’Day 100 of 1986 is (day-month-year) ’, IDAY, &
 ’-’, MONTH, ’-’, IYEAR
 END

Output
Day 100 of 1986 is (day-month-year) 10- 4- 1986

IMSL MATH/LIBRARY Chapter 11: Utilities � 1637

Comments
The beginning of the Gregorian calendar was the first day after October 4, 1582, which became
October 15, 1582. Prior to that, the Julian calendar was in use. Routine NDYIN makes the proper
adjustment for the change in calendars.

Description
Routine NDYIN computes the date corresponding to the number of days since January 1, 1900.
For an input value of NDAYS that is negative, the date
computed is prior to January 1, 1900. The routine NDYIN is the inverse of NDAYS (page 1634).

IDYWK
This function computes the day of the week for a given date.

Function Return Value
IDYWK — Function value. (Output)

The value of IDYWK ranges from 1 to 7, where 1 corresponds to Sunday and 7
corresponds to Saturday.

Required Arguments
IDAY — Day of the input date. (Input)

MONTH — Month of the input date. (Input)

IYEAR — Year of the input date. (Input)
1950 would correspond to the year 1950 A.D. and 50 would correspond to year 50
A.D.

FORTRAN 90 Interface
Generic: IDYWK(IDAY, MONTH, IYEAR)

Specific: The specific interface name is IDYWK.

FORTRAN 77 Interface
Single: IDYWK(IDAY, MONTH, IYEAR)

Example
The following example uses IDYWK to return the day of the week for February 24, 1963.

 USE IDYWK_INT
 USE UMACH_INT
 INTEGER IDAY, IYEAR, MONTH, NOUT

1638 � Chapter 11: Utilities IMSL MATH/LIBRARY

!
 IDAY = 24
 MONTH = 2
 IYEAR = 1963
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’IDYWK (index for day of week) = ’, &
 IDYWK(IDAY,MONTH,IYEAR)
 END

Output
IDYWK (index for day of week) = 1

Comments
1. Informational error

Type Code
 1 1 The Julian calendar, the first modern calendar, went into use in 45

B.C. No calendar prior to 45 B.C. was as universally used nor as
accurate as the Julian. Therefore, it is assumed that the Julian
calendar was in use prior to 45 B.C.

2. The beginning of the Gregorian calendar was the first day after October 4, 1582, which
became October 15, 1582. Prior to that, the Julian calendar was in use. Function IDYWK
makes the proper adjustment for the change in calendars.

Description
Function IDYWK returns an integer code that specifies the day of week for a given date. Sunday
corresponds to 1, Monday corresponds to 2, and so forth.

A negative IYEAR can be used to specify B.C. Input dates in year 0 and for October 5, 1582,
through October 14, 1582, inclusive, do not exist; consequently, in these cases, IDYWK issues a
terminal error.

VERML
This function obtains IMSL MATH/LIBRARY-related version, system and serial numbers.

Function Return Value
VERML — CHARACTER string containing information. (Output)

Required Arguments
ISELCT — Option for the information to retrieve. (Input)

ISELCT VERML

1 IMSL MATH/LIBRARY version number

IMSL MATH/LIBRARY Chapter 11: Utilities � 1639

2 Operating system (and version number) for which the library was produced.

3 Fortran compiler (and version number) for which the library was produced.

4 IMSL MATH/LIBRARY serial number

FORTRAN 90 Interface
Generic: VERML(ISELCT)

Specific: The specific interface name is VERML.

FORTRAN 77 Interface
Single: VERML(ISELCT)

Example
In this example, we print all of the information returned by VERML on a particular machine. The
output is omitted because the results are system dependent.

 USE UMACH_INT
 USE VERML_INT
 INTEGER ISELCT, NOUT
 CHARACTER STRING(4)*50, TEMP*32
!
 STRING(1) = ’(’’ IMSL MATH/LIBRARY Version Number: ’’, A)’
 STRING(2) = ’(’’ Operating System ID Number: ’’, A)’
 STRING(3) = ’(’’ Fortran Compiler Version Number: ’’, A)’
 STRING(4) = ’(’’ IMSL MATH/LIBRARY Serial Number: ’’, A)’
! Print the versions and numbers.
 CALL UMACH (2, NOUT)
 DO 10 ISELCT=1, 4
 TEMP = VERML(ISELCT)
 WRITE (NOUT,STRING(ISELCT)) TEMP
 10 CONTINUE
 END

Output
IMSL MATH/LIBRARY Version Number: IMSL MATH/LIBRARY Version 2.0
Operating System ID Number: SunOS 4.1.1
Fortran Compiler Version Number: f77 Sun FORTRAN 1.3.1
IMSL MATH/LIBRARY Serial Number: 123456

RAND_GEN
Generates a rank-1 array of random numbers. The output array entries are positive and less than 1
in value.

1640 � Chapter 11: Utilities IMSL MATH/LIBRARY

Required Argument
X — Rank-1 array containing the random numbers. (Output)

Optional Arguments
irnd = irnd (Output)

Rank-1 integer array. These integers are the internal results of the Generalized
Feedback Shift Register (GFSR) algorithm. The values are scaled to yield the floating-
point array X. The output array entries are between 1 and 231 � 1 in value.

istate_in = istate_in (Input)
Rank-1 integer array of size 3p + 2, where p = 521, that defines the ensuing state of the
GFSR generator. It is used to reset the internal tables to a previously defined state. It is
the result of a previous use of the “istate_out=” optional argument.

istate_out = istate_out (Output)
Rank-1 integer array of size 3p + 2 that describes the current state of the GFSR
generator. It is normally used to later reset the internal tables to the state defined
following a return from the GFSR generator. It is the result of a use of the generator
without a user initialization, or it is the result of a previous use of the optional
argument “istate_in=” followed by updates to the internal tables from newly generated
values. Example 2 illustrates use of istate_in and istate_out for setting and then
resetting rand_gen so that the sequence of integers, irnd, is repeatable.

iopt = iopt(:) (Input[/Output])
Derived type array with the same precision as the array x; used for passing optional
data to rand_gen. The options are as follows:

Packaged Options for RAND_GEN

Option Prefix = ? Option Name Option Value

s_, d_ Rand_gen_generator_seed 1

s_, d_ Rand_gen_LCM_modulus 2

s_, d_ Rand_gen_use_Fushimi_start 3

iopt(IO) = ?_options(?_rand_gen_generator_seed, ?_dummy)
Sets the initial values for the GFSR. The present value of the seed, obtained by default
from the real-time clock as described below, swaps places with
iopt(IO + 1)%idummy. If the seed is set before any current usage of rand_gen, the
exchanged value will be zero.

iopt(IO) = ?_options(?_rand_gen_LCM_modulus, ?_dummy)

iopt(IO+1) = ?_options(modulus, ?_dummy)
Sets the initial values for the GFSR. The present value of the LCM, with default value
k = 16807, swaps places with iopt(IO+1)%idummy.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1641

iopt(IO) = ?_options(?_rand_gen_use_Fushimi_start, ?_dummy)
Starts the GFSR sequence as suggested by Fushimi (1990). The default starting
sequence is with the LCM recurrence described below.

FORTRAN 90 Interface
Generic: CALL RAND_GEN (X [,…])

Specific: The specific interface names are S_RAND_GEN and D_RAND_GEN.

Example 1: Running Mean and Variance
An array of random numbers is obtained. The sample mean and variance are computed. These val-
ues are compared with the same quantities computed using a stable method for the running means
and variances, sequentially moving through the data. Details about the running mean and variance
are found in Henrici (1982, pp. 21�23).

use rand_gen_int

 implicit none

! This is Example 1 for RAND_GEN.

 integer i
 integer, parameter :: n=1000
 real(kind(1e0)), parameter :: one=1e0, zero=0e0
 real(kind(1e0)) x(n), mean_1(0:n), mean_2(0:n), s_1(0:n), s_2(0:n)

! Obtain random numbers.
 call rand_gen(x)

! Calculate each partial mean.
 do i=1,n
 mean_1(i) = sum(x(1:i))/i
 end do

! Calculate each partial variance.
 do i=1,n
 s_1(i)=sum((x(1:i)-mean_1(i))**2)/i
 end do

 mean_2(0)=zero
 mean_2(1)=x(1)
 s_2(0:1)=zero

! Alternately calculate each running mean and variance,
! handling the random numbers once.
 do i=2,n
 mean_2(i)=((i-1)*mean_2(i-1)+x(i))/i
 s_2(i) = (i-1)*s_2(i-1)/i+(mean_2(i)-x(i))**2/(i-1)
 end do

1642 � Chapter 11: Utilities IMSL MATH/LIBRARY

! Check that the two sets of means and variances agree.
 if (maxval(abs(mean_1(1:)-mean_2(1:))/mean_1(1:)) <= &
 sqrt(epsilon(one))) then
 if (maxval(abs(s_1(2:)-s_2(2:))/s_1(2:)) <= &
 sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for RAND_GEN is correct.'
 end if
 end if

 end

Output
Example 1 for RAND_GEN is correct.

Description
This GFSR algorithm is based on the recurrence

3 3t t p t px x x
� �

� �

where a � b is the exclusive OR operation on two integers a and b. This operation is performed
until size(x) numbers have been generated. The subscripts in the recurrence formula are
computed modulo 3p. These numbers are converted to floating point by effectively multiplying
the positive integer quantity

1tx �

by a scale factor slightly smaller than 1./(huge(1)). The values p = 521 and
q = 32 yield a sequence with a period approximately

156.82 10p
�

The default initial values for the sequence of integers {xt} are created by a congruential generator
starting with an odd integer seed

� �_ (1)| 2 1 | 1bit sizem v count� � � � �

obtained by the Fortran 90 real-time clock routine:
CALL SYSTEM_CLOCK(COUNT=count,CLOCK_RATE=CLRATE)

An error condition is noted if the value of CLRATE=0. This indicates that the processor does not
have a functioning real-time clock. In this exceptional case a starting seed must be provided by the
user with the optional argument “iopt=” and option number ?_rand_generator_seed. The
value v is the current clock for this day, in milliseconds. This value is obtained using the date
routine:

CALL DATE_AND_TIME(VALUES=values)

and converting values(5:8) to milliseconds.

The LCM generator initializes the sequence {xt} using the following recurrence:

� �� �, mod 1 / 2m m k huge� �

IMSL MATH/LIBRARY Chapter 11: Utilities � 1643

The default value of k = 16807. Using the optional argument “iopt=” and the packaged option
number ?_rand_gen_LCM_modulus, k can be given an alternate value. The option number
?_rand_gen_generator_seed can be used to set the initial value of m instead of using the
asynchronous value given by the system clock. This is illustrated in Example 2. If the default
choice of m results in an unsatisfactory starting sequence or it is necessary to duplicate the
sequence, then it is recommended that users set the initial seed value to one of their own choosing.
Resetting the seed complicates the usage of the routine.

This software is based on Fushimi (1990), who gives a more elaborate starting sequence for the
{xt} . The starting sequence suggested by Fushimi can be used with the option number
?_rand_gen_use_Fushimi_start. Fushimi’s starting process is more expensive than the
default method, and it is equivalent to starting in another place of the sequence with period 2p.

Additional Examples

Example 2: Seeding, Using, and Restoring the Generator

 use rand_gen_int

 implicit none

! This is Example 2 for RAND_GEN.

 integer i
 integer, parameter :: n=34, p=521
 real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
 integer irndi(n), i_out(3*p+2), hidden_message(n)
 real(kind(1e0)) x(n), y(n)
 type(s_options) :: iopti(2)=s_options(0,zero)
 character*34 message, returned_message

! This is the message to be hidden.
 message = 'SAVE YOURSELF. WE ARE DISCOVERED!'

! Start the generator with a known seed.
 iopti(1) = s_options(s_rand_gen_generator_seed,zero)
 iopti(2) = s_options(123,zero)
 call rand_gen(x, iopt=iopti)

! Save the state of the generator.
 call rand_gen(x, istate_out=i_out)

! Get random integers.
 call rand_gen(y, irnd=irndi)

! Hide text using collating sequence subtracted from integers.
 do i=1, n
 hidden_message(i) = irndi(i) - ichar(message(i:i))
 end do

! Reset generator to previous state and generate the previous
! random integers.
 call rand_gen(x, irnd=irndi, istate_in=i_out)

1644 � Chapter 11: Utilities IMSL MATH/LIBRARY

! Subtract hidden text from integers and convert to character.
 do i=1, n
 returned_message(i:i) = char(irndi(i) - hidden_message(i))
 end do

! Check the results.
 if (returned_message == message) then

 write (*,*) 'Example 2 for RAND_GEN is correct.'
 end if

 end

Output
Example 2 for RAND_GEN is correct.

Example 3: Generating Strategy with a Histogram
We generate random integers but with the frequency as in a histogram with nbins slots. The
generator is initially used a large number of times to demonstrate that it is making choices with the
same shape as the histogram. This is not required to generate samples. The program next
generates a summary set of integers according to the histogram. These are not repeatable and are
representative of the histogram in the sense of looking at 20 integers during generation of a large
number of samples.

 use rand_gen_int
 use show_int

 implicit none

! This is Example 3 for RAND_GEN.

 integer i, i_bin, i_map, i_left, i_right
 integer, parameter :: n_work=1000
 integer, parameter :: n_bins=10
 integer, parameter :: scale=1000
 integer, parameter :: total_counts=100
 integer, parameter :: n_samples=total_counts*scale
 integer, dimension(n_bins) :: histogram= &
 (/4, 6, 8, 14, 20, 17, 12, 9, 7, 3 /)
 integer, dimension(n_work) :: working=0
 integer, dimension(n_bins) :: distribution=0
 integer break_points(0:n_bins)
 real(kind(1e0)) rn(n_samples)
 real(kind(1e0)), parameter :: tolerance=0.005

 integer, parameter :: n_samples_20=20
 integer rand_num_20(n_samples_20)
 real(kind(1e0)) rn_20(n_samples_20)

IMSL MATH/LIBRARY Chapter 11: Utilities � 1645

! Compute the normalized cumulative distribution.
 break_points(0)=0
 do i=1,n_bins
 break_points(i)=break_points(i-1)+histogram(i)
 end do

 break_points=break_points*n_work/total_counts

! Obtain uniform random numbers.
 call rand_gen(rn)

! Set up the secondary mapping array.
 do i_bin=1,n_bins
 i_left=break_points(i_bin-1)+1
 i_right=break_points(i_bin)
 do i=i_left, i_right
 working(i)=i_bin
 end do
 end do

! Map the random numbers into the 'distribution' array.
! This is made approximately proportional to the histogram.
 do i=1,n_samples
 i_map=nint(rn(i)*(n_work-1)+1)
 distribution(working(i_map))= &
 distribution(working(i_map))+1
 end do

! Check the agreement between the distribution of the
! generated random numbers and the original histogram.
 write (*, '(A)', advance='no') 'Original: '
 write (*, '(10I6)') histogram*scale
 write (*, '(A)', advance='no') 'Generated:'
 write (*, '(10I6)') distribution

 if (maxval(abs(histogram(1:)*scale-distribution(1:))) &
 <= tolerance*n_samples) then
 write(*, '(A/)') 'Example 3 for RAND_GEN is correct.'
 end if

! Generate 20 integers in 1, 10 according to the distribution
! induced by the histogram.
 call rand_gen(rn_20)

! Map from the uniform distribution to the induced distribution.
 do i=1,n_samples_20
 i_map=nint(rn_20(i)*(n_work-1)+1)
 rand_num_20(i)=working(i_map)
 end do

 call show(rand_num_20,&
'Twenty integers generated according to the histogram:')
 end

1646 � Chapter 11: Utilities IMSL MATH/LIBRARY

Output
Example 3 for RAND_GEN is correct.

Example 4: Generating with a Cosine Distribution
We generate random numbers based on the continuous distribution function

� � � �� �1 cos / 2 ,p x x x� � �� � � � �

Using the cumulative

� � � � � �� �1/ 2 sin / 2
x

q x p t dt x x
�

�
�

� � � ��

we generate the samples by obtaining uniform samples u, 0 < u < 1 and solve the equation

� � 0,q x u x� �� � � � �

These are evaluated in vector form, that is all entries at one time, using Newton’s method:

� �� � � �, /x x dx dx q x u p x� � � �

An iteration counter forces the loop to terminate, but this is not often required although it is an
important detail.

 use rand_gen_int
 use show_int
 use Numerical_Libraries

 IMPLICIT NONE

! This is Example 4 for RAND_GEN.

 integer i, i_map, k
 integer, parameter :: n_bins=36
 integer, parameter :: offset=18
 integer, parameter :: n_samples=10000
 integer, parameter :: n_samples_30=30
 integer, parameter :: COUNT=15

 real(kind(1e0)) probabilities(n_bins)
 real(kind(1e0)), dimension(n_bins) :: counts=0.0
 real(kind(1e0)), dimension(n_samples) :: rn, x, f, fprime, dx
 real(kind(1e0)), dimension(n_samples_30) :: rn_30, &
 x_30, f_30, fprime_30, dx_30
 real(kind(1e0)), parameter :: one=1e0, zero=0e0, half=0.5e0
 real(kind(1e0)), parameter :: tolerance=0.01
 real(kind(1e0)) two_pi, omega

! Initialize values of 'two_pi' and 'omega'.
 two_pi=2.0*const((/'pi'/))
 omega=two_pi/n_bins

! Compute the probabilities for each bin according to

IMSL MATH/LIBRARY Chapter 11: Utilities � 1647

! the probability density (cos(x)+1)/(2*pi), -pi<x<pi.
 do i=1,n_bins
 probabilities(i)=(sin(omega*(i-offset)) &
 -sin(omega*(i-offset-1))+omega)/two_pi
 end do

! Obtain uniform random numbers in (0,1).
 call rand_gen(rn)

! Use Newton's method to solve the nonlinear equation:
! accumulated_distribution_function - random_number = 0.
 x=zero; k=0
 solve_equation: do
 f=(sin(x)+x)/two_pi+half-rn
 fprime=(one+cos(x))/two_pi
 dx=f/fprime
 x=x-dx; k=k+1
 if (maxval(abs(dx)) <= sqrt(epsilon(one)) &
 .or. k > COUNT) exit solve_equation
 end do solve_equation

! Map the random numbers 'x' array into the 'counts' array.
 do i=1,n_samples
 i_map=int(x(i)/omega+offset)+1
 counts(i_map)=counts(i_map)+one
 end do

! Normalize the counts array.
 counts=counts/n_samples

! Check that the generated random numbers are indeed
! based on the original distribution.
 if (maxval(abs(counts(1:)-probabilities(1:))) &
 <= tolerance) then
 write (*,'(a/)') 'Example 4 for RAND_GEN is correct.'
 end if

! Generate 30 random numbers in (-pi,pi) according to
! the probability density (cos(x)+1)/(2*pi), -pi<x<pi.
 call rand_gen(rn_30)

 x_30=0.0; k=0
 solve_equation_30: do
 f_30=(sin(x_30)+x_30)/two_pi+half-rn_30
 fprime_30=(one+cos(x_30))/two_pi
 dx_30=f_30/fprime_30
 x_30=x_30-dx_30
 if (maxval(abs(dx_30)) <= sqrt(epsilon(one))&
 .or. k > COUNT) exit solve_equation_30
 end do solve_equation_30

 write(*,'(A)') 'Thirty random numbers generated ', &
 'according to the probability density ',&
 'pdf(x)=(cos(x)+1)/(2*pi), -pi<x<pi:'

1648 � Chapter 11: Utilities IMSL MATH/LIBRARY

 call show(x_30)
 end

 Output
Example 4 for RAND_GEN is correct.

Fatal and Terminal Error Messages
See the messages.gls file for error messages for rand_gen. These error messages are numbered
521�528; 541�548.

RNGET
Retrieves the current value of the seed used in the IMSL random number generators.

Required Arguments
ISEED — The seed of the random number generator. (Output)
ISEED is in the range (1, 2147483646).

FORTRAN 90 Interface
Generic: CALL RNGET (ISEED)

Specific: The specific interface name is RNGET.

FORTRAN 77 Interface
Single: CALL RNGET (ISEED)

Example
The following FORTRAN statements illustrate the use of RNGET:

 INTEGER ISEED
! Call RNSET to initialize the seed.
 CALL RNSET(123457)
! Do some simulations.
 ...
 ...
 CALL RNGET(ISEED)
! Save ISEED. If the simulation is to be continued
! in a different program, ISEED should be output,
! possibly to a file.
 ...
 ...

IMSL MATH/LIBRARY Chapter 11: Utilities � 1649

! When the simulations begun above are to be
! restarted, restore ISEED to the value obtained
! above and use as input to RNSET.
 CALL RNSET(ISEED)
! Now continue the simulations.
 ...
 ...

Description
Routine RNGET retrieves the current value of the “seed” used in the IMSL random number
generators. A reason for doing this would be to restart a simulation, using RNSET to reset the
seed.

RNSET
Initializes a random seed for use in the IMSL random number generators.

Required Arguments
ISEED — The seed of the random number generator. (Input)

ISEED must be in the range (0, 2147483646). If ISEED is zero, a value is computed
using the system clock; and, hence, the results of programs using the IMSL random
number generators will be different at different times.

FORTRAN 90 Interface
Generic: CALL RNSET (ISEED)

Specific: The specific interface name is RNSET .

FORTRAN 77 Interface
Single: CALL RNSET (ISEED)

Example
The following FORTRAN statements illustrate the use of RNSET:

 INTEGER ISEED
! Call RNSET to initialize the seed via the
! system clock.
 CALL RNSET(0)
! Do some simulations.
 ...
 ...
! Obtain the current value of the seed.

1650 � Chapter 11: Utilities IMSL MATH/LIBRARY

 CALL RNGET(ISEED)
! If the simulation is to be continued in a
! different program, ISEED should be output,
! possibly to a file.
 ...
 ...
! When the simulations begun above are to be
! restarted, restore ISEED to the value
! obtained above, and use as input to RNSET.
 CALL RNSET(ISEED)
! Now continue the simulations.
 ...
 ...

Description
Routine RNSET is used to initialize the seed used in the IMSL random number generators. If the
seed is not initialized prior to invocation of any of the routines for random number generation
by calling RNSET, the seed is initialized via the system clock. The seed can be reinitialized to a
clock-dependent value by calling RNSET with ISEED set to 0.

The effect of RNSET is to set some values in a FORTRAN COMMON block that is used by the
random number generators.

A common use of RNSET is in conjunction with RNGET (page 1648) to restart a simulation.

RNOPT
Selects the uniform (0, 1) multiplicative congruential pseudorandom number generator.

Required Arguments
IOPT — Indicator of the generator. (Input)

The random number generator is either a multiplicative congruential generator with
modulus 2�� � 1 or a GFSR generator. IOPT is used to choose the multiplier and
whether or not shuffling is done, or else to choose the GFSR method.

IOPT Generator

1 The multiplier 16807 is used.

2 The multiplier 16807 is used with shuffling.

3 The multiplier 397204094 is used.

4 The multiplier 397204094 is used with shuffling.

5 The multiplier 950706376 is used.

6 The multiplier 950706376 is used with shuffling.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1651

7 GFSR, with the recursion Xt = Xt����� � Xt��� is used.

FORTRAN 90 Interface
Generic: CALL RNOPT (IOPT)

Specific: The specific interface name is RNOPT.

FORTRAN 77 Interface
Single: CALL RNOPT (IOPT)

Description
The IMSL uniform pseudorandom number generators use a multiplicative congruential method,
with or without shuffling or else a GFSR method. Routine RNOPT determines which method is
used; and in the case of a multiplicative congruential method, it determines the value of the
multiplier and whether or not to use shuffling. The description of RNUN (page 1653) may
provide some guidance in the choice of the form of the generator. If no selection is made
explicitly, the generators use the multiplier 16807 without shuffling. This form of the generator
has been in use for some time (see Lewis, Goodman, and Miller, 1969). This is the generator
formerly known as GGUBS in the IMSL Library. It is the “minimal standard generator” discussed
by Park and Miller (1988).

Example
The FORTRAN statement

CALL RNOPT(1)

would select the simple multiplicative congruential generator with multiplier 16807. Since this
is the same as the default, this statement would have no effect unless RNOPT had previously
been called in the same program to select a different generator.

RNUNF
This function generates a pseudorandom number from a uniform (0, 1) distribution.

Function Return Value
RNUNF — Function value, a random uniform (0, 1) deviate. (Output)

See Comment 1.

Required Arguments
None

1652 � Chapter 11: Utilities IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: RNUNF ()

Specific: The specific interface names are S_RNUNF and D_RNUNF.

FORTRAN 77 Interface
Single: RNUNF ()

Double: The double precision name is DRNUNF.

Example
In this example, RNUNF is used to generate five pseudorandom uniform numbers. Since RNOPT
(page 1650) is not called, the generator used is a simple multiplicative congruential one with a
multiplier of 16807.

 USE RNUNF_INT
 USE RNSET_INT
 USE UMACH_INT
 INTEGER I, ISEED, NOUT
 REAL R(5)
!
 CALL UMACH (2, NOUT)
 ISEED = 123457
 CALL RNSET (ISEED)
 DO 10 I=1, 5
 R(I) = RNUNF()
 10 CONTINUE
 WRITE (NOUT,99999) R
99999 FORMAT (’ Uniform random deviates: ’, 5F8.4)
 END

Output
Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448

Comments
1. If the generic version of this function is used, the immediate result must be stored in a

variable before use in an expression. For example:

X = RNUNF(6)
Y = SQRT(X)

must be used rather than

Y = SQRT(RNUNF(6))

 If this is too much of a restriction on the programmer, then the specific name can be
used without this restriction.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1653

2. Routine RNSET (page 1649) can be used to initialize the seed of the random number
generator. The routine RNOPT (page 1650) can be used to select the form of the
generator.

3. This function has a side effect: it changes the value of the seed, which is passed
through a common block.

Description
Routine RNUNF is the function form of RNUN (page 1653). The routine RNUNF generates
pseudorandom numbers from a uniform (0, 1) distribution. The algorithm used is determined by
RNOPT (page 1650). The values returned by RNUNF are positive and less than 1.0.

If several uniform deviates are needed, it may be more efficient to obtain them all at once by a
call to RNUN rather than by several references to RNUNF.

RNUN
Generates pseudorandom numbers from a uniform (0, 1) distribution.

Required Arguments
R — Vector of length NR containing the random uniform (0, 1) deviates. (Output)

Optional Arguments
NR — Number of random numbers to generate. (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNUN (R [,…])

Specific: The specific interface names are S_RNUN and D_RNUN.

FORTRAN 77 Interface
Single: CALL RNUN (NR, R)

Double: The double precision name is DRNUN.

Example
In this example, RNUN is used to generate five pseudorandom uniform numbers. Since RNOPT
(page 1650) is not called, the generator used is a simple multiplicative congruential one with a
multiplier of 16807.

1654 � Chapter 11: Utilities IMSL MATH/LIBRARY

 USE RNUN_INT
 USE RNSET_INT
 USE UMACH_INT
 INTEGER ISEED, NOUT, NR
 REAL R(5)
!
 CALL UMACH (2, NOUT)
 NR = 5
 ISEED = 123457
 CALL RNSET (ISEED)
 CALL RNUN (R)
 WRITE (NOUT,99999) R
99999 FORMAT (’ Uniform random deviates: ’, 5F8.4)
 END

Output
Uniform random deviates: .9662 .2607 .7663 .5693 .8448

Comments
The routine RNSET (page 1649) can be used to initialize the seed of the random number
generator. The routine RNOPT (page 1650) can be used to select the form of the generator.

Description
Routine RNUN generates pseudorandom numbers from a uniform (0,1) distribution using either a
multiplicative congruential method or a generalized feedback shift register (GFSR) method. The
form of the multiplicative congruential generator is

� �31
1 mod 2 1i ix cx

�

� �

Each xi is then scaled into the unit interval (0,1). The possible values for c in the IMSL
generators are 16807, 397204094, and 950706376. The selection is made by the routine RNOPT
(page 1650). The choice of 16807 will result in the fastest execution time. If no selection is
made explicitly, the routines use the multiplier 16807.

The user can also select a shuffled version of the multiplicative congruential generators. In this
scheme, a table is filled with the first 128 uniform (0,1) numbers resulting from the simple
multiplicative congruential generator. Then, for each xi from the simple generator, the low-order
bits of xi are used to select a random integer, j, from 1 to 128. The j-th entry in the table is then
delivered as the random number; and xi, after being scaled into the unit interval, is inserted into
the j-th position in the table.

The GFSR method is based on the recursion Xt = Xt����� � Xt���. This generator, which is
different from earlier GFSR generators, was proposed by Fushimi (1990), who discusses the
theory behind the generator and reports on several empirical tests of it. The values returned in R
by RNUN are positive and less than 1.0. Values in R may be smaller than the smallest relative
spacing, however. Hence, it may be the case that some value R(i) is such that 1.0 � R(i) = 1.0.

Deviates from the distribution with uniform density over the interval (A, B) can be obtained by
scaling the output from RNUN. The following statements (in single precision) would yield
random deviates from a uniform (A, B) distribution:

IMSL MATH/LIBRARY Chapter 11: Utilities � 1655

 CALL RNUN (NR, R)
 CALL SSCAL (NR, B-A, R, 1)
 CALL SADD (NR, A, R, 1)

FAURE_INIT
Shuffled Faure sequence initialization.

Required Arguments
NDIM — The dimension of the hyper-rectangle. (Input)

STATE — An IMSL_FAURE pointer for the derived type created by the call to
FAURE_INIT. The output contains information about the sequence. Use
?_IMSL_FAURE as the type, where ?_ is S_ or D_ depending on precision. (Output)

Optional Arguments
NBASE — The base of the Faure sequence. (Input)

Default: The smallest prime number greater than or equal to NDIM.

NSKIP — The number of points to be skipped at the beginning of the Faure sequence.
(Input)

Default: basem/2 1� , where m � log / log B base and B is the largest machine
representable integer.

FORTRAN 90 Interface
Generic: CALL FAURE_INIT (NDIM, STATE [,…])

Specific: The specific interface names are S_FAURE_INIT and D_FAURE_INIT.

FAURE_FREE
Frees the structure containing information about the Faure sequence.

Required Arguments
STATE — An IMSL_FAURE pointer containing the structure created by the call to

FAURE_INIT. (Input/Output)

FORTRAN 90 Interface
Generic: CALL FAURE_FREE (STATE)

1656 � Chapter 11: Utilities IMSL MATH/LIBRARY

Specific: The specific interface names are S_FAURE_FREE and D_FAURE_FREE.

FAURE_NEXT
Computes a shuffled Faure sequence.

Required Arguments
STATE — An IMSL_FAURE pointer containing the structure created by the call to

FAURE_INIT. The structure contains information about the sequence. The structure
should be freed using FAURE_FREE after it is no longer needed. (Input/Output)

NEXT_PT — Vector of length NDIM containing the next point in the shuffled Faure
sequence, where NDIM is the dimension of the hyper-rectangle specified in
FAURE_INIT. (Output)

Optional Arguments
IMSL_RETURN_SKIP — Returns the current point in the sequence. The sequence can be

restarted by calling FAURE_INIT using this value for NSKIP, and using the same value
for NDIM. (Input)

FORTRAN 90 Interface
Generic: CALL FAURE_NEXT (STATE, NEXT_PT [,…])

Specific: The specific interface names are S_FAURE_NEXT and D_FAURE_NEXT.

Example
In this example, five points in the Faure sequence are computed. The points are in the three-
dimensional unit cube.
Note that FAURE_INIT is used to create a structure that holds the state of the sequence. Each call
to FAURE_NEXT returns the next point in the sequence and updates the IMSL_FAURE structure. The
final call to FAURE_FREE frees data items, stored in the structure, that were allocated by
FAURE_INIT.

 use faure_int
 implicit none
 type (s_imsl_faure), pointer :: state
 real(kind(1e0)) :: x(3)
 integer,parameter :: ndim=3
 integer :: k
! CREATE THE STRUCTURE THAT HOLDS
! THE STATE OF THE SEQUENCE.
 call faure_init(ndim, state)
! GET THE NEXT POINT IN THE SEQUENCE

IMSL MATH/LIBRARY Chapter 11: Utilities � 1657

 do k=1,5
 call faure_next(state, x)
 write(*,'(3F15.3)') x(1), x(2) , x(3)
 enddo
! FREE DATA ITEMS STORED IN
! state STRUCTURE
 call faure_free(state)

 end

Output
 0.334 0.493 0.064
 0.667 0.826 0.397
 0.778 0.270 0.175
 0.111 0.604 0.509
 0.445 0.937 0.842

Description
The routines FAURE_INT and FAURE_NEXT are used to generate shuffled Faure sequence of low
discrepancy n-dimensional points. Low discrepency series fill an n-dimensional cube more
uniformly than psuedo-random sequences, and are used in multivariate quadrature, simulation,
and global optimization. Because of this uniformity, use of low discrepency series is generally
more effiicient than psuedo-random series for multivariate Monte Carlo methods. See the IMSL
routine QMC (Chapter 4, Integration and Differentiation) for a discussion of quasi-Monte Carlo
quadrature based on low discrepancy series.

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set � �1,..., 0,1 , 1d
nx x d� � , is defined

Dn
d A E n

n
E

E

b g b g b g� �sup
;

,�

where the supremum is over all subsets of [0, 1]d of the form

� �1
0, 0 0 1, 1... , ,

d jE t t t j d� � � ���� � �� � ,

� is the Lebesque measure, and A E n;b g is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there exists a constant
c(d), depending only on d, such that

Dn
d c d

n d

n
b g b g b g�

log

for all n>1.

Generalized Faure sequences can be defined for any prime base b�d. The lowest bound for the
discrepancy is obtained for the smallest prime b�d, so the optional argument NBASE defaults to
the smallest prime greater than or equal to the dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

1658 � Chapter 11: Utilities IMSL MATH/LIBRARY

Write the positive integer n in its b-ary expansion,

n a n bi
i

i

�

�

�

� ()
0

where ai(n) are integers, 0 � �a n bi b g .

The j-th coordinate of xn is

x c a n b j dn

j
kd

j

dk
d

k() () () ,� � �

�

�

�

�

� ���
00

1 1

The generator matrix for the series, ck d
j() , is defined to be

c j ck d
j d k

k d
()

�
�

and ck d is an element of the Pascal matrix,

c
d

c d c
k d

k d
k d � �

�

�

R
S|
T|

!
! !b g

0
It is faster to compute a shuffled Faure sequence than to compute the Faure sequence itself. It
can be shown that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer n into
the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized Faure sequence.

IUMAG
This routine handles MATH/LIBRARY and STAT/LIBRARY type INTEGER options.

Required Arguments
PRODNM — Product name. Use either “MATH” or “STAT.” (Input)

ICHP — Chapter number of the routine that uses the options. (Input)

IACT — 1 if user desires to “get” or read options, or 2 if user desires to “put” or write
options. (Input)

NUMOPT — Size of IOPTS. (Input)

IOPTS — Integer array of size NUMOPT containing the option numbers to “get” or “put.”
(Input)

IMSL MATH/LIBRARY Chapter 11: Utilities � 1659

IVALS — Integer array containing the option values. These values are arrays corresponding
to the individual options in IOPTS in sequential order. The size of IVALS is the sum of
the sizes of the individual options. (Input/Output)

FORTRAN 90 Interface
Generic: CALL IUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, IVALS)

Specific: The specific interface name is IUMAG.

FORTRAN 77 Interface
Single: CALL IUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, IVALS)

Example
The number of iterations allowed for the constrained least squares solver LCLSQ that calls
L2LSQ is changed from the default value of max(nra, nca) to the value 6. The default value is
restored after the call to LCLSQ. This change has no effect on the solution. It is used only for
illustration. The first two arguments required for the call to IUMAG are defined by the product
name, “MATH,” and chapter number, 1, where LCLSQ is documented. The argument IACT
denotes a write or “put” operation. There is one option to change so NUMOPT has the value 1.
The arguments for the option number, 14, and the new value, 6, are defined by reading the
documentation for LCLSQ.

 USE IUMAG_INT
 USE LCLSQ_INT
 USE UMACH_INT
 USE SNRM2_INT
!
! Solve the following in the least squares sense:
! 3x1 + 2x2 + x3 = 3.3
! 4x1 + 2x2 + x3 = 2.3
! 2x1 + 2x2 + x3 = 1.3
! x1 + x2 + x3 = 1.0
!
! Subject to: x1 + x2 + x3 <= 1
! 0 <= x1 <= .5
! 0 <= x2 <= .5
! 0 <= x3 <= .5
!
! --
! Declaration of variables
!
 INTEGER ICHP, IPUT, LDA, LDC, MCON, NCA, NEWMAX, NRA, NUMOPT
 PARAMETER (ICHP=1, IPUT=2, MCON=1, NCA=3, NEWMAX=14, NRA=4, &
 NUMOPT=1, LDA=NRA, LDC=MCON)
!
 INTEGER IOPT(1), IRTYPE(MCON), IVAL(1), NOUT
 REAL A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA), &
 RESNRM, XLB(NCA), XSOL(NCA), XUB(NCA)

1660 � Chapter 11: Utilities IMSL MATH/LIBRARY

! Data initialization
!
 DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, 2.0E0, 2.0E0, 1.0E0, &
 1.0E0, 1.0E0, 1.0E0, 1.0E0/, B/3.3E0, 2.3E0, 1.3E0, 1.0E0/, &
 C/3*1.0E0/, BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/
! --
!
! Reset the maximum number of

! iterations to use in the solver.
! The value 14 is the option number.
! The value 6 is the new maximum.
 IOPT(1) = NEWMAX
 IVAL(1) = 6
 CALL IUMAG (’math’, ICHP, IPUT, NUMOPT, IOPT, IVAL)
! -------------------------------------
! ---------------------------------
!
! Solve the bounded, constrained
! least squares problem.
!
 CALL LCLSQ (A, B, C, BC, B, IRTYPE, XLB, XUB, XSOL, RES=RES)

! Compute the 2-norm of the residuals.
 RESNRM = SNRM2(NRA,RES,1)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) XSOL, RES, RESNRM
! -------------------------------------
! ---------------------------------
! Reset the maximum number of
! iterations to its default value.
! This is not required but is
! recommended programming practice.
 IOPT(1) = -IOPT(1)
 CALL IUMAG (’math’, ICHP, IPUT, NUMOPT, IOPT, IVAL)
! -------------------------------------
! ---------------------------------
!
99999 FORMAT (’ The solution is ’, 3F9.4, //, ’ The residuals ’, &
 ’evaluated at the solution are ’, /, 18X, 4F9.4, //, &
 ’ The norm of the residual vector is ’, F8.4)
!
 END

Output
The solution is 0.5000 0.3000 0.2000

The residuals evaluated at the solution are
-1.0000 0.5000 0.5000 0.0000

The norm of the residual vector is 1.2247

IMSL MATH/LIBRARY Chapter 11: Utilities � 1661

Comments
1. Users can normally avoid reading about options when first using a routine that calls

IUMAG.

2. Let I be any value between 1 and NUMOPT. A negative value of IOPTS(I) refers to
option number �IOPTS(I) but with a different effect: For a “get” operation, the default
values are returned in IVALS. For a “put” operation, the default values replace the
current values. In the case of a “put,” entries of IVALS are not allocated by the user and
are not used by IUMAG.

3. Both positive and negative values of IOPTS can be used.

4. INTEGER Options

1 If the value is positive, print the next activity for any library routine that uses the
Options Manager codes IUMAG, SUMAG, or DUMAG. Each printing step
decrements the value if it is positive.
Default value is 0.

2 If the value is 2, perform error checking in IUMAG (page 1658), SUMAG (page
1661), and DUMAG (page 1664) such as the verifying of valid option numbers and
the validity of input data. If the value is 1, do not perform error checking.
Default value is 2.

3 This value is used for testing the installation of IUMAG by other IMSL software.
Default value is 3.

Description
The Options Manager routine IUMAG reads or writes INTEGER data for some MATH/LIBRARY
and STAT/LIBRARY codes. See Atchison and Hanson (1991) for more complete details.

There are MATH/LIBRARY routines in Chapters 1, 2, and 5 that now use IUMAG to
communicate optional data from the user.

UMAG
This routine handles MATH/LIBRARY and STAT/LIBRARY type REAL and double precision
options.

Required Arguments
PRODNM — Product name. Use either “MATH” or “STAT.” (Input)

ICHP — Chapter number of the routine that uses the options. (Input)

IACT — 1 if user desires to “get” or read options, or 2 if user desires to “put” or write
options. (Input)

1662 � Chapter 11: Utilities IMSL MATH/LIBRARY

IOPTS — Integer array of size NUMOPT containing the option numbers to “get” or “put.”
(Input)

SVALS — Array containing the option values. These values are arrays corresponding to the
individual options in IOPTS in sequential order. The size of SVALS is the sum of the
sizes of the individual options. (Input/Output)

Optional Arguments
NUMOPT — Size of IOPTS. (Input)

Default: NUMOPT = size (IOPTS,1).

FORTRAN 90 Interface
Generic: CALL UMAG (PRODNM, ICHP, IACT, IOPTS, SVALS [,…])

Specific: The specific interface names are S_UMAG and D_UMAG.

FORTRAN 77 Interface
Single: CALL SUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, SVALS)

Double: The double precision name is DUMAG.

Example
The rank determination tolerance for the constrained least squares solver LCLSQ that calls
L2LSQ is changed from the default value of SQRT(AMACH(4)) to the value 0.01. The default
value is restored after the call to LCLSQ. This change has no effect on the solution. It is used
only for illustration. The first two arguments required for the call to SUMAG are defined by the
product name, “MATH,” and chapter number, 1, where LCLSQ is documented. The argument
IACT denotes a write or “put” operation. There is one option to change so NUMOPT has the value
1. The arguments for the option number, 2, and the new value, 0.01E+0, are defined by reading
the documentation for LCLSQ.

 USE UMAG_INT
 USE LCLSQ_INT
 USE UMACH_INT
 USE SNRM2_INT
!
! Solve the following in the least squares sense:
! 3x1 + 2x2 + x3 = 3.3
! 4x1 + 2x2 + x3 = 2.3
! 2x1 + 2x2 + x3 = 1.3
! x1 + x2 + x3 = 1.0
!
! Subject to: x1 + x2 + x3 <= 1
! 0 <= x1 <= .5
! 0 <= x2 <= .5
! 0 <= x3 <= .5

IMSL MATH/LIBRARY Chapter 11: Utilities � 1663

!
! --
! Declaration of variables
!
 INTEGER ICHP, IPUT, LDA, LDC, MCON, NCA, NEWTOL, NRA, NUMOPT
 PARAMETER (ICHP=1, IPUT=2, MCON=1, NCA=3, NEWTOL=2, NRA=4, &
 NUMOPT=1, LDA=NRA, LDC=MCON)
!
 INTEGER IOPT(1), IRTYPE(MCON), NOUT
 REAL A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA), &
 RESNRM, SVAL(1), XLB(NCA), XSOL(NCA), XUB(NCA)
! Data initialization
!
 DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, 2.0E0, 2.0E0, 1.0E0, &
 1.0E0, 1.0E0, 1.0E0, 1.0E0/, B/3.3E0, 2.3E0, 1.3E0, 1.0E0/, &
 C/3*1.0E0/, BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/
! --
!
! Reset the rank determination
! tolerance used in the solver.
! The value 2 is the option number.
! The value 0.01 is the new tolerance.
!
 IOPT(1) = NEWTOL
 SVAL(1) = 0.01E+0
 CALL UMAG (’math’, ICHP, IPUT, IOPT, SVAL)
! -------------------------------------
! ---------------------------------
!
! Solve the bounded, constrained
! least squares problem.
!
 CALL LCLSQ (A, B, C, BC, BC, IRTYPE, XLB, XUB, XSOL, RES=RES)
! Compute the 2-norm of the residuals.
 RESNRM = SNRM2(NRA,RES,1)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) XSOL, RES, RESNRM
! -------------------------------------
! ---------------------------------

! Reset the rank determination
! tolerance to its default value.
! This is not required but is
! recommended programming practice.
 IOPT(1) = -IOPT(1)
 CALL UMAG (’math’, ICHP, IPUT, IOPT, SVAL)
! -------------------------------------
! ---------------------------------
!
99999 FORMAT (’ The solution is ’, 3F9.4, //, ’ The residuals ’, &
 ’evaluated at the solution are ’, /, 18X, 4F9.4, //, &
 ’ The norm of the residual vector is ’, F8.4)
!
 END

1664 � Chapter 11: Utilities IMSL MATH/LIBRARY

Output
The solution is 0.5000 0.3000 0.2000

The residuals evaluated at the solution are
-1.0000 0.5000 0.5000 0.0000

The norm of the residual vector is 1.2247

Comments
1. Users can normally avoid reading about options when first using a routine that calls

SUMAG.

2. Let I be any value between 1 and NUMOPT. A negative value of IOPTS(I) refers to
option number �IOPTS(I) but with a different effect: For a “get” operation, the default
values are returned in SVALS. For a “put” operation, the default values replace the
current values. In the case of a “put,” entries of SVALS are not allocated by the user and
are not used by SUMAG.

3. Both positive and negative values of IOPTS can be used.

4. Floating Point Options

1 This value is used for testing the installation of SUMAG by other IMSL software.
Default value is 3.0E0.

Description
The Options Manager routine SUMAG reads or writes REAL data for some MATH/LIBRARY and
STAT/LIBRARY codes. See Atchison and Hanson (1991) for more complete details. There are
MATH/LIBRARY routines in Chapters 1 and 5 that now use SUMAG to communicate optional
data from the user.

SUMAG/DUMAG
See UMAG.

PLOTP
Prints a plot of up to 10 sets of points.

Required Arguments
X — Vector of length NDATA containing the values of the independent variable. (Input)

A — Matrix of dimension NDATA by NFUN containing the NFUN sets of dependent variable
values. (Input)

IMSL MATH/LIBRARY Chapter 11: Utilities � 1665

SYMBOL — CHARACTER string of length NFUN. (Input)
SYMBOL(I : I) is the symbol used to plot function I.

XTITLE — CHARACTER string used to label the x-axis. (Input)

YTITLE — CHARACTER string used to label the y-axis. (Input)

TITLE — CHARACTER string used to label the plot. (Input)

Optional Arguments
NDATA — Number of independent variable data points. (Input)

Default: NDATA = size (X,1).

NFUN — Number of sets of points. (Input)
NFUN must be less than or equal to 10.
Default: NFUN = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

INC — Increment between elements of the data to be used. (Input)
PLOTP plots X(1 + (I � 1) * INC) for I = 1, 2, �, NDATA.
Default: INC = 1.

RANGE — Vector of length four specifying minimum x, maximum x, minimum y and
maximum y. (Input)
PLOTP will calculate the range of the axis if the minimum and maximum of that range
are equal.
Default: RANGE = 1.e0.

FORTRAN 90 Interface
Generic: CALL PLOTP (X, A, SYMBOL, XTITLE, YTITLE, TITLE [,…])

Specific: The specific interface names are S_PLOTP and D_PLOTP.

FORTRAN 77 Interface
Single: CALL PLOTP (NDATA, NFUN, X, A, LDA, INC, RANGE, SYMBOL,

 XTITLE, YTITLE, TITLE)

Double: The double precision name is DPLOTP.

1666 � Chapter 11: Utilities IMSL MATH/LIBRARY

Example
This example plots the sine and cosine functions from � 3.5 to + 3.5 and sets page width and
length to 78 and 40, respectively, by calling PGOPT (page 1599) in advance.

 USE PLOTP_INT
 USE CONST_INT
 USE PGOPT_INT
 INTEGER I, IPAGE
 REAL A(200,2), DELX, PI, RANGE(4), X(200)
 CHARACTER SYMBOL*2
 INTRINSIC COS, SIN
!
 DATA SYMBOL/’SC’/
 DATA RANGE/-3.5, 3.5, -1.2, 1.2/
!
 PI = 3.14159
 DELX = 2.*PI/199.
 DO 10 I= 1, 200
 X(I) = -PI + FLOAT(I-1) * DELX
 A(I,1) = SIN(X(I))
 A(I,2) = COS(X(I))
 10 CONTINUE
! Set page width and length
 IPAGE = 78
 CALL PGOPT (-1, IPAGE)
 IPAGE = 40
 CALL PGOPT (-2, IPAGE)
 CALL PLOTP (X, A, SYMBOL, ’X AXIS’, ’Y AXIS’, ’ C = COS, S = SIN’, &
 RANGE=RANGE)
!
 END

IMSL MATH/LIBRARY Chapter 11: Utilities � 1667

Output
 C = COS, S = SIN

 1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+::::
 . I .
 . I .
 . CCCCCCC SSSSSSSS .
 . CC I CC SS SS .
 0.8 + C I C SS SS +
 . C I MS SS .
 . C I SSC SS .
 . CC I SS CC SS .
 . CC I S CC S .
 0.4 + C I S C S +
 . C I SS C SS .
 Y . CC I S CC S .
 . C IS C S .
 A . C SS C SS .
 X 0.0 +--S-----------CC-----------S-----------CC-----------S--+
 I . SS CC SS CC .
 S . S C SI C .
 . S CC S I CC .
 . SS C SS I C .
 -0.4 + S C S I C +
 . S CC S I CC .
 . SS CC SS I CC .
 . SSC SS I C .
 . MS SS I C .
 -0.8 + C SS SS I C +
 . CC SS SS I CC .
 . CCCC SSSSSSSS I CCCC .
 . C I C .
 . I .
 -1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+::::
 -3 -1 1 3

 X AXIS

Comments
1. Informational errors

Type Code
 3 7 NFUN is greater than 10. Only the first 10 functions are plotted.
 3 8 TITLE is too long. TITLE is truncated from the right side.
 3 9 YTITLE is too long. YTITLE is truncated from the right side.

 3 10 XTITLE is too long. XTITLE is truncated from the right side. The

maximum number of characters allowed depends on the page width
and the page length. See Comment 5 below for more information.

2. YTITLE and TITLE are automatically centered.

1668 � Chapter 11: Utilities IMSL MATH/LIBRARY

3. For multiple plots, the character M is used if the same print position is shared by two or
more data sets.

4. Output is written to the unit specified by UMACH (see Reference Material).

5. Default page width is 78 and default page length is 60. They may be changed by
calling PGOPT (page 1599) in advance.

Description
Routine PLOTP produces a line printer plot of up to ten sets of points superimposed upon the
same plot. A character “M” is printed to indicate multiple points. The user may specify the x and
y-axis plot ranges and plotting symbols. Plot width and length may be reset in advance by
calling PGOPT (page 1599).

PRIME
Decomposes an integer into its prime factors.

Required Arguments
N — Integer to be decomposed. (Input)

NPF — Number of different prime factors of ABS(N). (Output)
If N is equal to �1, 0, or 1, NPF is set to 0.

IPF — Integer vector of length 13. (Output)
IPF(I) contains the prime factors of the absolute value of N, for I = 1, �, NPF. The
remaining 13 � NPF locations are not used.

IEXP — Integer vector of length 13. (Output)
IEXP(I) is the exponent of IPF(I), for I = 1, �, NPF. The remaining 13 � NPF
locations are not used.

IPW — Integer vector of length 13. (Output)
IPW(I) contains the quantity IPF(I)**IEXP(I), for I = 1, �, NPF. The remaining 13 �
NPF locations are not used.

FORTRAN 90 Interface
Generic: CALL PRIME (N, NPF, IPF, IPW)

Specific: The specific interface name is PRIME.

FORTRAN 77 Interface
Single: CALL PRIME (N, NPF, IPF, IEXP, IPW)

IMSL MATH/LIBRARY Chapter 11: Utilities � 1669

Example
This example factors the integer 144 = 2�3�.

 USE PRIME_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=144)
!
 INTEGER IEXP(13), IPF(13), IPW(13), NOUT, NPF
! Get prime factors of 144
 CALL PRIME (N, NPF, IPF, IEXP, IPW)
! Get output unit number
 CALL UMACH (2, NOUT)
! Print results
 WRITE (NOUT,99999) N, IPF(1), IPF(2), IEXP(1), IEXP(2), IPW(1), &
 IPW(2), NPF
!
99999 FORMAT (’ The prime factors for’, I5, ’ are: ’, /, 10X, 2I6, // &
 , ’ IEXP =’, 2I6, /, ’ IPW =’, 2I6, /, ’ NPF =’, I6, &
 /)
 END

Output
The prime factors for 144 are:
2 3

IEXP = 4 2
IPW = 16 9
NPF = 2

Comments
The output from PRIME should be interpreted in the following way: ABS(N) = IPF(1)**IEXP(1)
* �. * IPF(NPF)**IEXP(NPF).

Description
Routine PRIME decomposes an integer into its prime factors. The number to be factored, N, may
not have more than 13 distinct factors. The smallest number with more than 13 factors is about
1.3 � 10��. Most computers do not allow integers of this size.

The routine PRIME is based on a routine by Brenner (1973).

CONST
This function returns the value of various mathematical and physical constants.

Function Return Value
CONST — Value of the constant. (Output)

See Comment 1.

1670 � Chapter 11: Utilities IMSL MATH/LIBRARY

Required Arguments
NAME — Character string containing the name of the desired constant. (Input)

See Comment 3 for a list of valid constants.

FORTRAN 90 Interface
Generic: CONST(NAME)

Specific: The specific interface names are S_CONST and D_CONST.

FORTRAN 77 Interface
Single: CONST(NAME)

Double: The double precision name is DCONST.

Example
In this example, Euler’s constant � is obtained and printed. Euler’s constant is defined to be

1

1

1lim ln
n

n k

n
k

�

�

��

�

� �
� �� �

� �
�

 USE CONST_INT
 USE UMACH_INT
 INTEGER NOUT
! Get output unit number
 CALL UMACH (2, NOUT)
! Get gamma
 GAMA = CONST(’GAMMA’)
! Print gamma
 WRITE (NOUT,*) ’GAMMA = ’, GAMA
 END

Output
GAMMA = 0.577216

For another example, see CUNIT, page 1672.

Comments
2. If the generic version of this function is used, the immediate result must be stored in a

variable before use in an expression. For example:

X = CONST(‘PI’)
Y = COS(x)

must be used rather than

Y = COS(CONST(‘PI’)).

IMSL MATH/LIBRARY Chapter 11: Utilities � 1671

If this is too much of a restriction on the programmer, then the specific name can be used
without this restriction.

2. The case of the character string in NAME does not matter. The names “PI”, “Pi”, “Pi”,
and “pi” are equivalent.

3. The units of the physical constants are in SI units (meter kilogram-second).

4. The names allowed are as follows:

Name Description Value Ref.
AMU Atomic mass unit 1.6605402E � 27 kg [1]
ATM Standard atm pressure 1.01325E + 5N/m�E [2]
AU Astronomical unit 1.496E + 11m []
Avogadro Avogadro's number 6.0221367E + 231/mole [1]
Boltzman Boltzman's constant 1.380658E � 23J/K [1]
C Speed of light 2.997924580E + 8m/sE [1]
Catalan Catalan's constant 0.915965 � E [3]
E Base of natural logs 2.718�E [3]

ElectronCharge Electron change 1.60217733E �19C [1]

ElectronMass Electron mass 9.1093897E � 31 kg [1]
ElectronVolt Electron volt 1.60217733E � 19J [1]
Euler Euler's constant gamma 0.577 � E [3]
Faraday Faraday constant 9.6485309E + 4C/mole [1]
FineStructure fine structure 7.29735308E � 3 [1]
Gamma Euler's constant 0.577 � E [3]
Gas Gas constant 8.314510J/mole/k [1]
Gravity Gravitational constant 6.67259E � 11N * m�/kg� [1]

Hbar Planck constant / 2 pi 1.05457266E � 34J * s [1]

PerfectGasVolume Std vol ideal gas 2.241383E � 2m�/mole [*]
Pi Pi 3.141 � E [3]
Planck Planck's constant h 6.6260755E � 34J * s [1]

ProtonMass Proton mass 1.6726231E � 27 kg [1]
Rydberg Rydberg's constant 1.0973731534E + 7/m [1]
SpeedLight Speed of light 2.997924580E + 8m/s E [1]
StandardGravity Standard g 9.80665m/s�E [2]
StandardPressure Standard atm pressure 1.01325E + 5N/m�E [2]

1672 � Chapter 11: Utilities IMSL MATH/LIBRARY

Name Description Value Ref.
StefanBoltzmann Stefan-Boltzman 5.67051E � 8W/K�/m� [1]
WaterTriple Triple point of water 2.7316E + 2K E [2]

Description
Routine CONST returns the value of various mathematical and physical quantities. For all of the
physical values, the Systeme International d’Unites (SI) are used.

The reference for constants are indicated by the code in [] Comment above.

[1] Cohen and Taylor (1986)

[2] Liepman (1964)

[3] Precomputed mathematical constants

The constants marked with an E before the [] are exact (to machine precision).

To change the units of the values returned by CONST, see CUNIT, page 1672.

CUNIT
Converts X in units XUNITS to Y in units YUNITS.

Required Arguments
X — Value to be converted. (Input)

XUNITS — Character string containing the name of the units for X. (Input)
See comments for a description of units allowed.

Y — Value in YUNITS corresponding to X in XUNITS. (Output)

YUNITS — Character string containing the name of the units for Y. (Input)
See comments for a description of units allowed.

FORTRAN 90 Interface
Generic: CALL CUNIT (X, XUNITS, Y, YUNITS[,…])

Specific: The specific interface names are S_CUNIT and D_CUNIT.

FORTRAN 77 Interface
Single: CALL CUNIT (X, XUNITS, Y, YUNITS)

Double: The double precision name is DCUNIT.

IMSL MATH/LIBRARY Chapter 11: Utilities � 1673

Example
The routine CONST is used to obtain the speed on light, c, in SI units. CUNIT is then used to
convert c to mile/second and to parsec/year. An example involving substitution of force for
mass is required in conversion of Newtons/Meter� to Pound/Inch�.

 USE CONST_INT
 USE CUNIT_INT
 USE UMACH_INT
! INTEGER NOUT
 REAL CMH, CMS, CPY
! Get output unit number
 CALL UMACH (2, NOUT)
! Get speed of light in SI (m/s)
 CMS = CONST(’SpeedLight’)
 WRITE (NOUT,*) ’Speed of Light = ’, CMS, ’ meter/second’
! Get speed of light in mile/second
 CALL CUNIT (CMS, ’SI’, CMH, ’Mile/Second’)
 WRITE (NOUT,*) ’Speed of Light = ’, CMH, ’ mile/second’
! Get speed of light in parsec/year
 CALL CUNIT (CMS, ’SI’, CPY, ’Parsec/Year’)
 WRITE (NOUT,*) ’Speed of Light = ’, CPY, ’ Parsec/Year’
! Convert Newton/Meter**2 to
! Pound/Inch**2.
 CALL CUNIT(1.E0, ’Newton/Meter**2’, CPSI, &
 ’Pound/Inch**2’)
 WRITE(NOUT,*)’ Atmospheres, in Pound/Inch**2 = ’,CPSI
 END

Output
Speed of Light = 2.99792E+08 meter/second
Speed of Light = 186282. mile/second
Speed of Light = 0.306387 Parsec/Year

*** WARNING ERROR 8 from CUNIT. A conversion of units of mass to units of
*** force was required for consistency.
Atmospheres, in Pound/Inch**2 = 1.45038E-04

Comments
1. Strings XUNITS and YUNITS have the form U� * U� * � * Um/V� � Vn, where Ui and Vi

are the names of basic units or are the names of basic units raised to a power. Examples
are, “METER * KILOGRAM/SECOND”, “M * KG/S”, “METER”, or “M/KG�”.

2. The case of the character string in XUNITS and YUNITS does not matter. The names
“METER”, “Meter” and “meter” are equivalent.

3. If XUNITS is “SI”, then X is assumed to be in the standard
international units corresponding to YUNITS. Similarly, if YUNITS is

“SI”, then Y is assumed to be in the standard international units corresponding to
XUNITS.

1674 � Chapter 11: Utilities IMSL MATH/LIBRARY

4. The basic unit names allowed are as follows:

Units of time
day, hour = hr, min = minute, s = sec = second, year

Units of frequency
Hertz = Hz

Units of mass
AMU, g = gram, lb = pound, ounce = oz, slug

Units of distance
Angstrom, AU, feet = foot = ft, in = inch, m = meter = metre, micron, mile, mill,
parsec, yard

Units of area
acre

Units of volume
l = liter = litre

Units of force
dyne, N = Newton, poundal

Units of energy
BTU(thermochemical), Erg, J = Joule

Units of work
W = watt

Units of pressure
ATM = atomosphere, bar, Pascal

Units of temperature
degC = Celsius, degF = Fahrenheit, degK = Kelvin

Units of viscosity
poise, stoke

Units of charge
Abcoulomb, C = Coulomb, statcoulomb

Units of current
A = ampere, abampere, statampere,

Units of voltage
Abvolt, V = volt

Units of magnetic induction
T = Tesla, Wb = Weber

Other units
1, farad, mole, Gauss, Henry, Maxwell, Ohm

IMSL MATH/LIBRARY Chapter 11: Utilities � 1675

The following metric prefixes may be used with the above units. Note that the one or two letter
prefixes may only be used with one letter unit abbreviations.

A Atto 1.E � 18
F femto 1.E � 15
P Pico 1.E � 12
N nano 1.E � 9
U micro 1.E � 6
M milli 1.E � 3
C centi 1.E � 2
D Deci 1.E � 1
DK Deca 1.E + 2
K Kilo 1.E + 3
 myria 1.E + 4 (no single letter prefix; M means milli
 mega 1.E + 6 (no single letter prefix; M means milli
G Giga 1.E + 9
T Tera 1.E + 12

5. Informational error

Type Code
 3 8 A conversion of units of mass to units of force was required for

consistency.

Description
Routine CUNIT converts a value expressed in one set of units to a value expressed in another set
of units.

The input and output units are checked for consistency unless the input unit is “SI”. SI means
the Systeme International d’Unites. This is the meter�kilogram�second form of the metric
system. If the input units are “SI”, then the input is assumed to be expressed in the SI units
consistent with the output units.

HYPOT
This functions computes SQRT(A**2 + B**2) without underflow or overflow.

Function Return Value
HYPOT — SQRT(A**2 + B**2). (Output)

Required Arguments
A — First parameter. (Input)

B — Second parameter. (Input)

1676 � Chapter 11: Utilities IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: HYPOT(A, B)

Specific: The specific interface names are S_HYPOT and D_HYPOT.

FORTRAN 77 Interface
Single: HYPOT(A, B)

Double: The double precision name is DHYPOT.

Example
Computes

2 2c a b� �

where a = 10�� and b = 2 � 10�� without overflow.

 USE HYPOT_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL A, B, C
!
 A = 1.0E+20
 B = 2.0E+20
 C = HYPOT(A,B)
! Get output unit number
 CALL UMACH (2, NOUT)
! Print the results
 WRITE (NOUT,’(A,1PE10.4)’) ’ C = ’, C
 END

Output
C = 2.2361E+20

Description
Routine HYPOT is based on the routine PYTHAG, used in EISPACK 3. This is an update of the
work documented in Garbow et al. (1972).

IMSL MATH/LIBRARY Reference Material � 1677

Reference Material

Contents
User Errors...1677
Automatic Workspace Allocation ...1699
Machine-Dependent Constants ... 1683
Matrix Storage Modes..1689
Reserved Names ...1698
Deprecated and Renamed Routines 1699

User Errors
IMSL routines attempt to detect user errors and handle them in a way that provides as much
information to the user as possible. To do this, we recognize various levels of severity of errors,
and we also consider the extent of the error in the context of the purpose of the routine; a trivial
error in one situation may be serious in another. IMSL routines attempt to report as many errors as
they can reasonably detect. Multiple errors present a difficult problem in error detection because
input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity
In some cases, the user’s input may be mathematically correct, but because of limitations of the
computer arithmetic and of the algorithm used, it is not possible to compute an answer accurately.
In this case, the assessed degree of accuracy determines the severity of the error. In cases where
the routine computes several output quantities, if some are not computable but most are, an error
condition exists. The severity depends on an assessment of the overall impact of the error.

Terminal errors
If the user’s input is regarded as meaningless, such as N = �1 when “N” is the number of equations,
the routine prints a message giving the value of the erroneous input argument(s) and the reason for
the erroneous input. The routine will then cause the user’s program to stop. An error in which the
user’s input is meaningless is the most severe error and is called a terminal error. Multiple
terminal error messages may be printed from a single routine.

1678 � Reference Material IMSL MATH/LIBRARY

Informational errors
In many cases, the best way to respond to an error condition is simply to correct the input and
rerun the program. In other cases, the user may want to take actions in the program itself based on
errors that occur. An error that may be used as the basis for corrective action within the program is
called an informational error. If an informational error occurs, a user-retrievable code is set. A
routine can return at most one informational error for a single reference to the routine. The codes
for the informational error codes are printed in the error messages.

Other errors
In addition to informational errors, IMSL routines issue error messages for which no user-
retrievable code is set. Multiple error messages for this kind of error may be printed. These errors,
which generally are not described in the documentation, include terminal errors as well as less
serious errors. Corrective action within the calling program is not possible for these errors.

Kinds of Errors and Default Actions
Five levels of severity of errors are defined in the MATH/LIBRARY. Each level has an associated
PRINT attribute and a STOP attribute. These attributes have default settings (YES or NO), but
they may also be set by the user. The purpose of having multiple error severity levels is to provide
independent control of actions to be taken for errors of different severity. Upon return from an
IMSL routine, exactly one error state exists. (A code 0 “error” is no informational error.) Even if
more than one informational error occurs, only one message is printed (if the PRINT attribute is
YES). Multiple errors for which no corrective action within the calling program is reasonable or
necessary result in the printing of multiple messages (if the PRINT attribute for their severity level
is YES). Errors of any of the severity levels except level 5 may be informational errors.

Level 1: Note. A note is issued to indicate the possibility of a trivial error or simply to
provide information about the computations. Default attributes: PRINT=NO,
STOP=NO

Level 2: Alert. An alert indicates that the user should be advised about events occurring
in the software. Default attributes: PRINT=NO, STOP=NO

Level 3: Warning. A warning indicates the existence of a condition that may require
corrective action by the user or calling routine. A warning error may be issued because
the results are accurate to only a few decimal places, because some of the output may
be erroneous but most of the output is correct, or because some assumptions underlying
the analysis technique are violated. Often no corrective action is necessary and the
condition can be ignored. Default attributes: PRINT=YES, STOP=NO

Level 4: Fatal.A fatal error indicates the existence of a condition that may be serious. In
most cases, the user or calling routine must take corrective action to recover. Default
attributes: PRINT=YES, STOP=YES

Level 5: Terminal.A terminal error is serious. It usually is the result of an incorrect
specification, such as specifying a negative number as the number of equations. These
errors may also be caused by various programming errors impossible to diagnose
correctly in FORTRAN. The resulting error message may be perplexing to the user. In

IMSL MATH/LIBRARY Reference Material � 1679

such cases, the user is advised to compare carefully the actual arguments passed to the
routine with the dummy argument descriptions given in the documentation. Special
attention should be given to checking argument order and data types.

A terminal error is not an informational error because corrective action within the
program is generally not reasonable. In normal usage, execution is terminated
immediately when a terminal error occurs. Messages relating to more than one terminal
error are printed if they occur. Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling ERSET as described in “Routines for Error
Handling.”

Errors in Lower-Level Routines
It is possible that a user’s program may call an IMSL routine that in turn calls a nested sequence of
lower-level IMSL routines. If an error occurs at a lower level in such a nest of routines and if the
lower-level routine cannot pass the information up to the original user-called routine, then a
traceback of the routines is produced. The only common situation in which this can occur is when
an IMSL routine calls a user-supplied routine that in turn calls another IMSL routine.

Routines for Error Handling
There are three ways in which the user may interact with the IMSL error handling system: (1) to
change the default actions, (2) to retrieve the integer code of an informational error so as to take
corrective action, and (3) to determine the severity level of an error. The routines to use are
ERSET, IERCD, and N1RTY, respectively.

ERSET
Change the default printing or stopping actions when errors of a particular error severity level
occur.

Required Arguments
IERSVR — Error severity level indicator. (Input)

If IERSVR = 0, actions are set for levels 1 to 5. If IERSVR is 1 to 5, actions are set for
errors of the specified severity level.

IPACT — Printing action. (Input)

 IPACT Action

�1 Do not change current setting(s).

 0 Do not print.

 1 Print.

 2 Restore the default setting(s).

1680 � Reference Material IMSL MATH/LIBRARY

ISACT — Stopping action. (Input)

 ISACT Action

�1 Do not change current setting(s).

 0 Do not stop.

 1 Stop.

 2 Restore the default setting(s).

FORTRAN 90 Interface
Generic: CALL ERSET (IERSVR, IPACT, ISACT)

Specific: The specific interface name is ERSET.

FORTRAN 77 Interface
Single: CALL ERSET (IERSVR, IPACT, ISACT)

IERCD and N1RTY
The last two routines for interacting with the error handling system, IERCD and N1RTY, are
INTEGER functions and are described in the following material.

IERCD retrieves the integer code for an informational error. Since it has no arguments, it may be
used in the following way:

ICODE = IERCD()

The function retrieves the code set by the most recently called IMSL routine.

N1RTY retrieves the error type set by the most recently called IMSL routine. It is used in the
following way:

ITYPE = N1RTY(1)

ITYPE = 1, 2, 4, and 5 correspond to error severity levels 1, 2, 4, and 5, respectively. ITYPE = 3
and ITYPE = 6 are both warning errors, error severity level 3. While ITYPE = 3 errors are
informational errors (IERCD() � 0), ITYPE = 6 errors are not informational errors (IERCD() = 0).

For software developers requiring additional interaction with the IMSL error handling system, see
Aird and Howell (1991).

Examples

Changes to default actions
Some possible changes to the default actions are illustrated below. The default actions remain in
effect for the kinds of errors not included in the call to ERSET.

IMSL MATH/LIBRARY Reference Material � 1681

To turn off printing of warning error messages:
CALL ERSET (3, 0, �1)

To stop if warning errors occur:
CALL ERSET (3, �1, 1)

To print all error messages:
CALL ERSET (0, 1, �1)

To restore all default settings:
CALL ERSET (0, 2, 2)

Use of informational error to determine program action
In the program segment below, the Cholesky factorization of a matrix is to be performed. If it is
determined that the matrix is not nonnegative definite (and often this is not immediately obvious),
the program is to take a different branch.

 .
 .
 .
 CALL LFTDS (A, FACT)
 IF (IERCD() .EQ. 2) THEN
! Handle matrix that is not nonnegative definite
 .
 .
 .
 END IF

Examples of errors
The program below illustrates each of the different types of errors detected by the
MATH/LIBRARY routines.

The error messages refer to the argument names that are used in the documentation for the routine,
rather than the user’s name of the variable used for the argument. In the message generated by
IMSL routine LINRG in this example, reference is made to N, whereas in the program a literal was
used for this argument.

 USE_IMSL_LIBRARIES
 INTEGER N
 PARAMETER (N=2)
!
 REAL A(N,N), AINV(N,N), B(N), X(N)
!
 DATA A/2.0, -3.0, 2.0, -3.0/
 DATA B/1.0, 2.0/
! Turn on printing and turn off
! stopping for all error types.
 CALL ERSET (0, 1, 0)
! Generate level 4 informational error.
 CALL LSARG (A, B, X)
! Generate level 5 terminal error.
 CALL LINRG (A, AINV, N = -1)
 END

1682 � Reference Material IMSL MATH/LIBRARY

Output
*** FATAL ERROR 2 from LSARG. The input matrix is singular. Some of
*** the diagonal elements of the upper triangular matrix U of the
*** LU factorization are close to zero.

*** TERMINAL ERROR 1 from LINRG. The order of the matrix must be positive
*** while N = �1 is given.

Example of traceback
The next program illustrates a situation in which a traceback is produced. The program uses the
IMSL quadrature routines QDAG and QDAGS to evaluate the double integral

� � � �
1 1 1

0 0 0
x y dx dy g y dy� �� � �

where

� � � � � � � �
1 1

0 0
, with g y x y dx f x dx f x x y� � � � �� �

Since both QDAG and QDAGS need 2500 numeric storage units of workspace, and since the
workspace allocator uses some space to keep track of the allocations, 6000 numeric storage units
of space are explicitly allocated for workspace. Although the traceback shows an error code
associated with a terminal error, this code has no meaning to the user; the printed message
contains all relevant information. It is not assumed that the user would take corrective action based
on knowledge of the code.

 USE QDAGS_INT
! Specifications for local variables
 REAL A, B, ERRABS, ERREST, ERRREL, G, RESULT
 EXTERNAL G
! Set quadrature parameters
 A = 0.0
 B = 1.0
 ERRABS = 0.0
 ERRREL = 0.001
! Do the outer integral
 CALL QDAGS (G, A, B, RESULT, ERRABS, ERRREL, ERREST)
!
 WRITE (*,*) RESULT, ERREST
 END
!
 REAL FUNCTION G (ARGY)
 USE QDAG_INT
 REAL ARGY
!
 INTEGER IRULE
 REAL C, D, ERRABS, ERREST, ERRREL, F, Y
 COMMON /COMY/ Y
 EXTERNAL F
!
 Y = ARGY
 C = 0.0
 D = 1.0
 ERRABS = 0.0

IMSL MATH/LIBRARY Reference Material � 1683

 ERRREL = -0.001
 IRULE = 1
!
 CALL QDAG (F, C, D, G, ERRABS, ERRREL, IRULE, ERREST)
 RETURN
 END
!
 REAL FUNCTION F (X)
 REAL X
!
 REAL Y
 COMMON /COMY/ Y
!
 F = X + Y
 RETURN
 END

Output
*** TERMINAL ERROR 4 from Q2AG. The relative error desired ERRREL =
*** -1.000000E-03. It must be at least zero.
Here is a traceback of subprogram calls in reverse order:
Routine name Error type Error code
------------ ---------- ----------
Q2AG 5 4 (Called internally)
QDAG 0 0
Q2AGS 0 0 (Called internally)
QDAGS 0 0
USER 0 0

Machine-Dependent Constants
The function subprograms in this section return machine-dependent information and can be used
to enhance portability of programs between different computers. The routines IMACH, and AMACH
describe the computer’s arithmetic. The routine UMACH describes the input, ouput, and error output
unit numbers.

IMACH

This function retrieves machine integer constants that define the arithmetic used by the computer.

Function Return Value
IMACH(1) = Number of bits per integer storage unit.

IMACH(2) = Number of characters per integer storage unit:

Integers are represented in M-digit, base A form as

0

M k
kk

x A�
�

�

1684 � Reference Material IMSL MATH/LIBRARY

where � is the sign and 0 � xk < A, k = 0, �, M.

Then,

IMACH(3) = A, the base.

IMACH(4) = M, the number of base-A digits.

IMACH(5) = AM � 1, the largest integer.

The machine model assumes that floating-point numbers are represented in normalized
N-digit, base B form as

1

NE k
kk

B x B�
�

�
�

where � is the sign, 0 < x� < B, 0 � xk < B, k = 2, �, N and E� � E � E�. Then,

min

IMACH(6) = , the base.
IMACH(7) = , the number of base- digits in single precision.
IMACH(8) = , the smallest single precision exponent.

s

s

B
N B
E

max

min

max

IMACH(9) = , the largest single precision exponent.

IMACH(10) = , the number of base- digits in double precision.
IMACH(11) = , the smallest double precision exponent.

IMACH(12) = , the

s

d

d

d

E

N B
E

E number of base- digits in double precisionB

Required Arguments
I — Index of the desired constant. (Input)

FORTRAN 90 Interface
Generic: IMACH (I)

Specific: The specific interface name is IMACH.

FORTRAN 77 Interface
Single: IMACH (I)

IMSL MATH/LIBRARY Reference Material � 1685

AMACH

The function subprogram AMACH retrieves machine constants that define the computer’s single-
precision or double precision arithmetic. Such floating-point numbers are represented in
normalized N-digit, base B form as

1

NE k
kk

B x B�
�

�
�

where � is the sign, 0 < x� < B, 0 � xk < B, k = 2, �, N and

min maxE E E� �

Function Return Value

� �

min

max

1

1

AMACH(1) , the smallest normalized positive number.

AMACH(2)= 1 , the largest number.

AMACH(3)= , the smallest relative spacing.

AMACH(4)= , the largest relative spacing.

E

E N

N

N

B

B B

B

B

�

�

�

�

�

�

� �10AMACH(5) = log .
AMACH(6) NaN (not a number).
AMACH(7)=positive machine infinity.
AMACH(8)= negative machine infinity.

B
quiet�

See Comment 1 for a description of the use of the generic version of this function.

See Comment 2 for a description of min, max, and N.

Required Arguments
I — Index of the desired constant. (Input)

FORTRAN 90 Interface
Generic: AMACH (I)

Specific: The specific interface names are S_AMACH and D_AMACH.

FORTRAN 77 Interface
Single: AMACH (I)

Double: The double precision name is DMACH.

1686 � Reference Material IMSL MATH/LIBRARY

Comments
1. If the generic version of this function is used, the immediate result must be stored in a

variable before use in an expression. For example:

X = AMACH(I)
Y = SQRT(X)

must be used rather than

Y = SQRT(AMACH(I)).

If this is too much of a restriction on the programmer, then the specific name can be
used without this restriction.

2. Note that for single precision B = IMACH(6), N = IMACH(7).
 Emin = IMACH(8), and Emax, = IMACH(9).
For double precision B = IMACH(6), N = IMACH(10).
 Emin = IMACH(11), and Emax, = IMACH(12).

3. The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN (not a
number) as the result of various invalid or ambiguous operations, such as 0/0. The intent
is that AMACH(6) return a quiet NaN. On IEEE format computers that do not support a
quiet NaN, a special value near AMACH(2) is returned for AMACH(6). On computers that do
not have a special representation for infinity, AMACH(7) returns the same value as
AMACH(2).

DMACH

See AMACH.

IFNAN(X)
This logical function checks if the argument X is NaN (not a number).

Function Return Value
IFNAN - Logical function value. True is returned if the input argument is a NAN. Otherwise,

False is returned. (Output)

Required Arguments
X – Argument for which the test for NAN is desired. (Input)

FORTRAN 90 Interface
Generic: IFNAN(X)

IMSL MATH/LIBRARY Reference Material � 1687

Specific: The specific interface names are S_IFNAN and D_IFNAN.

FORTRAN 77 Interface
Single: IFNAN (X)

Double: The double precision name is DIFNAN.

Example
 USE IFNAN_INT
 USE AMACH_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL X
!
 CALL UMACH (2, NOUT)
!
 X = AMACH(6)
 IF (IFNAN(X)) THEN
 WRITE (NOUT,*) ’ X is NaN (not a number).’
 ELSE
 WRITE (NOUT,*) ’ X = ’, X
 END IF
!
 END

Output
X is NaN (not a number).

Description
The logical function IFNAN checks if the single or double precision argument X is NAN (not a
number). The function IFNAN is provided to facilitate the transfer of programs across computer
systems. This is because the check for NaN can be tricky and not portable across computer
systems that do not adhere to the IEEE standard. For example, on computers that support the IEEE
standard for binary arithmetic (see IEEE 1985), NaN is specified as a bit format not equal to itself.
Thus, the check is performed as
IFNAN = X .NE. X

On other computers that do not use IEEE floating-point format, the check can be performed as:
IFNAN = X .EQ. AMACH(6)

The function IFNAN is equivalent to the specification of the function Isnan listed in the Appendix,
(IEEE 1985). The above following example illustrates the use of IFNAN. If X is NaN, a message is
printed instead of X. (Routine UMACH, which is described in the following section, is used to
retrieve the output unit number for printing the message.)

1688 � Reference Material IMSL MATH/LIBRARY

UMACH
Routine UMACH sets or retrieves the input, output, or error output device unit numbers.

Required Arguments
N — Integer value indicating the action desired. If the value of N is negative, the input, output, or
error output unit number is reset to NUNIT. If the value of N is positive, the input, output, or error
output unit number is returned in NUNIT. See the table in argument NUNIT for legal values of N.
(Input)

NUNIT — The unit number that is either retrieved or set, depending on the value of input
argument N. (Input/Output)

The arguments are summarized by the following table:

N Effect
1 Retrieves input unit number in NUNIT.
2 Retrieves output unit number in NUNIT.
3 Retrieves error output unit number in NUNIT.

�1 Sets the input unit number to NUNIT.
�2 Sets the output unit number to NUNIT.
�3 Sets the error output unit number to NUNIT.

FORTRAN 90 Interface
Generic: CALL UMACH (N, NUNIT)

Specific: The specific interface name is UMACH.

FORTRAN 77 Interface
Single: CALL UMACH (N, NUNIT)

Example
In the following example, a terminal error is issued from the MATH/LIBRARY AMACH function
since the argument is invalid. With a call to UMACH, the error message will be written to a local
file named “CHECKERR”.

 USE AMACH_INT
 USE UMACH_INT

 INTEGER N, NUNIT
 REAL X
! Set Parameter

IMSL MATH/LIBRARY Reference Material � 1689

 N = 0
 NUNIT = 9
!
 CALL UMACH (-3, NUNIT)
 OPEN (UNIT=NUNIT,FILE=’CHECKERR’)
 X = AMACH(N)
 END

Output
The output from this example, written to “CHECKERR” is:

*** TERMINAL ERROR 5 from AMACH. The argument must be between 1 and 8
*** inclusive. N = 0

Description
Routine UMACH sets or retrieves the input, output, or error output device unit numbers. UMACH is
set automatically so that the default FORTRAN unit numbers for standard input, standard output,
and standard error are used. These unit numbers can be changed by inserting a call to UMACH at the
beginning of the main program that calls MATH/LIBRARY routines. If these unit numbers are
changed from the standard values, the user should insert an appropriate OPEN statement in the
calling program.

Matrix Storage Modes
In this section, the word matrix will be used to refer to a mathematical object, and the word array
will be used to refer to its representation as a FORTRAN data structure.

General Mode
A general matrix is an N � N matrix A. It is stored in a FORTRAN array that is declared by the
following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL
general matrix subprograms only refer to values Aij for i = 1, �, N and j = 1, �, N. The data type
of a general array can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN
compiler allows, the nonstandard data type DOUBLE COMPLEX can also be declared.

Rectangular Mode
A rectangular matrix is an M � N matrix A. It is stored in a FORTRAN array that is declared by
the following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as M. IMSL
rectangular matrix subprograms only refer to values Aij for i = 1, �, M and j = 1, �, N. The data
type of a rectangular array can be REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN
compiler allows, you can declare the nonstandard data type DOUBLE COMPLEX.

1690 � Reference Material IMSL MATH/LIBRARY

Symmetric Mode

A symmetric matrix is a square N � N matrix A, such that AT = A. (AT is the transpose of A.) It is
stored in a FORTRAN array that is declared by the following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL
symmetric matrix subprograms only refer to the upper or to the lower half of A (i.e., to values Aij
for i = 1, �, N and j = i, �, N, or Aij for j = 1, �, N and i = j, �, N). The data type of a
symmetric array can be one of REAL or DOUBLE PRECISION. Use of the upper half of the array is
denoted in the BLAS that compute with symmetric matrices, see Chapter 9, Programming Notes
for BLAS, using the CHARACTER*1 flag UPLO = ’U’. Otherwise, UPLO = ’L’ denotes that the
lower half of the array is used.

Hermitian Mode
A Hermitian matrix is a square N � N matrix A, such that

TA A�

The matrix

A

is the complex conjugate of A and
 H TA A�

is the conjugate transpose of A. For Hermitian matrices, AH = A. The matrix is stored in a
FORTRAN array that is declared by the following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL
Hermitian matrix subprograms only refer to the upper or to the lower half of A (i.e., to values Aij
for i = 1, �, N and j = i, �, N., or Aij for j = 1, �, N and i = j, �, N). Use of the upper half of the
array is denoted in the BLAS that compute with Hermitian matrices, see Chapter 9, Programming
Notes for BLAS, using the CHARACTER*1 flag UPLO = ’U’. Otherwise, UPLO = ’L’ denotes that
the lower half of the array is used. The data type of a Hermitian array can be COMPLEX or, if your
FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX.

Triangular Mode
A triangular matrix is a square N � N matrix A such that values Aij = 0 for i < j or Aij = 0 for i > j.
The first condition defines a lower triangular matrix while the second condition defines an upper
triangular matrix. A lower triangular matrix A is stored in the lower triangular part of a
FORTRAN array A. An upper triangular matrix is stored in the upper triangular part of a
FORTRAN array. Triangular matrices are called unit triangular whenever Ajj = 1, j = 1, �, N. For
unit triangular matrices, only the strictly lower or upper parts of the array are referenced. This is
denoted in the BLAS that compute with triangular matrices, see Chapter 9, Programming Notes
for BLAS, using the CHARACTER*1 flag DIAGNL = ’U’. Otherwise, DIAGNL = ’N’ denotes that

IMSL MATH/LIBRARY Reference Material � 1691

the diagonal array terms should be used. For unit triangular matrices, the diagonal terms are each
used with the mathematical value 1. The array diagonal term does not need to be 1.0 in this usage.
Use of the upper half of the array is denoted in the BLAS that compute with triangular matrices,
see Chapter 9, Programming Notes for BLAS, using the CHARACTER*1 flag UPLO = ’U’.
Otherwise, UPLO = ’L’ denotes that the lower half of the array is used. The data type of an array
that contains a triangular matrix can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your
FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX can also be declared.

Band Storage Mode
A band matrix is an M � N matrix A with all of its nonzero elements “close” to the main diagonal.
Specifically, values Aij = 0 if i � j > NLCA or j � i > NUCA. The integers NLCA and NUCA are the
lower and upper band widths. The integer m = NLCA + NUCA + 1 is the total band width. The
diagonals, other than the main diagonal, are called codiagonals. While any M � N matrix is a band
matrix, the band matrix mode is most useful only when the number of nonzero codiagonals is
much less than m.

In the band storage mode, the NLCA lower codiagonals and NUCA upper codiagonals are stored in
the rows of a FORTRAN array of dimension m � N. The elements are stored in the same column
of the array as they are in the matrix. The values Aij inside the band width are stored in array
positions (i � j + NUCA + 1, j). This array is declared by the following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as m. The data
type of a band matrix array can be one of REAL, DOUBLE PRECISION, COMPLEX or, if your
FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX . Use of the
CHARACTER*1 flag TRANS=’N’ in the BLAS, , see Chapter 9, Programming Notes for BLAS,
specifies that the matrix A is used. The flag value

TRANS =’T’ uses TA

while

TRANS =’C’ uses TA

For example, consider a real 5 � 5 band matrix with 1 lower and 2 upper codiagonals, stored in the
FORTRAN array declared by the following statements:

PARAMETER (N=5, NLCA=1, NUCA=2)
REAL A(NLCA+NUCA+1, N)

The matrix A has the form

11 12 13

21 22 23 24

32 33 34 35

43 44 45

54 55

0 0
0

0
0 0
0 0 0

A A A
A A A A

A A A A A
A A A

A A

� �
� �
� �
� ��
� �
� �
� �� �

As a FORTRAN array, it is

1692 � Reference Material IMSL MATH/LIBRARY

13 24 35

12 23 34 45

11 22 33 44 55

21 32 43 54

A A A
A A A A

A
A A A A A
A A A A

� �� �
� ��� ��
� �
� �

�� �� �

The entries marked with an x in the above array are not referenced by the IMSL band
subprograms.

Band Symmetric Storage Mode
A band symmetric matrix is a band matrix that is also symmetric. The band symmetric storage
mode is similar to the band mode except only the lower or upper codiagonals are stored.

In the band symmetric storage mode, the NCODA upper codiagonals are stored in the rows of a
FORTRAN array of dimension (NCODA + 1) � N. The elements are stored in the same column of
the array as they are in the matrix. Specifically, values Aij, j � i inside the band are stored in array
positions (i � j + NCODA + 1, j). This is the storage mode designated by using the CHARACTER*1
flag UPLO = ’U’ in Level 2 BLAS that compute with band symmetric matrices, , see Chapter 9,
Programming Notes for BLAS. Alternatively, Aij, j � i, inside the band, are stored in array
positions (i � j + 1, j). This is the storage mode designated by using the CHARACTER*1 flag UPLO
= ’L’ in these Level 2 BLAS, see Chapter 9, Programming Notes for BLAS. The array is
declared by the following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as NCODA + 1.
The data type of a band symmetric array can be REAL or DOUBLE PRECISION.

For example, consider a real 5 � 5 band matrix with 2 codiagonals. Its FORTRAN declaration is
PARAMETER (N=5, NCODA=2)
REAL A(NCODA+1, N)

The matrix A has the form

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0
0

0
0 0

A A A
A A A A

A A A A A A
A A A A

A A A

� �
� �
� �
� ��
� �
� �
� �� �

Since A is symmetric, the values Aij = Aji. In the FORTRAN array, it is

13 24 35

12 23 34 45

11 22 33 44 55

A A A
A A A A A

A A A A A

� �� �
� �� �� �
� �� �

The entries marked with an � in the above array are not referenced by the IMSL band symmetric
subprograms.

IMSL MATH/LIBRARY Reference Material � 1693

An alternate storage mode for band symmetric matrices is designated using the CHARACTER*1 flag
UPLO = ’L’ in Level 2 BLAS that compute with band symmetric matrices, see Chapter 9,
Programming Notes for BLAS. In that case, the example matrix is represented as

11 22 33 44 55

12 23 34 45

13 24 35

A A A A A
A A A A A

A A A

� �
� �� �� �
� �� �� �

Band Hermitian Storage Mode
A band Hermitian matrix is a band matrix that is also Hermitian. The band Hermitian mode is a
complex analogue of the band symmetric mode.

In the band Hermitian storage mode, the NCODA upper codiagonals are stored in the rows of a
FORTRAN array of dimension (NCODA + 1) � N. The elements are stored in the same column of
the array as they are in the matrix. In the Level 2 BLAS, see Chapter 9, Programming Notes for
BLAS, this is denoted by using the CHARACTER*1 flag UPLO =’U’. The array is declared by the
following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as (NCODA + 1)
. The data type of a band Hermitian array can be COMPLEX or, if your FORTRAN compiler allows,
the nonstandard data type DOUBLE COMPLEX.

For example, consider a complex 5 � 5 band matrix with 2 codiagonals. Its FORTRAN declaration
is

PARAMETER (N=5, NCODA = 2)
COMPLEX A(NCODA + 1, N)

The matrix A has the form

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0
0

0
0 0

A A A
A A A A

A A A A A A
A A A A

A A A

� �
� �
� �
� ��
� �
� �
� �� �

where the value

ijA

is the complex conjugate of Aij. This matrix represented as a FORTRAN array is

13 24 35

12 23 34 45

11 22 33 44 55

A A A
A A A A A

A A A A A

� �� �
� �� �� �
� �� �

The entries marked with an � in the above array are not referenced by the IMSL band Hermitian
subprograms.

1694 � Reference Material IMSL MATH/LIBRARY

An alternate storage mode for band Hermitian matrices is designated using the CHARACTER*1 flag
UPLO = ’L’ in Level 2 BLAS that compute with band Hermitian matrices, see Chapter 9,
Programming Notes for BLAS. In that case, the example matrix is represented as

11 22 33 44 55

12 23 34 45

13 24 35

A A A A A
A A A A A

A A A

� �
� �� �� �
� �� �� �

Band Triangular Storage Mode
A band triangular matrix is a band matrix that is also triangular. In the band triangular storage
mode, the NCODA codiagonals are stored in the rows of a FORTRAN array of dimension (NCODA +
1) � N. The elements are stored in the same column of the array as they are in the matrix. For
usage in the Level 2 BLAS, see Chapter 9, Programming Notes for BLAS, the CHARACTER*1 flag
DIAGNL has the same meaning as used in section “Triangular Storage Mode”. The flag UPLO has
the meaning analogous with its usage in the section “Banded Symmetric Storage Mode”. This
array is declared by the following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as (NCODA +
1).

For example, consider a 5 �5 band upper triangular matrix with 2 codiagonals. Its FORTRAN
declaration is

PARAMETER (N = 5, NCODA = 2)
COMPLEX A(NCODA + 1, N)

The matrix A has the form

11 12 13

22 23 24

33 34 35

44 45

55

0 0
0 0
0 0
0 0 0
0 0 0 0

A A A
A A A

A A A A
A A

A

� �
� �
� �
� ��
� �
� �
� �� �

This matrix represented as a FORTRAN array is

13 24 35

12 23 34 45

11 22 33 44 55

A A A
A A A A A

A A A A A

� �� �
� �� �� �
� �� �

This corresponds to the CHARACTER*1 flags DIAGNL = ’N’ and UPLO = ’U’. The matrix AT is
represented as the FORTRAN array

11 22 33 44 55

12 23 34 45

13 24 35

A A A A A
A A A A A

A A A

� �
� �� �� �
� �� �� �

IMSL MATH/LIBRARY Reference Material � 1695

This corresponds to the CHARACTER*1 flags DIAGNL = ’N’ and UPLO = ’L’. In both examples,
the entries indicated with an � are not referenced by IMSL subprograms.

Codiagonal Band Symmetric Storage Mode
This is an alternate storage mode for band symmetric matrices. It is not used by any of the BLAS,
see Chapter 9, Programming Notes for BLAS. Storing data in a form transposed from the Band
Symmetric Storage Mode maintains unit spacing between consecutive referenced array elements.
This data structure is used to get good performance in the Cholesky decomposition algorithm that
solves positive definite symmetric systems of linear equations Ax = b. The data type can be REAL
or DOUBLE PRECISION. In the codiagonal band symmetric storage mode, the NCODA upper
codiagonals and right-hand-side are stored in columns of this FORTRAN array. This array is
declared by the following statement:
DIMENSION A(LDA, NCODA + 2)

The parameter LDA is the leading positive dimension of A. It must be at least as large as
N + NCODA.

Consider a real symmetric 5 � 5 matrix with 2 codiagonals

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0
0

0
0 0

A A A
A A A A

A A A A A A
A A A A

A A A

� �
� �
� �
� ��
� �
� �
� �� �

and a right-hand-side vector

1

2

3

4

5

b
b

b b
b
b

� �
� �
� �
� ��
� �
� �
� �� �

A FORTRAN declaration for the array to hold this matrix and right-hand-side vector is
PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA)
REAL A(LDA, NCODA + 2)

The matrix and right-hand-side entries are placed in the FORTRAN array A as follows:

11 1

22 12 2

33 23 13 3

44 34 24 4

55 45 35 5

A b
A A A b

A A A b
A A A b
A A A b

� � � �� �
� �� � � �� �
� �� �
� �

� �� �
� �
� �
� �
� �� �� �

1696 � Reference Material IMSL MATH/LIBRARY

Entries marked with an � do not need to be defined. Certain of the IMSL band symmetric
subprograms will initialize and use these values during the solution process. When a solution is
computed, the bi, i = 1, �, 5, are replaced by xi, i = 1, �, 5.

The nonzero Aij, j � i, are stored in array locations A(j + NCODA, (j � i) + 1) . The right-hand-side
entries bj are stored in locations A(j + NCODA, NCODA + 2). The solution entries xj are returned in
A(j + NCODA, NCODA + 2).

Codiagonal Band Hermitian Storage Mode
This is an alternate storage mode for band Hermitian matrices. It is not used by any of the BLAS,
see Chapter 9, Programming Notes for BLAS. In the codiagonal band Hermitian storage mode, the
real and imaginary parts of the 2 * NCODA + 1 upper codiagonals and right-hand-side are stored in
columns of a FORTRAN array. Note that there is no explicit use of the COMPLEX or the
nonstandard data type DOUBLE COMPLEX data type in this storage mode.

For Hermitian complex matrices,

= + 1A U V�

where U and V are real matrices. They satisfy the conditions U = UT and V = �VT. The right-hand-
side

1b c d� � �

where c and d are real vectors. The solution vector is denoted as

1x u v� � �

where u and v are real. The storage is declared with the following statement
DIMENSION A(LDA, 2*NCODA + 3)

The parameter LDA is the leading positive dimension of A. It must be at least as large as N +
NCODA.

The diagonal terms Ujj are stored in array locations A (j + NCODA, 1). The diagonal Vjj are zero and
are not stored. The nonzero Uij, j > i, are stored in locations A(j + NCODA, 2 * (j � i)).

The nonzero Vij are stored in locations A(j + NCODA, 2*(j � i) + 1). The right side vector b is stored
with cj and dj in locations A(j + NCODA, 2*NCODA + 2) and A(j + NCODA, 2*NCODA + 3)
respectively. The real and imaginary parts of the solution, uj and vj, respectively overwrite cj and
dj.

IMSL MATH/LIBRARY Reference Material � 1697

Consider a complex hermitian 5 � 5 matrix with 2 codiagonals

11 12 13 12 13

12 22 23 24 12 23 24

13 23 33 34 35 13 23 34 35

24 34 44 45 24 34 45

35 45 55 35 45

0 0 0 0 0
0 0 0

1 0
0 0 0
0 0 0 0 0

U U U V V
U U U U V V V

A U U U U U V V V V
U U U U V V V

U U U V V

� � � �
� � � ��� � � �
� � � �� � � � �
� � � �

� �� � � �
� � � �� �� 	 � 	

and a right-hand-side vector

1 1

2 2

3 3

4 4

5 5

1

c d
c d

b c d
c d
c d

� � � �
� � � �
� � � �
� � � �� � �
� � � �
� � � �
� � � �� 	 � 	

A FORTRAN declaration for the array to hold this matrix and right-hand-side vector is
PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA)
REAL A(LDA,2*NCODA + 3)

The matrix and right-hand-side entries are placed in the FORTRAN array A as follows:

11 1 1

22 12 12 2 2

33 23 23 13 13 3 3

44 34 34 24 24 4 4

55 45 45 35 35 5 5

U c d
A U U V c d

U U V U V c d
U U V U V c d
U U V U V c d

� � � � � � �� �
� �� � � � � � �� �
� �� � � �
� �

� � �� �
� �
� �
� �
� �� �� �

Entries marked with an � do not need to be defined.

Sparse Matrix Storage Mode
The sparse linear algebraic equation solvers in Chapter 1 accept the input matrix in sparse storage
mode. This structure consists of INTEGER values N and NZ, the matrix dimension and the total
number of nonzero entries in the matrix. In addition, there are two INTEGER arrays IROW(*) and
JCOL(*) that contain unique matrix row and column coordinates where values are given. There is
also an array A(*) of values. All other entries of the matrix are zero. Each of the arrays IROW(*),
JCOL(*), A(*) must be of size NZ. The correspondence between matrix and array entries is given
by

� � � � � �IROW , JCOL , 1, , NZi iA A i i� � �

The data type for A(*) can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN
compiler allows, the nonstandard data type DOUBLE COMPLEX can also be declared.

1698 � Reference Material IMSL MATH/LIBRARY

For example, consider a real 5 � 5 sparse matrix with 11 nonzero entries. The matrix A has the
form

11 13 14

21 22

32 33 34

43

54 55

0 0
0 0 0

0 0
0 0 0 0
0 0 0

A A A
A A

A A A A
A

A A

� �
� �
� �
� ��
� �
� �
� �� �

Declarations of arrays and definitions of the values for this sparse matrix are
 PARAMETER (NZ = 11, N = 5)
 DIMENSION IROW(NZ), JCOL(NZ), A(NZ)
 DATA IROW /1,1,1,2,2,3,3,3,4,5,5/
 DATA JCOL /1,3,4,1,2,2,3,4,3,4,5/
 DATA A /A��,A��,A��,A��,A��,A��,A��,A��, &
 A��,A��,A��/

Reserved Names
When writing programs accessing the MATH/LIBRARY, the user should choose FORTRAN
names that do not conflict with names of IMSL subroutines, functions, or named common blocks,
such as the workspace common block WORKSP (see page 1699). The user needs to be aware of two
types of name conflicts that can arise. The first type of name conflict occurs when a name
(technically a symbolic name) is not uniquely defined within a program unit (either a main
program or a subprogram). For example, such a name conflict exists when the name RCURV is used
to refer both to a type REAL variable and to the IMSL subroutine RCURV in a single program unit.
Such errors are detected during compilation and are easy to correct. The second type of name
conflict, which can be more serious, occurs when names of program units and named common
blocks are not unique. For example, such a name conflict would be caused by the user defining a
subroutine named WORKSP and also referencing an MATH/LIBRARY subroutine that uses the
named common block WORKSP. Likewise, the user must not define a subprogram with the same
name as a subprogram in the MATH/LIBRARY, that is referenced directly by the user’s program
or is referenced indirectly by other MATH/LIBRARY subprograms.

The MATH/LIBRARY consists of many routines, some that are described in the User’s Manual
and others that are not intended to be called by the user and, hence, that are not documented. If the
choice of names were completely random over the set of valid FORTRAN names, and if a
program uses only a small subset of the MATH/LIBRARY, the probability of name conflicts is
very small. Since names are usually chosen to be mnemonic, however, the user may wish to take
some precautions in choosing FORTRAN names.

Many IMSL names consist of a root name that may have a prefix to indicate the type of the
routine. For example, the IMSL single precision subroutine for fitting a polynomial by least
squares has the name RCURV, which is the root name, and the corresponding IMSL double
precision routine has the name DRCURV. Associated with these two routines are R2URV and
DR2URV. RCURV is listed in the Alphabetical Index of Routines, but DRCURV, R2URV, and
DR2URV are not. The user of RCURV must consider both names RCURV and R2URV to be reserved;
likewise, the user of DRCURV must consider both names DRCURV and DR2URV to be reserved. The

IMSL MATH/LIBRARY Reference Material � 1699

root names of all routines and named common blocks that are used by the MATH/LIBRARY and
that do not have a numeral in the second position of the root name are listed in the Alphabetical
Index of Routines. Some of the routines in this Index (such as the “Level 2 BLAS”) are not
intended to be called by the user and so are not documented.

The careful user can avoid any conflicts with IMSL names if the following rules are observed:

� Do not choose a name that appears in the Alphabetical Summary of Routines in the User’s
Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_.

� Do not choose a name of three or more characters with a numeral in the second or third
position.

These simplified rules include many combinations that are, in fact, allowable. However, if the user
selects names that conform to these rules, no conflict will be encountered.

Deprecated Features and Renamed Routines
Automatic Workspace Allocation
FORTRAN subroutines that work with arrays as input and output often require extra arrays for use
as workspace while doing computations or moving around data. IMSL routines generally do not
require the user explicitly to allocate such arrays for use as workspace. On most systems the
workspace allocation is handled transparently. The only limitation is the actual amount of memory
available on the system.

On some systems the workspace is allocated out of a stack that is passed as a FORTRAN array in
a named common block WORKSP. A very similar use of a workspace stack is described by Fox et
al. (1978, pages 116�121). (For compatiblity with older versions of the IMSL Libraries, space is
allocated from the COMMON block, if possible.)

The arrays for workspace appear as arguments in lower-level routines. For example, the IMSL
routine LSARG (in Chapter 1, “Linear Systems”), which solves systems of linear equations, needs
arrays for workspace. LSARG allocates arrays from the common area, and passes them to the
lower-level routine L2ARG which does the computations. In the “Comments” section of the
documentation for LSARG, the amount of workspace is noted and the call to L2ARG is described.
This scheme for using lower-level routines is followed throughout the IMSL Libraries. The names
of these routines have a “2” in the second position (or in the third position in double precision
routines having a “D” prefix). The user can provide workspace explicitly and call directly the “2-
level” routine, which is documented along with the main routine. In a very few cases, the 2-level
routine allows additional options that the main routine does not allow.

Prior to returning to the calling program, a routine that allocates workspace generally deallocates
that space so that it becomes available for use in other routines.

Changing the Amount of Space Allocated
This section is relevant only to those systems on which the transparent workspace allocator is not
available.

1700 � Reference Material IMSL MATH/LIBRARY

By default, the total amount of space allocated in the common area for storage of numeric data is
5000 numeric storage units. (A numeric storage unit is the amount of space required to store an
integer or a real number. By comparison, a double precision unit is twice this amount. Therefore
the total amount of space allocated in the common area for storage of numeric data is 2500 double
precision units.) This space is allocated as needed for INTEGER, REAL, or other numeric data. For
larger problems in which the default amount of workspace is insufficient, the user can change the
allocation by supplying the FORTRAN statements to define the array in the named common block
and by informing the IMSL workspace allocation system of the new size of the common array. To
request 7000 units, the statements are

 COMMON /WORKSP/ RWKSP
 REAL RWKSP(7000)
 CALL IWKIN(7000)

If an IMSL routine attempts to allocate workspace in excess of the amount available in the
common stack, the routine issues a fatal error message that indicates how much space is needed
and prints statements like those above to guide the user in allocating the necessary amount. The
program below uses IMSL routine PERMA (see the Reference Material in this manual) to permute
rows or columns of a matrix. This routine requires workspace equal to the number of columns,
which in this example is too large. (Note that the work vector RWKSP must also provide extra space
for bookkeeping.)

 USE_PERMA_INT
! Specifications for local variables
 INTEGER NRA, NCA, LDA, IPERMU(6000), IPATH
 REAL A(2,6000)
! Specifications for subroutines
!
 NRA = 2
 NCA = 6000
 LDA = 2
! Initialize permutation index
 DO 10 I = 1, NCA
 IPERMU(I) = NCA + 1 - I
 10 CONTINUE
 IPATH = 2
 CALL PERMA (A, IPERMU, A, IPATH=IPATH)
 END

Output
*** TERMINAL ERROR 10 from PERMA. Insufficient workspace for current
*** allocation(s). Correct by calling IWKIN from main program with
*** the three following statements: (REGARDLESS OF PRECISION)
*** COMMON /WORKSP/ RWKSP
*** REAL RWKSP(6018)
*** CALL IWKIN(6018)

*** TERMINAL ERROR 10 from PERMA. Workspace allocation was based on NCA =
*** 6000.

In most cases, the amount of workspace is dependent on the parameters of the problem so the
amount needed is known exactly. In a few cases, however, the amount of workspace is dependent
on the data (for example, if it is necessary to count all of the unique values in a vector), so the

IMSL MATH/LIBRARY Reference Material � 1701

IMSL routine cannot tell in advance exactly how much workspace is needed. In such cases the
error message printed is an estimate of the amount of space required.

Character Workspace
Since character arrays cannot be equivalenced with numeric arrays, a separate named common
block WKSPCH is provided for character workspace. In most respects this stack is managed in the
same way as the numeric stack. The default size of the character workspace is 2000 character
units. (A character unit is the amount of space required to store one character.) The routine
analogous to IWKIN used to change the default allocation is IWKCIN.

The routines in the following list are being deprecated in Version 2.0 of MATH/LIBRARY. A
deprecated routine is one that is no longer used by anything in the library but is being included in
the product for those users who may be currently referencing it in their application. However, any
future versions of MATH/LIBRARY will not include these routines. If any of these routines are
being called within an application, it is recommended that you change your code or retain the
deprecated routine before replacing this library with the next version. Most of these routines were
called by users only when they needed to set up their own workspace. Thus, the impact of these
changes should be limited.

CZADD DE2LRH DNCONF E3CRG

CZINI DE2LSB DNCONG E4CRG

CZMUL DE3CRG E2ASF E4ESF

CZSTO DE3CRH E2AHF E5CRG

DE2AHF DE3LSF E2BHF E7CRG

DE2ASF DE4CRG E2BSB G2CCG

DE2BHF DE4ESF E2BSF G2CRG

DE2BSB DE5CRG E2CCG G2LCG

DE2BSF DE7CRG E2CCH G2LRG

DE2CCG DG2CCG E2CHF G3CCG

DE2CCH DG2CRG E2CRG G4CCG

DE2CHF DG2DF E2CRH G5CCG

DE2CRG DG2IND E2CSB G7CRG

DE2CRH DG2LCG E2EHF N0ONF

DE2CSB DG2LRG E2ESB NCONF

DE2EHF DG3CCG E2FHF NCONG

DE2ESB DG3DF E2FSB SDADD

DE2FHF DG4CCG E2FSF SDINI

DE2FSB DG5CCG E2LCG SDMUL

DE2FSF DG7CRG E2LCH SDSTO

DE2LCG DHOUAP E2LHF SHOUAP

DE2LCH DHOUTR E2LRG SHOUTR

DE2LHF DIVPBS E2LRH

DE2LRG DN0ONF E2LSB

1702 � Reference Material IMSL MATH/LIBRARY

The following routines have been renamed due to naming conflicts with other software
manufacturers.

CTIME � replaced with CPSEC
DTIME � replaced with TIMDY
PAGE � replaced with PGOPT

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-1

Appendix A: GAMS Index

Description
This index lists routines in MATH/LIBRARY by a tree-structured classification scheme known as
GAMS Version 2.0 (Boisvert, Howe, Kahaner, and Springmann (1990). Only the GAMS classes
that contain MATH/LIBRARY routines are included in the index. The page number for the
documentation and the purpose of the routine appear alongside the routine name.

The first level of the full classification scheme contains the following major subject areas:

A. Arithmetic, Error Analysis
B. Number Theory
C. Elementary and Special Functions
D. Linear Algebra
E. Interpolation
F. Solution of Nonlinear Equations
G. Optimization
H. Differentiation and Integration
I. Differential and Integral Equations
J. Integral Transforms
K. Approximation
L. Statistics, Probability
M. Simulation, Stochastic Modeling
N. Data Handling
O. Symbolic Computation
P. Computational Geometry
Q. Graphics
R. Service Routines
S. Software Development Tools
Z. Other

There are seven levels in the classification scheme. Classes in the first level are identified by a
capital letter as is given above. Classes in the remaining levels are identified by alternating letter-
and-number combinations. A single letter (a-z) is used with the odd-numbered levels. A number
(1�26) is used within the even-numbered levels.

A-2 � Appendix A: GAMS Index IMSL MATH/LIBRARY

IMSL MATH/LIBRARY
A...........ARITHMETIC, ERROR ANALYSIS

A3.........Real

A3cExtended precision
DQADD Adds a double-precision scalar to the accumulator in

extended precision.
DQINI Initializes an extended-precision accumulator with a

double-precision scalar.
DQMUL Multiplies double-precision scalars in extended precision.
DQSTO Stores a double-precision approximation to an extended-

precision scalar.

A4.........Complex

A4cExtended precision
ZQADD Adds a double complex scalar to the accumulator in

extended precision.
ZQINI Initializes an extended-precision complex accumulator to a

double complex scalar.
ZQMUL Multiplies double complex scalars using extended

precision.
ZQSTO Stores a double complex approximation to an extended-

precision complex scalar.

A6.........Change of representation

A6cDecomposition, construction
PRIME Decomposes an integer into its prime factors.

B...........NUMBER THEORY
PRIME Decomposes an integer into its prime factors.

C...........ELEMENTARY AND SPECIAL FUNCTIONS

C2.........Powers, roots, reciprocals

HYPOT Computes a without underflow or overflow. b2
�

2

C19.......Other special functions
CONST Returns the value of various mathematical and physical

constants.
CUNIT Converts X in units XUNITS to Y in units YUNITS.

D...........LINEAR ALGEBRA

D1.........Elementary vector and matrix operations

D1a.......Elementary vector operations

D1a1.....Set to constant
CSET Sets the components of a vector to a scalar, all complex.
ISET Sets the components of a vector to a scalar, all integer.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-3

SSET Sets the components of a vector to a scalar, all single
precision.

D1a2.....Minimum and maximum components
ICAMAX Finds the smallest index of the component of a complex

vector having maximum magnitude.
ICAMIN Finds the smallest index of the component of a complex

vector having minimum magnitude.
IIMAX Finds the smallest index of the maximum component of a

integer vector.
IIMIN Finds the smallest index of the minimum of an integer

vector.
ISAMAX Finds the smallest index of the component of a single-

precision vector having maximum absolute value.
ISAMIN Finds the smallest index of the component of a single-

precision vector having minimum absolute value.
ISMAX Finds the smallest index of the component of a single-

precision vector having maximum value.
ISMIN Finds the smallest index of the component of a single-

precision vector having minimum value.

D1a3.....Norm

D1a3a ...L� (sum of magnitudes)
DISL1 Computes the 1-norm distance between two points.
SASUM Sums the absolute values of the components of a single-

precision vector.
SCASUM Sums the absolute values of the real part together with the

absolute values of the imaginary part of the components of
a complex vector.

D1a3b...L� (Euclidean norm)
DISL2 Computes the Euclidean (2-norm) distance between two

points.
NORM2,CNORM2 Computes the Euclidean length of a vector or matrix,

avoiding out-of-scale intermediate subexpressions.
MNORM2,CMNORM2 Computes the Euclidean length of a vector or matrix,

avoiding out-of-scale intermediate subexpressions
NRM2, CNRM2 Computes the Euclidean length of a vector or matrix,

avoiding out-of-scale intermediate subexpressions.
SCNRM2 Computes the Euclidean norm of a complex vector.
SNRM2 Computes the Euclidean length or L� norm of a single-

precision vector.

D1a3c ...L� (maximum magnitude)
DISLI Computes the infinity norm distance between two points.
ICAMAX Finds the smallest index of the component of a complex

vector having maximum magnitude.
ISAMAX Finds the smallest index of the component of a single-

precision vector having maximum absolute value.

A-4 � Appendix A: GAMS Index IMSL MATH/LIBRARY

D1a4.....Dot product (inner product)
CDOTC Computes the complex conjugate dot product, x . yT

CDOTU Computes the complex dot product xTy.
CZCDOT Computes the sum of a complex scalar plus a complex

conjugate dot product, a x , using a double-precision
accumulator.

yT
�

CZDOTA Computes the sum of a complex scalar, a complex dot
product and the double-complex accumulator, which is set
to the result ACC � ACC + a + xTy.

CZDOTC Computes the complex conjugate dot product, x , using
a double-precision accumulator.

yT

CZDOTI Computes the sum of a complex scalar plus a complex dot
product using a double-complex accumulator, which is set
to the result ACC � a + xTy.

CZDOTU Computes the complex dot product xTy using a double-
precision accumulator.

CZUDOT Computes the sum of a complex scalar plus a complex dot
product, a + xTy, using a double-precision accumulator.

DSDOT Computes the single-precision dot product xTy using a
double precision accumulator.

SDDOTA Computes the sum of a single-precision scalar, a single-
precision dot product and the double-precision
accumulator, which is set to the result
ACC � ACC + a + xTy.

SDDOTI Computes the sum of a single-precision scalar plus a
singleprecision dot product using a double-precision
accumulator, which is set to the result ACC � a + xTy.

SDOT Computes the single-precision dot product xTy.
SDSDOT Computes the sum of a single-precision scalar and a single

precision dot product, a + xTy, using a double-precision
accumulator.

D1a5.....Copy or exchange (swap)
CCOPY Copies a vector x to a vector y, both complex.
CSWAP Interchanges vectors x and y, both complex.
ICOPY Copies a vector x to a vector y, both integer.
ISWAP Interchanges vectors x and y, both integer.
SCOPY Copies a vector x to a vector y, both single precision.
SSWAP Interchanges vectors x and y, both single precision.

D1a6.....Multiplication by scalar
CSCAL Multiplies a vector by a scalar, y � ay, both complex.
CSSCAL Multiplies a complex vector by a single-precision scalar,

y � ay.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-5

CSVCAL Multiplies a complex vector by a single-precision scalar
and store the result in another complex vector, y � ax.

CVCAL Multiplies a vector by a scalar and store the result in
another vector, y � ax, all complex.

SSCAL Multiplies a vector by a scalar, y � ay, both single
precision.

SVCAL Multiplies a vector by a scalar and store the result in
another vector, y � ax, all single precision.

D1a7.....Triad (ax + y for vectors x, y and scalar a)
CAXPY Computes the scalar times a vector plus a vector,

y � ax + y, all complex.
SAXPY Computes the scalar times a vector plus a vector,

y � ax + y, all single precision.

D1a8.....Elementary rotation (Givens transformation) (search also class D1b10)
CSROT Applies a complex Givens plane rotation.
CSROTM Applies a complex modified Givens plane rotation.
SROT Applies a Givens plane rotation in single precision.
SROTM Applies a modified Givens plane rotation in single

precision.

D1a10...Convolutions
RCONV Computes the convolution of two real vectors.
VCONC Computes the convolution of two complex vectors.
VCONR Computes the convolution of two real vectors.

D1a11...Other vector operations
CADD Adds a scalar to each component of a vector, x � x + a, all

complex.
CSUB Subtracts each component of a vector from a scalar,

x � a � x, all complex.
DISL1 Computes the 1-norm distance between two points.
DISL2 Computes the Euclidean (2-norm) distance between two

points.
DISLI Computes the infinity norm distance between two points.
IADD Adds a scalar to each component of a vector, x � x + a, all

integer.
ISUB Subtracts each component of a vector from a scalar,

x � a � x, all integer.
ISUM Sums the values of an integer vector.
SADD Adds a scalar to each component of a vector, x � x + a, all

single precision.
SHPROD Computes the Hadamard product of two single-precision

vectors.
SPRDCT Multiplies the components of a single-precision vector.
SSUB Subtracts each component of a vector from a scalar,

x � a � x, all single precision.
SSUM Sums the values of a single-precision vector.
SXYZ Computes a single-precision xyz product.

A-6 � Appendix A: GAMS Index IMSL MATH/LIBRARY

D1b.......Elementary matrix operations
CGERC Computes the rank-one update of a complex general

matrix:
A A xy T
� �� .

CGERU Computes the rank-one update of a complex general
matrix:

. A A xyT
� ��

CHER Computes the rank-one update of an Hermitian matrix:
A A xx T
� �� with x complex and � real.

CHER2 Computes a rank-two update of an Hermitian matrix:
A A xy yxT T
� � �� � .

CHER2K Computes one of the Hermitian rank 2k operations:
C AB BA C C A B B AT T T T
� � � � � �� � � � � or C� ,

where C is an n by n Hermitian matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

CHERK Computes one of the Hermitian rank k operations:
C AA C C A AT T
� � � �� � � or C�

C�

C�

,
where C is an n by n Hermitian matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

CSYR2K Computes one of the symmetric rank 2k operations:
,

where C is an n by n symmetric matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

C AB BA C C A B B AT T T T
� � � � � �� � � � � or

CSYRK Computes one of the symmetric rank k operations:
,

where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

C AA C C A AT T
� � � �� � � or

CTBSV Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x ,

where A is a triangular matrix in band storage mode.
CTRSM Solves one of the complex matrix equations:

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e j or

�1 ,

where A is a triangular matrix.
CTRSV Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x ,

where A is a triangular matrix.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-7

HRRRR Computes the Hadamard product of two real rectangular
matrices.

SGER Computes the rank-one update of a real general matrix:
. A A xyT

� ��

SSYR Computes the rank-one update of a real symmetric matrix:
A A xxT
� �� .

SSYR2 Computes the rank-two update of a real symmetric matrix:
. A A xy yxT T

� � �� �

SSYR2K Computes one of the symmetric rank 2k operations:
,

where C is an n by n symmetric matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

C AB BA C C A B B AT T T T
� � � � � �� � � � � or C�

C�

x

�1

x

SSYRK Computes one of the symmetric rank k operations:
,

where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

C AA C C A AT T
� � � �� � � or

STBSV Solves one of the triangular systems:

,

where A is a triangular matrix in band storage mode.

x A x x A
T

� �
� �1 1 or e j

STRSM Solves one of the matrix equations:

where B is an m by n matrix and A is a triangular matrix.

B A B B BA B A B B B A
T T

� � � �
� � �

� � � �
1 1 1, , ,e j e jor

STRSV Solves one of the triangular linear systems:

,

where A is a triangular matrix.

x A x x A
T

� �
� �1 1 or e j

D1b2.....Norm
NR1CB Computes the 1-norm of a complex band matrix in band

storage mode.
NR1RB Computes the 1-norm of a real band matrix in band storage

mode.
NR1RR Computes the 1-norm of a real matrix.
NR2RR Computes the Frobenius norm of a real rectangular matrix.
NRIRR Computes the infinity norm of a real matrix.

D1b3.....Transpose
TRNRR Transposes a rectangular matrix.

D1b4 Multiplication by vector
BLINF Computes the bilinear form xTAy.
CGBMV Computes one of the matrix-vector operations:

y Ax y y A x y y AT T
� � � � � �� � � � � �, , or y ,

where A is a matrix stored in band storage mode.

A-8 � Appendix A: GAMS Index IMSL MATH/LIBRARY

CGEMV Computes one of the matrix-vector operations:
y Ax y y A x y y AT T
� � � � � �� � � � � �, , or y

y

y

,
CHBMV Computes the matrix-vector operation

,
where A is an Hermitian band matrix in band Hermitian
storage.

y Ax� �� �

CHEMV Computes the matrix-vector operation
,

where A is an Hermitian matrix.
y Ax� �� �

CTBMV Computes one of the matrix-vector operations:
x Ax x A x x AT T
� � �, , or x ,

where A is a triangular matrix in band storage mode.
CTRMV Computes one of the matrix-vector operations:

x Ax x A x x AT T
� � �, , or x

y

y

y

y

x

x

,
where A is a triangular matrix.

MUCBV Multiplies a complex band matrix in band storage mode by
a complex vector.

MUCRV Multiplies a complex rectangular matrix by a complex
vector.

MURBV Multiplies a real band matrix in band storage mode by a
real vector.

MURRV Multiplies a real rectangular matrix by a vector.
SGBMV Computes one of the matrix-vector operations:

,
where A is a matrix stored in band storage mode.
y Ax y y A xT
� � � �� � � �, or

SGEMV Computes one of the matrix-vector operations:
, y Ax y y A xT

� � � �� � � �, or
SSBMV Computes the matrix-vector operation

,
where A is a symmetric matrix in band symmetric storage
mode.

y Ax� �� �

SSYMV Computes the matrix-vector operation
,

where A is a symmetric matrix.
y Ax� �� �

STBMV Computes one of the matrix-vector operations:

where A is a triangular matrix in band storage mode.
x Ax x AT
� �or ,

STRMV Computes one of the matrix-vector operations:

where A is a triangular matrix.
x Ax x AT
� �or ,

D1b5.....Addition, subtraction
ACBCB Adds two complex band matrices, both in band storage

mode.
ARBRB Adds two band matrices, both in band storage mode.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-9

D1b6.....Multiplication
CGEMM Computes one of the matrix-matrix operations:

C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

T T

T T T

T T T

T T T T

� � � � �

� � � � �

� � � �

� � � �

� � � � �

� � � � �

� � � �

� � � �

, ,

, ,

, ,

,

 or

 or

,

C

C

CHEMM Computes one of the matrix-matrix operations:
,

where A is an Hermitian matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

CSYMM Computes one of the matrix-matrix operations:
,

where A is a symmetric matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

CTRMM Computes one of the matrix-matrix operations:
B AB B A B B BA B BA

B A B B BA

T T

T T

� � � �

� �

� � � �

� �

, , ,

,or

,

C

where B is an m by n matrix and A is a triangular matrix.
MCRCR Multiplies two complex rectangular matrices, AB.
MRRRR Multiplies two real rectangular matrices, AB.
MXTXF Computes the transpose product of a matrix, ATA.
MXTYF Multiplies the transpose of matrix A by matrix B, ATB.
MXYTF Multiplies a matrix A by the transpose of a matrix B, ABT.
SGEMM Compute one of the matrix-matrix operations:

.
C AB C C A B C C AB

C C A B C

T T

T T

� � � � �

� � �

� � � � �

� � �

, ,

, or
SSYMM Computes one of the matrix-matrix operations:

,
where A is a symmetric matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

STRMM Computes one of the matrix-matrix operations:
,

where B is an m by n matrix and A is a triangular matrix.
B AB B A B B BA B BAT T
� � � �� � � �, , or

D1b7.....Matrix polynomial
POLRG 1207 Evaluates a real general matrix polynomial.

D1b8.....Copy
CCBCB Copies a complex band matrix stored in complex band

storage mode.
CCGCG Copies a complex general matrix.
CRBRB Copies a real band matrix stored in band storage mode.
CRGRG Copies a real general matrix.

A-10 � Appendix A: GAMS Index IMSL MATH/LIBRARY

D1b9.....Storage mode conversion
CCBCG Converts a complex matrix in band storage mode to a

complex matrix in full storage mode.
CCGCB Converts a complex general matrix to a matrix in complex

band storage mode.
CHBCB Copies a complex Hermitian band matrix stored in band

Hermitian storage mode to a complex band matrix stored
in band storage mode.

CHFCG Extends a complex Hermitian matrix defined in its upper
triangle to its lower triangle.

CRBCB Converts a real matrix in band storage mode to a complex
matrix in band storage mode.

CRBRG Converts a real matrix in band storage mode to a real
general matrix.

CRGCG Copies a real general matrix to a complex general matrix.
CRGRB Converts a real general matrix to a matrix in band storage

mode.
CRRCR Copies a real rectangular matrix to a complex rectangular

matrix.
CSBRB Copies a real symmetric band matrix stored in band

symmetric storage mode to a real band matrix stored in
band storage mode.

CSFRG Extends a real symmetric matrix defined in its upper
triangle to its lower triangle.

D1b10...Elementary rotation (Givens transformation) (search also class D1a8)
SROTG Constructs a Givens plane rotation in single precision.
SROTMG Constructs a modified Givens plane rotation in single

precision.

D2.........Solution of systems of linear equations (including inversion, LU and
related decompositions)

D2a.......Real nonsymmetric matrices
LSLTO Solves a real Toeplitz linear system.

D2a1.....General
LFCRG Computes the LU factorization of a real general matrix and

estimate its L� condition number.
LFIRG Uses iterative refinement to improve the solution of a real

general system of linear equations.
LFSRG Solves a real general system of linear equations given the

LU factorization of the coefficient matrix.
LFTRG Computes the LU factorization of a real general matrix.
LINRG Computes the inverse of a real general matrix.
LSARG Solves a real general system of linear equations with

iterative refinement.
LSLRG Solves a real general system of linear equations without

iterative refinement.
LIN_SOL_GEN Solves a general system of linear equations Ax = b. Using

optional arguments, any of several related computations

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-11

x

B1 ,

can be performed. These extra tasks include computing the
LU factorization of A using partial pivoting, representing
the determinant of A, computing the inverse matrix A-1,
and solving ATx = b or Ax = b given the LU factorization
of A.

D2a2.....Banded
LFCRB Computes the LU factorization of a real matrix in band

storage mode and estimate its L� condition number.
LFIRB Uses iterative refinement to improve the solution of a real

system of linear equations in band storage mode.
LFSRB Solves a real system of linear equations given the LU

factorization of the coefficient matrix in band storage
mode.

LFTRB Computes the LU factorization of a real matrix in band
storage mode.

LSARB Solves a real system of linear equations in band storage
mode with iterative refinement.

LSLRB Solves a real system of linear equations in band storage
mode without iterative refinement.

STBSV Solves one of the triangular systems:

,

where A is a triangular matrix in band storage mode.

x A x x A
T

� �
� �1 1 or e j

D2a2a ...Tridiagonal
LSLCR Computes the LDU factorization of a real tridiagonal

matrix A using a cyclic reduction algorithm.
LSLTR Solves a real tridiagonal system of linear equations.

LIN_SOL_TRI Solves multiple systems of linear equations Ajxj = yj, j = 1,
�, k. Each matrix Aj is tridiagonal with the same
dimension, n: The default solution method is based on LU
factorization computed using cyclic reduction. An option
is used to select Gaussian elimination with partial pivoting.

TRI_SOLVE A real, tri-diagonal, multiple system solver. Uses both
cyclic reduction and Gauss elimination. Similar in function
to lin_sol_tri.

D2a3.....Triangular
LFCRT Estimates the condition number of a real triangular matrix.
LINRT Computes the inverse of a real triangular matrix.
LSLRT Solves a real triangular system of linear equations.
STRSM Solves one of the matrix equations:

where B is an m by n matrix and A is a triangular matrix.

B A B B BA B A

B B A

T

T

� � �

�

� � �

�

� � �

�

1 1

1

, , e j

e jor

A-12 � Appendix A: GAMS Index IMSL MATH/LIBRARY

x

STRSV Solves one of the triangular linear systems:

where A is a triangular matrix.

x A x x A
T

� �
� �1 1 or e j

D2a4.....Sparse
LFSXG Solves a sparse system of linear equations given the LU

factorization of the coefficient matrix.
LFTXG Computes the LU factorization of a real general sparse

matrix.
LSLXG Solves a sparse system of linear algebraic equations by

Gaussian elimination.
GMRES Uses restarted GMRES with reverse communication to

generate an approximate solution of Ax = b.

D2b.......Real symmetric matrices

D2b1.....General

D2b1a. ..Indefinite
LCHRG Computes the Cholesky decomposition of a symmetric

positive semidefinite matrix with optional column
pivoting.

LFCSF Computes the U DUT factorization of a real symmetric
matrix and estimate its L� condition number.

LFISF Uses iterative refinement to improve the solution of a real
symmetric system of linear equations.

LFSSF Solves a real symmetric system of linear equations given
the U DUT factorization of the coefficient matrix.

LFTSF Computes the U DUT factorization of a real symmetric
matrix.

LSASF Solves a real symmetric system of linear equations with
iterative refinement.

LSLSF Solves a real symmetric system of linear equations without
iterative refinement.

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a
self-adjoint matrix. Using optional arguments, any of
several related computations can be performed. These
extra tasks include computing and saving the factorization
of A using symmetric pivoting, representing the
determinant of A, computing the inverse matrix A-1, or
computing the solution of Ax = b given the factorization of
A. An optional argument is provided indicating that A is
positive definite so that the Cholesky decomposition can
be used.

D2b1b...Positive definite
LCHRG Computes the Cholesky decomposition of a symmetric

positive semidefinite matrix with optional column
pivoting.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-13

LFCDS Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix and estimate its
L�condition number.

LFIDS Uses iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations.

LFSDS Solves a real symmetric positive definite system of linear
equations given the RT R Choleksy factorization of the
coefficient matrix.

LFTDS Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix.

LINDS Computes the inverse of a real symmetric positive definite
matrix.

LSADS Solves a real symmetric positive definite system of linear
equations with iterative refinement.

LSLDS Solves a real symmetric positive definite system of linear
equations without iterative refinement.

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a
self-adjoint matrix. Using optional arguments, any of
several related computations can be performed. These
extra tasks include computing and saving the factorization
of A using symmetric pivoting, representing the
determinant of A, computing the inverse matrix A-1, or
computing the solution of Ax = b given the factorization of
A. An optional argument is provided indicating that A is
positive definite so that the Cholesky decomposition can
be used.

D2b2.....Positive definite banded
LFCQS Computes the RT R Cholesky factorization of a real

symmetric positive definite matrix in band symmetric
storage mode and estimate its L� condition number.

LFDQS Computes the determinant of a real symmetric positive
definite matrix given the RT R Cholesky factorization of
the band symmetric storage mode.

LFIQS Uses iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations in
band symmetric storage mode.

LFSQS Solves a real symmetric positive definite system of linear
equations given the factorization of the coefficient matrix
in band symmetric storage mode.

LFTQS Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix in band symmetric
storage mode.

LSAQS Solves a real symmetric positive definite system of linear
equations in band symmetric storage mode with iterative
refinement.

A-14 � Appendix A: GAMS Index IMSL MATH/LIBRARY

LSLPB Computes the RT DR Cholesky factorization of a real
symmetric positive definite matrix A in codiagonal band
symmetric storage mode. Solve a system Ax = b.

LSLQS Solves a real symmetric positive definite system of linear
equations in band symmetric storage mode without
iterative refinement.

D2b4.....Sparse
JCGRC Solves a real symmetric definite linear system using the

Jacobi preconditioned conjugate gradient method with
reverse communication.

LFSXD Solves a real sparse symmetric positive definite system of
linear equations, given the Cholesky factorization of the
coefficient matrix.

LNFXD Computes the numerical Cholesky factorization of a sparse
symmetrical matrix A.

LSCXD Performs the symbolic Cholesky factorization for a sparse
symmetric matrix using a minimum degree ordering or a
userspecified ordering, and set up the data structure for the
numerical Cholesky factorization.

LSLXD Solves a sparse system of symmetric positive definite
linear algebraic equations by Gaussian elimination.

PCGRC Solves a real symmetric definite linear system using a
preconditioned conjugate gradient method with reverse
communication.

D2c.Complex non-Hermitian matrices
LSLCC Solves a complex circulant linear system.
LSLTC Solves a complex Toeplitz linear system.

D2c1.....General
LFCCG Computes the LU factorization of a complex general

matrix and estimate its L� condition number.
LFICG Uses iterative refinement to improve the solution of a

complex general system of linear equations.
LFSCG Solves a complex general system of linear equations given

the LU factorization of the coefficient matrix.
LFTCG Computes the LU factorization of a complex general

matrix.
LINCG Computes the inverse of a complex general matrix.
LSACG Solves a complex general system of linear equations with

iterative refinement.
LSLCG Solves a complex general system of linear equations

without iterative refinement.
LIN_SOL_GEN Solves a general system of linear equations Ax = b. Using

optional arguments, any of several related computations
can be performed. These extra tasks include computing the
LU factorization of A using partial pivoting, representing
the determinant of A, computing the inverse matrix A-1,

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-15

and solving ATx = b or Ax = b given the LU factorization
of A.

D2c2.....Banded
CTBSV Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
 , or e j e j, ,x

where A is a triangular matrix in band storage mode.
LFCCB Computes the LU factorization of a complex matrix in

band storage mode and estimate its L� condition number.
LFICB Uses iterative refinement to improve the solution of a

complex system of linear equations in band storage mode.
LFSCB Solves a complex system of linear equations given the LU

factorization of the coefficient matrix in band storage
mode.

LFTCB Computes the LU factorization of a complex matrix in
band storage mode.

LSACB Solves a complex system of linear equations in band
storage mode with iterative refinement.

LSLCB Solves a complex system of linear equations in band
storage mode without iterative refinement.

D2c2a ...Tridiagonal
LSLCQ Computes the LDU factorization of a complex tridiagonal

matrix A using a cyclic reduction algorithm.
LSLTQ Solves a complex tridiagonal system of linear equations.

LIN_SOL_TRI Solves multiple systems of linear equations Ajxj = yj, j = 1,
�, k. Each matrix Aj is tridiagonal with the same
dimension, n: The default solution method is based on LU
factorization computed using cyclic reduction. An option
is used to select Gaussian elimination with partial pivoting.

D2c3.....Triangular
CTRSM Solves one of the complex matrix equations:

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e jor

�1 ,

where A is a traiangular matrix.
CTRSV Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
 , or e j e j, x

where A is a triangular matrix.
LFCCT Estimates the condition number of a complex triangular

matrix.
LINCT Computes the inverse of a complex triangular matrix.
LSLCT Solves a complex triangular system of linear equations.

A-16 � Appendix A: GAMS Index IMSL MATH/LIBRARY

D2c4.....Sparse
LFSZG Solves a complex sparse system of linear equations given

the LU factorization of the coefficient matrix.
LFTZG Computes the LU factorization of a complex general

sparse matrix.
LSLZG Solves a complex sparse system of linear equations by

Gaussian elimination.

D2d.......Complex Hermitian matrices

D2d1.....General

D2d1a. ..Indefinite
LFCHF Computes the U DUH factorization of a complex

Hermitian matrix and estimate its L� condition number.
LFDHF Computes the determinant of a complex Hermitian matrix

given the U DUH factorization of the matrix.
LFIHF Uses iterative refinement to improve the solution of a

complex Hermitian system of linear equations.
LFSHF Solves a complex Hermitian system of linear equations

given the U DUH factorization of the coefficient matrix.
LFTHF Computes the U DUH factorization of a complex

Hermitian matrix.
LSAHF Solves a complex Hermitian system of linear equations

with iterative refinement.
LSLHF Solves a complex Hermitian system of linear equations

without iterative refinement.
LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a

self-adjoint matrix. Using optional arguments, any of
several related computations can be performed. These
extra tasks include computing and saving the factorization
of A using symmetric pivoting, representing the
determinant of A, computing the inverse matrix A-1, or
computing the solution of Ax = b given the factorization of
A. An optional argument is provided indicating that A is
positive definite so that the Cholesky decomposition can
be used.

D2d1b...Positive definite
LFCDH Computes the RH R factorization of a complex Hermitian

positive definite matrix and estimate its L� condition
number.

LFIDH Uses iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations.

LFSDH Solves a complex Hermitian positive definite system of
linear equations given the RH R factorization of the
coefficient matrix.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-17

LFTDH Computes the RH R factorization of a complex Hermitian
positive definite matrix.

LSADH Solves a Hermitian positive definite system of linear
equations with iterative refinement.

LSLDH Solves a complex Hermitian positive definite system of
linear equations without iterative refinement.

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a
self-adjoint matrix. Using optional arguments, any of
several related computations can be performed. These
extra tasks include computing and saving the factorization
of A using symmetric pivoting, representing the
determinant of A, computing the inverse matrix A-1, or
computing the solution of Ax = b given the factorization of
A. An optional argument is provided indicating that A is
positive definite so that the Cholesky decomposition can
be used.

D2d2.....Positive definite banded
LFCQH Computes the RH R factorization of a complex Hermitian

positive definite matrix in band Hermitian storage mode
and estimate its L� condition number.

LFIQH Uses iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations in band Hermitian storage mode.

LFSQH Solves a complex Hermitian positive definite system of
linear equations given the factorization of the coefficient
matrix in band Hermitian storage mode.

LFTQH Computes the RH R factorization of a complex Hermitian
positive definite matrix in band Hermitian storage mode.

LSAQH Solves a complex Hermitian positive definite system of
linear equations in band Hermitian storage mode with
iterative refinement.

LSLQB Computes the RH DR Cholesky factorization of a complex
hermitian positive-definite matrix A in codiagonal band
hermitian storage mode. Solve a system Ax = b.

LSLQH Solves a complex Hermitian positive definite system of
linearequations in band Hermitian storage mode without
iterative refinement.

D2d4.....Sparse
LFSZD Solves a complex sparse Hermitian positive definite

system of linear equations, given the Cholesky
factorization of the coefficient matrix.

LNFZD Computes the numerical Cholesky factorization of a sparse
Hermitian matrix A.

LSLZD Solves a complex sparse Hermitian positive definite
system of linear equations by Gaussian elimination.

D3.........Determinants

A-18 � Appendix A: GAMS Index IMSL MATH/LIBRARY

D3a.Real nonsymmetric matrices

D3a1.....General
LFDRG Computes the determinant of a real general matrix given

the LU factorization of the matrix.

D3a2.....Banded
LFDRB Computes the determinant of a real matrix in band storage

mode given the LU factorization of the matrix.

D3a3.....Triangular
LFDRT Computes the determinant of a real triangular matrix.

D3b.......Real symmetric matrices

D3b1.....General

D3b1a. ..Indefinite
LFDSF Computes the determinant of a real symmetric matrix

given the U DUT factorization of the matrix.

D3b1b...Positive definite
LFDDS Computes the determinant of a real symmetric positive

definite matrix given the RH R Cholesky factorization of
the matrix.

D3c.Complex non-Hermitian matrices

D3c1.....General
LFDCG Computes the determinant of a complex general matrix

given the LU factorization of the matrix.

D3c2.....Banded
LFDCB Computes the determinant of a complex matrix given the

LU factorization of the matrix in band storage mode.

D3c3.....Triangular
LFDCT Computes the determinant of a complex triangular matrix.

D3d.......Complex Hermitian matrices

D3d1.....General

D3d1b...Positive definite
LFDDH Computes the determinant of a complex Hermitian positive

definite matrix given the RH R Cholesky factorization of
the matrix.

D3d2.....Positive definite banded
LFDQH Computes the determinant of a complex Hermitian positive

definite matrix given the RH R Cholesky factorization in
band Hermitian storage mode.

D4.........Eigenvalues, eigenvectors

D4a.Ordinary eigenvalue problems (Ax = �x)

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-19

D4a1.....Real symmetric
EVASF Computes the largest or smallest eigenvalues of a real

symmetric matrix.
EVBSF Computes selected eigenvalues of a real symmetric matrix.
EVCSF Computes all of the eigenvalues and eigenvectors of a real

symmetric matrix.
EVESF Computes the largest or smallest eigenvalues and the

corresponding eigenvectors of a real symmetric matrix.
EVFSF Computes selected eigenvalues and eigenvectors of a real

symmetric matrix.
EVLSF Computes all of the eigenvalues of a real symmetric

matrix.
LIN_EIG_SELF Computes the eigenvalues of a self-adjoint matrix, A.

Optionally, the eigenvectors can be computed. This gives
the decomposition A = VDVT, where V is an n � n
orthogonal matrix and D is a real diagonal matrix.

D4a2.....Real nonsymmetric
EVCRG Computes all of the eigenvalues and eigenvectors of a real

matrix.
EVLRG Computes all of the eigenvalues of a real matrix.

LIN_EIG_GEN Computes the eigenvalues of an n � n matrix, A.
Optionally, the eigenvectors of A or AT are computed.
Using the eigenvectors of A gives the decomposition
AV = VE, where V is an n � n complex matrix of
eigenvectors, and E is the complex diagonal matrix of
eigenvalues. Other options include the reduction of A to
upper triangular or Schur form, reduction to block upper
triangular form with 2 � 2 or unit sized diagonal block
matrices, and reduction to upper Hessenberg form.

D4a3.....Complex Hermitian
EVAHF Computes the largest or smallest eigenvalues of a complex

Hermitian matrix.
EVBHF Computes the eigenvalues in a given range of a complex

Hermitian matrix.
EVCHF Computes all of the eigenvalues and eigenvectors of a

complex Hermitian matrix.
EVEHF Computes the largest or smallest eigenvalues and the

corresponding eigenvectors of a complex Hermitian
matrix.

EVFHF Computes the eigenvalues in a given range and the
corresponding eigenvectors of a complex Hermitian
matrix.

EVLHF Computes all of the eigenvalues of a complex Hermitian
matrix.

LIN_EIG_SELF Computes the eigenvalues of a self-adjoint matrix, A.
Optionally, the eigenvectors can be computed. This gives

A-20 � Appendix A: GAMS Index IMSL MATH/LIBRARY

the decomposition A = VDVT, where V is an n � n
orthogonal matrix and D is a real diagonal matrix.

D4a4.....Complex non-Hermitian
EVCCG Computes all of the eigenvalues and eigenvectors of a

complex matrix.
EVLCG Computes all of the eigenvalues of a complex matrix.

LIN_EIG_GEN Computes the eigenvalues of an n � n matrix, A.
Optionally, the eigenvectors of A or AT are computed.
Using the eigenvectors of A gives the decomposition
AV = VE, where V is an n � n complex matrix of
eigenvectors, and E is the complex diagonal matrix of
eigenvalues. Other options include the reduction of A to
upper triangular or Schur form, reduction to block upper
triangular form with 2 � 2 or unit sized diagonal block
matrices, and reduction to upper Hessenberg form.

D4a6.....Banded
EVASB Computes the largest or smallest eigenvalues of a real

symmetric matrix in band symmetric storage mode.
EVBSB Computes the eigenvalues in a given interval of a real

symmetric matrix stored in band symmetric storage mode.
EVCSB Computes all of the eigenvalues and eigenvectors of a real

symmetric matrix in band symmetric storage mode.
EVESB Computes the largest or smallest eigenvalues and the

corresponding eigenvectors of a real symmetric matrix in
band symmetric storage mode.

EVFSB Computes the eigenvalues in a given interval and the
corresponding eigenvectors of a real symmetric matrix
stored in band symmetric storage mode.

EVLSB Computes all of the eigenvalues of a real symmetric matrix
in band symmetric storage mode.

D4b.......Generalized eigenvalue problems (e.g., Ax = �Bx)

D4b1.....Real symmetric
GVCSP Computes all of the eigenvalues and eigenvectors of the

generalized real symmetric eigenvalue problem Az = �Bz,
with B symmetric positive definite.

GVLSP Computes all of the eigenvalues of the generalized real
symmetric eigenvalue problem Az = �Bz, with B
symmetric positive definite.

LIN_GEIG_GEN Computes the generalized eigenvalues of an n � n matrix
pencil, Av � �Bv. Optionally, the generalized eigenvectors
are computed. If either of A or B is nonsingular, there are
diagonal matrices � and � and a complex matrix V
computed such that AV� = BV�.

D4b2.....Real general

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-21

GVCRG Computes all of the eigenvalues and eigenvectors of a
generalized real eigensystem Az = �Bz.

GVLRG Computes all of the eigenvalues of a generalized real
eigensystem Az = �Bz.

LIN_GEIG_GEN Computes the generalized eigenvalues of an n � n matrix
pencil, Av � �Bv. Optionally, the generalized eigenvectors
are computed. If either of A or B is nonsingular, there are
diagonal matrices � and � and a complex matrix V
computed such that AV� = BV�.

D4b4.....Complex general
GVCCG Computes all of the eigenvalues and eigenvectors of a

generalized complex eigensystem Az = �Bz.
GVLCG Computes all of the eigenvalues of a generalized complex

eigensystem Az = �Bz.
LIN_GEIG_GEN Computes the generalized eigenvalues of an n � n matrix

pencil, Av � �Bv. Optionally, the generalized eigenvectors
are computed. If either of A or B is nonsingular, there are
diagonal matrices � and � and a complex matrix V
computed such that AV� = BV�.

D4c.......Associated operations
BALANC, CBSLANC Balances a general matrix before computing the

eigenvalue-eigenvector decomposition.
EPICG Computes the performance index for a complex

eigensystem.
EPIHF Computes the performance index for a complex Hermitian

eigensystem.
EPIRG Computes the performance index for a real eigensystem.
EPISB Computes the performance index for a real symmetric

eigensystem in band symmetric storage mode.
EPISF Computes the performance index for a real symmetric

eigensystem.
GPICG Computes the performance index for a generalized

complex eigensystem Az = �Bz.
GPIRG Computes the performance index for a generalized real

eigensystem Az = �Bz.
GPISP Computes the performance index for a generalized real

symmetric eigensystem problem.
PERFECT_SHIFT Computes eigenvectors using actual eigenvalue as an

explicit shift. Called by lin_eig_self.
PWK A rational QR algorithm for computing eigenvalues of

real, symmetric tri-diagonal matrices. Called by lin_svd
and lin_eig_self.

D4c2.....Compute eigenvalues of matrix in compact form

D4c2b...Hessenberg
EVCCH Computes all of the eigenvalues and eigenvectors of a

complex upper Hessenberg matrix.

A-22 � Appendix A: GAMS Index IMSL MATH/LIBRARY

EVCRH Computes all of the eigenvalues and eigenvectors of a real
upper Hessenberg matrix.

EVLCH Computes all of the eigenvalues of a complex upper
Hessenberg matrix.

EVLRH Computes all of the eigenvalues of a real upper
Hessenberg matrix.

D5.........QR decomposition, Gram-Schmidt orthogonalization
LQERR Accumulates the orthogonal matrix Q from its factored

form given the QR factorization of a rectangular matrix A.
LQRRR Computes the QR decomposition, AP = QR, using

Householder transformations.
LQRSL Computes the coordinate transformation, projection, and

complete the solution of the least-squares problem Ax = b.
LSBRR Solves a linear least-squares problem with iterative

refinement.
LSQRR Solves a linear least-squares problem without iterative

refinement.

D6.........Singular value decomposition
LSVCR Computes the singular value decomposition of a complex

matrix.
LSVRR Computes the singular value decomposition of a real

matrix.
LIN_SOL_SVD Solves a rectangular least-squares system of linear

equations Ax � b using singular value decomposition,
A = USVT. Using optional arguments, any of several
related computations can be performed. These extra tasks
include computing the rank of A, the orthogonal m � m and
n � n matrices U and V, and the m � n diagonal matrix of
singular values, S.

LIN_SVD Computes the singular value decomposition (SVD) of a
rectangular matrix, A. This gives the decomposition
A = USVT, where V is an n � n orthogonal matrix, U is an
m � m orthogonal matrix, and S is a real, rectangular
diagonal matrix.

D7.........Update matrix decompositions

D7b.......Cholesky
LDNCH Downdates the RTR Cholesky factorization of a real

symmetric positive definite matrix after a rank-one matrix
is removed.

LUPCH Updates the RTR Cholesky factorization of a real
symmetric positive definite matrix after a rank-one matrix
is added.

D7c.QR

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-23

LUPQR Computes an updated QR factorization after the rank-one
matrix �xyT is added.

D9.........Singular, overdetermined or underdetermined systems of linear
equations, generalized inverses

D9a.......Unconstrained

D9a1.....Least squares (L�) solution
BAND_
ACCUMALATION Accumulatez and solves banded least-squares problem
 using Householder transformations.
BAND_SOLVE Accumulatez and solves banded least-squares problem
 using Householder transformations.
HOUSE_HOLDER Accumulates and solves banded least-squares problem
 using Householder transformations.

LQRRR Computes the QR decomposition, AP = QR, using

Householder transformations.
LQRRV Computes the least-squares solution using Householder

transformations applied in blocked form.
LQRSL Computes the coordinate transformation, projection, and

complete the solution of the least-squares problem Ax = b.
LSBRR Solves a linear least-squares problem with iterative

refinement.
LSQRR Solves a linear least-squares problem without iterative

refinement.
LIN_SOL_LSQ Solves a rectangular system of linear equations Ax � b, in a

least-squares sense. Using optional arguments, any of
several related computations can be performed. These
extra tasks include computing and saving the factorization
of A using column and row pivoting, representing the
determinant of A, computing the generalized inverse
matrix A†, or computing the least-squares solution of
Ax � b or ATy � d given the factorization of A. An optional
argument is provided for computing the following
unscaled covariance matrix: C = (ATA)-1.

LIN_SOL_SVD Solves a rectangular least-squares system of linear
equations Ax � b using singular value decomposition,
A = USVT. Using optional arguments, any of several
related computations can be performed. These extra tasks
include computing the rank of A, the orthogonal m � m and
n � n matrices U and V, and the m � n diagonal matrix of
singular values, S.

D9b.......Constrained

D9b1.....Least squares (L�) solution
LCLSQ Solves a linear least-squares problem with linear

constraints.

A-24 � Appendix A: GAMS Index IMSL MATH/LIBRARY

D9c.Generalized inverses
LSGRR Computes the generalized inverse of a real matrix.

LIN_SOL_LSQ Solves a rectangular system of linear equations Ax � b, in a
least-squares sense. Using optional arguments, any of
several related computations can be performed. These
extra tasks include computing and saving the factorization
of A using column and row pivoting, representing the
determinant of A, computing the generalized inverse
matrix A†, or computing the least-squares solution of
Ax � b or ATy � d given the factorization of A. An optional
argument is provided for computing the following
unscaled covariance matrix: C = (ATA)-1.

EINTERPOLATION

E1Univariate data (curve fitting)

E1aPolynomial splines (piecewise polynomials)
BSINT Computes the spline interpolant, returning the B-spline

coefficients.
CSAKM Computes the Akima cubic spline interpolant.
CSCON Computes a cubic spline interpolant that is consistent with

the concavity of the data.
CSDEC Computes the cubic spline interpolant with specified

derivative endpoint conditions.
CSHER Computes the Hermite cubic spline interpolant.
CSIEZ Computes the cubic spline interpolant with the ‘not-a-knot’

condition and return values of the interpolant at specified
points.

CSINT Computes the cubic spline interpolant with the ‘not-a-knot’
condition.

CSPER Computes the cubic spline interpolant with periodic
boundary conditions.

QDVAL Evaluates a function defined on a set of points using
quadratic interpolation.

SPLEZ Computes the values of a spline that either interpolates or
fits user-supplied data.

SPLINE_FITTING Solves constrained least-squares fitting of one-dimensional
data by B-splines.

SPlINE_SUPPORT B-spline function and derivative evaluation package.

E2Multivariate data (surface fitting)

E2aGridded
BS2IN Computes a two-dimensional tensor-product spline

interpolant, returning the tensor-product B-spline
coefficients.

BS3IN Computes a three-dimensional tensor-product spline
interpolant, returning the tensor-product B-spline
coefficients.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-25

QD2DR Evaluates the derivative of a function defined on a
rectangular grid using quadratic interpolation.

QD2VL Evaluates a function defined on a rectangular grid using
quadratic interpolation.

QD3DR Evaluates the derivative of a function defined on a
rectangular three-dimensional grid using quadratic
interpolation.

QD3VL Evaluates a function defined on a rectangular three-
dimensional grid using quadratic interpolation.

SURFACE_FITTING Solves constrained least-squares fitting of two-dimensional
data by tensor products of B-splines.

E2bScattered
SURF Computes a smooth bivariate interpolant to scattered data

that is locally a quintic polynomial in two variables.
SURFACE_FAIRING Constrained weighted least-squares fitting of tensor

product B-splines to discrete data, with covariance matrix
and constraints at points.

E3Service routines for interpolation

E3aEvaluation of fitted functions, including quadrature

E3a1Function evaluation
BS1GD Evaluates the derivative of a spline on a grid, given its B-

spline representation.
BS2DR Evaluates the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline
representation.

BS2GD Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS2VL Evaluates a two-dimensional tensor-product spline, given
its tensor-product B-spline representation.

BS3GD Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS3VL Evaluates a three-dimensional tensor-product spline, given
its tensor-product B-spline representation.

BSVAL Evaluates a spline, given its B-spline representation.
CSVAL Evaluates a cubic spline.
PPVAL Evaluates a piecewise polynomial.
QDDER Evaluates the derivative of a function defined on a set of

points using quadratic interpolation.

E3a2Derivative evaluation
BS1GD Evaluates the derivative of a spline on a grid, given its B-

spline representation.
BS2DR Evaluates the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline
representation.

A-26 � Appendix A: GAMS Index IMSL MATH/LIBRARY

BS2GD Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS3DR Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation.

BS3GD Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BSDER Evaluates the derivative of a spline, given its B-spline
representation.

CS1GD Evaluates the derivative of a cubic spline on a grid.
CSDER Evaluates the derivative of a cubic spline.
PP1GD Evaluates the derivative of a piecewise polynomial on a

grid.
PPDER Evaluates the derivative of a piecewise polynomial.
QDDER Evaluates the derivative of a function defined on a set of

points using quadratic interpolation.

E3a3Quadrature
BS2IG Evaluates the integral of a tensor-product spline on a

rectangular domain, given its tensor-product B-spline
representation.

BS3IG Evaluates the integral of a tensor-product spline in three
dimensions over a three-dimensional rectangle, given its
tensorproduct B-spline representation.

BSITG Evaluates the integral of a spline, given its B-spline
representation.

CSITG Evaluates the integral of a cubic spline.

E3bGrid or knot generation
BSNAK Computes the ‘not-a-knot’ spline knot sequence.
BSOPK Computes the ‘optimal’ spline knot sequence.

E3cManipulation of basis functions (e.g., evaluation, change of basis)
BSCPP Converts a spline in B-spline representation to piecewise

polynomial representation.

FSOLUTION OF NONLINEAR EQUATIONS

F1Single equation

F1a........Polynomial

F1a1......Real coefficients
ZPLRC Finds the zeros of a polynomial with real coefficients using

Laguerre’s method.
ZPORC Finds the zeros of a polynomial with real coefficients using

the Jenkins-Traub three-stage algorithm.

F1a2......Complex coefficients
ZPOCC Finds the zeros of a polynomial with complex coefficients

using the Jenkins-Traub three-stage algorithm.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-27

F1bNonpolynomial
ZANLY Finds the zeros of a univariate complex function using

Müller’s method.
ZBREN Finds a zero of a real function that changes sign in a given

interval.
ZREAL Finds the real zeros of a real function using Müller’s

method.

F2System of equations
NEQBF Solves a system of nonlinear equations using factored

secant update with a finite-difference approximation to the
Jacobian.

NEQBJ Solves a system of nonlinear equations using factored
secant update with a user-supplied Jacobian.

NEQNF Solves a system of nonlinear equations using a modified
Powell hybrid algorithm and a finite-difference
approximation to the Jacobian.

NEQNJ Solves a system of nonlinear equations using a modified
Powell hybrid algorithm with a user-supplied Jacobian.

G...........OPTIMIZATION (search also classes K, L8)

G1.........Unconstrained

G1a.......Univariate

G1a1.....Smooth function

G1a1a. ..User provides no derivatives
UVMIF Finds the minimum point of a smooth function of a single

variable using only function evaluations.

G1a1b...User provides first derivatives
UVMID Finds the minimum point of a smooth function of a single

variable using both function evaluations and first
derivative evaluations.

G1a2.....General function (no smoothness assumed)
UVMGS Finds the minimum point of a nonsmooth function of a

single variable.

G1b.......Multivariate

G1b1.....Smooth function

G1b1a...User provides no derivatives
UMCGF Minimizes a function of N variables using a conjugate

gradient algorithm and a finite-difference gradient.
UMINF Minimizes a function of N variables using a quasi-New

method and a finite-difference gradient.
UNLSF Solves a nonlinear least squares problem using a modified

Levenberg-Marquardt algorithm and a finite-difference
Jacobian.

G1b1b...User provides first derivatives

A-28 � Appendix A: GAMS Index IMSL MATH/LIBRARY

UMCGG Minimizes a function of N variables using a conjugate
gradient algorithm and a user-supplied gradient.

UMIDH Minimizes a function of N variables using a modified
Newton method and a finite-difference Hessian.

UMING Minimizes a function of N variables using a quasi-New
method and a user-supplied gradient.

UNLSJ Solves a nonlinear least squares problem using a modified
Levenberg-Marquardt algorithm and a user-supplied
Jacobian.

G1b1c. ..User provides first and second derivatives
UMIAH Minimizes a function of N variables using a modified

Newton method and a user-supplied Hessian.

G1b2.....General function (no smoothness assumed)
UMPOL Minimizes a function of N variables using a direct search

polytope algorithm.

G2.........Constrained

G2a.Linear programming

G2a1.....Dense matrix of constraints
DLPRS Solves a linear programming problem via the revised

simplex algorithm.

G2a2.....Sparse matrix of constraints
SLPRS Solves a sparse linear programming problem via the

revised simplex algorithm.

G2e.Quadratic programming

G2e1.....Positive definite Hessian (i.e., convex problem)
QPROG Solves a quadratic programming problem subject to linear

equality/inequality constraints.

G2h.......General nonlinear programming

G2h1.....Simple bounds

G2h1a. ..Smooth function

G2h1a1 .User provides no derivatives
BCLSF Solves a nonlinear least squares problem subject to bounds

on the variables using a modified Levenberg-Marquardt
algorithm and a finite-difference Jacobian.

BCONF Minimizes a function of N variables subject to bounds the
variables using a quasi-Newton method and a finite-
difference gradient.

G2h1a2 .User provides first derivatives
BCLSJ Solves a nonlinear least squares problem subject to bounds

on the variables using a modified Levenberg-Marquardt
algorithm and a user-supplied Jacobian.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-29

BCODH Minimizes a function of N variables subject to bounds the
variables using a modified Newton method and a finite-
difference Hessian.

BCONG Minimizes a function of N variables subject to bounds the
variables using a quasi-Newton method and a user-
supplied gradient.

G2h1a3.User provides first and second derivatives
BCOAH Minimizes a function of N variables subject to bounds the

variables using a modified Newton method and a user-
supplied Hessian.

G2h1b...General function (no smoothness assumed)
BCPOL Minimizes a function of N variables subject to bounds the

variables using a direct search complex algorithm.

G2h2.....Linear equality or inequality constraints

G2h2a...Smooth function

G2h2a1.User provides no derivatives
LCONF Minimizes a general objective function subject to linear

equality/inequality constraints.

G2h2a2.User provides first derivatives
LCONG Minimizes a general objective function subject to linear

equality/inequality constraints.

G2h3.....Nonlinear constraints

G2h3b...Equality and inequality constraints
NNLPG Uses a sequential equality constrained QP method.
NNLPF Uses a sequential equality constrained QP method.

G2h3b1.Smooth function and constraints

G2h3b1a. User provides no derivatives

G2h3b1b User provides first derivatives of function and constraints

G4.........Service routines

G4c.......Check user-supplied derivatives
CHGRD Checks a user-supplied gradient of a function.
CHHES Checks a user-supplied Hessian of an analytic function.
CHJAC Checks a user-supplied Jacobian of a system of equations

with M functions in N unknowns.

G4d.......Find feasible point
GGUES Generates points in an N-dimensional space.

G4fOther
CDGRD Approximates the gradient using central differences.
FDGRD Approximates the gradient using forward differences.

A-30 � Appendix A: GAMS Index IMSL MATH/LIBRARY

FDHES Approximates the Hessian using forward differences and
function values.

FDJAC Approximates the Jacobian of M functions in N unknowns
using forward differences.

GDHES Approximates the Hessian using forward differences and a
user-supplied gradient.

H...........DIFFERENTIATION, INTEGRATION

H1.........Numerical differentiation
DERIV Computes the first, second or third derivative of a user-

supplied function.

H2.........Quadrature (numerical evaluation of definite integrals)

H2a.One-dimensional integrals

H2a1.....Finite interval (general integrand)

H2a1a ...Integrand available via user-defined procedure

H2a1a1. Automatic (user need only specify required accuracy)
QDAG Integrates a function using a globally adaptive scheme

based on Gauss-Kronrod rules.
QDAGS Integrates a function (which may have endpoint

singularities).
QDNG Integrates a smooth function using a nonadaptive rule.

H2a2.....Finite interval (specific or special type integrand including weight
functions, oscillating and singular integrands, principal value integrals,
splines, etc.)

H2a2a ...Integrand available via user-defined procedure

H2a2a1 .Automatic (user need only specify required accuracy)
QDAGP Integrates a function with singularity points given.
QDAWC Integrates a function F(X)/(X � C) in the Cauchy principal

value sense.
QDAWO Integrates a function containing a sine or a cosine.
QDAWS Integrates a function with algebraic-logarithmic

singularities.

H2a2b...Integrand available only on grid

H2a2b1.Automatic (user need only specify required accuracy)
BSITG Evaluates the integral of a spline, given its B-spline

representation.

H2a3.....Semi-infinite interval (including e�x weight function)

H2a3a. ..Integrand available via user-defined procedure

H2a3a1. Automatic (user need only specify required accuracy)
QDAGI Integrates a function over an infinite or semi-infinite

interval.
QDAWF Computes a Fourier integral.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-31

H2b.......Multidimensional integrals

H2b1.....One or more hyper-rectangular regions (including iterated integrals)
QMC Integrates a function over a hyperrectangle using a

quasi-Monte Carlo method.

H2b1a... Integrand available via user-defined procedure

H2b1a1.Automatic (user need only specify required accuracy)
QAND Integrates a function on a hyper-rectangle.
TWODQ Computes a two-dimensional iterated integral.

H2b1b... Integrand available only on grid

H2b1b2.Nonautomatic
BS2IG Evaluates the integral of a tensor-product spline on a

rectangular domain, given its tensor-product B-spline
representation.

BS3IG Evaluates the integral of a tensor-product spline in three
dimensions over a three-dimensional rectangle, given its
tensorproduct B-spline representation.

H2c.......Service routines (compute weight and nodes for quadrature formulas)
FQRUL Computes a Fejér quadrature rule with various classical

weight functions.
GQRCF Computes a Gauss, Gauss-Radau or Gauss-Lobatto

quadrature rule given the recurrence coefficients for the
monic polynomials orthogonal with respect to the weight
function.

GQRUL Computes a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight functions.

RECCF Computes recurrence coefficients for various monic
polynomials.

RECQR Computes recurrence coefficients for monic polynomials
given a quadrature rule.

IDIFFERENTIAL AND INTEGRAL EQUATIONS

I1Ordinary differential equations (ODE’s)

I1a. Initial value problems

I1a1General, nonstiff or mildly stiff

I1a1a.....One-step methods (e.g., Runge-Kutta)
IVMRK Solves an initial-value problem y� = f(t, y) for ordinary

differential equations using Runge-Kutta pairs of various
orders.

IVPRK Solves an initial-value problem for ordinary differential
equations using the Runge-Kutta-Verner fifth-order and
sixth-order method.

I1a1b. ...Multistep methods (e.g., Adams predictor-corrector)

A-32 � Appendix A: GAMS Index IMSL MATH/LIBRARY

IVPAG Solves an initial-value problem for ordinary differential
equations using either Adams-Moulton’s or Gear’s BDF
method.

I1a2Stiff and mixed algebraic-differential equations
DASPG Solves a first order differential-algebraic system of

equations, g(t, y, y�) = 0, using Petzold�Gear BDF method.

I1bMultipoint boundary value problems

I1b2Nonlinear
BVPFD Solves a (parameterized) system of differential equations

with boundary conditions at two points, using a variable
order, variable step size finite-difference method with
deferred corrections.

BVPMS Solves a (parameterized) system of differential equations
with boundary conditions at two points, using a multiple-
shooting method.

I1b3Eigenvalue (e.g., Sturm-Liouville)
SLCNT Calculates the indices of eigenvalues of a Sturm-Liouville

problem with boundary conditions (at regular points) in a
specified subinterval of the real line, [�, �].

SLEIG Determines eigenvalues, eigenfunctions and/or spectral
density functions for Sturm-Liouville problems in the form
with boundary conditions (at regular points).

I2Partial differential equations

I2a.Initial boundary value problems

I2a1Parabolic
PDE_1D_MG Integrates an initial-value PDE

 problem with one space variable.

I2a1a.....One spatial dimension
MOLCH Solves a system of partial differential equations of the

form ut = f(x, t, u, ux, uxx) using the method of lines. The
solution is represented with cubic Hermite polynomials.

I2bElliptic boundary value problems

I2b1Linear

I2b1a. ...Second order

I2b1a1...Poisson (Laplace) or Helmholtz equation

I2b1a1a.Rectangular domain (or topologically rectangular in the coordinate
system)

FPS2H Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver based on
the HODIE finite-difference scheme on a uni mesh.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-33

FPS3H Solves Poisson’s or Helmholtz’s equation on a three-
dimensional box using a fast Poisson solver based on the
HODIE finite-difference scheme on a uniform mesh.

J............ INTEGRAL TRANSFORMS

J1..........Trigonometric transforms including fast Fourier transforms

J1aOne-dimensional

J1a1Real
FFTRB Computes the real periodic sequence from its Fourier

coefficients.
FFTRF Computes the Fourier coefficients of a real periodic

sequence.
FFTRI Computes parameters needed by FFTRF and FFTRB.

J1a2Complex
FAST-DFT Computes the Discrete Fourier Transform (DFT) of a rank-

1 complex array, x.
FFTCB Computes the complex periodic sequence from its Fourier

coefficients.
FFTCF Computes the Fourier coefficients of a complex periodic

sequence.
FFTCI Computes parameters needed by FFTCF and FFTCB.

J1a3Sine and cosine transforms
FCOSI Computes parameters needed by FCOST.
FCOST Computes the discrete Fourier cosine transformation of an

even sequence.
FSINI Computes parameters needed by FSINT.
FSINT Computes the discrete Fourier sine transformation of an

odd sequence.
QCOSB Computes a sequence from its cosine Fourier coefficients

with only odd wave numbers.
QCOSF Computes the coefficients of the cosine Fourier transform

with only odd wave numbers.
QCOSI Computes parameters needed by QCOSF and QCOSB.
QSINB Computes a sequence from its sine Fourier coefficients

with only odd wave numbers.
QSINF Computes the coefficients of the sine Fourier transform

with only odd wave numbers.
QSINI Computes parameters needed by QSINF and QSINB.

J1b........Multidimensional
FFT2B Computes the inverse Fourier transform of a complex

periodic two-dimensional array.
FFT2D Computes Fourier coefficients of a complex periodic two-

dimensional array.
FFT3B Computes the inverse Fourier transform of a complex

periodic three-dimensional array.

A-34 � Appendix A: GAMS Index IMSL MATH/LIBRARY

FFT3F Computes Fourier coefficients of a complex periodic
threedimensional array.

FAST_2DFT Computes the Discrete Fourier Transform (DFT) of a rank-
2 complex array, x.

FAST_3DFT Computes the Discrete Fourier Transform (DFT) of a rank-
3 complex array, x.

J2Convolutions
CCONV Computes the convolution of two complex vectors.
RCONV Computes the convolution of two real vectors.

J3Laplace transforms
INLAP Computes the inverse Laplace transform of a complex

function.
SINLP Computes the inverse Laplace transform of a complex

function.

K...........APPROXIMATION (search also class L8)

K1.........Least squares (L�) approximation

K1a.Linear least squares (search also classes D5, D6, D9)

K1a1.....Unconstrained

K1a1a. ..Univariate data (curve fitting)

K1a1a1 .Polynomial splines (piecewise polynomials)
BSLSQ Computes the least-squares spline approximation, and

return the B-spline coefficients.
BSVLS Computes the variable knot B-spline least squares

approximation to given data.
CONFT Computes the least-squares constrained spline

approximation, returning the B-spline coefficients.
FRENCH_CURVE Constrained weighted least-squares fitting of B-splines to

discrete data, with covariance matrix.and constraints at
points.

K1a1a2 .Polynomials
RCURV Fits a polynomial curve using least squares.

K1a1a3 .Other functions (e.g., trigonometric, user-specified)

FNLSQ Compute a least-squares approximation with user-supplied basis functions.

K1a1b...Multivariate data (surface fitting)
BSLS2 Computes a two-dimensional tensor-product spline

approximant using least squares, returning the tensor-
product B-spline coefficients.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-35

BSLS3 Computes a three-dimensional tensor-product spline
approximant using least squares, returning the tensor-
product B-spline coefficients.

SURFACE_FAIRING Constrained weighted least-squares fitting of tensor
product B-splines to discrete data, with covariance matrix
and constraints at points.

K1a2.....Constrained
LIN_SOL_LSQ_CON Routine for constrained linear-least squares based on a
 least-distance, dual algorithm.
LIN_SOL_LSQ_INQ Routine for constrained linear-least squares based on a
 least-distance, dual algorithm.
LEAST_PROJ_
DISTANCE Routine for constrained linear-least squares based on a
 least-distance, dual algorithm.

PARALLEL_&
NONONEGATIVE_LSQ Solves multiple systems of linear equations
 Ajxj = yj, j = 1, �, k. Each matrix Aj is tridiagonal with
 the same dimension, n: The default solution method is
 based on LU factorization computed using cyclic
 reduction. An option is used to select Gaussian
 elimination with partial pivoting.
PARALLEL_& BOUNDED_LSQ

 Parallel routines for simple bounded constrained linear-
least squares based on a descent algorithm.

K1a2a ...Linear constraints
LCLSQ Solves a linear least-squares problem with linear

constraints.
PARALLEL_
NONNEGATIVE_LSQ Solves a large least-squares system with non-negative
 constraints, using parallel computing.
PARALLEL_
BOUNDED_LSQ Solves a large least-squares system with simple bounds,
 using parallel computing.

K1b.......Nonlinear least squares

K1b1.....Unconstrained

K1b1a...Smooth functions

K1b1a1.User provides no derivatives
UNLSF Solves a nonlinear least squares problem using a modified

Levenberg-Marquardt algorithm and a finite-difference
Jacobian.

K1b1a2.User provides first derivatives
UNLSJ Solves a nonlinear least squares problem using a modified

Levenberg-Marquardt algorithm and a user-supplied
Jacobian.

A-36 � Appendix A: GAMS Index IMSL MATH/LIBRARY

K1b2.....Constrained

K1b2a...Linear constraints
BCLSF Solves a nonlinear least squares problem subject to bounds

on the variables using a modified Levenberg-Marquardt
algorithm and a finite-difference Jacobian.

BCLSJ Solves a nonlinear least squares problem subject to bounds
on the variables using a modified Levenberg-Marquardt
algorithm and a user-supplied Jacobian.

BCNLS Solves a nonlinear least-squares problem subject to bounds
on the variables and general linear constraints.

K2.........Minimax (L�) approximation
RATCH Computes a rational weighted Chebyshev approximation

to a continuous function on an interval.

K5.........Smoothing
CSSCV Computes a smooth cubic spline approximation to noisy

data using cross-validation to estimate the smoothing
parameter.

CSSED Smooths one-dimensional data by error detection.
CSSMH Computes a smooth cubic spline approximation to noisy

data.

K6.........Service routines for approximation

K6a.Evaluation of fitted functions, including quadrature

K6a1.....Function evaluation
BSVAL Evaluates a spline, given its B-spline representation.
CSVAL Evaluates a cubic spline.
PPVAL Evaluates a piecewise polynomial.

K6a2.....Derivative evaluation
BSDER Evaluates the derivative of a spline, given its B-spline

representation.
CS1GD Evaluates the derivative of a cubic spline on a grid.
CSDER Evaluates the derivative of a cubic spline.
PP1GD Evaluates the derivative of a piecewise polynomial on a

grid.
PPDER Evaluates the derivative of a piecewise polynomial.

K6a3.....Quadrature
CSITG Evaluates the integral of a cubic spline.
PPITG Evaluates the integral of a piecewise polynomial.

K6c.Manipulation of basis functions (e.g., evaluation, change of basis)
BSCPP Converts a spline in B-spline representation to piecewise

polynomial representation.

LSTATISTICS, PROBABILITY

L1Data summarization

L1c.Multi-dimensional data

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-37

L1c1Raw data

L1c1b. ..Covariance, correlation
CCORL Computes the correlation of two complex vectors.
RCORL Computes the correlation of two real vectors.

L3Elementary statistical graphics (search also class Q)

L3e.Multi-dimensional data

L3e3.Scatter diagrams

L3e3a. ..Superimposed Y vs. X
PLOTP Prints a plot of up to 10 sets of points.

L6Random number generation

L6a.Univariate
RAND_GEN Generates a rank-1 array of random numbers. The output

array entries are positive and less than 1 in value.

L6a21 ...Uniform (continuous, discrete), uniform order statistics
RNUN Generates pseudorandom numbers from a uniform (0, 1)

distribution.
RNUNF Generates a pseudorandom number from a uniform (0, 1)

distribution.

L6bMulitivariate

L6b21 ...Linear L-1 (least absolute value) approximation random numbers
FAURE_INIT Shuffles Faure sequence initialization.
FAURE_FREE Frees the structure containing information about the Faure

sequence.
FAURE_NEXT Computes a shuffled Faure sequence.

L6c.Service routines (e.g., seed)
RNGET Retrieves the current value of the seed used in the IMSL

random number generators.
RNOPT Selects the uniform (0, 1) multiplicative congruential

pseudorandom number generator.
RNSET Initializes a random seed for use in the IMSL random

number generators.
RAND_GEN Generates a rank-1 array of random numbers. The output

array entries are positive and less than 1 in value.

L8Regression (search also classes D5, D6, D9, G, K)

L8a.Simple linear (e.g., y = �� + ��x +) (search also class L8h)

L8a1.Ordinary least squares
FNLSQ Computes a least-squares approximation with user-

supplied basis functions.

L8a1a ...Parameter estimation

L8a1a1. Unweighted data

A-38 � Appendix A: GAMS Index IMSL MATH/LIBRARY

RLINE Fits a line to a set of data points using least squares.

L8b.Polynomial (e.g., y = �� + ��x + ��x
 +) (search also class L8c)

L8b1Ordinary least squares

L8b1b ...Parameter estimation

L8b1b2. Using orthogonal polynomials
RCURV Fits a polynomial curve using least squares.

L8cMultiple linear (e.g., y = �� + ��x� + � + �kxk +)

L8c1Ordinary least squares

L8c1b ...Parameter estimation (search also class L8c1a)

L8c1b1 .Using raw data
LSBRR Solves a linear least-squares problem with iterative

refinement.
LSQRR Solves a linear least-squares problem without iterative

refinement.

N...........DATA HANDLING

N1.........Input, output
PGOPT Sets or retrieves page width and length for printing.
WRCRL Prints a complex rectangular matrix with a given format

and labels.
WRCRN Prints a complex rectangular matrix with integer row and

column labels.
WRIRL Prints an integer rectangular matrix with a given format

and labels.
WRIRN Prints an integer rectangular matrix with integer row and

column labels.
WROPT Sets or retrieves an option for printing a matrix.
WRRRL Prints a real rectangular matrix with a given format and

labels.
WRRRN Prints a real rectangular matrix with integer row and

column labels.
SCALAPACK_READ Reads matrix data from a file and place in a two-

dimensional block-cyclic form on a process grid.
SCALAPACK_WRITE Writes matrix data to a file, starting with a two-

dimensional block-cyclic form on a process grid.
SHOW Prints rank-1 and rank-2 arrays with indexing and text.

N3.........Character manipulation
ACHAR Returns a character given its ASCII value.
CVTSI Converts a character string containing an integer number

into the corresponding integer form.
IACHAR Returns the integer ASCII value of a character argument.
ICASE Returns the ASCII value of a character converted to

uppercase.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-39

IICSR Compares two character strings using the ASCII collating
sequence but without regard to case.

IIDEX Determines the position in a string at which a given
character sequence begins without regard to case.

N4.........Storage management (e.g., stacks, heaps, trees)
IWKCIN Initializes bookkeeping locations describing the character

workspace stack.
IWKIN Initializes bookkeeping locations describing the workspace

stack.
ScaLAPACK_READ Moves data from a file to Block-Cyclic form, for use in

ScaLAPACK.
ScaLAPACK_WRITE Move data from Block-Cyclic form, following use in

ScaLAPACK, to a file.

N5.........Searching

N5b....... Insertion position
ISRCH Searches a sorted integer vector for a given integer and

return its index.
SRCH Searches a sorted vector for a given scalar and return its

index.
SSRCH Searches a character vector, sorted in ascending ASCII

order, for a given string and return its index.

N5c.......On a key
IIDEX Determines the position in a string at which a given

character sequence begins without regard to case.
ISRCH Searches a sorted integer vector for a given integer and

return its index.
SRCH Searches a sorted vector for a given scalar and return its

index.
SSRCH Searches a character vector, sorted in ascending ASCII

order, for a given string and return its index.

N6.........Sorting

N6a....... Internal

N6a1.....Passive (i.e., construct pointer array, rank)

N6a1a ... Integer
SVIBP Sorts an integer array by nondecreasing absolute value and

return the permutation that rearranges the array.
SVIGP Sorts an integer array by algebraically increasing value and

return the permutation that rearranges the array.

N6a1b...Real
SVRBP Sorts a real array by nondecreasing absolute value and

return the permutation that rearranges the array.
SVRGP Sorts a real array by algebraically increasing value and

return the permutation that rearranges the array.

A-40 � Appendix A: GAMS Index IMSL MATH/LIBRARY

LIN_SOL_TRI Sorts a rank-1 array of real numbers x so the y results are
algebraically nondecreasing, y y . yn1 2� ��

N6a2.....Active

N6a2a ...Integer
SVIBN Sorts an integer array by nondecreasing absolute value.
SVIBP Sorts an integer array by nondecreasing absolute value and

return the permutation that rearranges the array.
SVIGN Sorts an integer array by algebraically increasing value.
SVIGP Sorts an integer array by algebraically increasing value and

return the permutation that rearranges the array.

N6a2b...Real
SVRBN Sorts a real array by nondecreasing absolute value.
SVRBP Sorts a real array by nondecreasing absolute value and

return the permutation that rearranges the array.
SVRGN Sorts a real array by algebraically increasing value.
SVRGP Sorts a real array by algebraically increasing value and

return the permutation that rearranges the array.

N8.........Permuting
PERMA Permutes the rows or columns of a matrix.
PERMU Rearranges the elements of an array as specified by a

permutation.

Q...........GRAPHICS (search also classes L3)
PLOTP Prints a plot of up to 10 sets of points.

R...........SERVICE ROUTINES
IDYWK Computes the day of the week for a given date.
IUMAG Sets or retrieves MATH/LIBRARY integer options.
NDAYS Computes the number of days from January 1, 1900, to the

given date.
NDYIN Gives the date corresponding to the number of days since

January 1, 1900.
SUMAG Sets or retrieves MATH/LIBRARY single-precision

options.
TDATE Get stoday’s date.
TIMDY Gets time of day.
VERML Obtains IMSL MATH/LIBRARY-related version, system

and license numbers.

R1.........Machine-dependent constants
AMACH Retrieves single-precision machine constants.
IFNAN Checks if a value is NaN (not a number).
IMACH Retrieves integer machine constants.
ISNAN Detects an IEEE NaN (not-a-number).
NAN Returns, as a scalar function, a value corresponding to the

IEEE 754 Standard format of floating point (ANSI/IEEE
1985) for NaN.

UMACH Sets or retrieves input or output device unit numbers.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-41

R3.........Error handling
BUILD_ERROR
_STRUCTURE Fills in flags, values and update the data
 structure for error conditions that occur in Library routines.
 Prepares the structure so that calls to routine
 error_post will display the reason for the error.

R3b.......Set unit number for error messages
UMACH Sets or retrieves input or output device unit numbers.

R3cOther utilities
ERROR_POST Prints error messages that are generated by IMSL Library

routines.
ERSET Sets error handler default print and stop actions.
IERCD Retrieves the code for an informational error.
N1RTY Retrieves an error type for the most recently called IMSL

routine.

S.SOFTWARE DEVELOPMENT TOOLS

S3Dynamic program analysis tools
CPSEC Returns CPU time used in seconds.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-1

Appendix B: Alphabetical Summary
of Routines

IMSL MATH/LIBRARY
ACBCB 1441 Adds two complex band matrices, both in band storage

mode.

ACHAR 1624 Returns a character given its ASCII value.

AMACH 1685 Retrieves single-precision machine constants.

ARBRB 1438 Adds two band matrices, both in band storage mode.

BCLSF 1274 Solves a nonlinear least squares problem subject to
bounds on the variables using a modified Levenberg-
Marquardt algorithm and a finite-difference Jacobian.

BCLSJ 1281 Solves a nonlinear least squares problem subject to
bounds on the variables using a modified Levenberg-
Marquardt algorithm and a user-supplied Jacobian.

BCNLS 1288 Solves a nonlinear least-squares problem subject to
bounds on the variables and general linear constraints.

BCOAH 1263 Minimizes a function of N variables subject to bounds the
variables using a modified Newton method and a user-
supplied Hessian.

BCODH 1257 Minimizes a function of N variables subject to bounds the
variables using a modified Newton method and a finite-
difference Hessian.

BCONF 1243 Minimizes a function of N variables subject to bounds the
variables using a quasi-Newton method and a finite-
difference gradient.

BCONG 1249 Minimizes a function of N variables subject to bounds the
variables using a quasi-Newton method and a user-
supplied gradient.

BCPOL 1271 Minimizes a function of N variables subject to bounds the
variables using a direct search complex algorithm.

B-2 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

BLINF 1427 Computes the bilinear form xTAy.

BS1GD 656 Evaluates the derivative of a spline on a grid, given its B-
spline representation.

BS2DR 653 Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline
representation.

BS2GD 656 Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS2IG 661 Evaluates the integral of a tensor-product spline on a
rectangular domain, given its tensor-product B-spline
representation.

BS2IN 631 Computes a two-dimensional tensor-product spline
interpolant, returning the tensor-product B-spline
coefficients.

BS2VL 651 Evaluates a two-dimensional tensor-product spline, given
its tensor-product B-spline representation.

BS3DR 666 Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation.

BS3GD 670 Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS3IG 676 Evaluates the integral of a tensor-product spline in three
dimensions over a three-dimensional rectangle, given its
tensorproduct B-spline representation.

BS3IN 635 Computes a three-dimensional tensor-product spline
interpolant, returning the tensor-product B-spline
coefficients.

BS3VL 664 Evaluates a three-dimensional tensor-product spline,
given its tensor-product B-spline representation.

BSCPP 680 Converts a spline in B-spline representation to piecewise
polynomial representation.

BSDER 643 Evaluates the derivative of a spline, given its B-spline
representation.

BSINT 622 Computes the spline interpolant, returning the B-spline
coefficients.

BSITG 649 Evaluates the integral of a spline, given its B-spline
representation.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-3

BSLS2 743 Computes a two-dimensional tensor-product spline
approximant using least squares, returning the tensor-
product B-spline coefficients.

BSLS3 748 Computes a three-dimensional tensor-product spline
approximant using least squares, returning the tensor-
product B-spline coefficients.

BSLSQ 725 Computes the least-squares spline approximation, and
return the B-spline coefficients.

BSNAK 625 Computes the ‘not-a-knot’ spline knot sequence.

BSOPK 628 Computes the ‘optimal’ spline knot sequence.

BSVAL 641 Evaluates a spline, given its B-spline representation.

BSVLS 729 Computes the variable knot B-spline least squares
approximation to given data.

BVPFD 870 Solves a (parameterized) system of differential equations
with boundary conditions at two points, using a variable
order, variable step size finite-difference method with
deferred corrections.

BVPMS 882 Solves a (parameterized) system of differential equations
with boundary conditions at two points, using a multiple-
shooting method.

CADD 1319 Adds a scalar to each component of a vector, x � x + a,
all complex.

CAXPY 1320 Computes the scalar times a vector plus a vector, y � ax
+ y, all complex.

CCBCB 1393 Copies a complex band matrix stored in complex band
storage mode.

CCBCG 1400 Converts a complex matrix in band storage mode to a
complex matrix in full storage mode.

CCGCB 1398 Converts a complex general matrix to a matrix in
complex band storage mode.

CCGCG 1390 Copies a complex general matrix.

CCONV 1064 Computes the convolution of two complex vectors.

CCOPY 1319 Copies a vector x to a vector y, both complex.

CCORL 1073 Computes the correlation of two complex vectors.

CDGRD 1336 Approximates the gradient using central differences.

CDOTC 1320 Computes the complex conjugate dot product, x . yT

CDOTU 1320 Computes the complex dot product xTy.

B-4 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

CGBMV 1330 Computes one of the matrix-vector operations:
y Ax y y A x y y AT T
� � � � � �� � � � � �, , or y ,

where A is a matrix stored in band storage mode.

CGEMM 1333 Computes one of the matrix-matrix operations:
C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

T T

T T T

T T T

T T T T

� � � � �

� � � � �

� � � �

� � � �

� � � � �

� � � � �

� � � �

� � � �

, ,

, ,

, ,

,

 or

 or

,

CGEMV 1329 Computes one of the matrix-vector operations:
y Ax y y A x y y AT T
� � � � � �� � � � � �, , or y ,

CGERC 1384 Computes the rank-one update of a complex general
matrix:
A A xy T
� �� .

CGERU 1384 Computes the rank-one update of a complex general
matrix:

. A A xyT
� ��

CHBCB 1411 Copies a complex Hermitian band matrix stored in band
Hermitian storage mode to a complex band matrix stored
in band storage mode.

CHBMV 1381 Computes the matrix-vector operation
,

where A is an Hermitian band matrix in band Hermitian
storage.

y Ax� �� �y

C

y

CHEMM 1385 Computes one of the matrix-matrix operations:
,

where A is an Hermitian matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

CHEMV 1381 Computes the matrix-vector operation
,

where A is an Hermitian matrix.
y Ax� �� �

CHER 1384 Computes the rank-one update of an Hermitian matrix:
A A xx T
� �� with x complex and � real.

CHER2 1384 Computes a rank-two update of an Hermitian matrix:
A A xy yxT T
� � �� � .

CHER2K 1387 Computes one of the Hermitian rank 2k operations:
C AB BA C C A B B AT T T T
� � � � � �� � � � � or C� ,

where C is an n by n Hermitian matrix and A and B are n

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-5

by k matrices in the first case and k by n matrices in the
second case.

CHERK 1386 Computes one of the Hermitian rank k operations:
C AA C C A AT T
� � � �� � � or C� ,

where C is an n by n Hermitian matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

CHFCG 1408 Extends a complex Hermitian matrix defined in its upper
triangle to its lower triangle.

CHGRD 1349 Checks a user-supplied gradient of a function.

CHHES 1352 Checks a user-supplied Hessian of an analytic function.

CHJAC 1355 Checks a user-supplied Jacobian of a system of equations
with M functions in N unknowns.

CHOL 1475 Computes the Cholesky factorization of a positive-
definite, symmetric or self-adjoint matrix, A.

COND 1476 Computes the condition number of a rectangular
matrix, A.

CONFT 734 Computes the least-squares constrained spline
approximation, returning the B-spline coefficients.

CONST 1669 Returns the value of various mathematical and physical
constants.

CPSEC 1631 Returns CPU time used in seconds.

CRBCB 1405 Converts a real matrix in band storage mode to a complex
matrix in band storage mode.

CRBRB 1392 Copies a real band matrix stored in band storage mode.

CRBRG 1397 Converts a real matrix in band storage mode to a real
general matrix.

CRGCG 1402 Copies a real general matrix to a complex general matrix.

CRGRB 1395 Converts a real general matrix to a matrix in band storage
mode.

CRGRG 1389 Copies a real general matrix.

CRRCR 1403 Copies a real rectangular matrix to a complex rectangular
matrix.

CS1GD 602 Evaluates the derivative of a cubic spline on a grid.

CSAKM 500 Computes the Akima cubic spline interpolant.

CSBRB 1409 Copies a real symmetric band matrix stored in band
symmetric storage mode to a real band matrix stored in
band storage mode.

B-6 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

C

CSCAL 1319 Multiplies a vector by a scalar, y � ay, both complex.

CSCON 603 Computes a cubic spline interpolant that is consistent
with the concavity of the data.

CSDEC 593 Computes the cubic spline interpolant with specified
derivative endpoint conditions.

CSDER 610 Evaluates the derivative of a cubic spline.

CSET 1318 Sets the components of a vector to a scalar, all complex.

CSFRG 1406 Extends a real symmetric matrix defined in its upper
triangle to its lower triangle.

CSHER 597 Computes the Hermite cubic spline interpolant.

CSIEZ 587 Computes the cubic spline interpolant with the ‘not-a-
knot’ condition and return values of the interpolant at
specified points.

CSINT 590 Computes the cubic spline interpolant with the ‘not-a-
knot’ condition.

CSITG 616 Evaluates the integral of a cubic spline.

CSPER 506 Computes the cubic spline interpolant with periodic
boundary conditions.

CSROT 1325 Applies a complex Givens plane rotation.

CSROTM 1326 Applies a complex modified Givens plane rotation.

CSSCAL 1319 Multiplies a complex vector by a single-precision scalar,
y � ay.

CSSCV 761 Computes a smooth cubic spline approximation to noisy
data using cross-validation to estimate the smoothing
parameter.

CSSED 754 Smooths one-dimensional data by error detection.

CSSMH 758 Computes a smooth cubic spline approximation to noisy
data.

CSUB 1319 Subtracts each component of a vector from a scalar,
x � a � x, all complex.

CSVAL 609 Evaluates a cubic spline.

CSVCAL 1319 Multiplies a complex vector by a single-precision scalar
and store the result in another complex vector, y � ax.

CSWAP 1320 Interchanges vectors x and y, both complex.

CSYMM 1334 Computes one of the matrix-matrix operations:
,

where A is a symmetric matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-7

C�

C�

CSYR2K 1335 Computes one of the symmetric rank 2k operations:
,

where C is an n by n symmetric matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

C AB BA C C A B B AT T T T
� � � � � �� � � � � or

CSYRK 1334 Computes one of the symmetric rank k operations:
,

where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

C AA C C A AT T
� � � �� � � or

CTBMV 1331 Computes one of the matrix-vector operations:
x Ax x A x x AT T
� � �, , or x ,

where A is a triangular matrix in band storage mode.

CTBSV 1332 Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
 , or e j e j, ,x

where A is a triangular matrix in band storage mode.

CTRMM 1335 Computes one of the matrix-matrix operations:
B AB B A B B BA B BA

B A B B BA

T T

T T

� � � �

� �

� � � �

� �

, , ,

,or

,

where B is an m by n matrix and A is a triangular matrix.

CTRMV 1331 Computes one of the matrix-vector operations:
x Ax x A x x AT T
� � �, , or x ,

where A is a triangular matrix.

CTRSM 1336 Solves one of the complex matrix equations:

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e jor

�1 ,

where A is a traiangular matrix.

CTRSV 1331 Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x ,

where A is a triangular matrix.

CUNIT 1672 Converts X in units XUNITS to Y in units YUNITS.

CVCAL 1319 Multiplies a vector by a scalar and store the result in
another vector, y � ax, all complex.

CVTSI 1630 Converts a character string containing an integer number
into the corresponding integer form.

B-8 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

CZCDOT 1321 Computes the sum of a complex scalar plus a complex
conjugate dot product, a x , using a double-precision
accumulator.

yT
�

CZDOTA 1321 Computes the sum of a complex scalar, a complex dot
product and the double-complex accumulator, which is
set to the result ACC � ACC + a + xTy.

CZDOTC 1320 Computes the complex conjugate dot product, x , using
a double-precision accumulator.

yT

CZDOTI 1321 Computes the sum of a complex scalar plus a complex
dot product using a double-complex accumulator, which
is set to the result ACC � a + xTy.

CZDOTU 1320 Computes the complex dot product xTy using a double-
precision accumulator.

CZUDOT 1321 Computes the sum of a complex scalar plus a complex
dot product, a + xTy, using a double-precision
accumulator.

DASPG 889 Solves a first order differential-algebraic system of
equations, g(t, y, y�) = 0, using Petzold�Gear BDF
method.

DERIV 827 Computes the first, second or third derivative of a user-
supplied function.

DET 1477 Computes the determinant of a rectangular matrix, A.

DIAG 1479 Constructs a square diagonal matrix from a rank-1 array
or several diagonal matrices from a rank-2 array.

DIAGONALS 1479 Extracts a rank-1 array whose values are the diagonal
terms of a rank-2 array argument.

DISL1 1452 Computes the 1-norm distance between two points.

DISL2 1450 Computes the Euclidean (2-norm) distance between two
points.

DISLI 1454 Computes the infinity norm distance between two points.

DLPRS 1297 Solves a linear programming problem via the revised
simplex algorithm.

DMACH 1686 See AMACH.

DQADD 1460 Adds a double-precision scalar to the accumulator in
extended precision.

DQINI 1460 Initializes an extended-precision accumulator with a
double-precision scalar.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-9

DQMUL 1460 Multiplies double-precision scalars in extended precision.

DQSTO 1460 Stores a double-precision approximation to an extended-
precision scalar.

DSDOT 1371 Computes the single-precision dot product xTy using a
double precision accumulator.

DUMAG 1664 This routine handles MATH/LIBRARY and
STAT/LIBRARY type DOUBLE PRECISION options.

EIG 1480 Computes the eigenvalue-eigenvector decomposition of
an ordinary or generalized eigenvalue problem.

EPICG 467 Computes the performance index for a complex
eigensystem.

EPIHF 518 Computes the performance index for a complex
Hermitian eigensystem.

EPIRG 460 Computes the performance index for a real eigensystem.

EPISB 501 Computes the performance index for a real symmetric
eigensystem in band symmetric storage mode.

EPISF 483 Computes the performance index for a real symmetric
eigensystem.

 ERROR_POST 1568 Prints error messages that are generated by IMSL routines
using EPACK

ERSET 1679 Sets error handler default print and stop actions.

EVAHF 508 Computes the largest or smallest eigenvalues of a
complex Hermitian matrix.

EVASB 490 Computes the largest or smallest eigenvalues of a real
symmetric matrix in band symmetric storage mode.

EVASF 473 Computes the largest or smallest eigenvalues of a real
symmetric matrix.

EVBHF 513 Computes the eigenvalues in a given range of a complex
Hermitian matrix.

EVBSB 495 Computes the eigenvalues in a given interval of a real
symmetric matrix stored in band symmetric storage
mode.

EVBSF 478 Computes selected eigenvalues of a real symmetric
matrix.

EVCCG 464 Computes all of the eigenvalues and eigenvectors of a
complex matrix.

EVCCH 526 Computes all of the eigenvalues and eigenvectors of a
complex upper Hessenberg matrix.

B-10 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

EVCHF 505 Computes all of the eigenvalues and eigenvectors of a
complex Hermitian matrix.

EVCRG 457 Computes all of the eigenvalues and eigenvectors of a
real matrix.

EVCRH 522 Computes all of the eigenvalues and eigenvectors of a
real upper Hessenberg matrix.

EVCSB 487 Computes all of the eigenvalues and eigenvectors of a
real symmetric matrix in band symmetric storage mode.

EVCSF 471 Computes all of the eigenvalues and eigenvectors of a
real symmetric matrix.

EVEHF 510 Computes the largest or smallest eigenvalues and the
corresponding eigenvectors of a complex Hermitian
matrix.

EVESB 492 Computes the largest or smallest eigenvalues and the
corresponding eigenvectors of a real symmetric matrix in
band symmetric storage mode.

EVESF 475 Computes the largest or smallest eigenvalues and the
corresponding eigenvectors of a real symmetric matrix.

EVFHF 515 Computes the eigenvalues in a given range and the
corresponding eigenvectors of a complex Hermitian
matrix.

EVFSB 498 Computes the eigenvalues in a given interval and the
corresponding eigenvectors of a real symmetric matrix
stored in band symmetric storage mode.

EVFSF 480 Computes selected eigenvalues and eigenvectors of a real
symmetric matrix.

EVLCG 462 Computes all of the eigenvalues of a complex matrix.

EVLCH 525 Computes all of the eigenvalues of a complex upper
Hessenberg matrix.

EVLHF 502 Computes all of the eigenvalues of a complex Hermitian
matrix.

EVLRG 455 Computes all of the eigenvalues of a real matrix.

EVLRH 520 Computes all of the eigenvalues of a real upper
Hessenberg matrix.

EVLSB 485 Computes all of the eigenvalues of a real symmetric
matrix in band symmetric storage mode.

EVLSF 469 Computes all of the eigenvalues of a real symmetric
matrix.

EYE 1481 Creates a rank-2 square array whose diagonals are all the
value one.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-11

FAURE_FREE 1655 Frees the structure containing information about the
Faure sequence.

FAURE_INIT 1655 Shuffled Faure sequence initialization.

FAURE_NEXT 1656 Computes a shuffled Faure sequence.

 FAST_DFT 992 Computes the Discrete Fourier Transform
of a rank-1 complex array, x.

 FAST_2DFT 1000 Computes the Discrete Fourier Transform (2DFT)
of a rank-2 complex array, x.

 FAST_3DFT 1006 Computes the Discrete Fourier Transform (2DFT)
of a rank-3 complex array, x.

FCOSI 1030 Computes parameters needed by FCOST.

FCOST 1028 Computes the discrete Fourier cosine transformation of
an even sequence.

FDGRD 1338 Approximates the gradient using forward differences.

FDHES 1340 Approximates the Hessian using forward differences and
function values.

FDJAC 1346 Approximates the Jacobian of M functions in N unknowns
using forward differences.

FFT 1482 The Discrete Fourier Transform of a complex sequence
and its inverse transform.

FFT_BOX 1482 The Discrete Fourier Transform of several complex or
real sequences.

FFT2B 1048 Computes the inverse Fourier transform of a complex
periodic two-dimensional array.

FFT2D 1045 Computes Fourier coefficients of a complex periodic two-
dimensional array.

FFT3B 1055 Computes the inverse Fourier transform of a complex
periodic three-dimensional array.

FFT3F 1051 Computes Fourier coefficients of a complex periodic
threedimensional array.

FFTCB 1019 Computes the complex periodic sequence from its Fourier
coefficients.

FFTCF 1017 Computes the Fourier coefficients of a complex periodic
sequence.

FFTCI 1022 Computes parameters needed by FFTCF and FFTCB.

FFTRB 1012 Computes the real periodic sequence from its Fourier
coefficients.

B-12 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

FFTRF 1009 Computes the Fourier coefficients of a real periodic
sequence.

FFTRI 1015 Computes parameters needed by FFTRF and FFTRB.

FNLSQ 720 Computes a least-squares approximation with user-
supplied basis functions.

FPS2H 961 Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver based
on the HODIE finite-difference scheme on a uni mesh.

FPS3H 967 Solves Poisson’s or Helmholtz’s equation on a three-
dimensional box using a fast Poisson solver based on the
HODIE finite-difference scheme on a uniform mesh.

FQRUL 824 Computes a Fejér quadrature rule with various classical
weight functions.

FSINI 1026 Computes parameters needed by FSINT.

FSINT 1024 Computes the discrete Fourier sine transformation of an
odd sequence.

GDHES 1343 Approximates the Hessian using forward differences and
a user-supplied gradient.

GGUES 1359 Generates points in an N-dimensional space.

GMRES 368 Uses restarted GMRES with reverse communication to
generate an approximate solution of Ax = b.

GPICG 542 Computes the performance index for a generalized
complex eigensystem Az = �Bz.

GPIRG 535 Computes the performance index for a generalized real
eigensystem Az = �Bz.

GPISP 549 Computes the performance index for a generalized real
symmetric eigensystem problem.

GQRCF 815 Computes a Gauss, Gauss-Radau or Gauss-Lobatto
quadrature rule given the recurrence coefficients for the
monic polynomials orthogonal with respect to the weight
function.

GQRUL 811 Computes a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight functions.

GVCCG 540 Computes all of the eigenvalues and eigenvectors of a
generalized complex eigensystem Az = �Bz.

GVCRG 531 Computes all of the eigenvalues and eigenvectors of a
generalized real eigensystem Az = �Bz.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-13

GVCSP 547 Computes all of the eigenvalues and eigenvectors of the
generalized real symmetric eigenvalue problem Az = �Bz,
with B symmetric positive definite.

GVLCG 537 Computes all of the eigenvalues of a generalized complex
eigensystem Az = �Bz.

GVLRG 529 Computes all of the eigenvalues of a generalized real
eigensystem Az = �Bz.

GVLSP 544 Computes all of the eigenvalues of the generalized real
symmetric eigenvalue problem Az = �Bz, with B
symmetric positive definite.

HRRRR 1425 Computes the Hadamard product of two real rectangular
matrices.

HYPOT 1675 Computes a without underflow or overflow. b2
�

2

IACHAR 1625 Returns the integer ASCII value of a character argument.

IADD 1319 Adds a scalar to each component of a vector, x � x + a,
all integer.

ICAMAX 1324 Finds the smallest index of the component of a complex
vector having maximum magnitude.

ICAMIN 1323 Finds the smallest index of the component of a complex
vector having minimum magnitude.

ICASE 1626 Returns the ASCII value of a character converted to
uppercase.

ICOPY 1319 Copies a vector x to a vector y, both integer.

IDYWK 1637 Computes the day of the week for a given date.

IERCD 1680 Retrieves the code for an informational error.

IFFT 1483 The inverse of the Discrete Fourier Transform of a
complex sequence.

IFFT_BOX 1484 The inverse Discrete Fourier Transform of several
complex or real sequences.

IFNAN(X) 1686 Checks if a value is NaN (not a number).

IICSR 1627 Compares two character strings using the ASCII collating
sequence but without regard to case.

IIDEX 1629 Determines the position in a string at which a given
character sequence begins without regard to case.

IIMAX 1323 Finds the smallest index of the maximum component of a
integer vector.

IIMIN 1323 Finds the smallest index of the minimum of an integer
vector.

B-14 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

IMACH 1683 Retrieves integer machine constants.

INLAP 1078 Computes the inverse Laplace transform of a complex
function.

ISAMAX 1374 Finds the smallest index of the component of a single-
precision vector having maximum absolute value.

ISAMIN 1374 Finds the smallest index of the component of a single-
precision vector having minimum absolute value.

ISET 1318 Sets the components of a vector to a scalar, all integer.

ISMAX 1374 Finds the smallest index of the component of a single-
precision vector having maximum value.

ISMIN 1374 Finds the smallest index of the component of a single-
precision vector having minimum value.

ISNAN 1485 This is a generic logical function used to test scalars or
arrays for occurrence of an IEEE 754 Standard format of
floating point (ANSI/IEEE 1985) NaN, or not-a-number.

ISRCH 1620 Searches a sorted integer vector for a given integer and
return its index.

ISUB 1319 Subtracts each component of a vector from a scalar,
x � a � x, all integer.

ISUM 1322 Sums the values of an integer vector.

ISWAP 1320 Interchanges vectors x and y, both integer.

IUMAG 1658 Sets or retrieves MATH/LIBRARY integer options.

IVMRK 844 Solves an initial-value problem y� = f(t, y) for ordinary
differential equations using Runge-Kutta pairs of various
orders.

IVPAG 854 Solves an initial-value problem for ordinary differential
equations using either Adams-Moulton’s or Gear’s BDF
method.

IVPRK 837 Solves an initial-value problem for ordinary differential
equations using the Runge-Kutta-Verner fifth-order and
sixth-order method.

IWKCIN 1701 Initializes bookkeeping locations describing the character
workspace stack.

IWKIN 1700 Initializes bookkeeping locations describing the
workspace stack.

JCGRC 365 Solves a real symmetric definite linear system using the
Jacobi preconditioned conjugate gradient method with
reverse communication.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-15

LCHRG 406 Computes the Cholesky decomposition of a symmetric
positive semidefinite matrix with optional column
pivoting.

LCLSQ 388 Solves a linear least-squares problem with linear
constraints.

LCONF 1310 Minimizes a general objective function subject to linear
equality/inequality constraints.

LCONG 1316 Minimizes a general objective function subject to linear
equality/inequality constraints.

LDNCH 412 Downdates the RTR Cholesky factorization of a real
symmetric positive definite matrix after a rank-one matrix
is removed.

LFCCB 262 Computes the LU factorization of a complex matrix in
band storage mode and estimate its L� condition number.

LFCCG 108 Computes the LU factorization of a complex general
matrix and estimate its L� condition number.

LFCCT 132 Estimates the condition number of a complex triangular
matrix.

LFCDH 179 Computes the RH R factorization of a complex Hermitian
positive definite matrix and estimate its L� condition
number.

LFCDS 143 Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix and estimate its
L�condition number.

LFCHF 197 Computes the U DUH factorization of a complex
Hermitian matrix and estimate its L� condition number.

LFCQH 284 Computes the RH R factorization of a complex Hermitian
positive definite matrix in band Hermitian storage mode
and estimate its L� condition number.

LFCQS 240 Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix in band symmetric
storage mode and estimate its L� condition number.

LFCRB 219 Computes the LU factorization of a real matrix in band
storage mode and estimate its L� condition number.

LFCRG 89 Computes the LU factorization of a real general matrix
and estimate its L� condition number.

LFCRT 125 Estimates the condition number of a real triangular
matrix.

B-16 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LFCSF 162 Computes the U DUT factorization of a real symmetric
matrix and estimate its L� condition number.

LFDCB 274 Computes the determinant of a complex matrix given the
LU factorization of the matrix in band storage mode.

LFDCG 119 Computes the determinant of a complex general matrix
given the LU factorization of the matrix.

LFDCT 134 Computes the determinant of a complex triangular matrix.

LFDDH 190 Computes the determinant of a complex Hermitian
positive definite matrix given the RH R Cholesky
factorization of the matrix.

LFDDS 153 Computes the determinant of a real symmetric positive
definite matrix given the RH R Cholesky factorization of
the matrix.

LFDHF 207 Computes the determinant of a complex Hermitian matrix
given the U DUH factorization of the matrix.

LFDQH 295 Computes the determinant of a complex Hermitian
positive definite matrix given the RH R Cholesky
factorization in band Hermitian storage mode.

LFDQS 250 Computes the determinant of a real symmetric positive
definite matrix given the RT R Cholesky factorization of
the band symmetric storage mode.

LFDRB 230 Computes the determinant of a real matrix in band
storage mode given the LU factorization of the matrix.

LFDRG 99 Computes the determinant of a real general matrix given
the LU factorization of the matrix.

LFDRT 127 Computes the determinant of a real triangular matrix.

LFDSF 172 Computes the determinant of a real symmetric matrix
given the U DUT factorization of the matrix.

LFICB 270 Uses iterative refinement to improve the solution of a
complex system of linear equations in band storage mode.

LFICG 116 Uses iterative refinement to improve the solution of a
complex general system of linear equations.

LFIDH 187 Uses iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations.

LFIDS 150 Uses iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-17

LFIHF 204 Uses iterative refinement to improve the solution of a
complex Hermitian system of linear equations.

LFIQH 292 Uses iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations in band Hermitian storage mode.

LFIQS 247 Uses iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations in
band symmetric storage mode.

LFIRB 227 Uses iterative refinement to improve the solution of a real
system of linear equations in band storage mode.

LFIRG 96 Uses iterative refinement to improve the solution of a real
general system of linear equations.

LFISF 169 Uses iterative refinement to improve the solution of a real
symmetric system of linear equations.

LFSCB 268 Solves a complex system of linear equations given the LU
factorization of the coefficient matrix in band storage
mode.

LFSCG 114 Solves a complex general system of linear equations
given the LU factorization of the coefficient matrix.

LFSDH 184 Solves a complex Hermitian positive definite system of
linear equations given the RH R factorization of the
coefficient matrix.

LFSDS 148 Solves a real symmetric positive definite system of linear
equations given the RT R Choleksy factorization of the
coefficient matrix.

LFSHF 202 Solves a complex Hermitian system of linear equations
given the U DUH factorization of the coefficient matrix.

LFSQH 290 Solves a complex Hermitian positive definite system of
linear equations given the factorization of the coefficient
matrix in band Hermitian storage mode.

LFSQS 245 Solves a real symmetric positive definite system of linear
equations given the factorization of the coefficient matrix
in band symmetric storage mode.

LFSRB 225 Solves a real system of linear equations given the LU
factorization of the coefficient matrix in band storage
mode.

LFSRG 94 Solves a real general system of linear equations given the
LU factorization of the coefficient matrix.

LFSSF 167 Solves a real symmetric system of linear equations given
the U DUT factorization of the coefficient matrix.

B-18 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LFSXD 336 Solves a real sparse symmetric positive definite system of
linear equations, given the Cholesky factorization of the
coefficient matrix.

LFSXG 306 Solves a sparse system of linear equations given the LU
factorization of the coefficient matrix.

LFSZD 349 Solves a complex sparse Hermitian positive definite
system of linear equations, given the Cholesky
factorization of the coefficient matrix.

LFSZG 319 Solves a complex sparse system of linear equations given
the LU factorization of the coefficient matrix.

LFTCB 265 Computes the LU factorization of a complex matrix in
band storage mode.

LFTCG 111 Computes the LU factorization of a complex general
matrix.

LFTDH 182 Computes the RH R factorization of a complex Hermitian
positive definite matrix.

LFTDS 146 Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix.

LFTHF 200 Computes the U DUH factorization of a complex
Hermitian matrix.

LFTQH 288 Computes the RH R factorization of a complex Hermitian
positive definite matrix in band Hermitian storage mode.

LFTQS 243 Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix in band symmetric
storage mode.

LFTRB 222 Computes the LU factorization of a real matrix in band
storage mode.

LFTRG 92 Computes the LU factorization of a real general matrix.

LFTSF 164 Computes the U DUT factorization of a real symmetric
matrix.

LFTXG 301 Computes the LU factorization of a real general sparse
matrix.

LFTZG 314 Computes the LU factorization of a complex general
sparse matrix.

LINCG 121 Computes the inverse of a complex general matrix.

LINCT 136 Computes the inverse of a complex triangular matrix.

LINDS 154 Computes the inverse of a real symmetric positive
definite matrix.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-19

LINRG 101 Computes the inverse of a real general matrix.

LINRT 128 Computes the inverse of a real triangular matrix.

 LIN_EIG_GEN 439 Computes the eigenvalues of a self-adjoint
matrix, A.

 LIN_EIG_SELF 432 Computes the eigenvalues of a self-adjoint
matrix, A.

 LIN_GEIG_SELF 448 Computes the generalized eigenvalues of an n � n
matrix pencil, Av = �Bv.

 LIN_SOL_GEN 9 Solves a general system of linear equations Ax = b.

 LIN_SOL_LSQ 27 Solves a rectangular system of linear equations Ax � b,
in a least-squares sense.

 LIN_SOL_SELF 17 Solves a system of linear equations Ax = b, where A is a
self-adjoint matrix.

 LIN_SOL_SVD 36 Solves a rectangular least-squares system of linear
equations Ax � b using singular value decomposition.

 LIN_SOL_TRI 44 Solves multiple systems of linear equations.

 LIN_SVD 57 Computes the singular value decomposition (SVD) of a
rectangular matrix, A.

LNFXD 331 Computes the numerical Cholesky factorization of a
sparse symmetrical matrix A.

LNFZD 344 Computes the numerical Cholesky factorization of a
sparse Hermitian matrix A.

LQERR 396 Accumulates the orthogonal matrix Q from its factored
form given the QR factorization of a rectangular matrix A.

LQRRR 392 Computes the QR decomposition, AP = QR, using
Householder transformations.

LQRRV 381 Computes the least-squares solution using Householder
transformations applied in blocked form.

LQRSL 398 Computes the coordinate transformation, projection, and
complete the solution of the least-squares problem Ax = b.

LSACB 257 Solves a complex system of linear equations in band
storage mode with iterative refinement.

LSACG 103 Solves a complex general system of linear equations with
iterative refinement.

LSADH 173 Solves a Hermitian positive definite system of linear
equations with iterative refinement.

LSADS 138 Solves a real symmetric positive definite system of linear
equations with iterative refinement.

B-20 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LSAHF 191 Solves a complex Hermitian system of linear equations
with iterative refinement.

LSAQH 276 Solves a complex Hermitian positive definite system of
linear equations in band Hermitian storage mode with
iterative refinement.

LSAQS 232 Solves a real symmetric positive definite system of linear
equations in band symmetric storage mode with iterative
refinement.

LSARB 213 Solves a real system of linear equations in band storage
mode with iterative refinement.

LSARG 83 Solves a real general system of linear equations with
iterative refinement.

LSASF 156 Solves a real symmetric system of linear equations with
iterative refinement.

LSBRR 385 Solves a linear least-squares problem with iterative
refinement.

LSCXD 327 Performs the symbolic Cholesky factorization for a sparse
symmetric matrix using a minimum degree ordering or a
userspecified ordering, and set up the data structure for
the numerical Cholesky factorization.

LSGRR 424 Computes the generalized inverse of a real matrix.

LSLCB 259 Solves a complex system of linear equations in band
storage mode without iterative refinement.

LSLCC 356 Solves a complex circulant linear system.

LSLCG 106 Solves a complex general system of linear equations
without iterative refinement.

LSLCQ 253 Computes the LDU factorization of a complex tridiagonal
matrix A using a cyclic reduction algorithm.

LSLCR 211 Computes the LDU factorization of a real tridiagonal
matrix A using a cyclic reduction algorithm.

LSLCT 130 Solves a complex triangular system of linear equations.

LSLDH 176 Solves a complex Hermitian positive definite system of
linear equations without iterative refinement.

LSLDS 140 Solves a real symmetric positive definite system of linear
equations without iterative refinement.

LSLHF 194 Solves a complex Hermitian system of linear equations
without iterative refinement.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-21

LSLPB 237 Computes the RT DR Cholesky factorization of a real
symmetric positive definite matrix A in codiagonal band
symmetric storage mode. Solve a system Ax = b.

LSLQB 281 Computes the RH DR Cholesky factorization of a
complex hermitian positive-definite matrix A in
codiagonal band hermitian storage mode. Solve a system
Ax = b.

LSLQH 279 Solves a complex Hermitian positive definite system of
linearequations in band Hermitian storage mode without
iterative refinement.

LSLQS 234 Solves a real symmetric positive definite system of linear
equations in band symmetric storage mode without
iterative refinement.

LSLRB 216 Solves a real system of linear equations in band storage
mode without iterative refinement.

LSLRG 85 Solves a real general system of linear equations without
iterative refinement.

LSLRT 123 Solves a real triangular system of linear equations.

LSLSF 159 Solves a real symmetric system of linear equations
without iterative refinement.

LSLTC 354 Solves a complex Toeplitz linear system.

LSLTO 352 Solves a real Toeplitz linear system.

LSLTQ 252 Solves a complex tridiagonal system of linear equations.

LSLTR 209 Solves a real tridiagonal system of linear equations.

LSLXD 323 Solves a sparse system of symmetric positive definite
linear algebraic equations by Gaussian elimination.

LSLXG 297 Solves a sparse system of linear algebraic equations by
Gaussian elimination.

LSLZD 340 Solves a complex sparse Hermitian positive definite
system of linear equations by Gaussian elimination.

LSLZG 309 Solves a complex sparse system of linear equations by
Gaussian elimination.

LSQRR 378 Solves a linear least-squares problem without iterative
refinement.

LSVCR 419 Computes the singular value decomposition of a complex
matrix.

LSVRR 415 Computes the singular value decomposition of a real
matrix.

B-22 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LUPCH 409 Updates the RTR Cholesky factorization of a real
symmetric positive definite matrix after a rank-one matrix
is added.

LUPQR 402 Computes an updated QR factorization after the rank-one
matrix �xyT is added.

MCRCR 1423 Multiplies two complex rectangular matrices, AB.

MOLCH 946 Solves a system of partial differential equations of the
form ut = f(x, t, u, ux, uxx) using the method of lines. The
solution is represented with cubic Hermite polynomials.

MRRRR 1421 Multiplies two real rectangular matrices, AB.

MUCBV 1436 Multiplies a complex band matrix in band storage mode
by a complex vector.

MUCRV 1435 Multiplies a complex rectangular matrix by a complex
vector.

MURBV 1433 Multiplies a real band matrix in band storage mode by a
real vector.

MURRV 1431 Multiplies a real rectangular matrix by a vector.

MXTXF 1415 Computes the transpose product of a matrix, ATA.

MXTYF 1416 Multiplies the transpose of matrix A by matrix B, ATB.

MXYTF 1418 Multiplies a matrx A by the transpose of a matrix B, ABT.

NAN 1486 Returns, as a scalar function, a value corresponding to the
IEEE 754 Standard format of floating point (ANSI/IEEE
1985) for NaN. .

N1RTY 1680 Retrieves an error type for the most recently called IMSL
routine.

NDAYS 1634 Computes the number of days from January 1, 1900, to
the given date.

NDYIN 1636 Gives the date corresponding to the number of days since
January 1, 1900.

NEQBF 1169 Solves a system of nonlinear equations using factored
secant update with a finite-difference approximation to
the Jacobian.

NEQBJ 1174 Solves a system of nonlinear equations using factored
secant update with a user-supplied Jacobian.

NEQNF 1162 Solves a system of nonlinear equations using a modified
Powell hybrid algorithm and a finite-difference
approximation to the Jacobian.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-23

NEQNJ 1165 Solves a system of nonlinear equations using a modified
Powell hybrid algorithm with a user-supplied Jacobian.

NNLPF 1323 Uses a sequential equality constrained QP method.

NNLPG 1329 Uses a sequential equality constrained QP method.

NORM 1487 Computes the norm of a rank-1 or rank-2 array. For rank-
3 arrays, the norms of each rank-2 array, in dimension 3,
are computed.

NR1CB 1449 Computes the 1-norm of a complex band matrix in band
storage mode.

NR1RB 1447 Computes the 1-norm of a real band matrix in band
storage mode.

NR1RR 1444 Computes the 1-norm of a real matrix.

NR2RR 1446 Computes the Frobenius norm of a real rectangular
matrix.

NRIRR 1443 Computes the infinity norm of a real matrix.

 OPERATOR: .h. 1472 Computes transpose and conjugate transpose of a matrix.

OPERATOR: .hx. 1471 Computes matrix-vector and matrix-matrix products.

OPERATOR:.i. 1473 Computes the inverse matrix, for square non-singular
matrices.

 OPERATOR:.ix. 1474 Computes the inverse matrix times a vector or matrix for
square non-singular matrices.

 OPERATOR:..t. 1472 Computes transpose and conjugate transpose of a matrix.

 OPERATOR:.tx. 1471 Computes matrix-vector and matrix-matrix products.

 OPERATOR:.x. 1471 Computes matrix-vector and matrix-matrix products..

 OPERATOR:..xh. 1471 Computes matrix-vector and matrix-matrix products.

 OPERATOR:..xi. 1474 Computes the inverse matrix times a vector or matrix for
square non-singular matrices.

 OPERATORS:.xt. 1471 Computes matrix-vector and matrix-matrix products.

ORTH 1488 Orthogonalizes the columns of a rank-2 or rank-3 array.

PCGRC 359 Solves a real symmetric definite linear system using a
preconditioned conjugate gradient method with reverse
communication.

PARALLEL_NONNEGATIVE_LSQ 67 Solves a linear, non-negative constrained least-squares
system.

 PARALLEL_BOUNDED_LSQ 75 Solves a linear least-squares system with bounds on
the unknowns.

 PDE_1D_MG 913 Method of lines with Variable Griddings.

B-24 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

PERMA 1602 Permutes the rows or columns of a matrix.

PERMU 1600 Rearranges the elements of an array as specified by a
permutation.

PGOPT 1599 Sets or retrieves page width and length for printing.

PLOTP 1664 Prints a plot of up to 10 sets of points.

POLRG 1429 Evaluates a real general matrix polynomial.

PP1GD 687 Evaluates the derivative of a piecewise polynomial on a
grid.

PPDER 684 Evaluates the derivative of a piecewise polynomial.

PPITG 690 Evaluates the integral of a piecewise polynomial.

PPVAL 681 Evaluates a piecewise polynomial.

PRIME 1668 Decomposes an integer into its prime factors.

QAND 806 Integrates a function on a hyper-rectangle.

QCOSB 1041 Computes a sequence from its cosine Fourier coefficients
with only odd wave numbers.

QCOSF 1039 Computes the coefficients of the cosine Fourier transform
with only odd wave numbers.

QCOSI 1043 Computes parameters needed by QCOSF and QCOSB.

QD2DR 699 Evaluates the derivative of a function defined on a
rectangular grid using quadratic interpolation.

QD2VL 696 Evaluates a function defined on a rectangular grid using
quadratic interpolation.

QD3DR 705 Evaluates the derivative of a function defined on a
rectangular three-dimensional grid using quadratic
interpolation.

QD3VL 702 Evaluates a function defined on a rectangular three-
dimensional grid using quadratic interpolation.

QDAG 775 Integrates a function using a globally adaptive scheme
based on Gauss-Kronrod rules.

QDAGI 782 Integrates a function over an infinite or semi-infinite
interval.

QDAGP 779 Integrates a function with singularity points given.

QDAGS 772 Integrates a function (which may have endpoint
singularities).

QDAWC 796 Integrates a function F(X)/(X � C) in the Cauchy principal
value sense.

QDAWF 789 Computes a Fourier integral.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-25

QDAWO 785 Integrates a function containing a sine or a cosine.

QDAWS 793 Integrates a function with algebraic-logarithmic
singularities.

QDDER 694 Evaluates the derivative of a function defined on a set of
points using quadratic interpolation.

QDNG 799 Integrates a smooth function using a nonadaptive rule.

QDVAL 692 Evaluates a function defined on a set of points using
quadratic interpolation.

QMC 809 Integrates a function over a hyperrectangle using a
quasi-Monte Carlo method.

 QPROG 1307 Solves a quadratic programming problem subject to linear
equality/inequality constraints.

 QSINB 1034 Computes a sequence from its sine Fourier coefficients
with only odd wave numbers.

 QSINF 1032 Computes the coefficients of the sine Fourier transform
with only odd wave numbers.

 QSINI 1037 Computes parameters needed by QSINF and QSINB.

 RAND 1489 Computes a scalar, rank-1, rank-2 or rank-3 array of
random numbers.

 RAND_GEN 1639 Generates a rank-1 array of random numbers.

 RANK 1490 Computes the mathematical rank of a rank-2 or rank-3
array.

RATCH 764 Computes a rational weighted Chebyshev approximation
to a continuous function on an interval.

RCONV 1059 Computes the convolution of two real vectors.

RCORL 1068 Computes the correlation of two real vectors.

RCURV 716 Fits a polynomial curve using least squares.

RECCF 818 Computes recurrence coefficients for various monic
polynomials.

RECQR 821 Computes recurrence coefficients for monic polynomials
given a quadrature rule.

RLINE 713 Fits a line to a set of data points using least squares.

RNGET 1648 Retrieves the current value of the seed used in the IMSL
random number generators.

RNOPT 1650 Selects the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

RNSET 1649 Initializes a random seed for use in the IMSL random
number generators.

B-26 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

y

RNUN 1653 Generates pseudorandom numbers from a uniform (0, 1)
distribution.

RNUNF 1651 Generates a pseudorandom number from a uniform (0, 1)
distribution.

SADD 1370 Adds a scalar to each component of a vector, x � x + a,
all single precision.

SASUM 1373 Sums the absolute values of the components of a single-
precision vector.

SAXPY 1370 Computes the scalar times a vector plus a vector,
y � ax + y, all single precision.

ScaLaPACK_READ 1545 Reads matrix data from a file and transmits it into the
two-dimensional block-cyclic form required by
ScaLAPACK routines.

ScaLaPACK_WRITE 1547 Writes the matrix data to a file.

SCASUM 1322 Sums the absolute values of the real part together with the
absolute values of the imaginary part of the components
of a complex vector.

SCNRM2 1322 Computes the Euclidean norm of a complex vector.

SCOPY 1369 Copies a vector x to a vector y, both single precision.

SDDOTA 1321 Computes the sum of a single-precision scalar, a single-
precision dot product and the double-precision
accumulator, which is set to the result ACC � ACC + a +
xTy.

SDDOTI 1372 Computes the sum of a single-precision scalar plus a
singleprecision dot product using a double-precision
accumulator, which is set to the result ACC � a + xTy.

SDOT 1370 Computes the single-precision dot product xTy.

SDSDOT 1371 Computes the sum of a single-precision scalar and a
single precision dot product, a + xTy, using a double-
precision accumulator.

SGBMV 1381 Computes one of the matrix-vector operations:
,

where A is a matrix stored in band storage mode.
y Ax y y A xT
� � � �� � � �, or

SGEMM 1385 Computes one of the matrix-matrix operations:

.
C AB C C A B C C AB

C C A B C

T T

T T

� � � � �

� � �

� � � � �

� � �

, ,

, or

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-27

y
SGEMV 1381 Computes one of the matrix-vector operations:

, y Ax y y A xT
� � � �� � � �, or

SGER 1383 Computes the rank-one update of a real general matrix:
. A A xyT

� ��

SHOW 1571 Prints rank-1 or rank-2 arrays of numbers in a readable
format.

SHPROD 1372 Computes the Hadamard product of two single-precision
vectors.

SINLP 1081 Computes the inverse Laplace transform of a complex
function.

SLCNT 986 Calculates the indices of eigenvalues of a Sturm-Liouville
problem with boundary conditions (at regular points) in a
specified subinterval of the real line, [�, �].

SLEIG 973 Determines eigenvalues, eigenfunctions and/or spectral
density functions for Sturm-Liouville problems in the
form with boundary conditions (at regular points).

SLPRS 1301 Solves a sparse linear programming problem via the
revised simplex algorithm.

SNRM2 1373 Computes the Euclidean length or L� norm of a single-
precision vector.

 SORT_REAL 1604 Sorts a rank-1 array of real numbers x so the y results are
algebraically nondecreasing, y1 � y2 � � yn.

SPLEZ 618 Computes the values of a spline that either interpolates or
fits user-supplied data.

 SPLINE_CONSTRAINTS 562 Returns the derived type array result.

 SPLINE_FITTING 564 Weighted least-squares fitting by B-splines to discrete
One-Dimensional data is performed.

 SPLINE_VALUES 563 Returns an array result, given an array
of input

SPRDCT 1373 Multiplies the components of a single-precision vector.

 SRCH 1618 Searches a sorted vector for a given scalar and return its
index.

 SROT 1375 Applies a Givens plane rotation in single precision.

SROTG 1374 Constructs a Givens plane rotation in single precision.

SROTM 1377 Applies a modified Givens plane rotation in single
precision.

SROTMG 1376 Constructs a modified Givens plane rotation in single
precision.

B-28 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

y

C

y

SSBMV 1382 Computes the matrix-vector operation
,

where A is a symmetric matrix in band symmetric storage
mode.

y Ax� �� �

SSCAL 1369 Multiplies a vector by a scalar, y � ay, both single
precision.

 SSET 1369 Sets the components of a vector to a scalar, all single
precision.

 SSRCH 1622 Searches a character vector, sorted in ascending ASCII
order, for a given string and return its index.

SSUB 1370 Subtracts each component of a vector from a scalar,
x � a � x, all single precision.

SSUM 1372 Sums the values of a single-precision vector.

SSWAP 1370 Interchanges vectors x and y, both single precision.

SSYMM 1385 Computes one of the matrix-matrix operations:
,

where A is a symmetric matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

SSYMV 1382 Computes the matrix-vector operation
,

where A is a symmetric matrix.
y Ax� �� �

SSYR 1384 Computes the rank-one update of a real symmetric
matrix:
A A xxT
� �� .

SSYR2 1384 Computes the rank-two update of a real symmetric
matrix:

. A A xy yxT T
� � �� �

SSYR2K 1386 Computes one of the symmetric rank 2k operations:
,

where C is an n by n symmetric matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

C AB BA C C A B B AT T T T
� � � � � �� � � � � or C�

C�

x

SSYRK 1386 Computes one of the symmetric rank k operations:
,

where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

C AA C C A AT T
� � � �� � � or

STBMV 1382 Computes one of the matrix-vector operations:

where A is a triangular matrix in band storage mode.
x Ax x AT
� �or ,

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-29

x

x

B1 ,

x

STBSV 1383 Solves one of the triangular systems:

,

where A is a triangular matrix in band storage mode.

x A x x A
T

� �
� �1 1 or e j

STRMM 1387 Computes one of the matrix-matrix operations:
,

where B is an m by n matrix and A is a triangular matrix.
B AB B A B B BA B BAT T
� � � �� � � �, , or

STRMV 1382 Computes one of the matrix-vector operations:

where A is a triangular matrix.
x Ax x AT
� �or ,

STRSM 1387 Solves one of the matrix equations:

where B is an m by n matrix and A is a triangular matrix.

B A B B BA B A

B B A

T

T

� � �

�

� � �

�

� � �

�

1 1

1

, , e j

e jor

STRSV 1383 Solves one of the triangular linear systems:

where A is a triangular matrix.

x A x x A
T

� �
� �1 1 or e j

SUMAG 1664 Sets or retrieves MATH/LIBRARY single-precision
options.

 SURF 710 Computes a smooth bivariate interpolant to scattered data
that is locally a quintic polynomial in two variables.

SURFACE_CONSTRAINTS 574 Returns the derived type array result given
optional input.

 SURFACE_FITTING 577 Weighted least-squares fitting by tensor product
B-splines to discrete two-dimensional data
is performed.

 SURFACE_VALUES 575 Returns a tensor product array result, given two arrays of
independent variable values.

SVCAL 1369 Multiplies a vector by a scalar and store the result in
another vector, y � ax, all single precision.

SVD 1491 Computes the singular value decomposition of a rank-2 or
rank-3 array, TA USV� .

SVIBN 1615 Sorts an integer array by nondecreasing absolute value.

SVIBP 1617 Sorts an integer array by nondecreasing absolute value
and returns the permutation that rearranges the array.

SVIGN 1610 Sorts an integer array by algebraically increasing value.

B-30 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

SVIGP 1611 Sorts an integer array by algebraically increasing value
and returns the permutation that rearranges the array.

SVRBN 1612 Sorts a real array by nondecreasing absolute value.

SVRBP 1614 Sorts a real array by nondecreasing absolute value and
returns the permutation that rearranges the array.

SVRGN 1607 Sorts a real array by algebraically increasing value.

SVRGP 1608 Sorts a real array by algebraically increasing value and
returns the permutation that rearranges the array.

SXYZ 1372 Computes a single-precision xyz product.

TDATE 1633 Gets today’s date.

TIMDY 1632 Gets time of day.

TRNRR 1413 Transposes a rectangular matrix.

TWODQ 801 Computes a two-dimensional iterated integral.

UMACH 1688 Sets or retrieves input or output device unit numbers.

UMAG 1661 Handles MATH/LIBRARY and STAT/LIBRARY type
REAL and double precision options.

UMCGF 1219 Minimizes a function of N variables using a conjugate
gradient algorithm and a finite-difference gradient.

UMCGG 1223 Minimizes a function of N variables using a conjugate
gradient algorithm and a user-supplied gradient.

UMIAH 1213 Minimizes a function of N variables using a modified
Newton method and a user-supplied Hessian.

UMIDH 1208 Minimizes a function of N variables using a modified
Newton method and a finite-difference Hessian.

UMINF 1196 Minimizes a function of N variables using a quasi-New
method and a finite-difference gradient.

UMING 1202 Minimizes a function of N variables using a quasi-New
method and a user-supplied gradient.

UMPOL 1227 Minimizes a function of N variables using a direct search
polytope algorithm.

UNIT 1492 Normalizes the columns of a rank-2 or rank-3 array so
each has Euclidean length of value one.

UNLSF 1231 Solves a nonlinear least squares problem using a modified
Levenberg-Marquardt algorithm and a finite-difference
Jacobian.

UNLSJ 1237 Solves a nonlinear least squares problem using a modified
Levenberg-Marquardt algorithm and a user-supplied
Jacobian.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-31

UVMGS 1193 Finds the minimum point of a nonsmooth function of a
single variable.

UVMID 1189 Finds the minimum point of a smooth function of a single
variable using both function evaluations and first
derivative evaluations.

UVMIF 1186 Finds the minimum point of a smooth function of a single
variable using only function evaluations.

VCONC 1457 Computes the convolution of two complex vectors.

VCONR 1455 Computes the convolution of two real vectors.

VERML 1638 Obtains IMSL MATH/LIBRARY-related version, system
and license numbers.

WRCRL 1588 Prints a complex rectangular matrix with a given format
and labels.

WRCRN 1586 Prints a complex rectangular matrix with integer row and
column labels.

WRIRL 1583 Prints an integer rectangular matrix with a given format
and labels.

WRIRN 1581 Prints an integer rectangular matrix with integer row and
column labels.

WROPT 1591 Sets or retrieves an option for printing a matrix.

WRRRL 1577 Prints a real rectangular matrix with a given format and
labels.

WRRRN 1575 Prints a real rectangular matrix with integer row and
column labels.

ZANLY 1153 Finds the zeros of a univariate complex function using
Müller’s method.

ZBREN 1156 Finds a zero of a real function that changes sign in a
given interval.

ZPLRC 1148 Finds the zeros of a polynomial with real coefficients
using Laguerre’s method.

ZPOCC 1152 Finds the zeros of a polynomial with complex coefficients
using the Jenkins-Traub three-stage algorithm.

ZPORC 1150 Finds the zeros of a polynomial with real coefficients
using the Jenkins-Traub three-stage algorithm.

ZQADD 1460 Adds a double complex scalar to the accumulator in
extended precision.

ZQINI 1460 Initializes an extended-precision complex accumulator to
a double complex scalar.

B-32 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

ZQMUL 1460 Multiplies double complex scalars using extended
precision.

ZQSTO 1460 Stores a double complex approximation to an extended-
precision complex scalar.

ZREAL 1159 Finds the real zeros of a real function using Müller’s
method.

IMSL MATH/LIBRARY Appendix C: References � C-1

Appendix C: References

Aird and Howell
Aird, Thomas J., and Byron W. Howell (1991), IMSL Technical Report 9103, IMSL, Houston.

Aird and Rice
Aird, T.J., and J.R. Rice (1977), Systematic search in high dimensional sets, SIAM Journal on
Numerical Analysis, 14, 296�312.

Akima
Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local
procedures, Journal of the ACM, 17, 589�602.

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting for irregularly
distributed data points, ACM Transactions on Mathematical Software, 4, 148�159.

Arushanian et al.
Arushanian, O.B., M.K. Samarin, V.V. Voevodin, E.E. Tyrtyshikov, B.S. Garbow, J.M. Boyle,
W.R. Cowell, and K.W. Dritz (1983), The TOEPLITZ Package Users’ Guide, Argonne National
Laboratory, Argonne, Illinois.

Ashcraft
Ashcraft, C. (1987), A vector implementation of the multifrontal method for large sparse,
symmetric positive definite linear systems, Technical Report ETA-TR-51, Engineering
Technology Applications Division, Boeing Computer Services, Seattle, Washington.

Ashcraft et al.
Ashcraft, C., R.Grimes, J. Lewis, B. Peyton, and H. Simon (1987), Progress in sparse matrix
methods for large linear systems on vector supercomputers. Intern. J. Supercomputer Applic.,
1(4), 10�29.

Atkinson
Atkinson, Ken (1978), An Introduction to Numerical Analysis, John Wiley & Sons, New York.

C-2 � Appendix C: References IMSL MATH/LIBRARY

Atchison and Hanson
Atchison, M.A., and R.J. Hanson (1991), An Options Manager for the IMSL Fortran 77 Libraries,
Technical Report 9101, IMSL, Houston.

Bischof et al.
Bischof, C., J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, D. Sorensen
(1988), LAPACK Working Note #5: Provisional Contents, Argonne National Laboratory Report
ANL-88-38, Mathematics and Computer Science.

Bjorck
Bjorck, Ake (1967), Iterative refinement of linear least squares solutions I, BIT, 7, 322�337.

Bjorck, Ake (1968), Iterative refinement of linear least squares solutions II, BIT, 8, 8�30.

Boisvert (1984)
Boisvert, Ronald (1984), A fourth order accurate fast direct method for the Helmholtz equation,
Elliptic Problem Solvers II, (edited by G. Birkhoff and A. Schoenstadt), Academic Press, Orlando,
Florida, 35�44.

Boisvert, Howe, and Kahaner
Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1985), GAMS: A framework for the
management of scientific software, ACM Transactions on Mathematical Software, 11, 313�355.

Boisvert, Howe, Kahaner, and Springmann
Boisvert, Ronald F., Sally E. Howe, David K. Kahaner, and Jeanne L. Springmann (1990), Guide
to Available Mathematical Software, NISTIR 90-4237, National Institute of Standards and Tech-
nology, Gaithersburg, Maryland.

Brankin et al.
Brankin, R.W., I. Gladwell, and L.F. Shampine, RKSUITE: a Suite of Runge-Kutta Codes for the
Initial Value Problem for ODEs, Softreport 91-1, Mathematics Department, Southern Methodist
University, Dallas, Texas, 1991.

Brenan, Campbell, and Petzold
Brenan, K.E., S.L. Campbell, L.R. Petzold (1989), Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations, Elseview Science Publ. Co.

Brenner
Brenner, N. (1973), Algorithm 467: Matrix transposition in place [F1], Communication of ACM,
16, 692�694.

IMSL MATH/LIBRARY Appendix C: References � C-3

Brent
Brent, R.P. (1971), An algorithm with guaranteed convergence for finding a zero of a function,
The Computer Journal, 14, 422�425.

Brent, Richard P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Brigham
Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, New
Jersey.

Cheney
Cheney, E.W. (1966), Introduction to Approximation Theory, McGraw-Hill, New York.

Cline et al.
Cline, A.K., C.B. Moler, G.W. Stewart, and J.H. Wilkinson (1979), An estimate for the condition
number of a matrix, SIAM Journal of Numerical Analysis, 16, 368�375.

Cody, Fraser, and Hart
Cody, W.J., W. Fraser, and J.F. Hart (1968), Rational Chebyshev approximation using linear
equations, Numerische Mathematik, 12, 242�251.

Cohen and Taylor
Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of the Fundamental
Physical Constants, Codata Bulletin, Pergamon Press, New York.

Cooley and Tukey
Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of complex
Fourier series, Mathematics of Computation, 19, 297�301.

Courant and Hilbert
Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics, Volume II, John Wiley &
Sons, New York, NY.

Craven and Wahba
Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline functions, Numerische
Mathematik, 31, 377�403.

Crowe et al.
Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990), A direct sparse
linear equation solver using linked list storage, IMSL Technical Report 9006, IMSL, Houston.

C-4 � Appendix C: References IMSL MATH/LIBRARY

Crump
Crump, Kenny S. (1976), Numerical inversion of Laplace transforms using a Fourier series
approximation, Journal of the Association for Computing Machinery, 23, 89�96.

Davis and Rabinowitz
Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical Integration, Academic
Press, Orlando, Florida.

de Boor
de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.

de Hoog, Knight, and Stokes
de Hoog, F.R., J.H. Knight, and A.N. Stokes (1982), An improved method for numerical inversion
of Laplace transforms. SIAM Journal on Scientific and Statistical Computing, 3, 357�366.

Dennis and Schnabel
Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Dongarra et al.
Dongarra, J.J., and C.B. Moler, (1977) EISPACK � A package for solving matrix eigenvalue
problems, Argonne National Laboratory, Argonne, Illinois.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK Users’ Guide, SIAM,
Philadelphia.

Dongarra, J.J., J. DuCroz, S. Hammarling, R. J. Hanson (1988), An Extended Set of Fortran basic
linear algebra subprograms, ACM Transactions on Mathematical Software, 14 , 1�17.

Dongarra, J.J., J. DuCroz, S. Hammarling, I. Duff (1990), A set of level 3 basic linear algebra
subprograms, ACM Transactions on Mathematical Software, 16 , 1�17.

Draper and Smith
Draper, N.R., and H. Smith (1981), Applied Regression Analysis, second edition, John Wiley &
Sons, New York.

Du Croz et al.
Du Croz, Jeremy, P. Mayes, G. and Radicati (1990), Factorization of band matrices using Level-3
BLAS, Proceedings of CONPAR 90 VAPP IV, Lecture Notes in Computer Science, Springer,
Berlin, 222.

Duff and Reid
Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Transactions on Mathematical Software, 9, 302�325.

IMSL MATH/LIBRARY Appendix C: References � C-5

Duff, I.S., and J.K. Reid (1984), The multifrontal solution of unsymmetric sets of linear equations.
SIAM Journal on Scientific and Statistical Computing, 5, 633�641.

Duff et al.
Duff, I.S., A.M. Erisman, and J.K. Reid (1986), Direct Methods for Sparse Matrices, Clarendon
Press, Oxford.

Enright and Pryce
Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing initial value
methods, ACM Transactions on Mathematical Software, 13, 1�22.

Forsythe
Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data with a digital
computer, SIAM Journal on Applied Mathematics, 5, 74�88.

Fox, Hall, and Schryer
Fox, P.A., A.D. Hall, and N.L. Schryer (1978), The PORT mathematical subroutine library, ACM
Transactions on Mathematical Software, 4, 104�126.

Garbow
Garbow, B.S. (1978) CALGO Algorithm 535: The QZ algorithm to solve the generalized eigenvalue
problem for complex matrices, ACM Transactions on Mathematical Software, 4, 404�410.

Garbow et al.
Garbow, B.S., J.M. Boyle, J.J. Dongarra, and C.B. Moler (1972), Matrix eigensystem Routines:
EISPACK Guide Extension, Springer-Verlag, New York.

Garbow, B.S., J.M. Boyle, J.J. Dongarra, and C.B. Moler (1977), Matrix Eigensystem Routines�
EISPACK Guide Extension, Springer-Verlag, New York.

Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for an implementation of
Weeks’ method for the inverse Laplace transform problem, ACM Transactions of Mathematical
Software, 14, 163�170.

Gautschi
Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas, Mathematics of
Computation, 22, 251�270.

Gautschi and Milovanofic
Gautschi, Walter, and Gradimir V. Milovanofic (1985), Gaussian quadrature involving Einstein
and Fermi functions with an application to summation of series, Mathematics of Computation, 44,
177�190.

C-6 � Appendix C: References IMSL MATH/LIBRARY

Gay
Gay, David M. (1981), Computing optimal locally constrained steps, SIAM Journal on Scientific
and Statistical Computing, 2, 186�197.

Gay, David M. (1983), Algorithm 611: Subroutine for unconstrained minimization using a
model/trust-region approach, ACM Transactions on Mathematical Software, 9, 503� 524.

Gear
Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, New Jersey.

Gear and Petzold
Gear, C.W., and Linda R. Petzold (1984), ODE methods for the solutions of differential/algebraic
equations, SIAM Journal Numerical Analysis, 21, #4, 716.

George and Liu
George, A., and J.W.H. Liu (1981), Computer Solution of Large Sparse Positive-definite Systems,
Prentice-Hall, Englewood Cliffs, New Jersey.

Gill et al.
Gill, Philip E., and Walter Murray (1976), Minimization subject to bounds on the variables, NPL
Report NAC 72, National Physical Laboratory, England.

Gill, Philip E., Walter Murray, and Margaret Wright (1981), Practical Optimization, Academic
Press, New York.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building and practical
aspects of nonlinear programming, in Computational Mathematical Programming, (edited by K.
Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

Goldfarb and Idnani
Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving strictly convex
quadratic programs, Mathematical Programming, 27, 1�33.

Golub
Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM Review, 15, 318�334.

Golub and Van Loan
Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations, Johns Hopkins
University Press, Baltimore, Maryland.

Golub, Gene H., and Charles F. Van Loan (1989), Matrix Computations, 2d ed., Johns Hopkins
University Press, Baltimore, Maryland.

IMSL MATH/LIBRARY Appendix C: References � C-7

Golub and Welsch
Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules, Mathematics of
Computation, 23, 221�230.

Gregory and Karney
Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing Computational
Algorithms, Wiley-Interscience, John Wiley & Sons, New York.

Griffin and Redish
Griffin, R., and K.A. Redish (1970), Remark on Algorithm 347: An efficient algorithm for sorting
with minimal storage, Communications of the ACM, 13, 54.

Grosse
Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its Applications, 34, 29�41.

Guerra and Tapia
Guerra, V., and R. A. Tapia (1974), A local procedure for error detection and data smoothing,
MRC Technical Summary Report 1452, Mathematics Research Center, University of Wisconsin,
Madison.

Hageman and Young
Hageman, Louis A., and David M.Young (1981), Applied Iterative Methods, Academic Press,
New York.

Hanson
Hanson, Richard J. (1986), Least squares with bounds and linear constraints, SIAM Journal Sci.
Stat. Computing, 7, #3.

Hanson, Richard.J. (1990), A cyclic reduction solver for the IMSL Mathematics Library, IMSL
Technical Report 9002, IMSL, Houston.

Hanson et al.
Hanson, Richard J., R. Lehoucq, J. Stolle, and A. Belmonte (1990), Improved performance of
certain matrix eigenvalue computations for the IMSL/MATH Library, IMSL Technical Report
9007, IMSL, Houston.

Hartman
Hartman, Philip (1964) Ordinary Differential Equations, John Wiley and Sons, New York, NY.

Hausman
Hausman, Jr., R.F. (1971), Function Optimization on a Line Segment by Golden Section,
Lawrence Radiation Laboratory, University of California, Livermore.

C-8 � Appendix C: References IMSL MATH/LIBRARY

Hindmarsh
Hindmarsh, A.C. (1974), GEAR: Ordinary differential equation system solver, Lawrence
Livermore Laboratory Report UCID�30001, Revision 3.

Hull et al.
Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s guide for DVERK � A subroutine for
solving non-stiff ODEs, Department of Computer Science Technical Report 100, University of
Toronto.

IEEE
ANSI/IEEE Std 754-1985 (1985), IEEE Standard for Binary Floating-Point Arithmetic, The
IEEE, Inc., New York.

IMSL (1991)
IMSL (1991), IMSL STAT/LIBRARY User’s Manual, Version 2.0, IMSL, Houston.

Irvine et al.
Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained interpolation and
smoothing, Constructive Approximation, 2, 129�151.

Jenkins
Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM Transactions on
Mathematical Software, 1, 178�189.

Jenkins and Traub
Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real polynomials using quadratic
iteration, SIAM Journal on Numerical Analysis, 7, 545�566.

Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift iteration for polynomial zeros
and its relation to generalized Rayleigh iteration, Numerische Mathematik, 14, 252�263.

Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial, Communications of the
ACM, 15, 97�99.

Kennedy and Gentle
Kennedy, William J., Jr., and James E. Gentle (1980), Statistical Computing, Marcel Dekker, New
York.

Kershaw
Kershaw, D. (1982), Solution of tridiagonal linear systems and vectorization of the ICCG
algorithm on the Cray-1, Parallel Computations, Academic Press, Inc., 85-99.

IMSL MATH/LIBRARY Appendix C: References � C-9

Knuth
Knuth, Donald E. (1973), The Art of Computer Programming, Volume 3: Sorting and Searching,
Addison-Wesley Publishing Company, Reading, Mass.

Lawson et al.
Lawson, C.L., R.J. Hanson, D.R. Kincaid, and F.T. Krogh (1979), Basic linear algebra
subprograms for Fortran usage, ACM Transactions on Mathematical Software, 5, 308� 323.

Leavenworth
Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function, Communications of the
ACM, 3, 602.

Levenberg
Levenberg, K. (1944), A method for the solution of certain problems in least squares, Quarterly of
Applied Mathematics, 2, 164�168.

Lewis et al.
Lewis, P.A. W., A.S. Goodman, and J.M. Miller (1969), A pseudo-random number generator for
the System/360, IBM Systems Journal, 8, 136�146.

Liepman
Liepman, David S. (1964), Mathematical constants, in Handbook of Mathematical Functions,
Dover Publications, New York.

Liu
Liu, J.W.H. (1986), On the storage requirement in the out-of-core multifrontal method for sparse
factorization. ACM Transactions on Mathematical Software, 12, 249�264.

Liu, J.W.H. (1987), A collection of routines for an implementation of the multifrontal method,
Technical Report CS-87-10, Department of Computer Science, York University, North York,
Ontario, Canada.

Liu, J.W.H. (1989), The multifrontal method and paging in sparse Cholesky factorization. ACM
Transactions on Mathematical Software, 15, 310�325.

Liu, J.W.H. (1990), The multifrontal method for sparse matrix solution: theory and practice,
Technical Report CS-90-04, Department of Computer Science, York University, North York,
Ontario, Canada.

Liu and Ashcraft
Liu, J., and C. Ashcraft (1987), A vector implementation of the multifrontal method for large
sparse, symmetric positive definite linear systems, Technical Report ETA-TR-51, Engineering
Technology Applications Division, Boeing Computer Services, Seattle, Washington.

C-10 � Appendix C: References IMSL MATH/LIBRARY

Lyness and Giunta
Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method for numerical inversion
of the Laplace transform, Mathmetics of Computation, 47, 313�322.

Madsen and Sincovec
Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL, General collocation software
for partial differential equations, ACM Transactions on Mathematical Software, 5, #3, 326-351.

Marquardt
Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM
Journal on Applied Mathematics, 11, 431�441.

Martin and Wilkinson
Martin, R.S., and J.W. Wilkinson (1968), Reduction of the symmetric eigenproblem Ax = �Bx and
related problems to standard form, Numerische Mathematik, 11, 99�119.

Micchelli et al.
Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of smooth functions,
Numerische Mathematik, 26, 279�285

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985), Constrained Lp
approximation, Constructive Approximation, 1, 93�102.

Moler and Stewart
Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix eigenvalue problems,
SIAM Journal on Numerical Analysis, 10, 241�256.

More et al.
More, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User guide for MINPACK-1,
Argonne National Labs Report ANL-80-74, Argonne, Illinois.

Muller
Muller, D.E. (1956), A method for solving algebraic equations using an automatic computer,
Mathematical Tables and Aids to Computation, 10, 208�215.

Murtagh
Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and Practice, McGraw-
Hill, New York.

Murty
Murty, Katta G. (1983), Linear Programming, John Wiley and Sons, New York.

IMSL MATH/LIBRARY Appendix C: References � C-11

Nelder and Mead
Nelder, J.A., and R. Mead (1965), A simplex method for function minimization, Computer
Journal 7, 308�313.

Neter and Wasserman
Neter, John, and William Wasserman (1974), Applied Linear Statistical Models, Richard D. Irwin,
Homewood, Ill.

Park and Miller
Park, Stephen K., and Keith W. Miller (1988), Random number generators: good ones are hard to
find, Communications of the ACM, 31, 1192�1201.

Parlett
Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice�Hall, Inc., Englewood Cliffs,
New Jersey.

Pereyra
Pereyra, Victor (1978), PASVA3: An adaptive finite-difference FORTRAN program for first
order nonlinear boundary value problems, in Lecture Notes in Computer Science, 76, Springer-
Verlag, Berlin, 67�88.

Petro
Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal
storage, Communications of the ACM, 13, 624.

Petzold
Petzold, L.R. (1982), A description of DASSL: A differential/ algebraic system solver,
Proceedings of the IMACS World Congress, Montreal, Canada.

Piessens et al.
Piessens, R., E. deDoncker-Kapenga, C.W. Uberhuber, and D.K. Kahaner (1983), QUADPACK,
Springer-Verlag, New York.

Powell
Powell, M.J.D. (1977), Restart procedures for the conjugate gradient method, Mathematical
Programming, 12, 241�254.

Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization calculations, in
Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in Mathematics, (edited by G.A.
Watson), 630, Springer-Verlag, Berlin, Germany, 144�157.

Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex quadratic programming,
DAMTP Report NA17, Cambridge, England.

C-12 � Appendix C: References IMSL MATH/LIBRARY

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and Idnani,
Mathematical Programming Study, 25, 46-61.

Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained optimization calculations,
DAMTP Report NA17, University of Cambridge, England.

Powell, M.J.D. (1989), TOLMIN: A fortran package for linearly constrained optimization
calculations, DAMTP Report NA2, University of Cambridge, England.

Pruess and Fulton
Pruess, S. and C.T. Fulton (1993), Mathematical Software for Sturm-Liouville Problems, ACM
Transactions on Mathematical Software, 17, 3, 360�376.

Reinsch
Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische Mathematik, 10,
177�183.

Rice
Rice, J.R. (1983), Numerical Methods, Software, and Analysis, McGraw-Hill, New York.

Saad and Schultz
Saad, Y., and M.H. Schultz (1986), GMRES: a generalized minimal residual residual algorithm
for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856�869.

Schittkowski
Schittkowski, K. (1987), More test examples for nonlinear programming codes, SpringerVerlag,
Berlin, 74.

Schnabel
Schnabel, Robert B. (1985), Finite Difference Derivatives � Theory and Practice, Report, National
Bureau of Standards, Boulder, Colorado.

Schreiber and Van Loan
Schreiber, R., and C. Van Loan (1989), A Storage�Efficient WY Representation for Products of
Householder Transformations, SIAM J. Sci. Stat. Comp., Vol. 10, No. 1, pp. 53-57, January
(1989).

Scott et al.
Scott, M.R., L.F. Shampine, and G.M. Wing (1969), Invariant Embedding and the Calculation of
Eigenvalues for Sturm-Liouville Systems, Computing, 4, 10�23.

IMSL MATH/LIBRARY Appendix C: References � C-13

Sewell
Sewell, Granville (1982), IMSL software for differential equations in one space variable, IMSL
Technical Report 8202, IMSL, Houston.

Shampine
Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications of the ACM, 18,
179�180.

Shampine and Gear
Shampine, L.F. and C.W. Gear (1979), A user’s view of solving stiff ordinary differential
equations, SIAM Review, 21, 1�17.

Sincovec and Madsen
Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial differential equations,
ACM Transactions on Mathematical Software, 1, #3, 232-260.

Singleton
Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal storage,
Communications of the ACM, 12, 185�187.

Smith
Smith, B.T. (1967), ZERPOL, A Zero Finding Algorithm for Polynomials Using Laguerre’s
Method, Department of Computer Science, University of Toronto.

Smith et al.
Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler
(1976), Matrix Eigensystem Routines � EISPACK Guide, Springer-Verlag, New York.

Spang
Spang, III, H.A. (1962), A review of minimization techniques for non-linear functions, SIAM
Review, 4, 357�359.

Stewart
Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press, New York.

Stewart, G.W. (1976), The economical storage of plane rotations, Numerische Mathematik, 25,
137�139.

Stoer
Stoer, J. (1985), Principles of sequential quadratic programming methods for solving nonlinear
programs, in Computational Mathematical Programming, (edited by K. Schittkowski), NATO
ASI Series, 15, Springer-Verlag, Berlin, Germany.

C-14 � Appendix C: References IMSL MATH/LIBRARY

Stroud and Secrest
Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae, Prentice-Hall,
Englewood Cliffs, New Jersey.

Titchmarsh
Titchmarsh, E. Eigenfunction Expansions Associated with Second Order Differential Equations,
Part I, 2d Ed., Oxford University Press, London, 1962.

Trench
Trench, W.F. (1964), An algorithm for the inversion of finite Toeplitz matrices, Journal of the
Society for Industrial and Applied Mathematics, 12, 515�522.

Walker
Walker, H.F. (1988), Implementation of the GMRES method using Householder transformations,
SIAM J. Sci. Stat. Comput., 9, 152�163.

Washizu
Washizu, K. (1968), Variational Methods in Elasticity and Plasticity, Pergamon Press, New York.

Watkins and Elsner
Watkins, D.S., and L. Elsner (1990), Convergence of algorithms of decomposition type for the
eigenvalue problem, Linear Algebra and Applications (to appear).

Weeks
Weeks, W.T. (1966), Numerical inversion of Laplace transforms using Laguerre functions, J.
ACM, 13, 419�429.

Wilkinson
Wilkinson, J.H. (1965),The Algebraic Eigenvalue Problem, Oxford University Press, London,
635.

IMSL MATH LIBRARY Product Support � i

Product Support

Contacting Visual Numerics Support
Users within support warranty may contact Visual Numerics regarding the use of the IMSL
Libraries. Visual Numerics can consult on the following topics:

 Clarity of documentation

 Possible Visual Numerics-related programming problems

 Choice of IMSL Libraries functions or procedures for a particular problem

 Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting and debugging of
your program.

Consultation
Contact Visual Numerics Product Support by faxing 713/781-9260 or by emailing:

 support@houston.vni.com.

The following describes the procedure for consultation with Visual Numerics.

1. Include your serial (or license) number

2. Include the product name and version number: IMSL Fortran Library Version 5.0

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a description of the
problem

ii � Product Support IMSL MATH LIBRARY

IMSL MATH/LIBRARY Index � iii

Index

1

1-norm 1444, 1447, 1449, 1452

2

2DFT (Discrete Fourier Transform)
989, 1000, 11

3

3DFT (Discrete Fourier Transform)
989, 11

A

Aasen' s method 19, 21
accuracy estimates of eigenvalues,

example 446
Adams xiii
Adams-Moulton's method 854
adjoint eigenvectors, example 446
adjoint matrix xvi
ainv= optional argument xviii
Akima interpolant 600
algebraic-logarithmic singularities

793
ANSI xiii, 1485, 1486, 14, 22
arguments, optional subprogram

xviii
array permutation 1600
ASCII collating sequence 1627
ASCII values 1624, 1625, 1626

B

band Hermitian storage mode 276,
279, 284, 288, 290, 292, 295,
1693

band storage mode 213, 216, 219,
227, 230, 257, 259, 262, 271,

274, 1392, 1393, 1395, 1397,
1398, 1400, 1405, 1411, 1433,
1436, 1438, 1441, 1447, 1449,
1691

band symmetric storage mode 232,
234, 240, 243, 245, 247, 250,
252, 254, 257, 259, 262, 265,
268, 271, 274, 276, 279, 282,
284, 288, 290, 292, 295, 297,
301, 306, 485, 487, 490, 492,
495, 498, 501, 1409, 1692

band triangular storage mode 1694
Basic Linear Algebra Subprograms

1366
basis functions 720
bidiagonal matrix 60
bilinear form 1427
BLACS 1555
BLAS 1366, 1367, 1377, 1378, 1379

Level 1 1366, 1367
Level 2 1377, 1378, 1379
Level 3 1377, 1378, 1379

block-cyclic decomposition
reading, writing utility 1555

Blocking Output 1486
boundary conditions 870
boundary value problem 53
Brenan 54
Broyden’s update 1148
B-spline coefficients 622, 725, 734
B-spline representation 641, 643,

646, 649, 680
B-splines 556

C

Campbell 54
Cauchy principal value 770, 796
central differences 1336
changing messages 1570
character arguments 1625
character sequence 1629
character string 1630
character workspace 1701
Chebyshev approximation 559, 764
Chebyshev polynomials 30
Cholesky

algorithm 21
decomposition 18, 437, 451
factorization 1475, 5
method 22

Cholesky decomposition 406
Cholesky factorization 143, 146,

148, 153, 237, 240, 243, 250,

iv � Contents IMSL MATH/LIBRARY

282, 295, 327, 331, 336, 344,
349, 352, 409, 412

circulant linear system 356
circulant matrices 8
classical weight functions 811, 824
codiagonal band hermitian storage

mode 282
codiagonal band Hermitian storage

mode 1696
codiagonal band symmetric storage

mode 237, 1695
coefficient matrix 225, 245, 268,

290, 306, 309, 314, 319, 323,
327, 331, 336, 340, 349, 352,
354, 356, 359, 365, 368, 378,
381, 385, 388, 392, 396, 398,
402, 406, 409, 415, 419, 424

coefficients 1032, 1039
column pivoting 406
companion matrix 443
complex function 1078, 1081
complex periodic sequence 1017,

1019
complex sparse Hermitian positive

definite system 340, 349, 352
complex sparse system 309, 319
complex triangular system 130
complex tridiagonal system 252
complex vectors 1064, 1073
computing

eigenvalues, example 434
the rank of A 36
the SVD 59

computing eigenvalues, example 442
condition number 125, 132, 446
conjugate gradient algorithm 1219,

1223
conjugate gradient method 359, 365
continuous Fourier transform 991
continuous function 764
convolution 1059, 1064, 1455, 1457
convolutions, real or complex

periodic sequences 998
coordinate transformation 398
correlation 1068, 1073
cosine 785
cosine Fourier coefficients 1041
cosine Fourier transform 1039
covariance matrix 22, 27, 28
CPU time 1631
crossvalidation 761
cross-validation with weighting,

example 64
cubic spline 609, 610, 613, 616
cubic spline approximation 758, 761

cubic spline interpolant 587, 590,
593, 597, 600, 603, 606

cubic splines 557
cyclic reduction 44, 47, 48
cyclic reduction algorithm 254
cyclical 2D data, linear trend 1002
cyclical data, linear trend 995

D

DASPG routine 54
data fitting

polynomial 30
two dimensional 33

data points 713
data, optional xviii
date 1633, 1634, 1636, 1637
decomposition, singular value 1, 36,

19
degree of accuracy 1677
deprecated routines 1701
determinant 1477, 8
determinant of A 9
determinants 99, 119, 127, 128, 153,

172, 207, 230, 250, 274, 295
determinants 7
DFT (Discrete Fourier Transform)

992
differential algebraic equations 834
Differential Algebraic Equations 452
differential equations 833, 870
differential-algebraic solver 54
diffusion equation 53
direct- access message file 1570
direct search complex algorithm

1271
direct search polytope algorithm

1227
discrete Fourier cosine

transformation 1028
discrete Fourier sine transformation

1024
discrete Fourier transform 991, 1482,

1484, 11, 13
inverse 1483, 13

dot product 1370, 1371, 1372
double precision xiii, 1460
DOUBLE PRECISION types xv

E

efficient solution method 444
eigensystem

complex 467, 537, 540, 542

IMSL MATH/LIBRARY Index � v

Hermitian 518
real 460, 483, 529, 531, 535

symmetric 501, 549
eigenvalue 1480, 9
eigenvalue-eigenvector

decomposition 434, 437, 1480, 9
expansion (eigenexpansion) 435

eigenvalues 455, 457, 462, 464, 469,
471, 473, 475, 478, 480, 485,
487, 490, 492, 495, 498, 502,
505, 508, 510, 513, 515, 520,
522, 525, 526, 529, 531, 537,
540, 544, 547

eigenvalues, self-adjoint matrix 23,
427, 432, 439, 18

eigenvectors 50, 432, 435, 437, 439,
457, 464, 471, 475, 480, 487,
492, 498, 505, 510, 515, 522,
526, 531, 540, 547

endpoint singularities 772
equality constraint, least squares 35
error detection 754
error handling xix, 1680
errors 1677, 1678, 1679

alert 1678
detection 1677
fatal 1678
informational 1678
multiple 1677
note 1678
printing error messages 1568
severity 1677
terminal 1677, 1679
warning 1678

Euclidean (2-norm) distance 1450
Euclidean length 1492, 30
even sequence 1028
example

least-squares, by rows
distributed 70

linear constraints
distributed 77

linear inequalities
distributed 69

linear system
distributed, ScaLAPACK 1566

matrix product
distributed, PBLAS 1563

Newton's Method
distributed 77

transposing matrix
distributed 1560

examples
accuracy estimates of eigenvalues

446

accurate least-squares solution
with iterative refinement 25

analysis and reduction of a
generalized eigensystem 437

complex polynomial equation
Roots 443

computing eigenvalues 434, 442
computing eigenvectors with

inverse iteration 435
computing generalized eigenvalues

450
computing the SVD 59
constraining a spline surface to be

non-negative interpolation to
data 585

constraining points using spline
surface 583

convolution with Fourier
Transform 998

cross-validation with weighting 64
cyclical 2D data with a linear trend

1002
cyclical data with a linear trend

995
eigenvalue-eigenvector expansion

of a square matrix 435
evaluating the matrix exponential

14, 16
Generalized Singular Value

Decomposition 62
generating strategy with a

histogram 1644
generating with a Cosine

distribution 1646
internal write of an array 1574
iterative refinement and use of

partial pivoting 48
Laplace transform solution 41
larger data uncertainty 453
least squares with an equality

constraint 35
least-squares solution of a

rectangular system 38
linear least squares with a

quadratic constraint 60
matrix inversion and determinant

13
natural cubic spline interpolation

to data 565
parametric representation of a

sphere 581
periodic curves 572
polar decomposition of a square

matrix 39
printing an array 1573

vi � Contents IMSL MATH/LIBRARY

reduction of an array of black and
white 40

ridge regression 64
running mean and variance 1641
seeding, using, and restoring the

generator 1643
selected eigenvectors of tridiagonal

matrices 50
self-adjoint, positive definite

generalized eigenvalue
problem 451

several 2D transforms with
initialization 1004

several transforms with
initialization 997

shaping a curve and its derivatives
567

solution of multiple tridiagonal
systems 47

solving a linear least squares
system of equations 20, 29

solving a linear system of
equations 12

solving parametric linear systems
with scalar change 444

sort and final move with a
permutation 1606

sorting an array 1605
splines model a random number

generator 569
system solving with Cholesky

method 22
system solving with the

generalized inverse 31
tensor product spline fitting of data

579
test for a regular matrix pencil 452
transforming array of random

complex numbers 994, 1002,
1008

tridiagonal matrix solving 53
two-dimensional data fitting 33
using inverse iteration for an

eigenvector 23
examples list

operator 1494
parallel 1528

exclusive OR 1642
extended precision arithmetic 1460

F

factored secant update 1169, 1174
factorization, LU 9

Fast Fourier Transforms 990
Faure 1655, 1657, 37, 11
Faure sequence 1554, 1655, 1656,

37, 11
Fejer quadrature rule 824
FFT (Fast Fourier Transform) 995,

1002, 1009
finite difference gradient 1323
finite-difference approximation

1162, 1169
finite-difference gradient 1196,

1219, 1243
finite-difference Hessian 1208
finite-difference Jacobian 1231
first derivative 827
first derivative evaluations 1189
first order differential 889
FORTRAN 77

combining with Fortran 90 xiii
Fortran 90

language xiii
rank-2 array xviii
real-time clock 1642

forward differences 1338, 1340,
1343, 1346

Fourier coefficients 1009, 1012,
1017, 1019, 1045, 1051

Fourier integral 789
Fourier transform 1048, 1055
Frobenius norm 1446
full storage mode 1400
Fushimi 1641, 1643

G

Galerkin principle 54
Gauss quadrature 771
Gauss quadrature rule 811, 815
Gaussian elimination 297, 301, 306,

309, 323, 340, 344
Gauss-Kronrod rules 775
Gauss-Lobatto quadrature rule 811,

815
Gauss-Radau quadrature rule 811,

815
Gear’s BDF method 854
generalized

eigenvalue 437, 450, 1480, 9
feedback shift register (GFSR)

1640
inverse

matrix 27, 28, 31
generalized inverse

system solving 31

IMSL MATH/LIBRARY Index � vii

generator 1643, 1646
getting started xvii
GFSR algorithm 1642
Givens plane rotation 1374
Givens transformations 1376, 1377
globally adaptive scheme 775
Golub 13, 21, 31, 35, 60, 62, 64, 434,

437, 443
gradient 1336, 1338, 1343, 1349
Gray code 1658
GSVD 62

H

Hadamard product 1372, 1425
Hanson 434
harmonic series 995, 1002
Helmholtz’s equation 961
Helmholtz's equation 967
Hermite interpolant 597
Hermite polynomials 946
Hermitian positive definite system

173, 176, 185, 187, 190, 276,
279, 290, 292

Hermitian system 191, 194, 202, 204
Hessenberg matrix, upper 439, 443
Hessian 1213, 1257, 1263, 1340,

1343, 1352
High Performance Fortran

HPF 1555
histogram 1644
Horner's scheme 1431
Householder 451
Householder transformations 381,

392
hyper-rectangle 806

I
IEEE 1485, 1486, 14, 22
infinite eigenvalues 450
infinite interval 782
infinity norm 1443
infinity norm distance 1454
informational errors 1678
initialization, several 2D transforms

1004
initialization, several transforms 997
initial-value problem 837, 844, 854
integer options 1658
INTEGER types xv
integrals 616
integration 772, 775, 779, 782, 785,

793, 796, 799, 806

interface block xiii
internal write 1574
interpolation 561

cubic spline 587, 590
quadratic 559
scattered data 559

inverse 9
iteration, computing eigenvectors

23, 51, 435
matrix xviii, 10, 18, 22

generalized 27, 28
transform 993, 1000, 1006

inverse matrix 9
isNaN 1486
ISO xiii
iterated integral 801
iterative refinement xviii, 6, 7, 48,

83, 96, 116, 138, 140, 143,
146, 148, 150, 153, 154, 156,
159, 169, 187, 190, 204, 227,
247, 271, 276, 292, 378, 385

IVPAG routine 54

J

Jacobian 1148, 1162, 1165, 1169,
1174, 1237, 1274, 1281, 1346,
1355

Jenkins-Traub three-stage algorithm
1150

K

Kershaw 48

L

Laguerre’s method 1148
Laplace transform 1078, 1081
Laplace transform solution 41
larger data uncertainty, example 453
LDU factorization 254
least squares 1, 20, 27, 33, 35, 36,

41, 42, 559, 713, 716, 734,
995, 1003, 19

least-squares approximation 720, 729
least-squares problem 398
least-squares solution 381
Lebesque measure 1657
Level 1 BLAS 1366, 1367
Level 2 BLAS 1377, 1378, 1379
Level 3 BLAS 1377, 1378, 1379
Levenberg-Marquardt algorithm

1182, 1231, 1237, 1274, 1281

viii � Contents IMSL MATH/LIBRARY

library subprograms xvi
linear algebraic equations 297, 323
linear constraints 388
linear equality/inequality constraints

1310, 1316
linear equations 17

solving 83, 85, 94, 103, 106, 114,
130, 138, 140, 148, 150, 156,
159, 167, 169, 173, 176, 185,
187, 190, 191, 194, 202, 204,
209, 213, 216, 225, 227, 232,
234, 245, 247, 252, 271, 276,
279, 290, 292, 306, 309, 319,
323, 336, 340, 349, 352, 359

linear least-squares problem 378,
385, 388

linear least-squares with non-
negativity constraints 67, 69,
75

linear programming problem 1297,
1301

linear solutions
packaged options 11

linear trend, cyclical 2D data 1002
linear trend, cyclical data 995
low-discrepancy 1658
LU factorization 89, 92, 94, 99, 108,

111, 114, 119, 219, 222, 225,
230, 262, 265, 268, 274, 301,
306, 314, 319

LU factorization of A 9, 10, 11, 1471

M

machine-dependent constants 1683
mathematical constants 1669
matrices 1389, 1390, 1392, 1393,

1395, 1397, 1398, 1400, 1402,
1403, 1405, 1409, 1411, 1413,
1421, 1423, 1431, 1433, 1435,
1441, 1446, 1447, 1449, 1575,
1577, 1581, 1583, 1586, 1588,
1591

adjoint xvi
complex 262, 265, 274, 419, 462,

464, 1400, 1405
band 1393, 1436, 1441, 1449
general 108, 119, 121, 1390,

1398, 1402
general sparse 314
Hermitian 179, 182, 197, 200,

207, 282, 284, 288, 295, 502,
505, 508, 510, 513, 515, 1408,
1411

rectangular 1403, 1423, 1435,
1586, 1588

sparse 6
tridiagonal 254
upper Hessenberg 525, 526

copying 1389, 1390, 1392, 1393,
1402, 1403, 1409, 1411

covariance 22, 27, 28
general 1689
Hermitian 1690
inverse xviii, 9, 10, 18, 22

generalized 27, 28, 31
inversion and determinant 13
multiplying 1418, 1421, 1423,

1431, 1433, 1435
orthogonal xvi
permutation 1602
poorly conditioned 38
printing 1575, 1577, 1581, 1583,

1586, 1588, 1591
real 219, 222, 230, 424, 455, 457,

1397, 1405
band 1392, 1433, 1447
general 89, 92, 99, 101, 1389,

1395, 1402
general sparse 301
rectangular 1403, 1421, 1425,

1431, 1446, 1575, 1577
sparse 6
symmetric 143, 146, 153, 154,

162, 164, 172, 237, 240, 243,
250, 409, 412, 469, 471, 473,
475, 478, 480, 485, 487, 490,
492, 495, 498, 1406, 1409

tridiagonal 211
upper Hessenberg 520, 522

rectangular 1413, 1689
sparse

Hermitian 344
symmetric 327
symmetrical 331

symmetric 406, 1690
transposing 1413, 1415, 1416
triangular 1690
unitary xvi
upper Hessenberg 443

matrix
inversion 7
types 5

matrix pencil 450, 452
matrix permutation 1602
matrix storage modes 1689
matrix/vector operations 1388
matrix-matrix multiply 1385, 1387
matrix-matrix solve 1387

IMSL MATH/LIBRARY Index � ix

matrix-vector multiply 1381, 1382,
1383

means 1641
message file

building new direct-access
message file 1570

changing messages 1570
management 1569
private message files 1571

Metcalf xiii
method of lines 54, 946
minimization 1182, 1183, 1184,

1186, 1189, 1193, 1196, 1202,
1208, 1213, 1219, 1223, 1227,
1243, 1249, 1257, 1263, 1271,
1274, 1297, 1310, 1316, 1323,
1329, 1336, 1338, 1340, 1343,
1346, 1349, 1352, 1355, 1359

minimum degree ordering 327
minimum point 1186, 1189, 1193
mistake

missing argument 1556
Type, Kind or Rank

TKR 1556
Modified Gram-Schmidt algorithm

1488
modified Powell hybrid algorithm

1162, 1165
monic polynomials 818, 821
Moore-Penrose 1473, 1474
MPI 1467

parallelism 1467
Muller’s method 1148, 1153
multiple right sides 7
multivariate functions 1182
multivariate quadrature 771

N

naming conventions xv
NaN (Not a Number) 1486

quiet 1485
signaling 1485

Newton algorithm 1182
Newton method 1208, 1213, 1257,

1263
Newton' s method 42, 60
noisy data 758, 761
nonadaptive rule 799
nonlinear equations 1162, 1165,

1169, 1174
nonlinear least-squares problem

1182, 1231, 1237, 1274, 1281,
1288

nonlinear programming 1323, 1329
norm 1487, 22
normalize 1492, 30
not-a-knot condition 587, 590
numerical differentiation 772

O

object-oriented 1464
odd sequence 1024
odd wave numbers 1032, 1034,

1039, 1041
optional argument xviii
optional data xvii, xviii
optional subprogram arguments

xviii
ordinary differential equations 833,

834, 837, 844, 854
ordinary eigenvectors, example 446
orthogonal

decomposition 60
factorization 31
matrix xvi

orthogonal matrix 396
orthogonalized 51, 435
overflow xvii

P

page length 1599
page width 1599
parameters 1015, 1022, 1026, 1030,

1037, 1043
parametric linear systems with scalar

change 444
parametric systems 444
partial differential equations 834,

835, 946
partial pivoting 44, 48
PBLAS 1555
performance index 460, 467, 483,

501, 518, 535, 542, 549
periodic boundary conditions 606
permutation 1606
Petzold 54, 889
physical constants 1669
piecewise polynomial 555, 680, 681,

684, 687, 690
piecewise-linear Galerkin 54
pivoting

partial 9, 13, 19
row and column 27, 31
symmetric 18

plane rotation 1375

x � Contents IMSL MATH/LIBRARY

plots 1664
Poisson solver 961, 967
Poisson's equation 961, 967
polar decomposition 39, 48
polynomial 1429
polynomial curve 716
prime factors 1668
printing 1599, 1664, 1679
printing an array, example 1573
printing arrays 1571
printing results xx
private message files 1571
programming conventions xvii
pseudorandom number generators

1650
pseudorandom numbers 1651, 1653
PV_WAVE 920

Q

QR algorithm 60, 434
double-shifted 443

QR decomposition 8, 392, 1477
QR factorization 396, 402
quadratic interpolation 692, 694,

696, 699, 702, 705
quadratic polynomial interpolation

559
quadrature formulas 771
quadrature rule 821
quadruple precision 1460
quasi-Monte Carlo 809
quasi-Newton method 1196, 1202,

1243, 1249
quintic polynomial 710

R

radial-basis functions 33
random complex numbers,

transforming an array 994,
1002, 1008

random number generators 1648,
1649

random numbers 1554, 1639, 25
rank-2k update 1386, 1387
rank-k update 1386
rank-one matrix 402, 409, 412
rank-one matrix update 1383, 1384
rank-two matrix update 1384
rational weighted Chebyshev

approximation 764
real numbers, sorting 1604
real periodic sequence 1009, 1012

real sparse symmetric positive
definite system 336

real symmetric definite linear system
359, 365

real symmetric positive definite
system 138, 140, 148, 150,
232, 234, 245, 247

real symmetric system 156, 159, 167,
169

real triangular system 123
real tridiagonal system 209
REAL types xv
real vectors 1059, 1068
record keys, sorting 1606
rectangular domain 661
rectangular grid 696, 699, 702, 705
recurrence coefficients 815, 818, 821
reduction

array of black and white 40
regularizing term 48
Reid xiii
required arguments xviii
reserved names 1698
reverse communication 54
ridge regression 64

cross-validation
example 64

Rodrigue 48
row and column pivoting 27, 31
row vector, heavily weighted 35
Runge-Kutta-order method 844
Runge-Kutta-Verner fifth-order

method 837
Runge-Kutta-Verner sixth-order

method 837

S

ScaLAPACK
contents 1555
data types 1555
definition of library 1555
interface modules 1556
reading utility

block-cyclic distributions 1557,
26

scattered data 710
scattered data interpolation 559
Schur form 439, 444
search 1618, 1620, 1622
second derivative 827
self-adjoint

eigenvalue problem 437
linear system 25

IMSL MATH/LIBRARY Index � xi

matrix 1, 17, 21, 434, 435, 437, 19
eigenvalues 23, 427, 432, 439,

18
tridiagonal 21

semi-infinite interval 782
sequence 1034, 1041
serial number 1638
simplex algorithm 1297, 1301
sine 785
sine Fourier coefficients 1034
sine Fourier transform 1032
single precision xiii
SINGLE PRECISION options 1661
Single Program, Multiple Data

SPMD 1555
singular value decomposition 419
singular value decomposition (SVD)

1, 36, 1491, 19, 29
singularity 8
singularity points 779
smooth bivariate interpolant 710
smoothing 754
smoothing formulas 31
smoothing spline routines 559
solvable 452
solving

general system 9
linear equations 17

rectangular
least squares 36
system 27

solving linear equations 5
sorting 1607, 1608, 1610, 1611,

1612, 1614, 1615, 1617, 1618,
1620, 1622

sorting an array, example 1605
sparse linear programming 1301
sparse matrix storage mode 1697
sparse system 297, 306
spline approximation 725, 734
spline interpolant 622, 631
spline knot sequence 625, 628
splines 559, 618, 641, 643, 646, 649

cubic 557
tensor product 558

square matrices
eigenvalue-eigenvector expansion

435
polar decomposition 39, 48

square root 1675
Sturm-Liouville problem 973, 986
subprograms

library xvi
optional arguments xviii

SVD 1, 57, 62, 19
SVRGN 1606
symmetric Markowitz strategy 306

T

tensor product splines 558
tensor-product B-spline coefficients

631, 635, 743, 748
tensor-product B-spline

representation 651, 653, 656,
661, 664, 666, 670, 676

tensor-product spline 651, 653, 656,
661, 664, 666, 670, 676

tensor-product spline approximant
743, 748

tensor-product spline interpolant 635
terminal errors 1677
third derivative 827
time 1632
Toeplitz linear system 354
Toeplitz matrices 8
traceback 1682
transfer 1487
transpose 1472, 23
tridiagonal 44

matrix 48
matrix solving, example 53

triple inner product 1372
two-dimensional data fitting 33

U

unconstrained minimization 1182
underflow xvii
uniform (0, 1) distribution 1651,

1653
uniform mesh 967
unitary matrix xvi
univariate functions 1182
univariate quadrature 770
upper Hessenberg matrix 443
user errors 1677
user interface xiii
user-supplied function 827
user-supplied gradient 1223, 1249,

1329
using library subprograms xvi

V

Van Loan 13, 21, 31, 35, 60, 62, 64,
434, 437, 443

variable knot B-spline 729

xii � Contents IMSL MATH/LIBRARY

variable order 870
variances 1641
variational equation 53
vectors 1369, 1370, 1372, 1373,

1381, 1435, 1436, 1455, 1457
complex 1457
real 1455

version 1638

W

workspace allocation 1699, 1700
World Wide Web

URL for ScaLAPACK User's
Guide 1555

Z

zero of a real function 1156
zeros of a polynomial 1148, 1150,

1152
zeros of a univariate complex

function 1153
zeros of the polynomial 1147

	IMSL Fortran Library/ MATH/LIBRARY Vol.2
	Table of Contents
	Chapter 5: Differential Equations
	Routines
	Usage Notes
	Ordinary Differential Equations
	Differential-algebraic Equations
	Partial Differential Equations
	Summary

	IVPRK
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Additional Examples
	Example 2
	Output

	IVMRK
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Additional Examples
	Example 2
	Output
	Example 3
	Output

	IVPAG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Example 2
	Output
	Example 3
	Output
	Example 4
	Output

	BVPFD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Example 2
	Output
	Example 3
	Output

	BVPMS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	DASPG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Example 2
	Output
	Example 3
	Output
	Example 4
	Output

	Introduction to Subroutine PDE_1D_MG
	PDE_1D_MG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface

	Remarks on the Examples
	Code for PV-WAVE Plotting (Examples Directory)

	Example 1 - Electrodynamics Model
	Rationale: Example 1

	Description
	Additional Examples
	Example 2 - Inviscid Flow on a Plate
	Rationale: Example 2

	Example 3 - Population Dynamics
	Rationale: Example 3

	Example 4 - A Model in Cylindrical Coordinates
	Rationale: Example 4

	Example 5 - A Flame Propagation Model
	Rationale: Example 5

	Example 6 - A ‘Hot Spot’ Model
	Rationale: Example 6

	Example 7 - Traveling Waves
	Rationale: Example 7
	Example 8 - Black-Scholes
	Rationale: Example 8

	Example 9 - Electrodynamics, Parameters Studied with MPI
	Rationale: Example 9

	MOLCH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Additonal Examples
	Example 2
	Output
	Example 3
	Output

	FPS2H
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FPS3H
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SLEIG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Additional Examples
	Example 2
	Output

	SLCNT
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Index of first eigenvalue in [10.00,16.00] is 5�Total number of eigenvalues in this interval: 3
	Description

	Chapter 6: Transforms
	Routines
	Usage Notes
	Fast Fourier Transforms
	Continuous versus Discrete Fourier Transform
	Inverse Laplace Transform

	FAST_DFT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Transforming an Array of Random Complex Numbers
	Output
	Description
	Additional Examples
	Example 2: Cyclical Data with a Linear Trend
	Output
	Example 3: Several Transforms with Initialization
	Output
	Example 4: Convolutions using Fourier Transforms
	Output
	Fatal and Terminal Messages

	FAST_2DFT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Transforming an Array of Random Complex Numbers
	Output
	Description
	Additional Examples
	Example 2: Cyclical 2D Data with a Linear Trend
	Output
	Example 3: Several 2D Transforms with Initialization
	Output
	Fatal and Terminal Messages

	FAST_3DFT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Transforming an Array of Random Complex Numbers
	Output
	Description
	Fatal and Terminal Messages

	FFTRF
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FFTRB
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FFTRI
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FFTCF
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FFTCB
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FFTCI
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FSINT
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FSINI
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FCOST
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FCOSI
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QSINF
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QSINB
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QSINI
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QCOSF
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QCOSB
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QCOSI
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FFT2D
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FFT2B
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FFT3F
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FFT3B
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	RCONV
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CCONV
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	RCORL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CCORL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	INLAP
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SINLP
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	Chapter 7: Nonlinear Equations
	Routines
	Usage Notes
	Zeros of a Polynomial
	Zero(s) of a Function
	Root of System of Equations

	ZPLRC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	ZPORC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	ZPOCC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	ZANLY
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Comments
	Description
	Example
	Output

	ZBREN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	ZREAL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	NEQNF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	NEQNJ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	NEQBF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	NEQBJ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	Chapter 8: Optimization
	Routines
	Usage Notes
	
	Unconstrained Minimization
	Minimization with Simple Bounds

	Linearly Constrained Minimization
	Nonlinearly Constrained Minimization
	Selection of Routines
	Unconstrained Minimization
	Minimization with Simple Bounds

	UVMIF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UVMID
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UVMGS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMINF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMING
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMIDH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMIAH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMCGF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMCGG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMPOL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UNLSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UNLSJ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCONF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCONG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCODH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCOAH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCPOL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCLSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCLSJ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCNLS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Example 2
	Output

	DLPRS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SLPRS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QPROG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LCONF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LCONG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	NNLPF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example
	Output
	Comments
	Description

	NNLPG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1
	Output
	Comments
	Description
	Example 2
	Output

	CDGRD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FDGRD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FDHES
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GDHES
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FDJAC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CHGRD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CHHES
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CHJAC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GGUES
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	Chapter 9: Basic Matrix/Vector Operations
	Routines
	Basic Linear Algebra Subprograms
	Programming Notes for Level 1 BLAS
	Descriptions of the Level 1 BLAS Subprograms
	Specification of the Level 1 BLAS
	Set a Vector to a Constant Value
	Copy a Vector
	Scale a Vector
	Multiply a Vector by a Constant
	Add a Constant to a Vector
	Subtract a Vector from a Constant
	Constant Times a Vector Plus a Vector
	Swap Two Vectors
	Dot Product
	Dot Product with Higher Precision Accumulation
	Constant Plus Dot Product with Higher Precision Accumulation
	Dot Product Using the Accumulator
	Hadamard Product
	Triple Inner Product
	Sum of the Elements of a Vector
	Sum of the Absolute Values of the Elements of a Vector
	Euclidean or �? Norm of a Vector
	Product of the Elements of a Vector
	Index of Element Having Minimum Value
	Index of Element Having Maximum Value
	Index of Element Having Minimum Absolute Value
	Index of Element Having Maximum Absolute Value
	Construct a Givens Plane Rotation
	Apply a Plane Rotation
	Construct a Modified Givens Transformation
	Apply a Modified Givens Transformation

	Programming Notes for Level 2 and Level 3 BLAS
	Descriptions of the Level 2 and Level 3 BLAS
	Specification of the Level 2 BLAS
	Specification of the Level 3 BLAS
	Matrix–Vector Multiply, General
	Matrix–Vector Multiply, Banded
	Matrix-Vector Multiply, Hermitian
	Matrix-Vector Multiply, Hermitian and Banded
	Matrix-Vector Multiply, Symmetric and Real
	Matrix-Vector Multiply, Symmetric and Banded
	Matrix-Vector Multiply, Triangular
	Matrix-Vector Multiply, Triangular and Banded
	Matrix-Vector Solve, Triangular
	Matrix-Vector Solve, Triangular and Banded
	Rank-One Matrix Update, General and Real
	Rank-One Matrix Update, General, Complex, and Transpose
	Rank-One Matrix Update, General, Complex, and Conjugate Transpose
	Rank-One Matrix Update, Hermitian and Conjugate Transpose
	Rank-Two Matrix Update, Hermitian and Conjugate Transpose
	Rank-One Matrix Update, Symmetric and Real
	Rank-Two Matrix Update, Symmetric and Real
	Matrix-Matrix Multiply, General
	Matrix-Matrix Multiply, Symmetric
	Matrix-Matrix Multiply, Hermitian
	Rank-k Update, Symmetric
	Rank-k Update, Hermitian
	Rank-2k Update, Symmetric
	Rank-2k Update, Hermitian
	Matrix-Matrix Multiply, Triangular
	Matrix-Matrix Solve, Triangular

	Other Matrix/Vector Operations
	CRGRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CCGCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CRBRB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CCBCB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CRGRB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CRBRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CCGCB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CCBCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CRGCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CRRCR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CRBCB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CSFRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CHFCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Comments
	Example
	Output
	Description

	CSBRB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CHBCB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Comments
	Example
	Output
	Description

	TRNRR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	MXTXF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	MXTYF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	MXYTF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	MRRRR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	MCRCR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	HRRRR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BLINF
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	POLRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	MURRV
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	MURBV
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	MUCRV
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	MUCBV
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ARBRB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ACBCB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	NRIRR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	NR1RR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	NR2RR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	NR1RB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	NR1CB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	DISL2
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	DISL1
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	DISLI
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	VCONR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	VCONC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	Extended Precision Arithmetic
	
	Example
	Output

	Chapter 10: Linear Algebra Operators and Generic Functions
	Routines
	Introduction
	Matrix Algebra Operations
	Matrix and Utility Functions
	Parallelism Using MPI
	General Remarks
	Getting Started with Modules MPI_setup_int and MPI_node_int
	Using Processors

	Optional Data Changes
	Operators: .x., .tx., .xt., .hx., .xh.
	
	Required Operands
	Optional Variables, Reserved Names
	Modules
	Examples

	Operators: .t., .h.
	
	Required Operand
	Optional Variables, Reserved Names
	Modules
	Examples

	Operator: .i.
	
	Required Operand
	Optional Variables, Reserved Names
	Modules
	Examples

	Operators: .ix., .xi.
	
	Required Operand
	Optional Variables, Reserved Names
	Modules
	Examples

	CHOL
	
	Required Argument
	Optional Variables, Reserved Names
	Modules
	Example

	COND
	
	Required Argument
	Optional Variables, Reserved Names
	Modules
	Example

	DET
	
	Required Argument
	Optional Variables, Reserved Names
	Modules
	Example

	DIAG
	
	Required Argument
	Optional Variables, Reserved Names
	Modules
	Example

	DIAGONALS
	
	Required Argument
	Optional Variables, Reserved Names
	Modules
	Example

	EIG
	
	Required Argument
	Optional Variables, Reserved Names
	Modules
	Example

	EYE
	
	Required Argument
	Optional Variables, Reserved Names
	Modules
	Example

	FFT
	
	Required Argument
	Optional Variables, Reserved Names
	Modules
	Example

	FFT_BOX
	
	Required Argument
	Optional Variables, Reserved Names
	Modules
	Example

	IFFT
	
	Required Argument
	Optional Variables, Reserved Names
	Modules
	Example

	IFFT_BOX
	
	Required Argument
	Optional Variables, Reserved Names
	Modules
	Example

	isNaN
	
	Required Arguments
	Optional Variables, Reserved Names
	Modules
	Example

	NaN
	
	Required Arguments
	Optional Arguments
	Example: Blocking Output
	Description
	Fatal and Terminal Error Messages

	NORM
	
	Required Arguments
	Optional Variables, Reserved Names
	Modules
	Example

	ORTH
	
	Required Arguments
	Optional Variables, Reserved Names
	Modules
	Example

	RAND
	
	Required Arguments
	Optional Variables, Reserved Names
	Modules
	Examples

	RANK
	
	Required Arguments
	Optional Variables, Reserved Names
	Modules
	Example

	SVD
	
	Required Arguments
	Optional Variables, Reserved Names
	Modules
	Example

	UNIT
	
	Required Arguments
	Optional Variables, Reserved Names
	Modules
	Example

	Overloaded =, /=, etc., for Derived Types
	Operator Examples
	
	Operator_ex01
	Operator_ex02
	Operator_ex03
	Operator_ex04
	Operator_ex05
	Operator_ex06
	Operator_ex07
	Operator_ex08
	Operator_ex09
	Operator_ex10
	Operator_ex11
	Operator_ex12
	Operator_ex13
	Operator_ex14
	Operator_ex15
	Operator_ex16
	Operator_ex17
	Operator_ex18
	Operator_ex19
	Operator_ex20
	Operator_ex21
	Operator_ex22
	Operator_ex23
	Operator_ex24
	Operator_ex25
	Operator_ex26
	Operator_ex27
	Operator_ex28
	Operator_ex29
	Operator_ex30
	Operator_ex31
	Operator_ex32
	Operator_ex33
	Operator_ex34
	Operator_ex35
	Operator_ex36
	Operator_ex37

	Parallel Examples
	Parallel Examples 1-2 comments
	Parallel Example 1
	Parallel Example 2
	Parallel Example 3
	Parallel Example 4
	Parallel Example 5-6 comments
	Parallel Example 5
	Parallel Example 6
	Parallel Example 7
	Parallel Example 8
	Parallel Example 9
	Parallel Example 10
	Parallel Example 11
	Parallel Example 12
	Parallel Example 13
	Parallel Example 14
	Parallel Example 15
	Parallel Example 16
	Parallel Example 17
	Parallel Example 18

	Chapter 11: Utilities
	Routines
	Usage Notes for ScaLAPACK Utilities
	ScaLAPACK Supporting Modules
	ScaLAPACK_READ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description

	ScaLAPACK_WRITE
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description

	Example 1: Distributed Transpose of a Matrix, In Place
	Output

	Example 2: Distributed Matrix Product with PBLAS
	Output

	Example 3: Distributed Linear Solver with ScaLAPACK
	Output

	ERROR_POST
	
	Required Argument
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Managing the Message File
	Changing Messages
	Building a New Direct-access Message File
	Private Message Files

	SHOW
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Printing an Array
	Output
	Description
	Additional Examples
	Example 2: Writing an Array to a Character Variable
	Output
	Fatal and Terminal Error Messages

	WRRRN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	WRRRL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	WRIRN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	WRIRL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	WRCRN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	WRCRL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	WROPT
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	PGOPT
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	PERMU
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	PERMA
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SORT_REAL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Sorting an Array
	Output
	Description
	Additional Examples
	Example 2: Sort and Final Move with a Permutation
	Output
	Fatal and Terminal Error Messages

	SVRGN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	SVRGP
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SVIGN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	SVIGP
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SVRBN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	SVRBP
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SVIBN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	SVIBP
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SRCH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ISRCH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	SSRCH
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ACHAR
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	IACHAR
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ICASE
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	IICSR
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	IIDEX
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CVTSI
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CPSEC
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Comments

	TIMDY
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	TDATE
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	NDAYS
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	NDYIN
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	IDYWK
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	VERML
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output

	RAND_GEN
	
	Required Argument
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Running Mean and Variance
	Output
	Description
	Additional Examples
	Example 2: Seeding, Using, and Restoring the Generator
	Output
	Example 3: Generating Strategy with a Histogram
	Output
	Example 4: Generating with a Cosine Distribution
	Output
	Fatal and Terminal Error Messages

	RNGET
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Description

	RNSET
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Description

	RNOPT
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RNUNF
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	RNUN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FAURE_INIT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface

	FAURE_FREE
	
	Required Arguments
	FORTRAN 90 Interface

	FAURE_NEXT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example
	Output
	Description

	IUMAG
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMAG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SUMAG/DUMAG
	PLOTP
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	PRIME
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CONST
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CUNIT
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	HYPOT
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	Reference Material
	Contents
	User Errors
	What Determines Error Severity
	Terminal errors
	Informational errors
	Other errors

	Kinds of Errors and Default Actions
	Errors in Lower-Level Routines
	Routines for Error Handling

	ERSET
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface

	IERCD and N1RTY
	Examples
	Changes to default actions
	Use of informational error to determine program action
	Examples of errors
	Example of traceback

	Machine-Dependent Constants
	IMACH
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface

	AMACH
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Comments

	DMACH
	IFNAN(X)
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	UMACH
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	Matrix Storage Modes
	
	General Mode
	Rectangular Mode
	Symmetric Mode
	Hermitian Mode
	Triangular Mode
	Band Storage Mode
	Band Symmetric Storage Mode
	Band Hermitian Storage Mode
	Band Triangular Storage Mode
	Codiagonal Band Symmetric Storage Mode
	Codiagonal Band Hermitian Storage Mode
	Sparse Matrix Storage Mode

	Reserved Names
	Deprecated Features and Renamed Routines
	Automatic Workspace Allocation
	Changing the Amount of Space Allocated
	Output

	Character Workspace

	Appendix A: GAMS Index
	Description
	IMSL MATH/LIBRARY

	Appendix B: Alphabetical Summary of Routines
	IMSL MATH/LIBRARY

	Appendix C: References
	
	
	Aird and Howell
	Aird and Rice
	Akima
	Arushanian et al.
	Ashcraft
	Ashcraft et al.
	Atkinson
	Atchison and Hanson
	Bischof et al.
	Bjorck
	Boisvert (1984)
	Boisvert, Howe, and Kahaner
	Boisvert, Howe, Kahaner, and Springmann
	Brankin et al.
	Brenan, Campbell, and Petzold
	Brenner
	Brent
	Brigham
	Cheney
	Cline et al.
	Cody, Fraser, and Hart
	Cohen and Taylor
	Cooley and Tukey
	Courant and Hilbert
	Craven and Wahba
	Crowe et al.
	Crump
	Davis and Rabinowitz
	de Boor
	de Hoog, Knight, and Stokes
	Dennis and Schnabel
	Dongarra et al.
	Draper and Smith
	Du Croz et al.
	Duff and Reid
	Duff et al.
	Enright and Pryce
	Forsythe
	Fox, Hall, and Schryer
	Garbow
	Garbow et al.
	Gautschi
	Gautschi and Milovanofic
	Gay
	Gear
	Gear and Petzold
	George and Liu
	Gill et al.
	Goldfarb and Idnani
	Golub
	Golub and Van Loan
	Golub and Welsch
	Gregory and Karney
	Griffin and Redish
	Grosse
	Guerra and Tapia
	Hageman and Young
	Hanson
	Hanson et al.
	Hartman
	Hausman
	Hindmarsh
	Hull et al.
	IEEE
	IMSL (1991)
	Irvine et al.
	Jenkins
	Jenkins and Traub
	Kennedy and Gentle
	Kershaw
	Knuth
	Lawson et al.
	Leavenworth
	Levenberg
	Lewis et al.
	Liepman
	Liu
	Liu and Ashcraft
	Lyness and Giunta
	Madsen and Sincovec
	Marquardt
	Martin and Wilkinson
	Micchelli et al.
	Moler and Stewart
	More et al.
	Muller
	Murtagh
	Murty
	Nelder and Mead
	Neter and Wasserman
	Park and Miller
	Parlett
	Pereyra
	Petro
	Petzold
	Piessens et al.
	Powell
	Pruess and Fulton
	Reinsch
	Rice
	Saad and Schultz
	Schittkowski
	Schnabel
	Schreiber and Van Loan
	Scott et al.
	Sewell
	Shampine
	Shampine and Gear
	Sincovec and Madsen
	Singleton
	Smith
	Smith et al.
	Spang
	Stewart
	Stoer
	Stroud and Secrest
	Titchmarsh
	Trench
	Walker
	Washizu
	Watkins and Elsner
	Weeks
	Wilkinson

	Product Support
	Contacting Visual Numerics Support
	Consultation

	Index

