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Chapter 5: Differential Equations

Routines

5.1.
5.1.1

5.2
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5.3.

First-Order Ordinary Differential Equations
Solution of the Initial-Value Problem for ODEs

Runge-Kutta method.............ccccvveiiiiiiiiiiiiiiiiieeeeeeieiees IVPRK
Runge-Kutta method, various orders............cccccvvvvvvevnvninnnns IVMRK
Adams or Gear method .........coooviiiiiiiiie e IVPAG
Solution of the Boundary-Value Problem for ODEs
Finite-difference method .............cccooi i BVPFD
Multiple-shooting method............ccccoiiiiiiee, BVPMS
Solution of Differential-Algebraic Systems

Petzold-Gear method...........cccciiiiiiiiii e DASPG

Partial Differential Equations

Solution of Systems of PDEs in One Dimension

Method of lines with Variable Griddings .................... PDE_1D_MG
Method of lines with a Hermite cubic basis ........................ MOLCH
Solution of a PDE in Two and Three Dimensions

Two-dimensional fast Poisson Solver .............ccooovvvvvveeenne.. FPS2H
Three-dimensional fast Poisson solver............ccccccevvvuvnnne.... FPS3H

Sturm-Liouville Problems

Eigenvalues, eigenfunctions,

and spectral density functions ...........cccocccviieeeiei i, SLEIG
Indices of €igenvalues ..........cccceeeeieiiiiiiiie e, SLCNT

837
844
854

870
882

889

913
946

961
967

973
986

Usage Notes

A differential equation is an equation involving one or more dependent variables (called y; or u;),
their derivatives, and one or more independent variables (called ¢, x, and y). Users will typically

need to relabel their own model variables so that they correspond to the variables used in the

solvers described here. A differential equation with one independent variable is called an ordinary

differential equation (ODE). A system of equations involving derivatives in one independent
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variable and other dependent variables is called a differential-algebraic system. A differential
equation with more than one independent variable is called a partial differential equation (PDE).
The order of a differential equation is the highest order of any of the derivatives in the equation.
Some of the routines in this chapter require the user to reduce higher-order problems to systems of
first-order differential equations.

Ordinary Differential Equations

It is convenient to use the vector notation below. We denote the number of equations as the value
N. The problem statement is abbreviated by writing it as a system of first-order ODEs

YO =[] £ 2) =[A(60) s £ (69)]

The problem becomes

, dy(1)
M

=f(t.y)

with initial values y (#)). Values of y(¢) for ¢ > ¢, or ¢ < t, are required. The routines IVPRK, page
837, IVMRK, page 844, and IVPAG, page 854, solve the IVP for systems of ODEs of the form )’ =f
(¢, y) with y(t = 1) specified. Here, f'is a user supplied function that must be evaluated at any set of
values (¢, y;, ..., yy); i = 1, ..., N. The routines TVPAG, page 854, and DASPG, page 889, will also

solve implicit systems of the form 4y’ = f (¢, y) where 4 is a user supplied matrix. For TVPAG, the
matrix 4 must be nonsingular.

The system y' = f'(¢, y) is said to be stiff if some of the eigenvalues of the Jacobian matrix

{0 /0 y;} have large, negative real parts. This is often the case for differential equations
representing the behavior of physical systems such as chemical reactions proceeding to
equilibrium where subspecies effectively complete their reaction in different epochs. An alternate
model concerns discharging capacitors such that different parts of the system have widely varying
decay rates (or time constants). This definition of stiffness, based on the eigenvalues of the
Jacobian matrix, is not satisfactory. Users typically identify stiff systems by the fact that numerical
differential equation solvers such as TVPRK, page 837, are inefficient, or else they fail. The most
common inefficiency is that a large number of evaluations of the functions f; are required. In such
cases, use routine IVPAG, page 854, or DASPG, page 889. For more about stiff systems, see Gear
(1971, Chapter 11) or Shampine and Gear (1979).

In the boundary value problem (BVP) for ODEs, constraints on the dependent variables are given
at the endpoints of the interval of interest, [a, b]. The routines BVPFD, page 889, and BVPMS, page
882, solve the BVP for systems of the form y'(f) =f (¢, y), subject to the conditions

hiyi(a), ..., yp@), (D), ..., yp(b))=0 i=1,...,N

Here, fand h = [h, ..., hy] T are user-supplied functions.

Differential-algebraic Equations

Frequently, it is not possible or not convenient to express the model of a dynamical system as a set
of ODEs. Rather, an implicit equation is available in the form
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g,.(t,y,...,yN,yl',...,yR,)ZO i=1L...N
The g; are user-supplied functions. The system is abbreviated as
gty y)=[g(t.r. ). gy (6.1, ¥)] =0

With initial value y(¢,). Any system of ODEs can be trivially written as a differential-algebraic
system by defining

gty y)=r1(t.y)-

The routine DASPG, page 889, solves differential-algebraic systems of index 1 or index 0. For a
definition of index of a differential-algebraic system, see (Brenan et al. 1989). Also, see Gear and
Petzold (1984) for an outline of the computing methods used.

Partial Differential Equations

The routine MOLCH, page 946, solves the IVP problem for systems of the form

ou, ou, Ou, Ju, 3u,
— =/, | x.tu, Uy, — - . ~

ot TN ox 7T ox T oxt T oxt

subject to the boundary conditions

i ) U,
al()ui(a)+ﬂl()g(a) = 71(t)

i i Ou,
ag)ul.(b)+ﬁ2()g(b) = (7

and subject to the initial conditions
ui(x, 1= 1)) = g;(x)
fori=1,...,N. Here, f, g,
(@) (0)
a; , and ,BJ.
are user-supplied, j =1, 2.

The routines FPS2H, page 961, and FPS3H, page 967, solve Laplace’s, Poisson’s, or Helmholtz’s
equation in two or three dimensions. FPS2H uses a fast Poisson method to solve a PDE of the form
ou  Ou

e +ﬁ—y2+cu =f(x,y)

over a rectangle, subject to boundary conditions on each of the four sides. The scalar constant ¢
and the function f'are user specified. FPS3H solves the three-dimensional analogue of this
problem.

Users wishing to solve more general PDE’s, in more general 2-d and 3-d regions are referred to
Visual Numerics’ partner PDE2D (www.pde2d.com).
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Summary

The following table summarizes the types of problems handled by the routines in this chapter.
With the exception of FPS2H and FPS3H, the routines can handle more than one differential

equation.
Problem Consideration Routine
Ay'=ft, y) A is a general, symmetric positive IVPAG
(L) =y definite, band or symmetric positive | page 854
definite band matrix.
Stiff or expensive to evaluate IVPAG
(¢, y), banded Jacobian or finely page 854
spaced output needed.
Vv =ft,y), High accuracy needed and not stiff. | IVPAG
Y (1) =y (Uses Adams methods) page 854
Moderate accuracy needed and not | IVPRK
stiff. page 837
V' =fty) BVP solver using finite differences | BVPFD
h(y(a), y(b)) =0 page 870
BVP solver using multiple shooting | BVPMS
page 882
g(t,y,y)=0 Stiff, differential-algebraic solver DASPG
(o), V' (1) given for systems of index 1 or 0. page 889
Note: DASPG uses the user-supplied
V'(,) only as an initial guess to help
it find the correct initial y'(#)) to get
started.
up=flx, t, u, uy, y,) Method of lines using cubic splines | MOLCH
oy u(a) + Biula) =79 and ODE:s. page 946
ou(b) + Bauy(b) = v2(1)
Uy + 1y, + cu=flx,y) ona Fast Poisson solver FPS2H
rectangle, given u or u, on page 961
each edge.
Uy + 1y, + U, + cu=flx, y, z) | Fast Poisson solver FPS3H
on a box, given u or u, on page 967
each face
N Sturm-Liouville problems SLEIG
—(pu") +qu = Aru, page 973
au(a)=a, (pu'(a))
=2 (al'u (a)- a'z (pu' (a)))
Bu(v)+ B, (' (5)) =0
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IVPRK

Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner
fifth-order and sixth-order method.

Required Arguments
IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal re-entry

3 Final call to release workspace

4 Return because of interrupt 1

5 Return because of interrupt 2 with step accepted
6 Return because of interrupt 2 with step rejected

Normally, the initial call is made with 100 = 1. The routine then sets 1D0 = 2, and this
value is used for all but the last call that is made with 100 = 3. This final call is used to
release workspace, which was automatically allocated by the initial call with 1D0 = 1.
No integration is performed on this final call. See Comment 3 for a description of the
other interrupts.

FCN — User-supplied SUBROUTINE to evaluate functions. The usage is CALL FCN(N, T,
Y, YPRIME), where
N — Number of equations. (Input)
T — Independent variable, ¢. (Input)
Y — Array of size N containing the dependent variable values, y.
(Input)
YPRIME — Array of size N containing the values of the vector )’
evaluated at (¢, y). (Output)
FCN must be declared EXTERNAL in the calling program.

T — Independent variable. (Input/Output)
On input, T contains the initial value. On output, T is replaced by TEND unless error
conditions have occurred. See 1DO for details.

TEND — Value of t where the solution is required. (Input)
The value TEND may be less than the initial value of 7.
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Y — Array of size NEQ of dependent variables. (Input/Output)
On input, Y contains the initial values. On output, Y contains the approximate solution.

Optional Arguments

NEQ — Number of differential equations. (Input)
Default: NEQ = size (v,1).

TOL — Tolerance for error control. (Input)
An attempt is made to control the norm of the local error such that the global error is

proportional to TOL.

Default: TOL, = machine precision.

PARAM — A floating-point array of size 50 containing optional parameters. (Input/ Output)
If a parameter is zero, then a default value is used. These default values are given
below. Parameters that concern values of step size are applied in the direction of
integration. The following parameters may be set by the user:

PARAM
1 HINIT

HMIN
HMAX
MXSTEP

(G I NS N S ]

MXFCN

INTRP1

8 INTRP2

9 SCALE

Meaning

Initial value of the step size. Default: 10.0 * Max (AMACH (1),
AMACH(4) * MAX(ABS(TEND), ABS(T)))

Minimum value of the step size. Default: 0.0
Maximum value of the step size. Default: 2.0
Maximum number of steps allowed. Default: 500

Maximum number of function evaluations allowed. Default:
No enforced limit.

Not used.

If nonzero, then return with ITDO = 4 before each step. See
Comment 3. Default: 0.

If nonzero, then return with TDO = 5 after every successful
step and with IDO = 6 after every unsuccessful step. See
Comment 3. Default: 0.

A measure of the scale of the problem, such as an
approximation to the average value of a norm of the Jacobian
matrix along the solution. Default: 1.0
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PARAM  Meaning

10 INORM  Switch determining error norm. In the following, e, is the
absolute value of an estimate of the error in y«(?).
Default: 0.0 — min(absolute error, relative error) = max(e;/w;);
i=1, ..., NEQ, where w; = max([y;(¢)|, 1.0).
1 — absolute error = max(e;), i =1 ..., NEQ.
2— max(e;/w;), i=1 ..., NEQ where w; = max(|y; ()|, FLOOR),
and FLOOR is PARAM(11).
3 — Scaled Euclidean norm defined as

where w; = max(|y; ()], 1.0). Other definitions of YMAX can be
specified by the user, as explained in Comment 1.

11 FLOOR  Used in the norm computation associated with parameter
INORM. Default: 1.0.
12-30 Not used.

The following entries in PARAM are set by the program.

PARAM  Meaning

31 HTRIAL Current trial step size.

32 HMINC  Computed minimum step size allowed.
33 HMAXC  Computed maximum step size allowed.
34 NSTEP ~ Number of steps taken.

35 NFCN Number of function evaluations used.
36-50 Not used.

FORTRAN 90 Interface

Generic: CALL IVPRK (IDO, FCN, T, TEND, Y [,..])

Specific: The specific interface names are S_| VPRK and D_I VPRK.

FORTRAN 77 Interface

Single: CALL IVPRK (IDO, NEQ, FCN, T, TEND, TOL, PARAM, Y)
Double: The double precision name is DI VPRK.
Example 1

Consider a predator-prey problem with rabbits and foxes. Let » be the density of rabbits and let
fbe the density of foxes. In the absence of any predator-prey interaction, the rabbits would
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increase at a rate proportional to their number, and the foxes would die of starvation at a rate
proportional to their number. Mathematically,

r'=2r

fr==r

The rate at which the rabbits are eaten by the foxes is 2r f, and the rate at which the foxes
increase, because they are eating the rabbits, is 7 f. So, the model to be solved is

r'=2r-2rf
fr==trrf

The initial conditions are #(0) = 1 and f{0) = 3 over the interval 0 <¢ < 10.

In the program v(1) = r and Y(2) = f. Note that the parameter vector PARAM is first set to zero
with IMSL routine SSET (Chapter 9, Basic Matrix/Vector Operations). Then, absolute error
control is selected by setting PARAM(10) = 1.0.

The last call to TVPRK with I1DO = 3 deallocates IMSL workspace allocated on the first call to
IVPRK. It is not necessary to release the workspace in this example because the program ends
after solving a single problem. The call to release workspace is made as a model of what would
be needed if the program included further calls to IMSL routines.

USE IVPRK INT
USE UMACH_INT
INTEGER MXPARM, N
PARAMETER (MXPARM=50, N=2)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER IDO, ISTEP, NOUT
REAL PARAM (MXPARM), T, TEND, TOL, Y (N)
! SPECIFICATIONS FOR SUBROUTINES
EXTERNAL  FCN

CALL UMACH (2, NOUT)
! Set initial conditions
0.0
(1) = 1.
(2) = 3.
! Set error tolerance

TOL = 0.0005
! Set PARAM to default

PARAM = 0.EOQ0
! Select absolute error control

PARAM (10) = 1.0
! Print header

WRITE (NOUT, 99999)

IDO =1

ISTEP = 0

10 CONTINUE

ISTEP = ISTEP + 1

TEND = ISTEP

CALL IVPRK (IDO, FCN, T, TEND, Y, TOL=TOL, PARAM=PARAM)

IF (ISTEP .LE. 10) THEN

WRITE (NOUT,’ (I6,3F12.3)") ISTEP, T, Y

! Final call to release workspace

= o<H
Nl

0
0
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IF (ISTEP .EQ. 10) IDO = 3
GO TO 10
END IF
99999 FORMAT (4X, ’ISTEP’, 5X, 'Time’, 9%, ’'Y1’, 11X, 'Y2’)
END
SUBROUTINE FCN (N, T, Y, YPRIME)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER N
REAL T, Y(N), YPRIME (N)
|
YPRIME (1) = 2.0*Y (1) - 2.0*Y(1)*Y(2)
YPRIME (2) = =Y (2) + Y(1)*Y(2)
RETURN
END
Output
ISTEP Time Y1 Y2
1 1.000 0.078 1.465
2 2.000 0.085 0.578
3 3.000 0.292 0.250
4 4.000 1.449 0.187
5 5.000 4.046 1.444
6 6.000 0.176 2.256
7 7.000 0.066 0.908
8 8.000 0.148 0.367
9 9.000 0.655 0.188
10 10.000 3.157 0.352
Comments
1. Workspace may be explicitly provided, if desired, by use of 12PRK/DI2PRK. The

reference is:

CALL I2PRK (IDO, NEQ, FCN, T, TEND, TOL, PARAM, Y,
VNORM, WK)

The additional arguments are as follows: YMAX = ZNEQ e’

i=1 !

/sz

VNORM — A Fortran SUBROUTINE to compute the norm of the error. (Input)

The routine may be provided by the user, or the IMSL routine I3PRK/DI3PRK may be
used. In either case, the name must be declared in a Fortran EXTERNAL statement. If
usage of the IMSL routine is intended, then the name I3PRK/DI3PRK should be used.
The usage of the error norm routine is CALL, VNORM (N, V, Y, YMAX, ENORM),
where

Arg Definition

N Number of equations. (Input)

Y Array of size N containing the vector whose norm is to be computed.
(Input)

IMSL MATH/LIB
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Y Array of size N containing the values of the dependent variable. (Input)
YMAX Array of size N containing the maximum values of [y(¢)|. (Input)
ENORM  Norm of the vector v. (Output)

VNORM must be declared EXTERNAL in the calling program.

WK — Work array of size 10N using the working precision. The contents of WK must not be
changed from the first call with 100 = 1 until after the final call with 100 = 3.

2. Informational errors
Type Code
4 1 Cannot satisfy error condition. The value of TOL may be too small.
4 2 Too many function evaluations needed.
4 3 Too many steps needed. The problem may be stiff.
3. If PARAM(7) is nonzero, the subroutine returns with 10O = 4 and will resume

calculation at the point of interruption if re-entered with 1D0 = 4. If PARAM(8) is
nonzero, the subroutine will interrupt the calculations immediately after it decides
whether or not to accept the result of the most recent trial step. The values used are
1D0 =5 if the routine plans to accept, or IDO = 6 if it plans to reject the step. The
values of 1D0O may be changed by the user (by changing 1D0 from 6 to 5) in order to
force acceptance of a step that would otherwise be rejected. Some parameters the user
might want to examine after return from an interrupt are IDO, HTRIAL, NSTEP, NFCN,
T, and Y. The array Y contains the newly computed trial value for y(f), accepted or not.

Description

Routine TVPRK finds an approximation to the solution of a system of first-order differential
equations of the form y, =f (¢, y) with given initial data. The routine attempts to keep the global
error proportional to a user-specified tolerance. This routine is efficient for nonstiff systems
where the derivative evaluations are not expensive.

The routine IVPRKX is based on a code designed by Hull, Enright and Jackson (1976, 1977). It
uses Runge-Kutta formulas of order five and six developed by J. H. Verner.

Additional Examples

Example 2

This is a mildly stiff problem (F2) from the test set of Enright and Pryce (1987). It is included
here because it illustrates the inefficiency of requiring more function evaluations with a nonstiff
solver, for a requested accuracy, than would be required using a stiff solver. Also, see IVPAG,
page 854, Example 2, where the problem is solved using a BDF method. The number of
function evaluations may vary, depending on the accuracy and other arithmetic characteristics of
the computer. The test problem has n = 2 equations:
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10

99998
99999

» = Y-y tky,

3 = —k,y, +k; (1_)’z)J’1
)ﬁ(o) = 1

»(0) = 0

k, = 294

k, = 3

k, = 0.01020408

tend = 240

USE IVPRK_INT
USE UMACH_INT
INTEGER MXPARM, N
PARAMETER (MXPARM=50, N=2)
SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER IDO, ISTEP, NOUT
REAL PARAM (MXPARM), T, TEND, TOL, Y (N)
SPECIFICATIONS FOR SUBROUTINES
SPECIFICATIONS FOR FUNCTIONS
EXTERNAL  FCN

CALL UMACH (2, NOUT)
Set initial conditions
T =0.0
Y(1) = 1.0
Y(2) = 0.0
Set error tolerance
TOL = 0.001
Set PARAM to default
PARAM = 0.0EO
Select absolute error control
PARAM (10) = 1.0
Print header
WRITE (NOUT,99998)
IDO = 1
ISTEP = 0
CONTINUE
ISTEP = ISTEP + 24
TEND = ISTEP
CALL IVPRK (IDO, FCN, T, TEND, Y, TOL=TOL, PARAM=PARAM)
IF (ISTEP .LE. 240) THEN
WRITE (NOUT,’ (I6,3F12.3)’) ISTEP/24, T, Y
Final call to release workspace
IF (ISTEP .EQ. 240) IDO = 3
GO TO 10
END IF
Show number of function calls.
WRITE (NOUT,99999) PARAM(35)
FORMAT (4X, ’"ISTEP’, 5X, ’'Time’, 9X, ’'Y1’, 11X, 'Y2")
FORMAT (4X, ’'Number of fcn calls with IVPRK =’, F6.0)
END
SUBROUTINE FCN (N, T, Y, YPRIME)
SPECIFICATIONS FOR ARGUMENTS
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1

QO J oy Ul W

9
10

INTEGER

REAL

REAL

DATA AK1,

YPRIME (1)
YPRIME (2)

RETURN

END

Output
ISTEP

Time
24.
48.
72.
96.

120.
144.
168.
192.
216.
240.
Number of fcn calls with IVPRK =

000
000
000
000
000
000
000
000
000
000

N

T, Y(N),

AK1, AK2,

YPRIME (N)
SPECIFICATIONS FOR DATA VARIABLES

AK3

AK2, AK3/294.0EOQ,

= -Y (1)

3.0E0, 0.01020408E0/

- Y(1)*Y(2) + AK1*Y(2)

= -AK2*Y (2) + AK3*

OO OO OO oOooo

Y1l

.688
.634
.589
.549
.514
.484
.457
.433
.411
0.

391

0
0
0
0
0
0.
0
0
0
0
2

(1.0E0-Y (2))*Y (1)

Y2
.002
.002
.002
.002
.002
002
.002
.001
.001
.001
153.

IVMRK

Solves an initial-value problem )’ = f{#, y) for ordinary differential equations using Runge-Kutta
pairs of various orders.

IDO — Flag indicating the state of the computation. (Input/Output)

FCN — User-supplied SUBROUTINE to evaluate functions. The usage is

Required Arguments

Final call to release workspace

IDO State

1 Initial entry

2 Normal re-entry

3

4 Return after a step
5

Return for function evaluation (reverse communication)

Normally, the initial call is made with 1DO = 1. The routine then sets IDO = 2, and this
value is used for all but the last call that is made with 100 = 3. This final call is used to
release workspace, which was automatically allocated by the initial call with 1o = 1.

CALL FCN (N, T, Y, YPRIME), where
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N — Number of equations. (Input)
T — Independent variable. (Input)
Y — Array of size N containing the dependent variable values, y. (Input)

YPRIME — Array of size N containing the values of the vector )’ evaluated at (¢, y).
(Output)
FCN must be declared EXTERNAL in the calling program.

T — Independent variable. (Input/Output)
On input, T contains the initial value. On output, T is replaced by TEND unless error

conditions have occurred.

TEND — Value of ¢t where the solution is required. (Input)
The value of TEND may be less than the initial value of 7.

Y — Array of size N of dependent variables. (Input/Output)
On input, Y contains the initial values. On output, Y contains the approximate solution.

YPRIME — Array of size N containing the values of the vector y’ evaluated at (z, y).
(Output)

Optional Arguments

N — Number of differential equations. (Input)
Default: n= size (v,1).

FORTRAN 90 Interface

Generic: CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME [,..])

Specific: The specific interface names are S_| VMRK and D_I VIVRK.

FORTRAN 77 Interface

Single: CALL IVMRK (IDO, N, FCN, T, TEND, Y, YPRIME)
Double: The double precision name is DI VIVRK.
Example 1

This example integrates the small system (A.2.B2) from the test set of Enright and Pryce (1987):
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USE IVMRK INT
USE WRRRN INT
INTEGER N
PARAMETER  (N=3)
INTEGER IDO

REAL T,
EXTERNAL FCN

TEND,

T =20.0
TEND =

20.0
Y(1) = 2
0
1

.0
.0

.0

Y(2) =
Y (3)

ID0 = 1
CALL IVMRK

(IDO, FCN,

IDO = 3

CALL IVMRK (IDO, FCN,
CALL WRRRN

END

('y', v)

SUBROUTINE FCN (N, T,
INTEGER N
REAL T, Y(*),
YPRIME (1) =
YPRIME (2)
YPRIME (3)
RETURN

END

-Y (1)
Y (1)
= Y (2)

Output

Y
1 1.000
2 1.000
3 1.000

Y (N),

V=0t
Vi =3 =29, +
Vi ==,
y1(0)=2
¥, (0)=0
y3(0) 1

Specifications for local variables
YPRIME (N)

Set initial conditions

T, TEND, Y, YPRIME)
Final call to release workspace

T, TEND, Y, YPRIME)

Y, YPRIME)
Specifications for arguments

YPRIME (*)

+ Y (2)
- 2.0*Y(2)
- Y (3)

+ Y (3)
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Comments

1. Workspace may be explicitly provided, if desired, by use of I12MRK/DI2MRK. The
reference is:

CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM,
YMAX, RMSERR, WORK, IWORK)

The additional arguments are as follows:
TOL — Tolerance for error control. (Input)

THRES — Array of size N. (Input)
THRES (I) is a threshold for solution component Y (1) . It is chosen so that the
value of Y (L) is not important when Y (L) is smaller in magnitude than
THRES (L) . THRES (L) must be greater than or equal to sqrt (amach (4)) .

PARAM — A floating-point array of size 50 containing optional parameters.
(Input/Output)
If a parameter is zero, then a default value is used. These default values are
given below. The following parameters must be set by the user:

PARAM Meaning

1 HINIT Initial value of the step size. Must be chosen such that
0.01 2 HINTIT > 10.0 amach(4). Default: automatic
selection of stepsize.

2 METHOD  Specify which Runge-Kutta pair is to be used.
1 - use the (2, 3) pair
2 - use the (4, 5) pair
3 - use the (7, 8) pair.
Default: METHOD =1 if 10-2 > tol > 10-4
METHOD =2 if 10-4 > tol > 10-6
METHOD =3 if 10-6 > tol

3 ERREST ERREST = 1 attempts to assess the true error, the
difference between the numerical solution and the
true solution. The cost of this is roughly twice the cost
of the integration itself with METHOD = 2 or
METHOD = 3, and three times with METHOD = 1.
Default: ERREST = 0.

4 INTRP If nonzero, then return the 1D0O = 4 before each step.
See Comment 3. Default: 0

5 RCSTAT  If nonzero, then reverse communication is used to get
derivative information. See Comment 4. Default: 0.

6-30 Not used

The following entries are set by the program:
31 HTRIAL Current trial step size.
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32 NSTEP  Number of steps taken.

33 NFCN Number of function evaluations.

34 ERRMAX The maximum approximate weighted true error taken
over all solution components and all steps from T
through the current integration point.

35 TeERRMX First value of the independent variable where an
approximate true error attains the maximum value
ERRMAX.

YMAX  Array of size N, where YMAX(L) is the largest value of ABS (Y (L))
computed at any step in the integration so far.

RMSERR — Array of size N where RMSERR(L) approximates the RMS average of the
true error of the numerical solution for the 1.-th solution component,
L = 1,..., N. The average is taken over all steps from T through the current
integration point. RMSERR is accessed and set only if PARAM(3) = 1.

WORK — Floating point work array of size 39N using the working precision. The
contents of WORK must not be changed from the first call with D0 = 1 until after

the final call with ID0 = 3.

IWORK — Length of array work. (Input)

2. Informational errors
Type Code
4 1 It does not appear possible to achieve the accuracy specified by TOL

and THRES(*) using the current precision and METHOD. A larger value
for METHOD, if possible, will permit greater accuracy with this
precision. The integration must be restarted.

4 2 The global error assessment may not be reliable beyond the current
integration point T. This may occur because either too little or too
much accuracy has been requested or because f{z, y) is not smooth
enough for values of # just past TEND and current values of the
solution y. This return does not mean that you cannot integrate past
TEND, rather that you cannot do it with PARAM (3) = 1.

3 If PARAM (4) is nonzero, the subroutine returns with 100 = 4 and will resume
calculation at the point of interruption if re-entered with 1D0O = 4. Some parameters the
user might want to examine are 1DO, HTRIAL, NSTEP, NFCN, T, and Y. The array Y
contains the newly computed trial value for y(), accepted or not.

4 If PARAM (5) is nonzero, the subroutine will return with 100 = 5. At this time, evaluate
the derivatives at T, place the result in YPRIME, and call ITVMRK again. The dummy
function I40RK/DI40RK may be used in place of FCN.
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Description

Routine TVMRK finds an approximation to the solution of a system of first-order differential
equations of the form )’ = f{t, y) with given initial data. Relative local error is controlled
according to a user-supplied tolerance. For added efficiency, three Runge-Kutta formula pairs,
of orders 3, 5, and 8, are available.

Optionally, the values of the vector y' can be passed to IVMRK by reverse communication,
avoiding the user-supplied subroutine FCN. Reverse communication is especially useful in
applications that have complicated algorithmic requirement for the evaluations of f(z, y).
Another option allows assessment of the global error in the integration.

The routine IVMRK is based on the codes contained in RKSUITE, developed by R. W. Brankin, I.
Gladwell, and L. F. Shampine (1991).

Additional Examples

Example 2

This problem is the same mildly stiff problem (A.1.F2) from the test set of Enright and Pryce as
Example 2 for IVPRK, page 837.

Vo = tky,

¥ =—k,y, +k, (1_)’2)J’1
» (O) =1
Y2 (0) =0

k =294

k, =3

k, =0.01020408

tend =240

Although not a stiff solver, one notes the greater efficiency of IVMRK over IVPRK, in terms of
derivative evaluations. Reverse communication is also used in this example. Users will find this
feature particularly helpful if their derivative evaluation scheme is difficult to isolate in a
separate subroutine.

USE I2MRK_INT

USE UMACH_INT

USE AMACH INT
INTEGER N

PARAMETER (N=2)
! Specifications for local variables

INTEGER IDO, ISTEP, LWORK, NOUT

REAL PARAM (50), PREC, RMSERR(N), T, TEND, THRES(N), TOL, &
WORK (1000), Y(N), YMAX(N), YPRIME (N)

REAL AK1l, AK2, AK3

SAVE AK1, AK2, AK3

! Specifications for intrinsics
INTRINSIC SQRT
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REAL SQORT

! Specifications for subroutines
EXTERNAL T40RK

! Specifications for functions

DATA AK1l, AK2, AK3/294.0, 3.0, 0.01020408/

CALL UMACH (2, NOUT)
! Set initial conditions

T = 0.0

Y(1) = 1.0

Y (2) 0.0
! Set tolerance for error control,
! threshold vector and parameter
! vector

TOL = .001

PREC = AMACH (4)
THRES = SQRT (PREC)

PARAM = 0.0EO

LWORK = 1000
! Turn on derivative evaluation by
! reverse communication

PARAM (5) =1

IDO =1

ISTEP = 24

! Print header

WRITE (NOUT,99998)
10 CONTINUE
TEND = ISTEP
CALL I2MRK (IDO, N, I40RK, T, TEND, Y, YPRIME, TOL, THRES, PARAM, &
YMAX, RMSERR, WORK, LWORK)

IF (IDO .EQ. 5) THEN

! Evaluate derivatives

YPRIME (1) = =Y (1) - Y(1)*Y(2) + AK1*Y(2)
YPRIME (2) = -AK2*Y (2) + AK3*(1.0-Y(2))*Y (1)
GO TO 10

ELSE IF (ISTEP .LE. 240) THEN
! Integrate to 10 equally spaced points

WRITE (NOUT, ' (I6,3F12.3)"') ISTEP/24, T, Y
IF (ISTEP .EQ. 240) IDO = 3
ISTEP = ISTEP + 24
GO TO 10
END IF
! Show number of derivative evaluations

WRITE (NOUT, 99999) PARAM(33)
99998 FORMAT (3X, 'ISTEP', 5X, 'TIME', 9X, 'yYl', 10X, 'yY2")
99999 FORMAT (/, 4X, 'NUMBER OF DERIVATIVE EVALUATIONS WITH IVMRK =', &
F6.0)
END

! DUMMY FUNCTION TO TAKE THE PLACE OF DERIVATIVE EVALUATOR
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SUBROUTINE I40RK (N, T, Y, YPRIME)

INTEGER N

REAL T, y(*), YPRIME(*)

RETURN

END

Output

ISTEP TIME Y1 Y2
1 24.000 0.688 0.002
2 48.000 0.634 0.002
3 72.000 0.589 0.002
4 96.000 0.549 0.002
5 120.000 0.514 0.002
6 144.000 0.484 0.002
7 168.000 0.457 0.002
8 192.000 0.433 0.001
9 216.000 0.411 0.001
10 240.000 0.391 0.001

NUMBER OF DERIVATIVE EVALUATIONS WITH IVMRK = 1375.

Example 3

This example demonstrates how exceptions may be handled. The problem is from Enright and
Pryce (A.2.F1), and has discontinuities. We choose this problem to force a failure in the global
error estimation scheme, which requires some smoothness in y. We also request an initial
relative error tolerance which happens to be unsuitably small in this precision.

If the integration fails because of problems in global error assessment, the assessment option is
turned off, and the integration is restarted. If the integration fails because the requested accuracy
is not achievable, the tolerance is increased, and global error assessment is requested. The
reason error assessment is turned on is that prior assessment failures may have been due more in
part to an overly stringent tolerance than lack of smoothness in the derivatives.

When the integration is successful, the example prints the final relative error tolerance, and
indicates whether or not global error estimation was possible.

M=
2ay, —(7[2 +c12)y1 +1,| x Jeven

’

Y, =
2ay, —(ﬂz +a’ )y1 -1,| xJodd
» (0) =0
, (O) =0
a=0.1
I_xJ = largest integer < x
USE IMSL LIBRARIES
INTEGER N
PARAMETER (N=2)
! Specifications for local variables
INTEGER IDO, LWORK, NOUT
REAL PARAM (50), PREC, RMSERR(N), T, TEND, THRES(N), TOL, &
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WORK (100), Y(N), YMAX(N), YPRIME (N)

Specifications for intrinsics
INTRINSIC SQRT
REAL SQORT
Specifications for subroutines

Specifications for functions
EXTERNAL FCN

CALL UMACH (2, NOUT)
Turn off stopping for FATAL errors
CALL ERSET (4, -1, 0)
Initialize input, turn on global
error assessment
LWORK = 100
PREC = AMACH (4)

TOL = SQRT (PREC)
PARAM = 0.0EO01
THRES = TOL
TEND = 20.0EO
PARAM (3) =1
CONTINUE

Set initial values
T 0.0EO
Y(1) = 0.0EO
Y(2) = 0.0EO
IDO =1

CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM, &
YMAX, RMSERR, WORK, LWORK)

IF (IERCD() .EQ. 32) THEN
Unable to achieve requested
accuracy, so increase tolerance.
Activate global error assessment
TOL = 10.0*TOL
PARAM(3) = 1
WRITE (NOUT,99995) TOL
GO TO 10
ELSE IF (IERCD() .EQ. 34) THEN

Global error assessment has failed,
cannot continue from this point,
so restart integration
WRITE (NOUT, 99996)
PARAM(3) = O
GO TO 10
END IF

Final call to release workspace
IDO = 3
CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM, &
YMAX, RMSERR, WORK, LWORK)
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! Summarize status
WRITE (NOUT,99997) TOL
IF (PARAM(3) .EQ. 1) THEN
WRITE (NOUT, 99998)
ELSE
WRITE
END IF
CALL WRRRN ('Y',

(NOUT, 99999)
Y)

99995

FORMAT (/, 'CHANGING TOLERANCE TO ', E9.3, ' AND RESTARTING
, /, 'ALSO (RE)ENABLING GLOBAL ERROR ASSESSMENT', /)
99996 FORMAT (/, 'DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING
/)
99997 FORMAT (/, 72('-"), //, 'SOLUTION OBTAINED WITH TOLERANCE = ', &
E9.3)
99998 FORMAT ('GLOBAL ERROR ASSESSMENT IS AVAILABLE')
99999 FORMAT ('GLOBAL ERROR ASSESSMENT IS NOT AVAILABLE')
|
END
!
SUBROUTINE FCN (N, T, Y, YPRIME)
USE CONST_INT
! Specifications for arguments
INTEGER N
REAL T, Y(*), YPRIME(*)
! Specifications for local variables
REAL A
REAL PI
LOGICAL FIRST
SAVE FIRST, PI
! Specifications for intrinsics
INTRINSIC INT, MOD
INTEGER INT, MOD
! Specifications for functions
|
DATA FIRST/.TRUE./
|
IF (FIRST) THEN
PI = CONST('PI'")
FIRST = .FALSE.
END IF
|
A = 0.1E0
YPRIME (1) = Y (2)
IF (MOD(INT(T),2) .EQ. 0) THEN
YPRIME (2) = 2.0EQ0*A*Y (2) - (PI*PI+A*A)*Y (1) + 1.0EO
ELSE
YPRIME (2) = 2.0EQ0*A*Y (2) - (PI*PI+A*A)*Y (1) - 1.0EO
END IF
RETURN
END
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Output

***x FATAL ERROR 34 from i2mrk. The global error assessment may not
xxx be reliable for T past 9.994749E-01. The integration is
KE K being terminated.

DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING

***x FATAL ERROR 32 from i2mrk. In order to satisfy the error

xxx requirement I6MRK would have to use a step size of

oot 3.647129E- 06 at TNOW = 9.999932E-01. This is too small
xxx for the current precision.

CHANGING TOLERANCE TO 0.345E-02 AND RESTARTING
ALSO (RE)ENABLING GLOBAL ERROR ASSESSMENT

***x FATAL ERROR 34 from i2mrk. The global error assessment may
x KK not be reliable for T past 9.986024E-01. The integration
xx*x is being terminated.

DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING

SOLUTION OBTAINED WITH TOLERANCE = 0.345E-02
GLOBAL ERROR ASSESSMENT IS NOT AVAILABLE

Y
1 -12.30
2 0.95

IVPAG

Solves an initial-value problem for ordinary differential equations using either Adams-Moulton’s
or Gear’s BDF method.

Required Arguments

IDO — Flag indicating the state of the computation. (Input/Output)
IDO State
1 Initial entry
2 Normal re-entry

3 Final call to release workspace
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Return because of interrupt 1
Return because of interrupt 2 with step accepted
Return because of interrupt 2 with step rejected

Return for new value of matrix A.

Normally, the initial call is made with 1D0 = 1. The routine then sets 1DO = 2, and this
value is then used for all but the last call that is made with 100 = 3. This final call is
only used to release workspace, which was automatically allocated by the initial call
with 1D0 = 1. See Comment 5 for a description of the interrupts.

When 1D0 = 7, the matrix 4 at ¢ must be recomputed and TVPAG/DIVPAG called again.
No other argument (including 1D0) should be changed. This value of 1DO is returned
only if PARAM(19) = 2.

FCN — User-supplied SUBROUTINE to evaluate functions. The usage is

CALL FCN (N, T, Y, YPRIME), where

N — Number of equations. (Input)

T — Independent variable, ¢. (Input)

Y — Array of size N containing the dependent variable values, y.
(Input)

YPRIME — Array of size N containing the values of the vector )’
evaluated at (¢, y). (Output)

See Comment 3.

FCN must be declared EXTERNAL in the calling program.

FCNJ — User-supplied SUBROUTINE to compute the Jacobian. The usage is
CALL FCNJ (N, T, Y, DYPDY) where

N — Number of equations. (Input)

T — Independent variable, ¢z. (Input)

Y — Array of size N containing the dependent variable values, y(?).

(Input)

DYPDY — An array, with data structure and type determined by

PARAM(14) = MTYPE, containing the required partial derivatives gf;/0y;. (Output)
These derivatives are to be evaluated at the current values of (¢, y). When the
Jacobian is dense, MTYPE = 0 or = 2, the leading dimension of DYPDY has the
value N. When the Jacobian matrix is banded, MTYPE = 1, and the leading
dimension of DYPDY has the value 2 * NL.C + NUC + 1. If the matrix is banded
positive definite symmetric, MTYPE = 3, and the leading dimension of DYPDY has
the value NUC + 1.

FCNJ must be declared EXTERNAL in the calling program. If PARAM(19) = IATYPE is
nonzero, then FCNJ should compute the Jacobian of the righthand side of the equation
Ay =f(t, y). The subroutine FCNJ is used only if PARAM(13) = MITER = 1.
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T — Independent variable, £. (Input/Output)
On input, T contains the initial independent variable value. On output, T is replaced by
TEND unless error or other normal conditions arise. See 1DO for details.

TEND — Value of t = tend where the solution is required. (Input)
The value fend may be less than the initial value of 7.

Y — Array of size NEQ of dependent variables, y(f). (Input/Output)
On input, Y contains the initial values, y(#,). On output, ¥ contains the approximate
solution, y(?).

Optional Arguments

NEQ— Number of differential equations. (Input)
Default: NEQ = size (Y,1)

A — Matrix structure used when the system is implicit. (Input)
The matrix 4 is referenced only if PARAM(19) = IATYPE is nonzero. Its data structure is
determined by PARAM(14) = MTYPE. The matrix A must be nonsingular and MITER
must be 1 or 2. See Comment 3.

TOL — Tolerance for error control. (Input)
An attempt is made to control the norm of the local error such that the global error is
proportional to TOL.
Default: ToL =.001

PARAM — A floating-point array of size 50 containing optional parameters. (Input/Output)
If a parameter is zero, then the default value is used. These default values are given
below. Parameters that concern values of the step size are applied in the direction of
integration. The following parameters may be set by the user:

PARAM  Meaning

1 HINIT  [nitial value of the step size H. Always nonnegative.
Default: 0.001tend — t|.

2 HMIN Minimum value of the step size H. Default: 0.0.

3 HMAX Maximum value of the step size H. Default: No limit,
beyond the machine scale, is imposed on the step size.

4 MXSTEP  Maximum number of steps allowed. Default: 500.

5 MXFCN  Maximum number of function evaluations allowed.
Default: No enforced limit.

6 MAXORD  Maximum order of the method. Default: If Adams-Moulton

method is used, then 12. If Gear’s or BDF method is used,
then 5. The defaults are the maximum values allowed.

7 INTRP1 [fthis value is set nonzero, the subroutine will return before
every step with IDO = 4. See Comment 5. Default: 0.
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8

9

10

11

12

13

INTRP2

SCALE

INORM

FLOOR

METH

MITER

If this value is nonzero, the subroutine will return after
every successful step with IDO = 5 and return with IDO =6
after every unsuccessful step. See Comment 5. Default: 0

A measure of the scale of the problem, such as an
approximation to the average value of a norm of the
Jacobian along the solution. Default: 1.0

Switch determining error norm. In the following, e; is the
absolute value of an estimate of the error in y«(?).

Default: 0.

0 — min(absolute error, relative error) = max(e;/w;); i = 1,
..., N, where w; = max(|y,(¢)], 1.0).

1 — absolute error = max(e;), i =1 ..., NEQ.

2 —max(e;/ w;), i =1 ..., N where w; = max(|y{?)|,
FLOOR), and FLOOR is the value PARAM(11).

3 — Scaled Euclidean norm defined as

YMAX =Y "¢ /w?

where w; = max(|y{?)|, 1.0). Other definitions of YMAX can
be specified by the user, as explained in Comment 1.

Used in the norm computation associated the parameter
INORM. Default: 1.0.

Integration method indicator.

1 = METH selects the Adams-Moulton method.
2 = METH selects Gear’s BDF method.
Default: 1.

Nonlinear solver method indicator.

Note: If the problem is stiff and a chord or modified
Newton method is most efficient, use MITER =1 or = 2.

0 = MITER selects functional iteration. The value IATYPE
must be set to zero with this option.

1 = MITER selects a chord method with a user-provided
Jacobian.

2 =MITER selects a chord method with a divided-
difference Jacobian.

3 =MITER selects a chord method with the Jacobian
replaced by a diagonal matrix based on a directional
derivative. The value IATYPE must be set to zero with this
option.

Default: 0.

IMSL MATH/LIBRARY

Chapter 5: Differential Equations ¢ 857



14

15

16

17
18

19

20

21-30

MTYPE

NLC

NUC

EPSJ

IATYPE

LDA

Matrix type for 4 (if used) and the Jacobian (if MITER = 1
or = 2). When both are used, 4 and the Jacobian must be of
the same type.

0 =MTYPE selects full matrices.
1 = MTYPE selects banded matrices.
2 = MTYPE selects symmetric positive definite matrices.

3 = MTYPE selects banded symmetric positive definite
matrices.

Default: 0.
Number of lower codiagonals, used if MTYPE = 1.
Default: 0.

Number of upper codiagonals, used if MTYPE =1 or
MTYPE = 3.

Default: 0.
Not used.

Relative tolerance used in computing divided difference
Jacobians.

Default: SQRT(AMACH(4)) .

Type of the matrix 4.

0= IATYPE implies 4 is not used (the system is explicit).
1 = IATYPE if 4 is a constant matrix.

2 =IATYPE if 4 depends on .

Default: 0.

Leading dimension of array A4 exactly as specified in the
dimension statement in the calling program. Used if
IATYPE is not zero.

Default:

N IfMTYPE=0o0or=2
NUC +NLC +1 if MTYPE = 1

NUC + 1 ifMTYPE =3

Not used.

The following entries in the array PARAM are set by the program:

31
32
33
34

PARAM
HTRIAL
HMINC
HMAXC
NSTEP

Meaning

Current trial step size.
Computed minimum step size.
Computed maximum step size.

Number of steps taken.
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35 NEFCN Number of function evaluations used.
36 NJE Number of Jacobian evaluations.
37-50 Not used.

FORTRAN 90 Interface

Generic: CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y [,..])

Specific: The specific interface names are S_| VPAGand D _| VPAG.

FORTRAN 77 Interface

Single: CALL IVPAG (IDO, NEQ, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y)
Double: The double precision name is DI VPAG.
Example 1

Euler’s equation for the motion of a rigid body not subject to external forces is

V=2, 1 (0)=0
Yy ==V »,(0)=1
¥y =-05lyy, y,(0)=1

Its solution is, in terms of Jacobi elliptic functions, y; () = sn(%; k), y,(¢) = en(¢; k), y3(¢) = dn(s; k)
where &* = 0.51. The Adams-Moulton method of TVPAG is used to solve this system, since this
is the default. All parameters are set to defaults.

The last call to TvPAG with I1DO = 3 releases IMSL workspace that was reserved on the first call
to IVPAG. It is not necessary to release the workspace in this example because the program ends
after solving a single problem. The call to release workspace is made as a model of what would
be needed if the program included further calls to IMSL routines.

Because PARAM(13) = MITER = 0, functional iteration is used and so subroutine FCNJ is never
called. It is included only because the calling sequence for TVPAG requires it.

USE IVPAG INT
USE UMACH_ INT
INTEGER N, NPARAM
PARAMETER (N=3, NPARAM=50)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER IDO, IEND, NOUT
REAL A(l,1), T, TEND, TOL, Y (N)
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL FCN, FCNJ
! Initialize

IDO =1
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Write title
CALL UMACH (2, NOUT)
WRITE (NOUT,99998)
Integrate ODE
IEND = 0
CONTINUE
IEND = IEND + 1
TEND = IEND
The array a(*,*) 1s not used.
CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL)
IF (IEND .LE. 10) THEN
WRITE (NOUT,99999) T, Y
Finish up
IF (IEND .EQ. 10) IDO = 3
GO TO 10
END IF
FORMAT (11X, 'T’, 14X, ’'Y(1)', 11X, ’'Y(2)', 11X, 'Y(3)")
FORMAT (4F15.5)
END

SUBROUTINE FCN (N, X, Y, YPRIME)

SPECIFICATIONS FOR ARGUMENTS
INTEGER N
REAL X, Y(N), YPRIME(N)

YPRIME (1) = Y (2)*Y(3)

YPRIME (2) = =Y (1)*Y(3)
YPRIME (3) = -0.51*Y (1) *Y(2)
RETURN

END

SUBROUTINE FCNJ (N, X, Y, DYPDY)
SPECIFICATIONS FOR ARGUMENTS
INTEGER N

REAL X, Y(N), DYPDY (N, *)
This subroutine is never called
RETURN
END
Output

T Y (1) Y (2) Y (3)
.00000 0.80220 0.59705 0.81963
.00000 0.99537 -0.09615 0.70336
.00000 0.64141 -0.76720 0.88892
.00000 -0.26961 -0.96296 0.98129
.00000 -0.91173 -0.41079 0.75899
.00000 -0.95751 0.28841 0.72967
.00000 -0.42877 0.90342 0.95197
.00000 0.51092 0.85963 0.931006
.00000 0.97567 0.21926 0.71730
.00000 0.87790 -0.47884 0.77906
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Comments

1. Workspace and a user-supplied error norm subroutine may be explicitly provided, if
desired, by use of I12PAG/DI2PAG. The reference is:

CALL I2PAG (IDO, NEQ, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y,
YTEMP, YMAX, ERROR, SAVEl, SAVE2, PW, IPVT, VNORM)

None of the additional array arguments should be changed from the first call with
1D0 = 1 until after the final call with 100 = 3. The additional arguments are as follows:

YTEMP — Array of size NMETH. (Workspace)

YMAX — Array of size NEQ containing the maximum Y-values computed so far.
(Output)

ERROR — Array of size NEQ containing error estimates for each component of v.
(Output)

SAVEI — Array of size NEQ. (Workspace)

SAVE2 — Array of size NEQ. (Workspace)

PW — Array of size Npw. (Workspace)

IPVT — Array of size NEQ. (Workspace)

VNORM — A Fortran SUBROUTINE to compute the norm of the error. (Input)
The routine may be provided by the user, or the IMSL routine I3PRK/DI3PRK
may be used. In either case, the name must be declared in a Fortran ENTERNAL
statement. If usage of the IMSL routine is intended, then the name

I3PRK/DI3PRK should be specified. The usage of the error norm routine is
CALL VNORM (NEQ, V, Y, YMAX, ENORM) where

Arg. Definition

NEQ Number of equations. (Input)

Y Array of size N containing the vector whose norm is to be computed.
(Input)

Y Array of size N containing the values of the dependent variable. (Input)

YMAX Array of size N containing the maximum values of |y (¥)|. (Input)

ENORM  Norm of the vector v. (Output)

VNORM must be declared EXTERNAL in the calling program.
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2. Informational errors

Type Code
4 1 After some initial success, the integration was halted by repeated
error-test failures.
4 2 The maximum number of function evaluations have been used.
4 3 The maximum number of steps allowed have been used. The
problem may be stiff.
4 4 On the next step T + H will equal T. Either TOL is too small, or the

problem is stiff.

Note: If the Adams-Moulton method is the one used in the
integration, then users can switch to the BDF methods. If the BDF
methods are being used, then these comments are gratuitous and
indicate that the problem is too stiff for this combination of method
and value of TOL.

4 5  After some initial success, the integration was halted by a test on
TOL.
4 6  Integration was halted after failing to pass the error test even after

dividing the initial step size by a factor of 1.0E + 10. The value ToL
may be too small.

4 7  Integration was halted after failing to achieve corrector convergence
even after dividing the initial step size by a factor of 1. 0E + 10. The
value TOL may be too small.

4 8  IATYPE is nonzero and the input matrix 4 multiplying )’ is singular.

3. Both explicit systems, of the form )’ =f(¢, y), and implicit systems, 4y’ =f(¢, y), can
be solved. If the system is explicit, then PARAM(19) = 0; and the matrix 4 is not
referenced. If the system is implicit, then PARAM(14) determines the data structure of
the array A. If PARAM(19) = 1, then A is assumed to be a constant matrix. The value of A
used on the first call (with D0 = 1) is saved until after a call with 100 = 3. The value
of A must not be changed between these calls.

If PARAM(19) = 2, then the matrix is assumed to be a function of 7.

4. If MTYPE is greater than zero, then MITER must equal 1 or 2.

5. If PARAM(7) is nonzero, the subroutine returns with 1D0= 4 and will resume calculation
at the point of interruption if re-entered with 100 = 4. If PARAM(8) is nonzero, the
subroutine will interrupt immediately after decides to accept the result of the most
recent trial step. The value 1DO = 5 is returned if the routine plans to accept, or IDO =6
if it plans to reject. The value 1DO may be changed by the user (by changing 100 from
6 to 5) to force acceptance of a step that would otherwise be rejected. Relevant
parameters to observe after return from an interrupt are I1DO, HTRIAL, NSTEP, NFCN,
NJE, T and Y. The array Y contains the newly computed trial value y().

Description

The routine TVPAG solves a system of first-order ordinary differential equations of the form
V' =f(t,y) or Ay’ = f(t, y) with initial conditions where 4 is a square nonsingular matrix of order
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N. Two classes of implicit linear multistep methods are available. The first is the implicit
Adams-Moulton method (up to order twelve); the second uses the backward differentiation
formulas BDF (up to order five). The BDF method is often called Gear’s stiff method. In both
cases, because basic formulas are implicit, a system of nonlinear equations must be solved at
each step. The deriviative matrix in this system has the form L = 4 + nJ where 1 is a small
number computed by IVPAG and J is the Jacobian. When it is used, this matrix is computed in
the user-supplied routine FCNJ or else it is approximated by divided differences as a default.
Using defaults, 4 is the identity matrix. The data structure for the matrix L may be identified to
be real general, real banded, symmetric positive definite, or banded symmetric positive definite.
The default structure for L is real general.

Example 2

The BDF method of 1VPAG is used to solve Example 2 of TVPRK, page 837. We set

PARAM(12) =2 to designate the BDF method. A chord or modified Newton method, with the
Jacobian computed by divided differences, is used to solve the nonlinear equations. Thus, we set
PARAM(13) = 2. The number of evaluations of y' is printed after the last output point, showing
the efficiency gained when using a stiff solver compared to using IVPRK on this problem. The
number of evaluations may vary, depending on the accuracy and other arithmetic characteristics
of the computer.

USE IVPAG INT
USE UMACH_ INT

INTEGER MXPARM, N
PARAMETER (MXPARM=50, N=2)
SPECIFICATIONS FOR PARAMETERS
INTEGER MABSE, MBDF, MSOLVE
PARAMETER (MABSE=1, MBDF=2, MSOLVE=2)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER IDO, ISTEP, NOUT
REAL A(l,1), PARAM(MXPARM), T, TEND, TOL, Y(N)
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL FCN, FCNJ
CALL UMACH (2, NOUT)
Set initial conditions
T = 0.0
Y(1) = 1.0
Y(2) = 0.0
Set error tolerance
TOL = 0.001
Set PARAM to defaults
PARAM = 0.0EO
PARAM (10) = MABSE
Select BDF method
PARAM (12) = MBDF
Select chord method and
a divided difference Jacobian.
PARAM (13) = MSOLVE
Print header
WRITE (NOUT, 99998)
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IDO = 1
ISTEP = 0
10 CONTINUE
ISTEP = ISTEP + 24
TEND = ISTEP
! The array a(*,*) is not used.
CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL, &
PARAM=PARAM)
IF (ISTEP .LE. 240) THEN
WRITE (NOUT,’ (I6,3F12.3)’) ISTEP/24, T, Y
! Final call to release workspace
IF (ISTEP .EQ. 240) IDO = 3
GO TO 10
END IF
! Show number of function calls.
WRITE (NOUT,99999) PARAM(35)
99998 FORMAT (4X, ’"ISTEP’, 5X, ’'Time’, 9X, ’'Y1’, 11X, ’'Y2’")
99999 FORMAT (4X, ’"Number of fcn calls with IVPAG =', F6.0)
END
SUBROUTINE FCN (N, T, Y, YPRIME)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER N
REAL T, Y(N), YPRIME (N)
! SPECIFICATIONS FOR SAVE VARIABLES
REAL AK1l, AK2, AK3
SAVE AK1l, AK2, AK3

DATA AK1l, AK2, AK3/294.0E0, 3.0E0, 0.01020408E0/

YPRIME (1) = -Y (1) - Y(1)*Y(2) + AK1*Y(2)
YPRIME (2) = -AK2*Y (2) + AK3*(1.0E0-Y(2))*Y (1)
RETURN

END

SUBROUTINE FCNJ (N, T, Y, DYPDY)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER N

REAL T, Y(N), DYPDY (N, *)
|
RETURN
END
Output
ISTEP Time Y1 Y2
1 24.000 0.689 0.002
2 48.000 0.636 0.002
3 72.000 0.590 0.002
4 96.000 0.550 0.002
5 120.000 0.515 0.002
6 144.000 0.485 0.002
7 168.000 0.458 0.002
8 192.000 0.434 0.001
9 216.000 0.412 0.001
10 240.000 0.392 0.001
Number of fcn calls with IVPAG = 73.
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Example 3

The BDF method of 1VPAG is used to solve the so-called Robertson problem:

J/{ SO TN, %(O):l
Yy ==y =¥ ¥,(0)=0
Vi =60, ¥;,(0)=0

¢, =0.04,¢c, =10%,¢, =3x10’ 0<r<10

Output is obtained after each unit of the independent variable. A user-provided subroutine for
the Jacobian matrix is used. An absolute error tolerance of 107 is required.

USE IVPAG_INT
USE UMACH_INT
INTEGER MXPARM, N
PARAMETER (MXPARM=50, N=3)
! SPECIFICATIONS FOR PARAMETERS
INTEGER MABSE, MBDF, MSOLVE
PARAMETER (MABSE=1, MBDF=2, MSOLVE=1)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER IDO, ISTEP, NOUT
REAL A(1,1), PARAM(MXPARM), T, TEND, TOL, Y (N)
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL FCN, FCNJ

CALL UMACH (2, NOUT)
! Set initial conditions

T =20.0

Y(1) = 1.0
Y(2) = 0.0
Y(3) = 0.0

! Set error tolerance
TOL = 1.0E-5

! Set PARAM to defaults
PARAM = 0.0EO

! Select absolute error control

PARAM (10) = MABSE

! Select BDF method
PARAM (12) = MBDF

! Select chord method and

! a user-provided Jacobian.
PARAM (13) = MSOLVE

! Print header
WRITE (NOUT,99998)
IDO = 1
ISTEP = 0

10 CONTINUE

ISTEP = ISTEP + 1
TEND = ISTEP

! The array a(*,*) is not used.
CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL &

PARAM=PARAM)
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IF (ISTEP .LE. 10) THEN
WRITE (NOUT,’ (I6,F12.2,3F13.5)") ISTEP, T, Y
! Final call to release workspace
IF (ISTEP .EQ. 10) IDO = 3
GO TO 10
END IF
99998 FORMAT (4X, 'ISTEP’, 5X, 'Time’, 9X, ’'Y1’, 11X, ’'Y2', 11X, &
IYBI)
END
SUBROUTINE FCN (N, T, Y, YPRIME)
! SPECIFICATIONS FOR ARGUMENTS

INTEGER N
REAL T, Y(N), YPRIME (N)
! SPECIFICATIONS FOR SAVE VARIABLES
REAL ci, c2, C3
SAVE ci, c2, C3

DATA Cl1, C2, C3/0.04E0, 1.0E4, 3.0E7/

YPRIME (1) = -Cl*Y (1) + C2*Y (2)*Y(3)
YPRIME (3) = C3*Y(2)**2

YPRIME (2) = -YPRIME (1) - YPRIME (3)
RETURN

END

SUBROUTINE FCNJ (N, T, Y, DYPDY)
! SPECIFICATIONS FOR ARGUMENTS

INTEGER N
REAL T, Y(N), DYPDY(N,*)
! SPECIFICATIONS FOR SAVE VARIABLES
REAL c1, c2, C3
SAVE ci, c2, C3

! SPECIFICATIONS FOR SUBROUTINES
EXTERNAL SSET

DATA Cl1, C2, C3/0.04E0, 1.0E4, 3.0E7/

! Clear array to zero
CALL SSET (N**2, 0.0, DYPDY, 1)

! Compute partials

DYPDY (1,1) = -C1

DYPDY (1,2) = C2*Y(3)

DYPDY (1,3) = C2*Y(2)

DYPDY (3,2) = 2.0*C3*Y(2)

DYPDY (2,1) = -DYPDY(1,1)

DYPDY (2,2) = -DYPDY(1,2) - DYPDY(3,2)

DYPDY (2,3) = -DYPDY (1, 3)

RETURN

END

Output

ISTEP Time Y1 Y2 Y3
1 1.00 0.96647 0.00003 0.03350
2 2.00 0.94164 0.00003 0.05834
3 3.00 0.92191 0.00002 0.07806
4 4.00 0.90555 0.00002 0.09443
5 5.00 0.89153 0.00002 0.10845
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6 6.00 0.87928 0.00002 0.12070
7 7.00 0.86838 0.00002 0.13160
8 8.00 0.85855 0.00002 0.14143
9 9.00 0.84959 0.00002 0.15039
10 10.00 0.84136 0.00002 0.15862
Example 4
Solve the partial differential equation
L Ou O’u
ot ox’

with the initial condition
u(t=0,x)=sinx
and the boundary conditions
ut,x=0)=u(t,x=m)=0
on the square [0, 1] x [0, n], using the method of lines with a piecewise-linear Galerkin

discretization. The exact solution is u(z, x) = exp(1 — et) sin x. The interval [0, «t] is divided into
equal intervals by choosing breakpoints x;, = kn/(N+ 1) for k=0, ..., N+ 1. The unknown
function u(¢, x) is approximated by

sz:le (1) ¢ (x)

where ¢, (x) is the piecewiselinear function that equals 1 at x; and is zero at all of the other

breakpoints. We approximate the partial differential equation by a system of N ordinary
differential equations, 4 dc/dt = Rc where A and R are matrices of order N. The matrix 4 is
given by
e'2h/3 ifi=
—t z —t . .
4;=e JO ¢l.(x) ¢j(x)dx:e h/6 ifi=jxl
0 otherwise

where & = 1/(N + 1) is the mesh spacing. The matrix R is given by
2/h ifi=j
R, = j0”¢;(x)¢j(x) dx = — j0”¢;(x)¢_;(x)dx =1/h ifi=j+l
0  otherwise
The integrals involving
¢/

are assigned the values of the integrals on the right-hand side, by using the boundary values and
integration by parts. Because this system may be stiff, Gear’s BDF method is used.
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In the following program, the array Y(1:N) corresponds to the vector of coefficients, c. Note that
Y contains N + 2 elements; v(0) and Y(N + 1) are used to store the boundary values. The matrix 4
depends on ¢ so we set PARAM(19) = 2 and evaluate 4 when IVPAG returns with 100 = 7. The
subroutine FCN computes the vector Rc, and the subroutine FCNJ computes R. The matrices A
and R are stored as band-symmetric positive-definite structures having one upper co-diagonal.

USE IVPAG_ INT
USE CONST_INT
USE WRRRN INT
USE SSET INT
INTEGER LDA, N, NPARAM, NUC
PARAMETER (N=9, NPARAM=50, NUC=1, LDA=NUC+1)

! SPECIFICATIONS FOR PARAMETERS
INTEGER NSTEP
PARAMETER (NSTEP=4)

! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER I, IATYPE, IDO, IMETH, INORM, ISTEP, MITER, MTYPE
REAL A(LDA,N), C, HINIT, PARAM(NPARAM), PI, T, TEND, TMAX, &

TOL, XPOINT (0:N+1), Y (0:N+1)

CHARACTER TITLE*10

! SPECIFICATIONS FOR COMMON /COMHX/
COMMON /COMHX/ HX
REAL HX

! SPECIFICATIONS FOR INTRINSICS
INTRINSIC EXP, REAL, SIN
REAL EXP, REAL, SIN

! SPECIFICATIONS FOR SUBROUTINES

! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL FCN, FCNJ

! Initialize PARAM

HINIT = 1.0E-3
INORM =1

IMETH = 2

MITER =1

MTYPE = 3

IATYPE = 2

PARAM = 0.0EO
PARAM (1) = HINIT
PARAM (10) = INORM
PARAM (12) = IMETH
PARAM (13) = MITER
PARAM (14) = MTYPE
PARAM (16) = NUC
PARAM (19) = IATYPE

! Initialize other arguments
PI = CONST('PI")
HX = PI/REAL (N+1)
CALL SSET (N-1, HX/6., A(l:,2), LDA)
CALL SSET (N, 2.*HX/3., A(2:,1), LDA)
DO 10 I=0, N + 1

XPOINT (I) = I*HX
Y (I) = SIN(XPOINT(I))
10 CONTINUE
TOL = 1.0E-6
T = 0.0
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TMAX = 1.0
! Integrate ODE

NEQ=N, A=A, &

l)l

FOR ARGUMENTS

FOR LOCAL VARIABLES

FOR COMMON /COMHX/

FOR SUBROUTINES

FOR ARGUMENTS

FOR COMMON /COMHX/

IDO =1
ISTEP = 0
20 CONTINUE
ISTEP = ISTEP + 1
TEND = TMAX*REAL (ISTEP)/REAL (NSTEP)
30 CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y(1l:),
TOL=TOL, PARAM=PARAM)
! Set matrix A
IF (IDO .EQ. 7) THEN
C = EXP(-T)
CALL SSET (N-1, C*HX/6., A(l:,2), LDA)
CALL SSET (N, 2.*C*HX/3., A(2:,1), LDA)
GO TO 30
END IF
IF (ISTEP .LE. NSTEP) THEN
! Print solution
WRITE (TITLE,’ (A,F5.3,A)") ’'U(T=", T,
CALL WRRRN (TITLE, Y, 1, N+2, 1)
! Final call to release workspace
IF (ISTEP .EQ. NSTEP) IDO = 3
GO TO 20
END IF
END
!
SUBROUTINE FCN (N, T, Y, YPRIME)
! SPECIFICATIONS
INTEGER N
REAL T, Y(*), YPRIME (N)
! SPECIFICATIONS
INTEGER I
! SPECIFICATIONS
COMMON /COMHX/ HX
REAL HX
! SPECIFICATIONS
EXTERNAL SSCAL
i
YPRIME (1) = -2.0*Y (1) + Y (2)
DO 10 I=2, N - 1
YPRIME (I) = -2.0*Y(I) + Y(I-1) + Y(I+1)
10 CONTINUE
YPRIME (N) = -2.0*Y(N) + Y(N-1)
CALL SSCAL (N, 1.0/HX, YPRIME, 1)
RETURN
END
!
SUBROUTINE FCNJ (N, T, Y, DYPDY)
! SPECIFICATIONS
INTEGER N
REAL T, Y(*), DYPDY(2,%*)
! SPECIFICATIONS
COMMON /COMHX/ HX
REAL HX
! SPECIFICATIONS

FOR SUBROUTINES
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EXTERNAL SSET

CALL SSET (N-1, 1.0/HX, DYPDY(1,2), 2)
CALL SSET (N, -2.0/HX, DYPDY(2,1), 2)

RETURN
END
Output
U(T=0.250)
1 2 3 4 5 6 7 8

0.0000 0.2321 0.4414 0.6076 0.7142 0.7510 0.7142 0.6076

0.4414 0.2321 0.0000

U(T=0.500)
1 2 3 4 5 6 7 8
0.0000 0.1607 0.3056 0.4206 0.4945 0.5199 0.4945 0.4206

0.3056 0.1607 0.0000

U(T=0.750)
1 2 3 4 5 6 7 8
0.0000 0.1002 0.1906 0.2623 0.3084 0.3243 0.3084 0.2623

0.1906 0.1002 0.0000

U(T=1.000)

0.0000 0.0546 0.1039 0.1431 0.1682 0.1768 0.1682 0.1431

9 10 11
0.1039 0.0546 0.0000

BVPFD

Solves a (parameterized) system of differential equations with boundary conditions at two points,
using a variable order, variable step size finite difference method with deferred corrections.

Required Arguments

FCNEQN — User-supplied SUBROUTINE to evaluate derivatives. The usage is CALL
FCNEQN (N, T, Y, P, DYDT), where
N — Number of differential equations. (Input)
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FCNJAC —

T — Independent variable, . (Input)

Y — Array of size N containing the dependent variable values, y(t).
(Input)

p — Continuation parameter, p. (Input)

See Comment 3.

DYDT — Array of size N containing the derivatives y'(f). (Output)

The name FCNEQN must be declared EXTERNAL in the calling program.

User-supplied SUBROUTINE to evaluate the Jacobian. The usage is CALL
FCNJAC (N, T, Y, P, DYPDY), where

N — Number of differential equations. (Input)

T — Independent variable, ¢. (Input)

Y — Array of size N containing the dependent variable values. (Input)
p — Continuation parameter, p. (Input)

See Comments 3.

DYPDY — N by N array containing the partial derivatives a;; = 0f;/ 0 y;
evaluated at (¢, y). The values a;; are returned in DYPDY(4, J).

(Output)

The name FCNJAC must be declared EXTERNAL in the calling program.

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The usage is

FCNPEQ —

CALL FCNBC (N, YLEFT, YRIGHT, P, H), where

N — Number of differential equations. (Input)

YLEFT — Array of size N containing the values of the dependent
variable at the left endpoint. (Input)

YRIGHT — Array of size N containing the values of the dependent
variable at the right endpoint. (Input)

P — Continuation parameter, p. (Input)

See Comment 3.

H — Array of size N containing the boundary condition residuals.
(Output)

The boundary conditions are defined by /#;=0; fori =1, ..., N. The left endpoint
conditions must be defined first, then, the conditions involving both endpoints,
and finally the right endpoint conditions.

The name FCNBC must be declared EXTERNAL in the calling program.

User-supplied SUBROUTINE to evaluate the partial derivative of y" with respect
to the parameter p. The usage is

CALL FCNPEQ (N, T, Y, P, DYPDP), where

N — Number of differential equations. (Input)

T — Dependent variable, ¢. (Input)

Y — Array of size N containing the dependent variable values. (Input)
p — Continuation parameter, p. (Input)

See Comment 3.

IMSL MATH/LIBRARY

Chapter 5: Differential Equations ¢ 871



DYPDP — Array of size N containing the partial derivatives a; ; = 0f; /0y;
evaluated at (7, y). The values a;; are returned in DYPDY(4, J).
(Output)

The name FCNPEQ must be declared EXTERNAL in the calling program.

FCNPBC — User-supplied SUBROUTINE to evaluate the derivative of the boundary
conditions with respect to the parameter p. The usage is
CALL FCNPBC (N, YLEFT, YRIGHT, P, H),where
N — Number of differential equations. (Input)
YLEFT — Array of size N containing the values of the dependent
variable at the left endpoint. (Input)
YRIGHT — Array of size N containing the values of the dependent
variable at the right endpoint. (Input)
P — Continuation parameter, p. (Input)
See Comment 3.
H — Array of size N containing the derivative of f; with respect to p.

(Output)
The name FCNPBC must be declared EXTERNAL in the calling program.

NLEFT — Number of initial conditions. (Input)
The value NLEFT must be greater than or equal to zero and less than N.

NCUPBC — Number of coupled boundary conditions. (Input)
The value NLEFT + NCUPBC must be greater than zero and less than or equal to N.

TLEFT — The left endpoint. (Input)
TRIGHT — The right endpoint. (Input)
PISTEP — Initial increment size for p. (Input)
If this value is zero, continuation will not be used in this problem. The routines FCNPEQ

and FCNPBC will not be called.

TOL — Relative error control parameter. (Input)
The computations stop when ABS(ERROR(J, I))/MAX(ABS(Y(J, 1)), 1.0).LT.TOL for all
J=1,...,Nand I =1, ..., NGRID. Here, ERROR(J, I) is the estimated error in Y(J, I).

TINIT — Array of size NINIT containing the initial grid points. (Input)

YINIT — Array of size N by NINIT containing an initial guess for the values of v at the
points in TINIT. (Input)

LINEAR — Logical . TRUE. if the differential equations and the boundary conditions are
linear. (Input)
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MXGRID — Maximum number of grid points allowed. (Input)
NFINAL — Number of final grid points, including the endpoints. (Output)

TFINAL — Array of size MXGRID containing the final grid points. (Output)
Only the first NFINAL points are significant.

YFINAL — Array of size N by MXGRID containing the values of Y at the points in TFINAL.
(Output)

ERREST — Array of size N. (Output)
ERREST(J) is the estimated error in Y(J).

Optional Arguments

N — Number of differential equations. (Input)
Default: N = size (YINIT,1).

NINIT — Number of initial grid points, including the endpoints. (Input)
It must be at least 4.
Default: NINTT = size (TINIT,I).

LDYINI — Leading dimension of YINIT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDYINI =size (YINIT,]).

PRINT — Logical . TRUE. if intermediate output is to be printed. (Input)
Default: PRINT = .FALSE.

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDYFIN = size (YFINAL,I).

FORTRAN 90 Interface

Generic: CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, NLEFT,
NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT,
YINIT, LINEAR, MXGRID, NFINAL, TFINAL, YFINAL,
ERREST [,..])

Specific: The specific interface names are S_BVPFD and D_BVPFD.

FORTRAN 77 Interface

Single: CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, N,
NLEFT, NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, NINIT, TINIT,
YINIT, LDYINI, LINEAR, PRINT, MXGRID, NFINAL, TFINAL,
YFINAL, LDYFIN, ERREST)
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Double: The double precision name is DBVPFD.

Example 1
This example solves the third-order linear equation
y"'=2y"+y —y=sint

subject to the boundary conditions y(0) = y(2r) and y'(0) = »'(2r) = 1. (Its solution is y =sin ¢.)
To use BVPFD, the problem is reduced to a system of first-order equations by defining
V| =¥, ¥, =y" and y; =)". The resulting system is

Y=Y ,(0)-1=0
Vi=Ys 1(0)-» (27)=0
Vi=2y,—y,+y, +sint ¥, (27)-1=0

Note that there is one boundary condition at the left endpoint # = 0 and one boundary condition
coupling the left and right endpoints. The final boundary condition is at the right endpoint. The
total number of boundary conditions must be the same as the number of equations (in this case
3).

Note that since the parameter p is not used in the call to BVPFD, the routines FCNPEQ and
FCNPBC are not needed. Therefore, in the call to BVPFD, FCNEQN and FCNBC were used in place
of FCNPEQ and FCNPBC.

USE BVPFD INT
USE UMACH INT
USE CONST_ INT
! SPECIFICATIONS FOR PARAMETERS
INTEGER LDYFIN, LDYINI, MXGRID, NEQNS, NINIT
PARAMETER (MXGRID=45, NEQNS=3, NINIT=10, LDYFIN=NEQNS, &
LDYINI=NEQNS)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER I, J, NCUPBC, NFINAL, NLEFT, NOUT
REAL ERREST (NEQNS), PISTEP, TFINAL (MXGRID), TINIT(NINIT), &
TLEFT, TOL, TRIGHT, YFINAL(LDYFIN,MXGRID), &
YINIT (LDYINI,NINIT)
LOGICAL LINEAR, PRINT
! SPECIFICATIONS FOR INTRINSICS
INTRINSIC FLOAT
REAL FLOAT
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL FCNBC, FCNEQN, FCNJAC
! Set parameters

NLEFT =1

NCUPBC = 1

TOL = .001

TLEFT = 0.0

TRIGHT = CONST ('PI’)
TRIGHT = 2.0*TRIGHT

PISTEP = 0.0
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PRINT = .FALSE.
LINEAR .TRUE.
! Define TINIT
DO 10 I=1, NINIT
TINIT(I) = TLEFT 4+ (I-1)* (TRIGHT-TLEFT)/FLOAT (NINIT-1)
10 CONTINUE
! Set YINIT to zero
YINIT = 0.0EO
! Solve problem
CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNEQN, FCNBC, NLEFT, &
NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT, &
YINIT, LINEAR, MXGRID, NFINAL, &
TFINAL, YFINAL, ERREST)
! Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99997)
WRITE (NOUT,99998) (I,TFINAL(I), (YFINAL(J,I),J=1,NEQNS),I=1, &
NFINAL)
WRITE (NOUT,99999) (ERREST (J),J=1,NEQNS)
99997 FORMAT (4X, '"1’, 7X, 'T’, 14X, 'Yl’, 13X, ’'Y2', 13X, 'Y3")
99998 FORMAT (I5, 1P4E15.6)
99999 FORMAT (’ Error estimates’, 4X, 1P3E15.6)
END
SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDX)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS
REAL T, P, Y(NEQNS), DYDX (NEQNS)
! SPECIFICATIONS FOR INTRINSICS
INTRINSIC SIN

REAL SIN

! Define PDE
DYDX (1) = Y (2)
DYDX (2) = Y (3)
DYDX (3) = 2.0*Y(3) - Y(2) + Y(1) + SIN(T)
RETURN
END

SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY)

! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS
REAL T, P, Y(NEQNS), DYPDY (NEQNS,NEQNS)

! Define d(DYDX) /dY
DYPDY (1,1)
DYPDY (1, 2)
DYPDY (1, 3)
DYPDY (2, 1)
DYPDY (2, 2)
DYPDY (2, 3)
DYPDY (3, 1)
DYPDY (3, 2)
DYPDY (3, 3)
RETURN
END
SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)

! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS
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REAL P, YLEFT (NEQNS), YRIGHT (NEQNS), F (NEQNS)
! Define boundary conditions
F(1) = YLEFT(2) - 1.0
F(2) = YLEFT (1) - YRIGHT (1)
F(3) = YRIGHT(2) - 1.0
RETURN
END
Output
I T Y1l Y2 Y3
1 0.000000E+00 -1.123191E-04 1.000000E+00 6.242319E05
2 3.490659E-01 3.419107E-01 9.397087E-01 -3.419580E01
3 6.981317E-01 6.426908E-01 7.660918E-01 -6.427230E-01
4 1.396263E+00 9.847531E-01 1.737333E-01 -9.847453E-01
5 2.094395E+00 8.660529E-01 -4.998747E-01 -8.660057E-01
6 2.792527E+00 3.421830E-01 -9.395474E-01 -3.420648E-01
7 3.490659E+00 -3.417234E-01 -9.396111E-01 3.418948E-01
8 4.188790E+00 -8.656880E-01 -5.000588E-01 8.658733E-01
9 4.886922E+00 -9.845794E-01 1.734571E-01 9.847518E-01
10 5.585054E+00 -6.427721E-01 7.658258E-01 6.429526E-01
11 5.934120E+00 -3.420819E-01 9.395434E-01 3.423986E-01
12 6.283185E+00 -1.123186E-04 1.000000E+00 6.743190E-04
Error estimates 2.840430E-04 1.792939E-04 5.588399E-04
Comments
1. Workspace may be explicitly provided, if desired, by use of B2PFD/DB2PFD. The
reference is:
CALL B2PFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, N, NLEFT,
NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, NINIT, TINIT, YINIT, LDYINTI,
LINEAR, PRINT, MXGRID, NFINAL, TFINAL, YFINAL, LDYFIN, ERREST,
RWORK, IWORK)

The additional arguments are as follows:

RWORK — Floating-point work array of size N (3N * MXGRID + 4N + 1) +
MXGRID * (7N + 2).

IWORK — Integer work array of size 2N * MXGRID + N + MXGRID.

2. Informational errors
Type Code
4 1 More than MXGRID grid points are needed to solve the problem.
4 2 Newton’s method diverged.
3 3 Newton’s method reached roundoff error level.
3. If the value of PISTEP is greater than zero, then the routine BVPFD assumes that the

user has embedded the problem into a one-parameter family of problems:

Y =y(typ
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h(ytleﬁa Ytrights P =0

such that for p = 0 the problem is simple. For p = 1, the original problem is recovered.
The routine BVPFD automatically attempts to increment from p = 0 to p = 1. The value
PISTEP is the beginning increment used in this continuation. The increment will
usually be changed by routine BVPFD, but an arbitrary minimum of 0.01 is imposed.

4. The vectors TINIT and TFINAL may be the same.
5. The arrays YINIT and YFINAL may be the same.
Description

The routine BVPFD is based on the subprogram PASVA3 by M. Lentini and V. Pereyra (see
Pereyra 1978). The basic discretization is the trapezoidal rule over a nonuniform mesh. This
mesh is chosen adaptively, to make the local error approximately the same size everywhere.
Higher-order discretizations are obtained by deferred corrections. Global error estimates are
produced to control the computation. The resulting nonlinear algebraic system is solved by
Newton’s method with step control. The linearized system of equations is solved by a special
form of Gauss elimination that preserves the sparseness.

Example 2
In this example, the following nonlinear problem is solved:
Yy =y + (1 +sin*f)sint=0

with y(0) = y(m) = 0. Its solution is y = sin #. As in Example 1, this equation is reduced to a
system of first-order differential equations by defining y; =y and y, =)'. The resulting system is

=D »(0)=0
V= —(1+sin2 t)sint " (7[): 0

In this problem, there is one boundary condition at the left endpoint and one at the right
endpoint; there are no coupled boundary conditions.

Note that since the parameter p is not used, in the call to BVPFD the routines FCNPEQ and
FCNPBC are not needed. Therefore, in the call to BVPFD, FCNEQON and FCNBC were used in place
of FCNPEQ and FCNPBC.

USE BVPFD INT
USE UMACH_INT
USE CONST_INT

! SPECIFICATIONS FOR PARAMETERS
INTEGER LDYFIN, LDYINI, MXGRID, NEQNS, NINIT
PARAMETER (MXGRID=45, NEQNS=2, NINIT=12, LDYFIN=NEQNS, &
LDYINI=NEQNS)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER I, J, NCUPBC, NFINAL, NLEFT, NOUT
REAL ERREST (NEQNS), PISTEP, TFINAL (MXGRID), TINIT(NINIT), &
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TLEFT, TOL, TRIGHT, YFINAL (LDYFIN,MXGRID), &
YINIT (LDYINI,NINIT)
LOGICAL LINEAR, PRINT
! SPECIFICATIONS FOR INTRINSICS
INTRINSIC FLOAT
REAL FLOAT
! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL FCNBC, FCNEQN, FCNJAC
! Set parameters

NLEFT = 1

NCUPBC = 0

TOL = .001

TLEFT = 0.0

TRIGHT = CONST (’'PI")

PISTEP = 0.0

PRINT = .FALSE.

LINEAR = .FALSE.

! Define TINIT and YINIT

DO 10 I=1, NINIT
TINIT(I) = TLEFT + (I-1)* (TRIGHT-TLEFT)/FLOAT (NINIT-1)
YINIT(1,I) = 0.4* (TINIT(I)-TLEFT)* (TRIGHT-TINIT (I))
YINIT(2,I) = 0.4* (TLEFT-TINIT (I)+TRIGHT-TINIT(I))

10 CONTINUE
! Solve problem
CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNEQN, FCNBC, NLEFT, &
NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT, &
YINIT, LINEAR, MXGRID, NFINAL, &
TFINAL, YFINAL, ERREST)
! Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99997)
WRITE (NOUT,99998) (I,TFINAL(I), (YFINAL(J,I),J=1,NEQNS),I=1, &
NFINAL)
WRITE (NOUT,99999) (ERREST (J),J=1,NEQNS)
99997 FORMAT (4X, '"1’, 7X, 'T’, 14X, 'Yl’, 13X, 'Y2")
99998 FORMAT (I5, 1P3E15.6)
99999 FORMAT ('’ Error estimates’, 4X, 1P2E15.6)
END
SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDT)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS
REAL T, P, Y(NEQNS), DYDT (NEQNS)
! SPECIFICATIONS FOR INTRINSICS
INTRINSIC SIN

REAL SIN

! Define PDE
DYDT (1) = Y (2)
DYDT (2) = Y(1)**3 — SIN(T)*(1.0+SIN(T)**2)
RETURN
END

SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY)

! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS
REAL T, P, Y(NEQNS), DYPDY (NEQNS,NEQNS)

! Define d(DYDT) /dY
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DYPDY (1,1) = 0.0
DYPDY (1, 2) 1.0
DYPDY (2,1) 3.0%Y (1) **2
DYPDY (2,2) = 0.0
RETURN
END
SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS
REAL P, YLEFT (NEQNS), YRIGHT (NEQNS), F (NEQNS)
! Define boundary conditions
F(l) = YLEFT (1)
F(2) = YRIGHT (1)
RETURN
END
Output
I T Y1l Y2
1 0.000000E+00 0.000000E+00 9.999277E-01
2 2.855994E-01 2.817682E-01 9.594315E-01
3 5.711987E-01 5.406458E-01 8.412407E-01
4 8.567980E-01 7.557380E-01 6.548904E-01
5 1.142397E+00 9.096186E-01 4.154530E-01
6 1.427997E+00 9.898143E-01 1.423307E-01
7 1.713596E+00 9.898143E-01 -1.423307E-01
8 1.999195E+00 9.096185E-01 -4.154530E-01
9 2.284795E+00 7.557380E-01 -6.548903E-01
10 2.570394E+00 5.406460E-01 -8.412405E-01
11 2.855994E+00 2.817683E-01 -9.594313E-01
12 3.141593E+00 0.000000E+00 =-9.999274E-01
Error estimates 3.906105E-05 7.124186E-05

Example 3

In this example, the following nonlinear problem is solved:

. 3_ﬂ(t_lJ2/3_(
y =y 5

9

{——

18
)

with y(0) = y(1) = n/2. As in the previous examples, this equation is reduced to a system of first-
order differential equations by defining y; =y and y, =)'. The resulting system is

y(0)=7/2

V=Y,
, ;40
=0 _? I——=

1
2

Jm{z-g (1) =772

The problem is embedded in a family of problems by introducing the parameter p and by
changing the second differential equation to
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2/3 8

r_ 3+ﬂ l‘—l _ t—l
V2 =D 9 ) 5

At p =0, the problem is linear; and at p = 1, the original problem is recovered. The derivatives 0
y'/0p must now be specified in the subroutine FCNPEQ. The derivatives 0f/0p are zero in
FCNPBC.

USE BVPFD INT
USE UMACH_ INT

! SPECIFICATIONS FOR PARAMETERS
INTEGER LDYFIN, LDYINI, MXGRID, NEQONS, NINIT
PARAMETER (MXGRID=45, NEQNS=2, NINIT=5, LDYFIN=NEQNS, &

LDYINI=NEQNS)

! SPECIFICATIONS FOR LOCAL VARIABLES

INTEGER NCUPBC, NFINAL, NLEFT, NOUT

REAL ERREST (NEQNS), PISTEP, TFINAL(MXGRID), TLEFT, TOL, &
XRIGHT, YFINAL (LDYFIN,MXGRID)
LOGICAL LINEAR, PRINT
! SPECIFICATIONS FOR SAVE VARIABLES
INTEGER I, J
REAL TINIT (NINIT), YINIT(LDYINI,NINIT)
SAVE I, J, TINIT, YINIT

! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL FCNBC, FCNEQN, FCNJAC, FCNPBC, FCNPEQ

DATA TINIT/0.0, 0.4, 0.5, 0.6, 1.0/

DATA ((YINIT(I,J),J=1,NINIT),I=1,NEQNS)/0.15749, 0.00215, 0.0, &
0.00215, 0.15749, -0.83995, -0.05745, 0.0, 0.05745, 0.83995/

! Set parameters

NLEFT = 1

NCUPBC

TOL = .0

TLEFT

XRIGHT =

PISTEP =

PRINT

LINEAR

Il
o

o = O
= O O o

.FALSE.
.FALSE.

CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, NLEFT, &
NCUPBC, TLEFT, XRIGHT, PISTEP, TOL, TINIT, &
YINIT, LINEAR, MXGRID, NFINAL,TFINAL, YFINAL, ERREST)
! Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99997)
WRITE (NOUT,99998) (I,TFINAL(I), (YFINAL(J,I),J=1,NEQNS),I=1, &
NFINAL)
WRITE (NOUT,99999) (ERREST (J),J=1,NEQNS)
99997 FORMAT (4X, '1I’, 77X, 'T', 14X, ’'yY1’, 13X, ’'Y2")
99998 FORMAT (I5, 1P3E15.6)
99999 FORMAT ('’ Error estimates’, 4X, 1P2E15.6)
END
SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDT)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS
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REAL T, P, Y(NEQNS), DYDT (NEQNS)
! Define PDE
DYDT (1) = Y (2)
DYDT (2) = P*Y(1)**3 + 40./9.* ((T-0.5)**2)**(1./3.) - (T-0.5)**8
RETURN
END
SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS
REAL T, P, Y(NEQNS), DYPDY (NEQNS,NEQNS)
! Define d(DYDT) /dY
DYPDY (1,1) = 0.0
DYPDY (1,2) = 1.0
DYPDY (2,1) P*3.*Y (1) **2
DYPDY (2,2) = 0.0
RETURN
END
SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)
USE CONST_INT
! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS
REAL P, YLEFT (NEQNS), YRIGHT (NEQNS), F(NEQNS)
! SPECIFICATIONS FOR LOCAL VARIABLES
REAL PI
! Define boundary conditions
PI = CONST ("PI")
F(l) = YLEFT(1) - PI/2.0
F(2) = YRIGHT (1) - PI/2.0
RETURN
END
SUBROUTINE FCNPEQ (NEQNS, T, Y, P, DYPDP)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS
REAL T, P, Y(NEQNS), DYPDP (NEQNS)
! Define d(DYDT) /dP
DYPDP (1) = 0.0
DYPDP (2) = Y(1)**3
RETURN
END
SUBROUTINE FCNPBC (NEQNS, YLEFT, YRIGHT, P, DFDP)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS
REAL P, YLEFT (NEQNS), YRIGHT (NEQNS), DFDP (NEQNS)
! SPECIFICATIONS FOR SUBROUTINES
EXTERNAL SSET
! Define dF/dP
CALL SSET (NEQNS, 0.0, DFDP, 1)
RETURN
END
Output
T Y1 Y2

0.000000E+00
4.444445E-02
8.888889E-02

1.570796E+00
1.490495E+00
1.421951E+400

-1.949336E+00
-1.669567E+00
-1.419465E+00
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.333333E-01
.000000E-01
.666667E-01
.333334E-01
.000000E-01
.250000E-01
.500000E-01
.625000E-01
.750000E-01
.812500E-01
.875000E-01
.937500E-01
.000000E-01
.062500E-01
.125000E-01
.187500E-01
.250000E-01
.375000E-01
.500000E-01
.750000E-01
.000000E-01
.666667E-01
.333333E-01
.000000E-01
.666667E-01
.111111E-01
.555556E-01
.000000E+00

Error estimates

R e e e e e e e e T T = N N e e e B e

.363953E+00
.294526E+00
.243628E+00
.208785E+00
.187783E+00
.183038E+00
.179822E+00
.178748E+00
.178007E+00
.177756E+00
.177582E+00
.177480E+00
.177447E+00
.177480E+00
.177582E+00
.177756E+00
.178007E+00
.178748E+00
.179822E+00
.183038E+00
.187783E+00
.208786E+00
.243628E+00
.294526E+00
.363953E+00
.421951E+400
.490495E+00
.570796E+00
.448358E-06

R R RPRPOOBRNREOINWwN

.194307E+00
.958461E-01
.373191E-01
.135206E-01
.219351E-01
.584200E-01
.973146E-02
.233893E-02
.638248E-02
.399763E-02
.205547E-02
.061177E-02
.479182E-07
.061153E-02
.205518E-02
.399727E-02
.638219E-02
.233876E-02
.973124E-02
.584199E-01
.219350E-01
.135205E-01
.373190E-01
.958461E-01
.194307E+00
.419465E+00
.669566E+00
.949336E+00
.549869E-05

BVPMS

Required Arguments

FCNEQN (NEQNS, T, Y, P, DYDT), where

NEQNS — Number of equations. (Input)
T — Independent variable, ¢. (Input)

Y — Array of length NEQONS containing the dependent variable. (Input)

P — Continuation parameter used in solving highly nonlinear problems. (Input)
See Comment 4.

DYDT — Array of length NEQNS containing )" at T. (Output)

Solves a (parameterized) system of differential equations with boundary conditions at two points,
using a multiple-shooting method.

FCNEQN — User-supplied SUBROUTINE to evaluate derivatives. The usage is CALL

The name FCNEQN must be declared EXTERNAL in the calling program.

FCNJAC

FCNJAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage is CALL
(NEQNS, T, Y, P, DYPDY) , where
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NEQNS — Number of equations. (Input)

T — Independent variable. (Input)

Y — Array of length NEQNS containing the dependent variable. (Input)

p — Continuation parameter used in solving highly nonlinear problems. (Input)
See Comment 4.

DYPDY — Array of size NEQNS by NEQNS containing the Jacobian. (Output)
The entry DYPDY(i, /) contains the partial derivative 0 f;/0 y; evaluated at (4, y).

The name FCNJAC must be declared EXTERNAL in the calling program.

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The usage is
CALL FCNBC (NEQNS, YLEFT, YRIGHT, P, H), where

NEQNS — Number of equations. (Input)

YLEFT — Array of length NEQNS containing the values of Y at TLEFT. (Input)
YRIGHT — Array of length NEQNS containing the values of v at

TRIGHT. (Input)

p — Continuation parameter used in solving highly nonlinear problems. (Input)

See Comment 4.

H — Array of length NEQNS containing the boundary function values. (Output)

The computed solution satisfies (within BTOL) the conditions #;,=0,i=1, ..., NEQNS.

The name FCNBC must be declared EXTERNAL in the calling program.
TLEFT — The left endpoint. (Input)
TRIGHT — The right endpoint. (Input)

NMAX — Maximum number of shooting points to be allowed. (Input)
If NINIT is nonzero, then NMAX must equal NINIT. It must be at least 2.

NFINAL — Number of final shooting points, including the endpoints. (Output)

TFINAL — Vector of length NMAX containing the final shooting points. (Output)
Only the first NFINAL points are significant.

YFINAL — Array of size NEQNS by NMAX containing the values of Y at the points in TFINAL.
(Output)

Optional Arguments
NEQNS — Number of differential equations. (Input)

DTOL — Differential equation error tolerance. (Input)
An attempt is made to control the local error in such a way that the global error is
proportional to DTOL.
Default: DTOL = 1.0e-4.

IMSL MATH/LIBRARY Chapter 5: Differential Equations ¢ 883



BTOL — Boundary condition error tolerance. (Input)
The computed solution satisfies the boundary conditions, within BTOL tolerance.
Default: BTOL = 1.0e-4.

MAXIT — Maximum number of Newton iterations allowed. (Input)
Iteration stops if convergence is achieved sooner. Suggested values are MAXIT = 2 for
linear problems and MAXIT = 9 for nonlinear problems.
Default: MAXIT = 9.

NINIT — Number of shooting points supplied by the user. (Input)
It may be 0. A suggested value for the number of shooting points is 10.
Default: NINIT = 0.

TINIT — Vector of length NINIT containing the shooting points supplied by the user.
(Input)
IfNINIT =0, then TINIT is not referenced and the routine chooses all of the shooting
points. This automatic selection of shooting points may be expensive and should only
be used for linear problems. If NINIT is nonzero, then the points must be an increasing

sequence with TINIT(]l) = TLEFT and TINIT(NINIT)= TRIGHT. By default, TINIT is
not used.

YINIT — Array of size NEQNS by NINIT containing an initial guess for the values of Y at the
points in TINIT. (Input)
YINIT is not referenced if NINIT = 0. By default, YINIT is not used.

LDYINI — Leading dimension of YINIT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDYINI = size (YINIT,1).

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDYFIN = size (YFINAL,I).

FORTRAN 90 Interface

Generic: CALL BVPMS (FCNEQN, FCNJAC, FCNBC, TLEFT, TRIGHT,
NMAX, NFINAL, TFINAL, YFINAL [,..])

Specific: The specific interface names are S_BVPMS and D_BVPIVS.

FORTRAN 77 Interface

Single: CALL BVPMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT,
DTOL, BTOL, MAXIT, NINIT, TINIT, YINIT, LDYINI, NMAX,
NFINAL, TFINAL, YFINAL, LDYFIN)

Double: The double precision name is DBVPNS.
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Example
The differential equations that model an elastic beam are (see Washizu 1968, pages 142—143):

M —M+L(x)=0
El

xx

EIW, +M =0
EA, (U, +W;/2)-N=0
N, =0

where U is the axial displacement, W is the transverse displacement, N is the axial force, M is
the bending moment, E is the elastic modulus, I is the moment of inertia, A, is the cross-
sectional area, and L(x) is the transverse load.

Assume we have a clamped cylindrical beam of radius 0.1in, a length of 10in, and an elastic
modulus E = 10.6 x 10° Ib/in®. Then, I=10.784 x 10~ and A, =107 in®, and the boundary
conditions are U=W =W =0 ateach end. If we let y; = U, y, = N/EA(, y; =W, y, =W,

ys = M/EI, and ys = M,/EI, then the above nonlinear equations can be written as a system of
six first-order equations.

2

V= _y74

¥, =0

Vi =,

Vi ="Ys

Vs =Y

v = A, Vs _M
I El

The boundary conditions are y; =y; =y, =0 at x = 0 and at x = 10. The loading function is
L(x)=-2,if 3 <x <7, and is zero elsewhere.

The material parameters, Ay = A0, I = AT, and E, are passed to the evaluation subprograms
using the common block PARAM.

USE BVPMS_INT
USE UMACH_INT
INTEGER LDY, NEQNS, NMAX
PARAMETER (NEQNS=6, NMAX=21, LDY=NEQNS)
! SPECIFICATIONS FOR LOCAL VARIABLES

INTEGER I, MAXIT, NFINAL, NINIT, NOUT
REAL TOL, X (NMAX), XLEFT, XRIGHT, Y (LDY,NMAX)

! SPECIFICATIONS FOR COMMON /PARAM/
COMMON /PARAM/ AO, Al, E
REAL A0, Al, E

! SPECIFICATIONS FOR INTRINSICS
INTRINSIC REAL
REAL REAL

! SPECIFICATIONS FOR SUBROUTINES
EXTERNAL FCNBC, FCNEQN, FCNJAC
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! Set material parameters

AQ = 3.14E-2
Al = 0.784E-4
E = 10.6E6
! Set parameters for BVPMS
XLEFT = 0.0
XRIGHT = 10.0
MAXIT = 19
NINIT = NMAX
Y = 0.0EO

! Define the shooting points
DO 10 I=1, NINIT
X(I) = XLEFT + REAL(I-1)/REAL(NINIT-1)* (XRIGHT-XLEFT)
10 CONTINUE
! Solve problem
CALL BVPMS (FCNEQN, FCNJAC, FCNBC, XLEFT, XRIGHT, NMAX, NFINAL, &
X, Y, MAXIT=MAXIT, NINIT=NINIT, TINIT=X, YINIT=Y)

! Print results
CALL UMACH (2, NOUT)

WRITE (NOUT,’ (26X,A/12X,A,10X,A,7X,A)’) ’'Displacement’, &
'X", '"Axial’, ’'Transvers’// &
Iel
WRITE (NOUT,’ (F15.1,1P2E15.3)’) (X(I),Y(1,I),Y(3,I),I=1,NFINAL)
END

SUBROUTINE FCNEQN (NEQNS, X, Y, P, DYDX)

! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS
REAL X, P, Y(NEQNS), DYDX (NEQNS)

! SPECIFICATIONS FOR LOCAL VARIABLES

REAL FORCE

! SPECIFICATIONS FOR COMMON /PARAM/
COMMON /PARAM/ A0, Al, E
REAL A0, Al, E

! Define derivatives
FORCE = 0.0

IF (X.GT.3.0 .AND. X.LT.7.0) FORCE = -2.0
DYDX (1) = Y(2) - P*0.5%Y(4)**2

DYDX (2) = 0.0

DYDX (3) = Y (4)

DYDX (4) = -Y(5)

DYDX (5) = Y (6)

DYDX (6) = P*A0*Y (2)*Y(5)/Al - FORCE/E/Al
RETURN

END

SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER NEQNS

REAL P, YLEFT (NEQNS), YRIGHT (NEQNS), F (NEQNS)
! SPECIFICATIONS FOR COMMON /PARAM/
COMMON /PARAM/ A0, Al, E
REAL AO, Al, E
! Define boundary conditions
F(l) = YLEFT (1)
F(2) = YLEFT (3)
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10.
15.
20.
25.
30.
35.
40.
45.
50.
55.
60.
65.
70.
75.
80.
85.
90.
95.
100.

F(3) = YLEFT (4)
F(4) = YRIGHT (1)
F(5) = YRIGHT(3)
F(6) = YRIGHT (4)
RETURN

END

SUBROUTINE FCNJAC (NEQNS, X, Y, P, DYPDY)
SPECIFICATIONS FOR ARGUMENTS

INTEGER
REAL

COMMON
REAL

DYPDY = 0.0EO

NEQNS
P, Y(NEQNS), DYPDY (NEQNS,NEQNS)
SPECIFICATIONS FOR COMMON /PARAM/

X,

/PARAM/ AQ, Al, E
A0, Al, E

SPECIFICATIONS FOR SUBROUTINES

Define partials,

DYPDY (1,2) = 1.0

DYPDY (1,4) = -P*Y (4)

DYPDY (3,4) = 1.0

DYPDY (4,5) = -1.0

DYPDY (5,6) = 1.0

DYPDY (6,2) = P*Y(5)*A0/Al

DYPDY (6,5) = P*Y(2)*A0/Al

RETURN

END
Output

Displacement
Axial Transverse

.0 1.631E-11 -8.677E-10
.0 1.914E-05 -1.273E-03
0 2.839E-05 -4.697E-03
0 2.461E-05 -9.688E-03
0 1.008E-05 -1.567E-02
0 -9.550E-06 -2.206E-02
0 -2.721E-05 -2.830E-02
0 -3.644E-05 -3.382E-02
0 -3.379E-05 -3.811E-02
0 -2.016E-05 -4.083E-02
0 -4.414E-08 -4.176E-02
0 2.006E-05 -4.082E-02
0 3.366E-05 -3.810E-02
0 3.627E-05 -3.380E-02
0 2.702E-05 -2.828E-02
0 9.378E-06 -2.205E-02
0 -1.021E-05 -1.565E-02
0 -2.468E-05 -9.679E-03
0 -2.842E-05 -4.692E-03
0 -1.914E-05 -1.271E-03
0 0.000E+00 0.000E+00

d (DYDX) /dY
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Comments

1. Workspace may be explicitly provided, if desired, by use of B2PMS/DB2PMS. The
reference is:

CALL B2PMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT, DTOL,
BTOL, MAXIT, NINIT, TINIT, YINIT, LDYINI, NMAX, NFINAL, TFINAL,
YFINAL, LDYFIN, WORK, IWK)

The additional arguments are as follows:

WORK — Work array of length NEQONS * (NEQNS + 1) (NMAX + 12) +
NEQNS + 30.

IWK — Work array of length NEQNS.

2. Informational errors
Type Code
1 5  Convergence has been achieved; but to get acceptably accurate

approximations to y(?), it is often necessary to start an initial-value
solver, for example IVPRK (page 837), at the nearest TFINAL({) point

to ¢ with ¢ > TFINAL (7). The vectors YFINAL(j, i),/ =1, ..., NEQNS
are used as the initial values.

4 1 The initial-value integrator failed. Relax the tolerance DTOL or see
Comment 3.

4 2 More than NMAX shooting points are needed for stability.

4 3 Newton’s iteration did not converge in MAXIT iterations. If the

problem is linear, do an extra iteration. If this error still occurs, check
that the routine FCNJAC is giving the correct derivatives. If this does
not fix the problem, see Comment 3.

4 4  Linear-equation solver failed. The problem may not have a unique
solution, or the problem may be highly nonlinear. In the latter case,
see Comment 3.

3. Many linear problems will be successfully solved using program-selected shooting
points. Nonlinear problems may require user effort and input data. If the routine fails,
then increase NMAX or parameterize the problem. With many shooting points the
program essentially uses a finite-difference method, which has less trouble with
nonlinearities than shooting methods. After a certain point, however, increasing the
number of points will no longer help convergence. To parameterize the problem, see
Comment 4.

4. If the problem to be solved is highly nonlinear, then to obtain convergence it may be
necessary to embed the problem into a one-parameter family of boundary value
problems, y' = f(z, y, p), h(y(t,, tp, p)) = 0 such that for p = 0, the problem is simple,
e.g., linear; and for p = 1, the stated problem is solved. The routine BVPMS/DBVPMS
automatically moves the parameter from p = 0 toward p = 1.

5. This routine is not recommended for stiff systems of differential equations.
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Description

Define N = NEQNS, M = NFINAL, t, = TLEFT and f, = TRIGHT. The routine BVPMS uses a

multiple-shooting technique to solve the differential equation system y' = f'(¢, y) with boundary
conditions of the form

(), s N (ta)s i (@), s yn (1)) =0 fork=1, ..., N

A modified version of TVPRK, page 837, is used to compute the initial-value problem at each
“shot.” If there are M shooting points (including the endpoints z, and #3), then a system of NM
simultaneous nonlinear equations must be solved. Newton’s method is used to solve this system,
which has a Jacobian matrix with a “periodic band” structure. Evaluation of the NM functions
and the NM x NM (almost banded) Jacobian for one iteration of Newton’s method is
accomplished in one pass from ¢, to #;, of the modified TVPRK, operating on a system of

N(N + 1) differential equations. For most problems, the total amount of work should not be
highly dependent on M. Multiple shooting avoids many of the serious ill-conditioning problems
that plague simple shooting methods. For more details on the algorithm, see Sewell (1982).

The boundary functions should be scaled so that all components #;, are of comparable magnitude
since the absolute error in each is controlled.

DASPG

Solves a first order differential-algebraic system of equations, g(z, y, ') = 0, using the Petzold—
Gear BDF method.

Required Arguments

T — Independent variable, ¢. (Input/Output)
Set T to the starting value #, at the first step.

TOUT — Final value of the independent variable. (Input)
Update this value when re-entering after output, ID0 = 2.

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal re-entry after obtaining output
3 Release workspace

4 Return because of an error condition
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The user sets 1D0 = 1 or 1DO = 3. All other values of 1D0 are defined as output. The
initial call is made with 1D0O = 1 and T = #,. The routine then sets 1DO = 2, and this
value is used for all but the last entry that is made with 1D0 = 3. This call is used to
release workspace and other final tasks. Values of 1D0 larger than 4 occur only when
calling the second-level routine D2SPG and using the options associated with reverse
communication.

Y — Array of size NEQ containing the dependent variable values, y. This array must contain
initial values. (Input/Output)

YPR — Array of size NEQ containing derivative values, y’. This array must contain initial
values. (Input/Output)
The routine will solve for consistent values of )’ to satisfy the equations at the starting
point.

GCN — User-supplied SUBROUTINE to evaluate g(z, y, )'). The usage is
CALL GCN (NEQ, T, Y, YPR, GVAL), where GCN must be declared EXTERNAL in
the calling program. The routine will solve for values of y'(¢,) so that
2(%,v,¥") =0. The user can signal that g is not defined at requested values of (z, y, ')
using an option. This causes the routine to reduce the step size or else quit.

NEQ — Number of differential equations. (Input)

T — Independent variable. (Input)

Y — Array of size NEQ containing the dependent variable values y(¢) . (Input)
YPR — Array of size NEQ containing the derivative values y'(f). (Input)

GVAL — Array of size NEQ containing the function values, g(, y, )"). (Output)

Optional Arguments

NEQ — Number of differential equations. (Input)
Default: NEQ = size(y,1)

FORTRAN 90 Interface

Generic: CALL DASPG (T, TOUT, IDO, Y, YPR, GCNI[,..])

Specific: The specific interface names are S_DASPG and D_DASPG.

FORTRAN 77 Interface

Single: CALL DASPG (NEQ, T, TOUT, IDO, Y, YPR, GCN)

Double: The double precision name is DDASPG
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Example 1

The Van der Pol equation u” + p(u” — 1) u' + u =0, u > 0, is a single ordinary differential
equation with a periodic limit cycle. See Hartman (1964, page 181). For the value u = 5, the
equations are integrated from 7 = 0 until the limit has clearly developed at # = 26. The (arbitrary)
initial conditions used here are u(0) = 2 and u'(0) = — 2/3. Except for these initial conditions and
the final ¢ value, this is problem (E2) of the Enright and Pryce (1987) test package. This
equation is solved as a differential-algebraic system by defining the first-order system:

e = 1/u
N = u
— ! —
g = »-»=0
_ 2 1y _
& = (l_yl )yz _g(yl +y2)_ 0
Note that the initial condition for
!
V2
in the sample program is not consistent, g, # 0 at t = 0. The routine DASPG solves for this
starting value. No options need to be changed for this usage. The set of pairs (u(Z)), () are
accumulated for the 260 values ;= 0.1, 26, (0.1).
USE UMACH_INT
USE DASPG_INT
INTEGER N, NP
PARAMETER (N=2, NP=260)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER ISTEP, NOUT, NSTEP
REAL DELT, T, TEND, U(NP), UPR(NP), Y(N), YPR(N)
! SPECIFICATIONS FOR FUNCTIONS

EXTERNAL GCN
Define initial data

IDO =1
T =20.0
TEND = 26.0
DELT = 0.1

NSTEP = TEND/DELT
Initial values

Y(1) = 2.0
Y(2) = -2.0/3.0
! Initial derivatives
YPR (1) = Y (2)
YPR(2) = 0.

! Write title
CALL UMACH (2, NOUT)
WRITE (NOUT, 99998)

! Integrate ODE/DAE
ISTEP = O

10 CONTINUE

ISTEP = ISTEP + 1
CALL DASPG (T, T+DELT, IDO, Y, YPR, GCN)
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! Save solution for plotting
IF (ISTEP .LE. NSTEP) THEN
U(ISTEP) = Y (1)
UPR(ISTEP) = YPR(1)
! Release work space
IF (ISTEP .EQ. NSTEP) IDO = 3
GO TO 10
END IF
WRITE (NOUT,99999) TEND, Y, YPR
99998 FORMAT (11X, 'T’, 14X, ’'Yy(1)", 11X, ’'Y(2)', 10X, 'Y’’’ (1)’, 10X,
ryrr (2) I)
99999 FORMAT (5F15.5)
! Start plotting
! CALL SCATR (NSTEP, U, UPR)
! CALL EFSPLT (0, " 7)
END

SUBROUTINE GCN (N, T, Y, YPR, GVAL)

! SPECIFICATIONS FOR ARGUMENTS
INTEGER N
REAL T, Y(N), YPR(N), GVAL(N)

! SPECIFICATIONS FOR LOCAL VARIABLES
REAL EPS

EPS = 0.2

GVAL (1) Y(2) - YPR(1)

GVAL(2) = (1.0-Y(1)**2)*Y(2) - EPS*(Y(1l)+YPR(2))
RETURN

END

Output
T Y (1) Y (2) Y7 (1) Y7 (2)
26.00000 1.45330 -0.24486 -0.24713 -0.09399

&
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Figure 5-1 Van der Pol Cycle, (u(?), u'(£)), p = 5.

Comments

Users can often get started using the routine DASPG/DDASPG without reading beyond this point
in the documentation. There is often no reason to use options when getting started. Those
readers who do not want to use options can turn directly to the first two examples. The
following tables give numbers and key phrases for the options. A detailed guide to the options is
given below in Comment 2.

Value Brief or Key Phrase for INTEGER Option
6 INTEGER option numbers

7 Floating-point option numbers

IN(1) First call to DASPG, D2SPG

INQ2) Scalar or vector tolerances

INQ3) Return for output at intermediate steps

IN4) Creep up on special point, TSTOP

IN(5) Provide (analytic) partial derivative formulas
IN(6) Maximum number of steps

IN(7) Control maximum step size

IN(8) Control initial step size

IMSL MATH/LIBRARY Chapter 5: Differential Equations ¢ 893



Value

Brief or Key Phrase for INTEGER Option

IN(@9)

Not Used

IN(10)

Constrain dependent variables

IN(11)

Consistent initial data

IN(12-15)

Not Used

IN(16)

Number of equations

IN(17)

What routine did, if any errors

IN(18)

Maximum BDF order

IN(19)

Order of BDF on next move

IN(20)

Order of BDF on previous move

IN(21)

Number of steps

IN(22)

Number of g evaluations

IN(23)

Number of derivative matrix evaluations

INQ24)

Number of error test failures

IN(25)

Number of convergence test failures

IN(26)

Reverse communiction for g

INQ27)

Where is g stored?

IN(28)

Panic flag

IN(29)

Reverse communication, for partials

IN@30)

Where are partials stored?

ING31)

Reverse communication, for solving

IN(32)

Not Used

IN33)

Where are vector tolerances stored?

IN(34)

Is partial derivative array allocated?

ING35)

User's work arrays sizes are checked

IN(36-50)

Not used

Table 1. Key Phrases for Floating-Point Options
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Value Brief or Key Phrase for Floating-Point Option
INR(1) Value of ¢

INR(2) Farthest internal ¢ vaue of integration
INR(3) Value of TOUT

INR@4) A stopping point of integration before TOUT
INR(5) Values of two scalars ATOL, RTOL

INR(6) Initial step size to use

INR(7) Maximum step allowed

INR(8) Condition number reciprocal

INR(9) Value of ¢; for partials

INR(10) Step size on the next move

INR(11) Step size on the previous move

INR(12-20) | Not Used

Table 2. Number and Key Phrases for Floating-Point Options

1. Workspace may be explicitly provided, and many of the options utilized by directly
calling D2sPG/DD2SPG. The reference is:

CALL D2SPG (N, T, TOUT, IDO, Y, YPR, GCN, JGCN, IWK, WK)

The additional arguments are as follows:
IDO State
5 Return for evaluation of g(¢, v, y')

6 Return for evaluation of matrix 4 = [0g/0y + ¢;0g/0y']
7 Return for factorization of the matrix 4 = [0g/0y + ¢;0g/0y']

8 Return for solution of AAy = Ag

These values of DO occur only when calling the second-level routine D2SPG and using
options associated with reverse communication. The routine D2SPG/DD2SPG is
reentered.

GCN — A Fortran SUBROUTINE to compute g(¢, v, »'). This routine is normally
provided by the user. That is the default case. The dummy IMSL routine
DGSPG/DDGSPG may be used as this argument when g(z, y, ') is evaluated by
reverse communication. In either case, a name must be declared in a Fortran
EXTERNAL statement. If usage of the dummy IMSL routine is intended, then the
name DGSPG/DDGSPG should be specified. The dummy IMSL routine will never
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be called under this optional usage of reverse communication. An example of
reverse communication for evaluation of g is given in Example 4.

JGCN — A Fortran SUBROUTINE to compute partial derivatives of g(z, y, '). This
routine may be provided by the user. The dummy IMSL routine DJSPG/DDJISPG
may be used as this argument when partial derivatives are computed using
divided differences. This is the default. The dummy routine is not called under
default conditions. If partial derivatives are to be explicitly provided, the routine
JGCN must be written by the user or reverse communication can be used. An
example of reverse communication for evaluation of the partials is given in
Example 4.

If the user writes a routine with the fixed name DJSPG/DDJSPG, then partial derivatives
can be provided while calling DASPG. An option is used to signal that formulas for
partial derivatives are being supplied. This is illustrated in Example 3. The name of the
partial derivative routine must be declared in a Fortran EXTERNAL statement when
calling D25PG. If usage of the dummy IMSL routine is intended, then the name
DJSPG/DDJISPG should be specified for this EXTERNAL name. Whenever the user
provides partial derivative evaluation formulas, by whatever means, that must be noted
with an option. Usage of the derivative evaluation routine is CALL JGCN (N, T, Y,
YPR, CJ, PDG, LDPDG) where

Arg Definition

N Number of equations. (Input)

T Independent variable, ¢£. (Input)

Y Array of size N containing the values of the dependent variables, y. (Input)

YPR Array of size N containing the values of the derivatives, y’. (Input)

cJg The value ¢; used in computing the partial derivatives returned in PDG.
(Input)

PDG Array of size LDPDG * N containing the partial derivatives 4 = [0g/dy + ¢;0g/

0y']. Each nonzero derivative entry a;; is returned in the array location
PDG(1, j). The array contents are zero when the routine is called. Thus, only
the nonzero derivatives have to be defined in the routine JGCN. (Output)

LDPDG The leading dimension of PDG. Normally, this value is N. It is a value larger
than N under the conditions explained in option 16 of LSLRG (Chapter 1,

Linear Systems).

JGCN must be declared EXTERNAL in the calling program.
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IWK — Work array of integer values. The size of this array is 35 + N. The contents of
WK must not be changed from the first call with I1DO = 1 until after the final call
with
IDO =3.

WK — Work ahrray of floating-point values in the working precision. The size of this
array is 41 + (MAXORD + 6)N + (N + K)N(1 - L) where K is determined
from the values TVAL (3) and IVAL(4) of option 16 of LSLRG (Chapter 1,
Linear Systems). The value of L is 0 unless option IN(34) is used to avoid
allocation of the array containing the partial derivatives. With the use of this
option, L can be set to 1. The contents of array WK must not be changed from the
first call with 1DO = 1 until after the final call.

2. Integer and Floating-Point Options with Chapter 11 Options Manager

The routine DASPG allows the user access to many interface parameters and internal
working variables by the use of options. The options manager subprograms TUMAG,
SUMAG, and DUMAG (Chapter 11, Utilities), are used to change options from their default
values or obtain the current values of required parameters.

Options of type INTEGER:

6 This is the list of numbers used for INTEGER options. Users will typically call
this option first to get the numbers, IN(I), I = 1, 50. This option has 50 entries.
The default values are IN(I) =1 + 50, T =1, 50.

7 This is the list of numbers used for REAL and DOUBLE PRECISION options.
Users will typically call this option first to get the numbers, INR(T), T = 1,20.
This option has 20 entries. The default values are INR(T) =1 + 50, T =1, 20.

IN(1) This is the first call to the routine DASPG or D2SPG. Value is 0 for the first call, 1

for further calls. Setting I1DO = 1 resets this option to its default. Default value is
0.

IN(2) This flag controls the kind of tolerances to be used for the solution. Value is 0
for scalar values of absolute and relative tolerances applied to all components.
Value is 1 when arrays for both these quantities are specified. In this case, the
option IN(33) is used to get the offset into WK where the 2N array values are to
be placed: all ATOL values followed by all RTOL values. This offset is defined
after the call to the routine D2SPG so users will have to call the options manager
at a convenient place in the GCN routine or during reverse communication.
Default value is 0.

IN(3) This flag controls when the code returns to the user with output values of y and y
', If the value is 0, it returns to the user at T = TOUT only. If the value is 1, it
returns to the user at an internal working step. Default value is 0.
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IN(4) This flag controls whether the code should integrate past a special point, TSTOP,
and then interpolate to get y and y'at TOUT. If the value is 0, this is permitted. If
the value is 1, the code assumes the equations either change on the alternate side
of TSTOP or they are undefined there. In this case, the code creeps up to TSTOP
in the direction of integration. The value of TSTOP is set with option INR(4).
Default value is 0.

IN(5) This flag controls whether partial derivatives are computed using divided
onesided differences, or they are to be computed using user-supplied evaluation
formulas. If the value is 0, use divided differences. If the value is 1, use
formulas for the partial derivatives. See Example 3 for an illustration of one way
to do this. Default value is 0.

IN(6) The maximum number of steps. Default value is 500.

IN(7) This flag controls a maximum magnitude constraint for the step size. If the value
is 0, the routine picks its own maximum. If the value is 1, a maximum is
specified by the user. That value is set with option number INR(7). Default
value is 0.

IN(8) This flag controls an initial value for the step size. If the value is 0, the routine
picks its own initial step size. If the value is 1, a starting step size is specified by
the user. That value is set with option number INR(6). Default value is 0.

IN(9) Not used. Default value is 0.

IN(10)  This flag controls attempts to constrain all components to be nonnegative. If
the value is 0, no constraints are enforced. If value is 1, constraint is enforced.
Default value is 0.

IN(11) This flag controls whether the initial values (z, y, y") are consistent. If the
value is 0, g(z, y, ") = 0 at the initial point. If the value is 1, the routine will try
to solve for y' to make this equation satisfied. Default value is 1.

IN(12-15) Not used. Default value is 0 for each option.

IN(16)  The number of equations in the system, n. Default value is 0.

IN(17)  This value reports what the routine did. Default value is 0.
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Value | Explanation

1 A step was taken in the intermediate output mode. The value
TOUT has not been reached.

2 The integration to exactly TSTOP was completed.

3 The integration to TSTOP was completed by stepping past TSTOP
and interpolating to evaluate y and y'.

-1 Too many steps taken.

-2 Error tolerances are too small.

-3 A pure relative error tolerance can't be satisfied.

-6 There were repeated error test failures on the last step.

-7 The BDF corrector equation solver did not converge.

-8 The matrix of partial derivatives is singular.

-10 The BDF corrector equation solver did not converge because the
evaluation failure flag was raised.

-11 The evaluation failure flag was raised to quit.

-12 The iteration for the initial vaule of y" did not converge.

-33 There is a fatal error, perhaps caused by invalid input.

Table 3. What the Routine DASPG or D2SPG Did

IN(8) The maximum order of BDF formula the routine should use. Default value
is 5.

IN(19)  The order of the BDF method the routine will use on the next step. Default
value is TMACH(S).

IN(20)  The order of the BDF method used on the last step. Default value is
IMACH(S).

IN(21)  The number of steps taken so far. Default value is 0.
IN(22)  The number of times that g has been evaluated. Default value is 0.

IN(23)  The number of times that the partial derivative matrix has been evaluated.
Default value is 0.

IN(24)  The total number of error test failures so far. Default value is 0.

IN(25)  The total number of convergence test failures so far. This includes singular
iteration matrices. Default value is 0.

IN(26)  Use reverse communication to evaluate g when this value is 0. If the value
is 1, forward communication is used. Use the routine D2SPG for reverse
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communication. With reverse communication, a return will be made with
1D0 = 5. Compute the value of g, place it into the array WK at the offset obtained
with option IN(27), and re-enter the routine. Default value is 1.

IN(27)  The user is to store the evaluated function g during reverse communication
in the work array WK using this value as an offset. Default value is TMACH(S).

IN(28)  This value is a “panic flag.” After an evaluation of g, this value is checked.
The value of g is used if the flag is 0. If it has the value —1, the routine reduces
the step size and possibly the order of the BDF. If the value is —2, the routine
returns control to the user immediately. This option is also used to signal a
singular or poorly conditioned partial derivative matrix encountered during the
factor phase in reverse communication. Use a nonzero value when the matrix is
singular. Default value is 0.

IN(29)  Use reverse communication to evaluate the partial derivative matrix when
this value is 0. If the value is 1, forward communication is used. Use the routine
D2SPG for reverse communication. With reverse communication, a return will
be made with 100 = 6. Compute the partial derivative matrix 4 and re-enter the
routine. If forward communication is used for the linear solver, return the
partials using the offset into the array wk. This offset value is obtained with
option IN(30). Default value is 1.

IN(30)  The user is to store the values of the partial derivative matrix 4 by columns
in the work array WK using this value as an offset. The option 16 for LSLRG is
used here to compute the row dimension of the internal working array that
contains 4. Users can also choose to store this matrix in some convenient form
in their calling program if they are providing linear system solving using reverse
communication. See options IN(31) and IN(34). Default value is TMACH(S).

IN(31)  Use reverse communication to solve the linear system 4AAy = Ag if this
value is 0. If the value is 1, use forward communication into the routines L2CRG
and LFSRG (Chapter 1, Linear Systems) for the linear system solving. Return the
solution using the offset into the array WKk where g is stored. This offset value is
obtained with option IN(27). With reverse communication, a return will be
made with 100 = 7 for factorization of 4 and with 1D0 = 8 for solving the
system. Re-enter the routine in both cases. If the matrix A is singular or poorly
conditioned, raise the “panic flag,” option IN(28), during the factorization.
Default value is 1.

IN(32) Not used. Default value is 0.

IN(33)  The user is to store the vector of values for ATOL and RTOL in the array WK
using this value as an offset. The routine D2SPG must be called before this value
is  defined.

IN(34) This flag is used if the user has not allocated storage for the matrix 4 in the
array WK. If the value is 0, storage is allocated. If the value is 1, storage was not
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allocated. In this case, the user must be using reverse communication to evaluate
the partial derivative matrix and to solve the linear systems 4Ay = Ag. Default
value is 0.

IN(35)  These two values are the sizes of the arrays TWK and WK allocated in the
users program. The values are checked against the program requirements. These
checks are made only if the values are positive. Users will normally set this
option when directly calling D2sPG. Default values are (0, 0).

Options of type REAL or DOUBLE PRECISION:

INR(1) The value of the independent variable, ¢. Default value is AMACH(6).

INR(2) The farthest working ¢ point the integration has reached. Default value is
AMACH(0) .

INR@3) The current value of TOUT. Default value is AMACH(6).

INR(4) The next special point, TSTOP, before reaching ToUT. Default value is
AMACH(6). Used with option IN(4).

INR(5)  The pair of scalar values ATOL and RTOL that apply to the error estimates of
all components of y. Default values for both are SQRT(AMACH(4)).

INR(6) The initial step size if DASPG is not to compute it internally. Default value is
AMACH(0).

INR(7) The maximum step size allowed. Default value is AMACH(2).

INR(8) This value is the reciprocal of the condition number of the matrix A. It is
defined when forward communication is used to solve for the linear updates to
the BDF corrector equation. No further program action, such as declaring a
singular system, based on the condition number. Users can declare the system to
be singular by raising the “panic flag” using option IN(28). Default value is
AMACH(6).

INR(9)  The value of ¢; used in the partial derivative matrix for reverse
communication evaluation. Default value is AMACH(6).

INR(10) The step size to be attempted on the next move. Default value is AMACH(6).
INR(11) The step size taken on the previous move. Default value is AMACH(6).
4. Norm Function Subprogram

The routine DASPG uses a weighted Euclidean-RMS norm to measure the size of the
estimated error in each step. This is done using a FUNCTION subprogram: REAL
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FUNCTION D10PG (N, Vv, WT). This routine returns the value of the RMS weighted
norm given by:

DI10PG = \/N‘IZZI(W /wt)

Users can replace this function with one of their own choice. This should be done only
for problem-related reasons.

Description

Routine DASPG finds an approximation to the solution of a system of differential-algebraic
equations g(t, y, ") = 0, with given initial data for y and y'. The routine uses BDF formulas,
appropriate for systems of stiff ODEs, and attempts to keep the global error proportional to a
user-specified tolerance. See Brenan et al. (1989). This routine is efficient for stiff systems of
index 1 or index 0. See Brenan et al. (1989) for a definition of index. Users are encouraged to
use DOUBLE PRECISION accuracy on machines with a short REAL precision accuracy. The
examples given below are in REAL accuracy because of the desire for consistency with the rest
of IMSL MATH/LIBRARY examples. The routine DASPG is based on the code DASSL designed
by L. Petzold (1982-1990).

Example 2

The first-order equations of motion of a point-mass m suspended on a massless wire of length (
under the influence of gravity force, mg and tension value A, in Cartesian coordinates, (p, g), are

p = u
qg = v
mu' = —pl
mv = —ql-mg
-0t = 0

This is a genuine differential-algebraic system. The problem, as stated, has an index number
equal to the value 3. Thus, it cannot be solved with DASPG directly. Unfortunately, the fact that
the index is greater than 1 must be deduced indirectly. Typically there will be an error processed
which states that the (BDF) corrector equation did not converge. The user then differentiates and
replaces the constraint equation. This example is transformed to a problem of index number of
value 1 by differentiating the last equation twice. This resulting equation, which replaces the
given equation, is the total energy balance:

m@u’ +v)—mgqg—0*2 =0

With initial conditions and systematic definitions of the dependent variables, the system
becomes:
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The problem is given in English measurement units of feet, pounds, and seconds. The wire has
length 6.5 f#, and the mass at the end is 98 /b. Usage of the software does not require it, but
standard or “SI” units are used in the numerical model. This conversion of units is done as a first
step in the user-supplied evaluation routine, GCN. A set of initial conditions, corresponding to
the pendulum starting in a horizontal position, are provided as output for the input signal of n =
0. The maximum magnitude of the tension parameter, A(¢) = ys(f), is computed at the output

points, £ = 0.1, , (0.1). This extreme value is converted to English units and printed.

USE DASPG_INT
USE CUNIT_ INT
USE UMACH_INT
USE CONST_INT
INTEGER N
PARAMETER (N=5)

SPECIFICATIONS FOR LOCAL VARIABLES

INTEGER IDO, ISTEP, NOUT, NSTEP
REAL DELT, GVAL(N), MAXLB, MAXTEN, T, TEND, TMAX, Y(N), &
YPR (N)

INTRINSIC ABS
REAL ABS

EXTERNAL GCN

IDO =1

T = 0.0

TEND = CONST(’'pi’)
DELT = 0.1

NSTEP = TEND/DELT
CALL UMACH (2, NOUT)

SPECIFICATIONS FOR INTRINSICS

SPECIFICATIONS FOR SUBROUTINES

SPECIFICATIONS FOR FUNCTIONS
Define initial data

Get initial conditions

CALL GCN (0, T, Y, YPR, GVAL)
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ISTEP = 0
MAXTEN = 0
10 CONTINUE
ISTEP = ISTEP + 1
CALL DASPG (T, T+DELT, IDO, Y, YPR, GCN)
IF (ISTEP .LE. NSTEP) THEN
! Note max tension value
IF (ABS(Y(5)) .GT. ABS(MAXTEN)) THEN
TMAX =T
MAXTEN = Y (5)
END IF
IF (ISTEP .EQ. NSTEP) IDO = 3
GO TO 10
END IF
! Convert to English units
CALL CUNIT (MAXTEN, ’'kg/s**2’, MAXLB, ’'lb/s**2')
! Print maximum tension
WRITE (NOUT,99999) MAXLB, TMAX
99999 FORMAT (’ Extreme string tension of’, F10.2, ' (lb/s**2)’, &
’ occurred at ’, ’'time ’, F10.2)
END
!
SUBROUTINE GCN (N, T, Y, YPR, GVAL)
USE CUNIT INT
USE CONST_ INT
! SPECIFICATIONS FOR ARGUMENTS
INTEGER N
REAL T, Y(*), YPR(*), GVAL(¥*)
! SPECIFICATIONS FOR LOCAL VARIABLES
REAL FEETL, GRAV, LENSQ, MASSKG, MASSLB, METERL, MG
! SPECIFICATIONS FOR SAVE VARIABLES
LOGICAL FIRST
SAVE FIRST

DATA FIRST/.TRUE./

IF (FIRST)
CONTINUE

GO TO 20
10
IF (N .EQ.

0) THEN

METERL

lcNeoNoNoNeoNoNeoNoNo)

YPR(5)
RETURN

SPECIFICATIONS FOR
SPECIFICATIONS FOR

SUBROUTINES
FUNCTIONS

Define initial conditions

The pendulum is horizontal
with these initial y values
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! Compute residuals

GVAL(l) = Y(3) - YPR(1)
GVAL(2) = Y(4) - YPR(2)
GVAL(3) = =Y (1)*Y(5) - MASSKG*YPR(3)
GVAL(4) = -Y(2)*Y(5) - MASSKG*YPR(4) - MG
GVAL (5) = MASSKG* (Y (3)**2+Y(4)**2) - MG*Y(2) - LENSQ*Y(5)
RETURN
! Convert from English to
! Metric units:
20 CONTINUE
FEETL = 6.5
MASSLB = 98.0

! Change to meters
CALL CUNIT (FEETL, ’'ft’, METERL, ’'meter’)

! Change to kilograms
CALL CUNIT (MASSLB, ’'1lb’, MASSKG, ’'kg’)

! Get standard gravity

GRAV = CONST ('’ StandardGravity’)
MG = MASSKG*GRAV
LENSQ = METERL**2
FIRST = .FALSE.
GO TO 10
END
Output
Extreme string tension of 1457.24 (1lb/s**2) occurred at time 2.50
Example 3

In this example, we solve a stiff ordinary differential equation (ES) from the test package of
Enright and Pryce (1987). The problem is nonlinear with nonreal eigenvalues. It is included as
an example because it is a stiff problem, and its partial derivatives are provided in the
usersupplied routine with the fixed name DJSPG. Users who require a variable routine name for
partial derivatives can use the routine D2SPG. Providing explicit formulas for partial derivatives
is an important consideration for problems where evaluations of the function g(, y, y') are
expensive. Signaling that a derivative matrix is provided requires a call to the Chapter 10
options manager utility, TUMAG. In addition, an initial integration step-size is given for this test
problem. A signal for this is passed using the options manager routine TUMAG. The error
tolerance is changed from the defaults to a pure absolute tolerance of 0.1 * SQRT(AMACH(4)).
Also see TUMAG, SUMAG and DUMAG in Chapter 11, Utilities, for further details about the options
manager routines.
USE IMSL LIBRARIES
INTEGER N
PARAMETER  (N=4)
! SPECIFICATIONS FOR PARAMETERS
INTEGER ICHAP, IGET, INUM, IPUT, IRNUM
PARAMETER (ICHAP=5, IGET=1, INUM=6, IPUT=2, IRNUM=7)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER IDO, IN(50), INR(20), IOPT(2), IVAL(2), NOUT
REAL C0, PREC, SVAL(3), T, TEND, Y(N), YPR(N)
! SPECIFICATIONS FOR FUNCTIONS
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EXTERNAL GCN

! Define initial data

TEND = 1000.0
! Initial values

CO = 1.76E-3
Y(1l) = CO
Y(2) = 0.
Y(3) = 0.
Y (4) = 0.
! Initial derivatives
YPR(1l) = 0.
YPR(2) = 0.
YPR(3) = 0.
YPR(4) = O.
! Get option numbers
IOPT (1) = INUM
CALL IUMAG ('math’, ICHAP, IGET, 1, IOPT, IN)
IOPT (1) = IRNUM

CALL IUMAG ('math’, ICHAP, IGET, 1, IOPT, INR)

! Provide initial step

IOPT (1) = INR(6)

SVAL (1) = 5.0E-5
! Provide absolute tolerance
IOPT (2) = INR(H)
PREC = AMACH (4)
SVAL (2) = 0.1*SQRT (PREC)
SVAL (3) = 0.0

CALL UMAG ('math’, ICHAP, IPUT, IOPT, SVAL)

! Using derivatives and

IOPT (1) = IN(5)
IVAL(1) =1

! providing initial step

IOPT (2) = IN(8)
IVAL(2) =1

CALL IUMAG ('math’, ICHAP, IPUT, 2, IOPT, IVAL)

! Write title
CALL UMACH (2, NOUT)
WRITE (NOUT, 99998)
! Integrate ODE/DAE
CALL DASPG (T, TEND, IDO, Y, YPR, GCN)
WRITE (NOUT,99999) T, Y, YPR

! Reset floating options

! to defaults
IOPT (1) = -INR(5)
IOPT (2) = —-INR(6)

CALL UMAG ('math’, ICHAP, IPUT, IOPT, SVAL)

! Reset integer options

! to defaults
IOPT (1) -IN(5)
IOPT (2) = —-IN(8)
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99998
99999

CALL IUMAG ('math’, ICHAP, IPUT, 2, IOPT, IVAL)

FORMAT (11X, 'T’, 14X, 'Y followed by Y'’'")
FORMAT (F15.5/(4F15.5))
END

SUBROUTINE GCN (N, T, Y, YPR, GVAL)
SPECIFICATIONS FOR ARGUMENTS

INTEGER N
REAL T, Y(N), YPR(N), GVAL(N)
SPECIFICATIONS FOR LOCAL VARIABLES
REAL ci, c2, C3, c4
Cl = 7.89E-10
C2 = 1.1E7
C3 = 1.13E9
C4 = 1.13E3
GVAL (1) = -C1*Y (1) - C2*Y(1l)*Y(3) - YPR(1)
GVAL(2) = C1l*Y (1) - C3*Y(2)*Y(3) - YPR(2)
GVAL(3) = Cl*Y (1) - C2*Y(1)*Y(3) + C4*Y(4) - C3*Y(2)*Y(3) - &
YPR (3)
GVAL (4) = C2*Y(1)*Y(3) - C4*Y(4) - YPR(4)
RETURN
END

SUBROUTINE DJSPG (N, T, Y, YPR, CJ, PDG, LDPDG)

SPECIFICATIONS FOR ARGUMENTS
INTEGER N, LDPDG
REAL T, CJ, Y(N), YPR(N), PDG(LDPDG,N)

SPECIFICATIONS FOR LOCAL VARIABLES

REAL ci, c2, C3, c4

Cl = 7.89E-10

C2 = 1.1E7

C3 = 1.13E9

C4 = 1.13E3

PDG(1,1) = -C1l - C2*Y(3) - CJ
PDG(1,3) = -C2*Y (1)

PDG(2,1) = C1

PDG(2,2) = -C3*Y(3) - CJ
PDG(2,3) = -C3*Y(2)

PDG(3,1) = Cl - C2*Y(3)
PDG(3,2) = -C3*Y(3)

PDG(3,3) = -C2*Y (1) - C3*Y(2) - CJ
PDG(3,4) = C4

PDG(4,1) = C2*Y(3)

PDG (4,3) = C2*Y (1)

PDG(4,4) = -C4 - CJ

RETURN

END
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Output
T Y followed by Y’

1000.00000
0.00162 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
Example 4

In this final example, we compute the solution of # = 10 ordinary differential equations,

g=Hy—', where p(0) =y, = (1, 1, ..., 1)”. The value

Z Vs (t)

is evaluated at 7= 1. The constant matrix H has entries 4; ;= min(j — i, 0) so it is lower
Hessenberg. We use reverse communication for the evaluation of the following intermediate
quantities:

1. The function g,
2. The partial derivative matrix 4 = 0g/0y + ¢;0g/0y' = H — ¢; I,
3. The solution of the linear system 4Ay = Ag.

In addition to the use of reverse communication, we evaluate the partial derivatives using
formulas. No storage is allocated in the floating-point work array for the matrix. Instead, the
matrix A is stored in an array A within the main program unit. Signals for this organization are
passed using the routine TUMAG (Chapter 11, Utilities).

An algorithm appropriate for this matrix, Givens transformations applied from the right side, is
used to factor the matrix 4. The rotations are reconstructed during the solve step. See SROTG
(Chapter 9, Basic Matrix/Vector Operations) for the formulas.

The routine D25PG stores the value of ¢; We get it with a call to the options manager routine
SUMAG (Chapter 11, Utilities). A pointer, or offset into the work array, is obtained as an integer
option. This gives the location of g and Ag. The solution vector Ay replaces Ag at that location.
Caution: If a user writes code wherein g is computed with reverse communication and partials
are evaluated with divided differences, then there will be two distinct places where g is to be
stored. This example shows a correct place to get this offset.

This example also serves as a prototype for large, structured (possibly nonlinear) DAE problems
where the user must use special methods to store and factor the matrix 4 and solve the linear
system AAy = Ag. The word “factor” is used literally here. A user could, for instance, solve the
system using an iterative method. Generally, the factor step can be any preparatory phase
required for a later solve step.

USE IMSL LIBRARIES
INTEGER N
PARAMETER (N=10)

! SPECIFICATIONS FOR PARAMETERS
INTEGER ICHAP, IGET, INUM, IPUT, IRNUM
PARAMETER (ICHAP=5, IGET=1, INUM=6, IPUT=2, IRNUM=7)

! SPECIFICATIONS FOR LOCAL VARIABLES
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10
20

30

INTEGER I, IDO, IN(50), INR(20), IOPT(6), IVAL(7), IWK(35+N), &
J, NOUT
REAL A(N,N), GVAL(N), H(N,N), SC, SS, SUMY, SVAL(1l), T, &
TEND, WK(41+11*N), Y(N), YPR(N), Z
SPECIFICATIONS FOR INTRINSICS
INTRINSIC ABS, SQRT
REAL ABS, SQRT
SPECIFICATIONS FOR SUBROUTINES
SPECIFICATIONS FOR FUNCTIONS
EXTERNAL DGSPG, DJSPG
Define initial data

TEND =
Initial values
CALL SSET (N, 1.0EO0, Y, 1)
CALL SSET (N, 0.0, YPR, 1)
Initial lower Hessenberg matrix
CALL SSET (N*N, 0.0EO0, H, 1)
DO 20 I=1, N - 1

DO 10 J=1, I + 1
H(I,J) =J -1

CONTINUE
CONTINUE
DO 30 J=1, N

H(N,J) = J - N
CONTINUE

Get integer option numbers

IOPT (1) = INUM

CALL IUMAG (’'math’, ICHAP, IGET, 1, IOPT, IN)
Get floating point option numbers
IOPT (1) = IRNUM
CALL IUMAG ('math’, ICHAP, IGET, 1, IOPT, INR)
Set for reverse communication
evaluation of g.
IOPT (1) = IN(26)
IVAL(1) =0
Set for evaluation of partial
derivatives.
IOPT (2) = IN(5)
IVAL(2) =1
Set for reverse communication
evaluation of partials.
IOPT (3) = IN(29)
IVAL(3) = 0
Set for reverse communication
solution of linear equations.
IOPT (4) = IN(31)
IVAL(4) =0
Storage for the partial
derivative array not allocated.
IOPT (5) = IN(34)
IVAL(5) =1
Set the sizes of IWK, WK
for internal checking.
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IOPT (6) = IN(35)
IVAL(6) = 35 + N
IVAL(7) = 41 + 11*N

! "Put’ integer options.
CALL IUMAG (’'math’, ICHAP, IPUT, 6, IOPT, IVAL)
! Write problem title.
CALL UMACH (2, NOUT)
WRITE (NOUT, 99998)
! Integrate ODE/DAE. Use
! dummy IMSL external names.
40 CONTINUE
CALL D2SPG (N, T, TEND, IDO, Y, YPR, DGSPG, DJSPG, IWK, WK)
! Find where g goes.
! (It only goes in one place
! here, but can vary if
! divided differences are used
! for partial derivatives.)
IOPT (1) = IN(27)
CALL IUMAG (’'math’, ICHAP, IGET, 1, IOPT, IVAL)
! Direct user response.
GO TO (50, 180, 60, 50, 90, 100, 130, 150), IDO
50 CONTINUE
! This should not occur.
WRITE (NOUT,*) ’ Unexpected return with IDO = ', IDO
60 CONTINUE
! Reset options to defaults
DO 70 1I=1, 50
IN(I) = -IN(I)
70 CONTINUE
CALL IUMAG (’'math’, ICHAP, IPUT, 50, IN, IVAL)
DO 80 1I=1, 20
INR(I) = -INR(I)
80 CONTINUE
CALL UMAG ('math’, ICHAP, IPUT, INR, SVAL, numopts=1l)
STOP
90 CONTINUE
! Return came for g evaluation.
CALL SCOPY (N, YPR, 1, GVAL, 1)
CALL SGEMV (’NO’", N, N, 1.0EO, H, N, Y, 1, -1.0EO0, GVAL, 1)
! Put g into place.
CALL SCOPY (N, GVAL, 1, WK(IVAL(l:)), 1)
GO TO 40
100 CONTINUE
! Return came for partial
! derivative evaluation.
110 CALL SCOPY (N*N, H, 1, A, 1)
! Get value of c_j for partials.
IOPT (1) = INR(9)
CALL UMAG ('math’, ICHAP, IGET, IOPT, SVAL, numopts=1l)
! Subtract c_j from diagonals
! to compute (partials for y’)*c j.
DO 120 1I=1, N
A(I,I) = A(I,I) - SVAL(1)
120 CONTINUE
GO TO 40
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130 CONTINUE
! Return came for factorization
DO 140 J=1, N - 1
! Construct and apply Givens
! transformations.
CALL SROTG (A(J,J), A(J,J+1), SC, SS)
CALL SROT (N-J, A((J+1):,1), 1, A((J+1):,Jd+1), 1, SC, S9)
140 CONTINUE
GO TO 40
150 CONTINUE
! Return came to solve the system
CALL SCOPY (N, WK(IVAL(1l)), 1, GVAL, 1)
DO 160 J=1, N - 1
GVAL (J) = GVAL(J)/A(J,J)
CALL SAXPY (N-J, -GVAL(J), A((J+1):,J), 1, GVAL((J+1):, 1)
160 CONTINUE
GVAL (N) = GVAL(N) /A (N,N)
! Reconstruct Givens rotations
po 170 Jg=N -1, 1, -1
Z = A(J,J+1)
IF (ABS(Z) .LT. 1.0E0) THEN
SC = SQRT(1.0EQ0-Z**2)
SS = Z
ELSE IF (ABS(z) .GT. 1.0EQ) THEN
SC = 1.0E0/7Z

SS = SQRT (1.0E0-SC**2)
ELSE

sC = 0.0EO

SS = 1.0EO
END IF

CALL SROT (1, GVAL(J:), 1, GVAL((J+1):), 1, SC, SS)
170 CONTINUE
CALL SCOPY (N, GVAL, 1, WK(IVAL(1l)), 1)
GO TO 40

180 CONTINUE
SUMY = 0.EO
DO 190 1I=1, N
SUMY = SUMY + Y (I)
190 CONTINUE
WRITE (NOUT, 99999) TEND, SUMY
! Finish up internally
IDO = 3
GO TO 40
99998 FORMAT (11X, 'T’, 6X, ’'Sum of Y(i), i=1,n’)
99999 FORMAT (2F15.5)

END
Output
T Sum of Y(i), i=1,n
1.00000 65.17058
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Introduction to Subroutine PDE_1D_MG

The section describes an algorithm and a corresponding integrator subroutine PDE_1D MG for
solving a system of partial differential equations

This software is a one-dimensional solver. It requires initial and boundary conditions in addition
to values of u, . The integration method is noteworthy due to the maintenance of grid lines in the
space variable, X. Details for choosing new grid lines are given in Blom and Zegeling, (1994).
The class of problems solved with PDE_1D MG is expressed by equations:

NPDE

k
z C, (x,t,u,ux)aizx’”’i(me,- (x,t,u,ux))—Qj( ,t,u,ux),

k=1 at 8x
Jj=1,..., NPDE,x, <x<xpt>f,me {0,1,2}
Equation 1

The vector

u

T
I:ur”.,uNPDE:I

is the solution. The integer value NPDE >1 is the number of differential equations. The
functions R; and Qj can be regarded, in special cases, as flux and source terms. The functions

u,Cjy. R;and Q;
are expected to be continuous. Allowed values
m=0m=1,andm=2
are for problems in Cartesian, cylindrical or polar, and spherical coordinates. In the two cases
m > 0 , the interval
[x1,xe]
must not contain x = 0 as an interior point.
The boundary conditions have the master equation form
B, (x.0)R, (x,tuyu,) =y, (x,t,u,u,),
atx=x, andx =x;, j=1L,..., NPDE
Equation 2
In the boundary conditions the
B,andy;

are continuous functions of their arguments. In the two cases m > 0 and an endpoint occurs at 0,
the finite value of the solution at x = 0 must be ensured. This requires the specification of the
solution at x = 0, or implies that
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or

The initial values satisfy
u(x,to) = uo(x), X e[xL,xR]’

where “0is a piece-wise continuous vector function of x with NPDE components.

The user must pose the problem so that mathematical definitions are known for the functions
Crj> R Q5 By, and .

These functions are provided to the routine PDE_1D MG in the form of three subroutines.
Optionally, this information can be provided by reverse communication. These forms of the
interface are explained below and illustrated with examples. Users may turn directly to the
examples if they are comfortable with the description of the algorithm.

PDE_1D_MG

Invokes a module, with the statement USE PDE_1D MG, near the second line of the program unit.
The integrator is provided with single or double precision arithmetic, and a generic named
interface is provided. We do not recommend using 32-bit floating point arithmetic here. The
routine is called within the following loop, and is entered with each value of 1D0. The loop
continues until a value of IDO results in an exit.

IDO=1

DO
CASE (IDO == 1) {Do required initialization steps}
CASE (IDO == 2) {Save solution, update TO and TOUT }

IF{Finished with integration} IDO=3

CASE (IDO == 3) EXIT {Normal}
CASE (IDO == 4) EXIT {Due to errors}
CASE (IDO == 5) {Evaluate initial data}
CASE (IDO == 6) {Evaluate differential equations}
CASE (IDO == 7) {Evaluate boundary conditions}
CASE (IDO == 8) {Prepare to solve banded system}
CASE (IDO == 9) {Solve banded system}

CALL PDE_lD_MG (T0, TOUT, IDO, U, &
initial conditions, &

pde system definition, &

boundary conditions, IOPT)

END DO
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The arguments to PDE_1D_MG are required or optional.

Required Arguments

TO0—(Input/Output)
This is the value of the independent variable ¢ where the integration of i, begins. It is
set to the value TOUT on return.

TOUT—(Input)
This is the value of the independent variable ¢ where the integration of u, ends. Note:
Values of T0 < TOUT imply integration in the forward direction, while values of
TO > TOUT imply integration in the backward direction. Either direction is permitted.

1D0—(Input/Output)
This in an integer flag that directs program control and user action. Its value is used
for initialization, termination, and for directing user response during reverse
communication:

1IDo=1 This value is assigned by the user for the start of a new problem. Internally it
causes allocated storage to be reallocated, conforming to the problem size.
Various initialization steps are performed.

1ID0=2 This value is assigned by the routine when the integrator has successfully
reached the end point, TOUT.

ID0=3 This value is assigned by the user at the end of a problem. The routine is called
by the user with this value. Internally it causes termination steps to be
performed.

1D0=4 This value is assigned by the integrator when a type FATAL or TERMINAL error
condition has occurred, and error processing is set NOT to STOP for these
types of errors. It is not necessary to make a final call to the integrator with
IDO=3 in this case.

Values of IDO = 5,6,7,8,9 are reserved for applications that provide problem
information or linear algebra computations using reverse communication. When
problem information is provided using reverse communication, the differential
equations, boundary conditions and initial data must all be given. The absence
of optional subroutine names in the calling sequence directs the routine to use
reverse communication. In the module PDE 1D MG INT, scalars and arrays for
evaluating results are named below. The names are preceded by the prefix
“s pde 1d mg “or“d pde 1d mg ", depending on the precision. We use
the prefix “? pde 1d mg 7, for the appropriate choice.

1D0=5 This value is assigned by the integrator, requesting data for the initial
conditions. Following this evaluation the integrator is re-entered.
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(Optional) Update the grid of values in array locations UNPDE +1,5)j=2, ..., N.
This grid is returned to the user equally spaced, but can be updated as desired,
provided the values are increasing.

(Required) Provide initial values for all components of the system at the grid of values
U(NPDE +1,j)j=1, ..., N. If the optional step of updating the initial grid is
performed, then the initial values are evaluated at the updated grid.

1D0=6 This value is assigned by the integrator, requesting data for the differential
equations. Following this evaluation the integrator is re-entered. Evaluate the terms of
the system of Equation 2. A default value of 7 =0 is assumed, but this can be changed
to one of the other choices m =1or 2. Use the optional argument TOPT (:) for that
purpose. Put the values in the arrays as indicated!.

x=? pde 1d mg x

=? pde 1d mg t
u’ =? pde 1d_mg u(j)
ou’ =u! =? pde_1d_mg_dudx( j)
Ox ’ -
? pde_ld_mg_c(j,k)=C,, (x, t,u,ux)
? pde_1d mg r(j)=r,(x.t,uu,)
? pde_1d mg q(j)=q;(x,t,u,u,)
j,k=1,.,NPDE

If any of the functions cannot be evaluated, set pde 1d mg ires=3. Otherwise do not change its
value.

ID0=7 This value is assigned by the integrator, requesting data for the boundary conditions,
as expressed in Equation 3. Following the evaluation the integrator is re-entered.

x=? pde 1d mg x
t=? pde 1d mg t

u’ =? pde 1d_mg u(j)
au’ _ u
Ox *
‘?_pde_ld_mg_beta(j) =p; (x, t,u,ux)
?_pde_ld_mg_gamma(j) =7, (x,t,u,ux)
j=L..,NPDE

? _pde_ld_mg_dudx( j )

I The assign-to equality, @ := b, used here and below, is read “the expressiond is evaluated and then
assigned to the location a .”
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The value xe {x;, xz}, and the logical flag pde 1d mg LEFT=.TRUE. for x =x;. It has the value
pde 1d mg LEFT=.FALSE. forx =xz. If any of the functions cannot be evaluated, set
pde 1d mg ires=3. Otherwise do not change its value.

1ID0=8 This value is assigned by the integrator, requesting the calling program to prepare for

solving a banded linear system of algebraic equations. This value will occur only when
the option for “reverse communication solving” is set in the array T0PT (:), with
option PDE_1D MG REV_COMM FACTOR SOLVE. The matrix data for this system is in
Band Storage Mode, described in the section: Reference Material for the IMSL Fortran
Numerical Libraries.

PDE_1D MG_IBAND

Half band-width of linear system

PDE 1D MG_LDA

The value 3*PDE_1D MG IBAND+1, with
NEQ = (NPDE +1)N

? PDE_1D MG A

Array of size PDE_1D MG LDA by NEQ
holding the problem matrix in Band Storage
Mode

PDE_1D MG _PANIC FLAG

Integer set to a non-zero value only if the linear
system is detected as singular

ID0=9 This value is assigned by the integrator , requesting the calling program to solve a
linear system with the matrix defined as noted with IDO=8.

? PDE 1D MG _RHS

Array of size NEQ holding the linear
system problem right-hand side

PDE 1D MG PANIC FLAG

Integer set to a non-zero value only if the
linear system is singular

? PDE 1D MG SOL

Array of size NEQ to receive the solution,
after the solving step

U (1:NPDE+1, 1:N)—(Input/Output)

This assumed-shape array specifies /nput information about the problem size and

boundaries. The dimension of the problem is obtained from NPDE +1 = size(U,1). The
number of grid points is obtained by N = size(U,2). Limits for the variable x are
assigned as input in array locations, UNPDE +1, 1) = x;, UINPDE +1, N) =xg. Itis
not required to define U(NPDE +1, ), j=2, ..., N-1. At completion, the array

U (1:NPDE, 1:N) contains the approximate solution value U,(x;(TOUT),TOUT) in
location U (I, J). The grid value x(TOUT) is in location U (NPDE+1, J) . Normally the
grid values are equally spaced as the integration starts. Variable spaced grid values can
be provided by defining them as Output from the subroutine initial conditions
or during reverse communication, IDO=5.
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Optional Arguments

initial conditions—(Input)
The name of an external subroutine, written by the user, when using forward
communication. Ifthis argument is not used, then reverse communication is used to
provide the problem information. The routine gives the initial values for the system at
the starting independent variable value T0. This routine can also provide a non-
uniform grid at the initial value.

SUBROUTINE initial conditions (NPDE,N,U)
Integer NPDE, N
REAL (kind (T0)) U(:,:)

END SUBROUTINE

(Optional) Update the grid of values in array locations
U(NPDE +1,j).j=2,..N =1 Thjs orid is input equally spaced, but can be
updated as desired, provided the values are increasing.

Required) Provide initial values Ue.jlrj=L...N for all components of the system
q p Y

at the grid of values U(NPDE+1,j).j=1... N [fhe optional step of
updating the initial grid is performed, then the initial values are evaluated at
the updated grid.

pde system definition—(Input)
The name of an external subroutine, written by the user, when using
forward communication. It gives the differential equation, as expressed in Equation 2.

SUBROUTINE pde system definitioné&
(t, x, NPDE, u, dudx, c, gq, r, IRES)
Integer NPDE, IRES
REAL (kind (TO0)) t, x, u(:), dudx(:)
REAL (kind (T0)) c(::), g(:), r(:)
END SUBROUTINE
Evaluate the terms of the system of . A default value of m =0 is assumed, but this can be changed

to one of the other choices m =1 or 2. Use the optional argument IOPT (:) for that purpose. Put
the values in the arrays as indicated.
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u' =u(j)
%/
ox
c(j.k):= Cj’k(x,t,u,ux)
r(j):=r(xtuu,)
q(j) :=qj(x,t,u,ux)
jk=1,.., NPDE

=ul = dudyx(j)

If any of the functions cannot be evaluated, set TRES=3. Otherwise do not change its value.

boundary conditions—(Input)
The name of an external subroutine, written by the user when using forward communication. It
gives the boundary conditions, as expressed in Equation 2.

beta(j) o= Bj(x,t,u,ux)

gamma(j) o= yj(x,t,u,ux)
j=1...,NPDE

The value * E{XL’xR} , and the logical flag LEFT=. TRUE. for * = *L. The flag has the value

LEFT=.FALSE. for * = *&.

10PT—(Input)
Derived type array s_options or d_options, used for passing optional data to
PDE_ 1D MG. See the section Optional Data in the Introduction for an explanation of
the derived type and its use. It is necessary to invoke a module, with the statement USE
ERROR OPTION PACKET, near the second line of the program unit. Examples 2-8 use
this optional argument. The choices are as follows:

Packaged Options for PDE_1D_MG
Option Prefix = ? Option Name Option Value
s ,d_ PDE_1D_MG_CART COORDINATES 1
s ,d_ PDE_1D MG CYI,_ COORDINATES 2
s ,d_ PDE_1D MG SPH_COORDINATES 3
s ,d_ PDE_1D MG TIME_SMOOTHING 4
s ,d_ PDE_1D MG SPATIAL SMOOTHING 5
s ,d_ PDE_1D MG MONITOR REGULARIZING 6
s ,d_ PDE_1D MG RELATIVE TOLERANCE 7
s .,d_ PDE_1D MG_ABSOLUTE TOLERANCE 8

918 e Chapter 5: Differential Equations IMSL MATH/LIBRARY



Packaged Options for PDE_1D_MG
s ,d_ PDE_1D MG MAX BDF_ORDER 9
s .,d_ PDE 1D MG REV COMM FACTOR SOLVE 10
s ,d_ PDE 1D MG NO NULLIFY STACK 11
IOPT(IO) = PDE 1D MG CART COORDINATES

Use the value m =0 in Equation 2. This is the default.

TOPT (I0) = PDE 1D MG CYL COORDINATES
Use the value m =1 in Equation 2. The default value is m =0,

IOPT (IO) = PDE 1D MG SPH COORDINATES
Use the value m =2 in Equation 2. The default value is m=0,

IOPT (I0) =
2 OPTIONS (PDE_1D MG TIME SMOOTHING, TAU)

This option resets the value of the parameter T =0, described above.
The default value is T=0,

IOPT (I0) =
? OPTIONS (PDE_1D MG SPATIAL SMOOTHING, KAP)
This option resets the value of the parameter K > 0, described above.
The default value is K =2,

IOPT (IO) =
? OPTIONS (PDE 1D MG MONITOR REGULARIZING,ALPH)

This option resets the value of the pa_rameter & 20 described above.
The default value is & = 0.01,

IOPT (IO) = ? OPTIONS
(PDE_1D MG RELATIVE TOLERANCE, RTOL)

This option resets the value of the relative accuracy parameter used in DASPG. The
default value is RTOL=1E-2 for single precision and
RTOL=1D-4 for double precision.

IOPT (I0) = ?_ OPTIONS
(PDE_1D MG ABSOLUTE TOLERANCE,ATOL)

This option resets the value of the absolute accuracy parameter used in DASPG. The
default value is ATOL=1E-2 for single precision and
ATOL=1D-4 for double precision.

IOPT (IO) = PDE_1D MG MAX BDF ORDER
IOPT (I0+1) = MAXBDF
Reset the maximum order for the BDF formulas used in DASPG. The default value is
MAXBDF=2. The new value can be any integer between 1 and 5. Some problems will
benefit by making this change. We used the default value due to the fact that DASPG
may cycle on its selection of order and step-size with orders higher than value 2.
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IOPT (I0) = PDE 1D MG REV _COMM FACTOR SOLVE
The calling program unit will solve the banded linear systems required in the stiff
differential-algebraic equation integrator. Values of IDO=8, 9 will occur only when
this optional value is used.

IOPT (I0) = PDE 1D MG NO NULLIFY STACK
To maintain an efficient interface, the routine PDE_1D MG collapses the subroutine call
stack with CALL,_E1PSH (“"NULLIFY STACK”). This implies that the overhead of
maintaining the stack will be eliminated, which may be important with reverse
communication. It does not eliminate error processing. However, precise information
of which routines have errors will not be displayed. To see the full call chain, this
option should be used. Following completion of the integration, stacking is turned
back on with CALL _E1POP ("NULLIFY STACK”).

FORTRAN 90 Interface

Generic: CALL PDE 1D MG (TO, TOUT, IDO, [,..])

Specific: The specific interface names are S_PDE_1D MG and D_PDE_1D MG.

Remarks on the Examples

Due to its importance and the complexity of its interface, this subroutine is presented with several
examples. Many of the program features are exercised. The problems complete without any
change to the optional arguments, except where these changes are required to describe or to solve
the problem.

In many applications the solution to a PDE is used as an auxiliary variable, perhaps as part of a
larger design or simulation process. The truncation error of the approximate solution is
commensurate with piece-wise linear interpolation on the grid of values, at each output point. To
show that the solution is reasonable, a graphical display is revealing and helpful. We have not
provided graphical output as part of our documentation, but users may already have the Visual
Numerics, Inc. product, PV-WAVE, not included with Fortran 90 MP Library. Examples 1-8
write results in files “PDE_ex07?.out” that can be visualized with PV-WAVE. We provide a
script of commands, “pde 1d mg plot.pro”, for viewing the solutions (see example below).
The grid of values and each consecutive solution component is displayed in separate plotting
windows. The script and data files written by examples 1-8 on a SUN-SPARC system are in the
directory for Fortran 90 MP Library examples. When inside PV_WAVE, execute the command
line “pde 1d mg plot,filename=’PDE ex0?.out’” to view the output of a particular
example.

Code for PV-WAVE Plotting (Examples Directory)

PRO PDE 1d mg plot, FILENAME = filename, PAUSE = pause

’

if keyword set (FILENAME) then file = filename else file = "res.dat"
if keyword set (PAUSE) then twait = pause else twait = .1

; Define floating point variables that will be read

; from the first line of the data file.
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x1 = 0DO
xr = 0DO
t0 = 0DO
tlast = 0DO

; Open the data file and read in the problem parameters.
openr, lun, filename, /get lun
readf, lun, npde, np, nt, x1, xr, t0, tlast

; Define the arrays for the solutions and grid.
u = dblarr(nt, npde, np)
g = dblarr(nt, np)
times = dblarr (nt)

; Define a temporary array for reading in the data.
tmp = dblarr (np)
t tmp = 0DO

; Read in the data.

for i = 0, nt-1 do begin ; For each step in time
readf, lun, t tmp
times (i) = t _tmp
for k = 0, npde-1 do begin ; For each PDE:

rmf, lun, tmp

u(i,k,*) = tmp ; Read in the components.
end

rmf, lun, tmp
g(i,*) = tmp ; Read in the grid.
end

; Close the data file and free the unit.
close, lun
free lun, lun

; We now have all of the solutions and grids.

; Delete any window that is currently open.
while (!d.window NE -1) do WDELETE

; Open two windows for plotting the solutions

; and grid.
window, 0, xsize = 550, ysize = 420
window, 1, xsize = 550, ysize = 420
; Plot the grid.
wset, 0
plot, [x1, xr], [tO, tlast], /nodata, ystyle =1, $
title = "Grid Points", xtitle = "X", ytitle = "Time"
for i = 0, np-1 do begin
oplot, g(*, i), times, psym = -1
end

; Plot the solution(s):
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wset, 1
for k = 0, npde-1 do begin
umin = min(u(*, k, *))
umax = max (u(*,k,*))
for i = 0, nt-1 do begin
title = strcompress("U "+string(k+l), /remove all)+ $
" at time "+string(times(i))
plot, g(i, *), u(i,k,*), ystyle =1, $§

title = title, xtitle = "X", $
ytitle = strcompress ("U "+string(k+l), /remove all), $
xr = [xl, xr], yr = [umin, umax], $
psym = -4
wait, twait
end
end

end

Example 1 - Electrodynamics Model

This example is from Blom and Zegeling (1994). The system is

ugpu, —gu-v)
VDV +gu-v),
where g(z) = exp(nz/3) —exp(—2nz/3)
0<x<1,0<r<4
u=1landv=0atsr=0
u, =0andv=0atx=0
u=1landv =0atx=1
€=0.143,p=0.1743,7 =17.19
We make the connection between the model problem statement and the example:
C=1,
m=0,R =&pu_,R, = pv,
0 =8w-v),0,=-9
The boundary conditions are

B=1p5,=0,7=0y,=v,atx=x, =0
B=0,6=Ly=u-1ly, =0,atx=x, =1

Rationale: Example 1

This is a non-linear problem with sharply changing conditions near £ =0. The default settings of
integration parameters allow the problem to be solved. The use of PDE_1D MG with forward
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communication requires three subroutines provided by the user to describe the initial conditions,
differential equations, and boundary conditions.

program PDE EX1
! Electrodynamics Model:
USE PDE 1d mg
IMPLICIT NONE

INTEGER, PARAMETER :: NPDE=2, N=51, NFRAMES=5
INTEGER I, IDO

! Define array space for the solution.
real (kind (1d0)) U(NPDE+1,N), TO, TOUT
real (kind(1d0)) :: ZERO=0DO, ONE=1D0, &
DELTA T=10D0, TEND=4DO
EXTERNAL IC 01, PDE 01, BC 01

! Start loop to integrate and write solution wvalues.
IDO=1
DO
SELECT CASE (IDO)

! Define values that determine limits.
CASE (1)
TO0=ZERO
TOUT=1D-3
U(NPDE+1, 1)=ZERO; U (NPDE+1, N) =ONE
OPEN (FILE='PDE ex0l.out',6 UNIT=7)
WRITE (7, "(3I5, 4F10.5)") NPDE, N, NFRAMES, &
U (NPDE+1,1), U(NPDE+1,N), TO, TEND
! Update to the next output point.
! Write solution and check for final point.
CASE (2)

WRITE (7, " (F10.5) ") TOUT
DO I=1,NPDE+1

WRITE (7, " (4E15.5)")U (I, :)
END DO
TO=TOUT; TOUT=TOUT*DELTA T
IF(TO >= TEND) IDO=3
TOUT=MIN (TOUT, TEND)

! A1l completed. Solver is shut down.
CASE (3)
CLOSE (UNIT=7)
EXIT

END SELECT

! Forward communication is used for the problem data.
CALL PDE_1D MG (TO, TOUT, IDO, U,&
initial conditions= IC 01,&
PDE system definition= PDE 01, &
boundary conditions= BC 01)
END DO
END

SUBROUTINE IC 01 (NPDE, NPTS, U)
! This is the initial data for Example 1.
IMPLICIT NONE
INTEGER NPDE, NPTS

IMSL MATH/LIBRARY Chapter 5: Differential Equations ¢ 923



REAL (KIND(1D0O)) U(NPDE+1,NPTS)
U(l,:)=1D0;U(2, :)=0D0
END SUBROUTINE
SUBROUTINE PDE 01 (T, X, NPDE, U, DUDX, C, Q,
This is the differential equation for Example 1.
IMPLICIT NONE
INTEGER NPDE, IRES
REAL (KIND(1DO)) T, X, U(NPDE), DUDX (NPDE),
C (NPDE,NPDE), Q(NPDE), R (NPDE)
REAL (KIND(1DO)) :: EPS=0.143D0, P=0.1743DO
ETA=17.19D0, Z, TwO=2D0, THREE=3DO

C=0D0;C(1,1)=1D0;C(2,2)=1D0
R=P*DUDX;R(1)=R (1) *EPS
Z=ETA* (U(1)-U(2))/THREE
Q(1)=EXP (Z)-EXP (-TWO*Z)
Q(2)=-0(1)

END SUBROUTINE

SUBROUTINE BC 01 (T, BTA, GAMA, U, DUDX, NPDE,
These are the boundary conditions for Example 1.
IMPLICIT NONE
INTEGER NPDE, IRES
LOGICAL LEFT
REAL (KIND(1D0)) T, BTA(NPDE), GAMA (NPDE), &
U (NPDE) , DUDX (NPDE)

IF (LEFT) THEN

BTA (1)=1D0;BTA(2)=0D0

GAMA (1)=0D0; GAMA (2)=U(2)
ELSE

BTA (1)=0D0;BTA(2)=1DO0

GAMA (1)=U(1)-1D0;GAMA (2)=0D0
END IF

END SUBROUTINE

Description

The equation

u, = f(uxt)x;, <x<xp,t

is approximated at N time-dependent grid values

Xp =X <...<xl-(t)<x,-+1(t)<...<xN =X

Using the total differential

R,

&

, &

LEFT,

>t0
H

du dx
—=u,tu,—
dt dt
transforms the differential equation to
du dx
——u,—=u, = flux:t
(ﬁ x‘ﬁ t f( )

IRES)

IRES)

924 ¢ Chapter 5: Differential Equations

IMSL MATH/LIBRARY



Using central divided differences for the factor u, leads to the system of ordinary differential
equations in implicit form

dU,' _ (Ui+l _Ui—l) dxi — F;” > tO’iZ L...,N
dt (x'+1_xi—1) dt

1

The terms U, F; respectively represent the approximate solution to the partial differential equation
and the value of f{u,x,1) at the point (x,?) = (x; (?),f). The truncation error is second-order in the
space variable, x. The above ordinary differential equations are underdetermined, so additional
equations are added for the variation of the time-dependent grid points. It is necessary to discuss
these equations, since they contain parameters that can be adjusted by the user. Often it will be
necessary to modify these parameters to solve a difficult problem. For this purpose the following

quantities are defined?:
= (Ax[ )_1

-2n,+n,_,),0<i<N

Ax, =x,, —x;,n,

i

w=n—x(xk+1)(n

i+1
ny=ny, Ny, =ny

The values n; are the so-called point concentration of the grid, and ¥ >0 denotes a spatial
smoothing parameter. Now the grid points are defined implicitly so that

du. d
,UH‘H'h M+t #
dr_ _ dt_ 1<i<N,
M, M,

where T > 1 is a time-smoothing parameter. Choosing t very large results in a fixed grid.
Increasing the value of T from its default avoids the error condition where grid lines cross. The
divisors are

, 2
NPDE (U] — U/
M7 =o+(NPDE)" #
j=1 (Ax;)

The value k determines the level of clustering or spatial smoothing of the grid points. Decreasing
k from its default decrease the amount of spatial smoothing. The parameters M; approximate arc
length and help determine the shape of the grid or x,-distribution. The parameter tprevents the
grid movement from adjusting immediately to new values of the M;, thereby avoiding oscillations
in the grid that cause large relative errors. This is important when applied to solutions with steep

gradients.

The discrete form of the differential equation and the smoothing equations are combined to yield
the implicit system of differential equations

2 The three-tiered equal sign, used here and below, is read “a = b or a and b are exactly the same object
or value.”
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dY
AN~

T
_ 1 NPDE 1 NPDE
Y=[U] UM U U

L(Y),

This is frequently a stiff differential-algebraic system. It is solved using the integrator DASPG and
its subroutines, including D2SPG. These are documented in this chapter. Note that DASPG is
restricted to use within PDE_1D MG until the routine exits with the flag ID0 = 3. If DASPG is
needed during the evaluations of the differential equations or boundary conditions, use of a second
processor and inter-process communication is required. The only options for DASPG set by

PDE_1D MG are the Maximum BDF Order, and the absolute and relative error values, ATOL and
RTOL. Users may set other options using the Options Manager. This is described in routine
DASPG, see page 889, and generally in Chapter 11 of this manual.

Additional Examples

Example 2 - Inviscid Flow on a Plate
This example is a first order system from Pennington and Berzins, (1994). The equations are

u, =-v,
uu, = —vi, +w,
w=u,, implying that uu, = —vu, +u,,
u((),t) = v((),t) = O,u(oo,t) = u(xR,t) =1,t>0
u(x,O) =1, v(x,O) =0,x>0
Following elimination of W, there remain NPDE =2 differential equations. The variable { is not
time, but a second space variable. The integration goes from ¢ =0 to £ =5. It is necessary to

truncate the variable X at a finite value, say*max = ¥R = 25 In terms of the integrator, the system
is defined by letting m =0 and

c-feul<ly el el

The boundary conditions are satisfied by

B0,y = [u - exp(—ZOt)

,atx =Xx;,
v

u
B=Qv=[v

},atxsz

X

Weuse N =10+51=61 grid points and output the solution at steps of Az =0.1,

Rationale: Example 2

This is a non-linear boundary layer problem with sharply changing conditions near  =0. The
problem statement was modified so that boundary conditions are continuous near # = 0. Without
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this change the underlying integration software, DASPG, cannot solve the problem. The

continuous blending function u—ep (_ZOI) is arbitrary and artfully chosen. This is a
mathematical change to the problem, required because of the stated discontinuity at  =0. Reverse
communication is used for the problem data. No additional user-written subroutines are required
when using reverse communication. We also have chosen 10 of the initial grid points to be

concentrated near *L = 0, anticipating rapid change in the solution near that point. Optional
changes are made to use a pure absolute error tolerance and non-zero time-smoothing.

program PDE 1D MG EX02
! Inviscid Flow Over a Plate

USE PDE_1d mg

USE ERROR OPTION PACKET

IMPLICIT NONE

INTEGER, PARAMETER :: NPDE=2, N1=10, N2=51, N=N1+N2
INTEGER I, IDO, NFRAMES

! Define array space for the solution.
real (kind (1d0)) U(NPDE+1,N), TO, TOUT, DX1, DX2, DIF

real (kind (1d0)) :: ZERO=0DO, ONE=1DO, DELTA T=1D-1,&
TEND=5D0, XMAX=25D0
real (kind (1d0)) :: U0O=1DO, U1l=0D0O, TDELTA=1D-1, TOL=1D-2

TYPE (D_OPTIONS) IOPT(3)
! Start loop to integrate and record solution wvalues.
IDO=1
DO
SELECT CASE (IDO)
! Define values that determine limits and options.
CASE (1)
T0=ZERO
TOUT=DELTA T
U (NPDE+1, 1) =ZERO; U (NPDE+1, N) =XMAX
OPEN (FILE='PDE ex02.out',UNIT=7)
NFRAMES:NINT((TEND+DELTA_T)/DELTA_T)
WRITE (7, "(3I5, 4D14.5)") NPDE, N, NFRAMES, &
U (NPDE+1,1), U(NPDE+1,N), TO, TEND
DX1=XMAX/N2; DX2=DX1/N1
IOPT (1)=D OPTIONS (PDE 1D MG RELATIVE TOLERANCE, ZERO)
IOPT (2)=D_OPTIONS (PDE 1D MG ABSOLUTE TOLERANCE, TOL)
IOPT (3)=D_OPTIONS (PDE 1D MG TIME SMOOTHING, 1D-3)

! Update to the next output point.
! Write solution and check for final point.
CASE (2)
TO0=TOUT
IF(TO <= TEND) THEN
WRITE (7," (F10.5)")TOUT
DO I=1,NPDE+1
WRITE(7," (4E15.5)")U(I, :)

END DO
TOUT=MIN (TOUT+DELTA T, TEND)
IF(TO == TEND) IDO=3

END IF
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! A1l completed. Solver is shut down.
CASE (3)

CLOSE (UNIT=7)
EXIT

! Define initial data values.

CASE (5)
U (:NPDE, :)=ZERO;U (1, : ) =ONE
DO I=1,N1
U (NPDE+1,I)=(I-1)*DX2
END DO

DO I=N1+1,N

U (NPDE+1,I)=(I-N1)*DX1
END DO
WRITE (7," (F10.5)")TO
DO I=1,NPDE+1

WRITE (7," (4E15.5)")U(I, )
END DO

! Define differential equations.
CASE (6)
D PDE 1D MG _C=ZERO
D PDE_1D MG C(1,1)=ONE
D PDE 1D MG C(2,1)=D PDE 1D MG U(1)

D PDE 1D MG R(1)=-D PDE 1D MG U(2)
D PDE_1D MG R(2)= D _PDE 1D MG DUDX (1)

D PDE_1D MG Q(1)= ZERO
D PDE_1D MG Q(2)= &
D PDE_1D MG U(2)*D PDE 1D MG DUDX (1)
! Define boundary conditions.
CASE (7)
D _PDE_1D MG BETA=ZERO
IF (PDE_1D MG LEFT) THEN
DIF=EXP (-20D0*D PDE 1D MG T)
! Blend the left boundary value down to zero.
D PDE_1D MG _GAMMA=(/D_PDE 1D MG U(1)-DIF,D PDE 1D MG U(2)/)
ELSE
D _PDE 1D MG GAMMA=(/D PDE_ 1D MG U(1)-
ONE,D PDE 1D MG DUDX (2)/)
END IF
END SELECT

! Reverse communication is used for the problem data.
CALL PDE 1D MG (TO, TOUT, IDO, U, IOPT=IOPT)

END DO
end program

Example 3 - Population Dynamics

This example is from Pennington and Berzins (1994). The system is
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u, =—uX—I(t)u, x; =0<x<a=uxz,t20
I(t) = u(x,t)dx

(e) =5 P ix;?;;)a)

R

u(0,t)=g jb(x,[(t)ﬁ(x,t)dx,t . where

B xy exp(—x) an
b(x,y)= (y+1)2 - and
4z(2-2exp(—a)+ exp(—t))2
(l - exp(—a))(l - (l + 2a)exp(—2a))(l - exp(—a) + exp(—t))

exp(—x
u(x,1) = p(=)
This is a notable problem because it involves the unknown 1-exp (—a) +exp(~1) across
the entire domain. The software can solve the problem by introducing two dependent algebraic

equations:

vl(t) =

u(x, t)dx,

v(t)=

x exp(—x Ju(x, t)dx

S t——n O

This leads to the modified system
u, =—u,—viu, 0<x<a, t=20
1Lt
uf0.0)= £
(vi+1)
In the interface to the evaluation of the differential equation and boundary conditions, it is

necessary to evaluate the integrals, which are computed with the values of u(x,t) on the grid. The
integrals are approximated using the trapezoid rule, commensurate with the truncation error in the
integrator.

Rationale: Example 3

This is a non-linear integro-differential problem involving non-local conditions for the differential
equation and boundary conditions. Access to evaluation of these conditions is provided using
reverse communication. It is not possible to solve this problem with forward communication,
given the current subroutine interface. Optional changes are made to use an absolute error
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tolerance and non-zero time-smoothing. The time-smoothing valueT =1 prevents grid lines from
crossing.

program PDE 1D MG EXO03
! Population Dynamics Model.
USE PDE_1d mg
USE ERROR OPTION PACKET
IMPLICIT NONE
INTEGER, PARAMETER :: NPDE=1, N=101
INTEGER IDO, I, NFRAMES
! Define array space for the solution.
real (kind (1d0)) U(NPDE+1,N), MID(N-1), TO, TOUT, V 1, V 2
real (kind (1d0)) :: ZERO=0DO, HALF=5D-1, ONE=1DO, &
TWO=2D0, FOUR=4DO, DELTAﬁTZlD—l,TENDZSDO, A=5D0
TYPE (D_OPTIONS) IOPT(3)
! Start loop to integrate and record solution values.
IDO=1
DO
SELECT CASE (IDO)
! Define values that determine limits.
CASE (1)
T0=ZERO
TOUT=DELTA T
U(NPDE+1, 1)=ZERO; U (NPDE+1,N)=A
OPEN (FILE='PDE ex03.out', UNIT=7)
NFRAMES=NINT ( (TEND+DELTA T)/DELTA T)
WRITE (7, "(3I5, 4D14.5)") NPDE, N, NFRAMES, &
U(NPDE+1,1), U(NPDE+1,N), TO, TEND
IOPT (1)=D_OPTIONS (PDE 1D MG RELATIVE TOLERANCE, ZERO)
IOPT (2)=D_OPTIONS (PDE 1D MG ABSOLUTE TOLERANCE, 1D-2)
IOPT (3)=D_OPTIONS (PDE_1D MG TIME SMOOTHING, 1D0)
! Update to the next output point.
! Write solution and check for final point.
CASE (2)
TO0=TOUT
IF(TO <= TEND) THEN
WRITE (7," (F10.5)")TOUT
DO I=1,NPDE+1
WRITE (7, " (4E15.5)")U (I, :)
END DO
TOUT=MIN (TOUT+DELTA T, TEND)
IF(TO == TEND) IDO=3
END IF
! A1l completed. Solver is shut down.
CASE (3)
CLOSE (UNIT=7)
EXIT
! Define initial data wvalues.
CASE (5)
U(l,:)=EXP(-U(2,:))/ (TWO-EXP (-A))
WRITE(7," (F10.5)")TO
DO I=1,NPDE+1
WRITE (7, " (4E15.5)")U(I,:)
END DO
! Define differential equations.
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CASE (6)
D PDE_1D MG C(1,1)=ONE
D PDE_1D MG R(1)=-D PDE_1D MG U (1)
! Evaluate the approximate integral, for this t.
V_1=HALF*SUM((U(1,1:N-1)+U(1,2:N)) *&
(U(2,2:N) - U(2,1:N-1)))
D PDE_1D MG Q(1)=V_1*D PDE 1D MG U(1)
! Define boundary conditions.
CASE (7)
IF (PDE_1D MG LEFT) THEN
! Evaluate the approximate integral, for this t.
! A second integral is needed at the edge.
V_1=HALF*SUM((U(1,1:N-1)+U(1,2:N)) *&
(U(2,2:N) - U(2,1:N-1)))
MID=HALF* (U(2,2:N)+U(2,1:N-1))
V_2=HALF*SUM (MID*EXP (-MID) *&
(U(1,1:N-1)+U(1,2:N))*(U(2,2:N)-U(2,1:N-1)))
D PDE_1D MG BETA=ZERO

D PDE_1D MG GAMMA=G (ONE,D PDE 1D MG T)*V_1*V 2/ (V_1+ONE) **2-g&
D PDE 1D MG U
ELSE
D_PDE 1D MG BETA=ZERO
D PDE_1D MG GAMMA=D PDE 1D MG DUDX (1)
END IF
END SELECT
! Reverse communication is used for the problem data.
CALL PDE 1D MG (TO, TOUT, IDO, U, IOPT=IOPT)
END DO
CONTAINS
FUNCTION G(z,t)
IMPLICIT NONE
REAL (KIND(1d0)) z, T, G
G=FOUR*Z* (TWO-TWO*EXP (-A) +EXP (-T) ) **2
G=G/ ( (ONE-EXP (-A) ) * (ONE- (ONE+TWO*A) *&
EXP (-TWO*A) ) * (1-EXP (-A) +EXP (-T)))
END FUNCTION
end program

Example 4 - A Model in Cylindrical Coordinates

This example is from Blom and Zegeling (1994). The system models a reactor-diffusion problem:
L, o(BrT) ( T ]
T=r" .
=7 or rer 1+€T
Tr(O,z) =0, T(l,z) =0,z>0
7(r,0)=0,0<r<1

B=10"y=1e=01

The axial direction Z is treated as a time coordinate. The radius 7 is treated as the single space
variable.
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Rationale: Example 4

This is a non-linear problem in cylindrical coordinates. Our example illustrates assigning m =1 in
Equation 2. We provide an optional argument that resets this value from its default, m=0.
Reverse communication is used to interface with the problem data.

program PDE 1D MG EX04
! Reactor-Diffusion problem in cylindrical coordinates.
USE pde 1d mg
USE error option packet
IMPLICIT NONE
INTEGER, PARAMETER :: NPDE=1, N=41
INTEGER IDO, I, NFRAMES
! Define array space for the solution.
real (kind (1d40)) T(NPDE+1,N), Z0, ZOUT
real (kind(1d0)) :: ZERO=0DO, ONE=1D0, DELTA 7z=1D-1,&
ZEND=1D0O, ZMAX=1D0O, BTA=1D-4, GAMA=1D0O, EPS=1D-1
TYPE (D_OPTIONS) IOPT (1)
! Start loop to integrate and record solution wvalues.
IDO=1
DO
SELECT CASE (IDO)
! Define values that determine limits.
CASE (1)
Z0=ZERO
ZOUT=DELTA 7
T (NPDE+1, 1) =ZERO; T (NPDE+1, N) =ZMAX
OPEN (FILE='PDE ex04.out', UNIT=7)
NFRAMES:NINT((ZEND+DELTA_Z)/DELTA_Z)
WRITE (7, "(3I5, 4D14.5)") NPDE, N, NFRAMES, &
T (NPDE+1,1), T(NPDE+1,N), Z0, ZEND
IOPT (1) =PDE_1D MG CYL COORDINATES
! Update to the next output point.
! Write solution and check for final point.
CASE (2)
IF(Z0 <= ZEND) THEN
WRITE (7," (F10.5) ") Z0OUT
DO I=1,NPDE+1
WRITE (7, " (4E15.5)") T (I, :)
END DO
ZOUT=MIN (ZOUT+DELTA Z, ZEND)
IF (Z0 == ZEND) IDO=3
END IF
! A1l completed. Solver is shut down.
CASE (3)
CLOSE (UNIT=7)
EXIT
! Define initial data values.
CASE (5)
T(1l,:)=ZERO
WRITE(7," (F10.5)")Zz0
DO I=1,NPDE+1
WRITE (7, " (4E15.5)") T (I, :)
END DO
! Define differential equations.
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CASE (6)
D PDE_1D MG C(1,1)=ONE
D PDE_1D MG R(1)=BTA*D PDE 1D MG DUDX (1)
D PDE 1D MG Q(1l)= -GAMA*EXP (D PDE 1D MG U(1)/&
(ONE+EPS*D_PDE_1D MG U(1)))
! Define boundary conditions.
CASE (7)
IF(PDE_1D MG LEFT) THEN
D PDE 1D MG BETA=ONE; D PDE 1D MG GAMMA=ZERO
ELSE
D PDE 1D MG BETA=ZERO; D PDE 1D MG GAMMA=D PDE 1D MG U (1)
END IF
END SELECT
! Reverse communication is used for the problem data.
! The optional derived type changes the internal model
! to use cylindrical coordinates.
CALL PDE 1D MG (Z0O, ZzOUT, IDO, T, IOPT=IOPT)
END DO
end program

Example 5 - A Flame Propagation Model

This example is presented more fully in Verwer, et al., (1989). The system is a normalized

problem relating mass density u(x,t) and temperature v(x,t):

u, =y, —uf (v)

v, =v, +uf(v),

where f(z) =y exp(-B/z), B = 4,7 =352 x10°
0<x<1,0<¢<0.006

u(x,O) = l,v(x,O) =02

u,=v,=0,x=0

u, =0,v=b(t), x =1, where
b(t)=12,fort>2x107*, and

= 0.2+5x10°, for 0<¢<2x10™*

Rationale: Example 5

This is a non-linear problem. The example shows the model steps for replacing the banded solver
in the software with one of the user’s choice. Reverse communication is used for the interface to
the problem data and the linear solver. Following the computation of the matrix factorization in
DL2CRB, we declare the system to be singular when the reciprocal of the condition number is
smaller than the working precision. This choice is not suitable for all problems. Attention must
be given to detecting a singularity when this option is used.

program PDE 1D MG EXO05
! Flame propagation model
USE pde 1d mg
USE ERROR OPTION PACKET
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USE Numerical Libraries, ONLY :&
dl2crb, dlfsrb
IMPLICIT NONE

INTEGER, PARAMETER :: NPDE=2, N=40, NEQ=(NPDE+1)*N
INTEGER I, IDO, NFRAMES, IPVT (NEQ)

! Define array space for the solution.
real (kind (1d40)) U(NPDE+1,N), TO, TOUT
! Define work space for the banded solver.
real (kind (1d0)) WORK (NEQ), RCOND
real (kind(1d0)) :: ZERO=0DO, ONE=1D0, DELTA T=1D-4,&
TEND=6D-3, XMAX=1D0O, BTA=4D0, GAMA=3.52D6
TYPE (D_OPTIONS) IOPT (1)
! Start loop to integrate and record solution wvalues.
IDO=1
DO
SELECT CASE (IDO)

! Define values that determine limits.
CASE (1)
T0=ZERO
TOUT=DELTA T
U(NPDE+1, 1)=ZERO; U (NPDE+1l,N)=XMAX
OPEN (FILE='PDE ex05.out',UNIT=7)
NFRAMES=NINT ( (TEND+DELTA T)/DELTA T)
WRITE (7, "(3I5, 4D14.5)") NPDE, N, NFRAMES, &
U(NPDE+1,1), U(NPDE+1,N), TO, TEND
IOPT (1)=PDE_1D MG _REV_COMM FACTOR SOLVE
! Update to the next output point.
! Write solution and check for final point.
CASE (2)
TO0=TOUT
IF(TO <= TEND) THEN
WRITE(7," (F10.5)")TOUT
DO I=1,NPDE+1
WRITE (7," (4E15.5)")U(I, )

END DO
TOUT=MIN (TOUT+DELTA T, TEND)
IF(TO == TEND) IDO=3

END IF

! A1l completed. Solver is shut down.
CASE (3)
CLOSE (UNIT=7)
EXIT

! Define initial data wvalues.
CASE (5)
U(l,:)=0ONE; U(2,:)=2D-1
WRITE(7," (F10.5)")TO
DO I=1,NPDE+1
WRITE (7, " (4E15.5)")U(I, :)
END DO
! Define differential equations.
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CASE (6)
D PDE 1D MG C=ZERO
D PDE 1D MG C(1,1)=ONE; D PDE 1D MG C(2,2)=ONE

D PDE 1D MG R=D PDE 1D MG DUDX

D PDE 1D MG Q(l)= D PDE 1D MG U(l)*F(D _PDE 1D MG U(2))
D PDE 1D MG Q(2)= -D PDE 1D MG Q(1)
! Define boundary conditions.
CASE (7)

IF(PDE_1D MG LEFT) THEN
D PDE 1D MG BETA=ZERO;D PDE 1D MG GAMMA=D PDE 1D MG DUDX
ELSE
D _PDE 1D MG BETA (1)=ONE
D _PDE 1D MG _GAMMA (1)=ZERO
D _PDE_1D MG BETA (2)=ZERO
IF(D PDE_1D MG T >= 2D-4) THEN
D _PDE_1D MG GAMMA (2)=12D-1
ELSE
D PDE 1D MG GAMMA (2)=2D-1+5D3*D PDE 1D MG T
END IF
D PDE_1D MG GAMMA (2)=D PDE 1D MG GAMMA (2) -&
D PDE 1D MG U(2)
END IF
CASE (8)
! Factor the banded matrix. This is the same solver used
! internally but that is not required. A user can substitute
! one of their own.
call dl2crb (neq, d pde 1d mg a, pde 1d mg lda,
pde 1d mg iband, &
pde 1d mg iband, d pde 1d mg a, pde 1d mg lda, ipvt, rcond,
work)
IF (rcond <= EPSILON(ONE)) pde 1d mg panic_ flag = 1
CASE (9)
! Solve using the factored banded matrix.
call dlfsrb(neq, d pde 1d mg a, pde 1d mg lda,
pde 1d mg iband, &
pde 1d mg iband, ipvt, d pde 1d mg rhs, 1, d pde 1d mg sol)
END SELECT

! Reverse communication is used for the problem data.
CALL PDE 1D MG (TO, TOUT, IDO, U, IOPT=IOPT)
END DO
CONTAINS
FUNCTION F (Z)
IMPLICIT NONE
REAL (KIND(1DO)) z, F
F=GAMA*EXP (-BTA/7Z)
END FUNCTION
end program
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Example 6 - A ‘Hot Spot’ Model

This example is presented more fully in Verwer, et al., (1989). The system is a normalized
problem relating the temperature u(x,t)’ of a reactant in a chemical system. The formula for
h(z). . .

is equivalent to their example.

U, =u, + h(u),
where /(z) = 56(1 ra-z)exp(-5(1/2-1))
a

a=16=20,R=5
0<x<10<¢r<029

u(x,0)=1
u,=0,x=0
u=1Lx=1

Rationale: Example 6

This is a non-linear problem. The output shows a case where a rapidly changing front, or hot-spot,
develops after a considerable way into the integration. This causes rapid change to the grid. An
option sets the maximum order BDF formula from its default value of 2 to the theoretical stable
maximum value of 5.

USE pde 1d mg
USE error option packet
IMPLICIT NONE

INTEGER, PARAMETER :: NPDE=1, N=80
INTEGER I, IDO, NFRAMES

! Define array space for the solution.
real (kind (1d40)) U(NPDE+1,N), TO, TOUT
real (kind (1d0)) :: ZERO=0D0, ONE=1D0O, DELTA T=1D-2, &
TEND=29D-2, XMAX=1D0O, A=1D0, DELTA=2D1, R=5DO
TYPE (D_OPTIONS) IOPT(2)
! Start loop to integrate and record solution values.
IDO=1
DO
SELECT CASE (IDO)

! Define values that determine limits.
CASE (1)
TO=ZERO
TOUT=DELTA T
U (NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX
OPEN(FILEZ'PDEiexO6.out',UNIT=7)
NFRAMES:(TEND+DELTA_T)/DELTA_T
WRITE (7, " (3I5, 4D14.5)") NPDE, N, NFRAMES, &
U (NPDE+1,1), U(NPDE+1,N), TO, TEND
! Tllustrate allowing the BDF order to increase
! to its maximum allowed value.
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IOPT(1)=PDE_ 1D MG MAX BDF ORDER
IOPT (2)=5
! Update to the next output point.
! Write solution and check for final point.
CASE (2)
TO0=TOUT
IF(TO <= TEND) THEN
WRITE (7," (F10.5)")TOUT
DO I=1,NPDE+1
WRITE (7, " (4E15.5)")U(I, )

END DO
TOUT=MIN (TOUT+DELTA T, TEND)
IF(TO == TEND) IDO=3

END IF

! A1l completed. Solver is shut down.
CASE (3)
CLOSE (UNIT=7)
EXIT

! Define initial data values.
CASE (5)
U(1l, :)=0NE
WRITE(7," (F10.5)")TO
DO I=1,NPDE+1
WRITE(7," (4E15.5)")U(I, :)
END DO
Define differential equations.
CASE (6)
D PDE_1D MG C=ONE
D PDE 1D MG R=D PDE 1D MG DUDX
D PDE 1D MG O= - H(D PDE 1D MG U(1))

! Define boundary conditions.
CASE (7)
IF(PDE_1D MG _LEFT) THEN
D _PDE_1D MG BETA=ZERO
D PDE 1D MG _GAMMA=D PDE 1D MG_DUDX
ELSE

D_PDE 1D MG BETA=ZERO
D PDE 1D MG GAMMA=D PDE 1D MG U(1)-ONE
END IF
END SELECT
! Reverse communication is used for the problem data.
CALL PDE 1D MG (TO, TOUT, IDO, U, IOPT=IOPT)
END DO
CONTAINS
FUNCTION H(Z)
real (kind (1d0)) Z, H
H=(R/ (A*DELTA) ) * (ONE+A-Z) *EXP (-DELTA* (ONE/Z-ONE) )
END FUNCTION
end program
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Example 7 - Traveling Waves

This example is presented more fully in Verwer, et al., (1989). The system is a normalized

problem relating the interaction of two waves, u(x,t) and v(x,t) moving in opposite directions.
The waves meet and reduce in amplitude, due to the non-linear terms in the equation. Then they
separate and travel onward, with reduced amplitude.

u, = —u, —100uv,

v, =v, —100uv,

-05<x<050<¢<05

u(x,0) = 05(1+ cos(10mx)), x €[-0.3,-0.1], and
=0, otherwise

v(x,0) = 05(1+ cos(10mx)),x €[0.1,0.3], and
=0, otherwise

u=v=0atbothends, t >0

Rationale: Example 7

This is a non-linear system of first order equations.

program PDE 1D MG EXO07
! Traveling Waves
USE pde 1d mg
USE error option packet
IMPLICIT NONE

INTEGER, PARAMETER :: NPDE=2, N=50
INTEGER I, IDO, NFRAMES

! Define array space for the solution.
real (kind (1d0)) U(NPDE+1,N), TEMP(N), TO, TOUT
real (kind (1d0)) :: ZERO=0D0, HALF=5D-1, &
ONE=1D0, DELTA T=5D-2,TEND=5D-1, PI
TYPE (D_OPTIONS) IOPT (5)
! Start loop to integrate and record solution wvalues.
IDO=1
DO
SELECT CASE (IDO)

! Define values that determine limits.
CASE (1)
TO0=ZERO
TOUT=DELTA T
U(NPDE+1,1)=-HALF; U(NPDE+1,N)=HALF
OPEN(FILE:'PDE_eXO7.out',UNIT:7)
NFRAMESZ(TEND+DELTA7T)/DELTAfT
WRITE (7, " (3I5, 4D14.5)") NPDE, N, NFRAMES, &
U (NPDE+1,1), U(NPDE+1,N), TO, TEND
IOPT(l)=DfOPTIONS(PDEilDiMGiTIMEisMOOTHING,lD—3)
IOPT(2):D_OPTIONS(PDE_lD_MG_RELATIVE_TOLERANCE,ZERO)
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IOPT (3)=D_OPTIONS (PDE 1D MG ABSOLUTE TOLERANCE, 1D-3)
IOPT (4)=PDE_1D MG MAX BDF ORDER
IOPT (5)=3
! Update to the next output point.
! Write solution and check for final point.
CASE (2)
TO0=TOUT
IF(TO <= TEND) THEN
WRITE(7," (F10.5)")TOUT
DO I=1,NPDE+1
WRITE (7," (4E15.5)")U(I, :)

END DO
TOUT=MIN (TOUT+DELTA T, TEND)
IF(TO == TEND) IDO=3

END IF

! A1l completed. Solver is shut down.
CASE (3)
CLOSE (UNIT=7)
EXIT

! Define initial data values.

CASE (5)
TEMP=U (3, :)
U(1l,:)=PULSE(TEMP); U(2,:)=U(1,:)
WHERE (TEMP < -3D-1 .or. TEMP > -1D-1) U(1l,:)=ZERO

WHERE (TEMP < 1D-1 .or. TEMP > 3D-1) U(2,:)=ZERO
WRITE (7," (F10.5)")TO
DO I=1,NPDE+1
WRITE (7, " (4E15.5)")U(I, :)
END DO

! Define differential equations.
CASE (6)
D PDE_1D MG _C=ZERO
D _PDE 1D MG C(1,1)=ONE; D_PDE_1D MG C(2,2)=ONE

D PDE 1D MG R=D PDE 1D MG U
D PDE_1D MG R(1)=-D PDE 1D MG R(1)

D PDE_1D MG Q(1)= 100D0*D_PDE 1D MG U(1)*D PDE 1D MG U(2)
D PDE 1D MG Q(2)= D PDE 1D MG Q(1)

! Define boundary conditions.
CASE (7)
D PDE 1D MG BETA=ZERO;D PDE 1D MG GAMMA=D PDE 1D MG U

END SELECT

! Reverse communication is used for the problem data.
CALL PDE 1D MG (TO, TOUT, IDO, U, IOPT=IOPT)
END DO
CONTAINS
FUNCTION PULSE (Z)
real (kind(1d0)) Z(:), PULSE(SIZE(Z))
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PI=ACOS (-ONE)
PULSE=HALF* (ONE+COS (10D0*PI*Z))
END FUNCTION
end program

Example 8 - Black-Scholes

The value of a European “call option,” C(S’t) , with exercise price € and expiration date T,

£ c(s,T)=s,SZe;=0,s<e

satisfies the “asset-or-nothing payo . Prior to expiration C(S’t) is

estimated by the Black-Scholes differential equation
2 2
c c
¢, +——s%c, +rsc,—rc=c, +—(szcx) + (r - GZ)SCS -rc=0 .
2 2 s . The parameters in the model are

the risk-free interest rate, 7", and the stock volatility,O. The boundary conditions are C(O’t) =0

and CS(S’I) ~ls— *_ This development is described in Wilmott, et al. (1995), pages 41-57.

There are explicit solutions for this equation based on the Normal Curve of Probability. The
normal curve, and the solution itself, can be efficiently computed with the IMSL function ANORDF,
IMSL (1994), page 186. With numerical integration the equation itself or the payoff can be

readily changed to include other formulas, (s T), and corresponding boundary conditions. We

use €=100.7=008,7~1=0256" =004,5, =0, and s =150

Rationale: Example 8

This is a linear problem but with initial conditions that are discontinuous. It is necessary to use a
positive time-smoothing value to prevent grid lines from crossing. We have used an absolute

tolerance of 107, In $US, this is one-tenth of a cent.

program PDE 1D MG EXO08
Black-Scholes call price
USE pde 1d mg
USE error option packet
IMPLICIT NONE

INTEGER, PARAMETER :: NPDE=1, N=100
INTEGER I, IDO, NFRAMES

Define array space for the solution.
real (kind (1d0)) U(NPDE+1,N), TO, TOUT, SIGSQ, XVAL
real (kind (1d0)) :: ZERO=0D0O, HALF=5D-1, ONE=1D0O, &
DELTA T=25D-3, TEND=25D-2, XMAX=150, SIGMA=2D-1, &
R=8D-2, E=100DO
TYPE (D_OPTIONS) IOPT(5)
Start loop to integrate and record solution values.
IDO=1
DO
SELECT CASE (IDO)

Define values that determine limits.
CASE (1)
TO=ZERO
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TOUT=DELTA T
U (NPDE+1, 1)=ZERO; U(NPDE+1,N)=XMAX
OPEN (FILE='PDE ex08.out',6 UNIT=7)
NFRAMES=NINT ( (TEND+DELTA T)/DELTA T)
WRITE (7, "(3I5, 4D14.5)") NPDE, N, NFRAMES, &
U(NPDE+1,1), U(NPDE+1,N), TO, TEND
SIGSQ=SIGMA**2
! Tllustrate allowing the BDF order to increase
! to its maximum allowed value.
IOPT(1)=PDE_ 1D MG MAX BDF ORDER
IOPT (2)=5
IOPT (3) =D OPTIONS (PDE_ 1D MG TIME SMOOTHING, 5D-3)
IOPT (4)=D_OPTIONS (PDE 1D MG RELATIVE TOLERANCE, ZERO)
IOPT (5)=D_OPTIONS (PDE 1D MG ABSOLUTE TOLERANCE, 1D-2)
! Update to the next output point.
! Write solution and check for final point.
CASE (2)
TO=TOUT
IF(TO <= TEND) THEN
WRITE(7," (F10.5)")TOUT
DO I=1,NPDE+1
WRITE(7," (4E15.5)")U(I, )

END DO
TOUT=MIN (TOUT+DELTA T, TEND)
IF(TO == TEND) IDO=3

END IF

! A1l completed. Solver is shut down.
CASE (3)
CLOSE (UNIT=7)
EXIT

! Define initial data values.

CASE (5)
U(1l, :)=MAX (U (NPDE+1, :)-E, ZERO) ! Vanilla European Call
U(1l,:)=U(NPDE+1, :) ! Asset-or-nothing Call
WHERE (U(1,:) <= E) U(1l,:)=Z2ERO ! on these two lines

WRITE(7," (F10.5)")TO
DO I=1,NPDE+1
WRITE (7," (4E15.5)")U(I,:)
END DO
! Define differential equations.
CASE (6)
XVAL=D PDE_1D MG X
D PDE 1D MG _C=ONE
D PDE_1D MG R=D PDE 1D MG DUDX*XVAL**2*SIGSQ*HALF
D _PDE 1D MG Q=- (R-SIGSQ) *XVAL*D PDE 1D MG DUDX+R*D PDE 1D MG U
! Define boundary conditions.
CASE (7)
IF (PDE_1D MG LEFT) THEN
D_PDE 1D MG BETA=ZERO
D PDE_1D MG _GAMMA=D PDE 1D MG U
ELSE

D PDE_1D MG BETA=ZERO
D PDE_1D MG GAMMA=D PDE 1D MG DUDX (1) -ONE
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END IF
END SELECT

Reverse communication is used for the problem data.
CALL PDE 1D MG (TO, TOUT, IDO, U, IOPT=IOPT)
END DO

end program

Example 9 - Electrodynamics, Parameters Studied with MPI

This example, described above in Example 1, is from Blom and Zegeling (1994). The system

parameters &* P> and
0l<e< 02, 01 p < 02’

, are varied, using uniform random numbers. The intervals studied are
and 10<m <20 Using N =21 grid values and other program options,

. vix,? .
the elapsed time, parameter values, and the value ( )X=1-t=4 are sent to the root node. This
information is written on a file. The final summary includes the minimum value of

V(x’ t)|x=1,t=4
2

and the maximum and average time per integration, per node.

Rationale: Example 9

This is a non-linear simulation problem. Using at least two integrating processors and MPI allows
more values of the parameters to be studied in a given time than with a single processor. This
code is valuable as a study guide when an application needs to estimate timing and other output
parameters. The simulation time is controlled at the root node. An integration is started, after
receiving results, within the first SIM TIME seconds. The elapsed time will be longer than

SIM TIME by the slowest processor’s time for its last integration.

program PDE 1D MG EX09
Electrodynamics Model, parameter study.
USE PDE 1d mg
USE MPI SETUP_ INT
USE RAND INT
USE SHOW_INT
IMPLICIT NONE
INCLUDE "mpif.h"

INTEGER, PARAMETER :: NPDE=2, N=21

INTEGER I, IDO, IERROR, CONTINUE, STATUS (MPI STATUS SIZE)

INTEGER, ALLOCATABLE :: COUNTS(:)
Define array space for the solution.

real (kind (1d40)) :: U(NPDE+1,N), TO, TOUT

real (kind (1d0)) :: ZERO=0DO, ONE=1D0,DELTA T=10D0, TEND=4D0
SIM TIME is the number of seconds to run the simulation.

real (kind (1d0)) :: EPS, P, ETA, %, TWO=2D0, THREE=3DO,

SIM TIME=60DO

real (kind (1d0)) :: TIMES, TIMEE, TIMEL, TIME, TIME SIM,

V_MIN, DATA(5)

real (kind (1d0)), ALLOCATABLE :: AV TIME(:), MAX TIME(:)
TYPE (D_OPTIONS) IOPT(4), SHOW IOPT(2)
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TYPE (S_OPTIONS) SHOW INTOPT (2)
MP NPROCS=MP_SETUP (1)
MPI_NODE_PRIORITY:(/(I—l,I:l,MP_NPROCS)/)
! If NP _NPROCS=1, the program stops. Change
! MPI ROOT WORKS=.TRUE. if MP NPROCS=1.
MPI_ROOT WORKS=.FALSE.
IF(.NOT. MPI ROOT WORKS .and. MP NPROCS == 1) STOP
ALLOCATE (AV_TIME (MP_NPROCS), MAX TIME (MP_NPROCS),
COUNTS (MP_NPROCS) )
! Get time start for simulation timing.
TIME=MPI WTIME ()
IF (MP_RANK == 0) OPEN(FILE='PDE ex09.out',6UNIT=7)
SIMULATE: DO
! Pick random parameter values.
EPS=1D-1* (ONE+rand (EPS))
P=1D-1* (ONE+rand (P))
ETA=10D0* (ONE+rand (ETA))
! Start loop to integrate and communicate solution times.

IDO=1
! Get time start for each new problem.
DO
IF(.NOT. MPI ROOT WORKS .and. MP RANK == 0) EXIT

SELECT CASE (IDO)
! Define values that determine limits.

CASE (1)
TO=ZERO
TOUT=1D-3
U (NPDE+1,1)=ZERO; U (NPDE+1, N)=0NE
IOPT (1) =PDE_1D MG MAX BDF ORDER
IOPT (2)=5
IOPT (3)=D OPTIONS (PDE 1D MG RELATIVE TOLERANCE, 1D-2)
IOPT(4):D_OPTIONS(PDE_lD_MG_ABSOLUTE_TOLERANCE,lD—2)

TIMES=MPI WTIME ()

! Update to the next output point.

! Write solution and check for final point.

CASE (2)

TO0=TOUT; TOUT=TOUT*DELTA T
IF(TO >= TEND) IDO=3
TOUT=MIN (TOUT, TEND)

! A1l completed. Solver is shut down.

CASE (3)
TIMEE=MPI WTIME ()
EXIT
! Define initial data values.
CASE (5)
U(l,:)=1D0;U(2, :)=0D0
! Define differential equations.
CASE (6)

D PDE 1D MG C=0D0;D PDE 1D MG C(1,1)=1D0;D PDE 1D MG C(2,2)=1D0
D PDE 1D MG R=P*D PDE 1D MG DUDX

D PDE 1D MG R(1)=D PDE 1D MG R(1)*EPS
Z=ETA* (D _PDE 1D MG U(1)-D PDE 1D MG U(2))/THREE
D PDE 1D MG Q(1)=EXP (Z)-EXP (-TWO*Z)
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D PDE 1D MG Q(2)=-D PDE 1D MG Q(1)
! Define boundary conditions.
CASE (7)
IF(PDE 1D MG LEFT) THEN
D PDE 1D MG BETA(1)=1D0;D PDE 1D MG BETA (2)=0D0

D PDE_1D MG GAMMA (1)=0D0;D PDE 1D MG GAMMA (2)=D PDE 1D MG U(2)
ELSE
D PDE_1D MG BETA(1)=0D0;D PDE 1D MG BETA (2)=1D0
D PDE 1D MG GAMMA (1)=D PDE 1D MG U (1) -
1D0;D_PDE 1D MG GAMMA (2)=0D0
END IF
END SELECT
! Reverse communication is used for the problem data.
CALL PDE 1D MG (TO, TOUT, IDO, U)
END DO
TIMEL=TIMEE-TIMES
DATA=(/EPS, P, ETA, U(2,N), TIMEL/)
IF (MP_RANK > 0) THEN
! Send parameters and time to the root.
CALL MPI SEND (DATA, 5, MPI DOUBLE PRECISION,O0, MP RANK,
MP LIBRARY WORLD, IERROR)
! Receive back a "go/stop" flag.
CALL MPI RECV (CONTINUE, 1, MPI INTEGER, 0, MPI ANY TAG,
MP LIBRARY WORLD, STATUS, IERROR)
! If root notes that time is up, it sends node a quit flag.
IF (CONTINUE == 0) EXIT SIMULATE
ELSE
! If root is working, record its result and then stand ready
! for other nodes to send.
IF (MPI_ROOT WORKS) WRITE (7,*) MP_RANK, DATA
! If all nodes have reported, then quit.
IF (COUNT (MPI NODE PRIORITY >= 0) == 0) EXIT SIMULATE
! See if time is up. Some nodes still must report.
IF (MPI WTIME () -TIME >= SIM TIME) THEN
CONTINUE=0
ELSE
CONTINUE=1
END IF
! Root receives simulation data and finds which node sent it.
IF (MP_NPROCS > 1) THEN
CALL MPI RECV (DATA, 5,
MPI DOUBLE PRECISION,MPI ANY SOURCE, MPI ANY TAG, MP LIBRARY WORLD,
STATUS, IERROR)
WRITE (7,*) STATUS (MPI SOURCE), DATA
! If time at the root has elapsed, nodes receive signal to stop.
! Send the reporting node the "go/stop" flag.
! Mark if a node has been stopped.
CALL MPI SEND (CONTINUE, 1, MPI INTEGER,
STATUS (MPI_SOURCE), 0, MP LIBRARY WORLD, IERROR)
IF (CONTINUE == 0)
MPI NODE PRIORITY (STATUS (MPI SOURCE)+1) =-
MPI NODE PRIORITY (STATUS (MPI SOURCE)+1) -1
END IF
IF (CONTINUE == 0) MPI NODE PRIORITY (1)=-1
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END IF
END DO SIMULATE
IF(MP_RANK == 0) THEN
ENDFILE (UNIT=7) ; REWIND (UNIT=7)
! Read the data. Find extremes and averages.
MAXiTIMEZZERO;AViTIMEZZERO;COUNTSZO;ViMINZHUGE(ONE)
DO
READ(7,*, END=10) I, DATA
COUNTS (I+1)=COUNTS (I+1)+1
AV TIME (I+1)=AV TIME (I+1)+DATA (5)
IF(MAX TIME (I+1) < DATA(5)) MAX TIME (I+1)=DATA(S5)
V_MIN=MIN (V_MIN, DATA (4))
END DO
10 CONTINUE
CLOSE (UNIT=7)
! Set printing Index to match node numbering.
SHOW IOPT (1)= SHOW STARTING INDEX IS
SHOW_IOPT (2)=0
SHOW INTOPT (1)=SHOW STARTING INDEX IS
SHOW INTOPT (2)=0
CALL SHOW (MAX TIME, "Maximum Integration Time, per
process:", IOPT=SHOW_ IOPT)
AV_TIME:AV_TIME/MAX(l,COUNTS)
CALL SHOW(AV_TIME, "Average Integration Time, per
process:", IOPT=SHOW_ IOPT)
CALL SHOW (COUNTS, "Number of
Integrations",IOPT:SHOW_INTOPT)
WRITE (*," (1x,A,F6.3)") "Minimum value for v(x,t),at
x=1,t=4: ",V_MIN
END IF
MP NPROCS=MP_ SETUP ("Final")
end program
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MOLCH

Solves a system of partial differential equations of the form u, = f{x, t, u, u,, u,,) using the method
of lines. The solution is represented with cubic Hermite polynomials.

Required Arguments

IDO — Flag indicating the state of the computation. (Input/Output)
IDO State
1 Initial entry
2 Normal reentry
3 Final call, release workspace

Normally, the initial call is made with 1DO = 1. The routine then sets I1D0 = 2, and this
value is then used for all but the last call that is made with ID0 = 3.

FCNUT — User-supplied SUBROUTINE to evaluate the function u,. The usage is
CALL FCNUT (NPDES, X, T, U, UX, UXX, UT),where

NPDES — Number of equations. (Input)
X — Space variable, x. (Input)
T — Time variable, ¢. (Input)
U — Array of length NPDES containing the dependent variable values,
u. (Input)
UX — Array of length NPDES containing the first derivatives u,
(Input)
UXX — Array of length NPDES containing the second derivative u,,.
(Input)
UT — Array of length NPDES containing the computed derivatives, u,.
(Output)

The name FCNUT must be declared EXTERNAL in the calling program.

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The boundary
conditions accepted by MOLCH are oy uy + By u, = ;. Note: Users must supply the
values oy, and B, which determine the values y;. Since the y; can depend on ¢, values of
'y are also required. Users must supply these values. The usage is CALL FCNBC

(NPDES, X, T, ALPHA, BTA, GAMMAP), where

NPDES — Number of equations. (Input)

X — Space variable, x. This value directs which boundary condition to compute.
(Input)

T — Time variable, z. (Input)
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ALPHA — Array of length NPDES containing the oy, values. (Output)
BTA — Array of length NPDES containing the 3, values. (Output)

!

d
GAMMAP — Array of length NPDES containing the values of the derivatives, T _ V.

dt
(Output)

The name FCNBC must be declared EXTERNAL in the calling program.

T — Independent variable, ¢. (Input/Output)
On input, T supplies the initial time, #. On output, T is set to the value to which the
integration has been updated. Normally, this new value is TEND.

TEND — Value of ¢ = tend at which the solution is desired. (Input)

XBREAK — Array of length NX containing the break points for the cubic Hermite splines
used in the x discretization. (Input)
The points in the array XBREAK must be strictly increasing. The values XBREAK(1) and
XBREAK(NX) are the endpoints of the interval.

Y — Array of size NPDES by NX containing the solution. (Input/Output)
The array Y contains the solution as Y(k, i) = u;(x, tend) at x = XBREAK(7). On input, ¥
contains the initial values. It MUST satisfy the boundary conditions. On output, ¥
contains the computed solution.
There is an optional application of MOLCH that uses derivative values, u,(x, #,). The user
allocates twice the space for Y to pass this information. The optional derivative
information is input as

Y(k,i+Nx):?‘k (x.4,)
X

at x = X(i). The array Y contains the optional derivative values as output:

ij;‘ (x, tend )

at x = X(i). To signal that this information is provided, use an options manager call as
outlined in Comment 3 and illustrated in Examples 3 and 4.

Y (k,i+NX)=

Optional Arguments
NPDES — Number of differential equations. (Input)
Default: NPDES = size (Y,1).

NX — Number of mesh points or lines. (Input)
Default: nx = size (¥,2).
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TOL — Differential equation error tolerance. (Input)
An attempt is made to control the local error in such a way that the global relative error
is proportional to TOL.
Default: ToL = 100. * machine precision.

HINIT — Initial step size in the ¢ integration. (Input)
This value must be nonnegative. If HINIT is zero, an initial step size of 0.001|tend — ¢
will be arbitrarily used. The step will be applied in the direction of integration.
Default: HINIT = 0.0.

LDY — Leading dimension of Y exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDY = size (¥,1).

FORTRAN 90 Interface

Generic: CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y [,..])

Specific: The specific interface names are S_MOLCH and D_MOLCH.

FORTRAN 77 Interface

Single: CALL MOLCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK,
TOL, HINIT, Y, LDY)

Double: The double precision name is DMOLCH.

Example 1

The normalized linear diffusion PDE, u; = u,,, 0 <x <1, ¢ > ¢, is solved. The initial values are
to =0, u(x, ty) = uy = 1. There is a “zero-flux” boundary condition at x = 1, namely u,(1, ) =0,
(> ty). The boundary value of (0, #) is abruptly changed from u, to the value u; = 0.1. This
transition is completed by ¢ = #; = 0.09.

Due to restrictions in the type of boundary conditions sucessfully processed by MOLCH, it is
necessary to provide the derivative boundary value function vy’ at x = 0 and at x = 1. The function
v at x = 0 makes a smooth transition from the value u at = , to the value u; at = t5. We
compute the transition phase for y’ by evaluating a cubic interpolating polynomial. For this
purpose, the function subprogram CSDER, see Chapter 3, Interpolation and Approximation, is
used. The interpolation is performed as a first step in the user-supplied routine FCNBC. The
function and derivative values y(#)) = uy, Y'(%) = 0, y(t5) = u;, and y'(¢5) = 0, are used as input to
routine C2HER, to obtain the coefficients evaluated by CSDER. Notice that y'(f) = 0, ¢ > £5. The
evaluation routine CSDER will not yield this value so logic in the routine FCNBC assigns y'(¢) =0,
t>1t.

USE MOLCH_ INT

USE UMACH INT
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USE AMACH INT
USE WRRRN_ INT

! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER LDY, NPDES, NX
PARAMETER (NPDES=1, NX=8, LDY=NPDES)

! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER I, IDO, J, NOUT, NSTEP
REAL HINIT, PREC, T, TEND, TOL, XBREAK (NX), Y (LDY,NX)
CHARACTER TITLE*19

! SPECIFICATIONS FOR INTRINSICS
INTRINSIC FLOAT
REAL FLOAT

! SPECIFICATIONS FOR SUBROUTINES

! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL FCNBC, FCNUT

! Set breakpoints and initial

! conditions
U0 = 1.0
DO 10 I=1, NX
XBREAK (I) = FLOAT (I-1)/ (NX-1)
Y(1,1) = U0

10 CONTINUE
! Set parameters for MOLCH
PREC = AMACH (4)

TOL = SQRT (PREC)
HINIT = 0.01*TOL
T = 0.0
IDO =1
NSTEP = 10
CALL UMACH (2, NOUT)
J =20
20 CONTINUE
J =J + 1
TEND = FLOAT (J) /FLOAT (NSTEP)

! This puts more output for small
! t values where action is fastest.
TEND = TEND**2
! Solve the problem
CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, TOL=TOL, HINIT=HINIT)
IF (J .LE. NSTEP) THEN
! Print results
WRITE (TITLE,’ (A,F4.2)’) ’"Solution at T =', T
CALL WRRRN (TITLE, Y)
! Final call to release workspace
IF (J .EQ. NSTEP) IDO = 3
GO TO 20
END IF
END
SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER NPDES
REAL X, T, U(*), UX(*), UXX(*), UT(*)

! Define the PDE
UT (1) = UXX(1)
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RETURN
END

SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAMP)
USE CSDER_INT
USE C2HER_INT
USE WRRRN_ INT
! SPECIFICATIONS FOR ARGUMENTS
INTEGER NPDES
REAL X, T, ALPHA(*), BTA(*), GAMP (*)
! SPECIFICATIONS FOR PARAMETERS
REAL TDELTA, U0, Ul
PARAMETER (TDELTA=0.09, U0=1.0, U1=0.1)
! SPECIFICATIONS FOR LOCAL VARIABLES

INTEGER IWK(2), NDATA
REAL DFDATA (2), FDATA(2), XDATA(2)
! SPECIFICATIONS FOR SAVE VARIABLES
REAL BREAK (2), CSCOEF (4,2)
LOGICAL FIRST
SAVE BREAK, CSCOEF, FIRST

! SPECIFICATIONS FOR SUBROUTINES
DATA FIRST/.TRUE./

IF (FIRST) GO TO 20
10 CONTINUE

! Define the boundary conditions
IF (X .EQ. 0.0) THEN
! These are for x=0.

ALPHA (1) = 1.0
BTA(1) = 0.0
GAMP (1) = 0.
! If in the boundary layer,
! compute nonzero gamma prime.
IF (T .LE. TDELTA) GAMP (1) = CSDER(1l,T,BREAK,CSCOEF)
ELSE
! These are for x=1.
ALPHA (1) = 0.0
BTA(l) = 1.0
GAMP (1) = 0.0
END IF
RETURN

20 CONTINUE
! Compute the boundary layer data.

NDATA = 2
XDATA (1) = 0.0
XDATA(2) = TDELTA
FDATA (1) = U0
FDATA (2) = Ul
DFDATA (1) = 0.0
DFDATA (2) = 0.0

! Do Hermite cubic interpolation.
CALL C2HER (NDATA, XDATA, FDATA, DFDATA, BREAK, CSCOEF, IWK)
FIRST = .FALSE.
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GO TO 10
END

Output
Solution at T =0.01
1 2 3 4 5 6 7 8
0.969 0.997 1.000 1.000 1.000 1.000 1.000 1.000

Solution at T =0.04
1 2 3 4 5 6 7 8
0.625 0.871 0.963 0.991 0.998 1.000 1.000 1.000

Solution at T =0.09
1 2 3 4 5 6 7 8
0.0998 0.4603 0.7171 0.8673 0.9437 0.9781 0.9917 0.9951

Solution at T =0.16
1 2 3 4 5 6 7 8
0.0994 0.3127 0.5069 0.6680 0.7893 0.8708 0.9168 0.9316

Solution at T =0.25
1 2 3 4 5 6 7 8
0.0994 0.2564 0.4043 0.5352 0.6428 0.7223 0.7709 0.7873

Solution at T =0.36
1 2 3 4 5 6 7 8
0.0994 0.2172 0.3289 0.4289 0.5123 0.5749 0.6137 0.6268

Solution at T =0.49
1 2 3 4 5 6 7 8
0.0994 0.1847 0.2657 0.3383 0.3989 0.4445 0.4728 0.4824

Solution at T =0.64
1 2 3 4 5 6 7 8
0.0994 0.1583 0.2143 0.2644 0.3063 0.3379 0.3574 0.3641

Solution at T =0.81
1 2 3 4 5 6 7 8
0.0994 0.1382 0.1750 0.2080 0.2356 0.2563 0.2692 0.2736

Solution at T =1.00
1 2 3 4 5 6 7 8
0.0994 0.1237 0.1468 0.1674 0.1847 0.1977 0.2058 0.2085
Comments

1. Workspace may be explicitly provided, if desired, by use of M2L.cH/DM2LCH. The
reference is:

CALL M2LCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK, TOL,
HINIT, Y, LDY, WK, IWK)

The additional arguments are as follows:
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WK — Work array of length 2NX * NPDES (12 * NPDES® + 21 * NPDES + 9).
WK should not be changed between calls to M2LCH.

IWK — Work array of length 2Nx * NPDES. IWK should not be changed between
calls to M2LCH.

2. Informational errors
Type Code

4 1 After some initial success, the integration was halted by repeated
error test failures.

4 2 On the next step, X + H will equal x. Either TOL is too small or the
problem is stiff.

4 3 After some initial success, the integration was halted by a test on
TOL.

4 4  Integration was halted after failing to pass the error test even after
reducing the step size by a factor of 1. 0E + 10. TOL may be too
small.

4 5 Integration was halted after failing to achieve corrector convergence

even after reducing the step size by a factor of 1. 0E + 10. TOL may
be too small.

3. Optional usage with Chapter 10 Option Manager

11 This option consists of the parameter PARAM, an array with 50 components. See
IVPAG (page 854) for a more complete documentation of the contents of this
array. To reset this option, use the subprogram SUMAG for single precision, and
DUMAG (see Chapter 11, Utilities) for double precision. The entry PARAM(1) is
assigned the initial step, HINTIT. The entries PARAM(15) and PARAM(16) are
assigned the values equal to the number of lower and upper diagonals that will
occur in the Newton method for solving the BDF corrector equations. The value
pPARAM(17) =1 is used to signal that the x derivatives of the initial data are
provided in the the array Y. The output values PARAM(31)-PARAM(36) , showing
technical data about the ODE integration, are available with another option
manager subroutine call. This call is made after the storage for MOLCH is
released. The default values for the first 20 entries of PARAM are (0, 0, amach(2),
500.,0.,5.,0,0,1.,3.,1.,2., 2., 1., amach(6), amach(6), 0, sqrt(amach(4)), 1.,
0.). Entries 21-50 are defaulted to amach(6).

Description

Let M =NPDES, N = NX and x; = XBREAK(I). The routine MOLCH uses the method of lines to
solve the partial differential equation system

ou Oéu,  Ou, u,  Ju, J

ko
Z—fk(x,t,ul,...uM,E,... ox ’é’xz g ses ﬁxz

with the initial conditions
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U = wi(x, 1) att=1,

and the boundary conditions

ou,
iy, + B, ox ==y, at x=x, and at x =x,

fork=1, ..., M.

Cubic Hermite polynomials are used in the x variable approximation so that the trial solution is
expanded in the series

1) = 2 (. (08.(5)+ b (1, ()

where ¢;(x) and y;(x) are the standard basis functions for the cubic Hermite polynomials with
the knots x; <x, < ... <xp. These are piecewise cubic polynomials with continuous first
derivatives. At the breakpoints, they satisfy

¢,(x)=6,v(x)=0

g, .\ _ dy,
dx( )_O dx (x,) %

According to the collocation method, the coefficients of the approximation are obtained so that
the trial solution satisfies the differential equation at the two Gaussian points in each

subinterval,
3-43
Prja =X ¢ (xj+1 _xj)
3443
Py, =X t——— S ( XX, )
forj=1, ..., N. The collocation approximation to the differential equation is

da,, db

S n)Gvn)-
[Pyt (p))s sty (2,)soons (i), ()50 (i), (7))

fork=1,...,Mandj=1,...,2(N-1).

This is a system of 2M(N — 1) ordinary differential equations in 2M N unknown coefficient
functions, a; ; and b; ;. This system can be written in the matrix—vector form as 4 dc/dt = F (¢, y)
with c(#y) = ¢y where c is a vector of coefficients of length 2M/ N and ¢, holds the initial values

of the coefficients. The last 2M equations are obtained by differentiating the boundary
conditions

fork=1,..., M
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The initial conditions u;(x, #,) must satisfy the boundary conditions. Also, the y;(f) must be
continuous and have a smooth derivative, or the boundary conditions will not be properly
imposed for ¢ > ¢,.

If o, = B4 =0, it is assumed that no boundary condition is desired for the k-th unknown at the
left endpoint. A similar comment holds for the right endpoint. Thus, collocation is done at the
endpoint. This is generally a useful feature for systems of first-order partial differential
equations.

If the number of partial differential equations is M = 1 and the number of breakpoints is N =4,

then
o B |
¢1(p1) Wl(pl) ¢2(p1) Wz(pl)
¢ (pz) i (pz) 9, (pz) ¥, (pz)
Y= P (p3) YV, (p3) ps) v, (p3)
) (p4) ¥; (p4) Pi) VY, (p4)

(P3)
(P4)
(ps) '//s(ps) ¢6(p5) Wé(ps)
( ) l//s(ps) ¢6(p6) l//é(pé)
a, B,

The vector c is

— T
c= [al > bl: a, b27 as, b35 Ay, b4]

and the right-side F is

F=[7(x), £(P), £ (), £ (P2)s £ (Pa): £ (25), £ () 7' (%)

If M > 1, then each entry in the above matrix is replaced by an M x M diagonal matrix. The
element o is replaced by diag(oy j, ..., o \)- The elements oy, B; and By are handled in the

same manner. The ¢(p;) and y(p;) elements are replaced by ¢(p;)1ys and y;(p;)ljs where Iy is

the identity matrix of order M. See Madsen and Sincovec (1979) for further details about
discretization errors and Jacobian matrix structure.

The input/output array Y contains the values of the a; ;. The initial values of the by ; are obtained

by using the IMSL cubic spline routine CSINT (see Chapter 3, Interpolation and Approximation)
to construct functions

i, (x,1,)
such that
Uy (xiato) =ay

The IMSL routine CSDER, see Chapter 3, Interpolation and Approximation, is used to
approximate the values
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dU
xk (xi’ to) = bk,i

There is an optional usage of MOLCH that allows the user to provide the initial values of by ;.

The order of matrix 4 is 2M N and its maximum bandwidth is 6/ — 1. The band structure of the
Jacobian of F with respect to ¢ is the same as the band structure of 4. This system is solved
using a modified version of TVPAG, page 854. Some of the linear solvers were removed.
Numerical Jacobians are used exclusively. The algorithm is unchanged. Gear’s BDF method is
used as the default because the system is typically stiff.

We now present four examples of PDEs that illustrate how users can interface their problems
with IMSL PDE solving software. The examples are small and not indicative of the
complexities that most practitioners will face in their applications. A set of seven sample
application problems, some of them with more than one equation, is given in Sincovec and
Madsen (1975). Two further examples are given in Madsen and Sincovec (1979).

Additonal Examples

Example 2

In this example, using MOLCH, we solve the linear normalized diffusion PDE u, = u,, but with an
optional usage that provides values of the derivatives, u,, of the initial data. Due to errors in the
numerical derivatives computed by spline interpolation, more precise derivative values are
required when the initial data is u(x, 0) = 1 + cos[(2n — 1)nx], n > 1. The boundary conditions
are “zero flux” conditions u,(0, #) = u,(1, £) = 0 for # > 0. Note that the initial data is compatible
with these end conditions since the derivative function

du(x,())

u, (x,0)= rn

=—(2n-1)zsin [(2n -1) ﬂx:l

vanishes atx=0and x = 1.

The example illustrates the use of the IMSL options manager subprograms SUMAG or, for double
precision, DUMAG, see Chapter 11, Utilities, to reset the array PARAM used for control of the
specialized version of TVPAG that integrates the system of ODEs. This optional usage signals
that the derivative of the initial data is passed by the user. The values u(x, tend) and u,(x, tend)
are output at the breakpoints with the optional usage.

USE IMSL LIBRARIES

! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER LDY, NPDES, NX
PARAMETER (NPDES=1, NX=10, LDY=NPDES)

! SPECIFICATIONS FOR PARAMETERS
INTEGER ICHAP, IGET, IPUT, KPARAM
PARAMETER (ICHAP=5, IGET=1, IPUT=2, KPARAM=11)

! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER I, IACT, IDO, IOPT(1l), J, JGO, N, NOUT, NSTEP
REAL ARG1, HINIT, PREC, PARAM(50), PI, T, TEND, TOL, &

XBREAK (NX), Y (LDY, 2*NX)

CHARACTER TITLE*36

! SPECIFICATIONS FOR INTRINSICS
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INTRINSIC COS, FLOAT, SIN, SOQRT
REAL COS, FLOAT, SIN, SQRT

! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL FCNBC, FCNUT

! Set breakpoints and initial

! conditions.
N =5
PI = CONST ('pi’)
IOPT (1) = KPARAM
DO 10 1I=1, NX
XBREAK (I) = FLOAT (I-1)/ (NX-1)
ARG1 = (2.*N-1)*PI
! Set function values.
Y(1,I) = 1. + COS(ARGL*XBREAK(I))
! Set first derivative values.
Y(1,I+NX) = -ARG1*SIN(ARG1*XBREAK (I))

10 CONTINUE
! Set parameters for MOLCH
PREC = AMACH (4)

TOL = SQRT (PREC)

HINIT = 0.01*TOL

T = 0.0

IDO =1

NSTEP = 10

CALL UMACH (2, NOUT)

J =20
! Get and reset the PARAM array
! so that user-provided derivatives
! of the initial data are used.

JGO =1

IACT = IGET

GO TO 70

20 CONTINUE
! This flag signals that
! derivatives are passed.

PARAM (17) = 1.
JGO =2
IACT = IPUT
GO TO 70

30 CONTINUE
! Look at output at steps

! of 0.001.
TEND = O.
40 CONTINUE
J =J + 1

TEND = TEND + 0.001
! Solve the problem
CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, NPDES=NPDES, &
NX=NX, HINIT=HINIT, TOL=TOL)
IF (J .LE. NSTEP) THEN
! Print results
WRITE (TITLE,’ (A,F5.3)’) ’Solution and derivatives at T =', T
CALL WRRRN (TITLE, Y)
! Final call to release workspace
IF (J .EQ. NSTEP) IDO = 3
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50

60

70

GO TO 40

END IF
Show, for example, the maximum
step size used.

JGO = 3

IACT = IGET

GO TO 70

CONTINUE

WRITE (NOUT,*) ’ Maximum step size used is: ", PARAM(33)
Reset option to defaults

JGO =4

IAC = IPUT

IOPT (1) = -IOPT (1)

GO TO 70

CONTINUE

RETURN
Internal routine to work options

CONTINUE

CALL SUMAG ('math’, ICHAP, IACT, IOPT, PARAM, numopt=1l)

GO TO (20, 30, 50, 60), JGO

END

SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
SPECIFICATIONS FOR ARGUMENTS

INTEGER NPDES

REAL X, T, U(*), UX(*), UXX(*), UT(*)
Define the PDE

UT (1) = UXX(1)

RETURN

END

SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAMP)

SPECIFICATIONS FOR ARGUMENTS

INTEGER NPDES
REAL X, T, ALPHA(*), BTA(*),
ALPHA (1) = 0.0
BTA (1) =1.0
GAMP (1) = 0.0
RETURN
END
Output
Solution and derivatives at
1 2 3 4 5 6
1.483 0.517 1.483 0.517 1.483 0.517
11 12 13 14 15 16
0.000 0.000 0.000 0.000 0.000 0.000
Solution and derivatives at
1 2 3 4 5 6
1.233 0.767 1.233 0.767 1.233 0.767
11 12 13 14 15 16

GAMP (*)

T =0.001
7 8 9 10
1.483 0.517 1.483 0.517
17 18 19 20
0.000 0.000 0.000 0.000

T =0.002
7 8 9 10
1.233 0.767 1.233 0.767
17 18 19 20
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0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solution and derivatives at T =0.003
1 2 3 4 5 6 7 8 9 10
1.113 0.887 1.113 0.887 1.113 0.887 1.113 0.887 1.113 0.887

11 12 13 14 15 16 17 18 19 20
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solution and derivatives at T =0.004
1 2 3 4 5 6 7 8 9 10
1.054 0.946 1.054 0.946 1.054 0.946 1.054 0.946 1.054 0.946

11 12 13 14 15 16 17 18 19 20
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solution and derivatives at T =0.005
1 2 3 4 5 6 7 8 9 10
1.026 0.974 1.026 0.974 1.026 0.974 1.026 0.974 1.026 0.974

11 12 13 14 15 16 17 18 19 20
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solution and derivatives at T =0.006
1 2 3 4 5 6 7 8 9 10
1.012 0.988 1.012 0.988 1.012 0.988 1.012 0.988 1.012 0.988

11 12 13 14 15 16 17 18 19 20
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solution and derivatives at T =0.007
1 2 3 4 5 6 7 8 9 10
1.006 0.994 1.006 0.994 1.006 0.994 1.006 0.994 1.006 0.994

11 12 13 14 15 16 17 18 19 20
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solution and derivatives at T =0.008
1 2 3 4 5 6 7 8 9 10
1.003 0.997 1.003 0.997 1.003 0.997 1.003 0.997 1.003 0.997

11 12 13 14 15 16 17 18 19 20
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solution and derivatives at T =0.009
1 2 3 4 5 6 7 8 9 10
1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999

11 12 13 14 15 16 17 18 19 20
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solution and derivatives at T =0.010
1 2 3 4 5 6 7 8 9 10
1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999
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11 12 13 14 15 16 17 18 19 20
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Maximum step size used is: 1.00000E-02

Example 3

10

In this example, we consider the linear normalized hyperbolic PDE, u,, = u,,, the “vibrating
string” equation. This naturally leads to a system of first order PDEs. Define a new dependent
variable u; = v. Then, v, = u,, is the second equation in the system. We take as initial data u(x, 0)

= sin(nx) and u/(x, 0) = v(x, 0) = 0. The ends of the string are fixed so u(0, #) = u(1, ) = v(0, ¢) =
v(1, £) = 0. The exact solution to this problem is u(x, #) = sin(nx) cos(nf). Residuals are

computed at the output values of ¢ for 0 < ¢ < 2. Output is obtained at 200 steps in increments of
0.01.

Even though the sample code MOLCH gives satisfactory results for this PDE, users should be
aware that for nonlinear problems, “shocks” can develop in the solution. The appearance of
shocks may cause the code to fail in unpredictable ways. See Courant and Hilbert (1962), pages
488-490, for an introductory discussion of shocks in hyperbolic systems.

USE IMSL LIBRARIES
SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER LDY, NPDES, NX
PARAMETER (NPDES=2, NX=10, LDY=NPDES)
SPECIFICATIONS FOR PARAMETERS
INTEGER ICHAP, IGET, IPUT, KPARAM
PARAMETER (ICHAP=5, IGET=1, IPUT=2, KPARAM=11)
SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER I, IACT, IDO, IOPT(l), J, JGO, NOUT, NSTEP
REAL HINIT, PREC, PARAM(50), PI, T, TEND, TOL, XBREAK(NX), &
Y (LDY, 2*NX) , ERROR (NX)
SPECIFICATIONS FOR INTRINSICS
INTRINSIC COS, FLOAT, SIN, SOQRT
REAL COS, FLOAT, SIN, SQRT
SPECIFICATIONS FOR SUBROUTINES
SPECIFICATIONS FOR FUNCTIONS
EXTERNAL FCNBC, FCNUT
Set breakpoints and initial

conditions.
PI = CONST ('pi’)
IOPT (1) = KPARAM
DO 10 I=1, NX
XBREAK (I) = FLOAT (I-1)/ (NX-1)
Set function values.
Y(1,I) = SIN(PI*XBREAK(I))
Y(2,I) = 0.
Set first derivative values.
Y(1,I+NX) = PI*COS(PI*XBREAK(I))
Y(2,I+NX) = 0.0
CONTINUE

Set parameters for MOLCH
PREC = AMACH (4)
TOL 0.1*SQRT (PREC)
HINIT = 0.01*TOL
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T = 0.0
IDO =1
NSTEP = 200
CALL UMACH (2, NOUT)
J =20
! Get and reset the PARAM array
! so that user-provided derivatives
! of the initial data are used.
JGO =1
IACT = IGET
GO TO 90
20 CONTINUE
! This flag signals that
! derivatives are passed.
PARAM (17) = 1.
JGO =2
IACT = IPUT
GO TO 90
30 CONTINUE
! Look at output at steps
! of 0.01 and compute errors.
ERRU = 0.
TEND = 0.
40 CONTINUE
J =J + 1
TEND = TEND + 0.01
! Solve the problem
CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, NX=NX, &
HINIT=HINIT, TOL=TOL)
DO 50 1I=1, NX
ERROR(I) = Y(1,I) - SIN(PI*XBREAK(I))*COS(PI*TEND)
50 CONTINUE
IF (J .LE. NSTEP) THEN
DO 60 1I=1, NX
ERRU = AMAX1 (ERRU, ABS (ERROR(I)))
60 CONTINUE
! Final call to release workspace
IF (J .EQ. NSTEP) IDO = 3
GO TO 40
END IF
! Show, for example, the maximum
! step size used.
JcGO = 3
IACT = IGET
GO TO 90
70 CONTINUE
WRITE (NOUT,*) ’ Maximum error in u(x,t) divided by TOL: ', &
ERRU/TOL
WRITE (NOUT,*) ’ Maximum step size used is: ', PARAM(33)
! Reset option to defaults
JGO =4
IACT = IPUT
IOPT (1) = -IOPT (1)
GO TO 90

80 CONTINUE
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RETURN
! Internal routine to work options
90 CONTINUE
CALL SUMAG ('math’, ICHAP, IACT, IOPT, PARAM)
GO TO (20, 30, 70, 80), JGO
END
SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER NPDES
REAL X, T, U(*), UX(*), UXX(*), UT(*)

! Define the PDE

UT (1) = U(2)
UT (2) = UXX(1)
RETURN

END

SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAMP)

! SPECIFICATIONS FOR ARGUMENTS
INTEGER NPDES
REAL X, T, ALPHA(*), BTA(*), GAMP(*)

ALPHA (1) = 1.0
BTA(1l) = 0.0
GAMP (1) = 0.0
ALPHA(2) = 1.0
BTA(2) = 0.0
GAMP (2) = 0.0
RETURN

END

Output
Maximum error in u(x,t) divided by TOL: 1.28094
Maximum step size used is: 9.99999E-02

FPS2H

Solves Poisson’s or Helmholtz’s equation on a two-dimensional rectangle using a fast Poisson
solver based on the HODIE finite-difference scheme on a uniform mesh.
Required Arguments

PRHS — User-supplied FUNCTION to evaluate the right side of the partial differential
equation. The form is PRHS(X, Y), where

X — x-coordinate value. (Input)
Y — Y-coordinate value. (Input)
PRHS — Value of the right side at (x, Y). (Output)

PRHS must be declared EXTERNAL in the calling program.
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BRHS — User-supplied FUNCTION to evaluate the right side of the boundary conditions. The
form is BRHS(ISIDE, X, Y), where

ISIDE — Side number. (Input)

See IBCTY below for the definition of the side numbers.

X — x-coordinate value. (Input)

Y — v-coordinate value. (Input)

BRHS — Value of the right side of the boundary condition at (%, Y). (Output)
BRHS must be declared EXTERNAL in the calling program.

COEFU — Value of the coefficient of U in the differential equation. (Input)

NX — Number of grid lines in the x-direction.  (Input)
NX must be at least 4. See Comment 2 for further restrictions on NX.

NY — Number of grid lines in the v-direction. (Input)
NY must be at least 4. See Comment 2 for further restrictions on NY.

AX — The value of x along the left side of the domain. (Input)

BX — The value of x along the right side of the domain. (Input)

AY — The value of Y along the bottom of the domain. (Input)

BY — The value of Y along the top of the domain. (Input)

IBCTY — Array of size 4 indicating the type of boundary condition on each side of the

domain or that the solution is periodic. (Input)
The sides are numbered 1 to 4 as follows:

Side Location
1 - Right (X =BX)
2 - Bottom (Y=~1Y)
3 - Left (X =2x)
4-Top (Y=BY)

There are three boundary condition types.
IBCTY Boundary Condition

1 Value of U is given. (Dirichlet)
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2 Value of dU/dX is given (sides 1 and/or 3). (Neumann) Value of dU/dY is
given (sides 2 and/or 4).

3 Periodic.

U — Array of size Nx by NY containing the solution at the grid points. (Output)

Optional Arguments

IORDER — Order of accuracy of the finite-difference approximation. (Input)
It can be either 2 or 4. Usually, TORDER = 4 is used.
Default: TORDER = 4.

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling
program. (Input)
Default: 1.DU = size (U,1).

FORTRAN 90 Interface

Generic: CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY,
IBCTY, U [,..])

Specific: The specific interface names are S_FPS2H and D_FPS2H.

FORTRAN 77 Interface

Single: CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY,
IBCTY, IORDER, U, LDU)

Double: The double precision name is DFPS2H.

Example

In this example, the equation

2 2
O TH 3 =2sin(x+2y)+1665
ox- Oy

with the boundary conditions du/dy = 2 cos(x + 2y) + 3 exp(2x + 3y) on the bottom side and
u = sin(x + 2y) + exp(2x + 3y) on the other three sides. The domain is the rectangle[0, 1/4] x [0,
1/2]. The output of FPS2H is a 17 x 33 table of U values. The quadratic interpolation routine
QD2VL is used to print a table of values.

USE FPS2H_INT

USE QD2VL_INT

USE UMACH_INT

INTEGER NCVAL, NX, NXTABL, NY, NYTABL

PARAMETER (NCVAL=11, NX=17, NXTABL=5, NY=33, NYTABL=5)
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INTEGER I, IBCTY(4), IORDER, J, NOUT
REAL AX, AY, BRHS, BX, BY, COEFU, ERROR, FLOAT, PRHS, &
TRUE, U(NX,NY), UTABL, X, XDATA(NX), Y, YDATA (NY)
INTRINSIC FLOAT
EXTERNAL BRHS, PRHS
! Set rectangle size
AX =
BX =
AY =
BY =
! Set boundary condition types
IBCTY (1
IBCTY (2
IBCTY (3
IBCTY (4
! Coefficient of U
COEFU = 3.0
! Order of the method
IORDER = 4
! Solve the PDE
CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY, U)
! Setup for quadratic interpolation
DO 10 1I=1, NX
XDATA (I) = AX + (BX-AX)*FLOAT (I-1)/FLOAT (NX-1)
10 CONTINUE
DO 20 J=1, NY
YDATA (J) = AY + (BY-AY) *FLOAT (J-1) /FLOAT (NY-1)
20 CONTINUE
! Print the solution
CALL UMACH (2, NOUT)
WRITE (NOUT,’ (8X,A,11X,A,11X,A,8X,A)") 'X', "Y', 'U’', "Error’
DO 40 J=1, NYTABL
DO 30 1I=1, NXTABL

[€)]

o O O o
o nNn o

o

Il
e S

)
)
)
)

X = AX + (BX-AX)*FLOAT (I-1)/FLOAT (NXTABL-1)
Y = AY + (BY-AY)*FLOAT (J-1)/FLOAT (NYTABL-1)
UTABL = QD2VL (X, Y,XDATA, YDATA,U)

TRUE = SIN(X+2.*Y) + EXP(2.*X+3.*Y)

ERROR = TRUE - UTABL

WRITE (NOUT,’ (4Fl12.4)’) X, Y, UTABL, ERROR

30 CONTINUE
40 CONTINUE
END

REAL FUNCTION PRHS (X, Y)
REAL X, Y

REAL EXP, SIN
INTRINSIC EXP, SIN
! Define right side of the PDE
PRHS = -2.*SIN(X+2.*Y) + 16.*EXP(2.*X+3.%*Y)
RETURN
END

REAL FUNCTION BRHS (ISIDE, X, Y)
INTEGER ISIDE
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REAL X, Y

REAL COS, EXP, SIN
INTRINSIC COS, EXP, SIN
! Define the boundary conditions
IF (ISIDE .EQ. 2) THEN
BRHS = 2.*COS (X+2.*Y) + 3.*EXP(2.*X+3.*Y)

ELSE
BRHS = SIN(X+2.*Y) + EXP(2.*X+3.*Y)
END IF
RETURN
END
Output
X Y U Error
0.0000 0.0000 1.0000 0.0000
0.0625 0.0000 1.1956 0.0000
0.1250 0.0000 1.4087 0.0000
0.1875 0.0000 1.6414 0.0000
0.2500 0.0000 1.8961 0.0000
0.0000 0.1250 1.7024 0.0000
0.0625 0.1250 1.9562 0.0000
0.1250 0.1250 2.2345 0.0000
0.1875 0.1250 2.5407 0.0000
0.2500 0.1250 2.8783 0.0000
0.0000 0.2500 2.5964 0.0000
0.0625 0.2500 2.9322 0.0000
0.1250 0.2500 3.3034 0.0000
0.1875 0.2500 3.7148 0.0000
0.2500 0.2500 4.1720 0.0000
0.0000 0.3750 3.7619 0.0000
0.0625 0.3750 4.2163 0.0000
0.1250 0.3750 4.7226 0.0000
0.1875 0.3750 5.2878 0.0000
0.2500 0.3750 5.9199 0.0000
0.0000 0.5000 5.3232 0.0000
0.0625 0.5000 5.9520 0.0000
0.1250 0.5000 6.6569 0.0000
0.1875 0.5000 7.4483 0.0000
0.2500 0.5000 8.3380 0.0000
Comments

1. Workspace may be explicitly provided, if desired, by use of F252H/DF252H. The
reference is:

CALL F2S2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY,
IORDER, U, LDU, UWORK, WORK)

The additional arguments are as follows:

UWORK — Work array of size NX + 2 by NY + 2. Ifthe actual dimensions of U are
large enough, then U and UWORK can be the same array.
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WORK — Work array of length (NX + 1) (NY + 1) (IORDER — 2)/2 + 6(NX +
NY) + NX/2 + 16.

2. The grid spacing is the distance between the (uniformly spaced) grid lines. It is given
by the formulas Hx = (BX — AX)/(NX — 1) and HY = (BY — AY)/(NY — 1). The grid
spacings in the x and Y directions must be the same, i.e., NX and NY must be such that
HX equals HY. Also, as noted above, Nx and NY must both be at least 4. To increase the
speed of the fast Fourier transform, NX — 1 should be the product of small primes. Good
choices are 17, 33, and 65.

3. If —CcOEFU is nearly equal to an eigenvalue of the Laplacian with homogeneous
boundary conditions, then the computed solution might have large errors.

Description

Let c =COEFU, a, = AX, b, =BX, a

yZAY,b =BY,nx=NXandny=NY.

FPS2H is based on the code HFFT2D by Boisvert (1984). It solves the equation

lu  Ou
PN
ox- Oy
on the rectangular domain (ay, b,) x (a,, b,) with a user-specified combination of Dirichlet
(solution prescribed), Neumann (first-derivative prescribed), or periodic boundary conditions.
The sides are numbered clockwise, starting with the right side.

+cu=p

Yy
A
Side 4
by
Side 3 Side 1

a

g . P

ay Side 2 by

When ¢ = 0 and only Neumann or periodic boundary conditions are prescribed, then any
constant may be added to the solution to obtain another solution to the problem. In this case, the
solution of minimum co-norm is returned.
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The solution is computed using either a second-or fourth-order accurate finite-difference
approximation of the continuous equation. The resulting system of linear algebraic equations is
solved using fast Fourier transform techniques. The algorithm relies upon the fact thatn, — 1 is
highly composite (the product of small primes). For details of the algorithm, see Boisvert
(1984). If n, — 1 is highly composite then the execution time of FPS2H is proportional to n,n,
log, n,. If evaluations of p(x, y) are inexpensive, then the difference in running time between
IORDER = 2 and IORDER = 4 is small.

FPS3H

Solves Poisson’s or Helmholtz’s equation on a three-dimensional box using a fast Poisson solver
based on the HODIE finite-difference scheme on a uniform mesh.

Required Arguments

PRHS — User-supplied FUNCTION to evaluate the right side of the partial differential
equation. The form is PRHS (X, Y, Z), where

X — The x-coordinate value. (Input)
Y — The y-coordinate value. (Input)
Z — The z-coordinate value. (Input)
PRHS — Value of the right side at (X, Y, Z). (Output)

PRHS must be declared EXTERNAL in the calling program.

BRHS — User-supplied FUNCTION to evaluate the right side of the boundary conditions. The
form is BRHS (ISIDE, X, Y, Z), where

ISIDE — Side number. (Input)

See IBCTY for the definition of the side numbers.

X — The x-coordinate value. (Input)

Y — The y-coordinate value. (Input)

7 — The z-coordinate value. (Input)

BRHS — Value of the right side of the boundary condition at (X, Y, Z). (Output)

BRHS must be declared EXTERNAL in the calling program.
COEFU — Value of the coefficient of U in the differential equation. (Input)

NX — Number of grid lines in the x-direction. (Input)
NX must be at least 4. See Comment 2 for further restrictions on NX.

NY — Number of grid lines in the y-direction. (Input)
NY must be at least 4. See Comment 2 for further restrictions on NY.

NZ — Number of grid lines in the y-direction. (Input)
Nz must be at least 4. See Comment 2 for further restrictions on NZ.
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AX — Value of x along the left side of the domain. (Input)

BX — Value of x along the right side of the domain. (Input)

AY — Value of Y along the bottom of the domain. (Input)

BY — Value of Y along the top of the domain. (Input)

AZ — Value of z along the front of the domain. (Input)

BZ — Value of 7 along the back of the domain. (Input)

IBCTY — Array of size 6 indicating the type of boundary condition on each face of the

domain or that the solution is periodic. (Input)
The sides are numbers 1 to 6 as follows:

Side Location
1 - Right (X =BX)
2 - Bottom (Y=~1Y)
3 - Left (x=1ax)
4 -Top (Y =BY)
5 - Front (z=82)
6 - Back (z=nz2)

There are three boundary condition types.
IBCTY Boundary Condition
1 Value of U is given. (Dirichlet)

2 Value of dU/dX is given (sides 1 and/or 3). (Neumann) Value of dU/dY is
given (sides 2 and/or 4). Value of dU/dZ is given (sides 5 and/or 6).

3 Periodic.

U — Array of size NX by NY by NZ containing the solution at the grid points. (Output)
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Optional Arguments

IORDER — Order of accuracy of the finite-difference approximation. (Input)
It can be either 2 or 4. Usually, TORDER = 4 is used.
Default: TORDER = 4.

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling
program. (Input)
Default: 1.DU = size (U,1).

MDU — Middle dimension of U exactly as specified in the dimension statement of the calling
program. (Input)
Default: MDU = size (U,2).

FORTRAN 90 Interface

Generic: CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, Nz, AX, BX, AY, BY,
AZ, BZ, IBCTY, U [,..])

Specific: The specific interface names are S_FPS3H and D_FPS3H.

FORTRAN 77 Interface

Single: CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY,
AZ, BZ, IBCTY, IORDER, U, LDU, MDU)

Double: The double precision name is DFPS3H.

Example

This example solves the equation

2 2 2
O Ot U 10w =4 cos(3x+ y—2z) +12¢" 110
ox- oy~ Oz

with the boundary conditions 0u/0z = -2 sin(3x + y —2z) — exp(x — z) on the front side and
u=cos(3x + y — 2z) + exp(x — z) + 1 on the other five sides. The domain is the box [0, 1/4] x [0,
1/2] % [0, 1/2]. The output of FPS3H is a 9 x 17 x 17 table of U values. The quadratic
interpolation routine QD3VL is used to print a table of values.

USE FPS3H_INT

USE UMACH_INT

USE QD3VL_INT

! SPECIFICATIONS FOR PARAMETERS
INTEGER LDU, MDU, NX, NXTABL, NY, NYTABL, NZ, NZTABL
PARAMETER (NX=5, NXTABL=4, NY=9, NYTABL=3, NZ=9, &
NZTABL=3, LDU=NX, MDU=NY)

INTEGER I, IBCTY(6), IORDER, J, K, NOUT
REAL AX, AY, AZ, BRHS, BX, BY, Bz, COEFU, FLOAT, PRHS, &
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10

20

30

40
50
60

U (LDU,MDU,NZ), UTABL, X, ERROR, TRUE, &
XDATA(NX), Y, YDATA(NY), Z, ZDATA(NZ)
INTRINSIC COS, EXP, FLOAT
EXTERNAL BRHS, PRHS
Define domain
AX = 0.0
BX = 0.125
AY = 0.0
BY = 0.25
AZ = 0.0
Bz = 0.25
Set boundary condition types
IBCTY (1) =1
IBCTY (2) 1
IBCTY (3) =1
IBCTY (4) =1
IBCTY (5) = 2
IBCTY (6) = 1
Coefficient of U
COEFU = 10.0
Order of the method
IORDER = 4
Solve the PDE
CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, &
Bz, IBCTY, U)
Set up for quadratic interpolation
DO 10 1I=1, NX
XDATA (I) = AX + (BX-AX)*FLOAT (I-1)/FLOAT (NX-1)
CONTINUE
DO 20 J=1, NY
YDATA (J) = AY + (BY-AY) *FLOAT (J-1) /FLOAT (NY-1)
CONTINUE
DO 30 K=1, NZ
ZDATA (K) = AZ + (BZ-AZ)*FLOAT (K-1)/FLOAT (NZ-1)
CONTINUE
Print the solution
CALL UMACH (2, NOUT)
WRITE (NOUT,’ (8X,5(A,11X))") ’'X", 'y’, 'z', 'u’ "Error’
DO 60 K=1, NZTABL
DO 50 J=1, NYTABL
DO 40 1I=1, NXTABL
X = AX + (BX-AX)*FLOAT (I-1)/FLOAT (NXTABL-1)
Y = AY + (BY-AY)*FLOAT (J-1)/FLOAT (NYTABL-1)
Z = AZ + (BZ-AZ)*FLOAT (K-1) /FLOAT (NZTABL-1)
UTABL = QD3VL(X,Y,Z,XDATA,YDATA, ZDATA,U, CHECK=.false.)
TRUE = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0
ERROR = UTABL - TRUE
WRITE (NOUT,’ (5F12.4)’) X, Y, Z, UTABL, ERROR
CONTINUE
CONTINUE
CONTINUE
END

REAL FUNCTI
REAL

ON PRHS
X, Y, Z

(X, Y, 2)
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REAL COS, EXP
INTRINSIC COS, EXP
!
PRHS = -4.0*COS(3.0*X+Y-2.0%*7)
RETURN
END

REAL FUNCTION BRHS

INTEGER
REAL

REAL
INTRINSIC

IF (ISIDE
BRHS =
ELSE
BRHS
END IF
RETURN
END

Output
X
.0000
.0417
.0833
.1250
.0000
.0417
.0833
.1250
.0000
.0417
.0833
.1250
.0000
.0417
.0833
.1250
.0000
.0417
.0833
.1250
.0000
.0417
.0833
.1250
.0000
.0417
.0833
.1250
.0000

O OO OO ODODODODODODODODODODODODODODODIODOOOOOOooOo
O OO OO ODODODODODODODODODODIODODODODODODODOOOOOooOo

ISIDE
X, Y, Z

cos,
Ccos,

.EQ.

-2.0*SIN(3.0*X+Y-2.0%*2Z)

COS(3.0*X+Y-2.0*2)

Y

.0000
.0000
.0000
.0000
.1250
.1250
.1250
.1250
.2500
.2500
.2500
.2500
.0000
.0000
.0000
.0000
.1250
.1250
.1250
.1250
.2500
.2500
.2500
.2500
.0000
.0000
.0000
.0000
.1250

EXP,
EXP,

SIN
SIN

5) THEN

O OO OO ODODODODODODODODODODIODODODODODODOOOOOOooOo

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.1250
.1250
.1250
.1250
.1250
.1250
.1250
.1250
.1250
.1250
.1250
.1250
.2500
.2500
.2500
.2500
.2500

Right side of the PDE

(ISIDE, X, Y,

z)

+ 12*EXP(X-Z) + 10.0

Boundary conditions

- EXP (X-2)
+ EXP(X-Z) + 1.0
U Error
3.0000 0.0000
3.0348 0.0000
3.0558 0.0001
3.0637 0.0001
2.9922 0.0000
3.0115 0.0000
3.0175 0.0000
3.0107 0.0000
2.9690 0.0001
2.9731 0.0000
2.9645 0.0000
2.9440 -0.0001
2.8514 0.0000
2.9123 0.0000
2.9592 0.0000
2.9922 0.0000
2.8747 0.0000
2.9211 0.0010
2.9524 0.0010
2.9689 0.0000
2.8825 0.0000
2.9123 0.0000
2.9281 0.0000
2.9305 0.0000
2.6314 -0.0249
2.7420 -0.0004
2.8112 -0.0042
2.8609 -0.0138
2.7093 0.0000
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0.0417 0.1250 0.2500 2.8153 0.0344
0.0833 0.1250 0.2500 2.8628 0.0237
0.1250 0.1250 0.2500 2.8825 0.0000
0.0000 0.2500 0.2500 2.7351 -0.0127
0.0417 0.2500 0.2500 2.8030 -0.0011
0.0833 0.2500 0.2500 2.8424 -0.0040
0.1250 0.2500 0.2500 2.8735 -0.0012
Comments
1. Workspace may be explicitly provided, if desired, by use of F253H/DF253H. The
reference is:
CALL F2S3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX,
AY, BY, AZ, Bz, IBCTY, IORDER, U, LDU,
MDU, UWORK, WORK)
The additional arguments are as follows:
UWORK — Work array of size NX + 2 by NY + 2 by NZ + 2.Ifthe actual
dimensions of U are large enough, then U and UWORK can be the same array.
WORK — Work array of length (NX + 1) (NY + 1) (NZ + 1) (IORDER — 2)/2 +
2(NX * NY + NX * NZ + NY * NZ) + 2(NX + NY + 1) + MAX (2 *
NX * NY, 2 * NX + NY + 4 * NZ + (NX + NZ)/2 + 29)
2. The grid spacing is the distance between the (uniformly spaced) grid lines. It is given
by the formulas
HX = (BX — AX)/(NX — 1),
HY = (BY — AY)/(NY — 1), and
HZ = (BZ — AZ)/(NZ — 1).
The grid spacings in the %, ¥ and z directions must be the same, i.e., NX, NY and Nz
must be such that HX = HY = HZ. Also, as noted above, Nx, NY and Nz must all be at
least 4. To increase the speed of the Fast Fourier transform, NX — 1 and Nz — 1 should
be the product of small primes. Good choices for Nx and Nz are 17, 33 and 65.
3. If —CcOEFU is nearly equal to an eigenvalue of the Laplacian with homogeneous
boundary conditions, then the computed solution might have large errors.
Description

Let ¢ = COEFU, a, = AX, b, = BX, n, = NX, a

yZAY,b =BY,n
n,=NZ.

, =NY, a, = Az, b, =Bz, and

FPS3H is based on the code HFFT3D by Boisvert (1984). It solves the equation
u u Ou
PRI

ox- Jy” 0Oz

+cu=p
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on the domain (ay, b,) x (a,, by) x (a, b;) (a box) with a user-specified combination of Dirichlet
(solution prescribed), Neumann (first derivative prescribed), or periodic boundary conditions.
The six sides are numbered as shown in the following diagram.

y
V' N
by
Top - 4
‘_ Back -6
Right - 1
Front - 5
bx
Left-3 } 4 } X

Bottom - 2

-

z

When ¢ = 0 and only Neumann or periodic boundary conditions are prescribed, then any
constant may be added to the solution to obtain another solution to the problem. In this case, the
solution of minimum co-norm is returned.

The solution is computed using either a second-or fourth-order accurate finite-difference
approximation of the continuous equation. The resulting system of linear algebraic equations is
solved using fast Fourier transform techniques. The algorithm relies upon the fact that n, — 1
and n, — | are highly composite (the product of small primes). For details of the algorithm, see
Boisvert (1984). Ifn, — 1 and n, — 1 are highly composite, then the execution time of FPS3H is
proportional to

n.nn, (logi n, +log; nz)

If evaluations of p(x, y, z) are inexpensive, then the difference in running time between
IORDER = 2 and IORDER =4 is small.

SLEIG

Determines eigenvalues, eigenfunctions and/or spectral density functions for Sturm-Liouville
problems in the form

d du .
—E(p(x)a)+q(x)u = Ar(x)u forx in (a,b)

with boundary conditions (at regular points)
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au—a,(pu')= i(a{u—az' (pu')) ata
bu+b,(pu')=0ath

Required Arguments
CONS — Array of size eight containing

a,,a,,a,,a,,b,,b,,a and b
in locations CONS(1) through cons(8), respectively. (Input)

COEFFN — User-supplied SUBROUTINE to evaluate the coefficient functions. The usage is
CALL COEFFN (X, PX, QX, RX)

x — Independent variable. (Input)

px — The value of p(x) at x. (Output)

0x — The value of g(x) at X. (Output)

Rx — The value of r(x) at X. (Output)

COEFFN must be declared EXTERNAL in the calling program.

ENDFIN — Logical array of size two. ENDFIN (1) = .true. if the endpoint a is finite.
ENDFIN (2) = .true. if endpoint b is finite. (Input)

INDEX — Vector of size NUMEIG containing the indices of the desired eigenvalues. (Input)

EVAL — Array of length NUMEIG containing the computed approximations to the
eigenvalues whose indices are specified in INDEX. (Output)

Optional Arguments

NUMEIG — The number of eigenvalues desired. (Input)
Default: NUMETG = size (INDEX,1).

TEVLAB — Absolute error tolerance for eigenvalues. (Input)
Default: TEVLAB = 10.* machine precision.

TEVLRL — Relative error tolerance for eigenvalues. (Input)
Default: TEVLRL = SQRT(machine precision).

FORTRAN 90 Interface

Generic: CALL SLEIG (CONS, COEFFN, ENDFIN, INDEX, EVAL [,..])

Specific: The specific interface names are S_SLEI Gand D_SLEI G
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FORTRAN 77 Interface

ﬁngk: CALL SLEIG (CONS, COEFFN, ENDFIN, NUMEIG, INDEX, TEVLAB,
TEVLRL, EVAL)

Double: The double precision name is DSLEI G
Example 1
This example computes the first ten eigenvalues of the problem from Titchmarsh (1962) given
by
px)=r(x)=1
q(x) =x
[a, b] =0, ]
u(a)=u(b)=0

The eigenvalues are known to be the zeros of
ICRAE VN

For each eigenvalue A, the program prints &, A and f{A;).

USE SLEIG_INT
USE CBJS_INT
! SPECIFICATIONS FOR LOCAL VARIABLES

INTEGER I, INDEX(10), NUMEIG

REAL CONS (8), EVAL(10), LAMBDA, TEVLAB, &
TEVLRL, XNU

COMPLEX CBS1(1l), CBS2(l), Z

LOGICAL ENDFIN (2)

! SPECIFICATIONS FOR INTRINSICS
INTRINSIC CMPLX, SOQRT
REAL SORT
COMPLEX CMPLX
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL COEFF

CALL UMACH (2, NOUT)
! Define boundary conditions

CONS (1) = 1.0
CONS (2) = 0.0
CONS (3) = 0.0
CONS (4) = 0.0
CONS (5) = 1.0
CONS (6) = 0.0
CONS (7) = 0.0
CONS (8) = 0.0
|
ENDFIN (1) = .TRUE.
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ENDFIN(2) = .FALSE.
! Compute the first 10 eigenvalues

NUMEIG = 10
DO 10 1I=1, NUMEIG
INDEX(I) = I - 1

10 CONTINUE
! Set absolute and relative tolerance

CALL SLEIG (CONS, COEFF, ENDFIN, INDEX, EVAL)

XNU = -1.0/3.0
WRITE (NOUT, 99998)
DO 20 1I=1, NUMEIG
LAMBDA = EVAL (I)
z = CMPLX(2.0/3.0*LAMBDA*SQRT (LAMBDA), 0.0)
CALL CBJS (XNU, Z, 1, CBS1)
CALL CBJS (-XNU, 2%, 1, CBS2)
WRITE (NOUT,99999) I-1, LAMBDA, REAL(CBS1(1l) + CBS2 (1))
20 CONTINUE

99998 FORMAT (/, 2X, 'index', 5X, 'lambda', 5X, 'f(lambda)',/)
99999 FORMAT (IS5, F13.4, E15.4)
END

SUBROUTINE COEFF (X, PX, 0X, RX)
! SPECIFICATIONS FOR ARGUMENTS

REAL X, PX, QX, RX
|

PX = 1.0

OX = X

RX = 1.0

RETURN

END
Output

index lambda f (lambda)

0 2.3381 -0.8285E-05
1 4.0879 -0.1651E-04
2 5.5205 0.6843E-04
3 6.7867 -0.4523E-05
4 7.9440 0.8952E-04
5 9.0227 0.1123E-04
6 10.0401 0.1031E-03
7 11.0084 -0.7913E-04
8 11.9361 -0.5095E-04
9 12.8293 0.4645E-03
Comments

1. Workspace may be explicitly provided, if desired, by use of S2E1G/DS2E1G. The

reference is:
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CALL S2EIG (CONS, COEFFN, ENDFIN, NUMEIG, INDEX, TEVLAB, TEVLRL,
EVAL, JOB, IPRINT, TOLS, NUMX, XEF, NRHO, T, TYPE, EF, PDEF,
RHO, IFLAG, WORK, IWORK)

The additional arguments are as follows:

JOB — Logical array of length five. (Input)

JOB(1) = .true. if a set of eigenvalues are to be computed but not their eigenfunctions.
JOB(2) = .true. if a set of eigenvalue and eigenfunction pairs are to be computed.

JOB(3) = .true. if the spectral function is to be computed
over some subinterval of the essential spectrum.

JOB(4) = .true. if the normal automatic classification is overridden. If JOB(4) = .true.
then TYPE(*,*) must be entered correctly. Most users will not want to override
the classification process, but it might be appropriate for users experimenting
with problems for which the coefficient functions do not have power-like
behavior near the singular endpoints. The classification is considered
sufficiently important for spectral density function calculations that J0B(4) is
ignored with J0B(3) = .true..

JOB(5) = .true. if mesh distribution is chosen by SLEIG. If JOB(5) = .t rue. and NUMX
is zero, the number of mesh points are also chosen by SLETG. If NUMX > 0 then
NUMX mesh points will be used. If JOB(5) = .false., the number NUMX and
distribution xEF(*) must be input by the user.

IPRINT — Control levels of internal printing. (Input)
No printing is performed if IPRINT = 0. If either JOB(1) or JOB(2) is true:
IPRINT Printed Output

1 initial mesh (the first 51 or fewer points), eigenvalue estimate at each level
4 the above and at each level matching point for

eigenfunction shooting, x(*), EF(*) and PDEF(*) values
5 the above and at each level the brackets for the eigenvalue

search, intermediate shooting information for the eigenfunction and
eigenfunction norm.

If JoB(3) = .true.
IPRINT Printed Output

1 the actual (a, b) used at each iteration and the total number
of eigenvalues computed

2 the above and switchover points to the asymptotic
formulas, and some intermediate p(#) approximations

4 the above and initial meshes for each iteration, the index

of the largest eigenvalue which may be computed, and various
eigenvalue and Ry values
4 the above and
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p

values at each level
5 the above and Ry add eigenvalues below the switchover point
If goB(4)=.false.
IPRINT Printed Output

2 output a description of the spectrum
3 the above and the constants for the Friedrichs' boundary condition(s)
5 the above and intermediate details of the classification

calculation

TOLS — Array of length 4 containing tolerances. (Input)
TOLS(1) — absolute error tolerance for eigenfunctions
TOLS(2) — relative error tolerance for eigenfunctions
TOLS(3) — absolute error tolerance for eigenfunction derivatives
TOLS(4) — relative error tolerance for eigenfunction derivatives

The absolute tolerances must be positive.
The relative tolerances must be at least 100 *amach(4)

NUMX — Integer whose value is the number of output points where each eigenfunction is to
be evaluated (the number of entries in XEF(*)) when JOB(2) = .true.. If JOB(5)= .false.
and NUMX is greater than zero, then NUMX is the number of points in the initial mesh
used. If JoB(5) = .false., the points in XEF(*) should be chosen with a reasonable
distribution. Since the endpoints a and b must be part of any mesh, NUMX cannot be one
in this case. If JoB(5) = .false. and JOB(3) = .true., then NUMX must be positive. On
output, NUMX is set to the number of points for eigenfunctions when input NUMX = 0,
and JOB(2) or JOB(5) = .true.. (Input/Output)

XEF — Array of points on input where eigenfunction estimates are desired, if JOB(2) =
.true.. Otherwise, if JOB(S) = .false. and NUMX is greater than zero, the user’s initial
mesh is entered. The entries must be ordered so that @ = XEF(1) < XEF(2) <... <
XEF(NUMX) = b. If either endpoint is infinite, the corresponding XEF(1) or XEF(NUMX) is
ignored. However, it is required that XEF(2) be negative when ENDFIN(1) = .false., and
that xEF(NUMx-1) be positive when ENDFIN(2) = .false.. On output, XEF(*) is changed
only if JOB(2) and JoB(5) are true. If JOB(2) = .false., this vector is not referenced. If
JOB(2) = .true. and NUMX is greater than zero on input, XEF(*) should be dimensioned
at least NUMx + 16. If JOB(2) is true and NUMX is zero on input, XEF(*) should be
dimensioned at least 31.

NRHO — The number of output values desired for the array RHO(*). NRHO is not used if
JOoB(3) = .false.. (Input)

T — Real vector of size NRHO containing values where the spectral function RHO(¥*) is desired.
The entries must be sorted in increasing order. The existence and location of a
continuous spectrum can be determined by calling SLETG with the first four entries of
JOB set to false and TPRINT set to 1. T(*) is not used if JOB(3) = .false.. (Input)
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TYPE — 4 by 2 logical matrix. Column 1 contains information about endpoint @ and column
2 refers to endpoint b.
TYPE(1,*) = .true. if and only if the endpoint is regular
TYPE(2,*) = .true. if and only if the endpoint is limit circle
TYPE(3,*) = .true. if and only if the endpoint is nonoscillatory for all eigenvalues
TYPE(4,*) = .true. if and only if the endpoint is oscillatory for all eigenvalues
Note: all of these values must be correctly input if J0B(4) = .true..
Otherwise, TYPE(*,*) is output. (Input/Output)

EF — Array of eigenfunction values. EF((k — 1)*NUMX + 1) is the estimate of u(xer(i))
corresponding to the eigenvalue in EV(k). If JOB(2) = .false. then this vector is not
referenced. If JOB(2) = .true. and NUMX is greater than zero on entry, then EF(*) should
be dimensioned at least NUMX * NUMEIG. If JOB(2) = .true. and NUMX is zero on input,
then EF(*) should be dimensioned 31 * NUMEIG. (Output)

PDEF — Array of eigenfunction derivative values. PDEF((k-1)*NUMX + i) is the estimate of
(pu") (xEF(1)) corresponding to the eigenvalue in EV(k). If JOB(2) = .false. this vector is
not referenced. If JOB(2) = .true., it must be dimensioned the same as EF(*). (Output)

RHO — Array of size NRHO containing values for the spectral density function p(f), RHO(I) =
p(T(1)). This vector is not referenced if J0B(3) is false. (Output)

IFLAG — Array of size max(1, numeig) containing information about the output. IFLAG(K)
refers to the K-th eigenvalue, when JOB(1) or JOB(2) = .true.. Otherwise, only
1FLAG(1) is used. Negative values are associated with fatal errors, and the calculations
are ceased. Positive values indicate a warning. (Output)

IFLAG(K)

IFLAG(K)  Description

-1 too many levels needed for the eigenvalue calculation;
problem seems too difficult at this tolerance. Are the
coefficient functions nonsmooth?

-2 too many levels needed for the eigenfunction
calculation; problem seems too difficult at this
tolerance. Are the eigenfunctions ill-conditioned?

-3 too many levels needed for the spectral density
calculation; problem seems too difficult at this
tolerance.

-4 the user has requested the spectral density function for

a problem which has no continuous spectrum.

=5 the user has requested the spectral density function for
a problem with both endpoints generating essential
spectrum, i.e. both endpoints either OSC or O-NO.
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-10

-15

the user has requested the spectral density function for
a problem in spectral category 2 for which a proper
normalization of the solution at the NONOSC
endpoint is not known; for example, problems with an
irregular singular point or infinite endpoint at one end
and continuous spectrum generated at the other.

problems were encountered in obtaining a bracket.

too small a step was used in the integration. The
TOLS(*) values may be too small for this problem.

too small a step was used in the spectral density
function calculation for which the continuous
spectrum is generated by a finite endpoint.

an argument to the circular trig functions is too large.
Try running the problem again with a finer initial mesh
or, for singular problems, use interval truncation.

p(x) and r(x) are not positive in the interval (a, b).

eigenvalues and/or eigenfunctions were requested for a
problem with an OSC singular endpoint. Interval
truncation must be used on such problems.

Failure in the bracketing procedure probably due to a
cluster of eigenvalues which the code cannot separate.
Calculations have continued but any eigenfunction
results are suspect. Try running the problem again with
tighter input tolerances to separate the cluster.

there is uncertainty in the classification for this
problem. Because of the limitations of floating point
arithmetic, and the nature of the finite sampling, the
routine cannot be certain about the classification
information at the requested tolerance.

there may be some eigenvalues embedded in the
essential spectrum. Use of IPRINT greater than zero
will provide additional output giving the location of
the approximating eigenvalues for the step function
problem. These could be extrapolated to estimate the
actual eigenvalue embedded in the essential spectrum.

a change of variables was made to avoid potentially
slow convergence. However, the global error estimates
may not be as reliable. Some experimentation using
different tolerances is recommended.

there were problems with eigenfunction convergence
in a spectral density calculation. The output p(f) may
not be accurate.

980 ¢ Chapter 5: Differential Equations

IMSL MATH/LIBRARY



WORK — Array of size MAX(1000, NUMEIG + 22) used for workspace.

IWORK — Integer array of size NUMEIG + 3 used for workspace.

Description

This subroutine is designed for the calculation of eigenvalues, eigenfunctions and/or spectral
density functions for Sturm-Liouville problems in the form

—%(p(x)%) +q(x)u=Ar(x)u forx in (a,b) (1)
with boundary conditions (at regular points)

au—a,(pu'’)=1 (al'u —a, (pu’)) ata
bu+b,(pu')=0ath
We assume that
aja, —a,a, >0
when @'y # 0 and @', # 0. The problem is considered regular if and only if
e ¢ and b are finite,
¢ p(x) and r(x) are positive in (a, b),
e [/p(x), q(x) and r(x) are locally integrable near the endpoints.

Otherwise the problem is called singular. The theory assumes that p, p’, ¢, and r are at least
continuous on (a, b), though a finite number of jump discontinuities can be handled by suitably
defining an input mesh.

For regular problems, there are an infinite number of eigenvalues
}\,0<}\,1 <... <)\,k,k—)00

Each eigenvalue has an associated eigenfunction which is unique up to a constant. For singular
problems, there is a wide range in the behavior of the eigenvalues.

As presented in Pruess and Fulton (1993) the approach is to replace (1) by a new problem
’
—(pi') +qii = Ari )
with analogous boundary conditions
a,u (a) —-a, (fn?’) (a) =1 [al'ﬁ (a) —-a, (ﬁﬁ’)(a)}

bii (b)-+ b, (i) () =0

where
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p,q and 7
are step function approximations to p, ¢, and r, respectively. Given the mesh

a=x; <x,<...<Xxyy = b, the usual choice for the step functions uses midpoint interpolation,
1. e.,

X, tXx

p(x)=p, = p(—== ”“)

for x in (x,, x,+ 1) and similarly for the other coefficient functions. This choice works well for
regular problems. Some singular problems require a more sophisticated technique to capture the
asymptotic behavior. For the midpoint interpolants, the differential equation (2) has the known
closed form solution in

(ns Xn+1)
() =5, )0 (3=, +(53)(5,)4, (v ,
with
sino,t/®,,7, >0
¢,(1)=<sinho,t/o,,7, <0
t,7=0
where
=(4r,-q,)/p,
and
w, =7,
Starting with,

ii(a) and (pi')(a)
consistent with the boundary condition,
i(a)=a, )
(pi')(a)=aq, —ald
an algorithm is to compute forn =1, 2, ..., N,
i(x,.0) =d(x, )¢, (k) +(P0)(x,)4, () P,
(ﬁﬁ’)( n+l) Tpnu(x )¢ (h )+(A”)(xn)¢n(hn)
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which is a shooting method. For a fixed mesh we can iterate on the approximate eigenvalue until

the boundary condition at b is satisfied. This will yield an O(hz) approximation

to some 7.

A

A

The problem (2) has a step spectral function given by

U ToT

x)dx+a

where the sum is taken over & such that

and

o '
a=aa,—aa,

Additional Examples

Example 2

In this problem from Scott, Shampine and Wing (1969),

px)=r(x)=1
gx) =x"+ '
[as b] = [—OO, OO]
u(a)=u(b)=0

the first eigenvalue and associated eigenfunction, evaluated at selected points, are computed. As
a rough check of the correctness of the results, the magnitude of the residual

d d
—E(p(x)d—Z)+q(x)u—ﬂr(x)u

is printed. We compute a spline interpolant to " and use the function CSDER to estimate the
quantity —(p(x)u’)".

USE S2EIG_
USE CSDER_
USE UMACH
USE CSAKM

INTEGER

REAL

INT
INT
INT
INT
SPECIFICATIONS FOR LOCAL VARIABLES
I, IFLAG(1l), INDEX(l), IWORK(100), NINTV, NOUT, NRHO, &

NUMEIG, NUMX
BRKUP (61), CONS(8), CSCFUP(4,61), EF(61), EVAL(l), &
LAMBDA, PDEF(61), PX, OX, RESIDUAL, RHO(1l), RX, T(l), &
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TEVLAB, TEVLRL, TOLS (4), WORK(3000), X, XEF(61)

LOGICAL ENDFIN(2), JOB(5), TYPE(4,2)

! SPECIFICATIONS FOR INTRINSICS
INTRINSIC ABS, REAL
REAL ABS, REAL

! SPECIFICATIONS FOR SUBROUTINES
EXTERNAL COEFF

! Define boundary conditions

CONS (1) = 1.0
CONS (2) = 0.0
CONS (3) = 0.0
CONS (4) = 0.0
CONS(5) = 1.0
CONS (6) = 0.0
CONS(7) = 0.0
CONS (8) = 0.0
! Compute eigenvalue and eigenfunctions
JOB (1) = .FALSE.
JOB (2) = .TRUE.
JOB(3) = .FALSE.
JOB (4) = .FALSE.
JOB(5) = .FALSE.
|
ENDFIN (1) = .FALSE.
ENDFIN(2) = .FALSE.
! Compute eigenvalue with index 0
NUMEIG = 1
INDEX (1) = 0
|
TEVLAB = 1.0E-3
TEVLRL = 1.0E-3
TOLS (1) = TEVLAB
TOLS (2) = TEVLRL
TOLS (3) = TEVLAB
TOLS (4) = TEVLRL
NRHO =0
! Set up mesh, points at which u and
! u' will be computed
NUMX = 61
DO 10 I=1, NUMX
XEF(I) = 0.05*REAL(I-31)

10 CONTINUE

CALL S2EIG (CONS, COEFF, ENDFIN, NUMEIG, INDEX, TEVLAB, TEVLRL, &
EVAL, JOB, 0, TOLS, NUMX, XEF, NRHO, T, TYPE, EF, &
PDEF, RHO, IFLAG, WORK, IWORK)

LAMBDA = EVAL(1)
20 CONTINUE

! Compute spline interpolant to u'

CALL CSAKM (XEF, PDEF, BRKUP, CSCFUP)
NINTV = NUMX - 1

CALL UMACH (2, NOUT)
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WRITE (NOUT, 99997)
WRITE (NOUT, 99999)

DO 30 1I=1,

CALL COEFF

RESIDUAL

30 CONTINUE
!

99997 FORMAT (/, Al4, F10.5, /)
3F15.5)
v, 11X,

99998 FORMAT (5X,
99999 FORMAT (7X,

END
!

41, 2
X = XEF(I+10)

F4.1,

(X, PX, QX, RX)

SUBROUTINE COEFF (X,

REAL

PX = 1.0

X,

OX = X*X + X*X*X*X

RX = 1.0
RETURN
END

Output
lambda =

b

-1.
-0.
-0.
-0.
-0.

|
o
NUTdDd WNEFEPORFRNWDND OO oyJ oo oo

1.39247

cNoNoBoNeoNoNoNolNoloNoNolNolNolNolNoNol

u (x)

.38632
.45218
.51837
.58278
.64334
.69812
. 74537
.78366
.81183
.82906
.83473
.82893
.81170
.78353
.74525
.69800
.64324

PX, 0OX, RX

lambda = ', LAMBDA

'u(x) "',

lecNeoNeoNoNoNoNoNoNoNe]

At a subset of points from the
compute residual =
+ g(x)u - lambda*u ).

input mesh,
abs( —-(u'")"
We know p(x)

1 and r(x) = 1.

Use the spline fit to u' to

estimate u''

w

ith CSDER

ABS (-CSDER (1, X, BRKUP, CSCFUP) +QX*EF (I+10) - &
LAMBDA*EF (I+10))

WRITE (NOUT,99998) X, EF(I+10), PDEF(I+10), RESIDUAL

10X, 'u''(x)', 9X, 'residual', /)

PX, 0X, RX)

SPECIFICATIONS FOR ARGUMENTS

u' (x)

.65019
.66372
.65653
.62827
.57977
.51283
.42990
.33393
.22811
.11570
.00000
.11568
.22807
.33388
.42983
.51274
.57967

eNoNoBoNeoNoNoNolNoloNoNoNeolNolNolNoNol

residual
.00189
.00081
.00023
.00113
.00183
.00230
.00273
.00265
.00273
.00278
.00136
.00273
.00273
.00267
.00265
.00230
.00182
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0.7 0.58269 -0.62816 0.00113
0.8 0.51828 -0.65641 0.00023
0.9 0.45211 -0.66361 0.00081
1.0 0.38626 -0.65008 0.00189

SLCNT

Calculates the indices of eigenvalues of a Sturm-Liouville problem of the form for
d du .
——(p(x)—/)+qg(x)u=Ar(x)u forx in (a,b
L (p(x) %)+ g ()= Ar(x)u for- in [,
with boundary conditions (at regular points)

au—a,(pu') = ﬁ,(al'u —a, (pu’)) ata
bu+b,(pu')=0ath

in a specified subinterval of the real line, [, B].

Required Arguments
ALPHA — Value of the left end point of the search interval. (Input)

BETAR — Value of the right end point of the search interval. (Input)

CONS — Array of size eight containing
a,,a,,a,,a,,b,,b,,a and b

in locations CONS (1) ... CONS (8), respectively. (Input)

COEFFN — User-supplied SUBROUTINE to evaluate the coefficient functions. The usage is
CALL COEFFN (X, PX, QX, RX)

x — Independent variable. (Input)

pxX — The value of p(x) at x. (Output)

0x — The value of g(x) at X. (Output)

RX — The value of (x) at X. (Output)

COEFFN must be declared EXTERNAL in the calling program.

ENDFIN — Logical array of size two. ENDFIN = .true. if and only if the endpoint a is
finite. ENDFIN(2) = .true. if and only if endpoint b is finite. (Input)

IFIRST — The index of the first eigenvalue greater than a.. (Output)

NTOTAL — Total number of eigenvalues in the interval [o, B]. (Output)
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FORTRAN 90 Interface

Generic: CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST,
NTOTAL)

Specific: The specific interface names are S_SLCNT and D_SLCNT.

FORTRAN 77 Interface

Single: CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST,
NTOTAL)
Double: The double precision name is DSLCNT.
Example

Consider the harmonic oscillator (Titchmarsh) defined by

p(x)=1

g) =’
rix)=1

[, ] = [0, ]
u(a)=0
u(b)=0

The eigenvalues of this problem are known to be
A=2k+1,k=0,1,...

Therefore in the interval [10, 16] we expect SLCNT to note three eigenvalues, with the first of
these having index five.
USE SLCNT_INT

USE UMACH_ INT
! SPECIFICATIONS FOR LOCAL VARIABLES

INTEGER IFIRST, NOUT, NTOTAL
REAL ALPHA, BETAR, CONS(8)
LOGICAL ENDFIN (2)

! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL COEFFN

CALL UMACH (2, NOUT)

! set u(a) = 0, u(b) =0
CONS (1) = 1.0EOQ
CONS (2) = 0.0EO
CONS (3) = 0.0EOQ
CONS (4) = 0.0EO
CONS (5) = 1.0EOQ
CONS (6) = 0.0EO
CONS (7) = 0.0EQ
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CONS (8) = 0.0EQ

ENDFIN (1) = .FALSE.
ENDFIN (2) = .FALSE.

ALPHA = 10.0
BETAR = 16.0

CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST, NTOTAL)

WRITE (NOUT,99998) ALPHA, BETAR, IFIRST
WRITE (NOUT,99999) NTOTAL

99998 FORMAT (/, 'Index of first eigenvalue in [', F5.2, ',', F5.2, &
'7 IS ', 1I2)
99999 FORMAT ('Total number of eigenvalues in this interval: ', I2)
END

SUBROUTINE COEFFN (X, PX, 0X, RX)
! SPECIFICATIONS FOR ARGUMENTS

REAL X, PX, 0X, RX
|

PX = 1.0EO0

QX = X*X

RX = 1.0EO

RETURN

END

Output

Index of first eigenvalue in [10.00,16.00] is 5
Total number of eigenvalues in this interval: 3

Description

This subroutine computes the indices of eigenvalues, if any, in a subinterval of the real line for
Sturm-Liouville problems in the form

—%(P(X)%) +q(x)u=Ar(x)u forx in [a,b]
with boundary conditions (at regular points)

au—a,(pu') = ﬁ,(al'u —a, (pu’)) ata
bu+b,(pu')=0ath

It is intended to be used in conjunction with SLEIG, page 973. SLCNT is based on the routine
INTERV from the package SLEDGE.
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Chapter 6: Transforms

Routines
6.1. Real Trigonometric FFT
Computes the Discrete Fourier Transform
of a rank-1 complex array, X. .....cccccoveveeeeiiieeensiieee e FAST _DFT 992
Computes the Discrete Fourier Transform (2DFT)
of a rank-2 complex array, X ......cccccvceeeeiieeeeiiieeeennns FAST _2DFT 1000
Computes the Discrete Fourier Transform (2DFT)
of a rank-3 complex array, X .......cccoooceeeeeeniiiicieeeaaenn. FAST_3DFT 1006
Forward transform ..........oooueeeeiiiiiieee e FFTRF 1009
Backward or inverse transform..........ccoeeeveiiiiiiiiieneiieeeeiein, FFTRB 1012
Initialization routine for FEFTR™ ... FFTRI 1015
6.2. Complex Exponential FFT
Forward transform ..........oooueeeeiiiiiieee e FFTCF 1017
Backward or inverse transform..........ccoeeeveiiiiiiiiceneieeeeeiein, FFTCB 1019
Initialization routine for FETC™ ... FFTCI 1022
6.3. Real Sine and Cosine FFTs
Forward and inverse sine transform ...........ccccceeeeeeiieeiivivnnnnnn. FSINT 1024
Initialization routine for FSINT ........coovvviiiiiiiiiiee e, FSINI 1026
Forward and inverse cosine transform ..........cccccoceveeriinnnnnns FCOST 1028
Initialization routine for FCOST ... FCOSI 1030
6.4. Real Quarter Sine and Quarter Cosine FFTs
Forward quarter sine transform ............ccccccoeiiiiiiiiiiine e, QSINF 1032
Backward or inverse transform ..........cooooevviiiiieeiiiiieeeeeee QSINB 1034
Initialization routine for QSIN™ ..o, QSINI 1037
Forward quarter cosine transform..........cccccccevvvvviviiiiinennnnnn, QCOSF 1039
Backward or inverse transform ..........ccooooveiiiiiieiiiiiieeeeeenne. QCOSB 1041
Initialization routine for QCOS™........ooueiiiiiieeeie e, QCOSI 1043
6.5. Two- and Three-Dimensional Complex FFTs
Forward transform ... FFT2D 1045
Backward or inverse transform ...........coooueiiiiiecieiiieieeeeeee FFT2B 1048
Forward transform ........cooovuiiiie e FFT3F 1051
Backward or inverse transform.........cccceveviiiiiiiiieee e, FFT3B 1055
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6.6. Convolutions and Correlations

Real convolution ..., RCONV 1059

Complex conVOIULION ..........uueiiiiieieiee e CCONV 1064

Real correlation ... RCORL 1068

Complex correlation ... CCORL 1073
6.7. Laplace Transform

Inverse Laplace transform..........ccocoieioniiii e INLAP 1078

Inverse Laplace transform for smooth functions .................. SINLP 1081

Usage Notes

Fast Fourier Transforms

A Fast Fourier Transform (FFT) is simply a discrete Fourier transform that can be computed
efficiently. Basically, the straightforward method for computing the Fourier transform takes
approximately N* operations where N is the number of points in the transform, while the FFT
(which computes the same values) takes approximately N log N operations. The algorithms in this
chapter are modeled on the Cooley-Tukey (1965) algorithm; hence, the computational savings
occur, not for all integers N, but for N which are highly composite. That is, N (or in certain cases
N+ 1 or N—- 1) should be a product of small primes.

All of the FFT routines compute a discrete Fourier transform. The routines accept a vector x of
length N and return a vector

=>

defined by

The various transforms are determined by the selection of ®. In the following table, we indicate
the selection of o for the various transforms. This table should not be mistaken for a definition
since the precise transform definitions (at times) depend on whether N or m is even or odd.

990 o Chapter 6: Transforms IMSL MATH/LIBRARY



Routine o,
(m —l)(n —1)27Z

FFTRF | cos or sin

N
~1)(n-1)2
FFTRB | cos or sinw
FFTCF exp-Zm'(n-l)(m,l)/N
FFTCB expz’”("'l)(m—l)/N
FSINT sin nmsm
N+1
FCOST | cos D007
N-1
QSINF 2 sin M
2N
QSINB 4 sin M
2N
2m—1 -1
QCOSE | 2005 21T
2N
2n-1)(m -1
QCOSB | 4cos ZED(M=)T
N

For many of the routines listed above, there is a corresponding “1” (for initialization) routine. Use
these routines only when repeatedly transforming sequences of the same length. In this situation,
the “I” routine will compute the initial setup once, and then the user will call the corresponding
“2” routine. This can result in substantial computational savings. For more information on the
usage of these routines, the user should consult the documentation under the appropriate routine
name.

In addition to the one-dimensional transformations described above, we also provide complex two
and three-dimensional FFTs and their inverses based on calls to either FFTCF (page 1017) or
FFTCB (page 1019). If you need a higher dimensional transform, then you should consult the
example program for FFTCI (page 1022) which suggests a basic strategy one could employ.

Continuous versus Discrete Fourier Transform

There is, of course, a close connection between the discrete Fourier transform and the continuous
Fourier transform. Recall that the continuous Fourier transform is defined (Brigham, 1974) as

F(@)=(F f) (@)= [ f(e)e >

We begin by making the following approximation:
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fA(a)) ~ J:T;/zzf(t)eizﬂiwtdt
- ff(;—T/z)e'z”"‘”("””dr
— em'tuT .[)Tf(t _T/z)efbritutdt

If we approximate the last integral using the rectangle rule with spacing 4 = T/N, we have
A . N71 .
f(a)) ~ emwThZ e—mekhf(kh -T / 2)
k=0
Finally, setting o =j/T forj=0, ..., N— 1 yields

~ = ; CON-I )
FUIT) e hY e Y f(kh=T12)=(-1) hY e " 1}

k=0 %=0
where the vector ' = (f — T/2), ..., A(N — 1)k — T/2)). Thus, after scaling the components by

(—l)j h, the discrete Fourier transform as computed in FFTCF (with input ]'l' ) is related to an
approximation of the continuous Fourier transform by the above formula. This is seen more
clearly by making a change of variables in the last sum. Set

n=k+1l,m=j+1,and f} = x,

n

then, form =1, ..., N we have

n

f((m—l)/T) ~ —(—1)m hfcm _ _(_1)m hie—Zzi(m—l)(n—l)/Nx

n=1

If the function fis expressed as a FORTRAN function routine, then the continuous Fourier

transform

A
can be approximated using the IMSL routine QDAWF (see Chapter 4, Integration and
Differentiation).

Inverse Laplace Transform

The last two routines described in this chapter, INLAP (page 1078) and SINLP (page 1081),
compute the inverse Laplace transforms.

FAST_DFT

Computes the Discrete Fourier Transform (DFT) of a rank-1 complex array, x.

Required Arguments

No required arguments; pairs of optional arguments are required. These pairs are forward in
and forward out or inverse in and inverse out.
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Optional Arguments

forward in = x (Input)
Stores the input complex array of rank-1 to be transformed.

forward out = y (Output)
Stores the output complex array of rank-1 resulting from the transform.

inverse in = y (Input)
Stores the input complex array of rank-1 to be inverted.

inverse out = x (Output)
Stores the output complex array of rank-1 resulting from the inverse transform.

ndata = n (Input)
Uses the sub-array of size n for the numbers.
Default value: n = size(x).

ido = ido (Input/Output)
Integer flag that directs user action. Normally, this argument is used only when the
working variables required for the transform and its inverse are saved in the calling
program unit. Computing the working variables and saving them in internal arrays
within fast_dft is the default. This initialization step is expensive.

There is a two-step process to compute the working variables just once. Example 3
illustrates this usage. The general algorithm for this usage is to enter fast dft
withido = 0. A return occurs thereafter with ido < 0. The optional rank-1
complex array w(:) with size(w) >= —ido must be re-allocated. Then, re-enter
fast dft. The next return from fast_dft has the output value ido = 1. The variables
required for the transform and its inverse are saved in w(:). Thereafter, when the
routine is entered with ido = 1 and for the same value of n, the contents of w(:)
will be used for the working variables. The expensive initialization step is
avoided. The optional arguments “ido="and “work_array="must be used
together.

work array = w(:) (Output/Input)
Complex array of rank-1 used to store working variables and values between calls to
fast_dft. The value for size(w) must be at least as large as the value — ido for the
value of ido <0.

iopt = iopt(:) (Input/Output)
Derived type array with the same precision as the input array; used for passing optional
data to fast_dft. The options are as follows:

Packaged Options for FAST_DFT

Option Prefix = ? Option Name Option Value

c ,z fast dft scan for NaN 1
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Packaged Options for FAST_DFT
c ,z_ fast dft near power of 2 2
cC,z_ fast_dft_scale_forward 3
cC,z_ Fast_dft_scale_inverse 4
iopt (I0) = ? options(? fast dft scan for NaN, ? dummy)

Examines each input array entry to find the first value such that

isNaN(x (1)) ==.true.

See the isNaN () function, Chapter 10.
Default: Does not scan for NaNs.

iopt (I0) = ? options(? fast dft near power of 2, ? dummy)
Nearest power of 2 > n is returned as an output in iopt (I0 + 1) %$idummy.

iopt (IO) = ? options(? fast dft scale forward, real part of scale)

iopt (IO+1) = ? options(? dummy, imaginary part of scale)
Complex number defined by the factor
cmplx(real part of scale, imaginary part of scale)is
multiplied by the forward transformed array.
Default value is 1.

iopt (IO) = ? options(? fast dft scale inverse, real part of scale)

iopt (IO+1) = ? options(? dummy, imaginary part of scale)
Complex number defined by the factor
cmplx(real part of scale, imaginary part of scale)is
multiplied by the inverse transformed array.
Default value is 1.

FORTRAN 90 Interface

Generic: None

Specific: The specific interface names are S_FAST_DFT, D_FAST_DFT, C_ FAST_DFT,
and Z_FAST_DFT.

Example 1: Transforming an Array of Random Complex Numbers

An array of random complex numbers is obtained. The transform of the numbers is inverted and
the final results are compared with the input array.

use fast dft int
use rand gen int

implicit none
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! This is Example 1 for FAST DFT.

integer, parameter :: n=1024

real (kind(1e0)), parameter :: one=lel

real (kind(1e0)) err, y(2*n)

complex (kind(1e0)), dimension(n) :: a, b, c

! Generate a random complex sequence.
call rand gen(y)
a = cmplx(y(l:n),y(ntl:2*n),kind (one))
c = a

! Transform and then invert the sequence back.
call c fast dft(forward in=a, &
forward out=b)
call c fast dft(inverse in=b, &
inverse out=a)

! Check that inverse (transform(sequence)) = sequence.
err = maxval (abs(c-a)) /maxval (abs (c))
if (err <= sqgrt(epsilon(one))) then
write (*,*) 'Example 1 for FAST DFT is correct.'
end 1if

end

Output

Example 1 for FAST DFT is correct.

Description

The fast_ dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776). The
maximum computing efficiency occurs when the size of the array can be factored in the form

n=213"445"

using non-negative integer values {i, i, i3, i4}. There is no further restriction on n > 1.
Additional Examples

Example 2: Cyclical Data with a Linear Trend

This set of data is sampled from a function x(¢) = at + b + y(f), where y(¢) is a harmonic series. The
independent variable is normalized as —1 < ¢ < 1. Thus, the data is said to have cyclical
components plus a linear trend. As a first step, the linear terms are effectively removed from the
data using the least-squares system solver 1in sol 1sg, Chapter 1. Then, the residuals are
transformed and the resulting frequencies are analyzed.

use fast dft int
use lin sol 1sqg int
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use rand gen int
use sort real int

implicit none
! This is Example 2 for FAST DFT.

integer i

integer, parameter :: n=64, k=4

integer ip(n)

real (kind(1e0)), parameter :: one=le0, two=2e0, zero=0e0

real (kind(le0)) delta t, pi

real (kind(1e0)) vy (k), z(2), indx(k), t(n), temp(n)

complex (kind(1e0)) a trend(n,2), a, b _trend(n,1l), b, c(k), f(n),&
r(n), x(n), x trend(2,1)

! Generate random data for linear trend and harmonic series.
call rand gen(z)
a=2z(1); b = 2z(2)
call rand gen(y)
! This emphasizes harmonics 2 through k+1.
c =y + one

! Determine sampling interval.
delta_t = two/n
t=(/(-onet+i*delta t, i=0,n-1)/)

! Compute pi.
pi = atan (one) *4EQ
indx=(/(i*pi, i=1,k)/)

! Make up data set as a linear trend plus harmonics.
X = a + b*t + &
matmul (exp (cmplx (zero, spread(t,2,k) *spread (indx,1,n), kind(one))),c)

! Define least-squares matrix data for a linear trend.
a trend(l:,1) = one
a trend(1l:,2) =t
b trend(1l:,1) X

! Solve for a linear trend.
call lin sol 1lsqg(a _trend, b trend, x trend)

! Compute harmonic residuals.
r = x - reshape(matmul (a_trend,x trend), (/n/))

! Transform harmonic residuals.
call c fast dft(forward in=r, forward out=f)
ip=(/(i,i=1,n)/)

! The dominant frequencies should be 2 through k+1.
! Sort the magnitude of the transform first.

call s _sort real(-(abs(f)), temp, iperm=ip)

! The dominant frequencies are output in ip(l:k).
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! Sort these values to compare with 2 through k+1.
call s sort real(real(ip(l:k)), temp)
ip(l:k)=(/(i,1=2,k+1)/)

! Check the results.

if (count (int(temp(l:k)) /= ip(l:k)) == 0) then
write (*,*) 'Example 2 for FAST DFT is correct.'
end 1if
end
Output

Example 2 for FAST DFT is correct.

Example 3: Several Transforms with Initialization

In this example, the optional arguments ido and work array are used to save working
variables in the calling program unit. This results in maximum efficiency of the transform and its
inverse since the working variables do not have to be precomputed following each entry to routine
fast dft.

use fast dft int
use rand gen int

implicit none
! This is Example 3 for FAST DFT.

! The value of the array size for work(:) is computed in the
! routine fast dft as a first step.

integer, parameter :: n=64

integer ido_value

real (kind (1e0)) :: one=1el

real (kind(1e0)) err, y(2*n)

complex (kind(1e0)), dimension(n) :: a, b, save a

complex (kind(1e0)), allocatable :: work(:)

! Generate a random complex array.
call rand gen(y)
a = cmplx(y(l:n),y(ntl:2*n),kind (one))
save a = a

! Transform and then invert the sequence using the pre-computed
! working values.
ido_value = 0
do
if (allocated(work)) deallocate (work)

! Allocate the space required for work(:).
if (ido_value <= 0) allocate (work(-ido value))
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call c fast dft(forward in=a, forward out=b, &
ido=ido value, work array=work)

if (ido _value == 1) exit
end do

! Re-enter routine with working values available in work(:).
call c fast dft(inverse in=b, inverse out=a, &
ido=ido_value, work array=work)

! Deallocate the space used for work(:).
if (allocated(work)) deallocate (work)

! Check the results.
err = maxval (abs (save a-a))/maxval (abs (save a))
if (err <= sqgrt(epsilon(one))) then
write (*,*) 'Example 3 for FAST DFT is correct.'
end 1if

end
Output

Example 3 for FAST DFT is correct.

Example 4: Convolutions using Fourier Transforms

In this example we compute sums

n-1
¢ = ab_;,k=0,...,n-1
7=0

The definition implies a matrix-vector product. A direct approach requires about n° operations
consisisting of an add and multiply. An efficient method consisting of computing the products of
the transforms of the

{a j} and {bj}

then inverting this product, is preferable to the matrix-vector approach for large problems. The
example is also illustrated in operator ex37, Chapter 10 using the generic function interface
FFT and IFFT.

use fast dft int
use rand gen_ int

implicit none
! This is Example 4 for FAST DFT.

integer j
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integer, parameter :: n=40

real (kind (1e0)) :: one=1e0

real (kind (1e0)) err

real (kind(1e0)), dimension(n) :: x, y, yy(n,n)
complex (kind(1e0)), dimension(n) :: a, b, ¢, d, e, £

Generate two random complex sequence 'a' and 'b'.

call rand gen(x)
call rand gen(y)
a=x; b=y

Compute the convolution 'c' of 'a' and 'b'.
Use matrix times vector for test results.

yy(l:,1)=y

do j*2 n
yy(2:,3)=yy(l:n-1,3-1)
yy(1l,3)=yy(n,j-1)

end do

c=matmul (yy, x)
Transform the 'a' and 'b' sequences into 'd' and 'e'.
call c fast dft(forward in=a, &
forward out=d)
call c fast dft(forward in=b, &
forward out=e)

Invert the product d*e

call c fast dft(inverse in=d*e, &
inverse out=f)

Check the Convolution Theorem:
inverse (transform(a) *transform(b)) = convolution(a,b).

err = maxval (abs (c-f)) /maxval (abs (c))
if (err <= sgrt(epsilon(one))) then

write (*,*) 'Example 4 for FAST DFT is correct.'
end 1if

end

Output

Example 4 for FAST DFT is correct.

Fatal and Terminal Messages

See the messages.gls file for error messages for fast dft. These error messages are numbered
651-661; 701-711.
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FAST_2DFT

Computes the Discrete Fourier Transform (2DFT) of a rank-2 complex array, x.

Required Arguments

No required arguments; pairs of optional arguments are required. These pairs are forward in
and forward outor inverse inand inverse out.

Optional Arguments

forward in = x (Input)
Stores the input complex array of rank-2 to be transformed.

forward out = y (Output)
Stores the output complex array of rank-2 resulting from the transform.

inverse in = y (Input)
Stores the input complex array of rank-2 to be inverted.

inverse out = x (Output)
Stores the output complex array of rank-2 resulting from the inverse transform.

mdata = m (Input)
Uses the sub-array in first dimension of size m for the numbers.
Default value: m = size(x, 1).

ndata = n (Input)
Uses the sub-array in the second dimension of size n for the numbers.
Default value: n = size(x, 2).

ido = ido (Input/Output)
Integer flag that directs user action. Normally, this argument is used only when the
working variables required for the transform and its inverse are saved in the calling
program unit. Computing the working variables and saving them in internal arrays
within fast 2dft is the default. This initialization step is expensive.

There is a two-step process to compute the working variables just once. Example 3
illustrates this usage. The general algorithm for this usage is to enter fast 2dft
with ido = 0. A return occurs thereafter with ido < 0. The optional rank-1
complex array w(:) with size(w) >= —ido must be re-allocated. Then, re-enter
fast 2dft. The next return from fast 2dft has the output value ido = 1. The
variables required for the transform and its inverse are saved in w(:). Thereafter,
when the routine is entered with ido = 1 and for the same values of m and n, the
contents of w(:) will be used for the working variables. The expensive
initialization step is avoided. The optional arguments “ido=""and “work array="
must be used together.
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work array = w(:) (Output/Input)
Complex array of rank-1 used to store working variables and values between calls to
fast_2dft. The value for size(w) must be at least as large as the value — ido for the
value of 1do <0.

iopt = iopt(:) (Input/Output)
Derived type array with the same precision as the input array; used for passing optional
datato fast 2dft. The options are as follows:

Packaged Options for FAST 2DFT
Option Prefix = ? Option Name Option Value
c .,z _ fast 2dft scan for NaN 1
c .,z fast 2dft near power of 2 2
c .,z _ fast 2dft scale forward 3
c .,z _ fast 2dft scale inverse 4
iopt (IO) = ? options(? fast 2dft scan for NaN, ? dummy)

Examines each input array entry to find the first value such that

isNaN(x(i,7J)) ==.true.

See the isNaN() function, Chapter 10.

Default: Does not scan for NaNs.

iopt (I0) = ? options(? fast 2dft near power of 2, ? dummy)
Nearest powers of 2 > m and > n are returned as an outputs in iopt (I0 +
1) $idummy and iopt (IO + 2)%idummy.

iopt (I0) = ? options(? fast 2dft scale forward, real part of scale)

iopt (IO+1) = ? options(? dummy, imaginary part of scale)
Complex number defined by the factor
cmplx(real part of scale, imaginary part of scale)is
multiplied by the forward transformed array.
Default value is 1.

iopt (IO) = ? options(? fast 2dft scale inverse, real part of scale)

iopt (IO+1) = ? options(? dummy, imaginary part of scale)
Complex number defined by the factor
cmplx(real part of scale, imaginary part of scale)is
multiplied by the inverse transformed array.
Default value is 1.

FORTRAN 90 Interface

Generic: None
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Specific: The specific interface names are S_FAST_2DFT, D _FAST_2DFT,
C FAST 2DFT, and Z_FAST_2DFT.

Example 1: Transforming an Array of Random Complex Numbers

An array of random complex numbers is obtained. The transform of the numbers is inverted and
the final results are compared with the input array.

use fast 2dft int
use rand int

implicit none

! This is Example 1 for FAST 2DFT.

integer, parameter :: n=24

integer, parameter :: m=40

real (kind(1e0)) :: err, one=1le0

complex (kind(1e0)), dimension(n,m) :: a, b, c

! Generate a random complex sequence.
a=rand(a); c=a

! Transform and then invert the transform.
call c fast 2dft (forward in=a, &
forward out=b)
call c_fast 2dft (inverse in=b, &
inverse out=a)
! Check that inverse (transform(sequence)) = sequence.
err = maxval (abs (c-a)) /maxval (abs (c))
if (err <= sgrt(epsilon(one))) then
write (*,*) 'Example 1 for FAST 2DFT is correct.'
end 1if

end
Output
Example 1 for FAST 2DFT is correct.

Description
The fast_2dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776).

Additional Examples

Example 2: Cyclical 2D Data with a Linear Trend

This set of data is sampled from a function x(s, ) = a + bs + ct + y(s, f) , where y(s, ¢) is an
harmonic series. The independent variables are normalized as
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—1<s<1and -1 <t< 1. Thus, the data is said to have cyclical components plus a linear trend.
As a first step, the linear terms are effectively removed from the data using the least-squares
system solver . Then, the residuals are transformed and the resulting frequencies are analyzed.

use fast 2dft int
use lin sol 1lsqg int
use sort real int
use rand_int
implicit none

! This is Example 2 for FAST 2DFT.

integer i

integer, parameter :: n=8, k=15
integer ip(n*n), order (k)
real (kind(1e0)), parameter :: one=le0, two=2e0, zero=0e0

real (kind(1le0)) delta t

real (kind (1le0)) rn(3), s(n), t(n), temp(n*n), new order (k)

complex (kind(1e0)) a, b, ¢, a trend(n*n,3), b trend(n*n,1l), &
f(n,n), r(n,n), x(n,n), x trend(3,1)

complex (kind(1e0)), dimension(n,n) :: g=zero, h=zero

! Generate random data for planar trend.

rn = rand(rn)
a = rn(l)
b = rn(2)
c = rn(3)

! Generate the frequency components of the harmonic series.

! Non-zero random amplitudes given on two edges of the square domain.
g(l:,1)=rand(g(l:,1))
g(l,1l:)=rand(g(l,1:))

! Invert 'g' into the harmonic series 'h' in time domain.
call c fast 2dft(inverse in=g, inverse out=h)

! Compute sampling interval.
delta_t = two/n
s = (/(-one + (i-1)*delta t, i=1,n)/)
t = (/(-one + (i-1)*delta_t, i=1,n)/)

! Make up data set as a linear trend plus harmonics.
X = a + b*spread(s,dim=2,ncopies=n) + &

c*spread(t,dim=1,ncopies=n) + h

! Define least-squares matrix data for a planar trend.

a trend(l:,1) = one
a_trend(l:,2) = reshape (spread(s,dim=2,ncopies=n), (/n*n/))
a trend(l:,3) = reshape(spread(t,dim=1,ncopies=n), (/n*n/))

b trend(l:,1) = reshape(x, (/n*n/))

! Solve for a linear trend.
call lin sol lsqg(a_trend, b trend, x_ trend)
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! Compute harmonic residuals.
r = x - reshape (matmul (a_trend,x trend), (/n,n/))

! Transform harmonic residuals.
call c fast 2dft(forward in=r, forward out=f)

ip = (/(i,1=1,n**2)/)
! Sort the magnitude of the transform.
call s _sort real(-(abs(reshape(f, (/n*n/)))), &
temp, iperm=ip)
! The dominant frequencies are output in ip(l:k).
! Sort these values to compare with the original frequency order.

call s sort real(real(ip(l:k)), new order)

order(l:n) = (/(i,i=1,n)/)
order (n+l:k) = (/((i-n)*n+1l,1i=n+1,k)/)

! Check the results.

if (count (order /= int (new_order)) == 0) then
write (*,*) 'Example 2 for FAST 2DFT is correct.'
end 1if
end
Output

Example 2 for FAST 2DFT is correct.

Example 3: Several 2D Transforms with Initialization

In this example, the optional arguments ido and work array are used to save working
variables in the calling program unit. This results in maximum efficiency of the transform and its
inverse since the working variables do not have to be precomputed following each entry to routine
fast 2dft

use fast 2dft int
implicit none
! This is Example 3 for FAST 2DFT.

integer i, Jj

integer, parameter :: n=256

real (kind (1e0)), parameter :: one=le(, zero=0e0
real (kind(1e0)) r(n,n), err

complex (kind(1e0)) a(n,n), b(n,n), c(n,n)

! The value of the array size for work(:) is computed in the
! routine fast dft as a first step.

integer ido value
complex (kind(1e0)), allocatable :: work(:)
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' Fil1l in value one for points inside the circle with r=64.
a = zero
r = reshape ((/(((i-n/2)**2 + (j-n/2)**2, i=1,n), &
j=1,n)/), (/n,n/))
where (r <= (n/4)**2) a = one
c = a

! Transform and then invert the sequence using the pre-computed
! working values.
ido_value = 0
do
if (allocated (work)) deallocate (work)

! Allocate the space required for work(:).
if (ido_value <= 0) allocate (work(-ido value))

! Transform the image and then invert it back.
call c _fast 2dft(forward in=a, &
forward out=b, IDO=ido value, work array=work)
if (ido_value == 1) exit
end do
call c _fast 2dft(inverse in=b, &
inverse out=a, IDO=ido value, work array=work)

! Deallocate the space used for work(:).
if (allocated(work)) deallocate (work)

! Check that inverse(transform(image)) = image.
err = maxval (abs (c-a)) /maxval (abs (c))
if (err <= sqgrt(epsilon(one))) then
write (*,*) 'Example 3 for FAST 2DFT is correct.'
end 1if
end
Output

Example 3 for FAST 2DFT is correct.

Fatal and Terminal Messages

See the messages.gls file for error messages for fast_2dft. These error messages are numbered
670-680; 720-730.
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FAST_3DFT

Required Arguments

No required arguments; pairs of optional arguments are required. These pairs are forward in
and forward out or inverse in and inverse out.

Optional Arguments

forward in = x (Input)
Stores the input complex array of rank-3 to be transformed.

forward out = y (Output)
Stores the output complex array of rank-3 resulting from the transform.

inverse in = y (Input)
Stores the input complex array of rank-3 to be inverted.

inverse out = x (Output)
Stores the output complex array of rank-3 resulting from the inverse transform.

mdata = m (Input)
Uses the sub-array in first dimension of size m for the numbers.
Default value: m = size(x, 1).

ndata = n (Input)
Uses the sub-array in the second dimension of size n for the numbers.
Default value: n = size(x, 2).

kdata = k (Input)
Uses the sub-array in the third dimension of size k for the numbers.
Default value: k = size(x, 3).

ido = ido (Input/Output)
Integer flag that directs user action. Normally, this argument is used only when the
working variables required for the transform and its inverse are saved in the calling
program unit. Computing the working variables and saving them in internal arrays
within fast 3dft is the default. This initialization step is expensive.

There is a two-step process to compute the working variables just once. The general
algorithm for this usage is to enter fast 3dft with
ido = 0. A return occurs thereafter with ido < 0. The optional rank-1 complex
array w(:) with size(w) >= —ido must be re-allocated. Then, re-enter fast 3dft.
The next return from fast 3dft has the output value ido = 1. The variables
required for the transform and its inverse are saved in w(:). Thereafter, when the
routine is entered with ido = 1 and for the same values of m and n, the contents
of w(:) will be used for the working variables. The expensive initialization step
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is avoided. The optional arguments “ido=" and “work array="must be used
together.

work array = w(:) (Output/Input)
Complex array of rank-1 used to store working variables and values between calls to
fast 3dft. The value for size(w) must be at least as large as the value — ido for the
value of ido <0.

iopt = iopt(:) (Input/Output)
Derived type array with the same precision as the input array; used for passing optional
datato fast 3dft. The options are as follows:

Packaged Options for FAST 3DFT
Option Prefix = ? Option Name Option Value
C,z_ fast_3dft_scan_for_ NaN 1
C,z_ fast 3dft near power of 2 2
C,z_ fast 3dft scale forward 3
C,z_ fast 3dft scale inverse 4
iopt (IO) = ? options(? fast 3dft scan for NaN, ? dummy)

Examines each input array entry to find the first value such that

isNaN(x(i,]j,k)) ==.true.

See the isNaN () function, Chapter 10.
Default: Does not scan for NaNs.

iopt (I0) = ? options(? fast 3dft near power of 2, ? dummy)
Nearest powers of 2 > m, > n, and > k are returned as an outputs in
iopt (I0+1) $idummy , iopt (I0+2) $idummy and iopt (I0+3) $idummy

iopt (IO) = ? options(? fast 3dft scale forward, real part of scale)

iopt (IO+1) = ? options(? dummy, imaginary part of scale)
Complex number defined by the factor
cmplx(real part of scale, imaginary part of scale)is
multiplied by the forward transformed array.
Default value is 1.

iopt (IO) = ? options(? fast 3dft scale inverse, real part of scale)

iopt (IO+1) = ? options(? dummy, imaginary part of scale)
Complex number defined by the factor
cmplx(real part of scale, imaginary part of scale)is
multiplied by the inverse transformed array.
Default value is 1.
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FORTRAN 90 Interface

Generic: None

Specific: The specific interface names are S_FAST_3DFT, D_FAST_3DFT,

C_FAST 3DFT, and Z_FAST_3DFT.

Example 1: Transforming an Array of Random Complex Numbers

An array of random complex numbers is obtained. The transform of the numbers is inverted and

the final results are compared with the input array.
use fast 3dft int
implicit none
! This is Example 1 for FAST 3DFT.

integer i, Jj, k

integer, parameter :: n=64

real (kind (1e0)), parameter :: one=lel, zero=0e0
real (kind(1e0)) r(n,n,n), err

complex (kind(1e0)) a(n,n,n), b(n,n,n), c(n,n,n)

! Fill in value one for points inside the sphere
! with radius=l6.
a = zero
do i=1,n
do j=1,n
do k=1,n
r(i,j,k) = (1-n/2)**2+(j-n/2) **2+ (k-n/2) **2
end do
end do
end do
where (r <= (n/4)**2) a = one
c = a

! Transform the image and then invert it back.
call c fast 3dft(forward in=a, &
forward out=b)
call c fast 3dft(inverse in=b, &
inverse out=a)

! Check that inverse (transform(image)) = image.
err = maxval (abs(c-a)) /maxval (abs (c))
if (err <= sqgrt(epsilon(one))) then

write (*,*) 'Example 1 for FAST 3DFT is correct.'

end 1if

end

Output
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Example 1 for FAST 3DFT is correct.

Description
The fast 3dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776).

Fatal and Terminal Messages

See the messages.gls file for error messages for fast_3dft. These error messages are numbered
685-695; 740-750.

FFTRF

Computes the Fourier coefficients of a real periodic sequence.

Required Arguments

N — Length of the sequence to be transformed. (Input)

SEQ — Array of length N containing the periodic sequence. (Input)

COEF — Array of length N containing the Fourier coefficients. (Output)
FORTRAN 90 Interface

Generic: CALL FFTRF (N, SEQ, CCEF)

Specific: The specific interface names are S_FFTRF and D_FFTRF.

FORTRAN 77 Interface

Single: CALL FFTRF (N, SEQ, COEF)
Double: The double precision name is DFFTRF.
Example

In this example, a pure cosine wave is used as a data vector, and its Fourier series is recovered.
The Fourier series is a vector with all components zero except at the appropriate frequency
where it has an N.

USE FFTRF_INT
USE CONST_INT
USE UMACH_INT
INTEGER N
PARAMETER (N=7)

INTEGER I, NOUT
REAL COEF (N), COS, FLOAT, TWOPI, SEQ(N)
INTRINSIC COS, FLOAT
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10

99998

99999

TWOPI = CONST (' PI’)

TWOPI

2.0*TWOPI
Get output unit number
CALL UMACH (2, NOUT)
This loop fills out the data vector
with a pure exponential signal
DO 10 I=1, N
SEQ(I) = COS(FLOAT (I-1)*TWOPI/FLOAT (N))
CONTINUE
Compute the Fourier transform of SEQ
CALL FFTRF (N, SEQ, COEF)
Print results
WRITE (NOUT, 99998)
FORMAT (9X, ’"INDEX’, 5X, ’'SEQ’, 6X, ’'COEF’)
WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
FORMAT (1X, Il1l, 5X, F5.2, 5X, F5.2)
END

Output

INDEX

1

oUW

SEQ COEF
1.00 .00
0.62 .50
-0.22 .00
-0.90 .00
-0.90 .00
-0.22 .00

0.62 .00

O O O OO wOo

Comments

1. Workspace may be explicitly provided, if desired, by use of F2TRF/DF2TRF. The
reference is:

CALL F2TRF (N, SEQ, COEF, WFFTR)

The additional argument is

WFFTR — Array of length 2N + 15 initialized by FFTRI (page 1015). (Input)
The initialization depends on N.

2. The routine FFTRF is most efficient when N is the product of small primes.
3. The arrays COEF and SEQ may be the same.
4. If FFTRE/FFTRB is used repeatedly with the same value of N, then call FFTRI followed

by repeated calls to F2TRF/F2TRB. This is more efficient than repeated calls to
FFETREF/FFTRB.
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Description

The routine FFTRF computes the discrete Fourier transform of a real vector of size N. The
method used is a variant of the Cooley-Tukey algorithm that is most efficient when N is a
product of small prime factors. If N satisfies this condition, then the computational effort is
proportional to N log N.

Specifically, given an N-vector s = SEQ, FFTRF returns in ¢ = COEF, if N is even:

N f— J—
Cona = s cos[w} m=2,...,N/2+1

If Nis odd, ¢, is defined as above for m from 2 to (N + 1)/2.

We now describe a fairly common usage of this routine. Let f'be a real valued function of time.
Suppose we sample fat N equally spaced time intervals of length A seconds starting at time #,.
That is, we have

SEQ=f(ty+(i-DA)i=1,2,..,N

The routine FFTRF treats this sequence as if it were periodic of period N. In particular, it
assumes that f(#)) =f (¢, + NA). Hence, the period of the function is assumed to be 7'= NA.

Now, FFTRF accepts as input SEQ and returns as output coefficients ¢ = COEF that satisfy the
following relation when N is odd (N even is similar):

(N+1)/2 2 “1\(i-1 (N+1)/2 b “1i-1
SEQi - %|:Cl +2 €y, COS |:7[(”—)(l)i| -2 Z Con-i sin |:—7[ (n )(l )i|:|

n=2 N n=2 N

This formula is very revealing. It can be interpreted in the following manner. The coefficients
produced by FFTRF produce an interpolating trigonometric polynomial to the data. That is, if we

define
1 W2 2r(n-1)(t-1,) ] Q" [ 2z(n-1)(t-1,)
g(1) :=F{cl+2 nz:; Cyps COS|:TO -2 nZ:;‘ c,, , sin TO
(N+1)/2 2 -1 _ (N+1)/2 2 -1 _
N n=2 T n=2 T

then, we have
Aty + (i = DAY = glty + (i = DA)

Now, suppose we want to discover the dominant frequencies. One forms the vector P of length
NJ/2 as follows:
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R :=|Cl|
P, :=1/c22k72+022k71 k=2,3,...,(N+1)/2

These numbers correspond to the energy in the spectrum of the signal. In particular, P,
corresponds to the energy level at frequency
k-1 k-1 N+1

== k=1,2,...,
T  NA 2

Furthermore, note that there are only (N + 1)/2 = T/(2A) resolvable frequencies when N
observations are taken. This is related to the Nyquist phenomenon, which is induced by discrete
sampling of a continuous signal.

Similar relations hold for the case when N is even.

Finally, note that the Fourier transform hsas an (unnormalized) inverse that is implemented in
FFTRB (page 1012). The routine FFTRF is based on the real FFT in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

FFTRB

Computes the real periodic sequence from its Fourier coefficients.

Required Arguments

N — Length of the sequence to be transformed. (Input)

COEF — Array of length N containing the Fourier coefficients. (Input)

SEQ — Array of length N containing the periodic sequence. (Output)
FORTRAN 90 Interface

Generic: CALL FFTRB (N, CCEF, SEQI, .])

Specific: The specific interface names are S_FFTRB and D_FFTRB.

FORTRAN 77 Interface

Single: CALL FFTRB (N, COEF, SEQ)
Double: The double precision name is DFFTRB.
Example

We compute the forward real FFT followed by the inverse operation. In this example, we first
compute the Fourier transform
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X = COEF
of the vector x, where x; = (—l)j for j =1 to N. This vector
X

is now input into FFTRB with the resulting output s = Nx, that is, 5; = (—l)j Nforj=1toN.

USE FFTRB_INT
USE CONST_INT
USE FFTRF INT
USE UMACH_ INT
INTEGER N
PARAMETER (N=7)
|
INTEGER I, NOUT
REAL COEF (N), FLOAT, SEQ(N), TWOPI, X(N)
INTRINSIC FLOAT
TWOPI = CONST (’PI’)
|
TWOPI = TWOPI
! Get output unit number
CALL UMACH (2, NOUT)
! Fill the data vector
DO 10 1I=1, N
X(I) = FLOAT((-1)**I)
10 CONTINUE
! Compute the forward transform of X
CALL FFTRF (N, X, COEF)
! Print results
WRITE (NOUT,99994)
WRITE (NOUT, 99995)
99994 FORMAT (9X, ’'Result after forward transform’)
99995 FORMAT (9X, ’INDEX’', 5X, ’'X’', 8X, ’'COEF’)
WRITE (NOUT,99996) (I, X(I), COEF(I), I=1,N)
99996 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)
! Compute the backward transform of
! COEF
CALL FFTRB (N, COEF, SEQ)

Print results

WRITE (NOUT,99997)
WRITE (NOUT,99998)
99997 FORMAT (/, 9X, ’'Result after backward transform’)
99998 FORMAT (9X, ’'INDEX’, 4X, ’'COEF’, 6X, "SEQ’")
WRITE (NOUT,99999) (I, COEF(I), SEQ(I), I=1,N)
99999 FORMAT (1X, I11l, 5X, F5.2, 5X, F5.2)
END
Output
Result after forward transform
INDEX X COEF
1 -1.00 -1.00
2 1.00 -1.00
3 -1.00 -0.48
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~ o U1

1.
-1.
1.
-1.

00 -1.00

00 -1.25
00 -1.00
00 -4.38

Result after backward transform

INDEX

1

~N oUW

COEF SEQ

-1.
-1.
-0.
-1.
-1
-1.
-4.

00 -7.00
00 7.00
48 -7.00
00 7.00

.25 -7.00

00 7.00
38 -7.00

Comments

1.

Workspace may be explicitly provided, if desired, by use of F2TRB/DF2TRB. The
reference is:

CALL F2TRB (N, COEF, SEQ, WFFTR)

The additional argument is

WFFTR — Array of length 2N + 15 initialized by FFTRI (page 1015). (Input)
The initialization depends on N.

The routine FFTRB is most efficient when N is the product of small primes.
The arrays COEF and SEQ may be the same.
If FFTRE/FFTRB is used repeatedly with the same value of N, then call FFTRI (page

1015) followed by repeated calls to F2TRF/F2TRB. This is more efficient than repeated
calls to FETRE/FETRB.

Description

The routine FFTRB is the unnormalized inverse of the routine FFTRF (page 1009). This routine
computes the discrete inverse Fourier transform of a real vector of size N. The method used is a
variant of the Cooley-Tukey algorithm, which is most efficient when N is a product of small
prime factors. If N satisfies this condition, then the computational effort is proportional to N log

N.

Specifically, given an N-vector ¢ = COEF, FFTRB returns in s = SEQ, if NV is even:

N2 [(n—l)(m—1)27r}

s, =0 +(—1)(m_1) cy + 22 c,, , Cos

n=2 N
-1)(m-1)2
—2Nz/fc2H sin [(n )(m ) 7[]
n=2 N

If Nis odd:
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(a2 [(n-1)(m-1)27]

s, =c+2 Z C,, 5 COS

- N

(N+1)/2 -1 ~1)2
-2 z Cypy sin[(n )(]n\; ) ﬂ]

n=2

The routine FFTRB is based on the inverse real FFT in FFTPACK. The package FFTPACK was
developed by Paul Swarztrauber at the National Center for Atmospheric Research.

FFTRI

Computes parameters needed by FFTRF and FFTRB.

Required Arguments

N — Length of the sequence to be transformed. (Input)

WFFTR — Array of length 2N + 15 containing parameters needed by FFTRF and FFTRB.
(Output)

FORTRAN 90 Interface

Generic: CALL FFTRI (N, WFFTR)

Specific: The specific interface names are S_FFTRI and D_FFTRI .

FORTRAN 77 Interface

Single: CALL FFTRI (N, WFFTR)
Double: The double precision name is DFFTRI .
Example

In this example, we compute three distinct real FFTs by calling FFTRI once and then calling
F2TREF three times.

USE FFTRI_ INT
USE CONST_ INT
USE F2TRF_INT
USE UMACH_ INT
INTEGER N
PARAMETER  (N=7)

INTEGER I, K, NOUT
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10

99998

99999
!

REAL COEF (N), COS, FLOAT, TWOPI, WFFTR(29), SEQ(N)
INTRINSIC COS, FLOAT

TWOPI = CONST (' PI’)
TWOPI = 2* TWOPI

Get output unit number

CALL UMACH (2, NOUT)

Set the work vector

CALL FFTRI (N, WFFTR)

DO 20 K=1, 3

This loop fills out the data vector
with a pure exponential signal

DO 10 1I=1, N
SEQ(I) = COS(FLOAT (K* (I-1))*TWOPI/FLOAT (N))
CONTINUE

Compute the Fourier transform of SEQ
CALL F2TRF (N, SEQ, COEF, WFFTR)
Print results
WRITE (NOUT,99998)
FORMAT (/, 9X, ’INDEX’, 5X, ’'SEQ’, 6X, '"COEF’)
WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)

20 CONTINUE

END
Output

INDEX SEQ COEF
1 1.00 0.00
2 0.62 3.50
3 -0.22 0.00
4 -0.90 0.00
5 -0.90 0.00
6 -0.22 0.00
7 0.62 0.00

INDEX SEQ COEF
1 1.00 0.00
2 -0.22 0.00
3 -0.90 0.00
4 0.62 3.50
5 0.62 0.00
6 -0.90 0.00
7 -0.22 0.00

INDEX SEQ COEF

1 1.00 0.00

2 -0.90 0.00

3 0.62 0.00

4 -0.22 0.00

5 -0.22 0.00
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6 0.62 3.50
7 -0.90 0.00

Comments

Different WFFTR arrays are needed for different values of .

Description

The routine FFTRI initializes the routines FFTRF (page 1009) and FFTRB (page 1012). An
efficient way to make multiple calls for the same N to routine FETRF or FFTRB, is to use routine
FFTRI for initialization. (In this case, replace FFTRF or FFTRB with F2TRF or F2TRB,
respectively.) The routine FFTRI is based on the routine REFTI in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

FFTCF

Computes the Fourier coefficients of a complex periodic sequence.

Required Arguments

N — Length of the sequence to be transformed. (Input)

SEQ — Complex array of length N containing the periodic sequence. (Input)

COEF — Complex array of length N containing the Fourier coefficients. (Output)
FORTRAN 90 Interface

Generic: CALL FFTCF (N, SEQ, COEF)

Specific: The specific interface names are S_FFTCF and D_FFTCF.

FORTRAN 77 Interface

Single: CALL FFTICF (N, SEQ, COEF)
Double: The double precision name is DFFTCF.
Example

In this example, we input a pure exponential data vector and recover its Fourier series, which is
a vector with all components zero except at the appropriate frequency where it has an N. Notice
that the norm of the input vector is

N
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but the norm of the output vector is N.

USE FFTCF_INT
USE CONST_INT
USE UMACH_INT

INTEGER N
PARAMETER (N=7)

INTEGER I, NOUT
REAL TWOPI
COMPLEX C, CEXP, COEF(N), H, SEQ(N)

INTRINSIC CEXP

C = (0.,1.)

TWOPI CONST (' PI’)

TWOPI 2.0 * TWOPI
! Here we compute (2*pi*i/N)*3.

H = (TWOPI*C/N)*3.
! This loop fills out the data vector
! with a pure exponential signal of
! frequency 3.

DO 10 1I=1, N

SEQ(I) = CEXP((I-1)*H)
10 CONTINUE

! Compute the Fourier transform of SEQ

CALL FFTCF (N, SEQ, COEF)
! Get output unit number and print
! results

CALL UMACH (2, NOUT)

WRITE (NOUT, 99998)
99998 FORMAT (9X, ’'INDEX’, 8X, ’'SEQ’, 15X, ’'COEF’)

WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99999 FORMAT (1X, Ill1l, 5X,’ (',F5.2,’,',F5.2,")", &

5X," (' ,F5.2,7,",F5.2,")")

END
Output
INDEX SEQ COEF
1 (1.00, 0.00) ( 0.00, 0.00)
2 (-0.90, 0.43) ( 0.00, 0.00)
3 (0.62,-0.78) ( 0.00, 0.00)
4 (-0.22, 0.97) ( 7.00, 0.00)
5 (-0.22,-0.97) ( 0.00, 0.00)
6 (0.62, 0.78) ( 0.00, 0.00)
7 (-0.90,-0.43) ( 0.00, 0.00)
Comments
1. Workspace may be explicitly provided, if desired, by use of F2TCF/DF2TCF. The

reference is:

CALL F2TCF (N, SEQ, COEF, WFFTC, CPY)

The additional arguments are as follows:
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WFFTC — Real array of length 4 * N + 15 initialized by FFTCTI (page 1022). The
initialization depends on N. (Input)

CPY — Real array of length 2 * N. (Workspace)

2. The routine FFTCF is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTCE/FFTCB is used repeatedly with the same value of N, then call FFTCI followed
by repeated calls to F2TCF/F2TCB. This is more efficient than repeated calls to
FFTCF/FFTCB.

Description

The routine FFTCF computes the discrete complex Fourier transform of a complex vector of size
N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N
is a product of small prime factors. If N satisfies this condition, then the computational effort is
proportional to NV log N. This considerable savings has historically led people to refer to this
algorithm as the “fast Fourier transform” or FFT.

Specifically, given an N-vector x, FFTCF returns in ¢ = COEF
S 27i(n-1)(m-1)/ N
—Zi\n— m—
c, = z x,e
n=1

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

JNS

Finally, note that we can invert the Fourier transform as follows:

N .
z CWleZm(mfl)(nfl)/N

1
X, =—
Nm:l

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has
the coefficients for a trigonometric interpolating polynomial to the data. An unnormalized
inverse is implemented in FFTCB (page 1019). FFTCF is based on the complex FFT in
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center
for Atmospheric Research.

FFTCB

Computes the complex periodic sequence from its Fourier coefficients.

Required Arguments

N — Length of the sequence to be transformed. (Input)

COEF — Complex array of length N containing the Fourier coefficients. (Input)
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SEQ — Complex array of length N containing the periodic sequence. (Output)

FORTRAN 90 Interface
Generic: CALL FFTCB(N, COEF, SEQ

Specific: The specific interface names are S_FFTCB and D_FFTCB.

FORTRAN 77 Interface

Single: CALL FFICB (N, COEF, SEQ)
Double: The double precision name is DFFTCB.
Example

In this example, we first compute the Fourier transform of the vector x, where x; = forj = 1 to

N. Note that the norm of x is (N[N + 1][2N + 11/6)"%, and hence, the norm of the transformed
vector

=>
Il
o

is M([N + 1][2N + 1]/6)". The vector
X
is used as input into FFTCB with the resulting output s = Nx, that is, s; = jN, for j=1to N.
USE FFTCB_INT

USE FFTCF_INT
USE UMACH_INT

INTEGER N
PARAMETER  (N=7)

INTEGER I, NOUT
COMPLEX CMPLX, SEQ(N), COEF(N), X(N)
INTRINSIC CMPLX
! This loop fills out the data vector
! with X(I)=I, I=1,N
DO 10 1I=1, N
X(I) = CMPLX(I,O0)
10 CONTINUE
! Compute the forward transform of X
CALL FFTCF (N, X, COEF)
! Compute the backward transform of
! COEF
CALL FFTCB (N, COEF, SEQ)
! Get output unit number
CALL UMACH (2, NOUT)
! Print results
WRITE (NOUT, 99998)
WRITE (NOUT,99999) (I, X(I), COEF(I), SEQ(I), I=1,N)
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99998 FORMAT (5X, ’'INDEX’, 9X, ’INPUT’, 9X, ’'FORWARD TRANSFORM’, 3X, &
"BACKWARD TRANSFORM’)
99999 FORMAT (1X, I7, 7X,'(',¥5.2,’,",F5.2,

AR’
7X, " (", F5.2,"," ,F5.2,")"
)I

;&
X, (", F5.2,",",F5.2,")")
END
Output
INDEX INPUT FORWARD TRANSFORM  BACKWARD TRANSFORM
1 (1.00, 0.00) (28.00, 0.00) (7.00, 0.00)
2 ( 2.00, 0.00) (=3.50, 7.27) (14.00, 0.00)
3 ( 3.00, 0.00) (=3.50, 2.79) (21.00, 0.00)
4 ( 4.00, 0.00) (-3.50, 0.80) (28.00, 0.00)
5 ( 5.00, 0.00) (-3.50,-0.80) (35.00, 0.00)
6 ( 6.00, 0.00) (-3.50,-2.79) (42.00, 0.00)
7 ( 7.00, 0.00) (=3.50,-7.27) (49.00, 0.00)
Comments

1. Workspace may be explicitly provided, if desired, by use of F2TCB/DF2TCB. The

reference is:

CALL F2TCB (N, COEF, SEQ, WFFTC, CPY)

The additional arguments are as follows:

WFFTC — Real array of length 4 * N + 15 initialized by FFTCI (page 1022). The
initialization depends on N. (Input)

CPY — Real array of length 2 * N. (Workspace)

2. The routine FFTCB is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTCE/FFTCB is used repeatedly with the same value of N; then call FFTCI followed
by repeated calls to F2TCF/F2TCB. This is more efficient than repeated calls to
FFTCF/FFTCB.

Description

The routine FFTCB computes the inverse discrete complex Fourier transform of a complex
vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is most
efficient when N is a product of small prime factors. If N satisfies this condition, then the
computational effort is proportional to N log N. This considerable savings has historically led
people to refer to this algorithm as the “fast Fourier transform” or FFT.

Specifically, given an N-vector ¢ = COEF, FFTCB returns in s = SEQ

2zi(n-1)(m-1)/ N
5 =3 ¢ N

m

M=
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Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

JNS

Finally, note that we can invert the inverse Fourier transform as follows:

c = Lis e—27ri(n—1)(m—1)/N
n N m

m=1

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has
the coefficients for a trigonometric interpolating polynomial to the data. FFTCB is based on the
complex inverse FFT in FFTPACK. The package FFTPACK was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.

FFTCI

Computes parameters needed by FFTCF and FFTCB.

Required Arguments

N — Length of the sequence to be transformed. (Input)

WFFTC — Array of length 4N + 15 containing parameters needed by FFTCF and FFTCB.
(Output)

FORTRAN 90 Interface

Generic: CALL FFTCI (N, WFFTC)

Specific: The specific interface names are S_FFTCl and D_FFTCI .

FORTRAN 77 Interface

Single: CALL FFTCI (N, WFETC)
Double: The double precision name is DFFTCI .
Example

In this example, we compute a two-dimensional complex FFT by making one call to FFTCI
followed by 2N calls to F2TCF.

USE FFTCI_INT
USE CONST_INT
USE F2TCF_INT
USE UMACH_INT
! SPECIFICATIONS FOR PARAMETERS
INTEGER N
PARAMETER (N=4)
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INTEGER I, IR, IS, J, NOUT

REAL FLOAT, TWOPI, WFFTC(35), CPY (2*N)

COMPLEX CEXP, CMPLX, COEF(N,N), H, SEQ(N,N), TEMP
INTRINSIC CEXP, CMPLX, FLOAT

TWOPI = CONST (' PI’)

TWOPI = 2*TWOPI
IR =3
IS =1

! Here we compute e** (2*pi*i/N)
TEMP = CMPLX (0.0, TWOPI/FLOAT (N))
H = CEXP (TEMP)
! Fill SEQ with data
DO 20 I=1, N
DO 10 J=1, N
SEQ(I,J) = H**((I-1)*(IR-1)+(J-1)*(IS-1))
10 CONTINUE
20 CONTINUE
! Print out SEQ
! Get output unit number
CALL UMACH (2, NOUT)
WRITE (NOUT,99997)
DO 30 I=1, N
WRITE (NOUT,99998) (SEQ(I,J),J=1,N)
30 CONTINUE
! Set initialization vector
CALL FFTCI (N, WEFFETC)
! Transform the columns of SEQ
DO 40 1I=1, N
CALL F2TCF (N, SEQ(1:,I), COEF(l1:,I), WFFTC, CPY)
40 CONTINUE
! Take transpose of the result

DO 60 1I=1, N
DO 50 J=I + 1, N
TEMP = COEF (I, J)
COEF (I,J) = COEF(J,I)
COEF (J,I) = TEMP

50 CONTINUE
60 CONTINUE
! Transform the columns of this result
DO 70 I=1, N
CALL F2TCF (N, COEF(1:,I), SEQ(l:,I), WFFTC, CPY)
70 CONTINUE
! Take transpose of the result
DO 90 I=1, N
DO 80 J=I + 1, N

TEMP = SEQ(I,J)
SEQ(I,J) = SEQ(J,I)
SEQ(J,I) = TEMP

80 CONTINUE
90 CONTINUE
! Print results
WRITE (NOUT,99999)
DO 100 1I=1, N
WRITE (NOUT,99998) (SEQ(I,J),J=1,N)
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100 CONTINUE

99997 FORMAT (1X, ’'The input matrix is below’)

99998 FORMAT (1X, 4(" (',F5.2,7,’,F5.2,7)"))

99999 FORMAT (/, 1X, ’'Result of two-dimensional transform’)
END

Output

The input matrix is below

(1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00)
(-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00)
(1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00)
(-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00)
Result of two-dimensional transform
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
(16.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
Comments

Different WEFTC arrays are needed for different values of N.

Description

The routine FFTCI initializes the routines FFTCF (page 1017) and FFTCB (page 1019). An
efficient way to make multiple calls for the same N to IMSL routine FFTCF or FFTCB is to use
routine FFTCI for initialization. (In this case, replace FFTCF or FFTCB with F2TCF or F2TCB,
respectively.) The routine FFTCI is based on the routine CFFTI in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

FSINT

Computes the discrete Fourier sine transformation of an odd sequence.

Required Arguments

N — Length of the sequence to be transformed. It must be greater than 1. (Input)

SEQ — Array of length N containing the sequence to be transformed. (Input)

COEF — Array of length N + 1 containing the transformed sequence. (Output)
FORTRAN 90 Interface

Generic: CALL FSINT (N, SEQ CCEF)

Specific: The specific interface names are S_FSI NT and D_FSI NT.
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FORTRAN 77 Interface

Single: CALL FSINT (N, SEQ, COEF)

Double: The double precision name is DFSI NT.

Example

In this example, we input a pure sine wave as a data vector and recover its Fourier sine series,

which is a vector with all components zero except at the appropriate frequency it has an N.

USE FSINT INT
USE CONST_INT
USE UMACH_INT
INTEGER N
PARAMETER (N=7)

INTEGER I, NOUT
REAL COEF (N+1), FLOAT, PI, SIN, SEQ(N)
INTRINSIC FLOAT, SIN
! Get output unit number
CALL UMACH (2, NOUT)
! Fill the data vector SEQ
! with a pure sine wave
PI = CONST('PI’")
DO 10 1I=1, N
SEQ(I) = SIN(FLOAT (I)*PI/FLOAT (N+1))
10 CONTINUE
! Compute the transform of SEQ
CALL FSINT (N, SEQ, COEF)
! Print results
WRITE (NOUT, 99998)
WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99998 FORMAT (9X, ’"INDEX’', 6X, ’'SEQ’, 7X, ’'COEF’)
99999 FORMAT (1X, I1l, 5X, F6.2, 5X, F6.2)

END
Output
INDEX SEQ COEF
1 0.38 8.00
2 0.71 0.00
3 0.92 0.00
4 1.00 0.00
5 0.92 0.00
6 0.71 0.00
7 0.38 0.00
Comments
1. Workspace may be explicitly provided, if desired, by use of F2INT/DF2INT. The

reference is:

CALL F2INT (N, SEQ, COEF, WFSIN)
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The additional argument is:

WFESIN — Array of length INT (2.5 * N + 15) initialized by FSINI. The
initialization depends on N. (Input)

2. The routine FSINT is most efficient when N + 1 is the product of small primes.

3. The routine FSINT is its own (unnormalized) inverse. Applying FSINT twice will
reproduce the original sequence multiplied by 2 * (N + 1).

4. The arrays COEF and SEQ may be the same, if SEQ is also dimensioned at least N + 1.
5. COEF (N + 1) is needed as workspace.
6. If FSINT is used repeatedly with the same value of N, then call FSINT (page 1026)
followed by repeated calls to F2 INT. This is more efficient than repeated calls to
FSINT.
Description

The routine FSTINT computes the discrete Fourier sine transform of a real vector of size V. The
method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N+ 1 is a
product of small prime factors. If N satisfies this condition, then the computational effort is
proportional to N log N.

Specifically, given an N-vector s = SEQ, FSINT returns in ¢ = COEF

N
¢, = Zan sin( mmrl)

n=1 N +

Finally, note that the Fourier sine transform is its own (unnormalized) inverse. The routine
FSINT is based on the sine FFT in FFTPACK. The package FFTPACK was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.

FSINI

Computes parameters needed by FSINT.

Required Arguments

N — Length of the sequence to be transformed. N must be greater than 1. (Input)

WFSIN — Array of length INT(2.5 * N + 15) containing parameters needed by FSINT.
(Output)

FORTRAN 90 Interface

Generic: CALL FSINI (N, WFSIN)
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Specific: The specific interface names are S_FSI NI and D_FSI NI .

FORTRAN 77 Interface

Single: CALL FSINI (N, WFSIN)
Double: The double precision name is DFSI NI .
Example

In this example, we compute three distinct sine FFTs by calling FSINT once and then calling
F2INT three times.

USE FSINI INT
USE UMACH_INT
USE CONST_INT
USE F2INT INT
INTEGER N
PARAMETER (N=7)

INTEGER I, K, NOUT
REAL COEF (N+1), FLOAT, PI, SIN, WFSIN(32), SEQ(N)
INTRINSIC FLOAT, SIN
Get output unit number
CALL UMACH (2, NOUT)
! Initialize the work vector WFSIN
CALL FSINI (N, WFEFSIN)
Different frequencies of the same
wave will be transformed
DO 20 K=1, 3
! Fill the data vector SEQ
with a pure sine wave
PI = CONST('PI")
DO 10 1I=1, N
SEQ(I) = SIN(FLOAT (K*I)*PI/FLOAT (N+1))
10 CONTINUE
! Compute the transform of SEQ
CALL F2INT (N, SEQ, COEF, WFSIN)
! Print results
WRITE (NOUT,99998)
WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
20 CONTINUE
99998 FORMAT (/, 9X, ’'INDEX’, 6X, ’'SEQ’, 77X, 'COEF’)
99999 FORMAT (1X, I11l, 5X, F6.2, 5X, F6.2)

END
Output
INDEX SEQ COEF
1 0.38 8.00
2 0.71 0.00
3 0.92 0.00
4 1.00 0.00
5 0.92 0.00
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6 0.71 0.00

7 0.38 0.00
INDEX SEQ COEF
1 0.71 0.00
2 1.00 8.00
3 0.71 0.00
4 0.00 0.00
5 -0.71 0.00
6 -1.00 0.00
7 -0.71 0.00
INDEX SEQ COEF
1 0.92 0.00
2 0.71 0.00
3 -0.38 8.00
4 -1.00 0.00
5 -0.38 0.00
6 0.71 0.00
7 0.92 0.00
Comments

Different WFSIN arrays are needed for different values of N.

Description

The routine FSINT initializes the routine FSINT (page 1024). An efficient way to make multiple
calls for the same N to IMSL routine FSINT, is to use routine FSINTI for initialization. (In this
case, replace FSINT with F2INT.) The routine FSINI is based on the routine SINTI in
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center
for Atmospheric Research.

FCOST

Computes the discrete Fourier cosine transformation of an even sequence.

Required Arguments

N — Length of the sequence to be transformed. It must be greater than 1. (Input)

SEQ — Array of length N containing the sequence to be transformed. (Input)

COEF — Array of length N containing the transformed sequence. (Output)
FORTRAN 90 Interface

Generic: CALL FCOST (N, SEQ, COEF)

Specific: The specific interface names are S_FCOST and D_FCOST.
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FORTRAN 77 Interface

Single: CALL FCOST (N, SEQ, COEF)
Double: The double precision name is DFCOST.
Example

In this example, we input a pure cosine wave as a data vector and recover its Fourier cosine
series, which is a vector with all components zero except at the appropriate frequency it has an
N-1.

USE FCOST_ INT
USE CONST_ INT
USE UMACH_INT
INTEGER N
PARAMETER  (N=7)

INTEGER I, NOUT
REAL COEF (N), COS, FLOAT, PI, SEQ(N)
INTRINSIC COS, FLOAT

CALL UMACH (2, NOUT)
Fill the data vector SEQ
with a pure cosine wave
PI = CONST('PI")
DO 10 I=1, N
SEQ(I) = COS(FLOAT(I-1)*PI/FLOAT (N-1))
10 CONTINUE
Compute the transform of SEQ
CALL FCOST (N, SEQ, COEF)
Print results
WRITE (NOUT, 99998)
WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’'COEF’)
99999 FORMAT (1X, I1l1, 5X, F6.2, 5X, F6.2)
END
Output
INDEX SEQ COEF
1 1.00 0.00
2 0.87 6.00
3 0.50 0.00
4 0.00 0.00
5 -0.50 0.00
6 -0.87 0.00
7 -1.00 0.00
Comments
1. Workspace may be explicitly provided, if desired, by use of F20ST/DF20ST. The
reference is:
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CALL F20ST (N, SEQ, COEF, WFCOS)
The additional argument is

WFCOS — Array of length 3 * N + 15 initialized by FCOSI (page 1030). The
initialization depends on N. (Input)

2. The routine FCOST is most efficient when N — 1 is the product of small primes.

3. The routine FCOST is its own (unnormalized) inverse. Applying FCOST twice will
reproduce the original sequence multiplied by 2 * (N — ).

4. The arrays COEF and SEQ may be the same.

5. If FcosT is used repeatedly with the same value of N, then call FcosT followed by
repeated calls to F20ST. This is more efficient than repeated calls to FCOST.

Description

The routine FCOST computes the discrete Fourier cosine transform of a real vector of size N.
The method used is a variant of the Cooley-Tukey algorithm , which is most efficient when N —
1 is a product of small prime factors. If NV satisfies this condition, then the computational effort
is proportional to N log N.

Specifically, given an N-vector s = SEQ, FCOST returns in ¢ = COEF

e ~1)(n-1 ]
¢, =2 s,cos {w} +5,+ 58, (—I)W )
n=2

N-1

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse. Two
applications of FCOST to a vector s produces (2N — 2)s. The routine FCOST is based on the
cosine FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the
National Center for Atmospheric Research.

FCOSI

Computes parameters needed by FCOST.

Required Arguments

N — Length of the sequence to be transformed. N must be greater than 1. (Input)

WFCOS — Array of length 3N + 15 containing parameters needed by FCOST. (Output)

FORTRAN 90 Interface

Generic: CALL FCOSI (N, WFCOS)
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Specific: The specific interface names are S_FCOSI and D_FCOSI .

FORTRAN 77 Interface

Single: CALL FCOSI (N, WFCOS)
Double: The double precision name is DFCOSI .
Example

In this example, we compute three distinct cosine FFTs by calling FCOST once and then calling
F20ST three times.

USE FCOSI_INT
USE CONST_INT
USE F20ST_INT
USE UMACH_INT
INTEGER N
PARAMETER  (N=7)

INTEGER I, K, NOUT
REAL COEF (N), COS, FLOAT, PI, WFCOS(36), SEQ(N)
INTRINSIC COS, FLOAT
! Get output unit number
CALL UMACH (2, NOUT)
! Initialize the work vector WFCOS
CALL FCOSI (N, WFCOS)
! Different frequencies of the same
! wave will be transformed
PI = CONST("PI")
DO 20 K=1, 3
! Fill the data vector SEQ
! with a pure cosine wave

DO 10 1I=1, N
SEQ(I) = COS(FLOAT (K* (I-1))*PI/FLOAT (N-1))
10 CONTINUE

! Compute the transform of SEQ
CALL F20ST (N, SEQ, COEF, WFCOS)

! Print results
WRITE (NOUT, 99998)
WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

20 CONTINUE
99998 FORMAT (/, 9X, ’'INDEX’, 6X, ’'SEQ’, 77X, 'COEF’)
99999 FORMAT (1X, I11l, 5X, F6.2, 5X, F6.2)

END
Output
INDEX SEQ COEF
1 1.00 0.00
2 0.87 6.00
3 0.50 0.00
4 0.00 0.00
5 -0.50 0.00
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6 -0.87 0.00
7 -1.00 0.00
INDEX SEQ COEF
1 1.00 0.00
2 0.50 0.00
3 -0.50 6.00
4 -1.00 0.00
5 -0.50 0.00
6 0.50 0.00
7 1.00 0.00
INDEX SEQ COEF
1 1.00 0.00
2 0.00 0.00
3 -1.00 0.00
4 0.00 6.00
5 1.00 0.00
6 0.00 0.00
7 -1.00 0.00
Comments
Different WwrcoOs arrays are needed for different values of N.
Description

The routine FCOST initializes the routine FCOST (page 1028). An efficient way to make multiple
calls for the same N to IMSL routine FCOST is to use routine FCOST for initialization. (In this
case, replace FCOST with F20ST.) The routine FCOST is based on the routine COSTI in
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center
for Atmospheric Research.

QSINF

Computes the coefficients of the sine Fourier transform with only odd wave numbers.

Required Arguments

N — Length of the sequence to be transformed. (Input)

SEQ — Array of length N containing the sequence. (Input)

COEF — Array of length N containing the Fourier coefficients. (Output)
FORTRAN 90 Interface

Generic: CALL QSINF (N, SEQ CCEF)

Specific: The specific interface names are S_QSI NF and D_QSI NF.
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FORTRAN 77

Interface

Single: CALL @8I NF (N, SEQ, COEF)
Double: The double precision name is DQSI NF.
Example

In this example, we input a pure quarter sine wave as a data vector and recover its Fourier
quarter sine series.
USE QSINF INT

USE CONST_INT
USE UMACH_INT

INTEGER N
PARAMETER  (N=7)
|
INTEGER I, NOUT
REAL COEF (N), FLOAT, PI, SIN, SEQ(N)
INTRINSIC FLOAT, SIN
! Get output unit number
CALL UMACH (2, NOUT)
! Fill the data vector SEQ
! with a pure sine wave
PI = CONST('PI’")
DO 10 I=1, N
SEQ(I) = SIN(FLOAT(I)* (PI/2.0)/FLOAT(N))
10 CONTINUE
! Compute the transform of SEQ
CALL QSINF (N, SEQ, COEF)
! Print results
WRITE (NOUT, 99998)
WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99998 FORMAT (9X, ’"INDEX’', 6X, ’'SEQ’, 7X, ’'COEF’)
99999 FORMAT (1X, I1l, 5X, F6.2, 5X, F6.2)
END
Output
INDEX SEQ COEF
1 0.22 7.00
2 0.43 0.00
3 0.62 0.00
4 0.78 0.00
5 0.90 0.00
6 0.97 0.00
7 1.00 0.00
Comments

1. Workspace may be explicitly provided, if desired, by use of 02 INF/DQ2 INF. The

reference is:

CALL Q2INF (N, SEQ, COEF, WQSIN)
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The additional argument is:

WOSIN — Array of length 3 * N + 15 initialized by QSINI (page 1037). The
initialization depends on N. (Input)

2. The routine QSINF is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If QSINF/QSINB is used repeatedly with the same value of N, then call 0SINT followed
by repeated calls to 02 INF/Q2INB. This is more efficient than repeated calls to
QSINF/QSINB.

Description

The routine QSTINF computes the discrete Fourier quarter sine transform of a real vector of size
N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N
is a product of small prime factors. If N satisfies this condition, then the computational effort is
proportional to N log N.

Specifically, given an N-vector s = SEQ, QSINF returns in ¢ = COEF

N-1 —
¢, =2 s,sin {M} +sy (-1)""

n=1 2N

Finally, note that the Fourier quarter sine transform has an (unnormalized) inverse, which is
implemented in the IMSL routine QSTINB. The routine QSINF is based on the quarter sine FFT in
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center
for Atmospheric Research.

QSINB

Computes a sequence from its sine Fourier coefficients with only odd wave numbers.

Required Arguments

N — Length of the sequence to be transformed. (Input)

COEF — Array of length N containing the Fourier coefficients. (Input)

SEQ — Array of length N containing the sequence. (Output)
FORTRAN 90 Interface

Generic: CALL QSINB(N, CCEF, SEQ

Specific: The specific interface names are S_QSI NB and D_QSI NB.
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FORTRAN 77 Interface

Single:

Double:

Example

10

CALL @8I NB (N, COEF, SEQ)

The double precision name is DQSI NB.

In this example, we first compute the quarter wave sine Fourier transform c of the vector x
where x,, = n for n =1 to N. We then compute the inverse quarter wave Fourier transform of ¢

which is 4Nx = s.

USE QSINB_INT
USE QSINF_INT
USE UMACH_INT

INTEGER N
PARAMETER (N=7)
INTEGER I, NOUT
REAL FLOAT, SEQ(N),
INTRINSIC FLOAT
CALL UMACH (2, NOUT)
DO 10 1I=1, N

X(I) = FLOAT(I)
CONTINUE

CALL QSINF (N, X, COEF)

COEF (N), X(N)
Get output unit number

Fill the data vector X
with X(I) = I, I=1,N

Compute the forward tr

Compute the backward t

ansform of X

ransform of W

CALL QSINB (N, COEF, SEQ)
'C Print results
WRITE (NOUT, 99998)
WRITE (NOUT,99999) (X(I), COEF(I), SEQ(I), I=1,N)
99998 FORMAT (5X, ’'INPUT’, 5X, ’'FORWARD TRANSFORM’, 3X, 'BACKWARD ', &
" TRANSFORM' )
99999 FORMAT (3X, F6.2, 10X, F6.2, 15X, F6.2)
END
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utput

INPUT FORWARD TRANSFORM  BACKWARD TRANSFORM
1.00 39.88 28.00
2.00 -4.58 56.00
3.00 1.77 84.00
4.00 -1.00 112.00
5.00 0.70 140.00
6.00 -0.56 168.00
7.00 0.51 196.00
Comments
1. Workspace may be explicitly provided, if desired, by use of 02 INB/DQ2INB. The
reference is:
CALL Q2INB (N, SEQ, COEF, WQSIN)
The additional argument is:
WOSIN — ray of length 3 * N + 15 initialized by 0SINTI (page 1037). The
initialization depends on N.(Input)
2. The routine QSTNB is most efficient when N is the product of small primes.
3. The arrays COEF and SEQ may be the same.
4. If QSINF/QSINB is used repeatedly with the same value of N, then call 0SINT followed
by repeated calls to 02 INF/Q2INB. This is more efficient than repeated calls to
QSINEF/QSINB.
Description

The routine QSINB computes the discrete (unnormalized) inverse Fourier quarter sine transform
of a real vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is
most efficient when N is a product of small prime factors. If NV satisfies this condition, then the
computational effort is proportional to N log N.

Specifically, given an N-vector ¢ = COEF, QSINB returns in s = SEQ

N —
s, = 4ch sin(—(zn 1)mﬂj

n=1 2N

Furthermore, a vector x of length N that is first transformed by QSINF (page 1032) and then by
0sINB will be returned by 0SINB as 4Nx. The routine QSINB is based on the inverse quarter
sine FFT in FFTPACK which was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.
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QSINI

Computes parameters needed by QSINF and QSINB.
CALL QSINI (N, WQSIN)

Required Arguments

N — Length of the sequence to be transformed. (Input)

WOSIN — Array of length 3N + 15 containing parameters needed by QSINF and QSINB.
(Output)

FORTRAN 90 Interface

Generic: ~ CALL QSINI (N, WQSIN)

Specific: The specific interface names are S_QSI NI and D_QSI NI .
FORTRAN 77 Interface

Single: CALL QSINI (N, WQSIN)

Double: The double precision name is DQSI NI .

Example

In this example, we compute three distinct quarter sine transforms by calling QSINT once and

then calling Q2 INF three times.

USE QSINI INT
USE CONST_ INT
USE Q2INF INT
USE UMACH_ INT
INTEGER N
PARAMETER  (N=7)

INTEGER I, K, NOUT
REAL COEF (N), FLOAT, PI, SIN, WQSIN(36), SEQ(N)
INTRINSIC FLOAT, SIN
Get output unit number
CALL UMACH (2, NOUT)
Initialize the work vector WQSIN
CALL QSINI (N, WQSIN)
Different frequencies of the same
wave will be transformed
PI = CONST('PI")
DO 20 K=1, 3
Fill the data vector SEQ
with a pure sine wave
DO 10 1I=1, N
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SEQ(I) = SIN(FLOAT((2*K-1)*I)*(PI/2.0)/FLOAT (N))

10 CONTINUE

! Compute the transform of SEQ

CALL Q2INF (N, SEQ, COEF, WQSIN)
! Print results
WRITE (NOUT,99998)
WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
20 CONTINUE
99998 FORMAT (/, 9X, ’'INDEX’, 6X, ’'SEQ’, 77X, 'COEF’)
99999 FORMAT (1X, Ill, 5X, F6.2, 5X, F6.2)

END
Output
INDEX SEQ COEF
1 0.22 7.00
2 0.43 0.00
3 0.62 0.00
4 0.78 0.00
5 0.90 0.00
6 0.97 0.00
7 1.00 0.00
INDEX SEQ COEF
1 0.62 0.00
2 0.97 7.00
3 0.90 0.00
4 0.43 0.00
5 -0.22 0.00
6 -0.78 0.00
7 -1.00 0.00
INDEX SEQ COEF
1 0.90 0.00
2 0.78 0.00
3 -0.22 7.00
4 -0.97 0.00
5 -0.62 0.00
6 0.43 0.00
7 1.00 0.00
Comments
Different WQSIN arrays are needed for different values of N.
Description

The routine QSINT initializes the routines QSINF (page 1032) and QSINB (page 1034). An
efficient way to make multiple calls for the same N to IMSL routine QSINF or QSINB is to use
routine QSINTI for initialization. (In this case, replace QSINF or QSINB with Q2 INF or Q2INB,
respectively.) The routine QSINT is based on the routine SINQI in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric

Research.
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QCOSF

Computes the coefficients of the cosine Fourier transform with only odd wave numbers.

Required Arguments

N — Length of the sequence to be transformed. (Input)
SEQ — Array of length N containing the sequence. (Input)

COEF — Array of length N containing the Fourier coefficients. (Output)

FORTRAN 90 Interface
Generic: CALL QCOSF (N, SEQ CCEF[, .])

Specific: The specific interface names are S_QCOSF and D_QCOSF.

FORTRAN 77 Interface
Single: CALL QCOSF (N, SEQ, COEF)

Double: The double precision name is DQCOSF.

Example

In this example, we input a pure quarter cosine wave as a data vector and recover its Fourier
quarter cosine series.

USE QCOSF_INT
USE CONST_ INT
USE UMACH_INT
INTEGER N
PARAMETER (N=7)

INTEGER I, NOUT
REAL COEF (N), COS, FLOAT, PI, SEQ(N)
INTRINSIC COS, FLOAT

! Get output unit number
CALL UMACH (2, NOUT)

! Fill the data vector SEQ

! with a pure cosine wave
PI = CONST('PI")
DO 10 1I=1, N

SEQ(I) = COS(FLOAT(I-1)*(PI/2.0)/FLOAT (N))
10 CONTINUE

! Compute the transform of SEQ
Call QCOSF (N, SEQ, COEF)

! Print results
WRITE (NOUT,99998)
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WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

99998 FORMAT (9X, ’'INDEX’, 6X, ’'SEQ’, 7X, ’'COEF’)
99999 FORMAT (1X, Ill, 5X, F6.2, 5X, F6.2)

END

Output

INDEX SEQ COEF

1

~N o U W N

.00
.97
.90
.78
.62
.43
.22

.00
.00
.00
.00
.00
.00

OO O OO o
OO O OO O
o
o

Comments

1. Workspace may be explicitly provided, if desired, by use of 020SF/D020SF. The
reference is:

CALL Q20SF (N, SEQ, COEF, WQCOS)

The additional argument is:

WQCOS — Array of length 3 * N + 15 initialized by QCcOST (page 1043). The
initialization depends on N. (Input)

2. The routine QCOSF is most efficient when N is the product of small primes.
3. The arrays COEF and SEQ may be the same.
4. If 0coSF/QCOsSB is used repeatedly with the same value of N, then call ocos1 followed

by repeated calls to 020SF/Q20sB. This is more efficient than repeated calls to
QCOSF/QCOSB.

Description

The routine QCOSF computes the discrete Fourier quarter cosine transform of a real vector of
size N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient
when N is a product of small prime factors. If N satisfies this condition, then the computational
effort is proportional to N log N.

Specifically, given an N-vector s = SEQ, QCOSF returns in ¢ = COEF

n=2 2N

Finally, note that the Fourier quarter cosine transform has an (unnormalized) inverse which is
implemented in 0COSB. The routine QCOSF is based on the quarter cosine FFT in FFTPACK.
The package FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

1040 « Chapter 6: Transforms IMSL MATH/LIBRARY



QCOSB

Computes a sequence from its cosine Fourier coefficients with only odd wave numbers.

Required Arguments

N — Length of the sequence to be transformed. (Input)
COEF — Array of length N containing the Fourier coefficients. (Input)

SEQ — Array of length N containing the sequence. (Output)

FORTRAN 90 Interface
Generic: CALL QCOSB(N, COEF, SEQ)

Specific: The specific interface names are S_QCOSB and D_QCOSB.

FORTRAN 77 Interface
Single: CALL QCOSB (N, COEF, SEQ)

Double: The double precision name is DQCOSB.

Example

In this example, we first compute the quarter wave cosine Fourier transform c of the vector x,
where x,, = n for n =1 to N. We then compute the inverse quarter wave Fourier transform of ¢

which is 4Nx = s.

USE QCOSB_INT
USE QCOSF_INT
USE UMACH INT
INTEGER N
PARAMETER (N=7)

INTEGER I, NOUT

REAL FLOAT, SEQ(N), COEF(N), X(N)

INTRINSIC FLOAT
Get output unit number

CALL UMACH (2, NOUT)
Fill the data vector X
with X(I) = I, I=1,N

DO 10 1I=1, N

X(I) = FLOAT(I)
10 CONTINUE

Compute the forward transform of X

CALL QCOSF (N, X, COEF)
Compute the backward transform of
COEF

IMSL MATH/LIBRARY Chapter 6: Transforms ¢ 1041



CALL QCOSB (N, COEF, SEQ)
! Print results
WRITE (NOUT,99998)
DO 20 I=1, N
WRITE (NOUT,99999) X(I), COEF(I), SEQ(I)
20 CONTINUE
99998 FORMAT (5X, ’'INPUT’, 5X, ’'FORWARD TRANSFORM’, 3X, ’'BACKWARD ', &
" TRANSFORM' )
99999 FORMAT (3X, F6.2, 10X, F6.2, 15X, F6.2)

END

Output
INPUT FORWARD TRANSFORM BACKWARD TRANSFORM
1.00 31.12 28.00
2.00 -27.45 56.00
3.00 10.97 84.00
4.00 -9.00 112.00
5.00 4.33 140.00
6.00 -3.36 168.00
7.00 0.40 196.00

Comments

1. Workspace may be explicitly provided, if desired, by use of 020SB/D020SB. The
reference is:

CALL Q20SB (N, COEF, SEQ, WQCOS)

The additional argument is:

WQCOS — Array of length 3 * N + 15 initialized by 0COST (page 1043). The
initialization depends on N. (Input)

2. The routine QCOSB is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If 0coSF/QCOsB is used repeatedly with the same value of N, then call ocos1 followed
by repeated calls to 020SF/Q20sB. This is more efficient than repeated calls to
QCOSF/QCOSB.

Description

The routine QCOSB computes the discrete (unnormalized) inverse Fourier quarter cosine
transform of a real vector of size N. The method used is a variant of the Cooley-Tukey
algorithm, which is most efficient when N is a product of small prime factors. If N satisfies this
condition, then the computational effort is proportional to N log N. Specifically, given an N-
vector ¢ = COEF, QCOSB returns in s = SEQ

2N
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Furthermore, a vector x of length N that is first transformed by QCOSF (page 1039) and then by
0cosB will be returned by QCOsB as 4Nx. The routine QCOSB is based on the inverse quarter
cosine FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the
National Center for Atmospheric Research.

QCOsSI

Computes parameters needed by QCOSF and QCOSB.

Required Arguments

N — Length of the sequence to be transformed. (Input)

WQCOS — Atrray of length 3N + 15 containing parameters needed by QCOSF and QCOSB.
(Output)

FORTRAN 90 Interface
Generic: CALL QCOsI (N, WCOS)

Specific: The specific interface names are S_QCOSI and D_QCOSI .

FORTRAN 77 Interface
Single: CALL QCOsl (N, WQCOs)

Double: The double precision name is DQCOSI .

Example

In this example, we compute three distinct quarter cosine transforms by calling QCOST once and
then calling 020sF three times.

USE QCOSI INT
USE CONST INT
USE Q20SF_INT
USE UMACH INT
INTEGER N
PARAMETER  (N=7)

INTEGER I, K, NOUT
REAL COEF (N), COS, FLOAT, PI, WQCOS(36), SEQ(N)
INTRINSIC COS, FLOAT
Get output unit number
CALL UMACH (2, NOUT)
! Initialize the work vector WQCOS
CALL QCOSI (N, WQCOS)
Different frequencies of the same
wave will be transformed
PI = CONST("PI")
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DO 20 K=1, 3

! Fill the data vector SEQ
! with a pure cosine wave

DO 10 1I=1, N

SEQ(I) = COS(FLOAT ((2*K-1)*(I-1))*(PI/2.0)/FLOAT(N))

10 CONTINUE

! Compute the transform of SEQ

CALL Q20SF (N, SEQ, COEF, WQCOS)
! Print results
WRITE (NOUT, 99998)
WRITE (NOUT,99999) (I, SEQ(I), COEF(I),
20 CONTINUE

99998 FORMAT (/, 9X, 'INDEX’, 6X, ’'SEQ’, 7X, 'COEF’)

99999 FORMAT (1X, Ill, 5X, F6.2, 5X, F6.2)

END
Output
INDEX SEQ COEF
1 1.00 7.00
2 0.97 0.00
3 0.90 0.00
4 0.78 0.00
5 0.62 0.00
6 0.43 0.00
7 0.22 0.00
INDEX SEQ COEF
1 1.00 0.00
2 0.78 7.00
3 0.22 0.00
4 -0.43 0.00
5 -0.90 0.00
6 -0.97 0.00
7 -0.62 0.00
INDEX SEQ COEF
1 1.00 0.00
2 0.43 0.00
3 -0.62 7.00
4 -0.97 0.00
5 -0.22 0.00
6 0.78 0.00
7 0.90 0.00
Comments
Different wQcos arrays are needed for different values of N.
Description

The routine QCOST initializes the routines QCOSF (page 1039) and QcOsB (page 1041). An
efficient way to make multiple calls for the same N to IMSL routine QCOSF or QCOSB is to use
routine QCOST for initialization. (In this case, replace QCOSF or QCOSB with Q20SF or Q20SB ,
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respectively.) The routine QCOST is based on the routine C0SQI in FFTPACK, which was
developed by Paul Swarztrauber at the National Center for Atmospheric Research.

FFT2D

Computes Fourier coefficients of a complex periodic two-dimensional array.

Required Arguments

A — NRA by NCA complex matrix containing the periodic data to be transformed. (Input)

COEF — NRA by NCA complex matrix containing the Fourier coefficients of A.  (Output)

Optional Arguments

NRA — The number of rows of 2. (Input)
Default: NRA = size (A,1).

NCA — The number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDCCOEF = size (COEF,1).

FORTRAN 90 Interface
Generic: CALL FFT2D(A, CCEF [,.])

Specific: The specific interface names are S_FFT2D and D_FFT2D.

FORTRAN 77 Interface

Single: CALL FFT2D (NRA, NCA, A, LDA, COEF, LDCOEF)
Double: The double precision name is DFFT2D.
Example

In this example, we compute the Fourier transform of the pure frequency input for a 5 x 4 array

a = eZm’(n—l)Z/NeZm'(m—l)S/M

nm
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for 1 <n<5and 1 <m <4 using the IMSL routine FFT2D. The result

a=c
has all zeros except in the (3, 4) position.
USE FFT2D INT
USE CONST_ INT
USE WRCRN_INT
INTEGER I, IR, IS, J, NCA, NRA
REAL FLOAT, TWOPI
COMPLEX A(5,4), C, CEXP, CMPLX, COEF(5,4), H

CHARACTER TITLE1*26, TITLE2*26
INTRINSIC CEXP, CMPLX, FLOAT

TITLEl = ’'The input matrix is below '

TITLE2 = 'The output matrix is below’
NRA =5
NCA = 4
IR =3
Is =4

! Fill A with initial data
TWOPI = CONST('PI’")

TWOPI = 2.0*TWOPI
C = CMPLX(0.0,1.0)
H = CEXP (TWOPI*C)

DO 10 1I=1, NRA
DO 10 J=1, NCA
A(I,J) = CEXP(TWOPI*C* ((FLOAT ((I-1)* (IR-1))/FLOAT (NRA)+ &
FLOAT ((J-1) * (IS-1)) /FLOAT (NCA))))
10 CONTINUE

CALL WRCRN (TITLE1l, A)
CALL FFT2D (A, COEF)

CALL WRCRN (TITLE2, COEF)

END
Output

The input matrix is below

1 2 3 4
1 ( 1.000, 0.000) ( 0.000,-1.000) (-1.000, 0.000) ( 0.000, 1.000)
2 (-0.809, 0.588) ( 0.588, 0.809) ( 0.809,-0.588) (-0.588,-0.809)
3 (0.309,-0.951) (-0.951,-0.309) (-0.309, 0.951) (0.951, 0.309)
4 ( 0.309, 0.951) (0.951,-0.309) (-0.309,-0.951) (-0.951, 0.309)
5 (-0.809,-0.588) (-0.588, 0.809) ( 0.809, 0.588) (0.588,-0.809)

The Output matrix is below

1 2 3 4
1 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
2 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
3 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 20.00, 0.00)
4 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
5 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
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Comments

1. Workspace may be explicitly provided, if desired, by use of F2T2D/DF2T2D. The
reference is:

CALL F2T2D (NRA, NCA, A, LDA, COEF, LDCOEF, WFF1,
WFF2, CWK, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * NRA + 15 initialized by FFTCI. The initialization
depends on NRa. (Input)

WFF2 — Real array of length 4 * NCA + 15 initialized by FFTCI. The initialization
depends on NCa. (Input)

CWK — Complex array of length 1. (Workspace)

CPY — Real array of length 2 * MAX (NRA, NCA). (Workspace)

2. The routine FFT2D is most efficient when NRA and NCA are the product of small primes.
3. The arrays COEF and A may be the same.
4, If FFT2D/FFT2B is used repeatedly, with the same values for NRa and NCA, then use

FFTCI (page 1022) to fill WFF1(N = NRA) and WFF2(N = NCA). Follow this with
repeated calls to F2T2D/F2T2B. This is more efficient than repeated calls to
FFT2D/FFT2B.

Description

The routine FFT2D computes the discrete complex Fourier transform of a complex two
dimensional array of size (NRA = N) x (NCA = M). The method used is a variant of the Cooley-
Tukey algorithm , which is most efficient when N and M are each products of small prime
factors. If N and M satisfy this condition, then the computational effort is proportional to N M
log N M. This considerable savings has historically led people to refer to this algorithm as the
“fast Fourier transform” or FET.

Specifically, given an N x M array a, FFT2D returns in ¢ = COEF

- 27i(j-1)(n-1)/N_2zi(k-1)(m-1)/ M
_ =27zi(j-1)(n-1)/N _2xi(k-1)(m—
€= 2D e e

n=1 m=1

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

VNM S
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Finally, note that an unnormalized inverse is implemented in FFT2B (page 1048). The routine
FFT2D is based on the complex FFT in FFTPACK. The package FFTPACK was developed by
Paul Swarztrauber at the National Center for Atmospheric Research.

FFT2B

Computes the inverse Fourier transform of a complex periodic two-dimensional array.

Required Arguments

COEF — NRCOEF by NCCOEF complex array containing the Fourier coefficients to be
transformed. (Input)

A — NRCOEF by NCCOEF complex array containing the Inverse Fourier coefficients of COEF.
(Output)

Optional Arguments

NRCOEF — The number of rows of COEF. (Input)
Default: NRCOEF = size (COEF,1).

NCCOEF — The number of columns of COEF. (Input)
Default: NCCOEF = size (COEF,2).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDCCOEF = size (COEF,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)
Default: LDA = size (A1).

FORTRAN 90 Interface
Generic: CALL FFT2B(CCEF, A [,.])

Specific: The specific interface names are S_FFT2B and D_FFT2B.

FORTRAN 77 Interface

Single: CALL FFT2B (NRCOEF, NCCOEF, COEF, LDCOEF, A, LDA)
Double: The double precision name is DFFT2B.
Example

In this example, we first compute the Fourier transform of the 5 x 4 array
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X =n+5(m—1)

for 1 <n <5 and 1 <m <4 using the IMSL routine FFT2D. The result
x=c

is then inverted by a call to FFT2B. Note that the result is an array a satisfying a = (5)(4)x = 20x.
In general, FFT2B is an unnormalized inverse with expansion factor N M.

USE FFT2B_INT

USE FFT2D_INT

USE WRCRN INT

INTEGER M, N, NCA, NRA

COMPLEX CMPLX, X(5,4), A(5,4), COEF(5,4)
CHARACTER TITLE1*26, TITLE2*26, TITLE3*26
INTRINSIC CMPLX

TITLEl = 'The input matrix is below '

TITLE2 = ’'After FFT2D !
TITLE3 = ’'After FFTZ2B !
NRA =5
NCA = 4

! Fill X with initial data
DO 20 N=1, NRA
DO 10 M=1, NCA
X (N,M) = CMPLX (FLOAT (N+5*M-5),0.0)
10 CONTINUE
20 CONTINUE
CALL WRCRN (TITLEl, X)
CALL FFT2D (X, COEF)
CALL WRCRN (TITLE2, COEF)
CALL FFT2B (COEF, A)

CALL WRCRN (TITLE3, A)

END
Output
The input matrix is below
1 2 3 4
1 ( 1.00, 0.00) ( 6.00, 0.00) ( 11.00, 0.00) ( 16.00, 0.00)
2 ( 2.00, 0.00) ( 7.00, 0.00) ( 12.00, 0.00) ( 17.00, 0.00)
3 ( 3.00, 0.00) ( 8.00, 0.00) ( 13.00, 0.00) ( 18.00, 0.00)
4 ( 4.00, 0.00) ( 9.00, 0.00) ( 14.00, 0.00) ( 19.00, 0.00)
5 ( 5.00, 0.00) ( 10.00, 0.00) ( 15.00, 0.00) ( 20.00, 0.00)
After FFT2D
1 2 3 4
1 ( 210.0, 0.0) ( -50.0, 50.0) ( -50.0, 0.0) ( -50.0, -50.0)
2 ( -10.0, 13.8) ( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0)
3 ( -10.0, 3.2) ( 0.0, 0.0) « 0.0, 0.0) ( 0.0, 0.0)
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4 ( -10.0, =3.2) ( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0)
5 (-10.0, -13.8) ( 0.0, 0 ( 0.0, 0.0) ( 0.0, 0.0)
After FFT2B

1 2 3 4

1 ( 20.0, 0.0) ( 120.0, 0.0) ( 220.0, 0.0) ( 320.0, 0.0)

2 ( 40.0, 0.0) ( 140.0, 0.0) ( 240.0, 0.0) ( 340.0, 0.0)

3 ( 60.0, 0.0) ( 160.0, 0.0) ( 260.0, 0.0) ( 360.0, 0.0)

4 ( 80.0, 0.0) (180.0, 0.0) ( 280.0, 0.0) ( 380.0, 0.0)

5 ( 100.0, 0.0) ( 200.0, 0.0) ( 300.0, 0.0) ( 400.0, 0.0)
Comments

1. Workspace may be explicitly provided, if desired, by use of F2T2B/DF2T2B. The

reference is:

CALL F2T2B (NRCOEF, NCCOEF, A, LDA, COEF, LDCOEF,

WFF1l, WFF2, CWK, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * NRCOEF + 15 initialized by FFTCI (page 1022). The
initialization depends on NRCOEF. (Input)

WFF2 — Real array of length 4 * NCCOEF + 15 initialized by FFTCI. The initialization
depends on NCCOEF. (Input)

CWK — Complex array of length 1. (Workspace)

CPY — Real array of length 2 * MAX(NRCOEF, NCCOEF). (Workspace)

2. The routine FFT2B is most efficient when NRCOEF and NCCOEF are the product of
small primes.

3. The arrays COEF and A may be the same.

4, If FFT2D/FFT2B is used repeatedly, with the same values for NRCOEF and NCCOEF,
then use FFTCI to fill WFF1(N = NRCOEF) and WEF2(N = NCCOEF). Follow this with
repeated calls to F2T2D/F2T2B. This is more efficient than repeated calls to
FFT2D/FFT2B.

Description

The routine FFT2B computes the inverse discrete complex Fourier transform of a complex two-
dimensional array of size (NRCOEF = N) X (NCCOEF = M). The method used is a variant of the
Cooley-Tukey algorithm , which is most efficient when N and M are both products of small
prime factors. If N and M satisfy this condition, then the computational effort is proportional to
N M log N M. This considerable savings has historically led people to refer to this algorithm as
the “fast Fourier transform” or FFT.
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Specifically, given an N x M array ¢ = COEF, FFT2B returns in a
R 27i(j-1)(n-1)/N 2xi(k-1)(m-1)/ M
_ mi(j-1)(n-1)/1 mi(k-1)(m—
=22 Cme e
n=1 m=1

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

SN NM

Finally, note that an unnormalized inverse is implemented in FFT2D (page 1045). The routine
FFT2B is based on the complex FFT in FFTPACK. The package FFTPACK was developed by
Paul Swarztrauber at the National Center for Atmospheric Research.

FFT3F

Computes Fourier coefficients of a complex periodic three-dimensional array.

Required Arguments

A — Three-dimensional complex matrix containing the data to be transformed. (Input)

B — Three-dimensional complex matrix containing the Fourier coefficients of A. (Output)
The matrices A and B may be the same.

Optional Arguments

N1 — Limit on the first subscript of matrices A and B. (Input)
Default: N1 = size(a, 1)

N2 — Limit on the second subscript of matrices A and B. (Input)
Default: N2 = size(a, 2)

N3 — Limit on the third subscript of matrices 2 and B. (Input)
Default: N3 = size(a, 3)

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: DA = size (a,1).

MDA — Middle dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: MDA = size (2,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: L.DB = size (B,1).
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MDB — Middle dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: MDB = size (B,2).

FORTRAN 90 Interface
Generic: CALL FFT3F(A B ,.])

Specific: The specific interface names are S_FFT3F and D_FFT3F.

FORTRAN 77 Interface

Single: CALL FFT3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB)
Double: The double precision name is DFFT3F.
Example

In this example, we compute the Fourier transform of the pure frequency input for a 2 x 3 x 4
array
a 27ri(n—1)1/2eZir[(m—l)Z/}eZir[(/—l)ZM

nml

for1<n<2,1<m<3,and 1 </ <4 using the IMSL routine FFT3F. The result
a=c
has all zeros except in the (2, 3, 3) position.

USE FFT3F_INT
USE UMACH_INT
USE CONST_ INT
INTEGER 1DA, LDB, MDA, MDB, NDA, NDB
PARAMETER (LDA=2, LDB=2, MDA=3, MDB=3, NDA=4, NDB=4)
! SPECIFICATIONS FOR LOCAL VARIABLES

INTEGER I, J, K, L, M, N, N1, N2, N3, NOUT
REAL PI
COMPLEX A (LDA,MDA,NDA), B(LDB,MDB,NDB), C, H

! SPECIFICATIONS FOR INTRINSICS
INTRINSIC CEXP, CMPLX
COMPLEX CEXP, CMPLX
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
! Get output unit number
CALL UMACH (2, NOUT)
PI = CONST('PI")
CMPLX (0.0,2.0*PI)
! Set array A
DO 30 N=1, 2

Q
Il

DO 20 M=1, 3
DO 10 L=1, 4
H = C*(N-1)*1/2 + C*(M-1)*2/3 + C*(L-1)*2/4
A(N,M,L) = CEXP (H)
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10 CONTINUE
20 CONTINUE
30 CONTINUE

CALL FFT3F (A, B)

WRITE (NOUT,99996)
DO 50 I=1, 2
WRITE (NOUT,99998) I
DO 40 J=1, 3
WRITE (NOUT,99999) (A(I,J,K),K=1,4)
40 CONTINUE
50 CONTINUE

WRITE (NOUT,99997)
DO 70 I=1, 2
WRITE (NOUT,99998) I
DO 60 J=1, 3
WRITE (NOUT,99999) (B(I,J,K),K=1,4)
60 CONTINUE
70 CONTINUE

99996 FORMAT (13X, ’'The input for FFT3F is’)
99997 FORMAT (/, 13X, ’'The results from FFT3F are’)
99998 FORMAT (/, ' Face no. ', I1)
99999 FORMAT (1X, 4(' (',F6.2,’,’,F6.2,7)",3X))
END

Output

The input for FFT3F is

Face no. 1

( 1.00, 0.00) (-1.00, 0.00) ( 1.00, 0.00) (-1.00, 0.00)
( -0.50, -0.87) ( 0.50, 0.87) ( -0.50, -0.87) ( 0.50, 0.87)
( -0.50, 0.87) ( 0.50, -0.87) ( -0.50, 0.87) ( 0.50, -0.87)
Face no. 2

(-1.00, 0.00) ( 1.00, 0.00) (-1.00, 0.00) ( 1.00, 0.00)
( 0.50, 0.87) ( -0.50, -0.87) ( 0.50, 0.87) ( -0.50, -0.87)
( 0.50, -0.87) ( -0.50, 0.87) ( 0.50, -0.87) ( -0.50, 0.87)
The results from FFT3F are

Face no. 1

( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
Face no. 2

( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 0.00, 0.00) (24.00, 0.00) ( 0.00, 0.00)
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Comments

1. Workspace may be explicitly provided, if desired, by use of F2T3F/DF2T3F. The
reference is:

CALL F2T3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB,
WFFl, WFF2, WFF3, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * N1 + 15 initialized by FFTCT (page 1022). The
initialization depends on N1. (Input)

WFF2 — Real array of length 4 * N2 + 15 initialized by FFTCI. The initialization
depends on N2. (Input)

WFF3 — Real array of length 4 * N3 + 15 initialized by FFTCI. The initialization
depends on N3. (Input)

CPY — Real array of size 2 * MAX(N1, N2, N3). (Workspace)

2. The routine FFT3F is most efficient when N1, N2, and N3 are the product of small
primes.
3. If FFT3F/FFT3B is used repeatedly with the same values for N1, N2 and N3, then use

FFTCI to fill WFF1(N = N1), WFF2(N = N2), and WFF3(N = N3). Follow this with
repeated calls to F2T3F/F2T3B. This is more efficient than repeated calls to
FFT3F/FFT3B.

Description

The routine FFT3F computes the forward discrete complex Fourier transform of a complex
three-dimensional array of size (N1 = N) x (N2 = M) x (N3 = L). The method used is a variant of
the Cooley-Tukey algorithm , which is most efficient when N, M, and L are each products of
small prime factors. If NV, M, and L satisfy this condition, then the computational effort is
proportional to N M L log N M L. This considerable savings has historically led people to refer
to this algorithm as the “fast Fourier transform” or FFT.

Specifically, given an N x M x L array a, FET3F returns in ¢ = COEF

N M L
_ “27i(j-1)(n-1)/N_-2zi(k=1)(m=1)/M _-2zi(k-1)(I-1)/L
Ciu —ZZZ%W@ v N )

n=1 m=1 [=1

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NMLS

Finally, note that an unnormalized inverse is implemented in FFT3B. The routine FFT3F is
based on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.
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FFT3B

Computes the inverse Fourier transform of a complex periodic three-dimensional array.

Required Arguments
A — Three-dimensional complex matrix containing the data to be transformed. (Input)
B — Three-dimensional complex matrix containing the inverse Fourier coefficients of A.

(Output)
The matrices A and B may be the same.

Optional Arguments

NI — Limit on the first subscript of matrices A and B. (Input)
Default: N1 = size (a,1).

N2 — Limit on the second subscript of matrices A and B. (Input)
Default: N2 = size (2,2).

N3 — Limit on the third subscript of matrices A and B. (Input)
Default: N3 = size (2,3).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A1).

MDA — Middle dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: MDA = size (A,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

MDB — Middle dimension of B exactly as specified in the dimension statement of the calling

program. (Input)
Default: MDB = size (B,2).

FORTRAN 90 Interface
Generic: CALL FFT3B(A B [,.])

Specific: The specific interface names are S_FFT3B and D_FFT3B.
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FORTRAN 77 Interface

Single:

Double:

Example

CALL FFT3B

(N1, N2, N3, A, LDA, MDA, B, LDB, MDB)

The double precision name is DFFT3B.

In this example, we compute the Fourier transform of the 2 x 3 x 4 array

X =n+2(m—1)+2(3)(l—1)

nml

for1<n<2,1<m<3,and 1 << 4 using the IMSL routine FFT3F. The result

a=x

is then inverted using FFT3B. Note that the result is an array b satisfying b = 2(3)(4)x = 24x. In
general, FFT3B is an unnormalized inverse with expansion factor N M L.

USE FFT3B_INT
USE FFT3F INT
USE UMACH_INT

INTEGER LDA, L1LDB, MDA, MDB, NDA, NDB
PARAMETER (LDA=2, LDB=2, MDA=3, MDB=3, NDA=4, NDB=4)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER I, J, K, L, M, N, N1, N2, N3, NOUT
COMPLEX A (LDA,MDA,NDA), B(LDB,MDB,NDB), X (LDB,MDB,NDB)
! SPECIFICATIONS FOR INTRINSICS
INTRINSIC CEXP, CMPLX
COMPLEX CEXP, CMPLX
! SPECIFICATIONS FOR SUBROUTINES
! Get output unit number
CALL UMACH (2, NOUT)
Nl = 2
N2 = 3
N3 = 4
! Set array X
DO 30 N=1, 2
DO 20 M=1, 3
DO 10 L=1, 4
X(N,M,L) = N + 2*(M-1) + 2*3*(L-1)
10 CONTINUE
20 CONTINUE
30 CONTINUE
|
CALL FFT3F (X, A)
CALL FFT3B (A, B)
|
WRITE (NOUT, 99996)
DO 50 1I=1, 2
WRITE (NOUT,99998) I
DO 40 J=1, 3
WRITE (NOUT,99999) (X(I,J,K),K=1,4)
40 CONTINUE

50 CONTINUE
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WRITE (NOUT, 99997)
DO 70 I=1, 2
WRITE (NOUT,99998) I
DO 60 J=1, 3
WRITE (NOUT,99999) (A(I,J,K),K=1,4)
60 CONTINUE
70 CONTINUE

WRITE (NOUT, 99995)
DO 90 1I=1, 2
WRITE (NOUT,99998) I
DO 80 J=1, 3
WRITE (NOUT,99999) (B(I,J,K),K=1,4)
80 CONTINUE
90 CONTINUE
99995 FORMAT (13X, ’'The unnormalized inverse is’)
99996 FORMAT (13X, ’'The input for FFT3F is’)
99997 FORMAT (/, 13X, ’'The results from FFT3F are’)
99998 FORMAT (/, ' Face no. ', I1)
99999 FORMAT (1X, 4(' (',F6.2,",',F6.2,7)",3X))
END

Output

The input for FFT3F is

Face no. 1

( 1.00, 0.00) ( 7.00, 0.00) ( 13.00, 0.00) (19.00, 0.00)
( 3.00, 0.00) ( 9.00, 0.00) ( 15.00, 0.00) (21.00, 0.00)
( 5.00, 0.00) ( 11.00, 0.00) (17.00, 0.00) ( 23.00, 0.00)
Face no. 2

( 2.00, 0.00) ( 8.00, 0.00) ( 14.00, 0.00) ( 20.00, 0.00)
( 4.00, 0.00) ( 10.00, 0.00) ( 16.00, 0.00) ( 22.00, 0.00)
( 6.00, 0.00) ( 12.00, 0.00) ( 18.00, 0.00) (24.00, 0.00)
The results from FFT3F are

Face no. 1

(300.00, 0.00) (=72.00, 72.00) (-72.00, 0.00) (=72.00,-72.00)
(-24.00, 13.8606) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
(-24.00,-13.86) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
Face no. 2

(-12.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
The unnormalized inverse is

Face no. 1

(24.00, 0.00) (168.00, 0.00) (312.00, 0.00) (456.00, 0.00)
( 72.00, 0.00) (216.00, 0.00) (360.00, 0.00) (504.00, 0.00)
(120.00, 0.00) (264.00, 0.00) (408.00, 0.00) (552.00, 0.00)
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Face no. 2

( 48.00, 0.00) (192.00, 0.00) (336.00, 0.00) (480.00, 0.00)

( 96.00, 0.00) (240.00, 0.00) (384.00, 0.00) (528.00, 0.00)

(144.00, 0.00) (288.00, 0.00) (432.00, 0.00) (576.00, 0.00)
Comments

1. Workspace may be explicitly provided, if desired, by use of F2T3B8/DF2T3B. The
reference is:

CALL F2T3B (N1, N2, N3, A, LDA, MDA, B, LDB, MDB,
WFFl, WFF2, WFF3, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * N1 + 15 initialized by FFTCI (page 1022). The
initialization depends on N1. (Input)

WFF2 — Real array of length 4 * N2 + 15 initialized by FFTCI. The initialization
depends on N2. (Input)

WFF3 — Real array of length 4 * N3 + 15 initialized by FFTCI. The initialization
depends on N3. (Input)

CPY — Real array of size 2 * MAX(N1, N2, N3). (Workspace)

2. The routine FFT3B is most efficient when N1, N2, and N3 are the product of small
primes.
3. If FFT3F/FFT3B is used repeatedly with the same values for N1, N2 and N3, then use

FFTCI to fill WFF1(N = N1), WFF2(N = N2), and WFF3(N = N3). Follow this with
repeated calls to F2T3F/F2T3B. This is more efficient than repeated calls to
FFT3F/FFT3B.

Description

The routine FFT3B computes the inverse discrete complex Fourier transform of a complex
three-dimensional array of size (N1 = N) x (N2 = M) x (N3 = L). The method used is a variant of
the Cooley-Tukey algorithm, which is most efficient when N, M, and L are each products of
small prime factors. If NV, M, and L satisfy this condition, then the computational effort is
proportional to N M L log N M L. This considerable savings has historically led people to refer
to this algorithm as the “fast Fourier transform” or FFT.

Specifically, given an N x M x L array a, FFT3B returns in b

N M
27i(j-1)(n=1)/N 2xi(k=1)(m-1)/M 2xi(k-1)(/-1)/L
9530 3) W M AP G R

L
=1

n=1 m=1 [

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm
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NMLS

Finally, note that an unnormalized inverse is implemented in FFT3F. The routine FFT3B is
based on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.

RCONV

Computes the convolution of two real vectors.

Required Arguments

X — Real vector of length Nx. (Input)

Y — Real vector of length Ny, (Input)

Z — Real vector of length NZ ontaining the convolution of x and Y. (Output)

ZHAT — Real vector of length NZ containing the discrete Fourier transform of z. (Output)

Optional Arguments

IDO — Flag indicating the usage of RCONV. (Input)
Default: IDO =0.

IDO Usage
0 If this is the only call to RCONV.

If rcoNV is called multiple times in sequence with the same NX, NY, and TPAD, IDO
should be set to

1 on the first call
2 on the intermediate calls
3 on the final call.

NX — Length of the vector x. (Input)
Default: NX = size (X,1).

NY — Length of the vector Y. (Input)
Default: NY = size (Y,1).

IPAD — 1pPAD should be set to zero for periodic data or to one for nonperiodic data. (Input)
Default: | PAD=0.
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NZ — Length of the vector z. (Input/Output)
Upon input: When IPAD is zero, Nz must be at least MAX(NX, NY). When IPAD is one,
NZ must be greater than or equal to the smallest integer greater than or equal to (Nx +
NY —1) of the form (2%) * (3") * (5") where alpha, beta, and gamma are nonnegative
integers. Upon output, the value for Nz that was used by RCONV.
Default: NZ = size (Z,1).

FORTRAN 90 Interface

Generic: CALL RCONV (X, Y, %, ZHAT [,..])

Specific: The specific interface names are S_RCONV and D_RCONV.

FORTRAN 77 Interface

Single: CALL RCONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT)
Double: The double precision name is DRCONV.
Example

In this example, we compute both a periodic and a non-periodic convolution. The idea here is
that one can compute a moving average of the type found in digital filtering using this routine.
The averaging operator in this case is especially simple and is given by averaging five
consecutive points in the sequence. The periodic case tries to recover a noisy sin function by
averaging five nearby values. The nonperiodic case tries to recover the values of an exponential
function contaminated by noise. The large error for the last value printed has to do with the fact
that the convolution is averaging the zeroes in the “pad” rather than function values. Notice that
the signal size is 100, but we only report the errors at ten points.

USE IMSL LIBRARIES
INTEGER NFLTR, NY
PARAMETER (NFLTR=5, NY=100)

INTEGER I, IPAD, K, MOD, NOUT, NZ
REAL ABS, EXP, F1, F2, FLOAT, FLTR(NFLTR), &
FLTRER, ORIGER, SIN, TOTALl, TOTAL2, TWOPI, X, &
Y (NY), Z(2* (NFLTR+NY-1)), ZHAT (2* (NFLTR+NY-1))
INTRINSIC ABS, EXP, FLOAT, MOD, SIN
! DEFINE FUNCTIONS
F1(X) = SIN(X)
F2 (X) EXP (X)

CALL RNSET (1234579)
CALL UMACH (2, NOUT)
TWOPI = CONST (’'PI")
TWOPI = 2.0*TWOPI
! SET UP THE FILTER
DO 10 I=1, 5
FLTR(I) = 0.2
10 CONTINUE

I
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DO 20 1I=1,
TWOPI*FLOAT (I-1) /FLOAT (NY-1)
RNUNF ()

F1(X) 4+ 0.5*Y(I) - 0.25

X
Y(I) =
Y(I) =
20 CONTINUE

SET UP Y-VECTOR FOR THE PERIODIC
CASE.
NY

CALL THE CONVOLUTION ROUTINE FOR THE
PERIODIC CASE.

NZ = 2* (NFLTR+NY-1)
CALL RCONV (FLTR, Y, %, ZHAT, IPAD=0, NZ=NZ)

PRINT RESULTS

WRITE (NOUT, 99993)
WRITE (NOUT, 99995)
TOTALl = 0.0

TOTAL2

= 0.0
DO 30 1I=1,

NY
COMPUTE THE OFFSET FOR THE Z-VECTOR

IF (I .GE. NY-1) THEN

K =
ELSE

K =
END IF

X
ORIGER
FLTRER

IF (MOD
FLTR

TOTALL

TOTAL2 =

30 CONTINUE

I

- NY + 2

+ 2

= TWOPI*FLOAT (I-1)/FLOAT (NY-1)

&=~

ABS (Y (I)-F1(X))
ABS (Z (K) -F1 (X))

I,11) .EQ. 1) WRITE (NOUT,99997) X, F1(X), ORIGER, &
R

TOTAL1l + ORIGER
TOTAL2 + FLTRER

WRITE (NOUT, 99998) TOTAL1/FLOAT (NY)
WRITE (NOUT,99999) TOTAL2/FLOAT (NY)

DO 40 I=1

A

Y (I)

Y (I)
40 CONTINUE

SET UP Y-VECTOR FOR THE NONPERIODIC

CASE.
, NY
= FLOAT (I-1) /FLOAT (NY-1)
RNUNF ()
F2(A) + 0.5*Y(I) - 0.25

CALL THE CONVOLUTION ROUTINE FOR THE
NONPERIODIC CASE.

NZ = 2* (NFLTR+NY-1)
CALL RCONV (FLTR, Y, Z, ZHAT, IPAD=1)

PRINT RESULTS

WRITE (NOUT, 99994)
WRITE (NOUT, 99996)

TOTALl = 0.0
0.0

TOTAL2 =

DO 50 I=1
X
ORIGER

I~

FLTRER =
IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F2(X), ORIGER, &

NY

FLOAT (I-1) /FLOAT (NY-1)
ABS (Y (I)-F2 (X))

ABS (Z (I+2)-F2 (X))
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FLTRER
TOTAL1 = TOTALl1 + ORIGER
TOTAL2 = TOTAL2 + FLTRER
50 CONTINUE
WRITE (NOUT,99998) TOTAL1/FLOAT (NY)
WRITE (NOUT,99999) TOTALZ2/FLOAT (NY)
99993 FORMAT ('’ Periodic Case’)
99994 FORMAT (/,’ Nonperiodic Case’)

99995 FORMAT (8X, ’'x’, 9X, ’'sin(x)’, 6X, ’'Original Error’, 5X, &
"Filtered Error’)
99996 FORMAT (8X, ’'x’, 9X, 'exp(x)’, 6X, ’'Original Error’, 5X, &
"Filtered Error’)
99997 FORMAT (1X, F10.4, F13.4, 2F18.4)
99998 FORMAT ('’ Average absolute error before filter:’,
99999 FORMAT ('’ Average absolute error after filter:’, F11.5)
END
Output
Periodic Case
X sin (x) Original Error Filtered Error
0.0000 0.0000 0.0811 0.0587
0.6981 0.6428 0.0226 0.0781
1.3963 0.9848 0.1526 0.0529
2.0944 0.8660 0.0959 0.0125
2.7925 0.3420 0.1747 0.0292
3.4907 -0.3420 0.1035 0.0238
4.1888 -0.8660 0.0402 0.0595
4.8869 -0.9848 0.0673 0.0798
5.5851 -0.6428 0.1044 0.0074
6.2832 0.0000 0.0154 0.0018
Average absolute error before filter: 0.12481
Average absolute error after filter: 0.04778
Nonperiodic Case
X exp (x) Original Error Filtered Error
0.0000 1.0000 0.1476 0.3915
0.1111 1.1175 0.0537 0.0326
0.2222 1.2488 0.1278 0.0932
0.3333 1.3956 0.1136 0.0987
0.4444 1.5596 0.1617 0.0964
0.5556 1.7429 0.0071 0.0662
0.6667 1.9477 0.1248 0.0713
0.7778 2.1766 0.1556 0.0158
0.8889 2.4324 0.1529 0.0696
1.0000 2.7183 0.2124 1.0562
Average absolute error before filter: 0.12538
Average absolute error after filter: 0.07764
Comments
1. Workspace may be explicitly provided, if desired, by use of R20Nv/DR20NV. The

reference is:
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CALL R20NV (IDO, NX, X, NY, Y, IPAD, NZ, %, ZHAT
XWK, YWK, WK)

The additional arguments are as follows:
XWK — Real work array of length Nz.
YWK — Real work array of length nz.

WK — Real work arrary of length 2 * NZ + 15.

2. Informational error
Type Code
4 1 The length of the vector z must be large enough to hold the results.

An acceptable length is returned in NZ.

Description

The routine RCONV computes the discrete convolution of two sequences x and y. More precisely,
let n, be the length of x and n,, denote the length of y. If a circular convolution is desired, then

IPAD must be set to zero. We set
ng = max{ny, n,}

and we pad out the shorter vector with zeroes. Then, we compute

n,
Z = in—jﬂyj
J=1

where the index on x is interpreted as a positive number between 1 and n,, modulo #,.

The technique used to compute the z;’s is based on the fact that the (complex discrete) Fourier
transform maps convolution into multiplication. Thus, the Fourier transform of z is given by

£(n)=3(n)3(n)

where

m=1

The technique used here to compute the convolution is to take the discrete Fourier transform of
x and y, multiply the results together component-wise, and then take the inverse transform of
this product. It is very important to make sure that », is a product of small primes if IPAD is set

to zero. If n, is a product of small primes, then the computational effort will be proportional to
n, log(n,). If IPAD is one, then a good value is chosen for n, so that the Fourier transforms are
efficient and n, > n, + n,, — 1. This will mean that both vectors will be padded with zeroes.

We point out that no complex transforms of x or y are taken since both sequences are real, we

can take real transforms and simulate the complex transform above. This can produce a savings
of a factor of six in time as well as save space over using the complex transform.
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CCONV

Computes the convolution of two complex vectors.

Required Arguments

X — Complex vector of length Nx. (Input)
Y — Complex vector of length Nvy. (Input)
Z — Complex vector of length Nz containing the convolution of x and Y. (Output)

ZHAT — Complex vector of length Nz containing the discrete complex Fourier transform of
Z. (Output)

Optional Arguments

IDO — Flag indicating the usage of cconv. (Input)
Default: IDO =0.

IDO Usage
0 If this is the only call to cCONV.

If cconv is called multiple times in sequence with the same NX, NY, and TPAD, IDO
should be set to:

1 on the first call
2 on the intermediate calls
3 on the final call.

NX — Length of the vector x. (Input)
Default: NX = size ( X,1).

NY — Length of the vector Y. (Input)
Default: NY = size (Y,1).

IPAD — 1pAD should be set to zero for periodic data or to one for nonperiodic data. (Input)
Default: | PAD=0.

NZ — Length of the vector z. (Input/Output)
Upon input: When IPAD is zero, Nz must be at least MAX(NX, NY). When IPAD is one,
Nz must be greater than or equal to the smallest integer greater than or equal to (NX +
NY — 1) of the form (2%) * (3%) * (5") where alpha, beta, and gamma are nonnegative
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integers. Upon output, the value for Nz that was used by cconv.
Default: NZ = size (Z,1).

FORTRAN 90 Interface
Generic: CALL CCONV (X, Y, Z, ZHAT [,.])

Specific: The specific interface names are S_CCONV and D_CCONV.

FORTRAN 77 Interface

Single: CALL CCONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT)
Double: The double precision name is DCCONV.
Example

In this example, we compute both a periodic and a non-periodic convolution. The idea here is
that one can compute a moving average of the type found in digital filtering using this routine.
The averaging operator in this case is especially simple and is given by averaging five
consecutive points in the sequence. The periodic case tries to recover a noisy function f; (x) =
cos(x) + i sin(x) by averaging five nearby values. The nonperiodic case tries to recover the

values of the function f;(x) = e, (x) contaminated by noise. The large error for the first and last
value printed has to do with the fact that the convolution is averaging the zeroes in the “pad”
rather than function values. Notice that the signal size is 100, but we only report the errors at ten

points.
USE IMSL LIBRARIES
INTEGER NFLTR, NY

PARAMETER (NFLTR=5, NY=100)

INTEGER I, IPAD, K, MOD, NOUT, NZ
REAL CABS, COS, EXP, FLOAT, FLTRER, ORIGER, &
SIN, TOTALl, TOTAL2, TWOPI, X, T1, T2
COMPLEX CMPLX, F1, F2, FLTR(NFLTR), Y(NY), Z(2* (NFLTR+NY-1)), &

ZHAT (2* (NFLTR+NY-1))
INTRINSIC CABS, CMPLX, COS, EXP, FLOAT, MOD, SIN
! DEFINE FUNCTIONS
F1(X) = CMPLX (COS (X),SIN (X))
F2 (X) = EXP (X)*CMPLX (COS (X), SIN (X))

CALL RNSET (1234579)

CALL UMACH (2, NOUT)

TWOPI = CONST (’'PI")

TWOPI = 2.0*TWOPI
! SET UP THE FILTER

CALL CSET(NFLTR, (0.2,0.0),FLTR, 1)
! SET UP Y-VECTOR FOR THE PERIODIC
! CASE.

DO 20 1I=1, NY

X = TWOPI*FLOAT (I-1) /FLOAT (NY-1)
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T1
T2
Y (I)

20 CONTINUE

30

40

RNUNF ()
RNUNF ()
F1(X) + CMPLX(0.5*T1-0.25,0.5*T2-0.25)

CALL THE CONVOLUTION ROUTINE FOR THE
PERIODIC CASE.

NZ = 2* (NFLTR+NY-1)
CALL CCONV (FLTR, Y, Z, ZHAT)

PRINT RESULTS

WRITE (NOUT, 99993)
WRITE (NOUT, 99995)
TOTALl = 0.0

TOTALZ2

0.0

DO 30 I=1, NY

COMPUTE THE OFFSET FOR THE Z-VECTOR

IF (I .GE. NY-1) THEN
K=1--NY + 2

ELSE
K=1+2

END IF

X = TWOPI*FLOAT (I-1) /FLOAT (NY-1)

ORIGER = CABS (Y (I)-F1(X))

FLTRER = CABS (Z (K)-F1 (X))

IF (MOD(I,11l) .EQ. 1) WRITE (NOUT,99997) X, F1l(X), ORIGER, &
FLTRER

TOTALl = TOTAL1l + ORIGER

TOTAL2 = TOTAL2 + FLTRER

CONTINUE

WRITE (NOUT,99998) TOTALL/FLOAT (NY)
WRITE (NOUT, 99999) TOTAL2/FLOAT (NY)

DO 40 I
X =
TlL =
T2 =
Y(I) =

CONTINUE

1

SET UP Y-VECTOR FOR THE NONPERIODIC

CASE.
, NY
FLOAT (I-1) /FLOAT (NY-1)
RNUNF ()
RNUNF ()

F2(X) + CMPLX(0.5*T1-0.25,0.5*T2-0.25)

CALL THE CONVOLUTION ROUTINE FOR THE
NONPERIODIC CASE.

NZ = 2* (NFLTR+NY-1)
CALL CCONV (FLTR, Y, Z, ZHAT, IPAD=1)

PRINT RESULTS

WRITE (NOUT, 99994)
WRITE (NOUT, 99996)

TOTALl = 0.0
TOTAL2 = 0.0
DO 50 I=1, NY
X = FLOAT (I-1) /FLOAT (NY-1)
ORIGER = CABS (Y (I)-F2(X))
FLTRER = CABS (Z (I+2)-F2 (X))
IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F2(X), ORIGER, &
FLTRER
TOTALl = TOTAL1l + ORIGER
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TOTAL2 = TOTAL2 + FLTRER
50 CONTINUE
(NOUT, 99998)
(NOUT, 99999)
99993 FORMAT ('’ Periodic

WRITE
WRITE

99994 FORMAT

99995 FORMAT (8X, 'x’,
"Filtered Error’)
99996 FORMAT (8X, 'x’,
"Filtered Error’)

15X,

15X,

TOTAL1/FLOAT (NY)
TOTAL2/FLOAT (NY)

Case’
(/, " Nonperiodic Case’)
"fl(x)’, 8X, ’'Original Error’, 5X, &

)

"f2(x)’, 8X, ’'Original Error’, 5X, &

99997 FORMAT (1X, F10.4, 5X, ' (', ¥7.4, ’',’, F8.4, " )', 5X, F8.4, &
10X, F8.4)
99998 FORMAT ('’ Average absolute error before filter:’, F11.5)
99999 FORMAT ("’ Average absolute error after filter:’, F12.5)
END
Output
Periodic Case
X f1 (x) Original Error Filtered Error
0.0000 ( 1.0000, 0.0000 ) 0.1666 0.0773
0.6981 ( 0.7660, 0.6428 ) 0.1685 0.1399
1.3963 (0.1736, 0.9848 ) 0.1756 0.0368
2.0944 (-0.5000, 0.8660 ) 0.2171 0.0142
2.7925 (-0.9397, 0.3420 ) 0.1147 0.0200
3.4907 (-0.9397, -0.3420 ) 0.0998 0.0331
4.1888 (-0.5000, -0.8660 ) 0.1137 0.0586
4.8869 (0.1736, -0.9848 ) 0.2217 0.0843
5.5851 (0.7660, -0.6428 ) 0.1831 0.0744
6.2832 ( 1.0000, 0.0000 ) 0.3234 0.0893
Average absolute error before filter: 0.19315
Average absolute error after filter: 0.08296
Nonperiodic Case
X £2 (x) Original Error Filtered Error
0.0000 ( 1.0000, 0.0000 ) 0.0783 0.4336
0.1111 ( 1.1106, 0.1239 ) 0.2434 0.0477
0.2222 (1.2181, 0.2752 ) 0.1819 0.0584
0.3333 (1.3188, 0.4566 ) 0.0703 0.1267
0.4444 (1.4081, 0.6706 ) 0.1458 0.0868
0.5556 (1.4808, 0.9192 ) 0.1946 0.0930
0.6667 ( 1.5307, 1.2044 ) 0.1458 0.0734
0.7778 ( 1.5508, 1.5273) 0.1815 0.0690
0.8889 ( 1.5331, 1.8885) 0.0805 0.0193
1.0000 ( 1.4687, 2.2874 ) 0.2396 1.1708
Average absolute error before filter: 0.18549
Average absolute error after filter: 0.09636
Comments
1. Workspace may be explicitly provided, if desired, by use of c2oNv/Dc20NV. The
reference is:
CALL C20NV (IDO, NX, X, NY, Y, IPAD, NZ, %, ZHAT,
XWK, YWK, WK)
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The additional arguments are as follows:
XWK — Complex work array of length NZ.
YWK — Complex work array of length Nz.

WK — Real work array of length 6 * Nz + 15.

2. Informational error
Type Code
4 1 The length of the vector z must be large enough to hold the results.

An acceptable length is returned in NZ.

Description

The subroutine CCONV computes the discrete convolution of two complex sequences x and y.
More precisely, let n, be the length of x and n, denote the length of y. If a circular convolution is

desired, then IPAD must be set to zero. We set
n, = max{ny, n,}

and we pad out the shorter vector with zeroes. Then, we compute

nZ
Z; = inam Vi
Jj=1

where the index on x is interpreted as a positive number between 1 and n,, modulo #,.

The technique used to compute the z;’s is based on the fact that the (complex discrete) Fourier
transform maps convolution into multiplication. Thus, the Fourier transform of z is given by

2(n)=3(n)3(n)

where

2(”) — i z 6727!1'(»171)(7171)/)1:

m=1

The technique used here to compute the convolution is to take the discrete Fourier transform of
x and y, multiply the results together component-wise, and then take the inverse transform of
this product. It is very important to make sure that 7, is a product of small primes if TPAD is set
to zero. If n, is a product of small primes, then the computational effort will be proportional to
n, log(n,). If IPAD is one, then a a good value is chosen for 7, so that the Fourier transforms are

efficient and n, > n, + n,, — 1. This will mean that both vectors will be padded with zeroes.

RCORL

Computes the correlation of two real vectors.

1068 e Chapter 6: Transforms IMSL MATH/LIBRARY



Required Arguments

X — Real vector of length N.  (Input)
Y — Real vector of length . (Input)
Z — Real vector of length NZ containing the correlation of X and Y. (Output)

ZHAT — Real vector of length N7 containing the discrete Fourier transform of z. (Output)

Optional Arguments

IDO — Flag indicating the usage of RCORL. (Input)
Default: IDO = 0.

IDO Usage
0 If this is the only call to RCORL.

If RCORL is called multiple times in sequence with the same NX, NY, and TPAD, IDO
should be set to:

1 on the first call
2 on the intermediate calls
3 on the final call.

N — Length of the x and Y vectors. (Input)
Default: N= size (X,1).

IPAD — 1pPAD should be set as follows. (Input)
Default: | PAD= 0.

IPAD Value
1pPAD O for periodic data with X and v different.
1PAD | for nonperiodic data with X and v different.
1pAD 2 for periodic data with x and Y identical.
1PAD 3 for nonperiodic data with X and v identical.
NZ — Length of the vector Z. (Input/Output)
Upon input: When IPAD is zero or two, NZ must be at least (2 * N — 1). When IPAD is

one or three, NZ must be greater than or equal to the smallest integer greater than or
equal to (2 * N — 1) of the form (2%) * (3P) * (5") where alpha, beta, and gamma are
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nonnegative integers. Upon output, the value for NZ that was used by RCORL.
Default: NZ = size (Z,1).

FORTRAN 90 Interface

Generic: CALL RCORL (X, Y, 2, ZHAT [,.]})

Specific: The specific interface names are S RCORL and D_RCORL.

FORTRAN 77 Interface

Single: CALL RCORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT)
Double: The double precision name is DRCORL.
Example

In this example, we compute both a periodic and a non-periodic correlation between two distinct
signals x and y. In the first case we have 100 equally spaced points on the interval [0, 2n] and
fi(x) = sin(x). We define x and y as follows

y =reri=hy ioon
n—1
i-1 =z
. =fQRr—+—) i=1,...,n
Y, h@r——+2)

Note that the maximum value of z (the correlation of x with y) occurs at i = 26, which
corresponds to the offset.

The nonperiodic case uses the function f5(x) = sin(x?). The two input signals are on the interval
[0, 4x].

x =Gl i=1,...,n
n—1

[ e S
n—1

The offset of x to y is again (roughly) 26 and this is where z has its maximum value.

USE IMSL LIBRARIES
INTEGER N
PARAMETER (N=100)

INTEGER I, IPAD, K, NOUT, NZ
REAL A, F1, F2, FLOAT, PI, SIN, X(N), XNORM, &
Y (N), YNORM, Z(4*N), ZHAT (4*N)
INTRINSIC FLOAT, SIN
! Define functions
F1(A) = SIN(A)
F2 (A) = SIN(A*A)
i
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CALL UMACH (2, NOUT)
PI = CONST ('pi’)
! Set up the vectors for the
! periodic case.
DO 10 I=1, N
X(I) = F1(2.0*PI*FLOAT (I-1)/FLOAT (N-1))
Y(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT (N-1)+PI/2.0)
10 CONTINUE
! Call the correlation routine for the
! periodic case.
NZ = 2*N
CALL RCORL (X, Y, Z, ZHAT)
! Find the element of Z with the
! largest normalized value.
XNORM = SNRM2 (N, X, 1)
YNORM = SNRM2 (N,Y,1)
DO 20 1I=1, N
Z(I) = Z(I)/ (XNORM*YNORM)
20 CONTINUE
K = ISMAX(N,Z,1)
! Print results for the periodic
! case.
WRITE (NOUT,99995)
WRITE (NOUT,99994)
WRITE (NOUT,99997)
WRITE (NOUT, 99998)
WRITE (NOUT,99999) , Z(K)
! Set up the vectors for the
! nonperiodic case.
DO 30 1I=1, N
(
(

K
K

X(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT (N-1))
Y(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT (N-1)+PI)
30 CONTINUE
! Call the correlation routine for the
! nonperiodic case.
NZ = 4*N
CALL RCORL (X, Y, Z, ZHAT, IPAD=1)
! Find the element of Z with the
! largest normalized value.

XNORM = SNRM2 (N, X, 1)
YNORM = SNRM2 (N, Y,1)
DO 40 1I=1, N
Z(I) = Z(I)/ (XNORM*YNORM)

40 CONTINUE
K = ISMAX(N,Z,1)
! Print results for the nonperiodic

! case.
WRITE (NOUT, 99996
WRITE (NOUT,99994)
WRITE (NOUT,99997)
WRITE (NOUT,99998) K
WRITE (NOUT,99999) K, Z(K)

99994 FORMAT (1X, 28('-='))
99995 FORMAT (" Case #1: Periodic data’)
99996 FORMAT (/, ' Case #2: Nonperiodic data’)
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99997 FORMAT ('’ The element of Z with the largest normalized ')

99998 FORMAT ('’ value is Z (', I2, ’').")

99999 FORMAT (' The normalized wvalue of Z(’, I2, ') is’, F6.3)
END

Output

Example #1: Periodic case

The element of Z with the largest normalized value is Z(26).
The normalized value of Z(26) is 1.000

Example #2: Nonperiodic case

The element of Z with the largest normalized value is Z(26).
The normalized value of Z(26) is 0.661

Comments

1. Workspace may be explicitly provided, if desired, by use of R20RL/DR20RL. The
reference is:

CALL R20RL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT, XWK,
YWK, WK)

The additional arguments are as follows:
XWK — Real work array of length NZ.
YWK — Real work array of length NZ.

WK — Real work arrary of length 2 * NZ + 15.

2. Informational error
Type Code
4 1 The length of the vector z must be large enough to hold the results.

An acceptable length is returned in NZ.

Description

The subroutine RCORL computes the discrete correlation of two sequences x and y. More
precisely, let n be the length of x and y. If a circular correlation is desired, then IPAD must be set
to zero (for x and y distinct) and two (for x = y). We set (on output)

n, =n if IPAD =0, 2
n, =235 >2n-1 ifIPAD =1, 3

where a, {8, y are nonnegative integers yielding the smallest number of the type 2“3P5” satisfying
the inequality. Once 7, is determined, we pad out the vectors with zeroes. Then, we compute

n,
Z = in+j—1yj
J=1
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where the index on x is interpreted as a positive number between one and 7,, modulo 7,. Note
that this means that

n,—k

£

contains the correlation of x(- —k — 1) withyas k=0, 1, ..., n, /2. Thus, if
x(k — 1) = y(k) for all k, then we would expect

z

to be the largest component of z.

The technique used to compute the z;’s is based on the fact that the (complex discrete) Fourier
transform maps correlation into multiplication. Thus, the Fourier transform of z is given by

A A

Zp=XY;

where

Thus, the technique used here to compute the correlation is to take the discrete Fourier
transform of x and the conjugate of the discrete Fourier transform of y, multiply the results
together component-wise, and then take the inverse transform of this product. It is very
important to make sure that 7, is a product of small primes if IPAD is set to zero or two. If n, is a
product of small primes, then the computational effort will be proportional to n, log(n,). If IPAD
is one or three, then a good value is chosen for n, so that the Fourier transforms are efficient and

n, > 2n — 1. This will mean that both vectors will be padded with zeroes.
We point out that no complex transforms of x or y are taken since both sequences are real, and

we can take real transforms and simulate the complex transform above. This can produce a
savings of a factor of six in time as well as save space over using the complex transform.

CCORL

Computes the correlation of two complex vectors.

Required Arguments

X — Complex vector of length N. (Input)
Y — Complex vector of length N. (Input)
Z — Complex vector of length Nz containing the correlation of X and Y. (Output)

ZHAT — Complex vector of length Nz containing the inverse discrete complex Fourier
transform of z. (Output)
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Optional Arguments

IDO — Flag indicating the usage of CCORL. (Input)

Default: | DO= 0.
IDO Usage
0 If this is the only call to CCORL.

If ccorL is called multiple times in sequence with the same NX, NY, and TPAD, IDO
should be set to:

1 on the first call
2 on the intermediate calls
3 on the final call.

N — Length of the x and Y vectors. (Input)
Default: N= size (X,1).

IPAD — 1pPAD should be set as follows. (Input)
1PAD = 0 for periodic data with x and v different. 1PAD = 1 for nonperiodic data with x
and v different. TPAD = 2 for periodic data with x and v identical. 1PAD = 3 for

nonperiodic data with X and Y identical.
Default: | PAD= 0.

NZ — Length of the vector z. (Input/Output)
Upon input: When IPAD is zero or two, NZ must be at least (2 * N — 1). When IPAD is
one or three, NZ must be greater than or equal to the smallest integer greater than or
equal to (2 * N — 1) of the form (2%) * (3%) * (5") where alpha, beta, and gamma are
nonnegative integers. Upon output, the value for Nz that was used by CCORL.
Default: NZ = size (Z,1).

FORTRAN 90 Interface
Generic: CALL CCORL (X, Y, Z, ZHAT [,.])

Specific: The specific interface names are S_CCORL and D_CCORL.

FORTRAN 77 Interface

Single: CALL CCORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT)

Double: The double precision name is DCCORL.
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Example

In this example, we compute both a periodic and a non-periodic correlation between two distinct
signals x and y. In the first case, we have 100 equally spaced points on the interval [0, 2rt] and
fi(x) = cos(x) + i sin(x). We define x and y as follows

i G SO
n—1

v o= feriEliEy o n
n—-1 2

Note that the maximum value of z (the correlation of x with y) occurs at i = 26, which
corresponds to the offset.

The nonperiodic case uses the function f;(x) = cos(x?) + i sin(x*). The two input signals are on
the interval [0, 47].

X, =f2(47z’;11) i=1,...,n

i

Y, =f2(47zi+zz) i=1...,n
n—1

The offset of x to y is again (roughly) 26 and this is where z has its maximum value.

USE IMSL LIBRARIES
INTEGER N
PARAMETER (N=100)

INTEGER I, IPAD, K, NOUT, NZ

REAL A, COS, Fl, F2, FLOAT, PI, SIN, &
XNORM, YNORM, ZREAL1 (4*N)

COMPLEX CMPLX, X(N), Y(N), Z(4*N), ZHAT (4*N)

INTRINSIC CMPLX, COS, FLOAT, SIN

! Define functions
F1(A) CMPLX (COS (A) , SIN(A))
F2 (B) CMPLX (COS (A*A) , SIN (A*A) )

CALL RNSET (1234579)
CALL UMACH (2, NOUT)
PI = CONST ("pi’)
! Set up the vectors for the
! periodic case.
DO 10 I=1, N
X(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT (N-1))
Y(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT (N-1)+PI/2.0)
10 CONTINUE
! Call the correlation routine for the
! periodic case.
NZ = 2*N
CALL CCORL (X, Y, Z, ZHAT, IPAD=0, NZ=NZ)
! Find the element of Z with the
! largest normalized real part.
XNORM SCNRM2 (N, X, 1)
YNORM SCNRM2 (N, Y, 1)
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DO 20 1I=1, N
ZREALL (I) = REAL(Z(I))/ (XNORM*YNORM)
20 CONTINUE
K = ISMAX (N, ZREAL1, 1)
! Print results for the periodic
! case.
WRITE (NOUT, 99995)
WRITE (NOUT, 99994)
WRITE (NOUT,99997)
WRITE (NOUT,99998) K
WRITE (NOUT,99999) K, ZREALL (K)
! Set up the vectors for the
! nonperioddic case.
DO 30 I=1
X(I)
Y(I) = F
30 CONTINUE
! Call the correlation routine for the
! nonperiodic case.
NZ = 4*N
CALL CCORL (X, Y, Z, ZHAT, IPAD=1, NZ=NZ)
! Find the element of z with the
! largest normalized real part.
XNORM = SCNRMZ2 (N,X,1)
YNORM SCNRM2 (N, Y, 1)
DO 40 1I=1, N
ZREALL (I) = REAL(Z(I))/ (XNORM*YNORM)
40 CONTINUE
K = ISMAX(N,ZREAL1l,1)
! Print results for the nonperiodic
! case.
WRITE (NOUT, 99996
WRITE (NOUT,99994)
WRITE (NOUT,99997)
(
(

|
o~

4.0*PI*FLOAT (I-1)/FLOAT (N-1))
4.0*PI*FLOAT (I-1) /FLOAT (N-1)+PI)

WRITE (NOUT,99998) K
WRITE (NOUT,99999) K, ZREALI (K)
99994 FORMAT (1X, 28('-"))
99995 FORMAT ('’ Case #1: periodic data’)
99996 FORMAT (/, ' Case #2: nonperiodic data’)
99997 FORMAT ('’ The element of Z with the largest normalized ')
99998 FORMAT ('’ real part is z(', I2, ").")
99999 FORMAT (' The normalized wvalue of real(z (', I2, ’)) is’, F6.3)
END

Output

Example #1: periodic case
The element of Z with the largest normalized real part is Z(26).
The normalized value of real(Z(26)) is 1.000

Example #2: nonperiodic case
The element of Z with the largest normalized real part is Z(26).
The normalized value of real(Z(26)) is 0.638
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Comments

1. Workspace may be explicitly provided, if desired, by use of C20RL/DC20RL. The
reference is:

CALL C20RL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT, XWK,
YWK, WK)

The additional arguments are as follows:
XWK — Complex work array of length NZ.
YWK — Complex work array of length nz.

WK — Real work arrary of length 6 * Nz + 15.

2. Informational error
Type Code
4 1 The length of the vector z must be large enough to hold the results.

An acceptable length is returned in NZ.

Description

The subroutine CCORL computes the discrete correlation of two complex sequences x and y.
More precisely, let n be the length of x and y. If a circular correlation is desired, then ITPAD must
be set to zero (for x and y distinct) and two (for x = y). We set (on output)

n,=n if IPAD =0, 2
n, =235 >2n-1 if IPAD =1, 3

where a, {8, y are nonnegative integers yielding the smallest number of the type 2“3P5” satisfying
the inequality. Once #, is determined, we pad out the vectors with zeroes. Then, we compute

n,
Z =2 %7,
ja

where the index on x is interpreted as a positive number between one and 7,, modulo 7,. Note
that this means that

n,—k
contains the correlation of x(- —k — 1) withy as k=0, 1, ..., n, /2. Thus, if
x(k — 1) = y(k) for all k, then we would expect

Rz

n,

to be the largest component of Rz.

The technique used to compute the z;’s is based on the fact that the (complex discrete) Fourier
transform maps correlation into multiplication. Thus, the Fourier transform of z is given by
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=<
:<>

where

nZ
A —27i(m=1)(j-1)/n,
Zj = E z,e

m=1

Thus, the technique used here to compute the correlation is to take the discrete Fourier
transform of x and the conjugate of the discrete Fourier transform of y, multiply the results
together component-wise, and then take the inverse transform of this product. It is very
important to make sure that , is a product of small primes if IPAD is set to zero or two. If n, is a
product of small primes, then the computational effort will be proportional to n, log(n,). If IPAD
is one or three, then a good value is chosen for #, so that the Fourier transforms are efficient and

n, > 2n — 1. This will mean that both vectors will be padded with zeroes.

INLAP

Computes the inverse Laplace transform of a complex function.

Required Arguments
F — User-supplied FUNCTTION to which the inverse Laplace transform will be computed. The

form is ¥(z), where

7 — Complex argument. (Input)
F — The complex function value. (Output)

F must be declared EXTERNAL in the calling program. F should also be declared COMPLEX.

T — Array of length N containing the points at which the inverse Laplace transform is
desired. (Input)
T(I) must be greater than zero for all I.

FINV — Array of length N whose I-th component contains the approximate value of the
Laplace transform at the point T(1). (Output)

Optional Arguments

N — Number of points at which the inverse Laplace transform is desired. (Input)
Default: N= size (T,1).

ALPHA — An estimate for the maximum of the real parts of the singularities of F. If
unknown, set ALPHA = 0. (Input)
Default: ALPHA = 0.0.

KMAX — The number of function evaluations allowed for each T(1). (Input)
Default: KMAX = 500.
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RELERR — The relative accuracy desired. (Input)
Default: RELERR = 1.1920929¢-5 for single precision and 2.22d-10 for double
precision.

FORTRAN 90 Interface
Generic: CALL INLAP(F, T, FINV [,.])

Specific: The specific interface names are S_| NLAP and D_| NLAP.

FORTRAN 77 Interface

Single: CALL INLAP (F, N, T, ALPHA, RELERR, KMAX, FINV)
Double: The double precision name is DI NLAP.
Example

We invert the Laplace transform of the simple function (s — 1) and print the computed answer,

the true solution and the difference at five different points. The correct inverse transform is xe™.

USE INLAP_ INT
USE UMACH_ INT

INTEGER I, KMAX, N, NOUT

REAL ALPHA, DIF(5), EXP, FINV(5), FLOAT, RELERR, T(5), &
TRUE (5)

COMPLEX F

INTRINSIC EXP, FLOAT
EXTERNAL F

! Get output unit number
CALL UMACH (2, NOUT)

DO 10 1I=1, 5

T(I) = FLOAT(I) - 0.5
10 CONTINUE
N =5
ALPHA = 1.0EO0

RELERR = 5.0E-4
CALL INLAP (F, T, FINV, ALPHA=ALPHA, RELERR=RELERR)
! Evaluate the true solution and the

! difference
DO 20 1I=1, 5
TRUE (I) = T(I)*EXP(T(I))
DIF(I) = TRUE(I) - FINV(I)

20 CONTINUE

WRITE (NOUT,99999) (T(I),FINV(I),TRUE(I),DIF(I),I=1,5)
99999 FORMAT (7X, 'T’, 8X, 'FINV’, 9X, 'TRUE’, 9X, ’'DIFF’, /, &
5(1X,E9.1,3X,1PE10.3, 3X,1PE10.3,3X,1PE10.3,/))
END

COMPLEX FUNCTION F (S)
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COMPLEX S

F=1./(S-1.)**2
RETURN
END
Output
T FINV TRUE DIFF
0.5E+00 8.244E-01 8.244E-01 -4.768E-06
1.5E+00 6.723E+00 6.723E+00 -3.481E-05
2.5E+00 3.046E+01 3.046E+01 -1.678E-04
3.5E+00 1.159E+402 1.159E402 -6.027E-04
4.5E+00 4.051E+02 4.051E+02 -2.106E-03
Comments
Informational errors
Type Code
4 1 The algorithm was not able to achieve the accuracy requested within KMAX
function evaluations for some T(T).
4 2 Overflow is occurring for a particular value of T.
Description

The routine INLAP computes the inverse Laplace transform of a complex-valued function.
Recall that if f'is a function that vanishes on the negative real axis, then we can define the
Laplace transform of f by

L[f](s):= fe’”f(x)dx
It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on applying the epsilon algorithm to
the complex Fourier series obtained as a discrete approximation to the inversion integral. The
initial algorithm was proposed by K.S. Crump (1976) but was significantly improved by de
Hoog et al. (1982). Given a complex-valued transform F(s) = L[f](s), the trapezoidal rule gives
the approximation to the inverse transform

1 = ik ik
g(r)= (em /T)‘R{EF(a)+kZ_;F(a +%)exp(%)}

This is the real part of the sum of a complex power series in z = exp(in#/T), and the algorithm
accelerates the convergence of the partial sums of this power series by using the epsilon
algorithm to compute the corresponding diagonal Pade approximants. The algorithm attempts to
choose the order of the Pade approximant to obtain the specified relative accuracy while not
exceeding the maximum number of function evaluations allowed. The parameter a is an
estimate for the maximum of the real parts of the singularities of F, and an incorrect choice of o
may give false convergence. Even in cases where the correct value of o is unknown, the
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algorithm will attempt to estimate an acceptable value. Assuming satisfactory convergence, the
discretization error E := g — fsatisfies

E= ie’z"“rf(ZnT+t)
n=1

It follows that if [f{7)| < MeéP?, then we can estimate the expression above to obtain
(for0<¢<27)

E < Me* /(ezr(a*ﬁ) —1)

SINLP

Computes the inverse Laplace transform of a complex function.

Required Arguments

F — User-supplied FUNCTION to which the inverse Laplace transform will be
computed. The form is F(z), where

7z — Complex argument. (Input)
F — The complex function value. (Output)

F must be declared EXTERNAL in the calling program. ¥ must also be declared
COMPLEX.

T — Vector of length N containing points at which the inverse Laplace transform is desired.
(Input)
T(I) must be greater than zero for all I.

FINV — Vector of length N whose I-th component contains the approximate value of the
inverse Laplace transform at the point T(1). (Output)

Optional Arguments

N — The number of points at which the inverse Laplace transform is desired. (Input)
Default: N= size (T,1).

SIGMA0O — An estimate for the maximum of the real parts of the singularities of . (Input)
If unknown, set sTGMA0 = 0.0.
Default: SI GVAO = 0.¢0.

EPSTOL — The required absolute uniform pseudo accuracy for the coefficients and inverse
Laplace transform values. (Input)
Default: EPSTOL = 1.1920929¢-5 for single precision and 2.22d-10 for double
precision.

IMSL MATH/LIBRARY Chapter 6: Transforms ¢ 1081



ERRVEC — Vector of length eight containing diagnostic information. (Output)
All components depend on the intermediately generated Laguerre coefficients. See
Comments.

FORTRAN 90 Interface
Generic: CALL SINLP(F, T, FINV [,.])

Specific: The specific interface names are S_SI NLP and D_SI NLP.

FORTRAN 77 Interface

Single: CALL SINLP (F, N, T, SIGMAO, EPSTOL, ERRVEC, FINV)
Double: The double precision name is DSI NLP.
Example

We invert the Laplace transform of the simple function (s — 1) and print the computed answer,

the true solution, and the difference at five different points. The correct inverse transform is xe™.

USE SINLP_ INT
USE UMACH_ INT

INTEGER I, NOUT

REAL DIF (5), ERRVEC(8), EXP, FINV(5), FLOAT, RELERR, &
SIGMAO, T(5), TRUE(5)

COMPLEX F

INTRINSIC EXP, FLOAT
EXTERNAL F

! Get output unit number
CALL UMACH (2, NOUT)

DO 10 1I=1, 5
T(I) = FLOAT(I) - 0.5
10 CONTINUE

SIGMAO = 1.0EOQ

RELERR = 5.0E-4

EPSTOL = 1.0E-4

CALL SINLP (F, T, FINV, SIGMAO=SIGMAO, EPSTOL=RELERR)

! Evaluate the true solution and the

! difference
DO 20 1I=1, 5
TRUE (I) = T(I)*EXP(T(I))
DIF(I) = TRUE(I) - FINV(I)

20 CONTINUE

WRITE (NOUT,99999) (T(I),FINV(I),TRUE(I),DIF(I),I=1,5)
99999 FORMAT (7X, 'T’, 8X, 'FINV’, 9X, 'TRUE’, 9X, ’'DIFF’, /, &
5(1X,E9.1,3X,1PE10.3, 3X,1PE10.3,3X,1PE10.3,/))
END

COMPLEX FUNCTION F (S)

1082 e Chapter 6: Transforms IMSL MATH/LIBRARY



COMPLEX S

F = 1./(5-1.)**2

RETURN
END
Output
T FINV TRUE DIFF
0.5E+00 8.244E-01 8.244E-01 -2.086E-06
1.5E+00 6.723E+00 6.723E+00 -8.583E-06
2.5E+00 3.046E+01 3.046E+01 0.000E+00
3.5E+00 1.159E+02 1.159E+02 2.289E-05
4.5E+00 4.051E+02 4.051E+02 -2.136E-04
Comments
1. Workspace may be explicitly provided, if desired, by use of s2NLP/DS2NLP. The

reference is:

CALL S2NLP (F, N, T, SIGMAO, EPSTOL, ERRVEC, FINV,
SIGMA, BVALUE, MTOP, WK, IFLOVC)

The additional arguments are as follows:

SIGMA — The first parameter of the Laguerre expansion. If SIGMA is not greater than
SIGMAO, it is reset to SIGMAO + 0.7. (Input)

BVALUE — The second parameter of the Laguerre expansion. If BVALUE is less than
2.0 * (SIGMA — SIGMAO), it is reset to 2.5 * (STGMA — STGMAQ). (Input)

MTOP — An upper limit on the number of coefficients to be computed in the Laguerre
expansion. MTOP must be a multiple of four. Note that the maximum number of
Laplace transform evaluations is MTOP/2 + 2. (Default: 1024.) (Input)

WK — Real work vector of length 9 * MTOP/4.
IFLOVC — Integer vector of length N, the I-th component of which contains the

overflow/underflow indicator for the computed value of FINV(I). (Output)
See Comment 3.

2. Informational errors
Type Code
1 1  Normal termination, but with estimated error bounds slightly larger

than EPSTOL. Note, however, that the actual errors on the final
results may be smaller than EPSTOL as bounds independent of T are
pessimistic.

3 2 Normal calculation, terminated early at the roundoff error level
estimate because this estimate exceeds the required accuracy (usually
due to overly optimistic expectation by the user about attainable
accuracy).
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4 3 The decay rate of the coefficients is too small. It may improve results
to use S2NLP and increase MTOP.

4 4 The decay rate of the coefficients is too small. In addition, the
roundoff error level is such that required accuracy cannot be reached.
4 5 No error bounds are returned as the behavior of the coefficients does
not enable reasonable prediction. Results are probably wrong. Check
the value of STGMAO. In this case, each of ERRVEC(J), I=1, ..., 5, is
set to — 1.0.
3. The following are descriptions of the vectors ERRVEC and IFLOVC.

ERRVEC — Real vector of length eight.

ERRVEC(1) = Overall estimate of the pseudo error, ERRVEC(2) + ERRVEC(3) +
ERRVEC(4). Pseudo error = absolute error / exp(sigma * tvalue).

ERRVEC(2) = Estimate of the pseudo discretization error.
ERRVEC(3) = Estimate of the pseudo truncation error.

ERRVEC(4) = Estimate of the pseudo condition error on the basis of minimal noise
levels in the function values.

ERRVEC(S) = K, the coefficient of the decay function for ACOEF, the coefficients of the
Laguerre expansion.

ERRVEC(6) = R, the base of the decay function for ACOEF. Here abs(ACOEF (J +
1)).LE.K/R¥*J for J.GE.MACT/2, where MACT is the number of Laguerre
coefficients actually computed.

ERRVEC(7) = ALPHA, the logarithm of the largest ACOEF.
ERRVEC(8) = BETA, the logarithm of the smallest nonzero ACOEF.

IFLOVC — Integer vector of length N containing the overflow/underflow indicators
for rINV. For each 1, the value of TFLOVC(T) signifies the following.
0= Normal termination.

1 = The value of the inverse Laplace transform is found to be too large to be
representable; FINV(I) is set to AMACH(6).

—1 = The value of the inverse Laplace transform is found to be too small to be
representable; FINV(I) is set to 0.0.

2= The value of the inverse Laplace transform is estimated to be too large, even
before the series expansion, to be representable; FINV(T) is set to AMACH(6).

—2 = The value of the inverse Laplace transform is estimated to be too small, even
before the series expansion, to be representable; FINV(T) is set to 0.0.
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Description

The routine SINLP computes the inverse Laplace transform of a complex-valued function.
Recall that if fis a function that vanishes on the negative real axis, then we can define the
Laplace transform of /by

L[f](s):= fe’”f(x)dx
It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on a modification of Weeks’ method
(see W.T. Weeks (1966)) due to B.S. Garbow et. al. (1988). This method is suitable when f'has
continuous derivatives of all orders on [0, o). In this situation, this routine should be used in
place of the IMSL routine INLAP (page 1078). It is especially efficient when multiple function
values are desired. In particular, given a complex-valued function F(s) = L[f](s), we can expand
fin a Laguerre series whose coefficients are determined by F. This is fully described in B.S.
Garbow et. al. (1988) and Lyness and Giunta (1986).

The algorithm attempts to return approximations g(f) to f{¢) satisfying
g(t)-7(1)

at

e

<&

where € ;= EPSTOL and ¢ := SIGMA > SIGMAO. The expression on the left is called the pseudo
error. An estimate of the pseudo error is available in ERRVEC(1).

The first step in the method is to transform F to ¢ where

$(:) =12 ({2 -2

1-z

Then, if fis smooth, it is known that ¢ is analytic in the unit disc of the complex plane and
hence has a Taylor series expansion

¢(z) = 2}6132‘V

which converges for all z whose absolute value is less than the radius of convergence R,.. This

number is estimated in ERRVEC(6). In ERRVEC(S), we estimate the smallest number K which
satisfies

K
<—

s

forall R<R,.

The coefficients of the Taylor series for ¢ can be used to expand fin a Laguerre series

F()=e"S aeL, (br)
5=0
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Chapter 7: Nonlinear Equations

Routines

71.

7.2.

7.3.

Zeros of a Polynomial

Real coefficients using Laguerre method ..............ccccooee. ZPLRC
Real coefficients using Jenkins-Traub method.................. ZPORC
Complex coefficients..........ccccoeeer ZPOCC
Zero(s) of a Function

Zeros of a complex analytic function ............cccccveiiienns ZANLY
Zero of a real function with sign changes ............ccccocoeee ZBREN
Zeros of areal function ... ZREAL

Root of a System of Equations

Finite-difference Jacobian...........c.ccccoiiiiiiiiiie, NEQNF
Analytic Jacobian............cccooiiiiii NEQNJ
Broyden’s update and Finite-difference Jacobian ............... NEQBF
Broyden’s update and Analytic Jacobian...............ccccoeo.. NEQBJ

1148
1150
1152

1153
1156
1159

1162
1165
1169
1174

Usage Notes

Zeros of a Polynomial

A polynomial function of degree n can be expressed as follows:

where a,, # 0.

-1

_ n n
p@)=az +a,z  +..+taz+ta

There are three routines for zeros of a polynomial. The routines ZPLRC (page 1148) and zPORC
(page 1150) find zeros of the polynomial with real coefficients while the routine zPOCC (page
1152) finds zeros of the polynomial with complex coefficients.

The Jenkins-Traub method is used for the routines ZPORC and ZPOCC; whereas ZPLRC uses the
Laguerre method. Both methods perform well in comparison with other methods. The Jenkins-
Traub algorithm usually runs faster than the Laguerre method. Furthermore, the routine ZANLY
(page 1153) in the next section can also be used for the complex polynomial.
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Zero(s) of a Function

The routines ZANLY (page 1153) and ZREAL (page 1159) use Miiller’s method to find the zeros
of a complex analytic function and real zeros of a real function, respectively. The routine ZBREN
(page 1156) finds a zero of a real function, using an algorithm that is a combination of
interpolation and bisection. This algorithm requires the user to supply two points such that the
function values at these two points have opposite sign. For functions where it is difficult to
obtain two such points, ZREAL can be used.

Root of System of Equations

A system of equations can be stated as follows:

f()=0,fori=1,2,...,n

where x ¢ R”.

The routines NEQNF (page 1162) and NEQNJ (page 1165) use a modified Powell hybrid method
to find a zero of a system of nonlinear equations. The difference between these two routines is
that the Jacobian is estimated by a finite-difference method in NEQNF, whereas the user has to
provide the Jacobian for NEQNJ. It is advised that the Jacobian-checking routine, CHJAC (page
952), be used to ensure the accuracy of the user-supplied Jacobian.

The routines NEQBF (page 1169) and NEQBJ (page 1174) use a secant method with Broyden’s
update to find a zero of a system of nonlinear equations. The difference between these two
routines is that the Jacobian is estimated by a finite-difference method in NEQBF; whereas the
user has to provide the Jacobian for NEQBJ. For more details, see Dennis and Schnabel (1983,
Chapter 8).

ZPLRC

Finds the zeros of a polynomial with real coefficients using Laguerre’s method.

Required Arguments

COEFF — Vector of length NDEG + | containing the coefficients of the polynomial in
increasing order by degree. (Input)
The polynomial is COEFF(NDEG + 1) * z**NDEG + COEFF(NDEG) * Z**(NDEG — 1) +
... + COEFF(1).

ROOT — Complex vector of length NDEG containing the zeros of the polynomial. (Output)

Optional Arguments

NDEG — Degree of the polynomial. 1 <NDEG <100 (Input)
Default: NDEG = size (COEFF,1) — 1.
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FORTRAN 90 Interface
Generic: CALL ZPLRC(CCEFF, ROOT [, .])

Specific: The specific interface names are S_ZPLRC and D_ZPLRC.

FORTRAN 77 Interface

Single: CALL ZPLRC(NDEG COEFF, ROOT)
Double: The double precision name is DZPLRC.
Example

This example finds the zeros of the third-degree polynomial
p(2)=2 -3 +4z-2

where z is a complex variable.

USE ZPLRC_INT
USE WRCRN_ INT
! Declare variables
INTEGER NDEG
PARAMETER (NDEG=3)

REAL COEFF (NDEG+1)
COMPLEX ZERO (NDEG)
! Set values of COEFF
! COEFF = (-2.0 4.0 -3.0 1.0)
DATA COEFF/-2.0, 4.0, -3.0, 1.0/
CALL ZPLRC (COEFF, ZERO, NDEG)

CALL WRCRN (’The zeros found are’, ZERO, 1, NDEG, 1)

END
Output
The zeros found are
1 2 3
( 1.000, 1.000) ( 1.000,-1.000) ( 1.000, 0.000)
Comments

Informational errors
Type Code

3 1 The first several coefficients of the polynomial are equal to zero. Several of the
last roots will be set to machine infinity to compensate for this problem.
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3 2 Fewer than NDEG zeros were found. The ROOT vector will contain the value for
machine infinity in the locations that do not contain zeros.

Description

Routine zPL.RC computes the n zeros of the polynomial

-1

_ n n
p@)=a,z +a,z  +..+tazta

where the coefficients a; for i =0, 1, ..., n are real and # is the degree of the polynomial.

The routine zZPLRC is a modification of B.T. Smith’s routine ZERPOL (Smith 1967) that uses
Laguerre’s method. Laguerre’s method is cubically convergent for isolated zeros and linearly
convergent for multiple zeros. The maximum length of the step between successive iterates is
restricted so that each new iterate lies inside a region about the previous iterate known to
contain a zero of the polynomial. An iterate is accepted as a zero when the polynomial value at
that iterate is smaller than a computed bound for the rounding error in the polynomial value at
that iterate. The original polynomial is deflated after each real zero or pair of complex zeros is
found. Subsequent zeros are found using the deflated polynomial.

ZPORC

Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub three-stage
algorithm.

Required Arguments

COEFF — Vector of length NDEG + | containing the coefficients of the polynomial in
increasing order by degree. (Input)

The polynomial is COEFF(NDEG + 1)*Z**NDEG + COEFF(NDEG) * Z**(NDEG —1)
+ ... + COEFF(1).

ROOT — Complex vector of length NDEG containing the zeros of the polynomial. (Output)

Optional Arguments

NDEG — Degree of the polynomial. 1 <NDEG <100 (Input)
Default: NDEG = size (COEFF,1) — 1.

FORTRAN 90 Interface

Generic: CALL ZPORC (COEFF, ROOT [,..])

Specific: The specific interface names are S_ZPORC and D_ZPORC.

FORTRAN 77 Interface

Single: CALL ZPORC (NDEG, COEFF, ROOT)
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Double: The double precision name is DZPORC.

Example
This example finds the zeros of the third-degree polynomial
p2) =2 -3 +4z -2

where z is a complex variable.

USE ZPORC_INT
USE WRCRN_ INT
! Declare variables
INTEGER NDEG
PARAMETER (NDEG=3)

REAL COEFF (NDEG+1)
COMPLEX ZERO (NDEG)
! Set values of COEFF
! COEFF = (-2.0 4.0 -3.0 1.0)
DATA COEFF/-2.0, 4.0, -3.0, 1.0/
CALL ZPORC (COEFF, ZERO)

CALL WRCRN (’The zeros found are’, ZERO, 1, NDEG, 1)

END
Output
The zeros found are
1 2 3
( 1.000, 0.000) ( 1.000, 1.000) ( 1.000,-1.000)
Comments

Informational errors

Type Code
3 1 The first several coefficients of the polynomial are equal to zero. Several of
the last roots will be set to machine infinity to compensate for this problem.
3 2 Fewer than NDEG zeros were found. The ROOT vector will contain the value
for machine infinity in the locations that do not contain zeros.
Description

Routine zPORC computes the n zeros of the polynomial

-1

_ n n
p@)=az ta,z " +..+az+ta

where the coefficients a; for i =0, 1, ..., n are real and » is the degree of the polynomial.
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The routine zPORC uses the Jenkins-Traub three-stage algorithm (Jenkins and Traub 1970;
Jenkins 1975). The zeros are computed one at a time for real zeros or two at a time for complex
conjugate pairs. As the zeros are found, the real zero or quadratic factor is removed by
polynomial deflation.

ZPOCC

Finds the zeros of a polynomial with complex coefficients.

Required Arguments

COEFF — Complex vector of length NDEG + 1 containing the coefficients of the polynomial
in increasing order by degree. (Input)
The polynomial is COEFF(NDEG + 1) * Z**NDEG + COEFF(NDEG) * Z**(NDEG — 1) +
... T COEFF(1).

ROOT — Complex vector of length NDEG containing the zeros of the polynomial. (Output)

Optional Arguments

NDEG — Degree of the polynomial. 1 < NDEG <50 (Input)
Default: NDEG = size (COEFF,1) — 1.

FORTRAN 90 Interface
Generic: CALL ZPOCC(CCEFF, ROOT [, .])

Specific: The specific interface names are S_ZPOCC and D_ZPOCC.

FORTRAN 77 Interface

Single: CALL ZPOCC (NDEG, COEFF, ROOT)
Double: The double precision name is DZPOCC.
Example

This example finds the zeros of the third-degree polynomial
p) =2 - (3 +6i) — (8 —12i)z+ 10

where z is a complex variable.
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USE ZPOCC_INT
USE WRCRN_INT
! Declare variables
INTEGER NDEG
PARAMETER (NDEG=3)

COMPLEX COEFF (NDEG+1), ZERO (NDEG)
! Set values of COEFF
! COEFF = ( 10.0 + 0.01 )
! (-8.0 + 12.01i )
! (-3.0 - 6.01)
! (1.0 + 0.01i)
|

DATA COEFF/(10.0,0.0), (-8.0,12.0), (-3.0,-6.0), (1.0,0.0)/
CALL ZPOCC (COEFF, ZERO)

CALL WRCRN (’The zeros found are’, ZERO, 1, NDEG, 1)

END
Output
The zeros found are
1 2 3
( 1.000, 1.000) ( 1.000, 2.000) ( 1.000, 3.000)
Comments

Informational errors

Type Code
3 1 The first several coefficients of the polynomial are equal to zero. Several of
the last roots will be set to machine infinity to compensate for this problem.
3 2 Fewer than NDEG zeros were found. The ROOT vector will contain the value
for machine infinity in the locations that do not contain zeros.
Description

Routine zpocc computes the n zeros of the polynomial

-1

_ n n
p@)=az" *ta, iz +..taz+ta

where the coefficients @; for i =0, 1, ..., n are real and » is the degree of the polynomial.

The routine zPOCC uses the Jenkins-Traub three-stage complex algorithm (Jenkins and Traub
1970, 1972). The zeros are computed one at a time in roughly increasing order of modulus. As
each zero is found, the polynomial is deflated to one of lower degree.

ZANLY

Finds the zeros of a univariate complex function using Miiller’s method.
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Required Arguments

F — User-supplied COMPLEX FUNCTTION to compute the value of the function
of which the zeros will be found. The form is F(Z), where

Z — The complex value at which the function is evaluated. (Input)
7 should not be changed by F.

F — The computed complex function value at the point z. (Output)
F must be declared EXTERNAL in the calling program.

Z — A complex vector of length NKNOWN + NNEW. (Output)
z(1), ..., Z(NKNOWN) contain the known zeros. Z(NKNOWN + 1), ..., Z(NKNOWN + NNEW)
contain the new zeros found by ZANLY. If ZINTIT is not needed, ZINIT and z can share
the same storage locations.

Optional Arguments

ERRABS — First stopping criterion. (Input)
Let Fp(2) = F(2)/P where P = (Z - 2(1)) * (2 — 2(2)) *...* (2 — z(K — 1)) and 2(1), ...,
z(K — 1) are previously found zeros. If
(caBS(F(z)).LE.ERRABS.AND.CABS(FP(Z)).LE.ERRABS), then Z is accepted as a
Zero.
Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision.

ERRREL — Second stopping criterion is the relative error. (Input)
A zero is accepted if the difference in two successive approximations to this zero is
within ERRREL. ERRREL must be less than 0.01; otherwise, 0.01 will be used.
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

NKNOWN — The number of previously known zeros, if any, that must be stored in
ZINTIT(1), ..., ZINIT(NKNOWN) prior to entry to ZANLY. (Input)
NKNOWN must be set equal to zero if no zeros are known.
Default: NKNOWN = 0.

NNEW — The number of new zeros to be found by zanLy. (Input)
Default: NNEW = 1.

NGUESS — The number of initial guesses provided. (Input)
These guesses must be stored in ZINIT(NKNOWN + 1), ..., ZINIT(NKNOWN + NGUESS).
NGUESS must be set equal to zero if no guesses are provided.
Default: NGUESS = 0.

ITMAX — The maximum allowable number of iterations per zero. (Input)
Default: 1TMAX = 100.
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ZINIT — A complex vector of length NKNOWN + NNEW. (Input)
ZINIT(1), ..., ZINIT(NKNOWN) must contain the known zeros. ZINIT(NKNOWN + 1), ...,
ZINIT(NKNOWN + NNEW) may, on user option, contain initial guesses for the NNEW new
zeros that are to be computed. If the user does not provide an initial guess, zero is used.

INFO — An integer vector of length NKNOWN + NNEW. (Output)
INFO(J) contains the number of iterations used in finding the J-th zero when
convergence was achieved. If convergence was not obtained in ITMAX iterations,
INFO(J) will be greater than ITMAX.

FORTRAN 90 Interface

Generic: CALL zANLY (F, 2z [,.])

Specific: The specific interface names are S_ZANLY and D_ZANLY.

FORTRAN 77 Interface

Single: CALL ZANLY (F, ERRABS, ERRREL, NKNOWN, NNEW, NGUESS,
ZINIT, ITMAX, %, INFO)

Double: The double precision name is DZANLY.

Comments
1. Informational error

Type Code
3 1 Failure to converge within ITMAX iterations for at least one of the
NNEW new roots.

2. Routine ZANLY always returns the last approximation for zero J in z(J). If the
convergence criterion is satisfied, then INFO(J) is less than or equal to 1TMAX. If the
convergence criterion is not satisfied, then INFO(J) is set to either ITMAX + 1 or
ITMAX + K, with K greater than 1. INFO(J) = ITMAX + 1 indicates that ZANLY did not
obtain convergence in the allowed number of iterations. In this case, the user may wish
to set ITMAX to a larger value. INFO(J) = ITMAX + K means that convergence was
obtained (on iteration K) for the deflated function Fp(2) = F(2)/((z — 2(1)) ... (Z — 2(J
—1))) but failed for £(2z). In this case, better initial guesses might help or it might be
necessary to relax the convergence criterion.

Description

Miiller’s method with deflation is used. It assumes that the complex function f{z) has at least
two continuous derivatives. For more details, see Miiller (1965).
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Example

This example finds the zeros of the equation f{z) = z° + 5z + 9z + 45, where z is a complex
variable.

USE ZANLY INT
USE WRCRN_INT
! Declare variables
INTEGER INFO(3), NGUESS, NNEW
COMPLEX F, Z(3), ZINIT(3)
EXTERNAL F
! Set the guessed zero values in ZINIT

! ZINIT = (1.0+1.01 1.0+1.01i 1.0+1.01)
DATA ZINIT/3*(1.0,1.0)/
! Set values for all input parameters
NNEW =3
NGUESS = 3
! Find the zeros of F
CALL ZANLY (F, Z, NNEW=NNEW, NGUESS=NGUESS, &
ZINIT=ZINIT, INFO=INFO)
! Print results
CALL WRCRN (’'The zeros are’, 727)
END
! External complex function
COMPLEX FUNCTION F (Z2)
COMPLEX Z

F = 2**3 + 5.0*2**2 + 9.0*Z + 45.0

RETURN
END
Output
The zeros are
1 2 3
( 0.000, 3.000) ( 0.000,-3.000) (-5.000, 0.000)

ZBREN

Finds a zero of a real function that changes sign in a given interval.

Required Arguments

F — User-supplied FUNCTION to compute the value of the function of which a zero will be
found. The form is F(X), where

x — The point at which the function is evaluated. (Input)
x should not be changed by F.

F — The computed function value at the point X. (Output)
F must be declared EXTERNAL in the calling program.
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A — See B. (Input/Output)

B — On input, the user must supply two points, A and B, such that F(2) and F(B) are opposite
in sign. (Input/Output)
On output, both A and B are altered. B will contain the best approximation to the zero of
F.

Optional Arguments

ERRABS — First stopping criterion. (Input)
A zero, B, is accepted if ABS(F(B)) is less than or equal to ERRABS. ERRABS may be set
to zero.
Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision.

ERRREL — Second stopping criterion is the relative error. (Input)
A zero is accepted if the change between two successive approximations to this zero is
within ERRREL.
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

MAXFN — On input, MAXFN specifies an upper bound on the number of function evaluations
required for convergence. (Input/Output)

On output, MAXFN will contain the actual number of function evaluations used.
Default: MAXFN = 100.

FORTRAN 90 Interface

Generic: CALL ZBREN (F, A, B [,.])

Specific: The specific interface names are S_ZBREN and D_ZBREN.

FORTRAN 77 Interface

Single: CALL ZBREN (F, ERRABS, ERRREL, A, B, MAXFN)
Double: The double precision name is DZBREN.
Example

This example finds a zero of the function
A)=x"+x-2

in the interval (— 10.0, 0.0).

USE ZBREN INT
USE UMACH_ INT

! Declare variables
REAL ERRABS, ERRREL

INTEGER NOUT
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REAL

EXTERNAL F

Set values of A, B, ERRABS,
ERRREL, MAXFEN

A = -10.0
B = 0.0
ERRABS = 0.0
ERRREL = 0.001
MAXEN = 100

CALL UMACH (2, NOUT)

Find zero of F

CALL ZBREN (F, A, B, ERRABS=ERRABS, ERRREL=ERRREL, MAXFN=MAXFN)

WRITE

(NOUT, 99999) B, MAXFN

99999 FORMAT (’ The best approximation to the zero of F is equal to’, &

END

F5.1, ’.’, /, ' The number of function evaluations’, &
" required was ', 12, ., //)

REAL FUNCTION F (X)

REAL

X

F=X**2 + X - 2.0
RETURN

END

Output

The best approximation to the zero of F is equal to -2.0.
The number of function evaluations required was 12.

Comments

1.

Informational error

Type Code
4 1 Failure to converge in MAXFN function evaluations.

On exit from ZBREN without any error message, A and B satisfy the following:

F(2)F(B)<0.0

[F(B)] < [F(2)], and

either |[F(B)| < ERRABS or

|a — B| < max(|B], 0.1) * ERRREL.

The presence of 0.1 in the stopping criterion causes leading zeros to the right of the
decimal point to be counted as significant digits. Scaling may be required in order to
accurately determine a zero of small magnitude.

ZBREN is guaranteed to convergence within K function evaluations, where
K = (In((8 — 2)/D) + 1.0)%, and
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X E(A,B

(D = min)(max(|x|,0.1)*ERRREL))

This is an upper bound on the number of evaluations. Rarely does the actual number of
evaluations used by ZBREN exceed

VK

D can be computed as follows:
AMAX1 (0.1, AMIN1(|A|, IBJ))

P =

IF((A - 0.1) * (B - 0.1) < 0.0) P = 0.1,
D = P * ERRREL

Description

The algorithm used by ZBREN is a combination of linear interpolation, inverse quadratic
interpolation, and bisection. Convergence is usually superlinear and is never much slower than
the rate for the bisection method. See Brent (1971) for a more detailed account of this algorithm.

ZREAL

Finds the real zeros of a real function using Miiller’s method.

Required Arguments

F — User-supplied FUNCTION to compute the value of the function of which a zero will be
found. The form is F(x), where

X — The point at which the function is evaluated. (Input)
x should not be changed by F.

F — The computed function value at the point x. (Output)
F must be declared EXTERNAL in the calling program.

X — A vector of length NROOT. (Output)
X contains the computed zeros.

Optional Arguments

ERRABS — First stopping criterion. (Input)
A zero X(T) is accepted if ABS(F(X(I)).LT. ERRABS.
Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision.

ERRREL — Second stopping criterion is the relative error. (Input)
A zero X(T) is accepted if the relative change of two successive approximations to x(I)
is less than ERRREL.
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.
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EPS — See ETA. (Input)
Default: Eps = 1.e-4 for single precision and 1.d-8 for double precision.

ETA — Spread criteria for multiple zeros. (Input)
If the zero x(I) has been computed and ABS(x(I) — X(J)).LT.EPS, where X(J) is a
previously computed zero, then the computation is restarted with a guess equal to
X(I) + ETA.

Default: ETA = .01.

NROOT — The number of zeros to be found by zREAL. (Input)
Default: NrOOT = 1.

ITMAX — The maximum allowable number of iterations per zero. (Input)
Default: 1TMAX = 100.

XGUESS — A vector of length NrROOT. (Input)
XGUESS contains the initial guesses for the zeros.
Default: XGUEss = 0.0.

INFO — An integer vector of length NROOT. (Output)
INFO(J) contains the number of iterations used in finding the J-th zero when
convergence was achieved. If convergence was not obtained in ITMAX iterations,
INFO(J) will be greater than ITMAX.

FORTRAN 90 Interface
Generic: CALL ZREAL (F, X[, .])

Specific: The specific interface names are S_ZREAL and D_ZREAL.

FORTRAN 77 Interface
Single: CALL ZREAL (F, ERRABS, ERRREL, EPS, ETA, NROOT, ITMAX,

XGUESS, X, INFO)

Double: The double precision name is DZREAL.

Example
This example finds the real zeros of the second-degree polynomial
fx)=x>+2x-6

with the initial guess (4.6, —193.3).

USE ZREAL_ INT
USE WRRRN_ INT

! Declare variables
INTEGER NROOT
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REAL

EPS, ERRABS, ERRREL

PARAMETER (NROOT=2)

INTEGER INFO (NROOT)

REAL

F, X(NROOT), XGUESS (NROOT)

EXTERNAL F

Set values of initial guess
XGUESS = ( 4.6 -193.3)

DATA XGUESS/4.6, -193.3/

EPS

ERRABS = 1.0E-5

ERRREL

Il
-
o
=
a1

Find the zeros

CALL ZREAL (F, X, ERRABS=ERRABS, ERRREL=ERRREL, EPS=EPS, &

NROOT=NROOT, XGUESS=XGUESS)

CALL WRRRN (’The zeros are’, X, 1, NROOT, 1)

END

REAL FUNCTION F (X)

REAL

F =

X

X*X + 2.0*X - 6.0

RETURN

END

Output

The zeros are

1

2

1.646 -3.646

Comments

1.

Informational error

Type Code
3 1 Failure to converge within ITMAX iterations for at least one of the
NROOT roots.

Routine ZREAL always returns the last approximation for zero J in x(J). If the
convergence criterion is satisfied, then INFO(J) is less than or equal to 1TMAX. If the
convergence criterion is not satisfied, then INFO(J) is set to ITTMAX + 1.

The routine ZREAL assumes that there exist NROOT distinct real zeros for the function F
and that they can be reached from the initial guesses supplied. The routine is designed
so that convergence to any single zero cannot be obtained from two different initial
guesses.
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4. Scaling the x vector in the function F may be required, if any of the zeros are known to
be less than one.

Description

Routine ZREAL computes 7 real zeros of a real function f. Given a user-supplied function f{x)
and an n-vector of initial guesses x;, X5, ..., X, the routine uses Miiller’s method to locate # real

zeros of f, that is, n real values of x for which f{x) = 0. The routine has two convergence criteria:
the first requires that
|7 ()

be less than ERRABS; the second requires that the relative change of any two successive
approximations to an x; be less than ERRREL. Here,

X"

i

is the m-th approximation to x;. Let ERRABS be g, and ERRREL be €,.The criteria may be stated
mathematically as follows:

Criterion 1:

Criterion 2:

“Convergence” is the satisfaction of either criterion.

NEQNF

Solves a system of nonlinear equations using a modified Powell hybrid algorithm and a finite-
difference approximation to the Jacobian.

Required Arguments

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The
usage is CALL FCN (X, F, N),where

x — The point at which the functions are evaluated. (Input)
x should not be changed by FcN.

F — The computed function values at the point x. (Output)
FCN must be declared EXTERNAL in the calling program.

N — Length of X and F. (Input)
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X — A vector of length N.  (Output)
X contains the best estimate of the root found by NEQONF.

Optional Arguments

ERRREL — Stopping criterion. (Input)
The root is accepted if the relative error between two successive approximations to this
root is less than ERRREL.
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

N — The number of equations to be solved and the number of unknowns. (Input)
Default: N = size (x,1).

ITMAX — The maximum allowable number of iterations. (Input)
The maximum number of calls to FCN is ITMAX * (N + 1). Suggested value
1TMAX = 200.
Default: 1TMAX = 200.

XGUESS — A vector of length N.  (Input)
XGUESS contains the initial estimate of the root.

Default: XGUESS = 0.0.

FNORM — A scalar that has the value F(1)*+ ... + F(N)? at the point x. (Output)

FORTRAN 90 Interface

Generic: CALL NEQNF (FCN, X [,.])

Specific: The specific interface names are S_NEQNF and D_NEQNF.

FORTRAN 77 Interface

Single: CALL NEQNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM)
Double: The double precision name is DNEQNF.
Example

The following 3 x 3 system of nonlinear equations
fi(x)=x+e"" +(x, -i-x3)2 -27=0
fi(x)=e7/x +x;-10=0
fi(x)=x, +sin(x, -2)+x -7=0

is solved with the initial guess (4.0, 4.0, 4.0).
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USE NEQNF INT
USE UMACH_ INT
! Declare variables
INTEGER N
PARAMETER (N=3)

INTEGER K, NOUT

REAL FNORM, X (N), XGUESS (N)

EXTERNAL FCN
! Set values of initial guess
! XGUESS = ( 4.0 4.0 4.0)

DATA XGUESS/4.0, 4.0, 4.0/

CALL UMACH (2, NOUT)
! Find the solution
CALL NEQNF (FCN, X, XGUESS=XGUESS, FNORM=FNORM)
! Output
WRITE (NOUT,99999) (X(K),K=1,N), FNORM
99999 FORMAT (’ The solution to the system is’, /, ' X = (', 3F5.1, &
nr, /, ' with FNORM =’, F5.4, //)

END
! User-defined subroutine
SUBROUTINE FCN (X, F, N)
INTEGER N
REAL X(N), F(N)

REAL EXP, SIN
INTRINSIC EXP, SIN

F(l) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0
F(2) = EXP(X(2)-2.0)/X (1) + X(3)*X(3) - 10.0
F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0
RETURN
END
Output
The solution to the system is
X=( 1.0 2.0 3.0)

with FNORM =.0000

Comments

1. Workspace may be explicitly provided, if desired, by use of N2ONF/DN20QNF. The
reference is:

CALL N2QNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM,
FVEC, FJAC, R, QTF, WK)

The additional arguments are as follows:

FVEC — A vector of length N. FVEC contains the functions evaluated at the point .
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FJAC — AnN by N matrix. FJAC contains the orthogonal matrix Q produced by the
OR factorization of the final approximate Jacobian.

R — A vector of length N * (N + 1)/2. R contains the upper triangular matrix produced
by the QR factorization of the final approximate Jacobian. R is stored row-wise.

OTF — A vector of length N. QTF contains the vector TRANS(Q) * FVEC.

WK — A work vector of length 5 * N.

2. Informational errors
Type Code

4 1  The number of calls to FCN has exceeded ITMAX * (N + 1). A new
initial guess may be tried.

4 2 ERRREL is too small. No further improvement in the approximate
solution is possible.

4 3 The iteration has not made good progress. A new initial guess may
be tried.

Description

Routine NEQNF is based on the MINPACK subroutine HYBRD1, which uses a modification of
M.J.D. Powell’s hybrid algorithm. This algorithm is a variation of Newton’s method, which
uses a finite-difference approximation to the Jacobian and takes precautions to avoid large step
sizes or increasing residuals. For further description, see More et al. (1980).

Since a finite-difference method is used to estimate the Jacobian, for single precision
calculation, the Jacobian may be so incorrect that the algorithm terminates far from a root. In
such cases, high precision arithmetic is recommended. Also, whenever the exact Jacobian can
be easily provided, IMSL routine NEQNJ (page 1165) should be used instead.

NEQNJ

Solves a system of nonlinear equations using a modified Powell hybrid algorithm with a user-
supplied Jacobian.

Required Arguments

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The
usage is CALL FCN (X, F, N), where

x — The point at which the functions are evaluated. (Input)
x should not be changed by FCN.

F — The computed function values at the point X. (Output)

N — Length of x, . (Input)
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FCN must be declared EXTERNAL in the calling program.

LSJAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is
CALL LSJAC (N, X, FJAC), where

N — Length of x. (Input)

x — The point at which the function is evaluated. (Input)
% should not be changed by LSJAC.

FJAC — The computed N by N Jacobian at the point x. (Output)
LSJAC must be declared EXTERNAL in the calling program.

X — A vector of length N.  (Output)
X contains the best estimate of the root found by NEQONJ.

Optional Arguments

ERRREL — Stopping criterion. (Input)
The root is accepted if the relative error between two successive approximations to this
root is less than ERRREL.
Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

N — The number of equations to be solved and the number of unknowns. (Input)
Default: N = size (x,1).

ITMAX — The maximum allowable number of iterations. (Input)
Suggested value = 200.
Default: 1TMAX = 200.

XGUESS — A vector of length N.  (Input)

XGUESS contains the initial estimate of the root.
Default: XGUESS = 0.0.

FNORM — A scalar that has the value F(1)* + ... + F(N)? at the point x. (Output)
FORTRAN 90 Interface

Generic: CALL NEQNJ (FCN, LSJAC, X [,.])

Specific: The specific interface names are S_NEQNJ and D_NEQNJ.

FORTRAN 77 Interface

Single: CALL NEQNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X, FNORM)
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Double: The double precision name is DNEQNJ.

Example
The following 3 x 3 system of nonlinear equations
fi(x)=x+e"" +(x, -i-x3)2 -27=0
fi(x)=e7/x +x;-10=0
fi(x)=x, +sin(x, -2)+x -7=0

is solved with the initial guess (4.0, 4.0, 4.0).

USE NEQNJ INT
USE UMACH INT
! Declare variables
INTEGER N
PARAMETER (N=3)

INTEGER K, NOUT

REAL FNORM, X (N), XGUESS (N)

EXTERNAL FCN, LSJAC
! Set values of initial guess
! XGUESS = ( 4.0 4.0 4.0 )

DATA XGUESS/4.0, 4.0, 4.0/

CALL UMACH (2, NOUT)
! Find the solution
CALL NEQNJ (FCN, LSJAC, X, XGUESS=XGUESS, FNORM=FNORM)
! Output
WRITE (NOUT,99999) (X(K),K=1,N), FNORM
99999 FORMAT (’ The roots found are’, /, ' X = (', 3F5.1, &
e, /! with FNORM = ' ,F5.4, //)

END
! User-supplied subroutine
SUBROUTINE FCN (X, F, N)
INTEGER N
REAL X (N), F(N)

REAL EXP, SIN
INTRINSIC EXP, SIN

F(l) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0
F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0

F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0

RETURN

END

! User-supplied subroutine to
! compute Jacobian

SUBROUTINE LSJAC (N, X, FJAC)

INTEGER N
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REAL X (N), FJAC (N,N)

REAL COS, EXP
INTRINSIC COS, EXP

FJAC(1,1) = 1.0 + EXP(X(1)-1.0)
FJAC(l 2) = 2.0*% (X(2)+X(3))
FJAC(1,3) = 2.0* (X(2)+X(3))
FJAC(2 1) = -EXP(X(2)-2.0)*(1.0/X(1)**2)
FJAC(2,2) = EXP(X(2)-2.0)*(1.0/X(1))
FJAC(2 3) = 2.0%X(3)
FJAC(3,1) = 0.0
FJAC(3 2) = COS(X(2)-2.0) + 2.0*X(2)
FJAC(3,3) = 1.0
RETURN
END
Output
The roots found are
X=( 1.0 2.0 3.0)

with FNORM =.0000

Comments

1. Workspace may be explicitly provided, if desired, by use of N20NJ/DN20NJ. The
reference is:

CALL N2QNJ’(FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X,
FNORM, FVEC, FJAC, R, QTF, WK)

The additional arguments are as follows:
FVEC — A vector of length N. FVEC contains the functions evaluated at the point X.

FJAC — AnN by N matrix. FJAC contains the orthogonal matrix Q produced by the
QR factorization of the final approximate Jacobian.

R — A vector of length N * (N + 1)/2. R contains the upper triangular matrix
produced by the QR factorization of the final approximate Jacobian. R is stored
row-wise.

OTF — A vector of length N. QTF contains the vector TRANS (Q) * FVEC.

WK — A work vector of length 5 * N.

2. Informational errors
Type Code
4 1 The number of calls to FCN has exceeded ITMAX. A new initial guess

may be tried.
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4 2 ERRREL is too small. No further improvement in the approximate
solution is possible.

4 3 The iteration has not made good progress. A new initial guess may
be tried.

Description

Routine NEQNJ is based on the MINPACK subroutine HYBRDJ, which uses a modification of
M.J.D. Powell’s hybrid algorithm. This algorithm is a variation of Newton’s method, which
takes precautions to avoid large step sizes or increasing residuals. For further description, see
More et al. (1980).

NEQBF

Solves a system of nonlinear equations using factored secant update with a finite-difference
approximation to the Jacobian.
Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The
usage is CALL FCN (N, X, F),where

N — Length of X and F. (Input)

x — The point at which the functions are evaluated. (Input)
X should not be changed by FCN.

F — The computed function values at the point X. (Output)
FCN must be declared EXTERNAL in the calling program.

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)
Default: N = size (X,1).

XGUESS — Vector of length N containing initial guess of the root. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the distance between two points. In the absence of
other information, set all entries to 1.0. If internal scaling is desired for XSCALE, set
IPARAM (6) to 1.
Default: xscaLe = 1.0.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations ¢ 1169



FSCALE — Vector of length N containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the function residuals. In the absence of other
information, set all entries to 1.0.
Default: FscaLe = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set TPARAM (1) to zero for default values of TPARAM and RPARAM. See Comment 4.
Default: 1pARAM = 0.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 4.

FVEC — Vector of length N containing the values of the functions at the approximate
solution. (Output)

FORTRAN 90 Interface

Generic: CALL NEQBF (FCN, X [,..])

Specific: The specific interface names are S_NEQBF and D_NEQBF.

FORTRAN 77 Interface

Single: CALL NEQBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,
X, FVEC)
Double: The double precision name is DNEQBF.
Example

The following 3 x 3 system of nonlinear equations:
fi(x)=x+e"" +(x, -i-x3)2 -27=0
fi(x)=e7/x +x;-10=0
fi(x)=x, +sin(x, -2)+x -7=0

is solved with the initial guess (4.0, 4.0, 4.0).

USE NEQBF INT
USE UMACH INT
! Declare variables
INTEGER N
PARAMETER (N=3)

INTEGER K, NOUT
REAL X (N), XGUESS(N)
EXTERNAL FCN
! Set values of initial guess
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99999

XGUESS = ( 4.0 4.0 4.0 )
DATA XGUESS/3*4.0/

Find the solution
CALL NEQBF (FCN, X, XGUESS=XGUESS)
Output
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) (X(K),K=1,N)
FORMAT ('’ The solution to the system is’, /, ' X = (', 3F8.3, &
")

END
User-defined subroutine
SUBROUTINE FCN (N, X, F)
INTEGER N
REAL X(N), F(N)

REAL EXP, SIN
INTRINSIC EXP, SIN

F (1) X (1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0
F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0

F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0

RETURN

END

Output

The solution to the system is

X =

1.000 2.000 3.000)

Comments

1. Workspace may be explicitly provided, if desired, by use of N20BF/DN20BF. The
reference is:

CALL N2QBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVEC, WK, LWK)

The additional arguments are as follows:

WK — A work vector of length LWK. On output WK contains the following information:
The third N locations contain the last step taken.

The fourth N locations contain the last Newton step.

The final N? locations contain an estimate of the Jacobian at the solution.

LWK — Length of wk, which must be at least 2 * x°+ 11 * N. (Input)

2. Informational errors
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Type Code

3 1 The last global step failed to decrease the 2-norm of ¥(x) sufficiently;
either the current point is close to a root of F(xX) and no more
accuracy is possible, or the secant approximation to the Jacobian is
inaccurate, or the step tolerance is too large.

3 3 The scaled distance between the last two steps is less than the step
tolerance; the current point is probably an approximate root of F(x)
(unless STEPTL is too large).

3 4  Maximum number of iterations exceeded.

3 5  Maximum number of function evaluations exceeded.

3 7  Five consecutive steps of length STEPMX have been taken; either the
2-norm of F(X) asymptotes from above to a finite value in some
direction or the maximum allowable step size STEPMX is too small.

3. The stopping criterion for NEQBF occurs when the scaled norm of the functions is less

than the scaled function tolerance (RPARAM(1)).

4. If the default parameters are desired for NEQBF, then set TPARAM(1) to zero and call
routine NEQBF. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAV, then the following steps should be taken before calling NEQBF:

CALL N4QBJ (IPARAM, RPARAM)
Set nondefault values for desired I PARAM, RPARAM elements.

Note that the call to N40BJ will set ITPARAM and RPARAM to their default values, so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

1PARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

1PARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(S) = Maximum number of Jacobian evaluations.

Default: not used in NEQBF.
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IPARAM(6) = Internal variable scaling flag.
If 1PARAM(6) = 1, then the values of XSCALE are set internally.
Default: 0.
RPARAM — Real vector of length 5.

RPARAM(1) = Scaled function tolerance.
The scaled norm of the functions is computed as

max (1] 51)
where f; is the i-th component of the function vector F, and f5; is the i-th

component of FSCALE.
Default:

Je

where € is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The scaled norm of the step between two points x and y is computed as

|x[—y[|
e {max(|x,.|,l/s[)}

where s, is the i-th component of XSCALE.
Default: €*°, where € is the machine precision.

RPARAM(3) = False convergence tolerance.
Default: not used in NEQBF.

RPARAM(4) = Maximum allowable step size. (STEPMX)

Default: 1000 * max(g;, €,), where

&=\ (st )2

€, = ||s|,, s = XSCALE, and ¢ = XGUESS.

RPARAM(S) = Size of initial trust region.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DN4QBJ is called and RPARAM is declared
double precision.
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5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
Routine NEQBF uses a secant algorithm to solve a system of nonlinear equations, i.e.,
Fx)=0
where F: R”" > R", and x € R".

From a current point, the algorithm uses a double dogleg method to solve the following
subproblem approximately:

min
s

eR

|F(xc)+ J(x, )s"2
subject to || s ||, <5,

to get a direction s,., where F(x,) and J(x,) are the function values and the approximate Jacobian
respectively evaluated at the current point x,.. Then, the function values at the point x,, = x,. + s,
are evaluated and used to decide whether the new point x,, should be accepted.

When the point x,, is rejected, this routine reduces the trust region 8, and goes back to solve the
subproblem again. This procedure is repeated until a better point is found.

The algorithm terminates if the new point satisfies the stopping criterion. Otherwise, §,. is
adjusted, and the approximate Jacobian is updated by Broyden’s formula,

_ T
Jn :JC + (y ‘]TCSC)SC

S. S

cte

where J, = J(x,), J. = J(x.), and y = F (x,,) — F (x.). The algorithm then continues using the new
point as the current point, i.e. x,. < x,,.

For more details, see Dennis and Schnabel (1983, Chapter 8).

Since a finite-difference method is used to estimate the initial Jacobian, for single precision
calculation, the Jacobian may be so incorrect that the algorithm terminates far from a root. In
such cases, high precision arithmetic is recommended. Also, whenever the exact Jacobian can
be easily provided, IMSL routine NEQBJ (page 1174) should be used instead.

NEQBJ

Solves a system of nonlinear equations using factored secant update with a user-supplied Jacobian.

Required Arguments

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The
usage is CALL FCN (N, X, F), where

N — Length of x and F. (Input)
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x — The point at which the functions are evaluated. (Input)
% should not be changed by FCN.
F — The computed function values at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL
JAC (N, X, FJAC, LDFJAC), where

N — Length of x. (Input)

x — Vector of length N at which point the Jacobian is evaluated. (Input)
% should not be changed by Jac.

FJAC — The computed N by N Jacobian at the point X. (Output)
LDFJAC — Leading dimension of FJaC. (Input)

JAC must be declared EXTERNAL in the calling program.

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)
Default: N = size (x,1).

XGUESS — Vector of length N containing initial guess of the root. (Input)
Default: xGUEsS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the distance between two points. In the absence of
other information, set all entries to 1.0. If internal scaling is desired for XSCALE, set
IPARAM(6) to 1.
Default: xscaLe = 1.0.

FSCALE — Vector of length N containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the function residuals. In the absence of other
information, set all entries to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set 1PARAM (1) to zero for default values of TPARAM and RPARAM,
See Comment 4.
Default: 1PARAM = 0.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 4.

FVEC — Vector of length N containing the values of the functions at the approximate
solution. (Output)
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FORTRAN 90 Interface
Generic: CALL NEQBJ (FCN, JAC, X ,.])

Specific: The specific interface names are S_NEQBJ and D_NEQBJ.

FORTRAN 77 Interface

Single: CALL NEQBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVEC)

Double: The double precision name is DNEQBJ.

Example
The following 3 x 3 system of nonlinear equations
fl(x)=x1 +ei! +()c2 +)c3)2 -27=0
fi(x)=e"7/x +x;-10=0
fi(x)=x,+sin (x, =2)+x; -7=0

is solved with the initial guess (4.0, 4.0, 4.0).

USE NEQBJ INT
USE UMACH_ INT
! Declare variables
INTEGER N
PARAMETER (N=3)

INTEGER K, NOUT

REAL X (N), XGUESS (N)

EXTERNAL FCN, JAC
! Set values of initial guess
! XGUESS = ( 4.0 4.0 4.0)

DATA XGUESS/3*4.0/
! Find the solution
CALL NEQBJ (FCN, JAC, X, XGUESS=XGUESS)
! Output
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) (X(K),K=1,N)
99999 FORMAT (' The solution to the system is’, /, ' X = (', 3F8.3, &
")

END
! User-defined subroutine
SUBROUTINE FCN (N, X, F)
INTEGER N
REAL X(N), F(N)

REAL EXP, SIN
INTRINSIC EXP, SIN
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F(l) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0
F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0

F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0

RETURN

END

User-supplied subroutine to
compute Jacobian

SUBROUTINE JAC (N, X, FJAC, LDFJAC)
INTEGER N, LDFJAC

REAL

REAL

X (N), FJAC(LDFJAC,N)

COS, EXP

INTRINSIC COS, EXP

FJAC(1,1) = 1.0 + EXP(X(1)-1.0)
FJAC(1,2) = 2.0*(X(2)+X(3))
FJAC(1,3) = 2.0*(X(2)+X(3))
FJAC(2,1) = -EXP(X(2)-2.0)*(1.0/X(1)**2)
FJAC(2,2) = EXP(X(2)-2.0)*(1.0/X (1))
FJAC(2,3) = 2.0*X(3)
FJAC(3,1) = 0.0
FJAC (3,2) = COS(X(2)-2.0) + 2.0*X(2)
FJAC(3,3) = 1.0
RETURN
END
Output
The solution to the system is
X = ( 1.000 2.000 3.000)
Comments

1.

Workspace may be explicitly provided, if desired, by use of N20BJ/DN20BJ. The
reference is:

CALL N2QBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE,
IPARAM, RPARAM, X, FVEC, WK, LWK)

The additional arguments are as follows:
WK — A work vector of length LWK. On output WK contains the following information:
The third N locations contain the last step taken. The fourth N locations contain

the last Newton step. The final N* locations contain an estimate of the Jacobian
at the solution.

LWK — Length of wk, which must be at least 2 * N>+ 11 * . (Input)

Informational errors

Type Code
3 1 The last global step failed to decrease the 2-norm of ¥(x) sufficiently;
either the current point is close to a root of F(X) and no more
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accuracy is possible, or the secant approximation to the Jacobian is
inaccurate, or the step tolerance is too large.

3 3 The scaled distance between the last two steps is less than the step
tolerance; the current point is probably an approximate root of F(X)
(unless STEPTL is too large).

3 4  Maximum number of iterations exceeded.
3 5  Maximum number of function evaluations exceeded.
3 7  Five consecutive steps of length STEPMX have been taken; either the

2-norm of F(X) asymptotes from above to a finite value in some
direction or the maximum allowable stepsize STEPMX is too small.

3. The stopping criterion for NEQBJ occurs when the scaled norm of the functions is less
than the scaled function tolerance (RPARAM(1)).

4. If the default parameters are desired for NEQBJ, then set TPARAM(1) to zero and call
routine NEQBJ. Otherwise, if any nondefault parameters are desired for TPARAM or
RPARAM, then the following steps should be taken before calling NEQBJ:

CALL N4QBJ (IPARAM, RPARAM)
Set nondefault values for desired I PARAM, RPARAM elements.

Note that the call to N40BJ will set TPARAM and RPARAM to their default values, so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:
IPARAM — Integer vector of length 6.
1PARAM(1) = Initialization flag.

TIPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

1PARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(S) = Maximum number of Jacobian evaluations.
Default: not used in NEQBJ.

IPARAM(6) = Internal variable scaling flag.
If 1PARAM(6) = 1, then the values of XSCALE are set internally.
Default: 0.

RPARAM — Real vector of length 5.
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RPARAM(1) = Scaled function tolerance.
The scaled norm of the functions is computed as

mas (1£]° 1)
where f; is the i-th component of the function vector F, and f5; is the i-th component of

FSCALE.
Default:

Je
where ¢ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The scaled norm of the step between two points x and y is computed as

|x[ _y[|
e {max(|x,.|,l/s[)}

where s; is the i-th component of XSCALE.
Default: *°, where € is the machine precision.

RPARAM(3) = False convergence tolerance.
Default: not used in NEQBJ.

RPARAM(4) = Maximum allowable step size. (STEPMX)

Default: 1000 * max(g, €,), where

€ = |Is||,, § = XSCALE, and ¢ = XGUESS.

RPARAM(S) = Size of initial trust region.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DN4QBJ is called and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description

Routine NEQBJ uses a secant algorithm to solve a system of nonlinear equations, i. e.,
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F(x)=0

where F: R"> R",andx e R".

From a current point, the algorithm uses a double dogleg method to solve the following
subproblem approximately:

min"F(xC ) + J(xc)s"2

seR”
subject to ||s]l, < &,

to get a direction s,., where F(x,) and J(x,) are the function values and the approximate Jacobian
respectively evaluated at the current point x,.. Then, the function values at the point x,, = x,. + s,
are evaluated and used to decide whether the new point x,, should be accepted.

When the point x,, is rejected, this routine reduces the trust region 8, and goes back to solve the
subproblem again. This procedure is repeated until a better point is found.

The algorithm terminates if the new point satisfies the stopping criterion. Otherwise, §,. is
adjusted, and the approximate Jacobian is updated by Broyden’s formula,
~J.s,)s!
J _ J + (y c (‘) c

n c T
S. S

cte

where J, = J(x,,), J. = J(x.), and y = F (x,,) — F (x.). The algorithm then continues using the new
point as the current point, i.e. x,. < x,,.

For more details, see Dennis and Schnabel (1983, Chapter 8).
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Chapter 8: Optimization

Routines
8.1. Unconstrained Minimization
8.1.1  Univariate Function
Using function values only ............cccccocvieiieeeiiiiciiieeeee e UVMIF 1186
Using function and first derivative values .............c..cc......... UVMID 1189
NonsmMooth fUNCHON ..........oviiiii e UVMGS 1193
8.1.2  Multivariate Function
Using finite-difference gradient............ccccciiiinen. UMINF 1196
Using analytic gradient ............cccooiiiiiii e, UMING 1202
Using finite-difference Hessian ...........cccococveeiiiiiciieeeeeen, UMIDH 1208
Using analytic Hessian ..........ccccoooiiiiiiiiiiiiiicccccceceeeen UMIAH 1213
Using conjugate gradient with finite-difference gradient.....UMCGF 1219
Using conjugate gradient with analytic gradient ................ UMCGG 1223
NonsmMooth fUNCHON ..........ooiiiiieie e UMPOL 1227
8.1.3 Nonlinear Least Squares
Using finite-difference Jacobian.............cccccciiiinnn. UNLSF 1231
Using analytic Jacobian ............cccoouveiiiiiiiiiii e, UNLSJ 1237
8.2. Minimization with Simple Bounds
Using finite-difference gradient.............cccccciiii BCONF 1243
Using analytic gradient ............cccooiiiii e BCONG 1249
Using finite-difference Hessian ...........ccococc BCODH 1257
Using analytic Hessian ...........cccccoeeeiiiiiiiiiee e, BCOAH 1263
NonsmMooth FUNCHON...........ooiiiiiiiiie e BCPOL 1271
Nonlinear least squares using finite-difference Jacobian.... BCLSF 1274
Nonlinear least squares using analytic Jacobian.................. BCLSJ 1281
Nonlinear least squares problem subject to bounds............ BCNLS 1288
8.3. Linearly Constrained Minimization
Dense linear programming ...............eeeeeeemmeeermremeenmnnneennennn. DLPRS 1297
Sparse linear programming .........cccceeeeeeeiiiiieeeee e, SLPRS 1301
Quadratic programming ..........cccceevrieeeeeiiiee e QPROG 1307
General objective function with finite-difference gradient....LCONF 1310
General objective function with analytic gradient ............... LCONG 1316
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8.4. Nonlinearly Constrained Minimization
Using a sequential equality constrained QP method ........... NNLPF 1323
Using a sequential equality constrained QP method .......... NNLPG 1329

8.5. Service Routines

Central-difference gradient............cccooveeeeiiieiiiiiiieeee e, CDGRD 1336
Forward-difference gradient.............ccccccooviiiiiieeec e, FDGRD 1338
Forward-difference Hessian ............ccocceiviiiii i, FDHES 1340
Forward-difference Hessian using analytic gradient............ GDHES 1343
Forward-difference Jacobian............ccccccooiiiiiiiiii i FDJAC 1346
Check user-supplied gradient ...........ccccoeeiiiiiiiiiie s CHGRD 1349
Check user-supplied Hessian ...........cccocvieiiiiiiieee CHHES 1352
Check user-supplied Jacobian ...........cccccceeeiiiiiiiiienaeeenes CHJAC 1355
Generate starting points ..., GGUES 1359

Usage Notes

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:

min f(x

min /()

where f: R"— R is at least continuous. The routines for unconstrained minimization are grouped
into three categories: univariate functions (Uv* * *), multivariate functions (UM* **), and nonlinear
least squares (UNLS*).

For the univariate function routines, it is assumed that the function is unimodal within the
specified interval. Otherwise, only a local minimum can be expected. For further discussion on
unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate function routines UMINF (page 1196) and
UMING (page 1202), whereas UMIDH (page 1208) and UMIAH (page 1213) use a modified Newton
algorithm. The routines UMCGF (page 1219) and UMCGG (page 1223) make use of a conjugate
gradient approach, and UMPOL (page 1227) uses a polytope method. For more details on these
algorithms, see the documentation for the corresponding routines.

The nonlinear least squares routines use a modified Levenberg-Marquardt algorithm. If the
nonlinear least squares problem is a nonlinear data-fitting problem, then software that is designed
to deliver better statistical output may be useful; see IMSL (1991).

These routines are designed to find only a local minimum point. However, a function may have
many local minima. It is often possible to obtain a better local solution by trying different initial
points and intervals.

High precision arithmetic is recommended for the routines that use only function values. Also it is
advised that the derivative-checking routines CH* * * be used to ensure the accuracy of the user-
supplied derivative evaluation subroutines.
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Minimization with Simple Bounds

The minimization with simple bounds problem can be stated as follows:

min f'(x)

xer”

subjectto /; <x;<u;, fori=1,2,...,n

where f: R"— R, and all the variables are not necessarily bounded.

The routines BCO* * use the same algorithms as the routines UMI * *, and the routines BCLS* are
the corresponding routines of UNLS*. The only difference is that an active set strategy is used to
ensure that each variable stays within its bounds. The routine BCPOL (page 1271) uses a function
comparison method similar to the one used by UMPOL (page 1227). Convergence for these
polytope methods is not guaranteed; therefore, these routines should be used as a last alternative.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

min £ (x)

xeR"

subject to Ax = b

where f: R"— R, 4 is an m x n coefficient matrix, and b is a vector of length m. If f{x) is linear,
then the problem is a linear programming problem; if f{x) is quadratic, the problem is a quadratic
programming problem.

The routine DLPRS (page 1297) uses a revised simplex method to solve small- to medium-sized
linear programming problems. No sparsity is assumed since the coefficients are stored in full
matrix form.

The routine QPROG (page 1307) is designed to solve convex quadratic programming problems
using a dual quadratic programming algorithm. If the given Hessian is not positive definite, then
QPROG modifies it to be positive definite. In this case, output should be interpreted with care.

The routines LCONF (page 1310) and L.CONG (page 1316) use an iterative method to solve the
linearly constrained problem with a general objective function. For a detailed description of the
algorithm, see Powell (1988, 1989).

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

min  (x)

subject to g;(x) = 0, for i=1,2,...m

gix)=20,for i=m+1,...,m

where f: R"> Randg;: R"> R, fori=1,2, ....m
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The routines NNLPF (page 1323) and NNLPG (page 1329) use a sequential equality constrained
quadratic programming method. A more complete discussion of this algorithm can be found in the
documentation.

Selection of Routines

The following general guidelines are provided to aid in the selection of the appropriate routine.

Unconstrained Minimization

1. For the univariate case, use UVMID (page 1189) when the gradient is available, and use
UVMIF (page 1182) when it is not. If discontinuities exist, then use UVMGS (page 1193).

2. For the multivariate case, use UMCG* when storage is a problem, and use UMPOL (page
1227) when the function is nonsmooth. Otherwise, use UMI ** depending on the
availability of the gradient and the Hessian.

3. For least squares problems, use UNLSJ (page 1237) when the Jacobian is available, and
use UNLSF (page 1231) when it is not.

Minimization with Simple Bounds

1. Use BCONF (page 1243) when only function values are available. When first
derivatives are available, use either BCONG (page 1249) or BCODH (page 1257). If first
and second derivatives are available, then use BCOAH (page 1263).

2. For least squares, use BCLSF (page 1274) or BCLSJ (page 1281) depending on the
availability of the Jacobian.

3. Use BCPOL (page 1271) for nonsmooth functions that could not be solved satisfactorily
by the other routines.
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The following charts provide a quick reference to routines in this chapter:

UNCONSTRAINED
MINIMIZATION

multivariate

univariate
UMCGF  |og no derivative large-size
l problem
UMCGG
no Jacobian least squares
unLsr (@ ¢
UNLSJ
nonsmooth
————— P UVMSG
nonsmooth
UMPOL ‘—
no derivative UVMIF
no first
UMINF .
derivative
smooth
UMING no second
UMIDH derivative
v v
UVMID UMIAH
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CONSTRAINED

MMIMIMIZATION
Linear constramts | Honlinear constramts
general constramts linear objactive > DLEPRSY
SLPRE
Simple bounds
only quadratic objective w QrROG
nonlinear| objective
no gradient
= LCOHF
v
LCONG
least square no Jacoblan
T 3 ® BCLSF
ECL3J
nonsmooth p ECPOL
no first ECONF
derivative NHNLEF 1o gradient
no second BECONG
derivative ECOCH
¥ ¥
BCOAH HNLTG

UVMIF

Finds the minimum point of a smooth function of a single variable using only function
evaluations.

Required Arguments

F — User-supplied FUNCTTON to compute the value of the function to be minimized. The
form is F(x), where

X — The point at which the function is evaluated. (Input)
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x should not be changed by F.
F — The computed function value at the point x. (Output)

F must be declared EXTERNAL in the calling program.
XGUESS — An initial guess of the minimum point of F. (Input)

BOUND — A positive number that limits the amount by which x may be changed from its
initial value. (Input)

X — The point at which a minimum value of F is found. (Output)

Optional Arguments

STEP — An order of magnitude estimate of the required change in x. (Input)
Default: sSTEP = 1.0.

XACC — The required absolute accuracy in the final value of x. (Input)
On a normal return there are points on either side of X within a distance XAcc at which
F is no less than F(x).
Default: xacc = 1.e-4.

MAXFN — Maximum number of function evaluations allowed. (Input)
Default: MAXEN = 1000.

FORTRAN 90 Interface

Generic: CALL UVMIF (F, XGUESS, BOUND, X [,..])

Specific: The specific interface names are S UVM F and D_UVM F.

FORTRAN 77 Interface

Single: CALL UVMIF (F, XGUESS, STEP, BOUND, XACC, MAXFN, X)
Double: The double precision name is DUVM F.
Example

A minimum point of e* — 5x is found.

USE UVMIF INT
USE UMACH INT

! Declare variables
INTEGER MAXFN, NOUT
REAL BOUND, F, FX, STEP, X, XACC, XGUESS
EXTERNAL F

! Initialize variables
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XGUESS = 0.0
XACC = 0.001
BOUND = 100.0
STEP = 0.1
MAXEN = 50

Find minimum for F = EXP(X) - 5X
CALL UVMIF (F, XGUESS, BOUND, X, STEP=STEP, XACC=XACC, MAXFN=MAXFN)
FX = F(X)
Print results
CALL UMACH (2, NOUT)
WRITE (NOUT, 99999) X, FX

99999 FORMAT (' The minimum is at ', 7X, ¥7.3, //, ' The function ' &

, 'value is ', F7.3)

END
Real function: F = EXP(X) - 5.0*X
REAL FUNCTION F (X)
REAL X
REAL EXP
INTRINSIC EXP
F = EXP(X) - 5.0E0*X
RETURN
END
Output
The minimum is at 1.609
The function value is -3.047
Comments
Informational errors
Type Code
3 1 Computer rounding errors prevent further refinement of x.
3 2 The final value of X is at a bound. The minimum is probably beyond the
bound.
4 3 The number of function evaluations has exceeded MAXFN.
Description

The routine UVMIF uses a safeguarded quadratic interpolation method to find a minimum point
of a univariate function. Both the code and the underlying algorithm are based on the routine
zZXLSF written by M.J.D. Powell at the University of Cambridge.

The routine UVMIF finds the least value of a univariate function, f, that is specified by the
function subroutine F. Other required data include an initial estimate of the solution, XGUESS ,
and a positive number BOUND. Let x, = XGUESS and b = BOUND, then x is restricted to the
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interval [x, — b, x, + b]. Usually, the algorithm begins the search by moving from x, to

x =Xx, +s, where s = STEP is also provided by the user and may be positive or negative. The first
two function evaluations indicate the direction to the minimum point, and the search strides out
along this direction until a bracket on a minimum point is found or until x reaches one of the
bounds x,, £ b. During this stage, the step length increases by a factor of between two and nine
per function evaluation; the factor depends on the position of the minimum point that is
predicted by quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we will have three points, x;, x,, and x3,
with x; <x, <x3 and f(x,) <f(x;) and f (x,) < f(x3). There are three main ingredients in the
technique for choosing the new x from these three points. They are (i) the estimate of the
minimum point that is given by quadratic interpolation of the three function values, (ii) a
tolerance parameter €, that depends on the closeness of fto a quadratic, and (iii) whether x, is
near the center of the range between x; and x; or is relatively close to an end of this range. In
outline, the new value of x is as near as possible to the predicted minimum point, subject to
being at least € from x,, and subject to being in the longer interval between x; and x, or x, and x3
when x, is particularly close to x; or x3. There is some elaboration, however, when the distance
between these points is close to the required accuracy; when the distance is close to the machine
precision; or when ¢ is relatively large.

The algorithm is intended to provide fast convergence when f has a positive and continuous
second derivative at the minimum and to avoid gross inefficiencies in pathological cases, such
as

f(x)=x+1.001x|

The algorithm can make ¢ large automatically in the pathological cases. In this case, it is usual
for a new value of x to be at the midpoint of the longer interval that is adjacent to the least
calculated function value. The midpoint strategy is used frequently when changes to f'are
dominated by computer rounding errors, which will almost certainly happen if the user requests
an accuracy that is less than the square root of the machine precision. In such cases, the routine
claims to have achieved the required accuracy if it knows that there is a local minimum point
within distance & of x, where & = Xacc, even though the rounding errors in f may cause the
existence of other local minimum points nearby. This difficulty is inevitable in minimization
routines that use only function values, so high precision arithmetic is recommended.

UVMID

Finds the minimum point of a smooth function of a single variable using both function evaluations
and first derivative evaluations.

Required Arguments

F — User-supplied FUNCTION to define the function to be minimized. The form is F(X),
where

X — The point at which the function is to be evaluated. (Input)
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F — The computed value of the function at X. (Output)
F must be declared EXTERNAL in the calling program.

G — User-supplied FUNCTION to compute the derivative of the function. The form is G(x),
where

X — The point at which the derivative is to be computed. (Input)
G — The computed value of the derivative at X. (Output)
G must be declared EXTERNAL in the calling program.

A — 2 is the lower endpoint of the interval in which the minimum point of F is to be located.
(Input)

B — B is the upper endpoint of the interval in which the minimum point of F is to be located.
(Input)

X — The point at which a minimum value of F is found. (Output)

Optional Arguments

XGUESS — An initial guess of the minimum point of F. (Input)
Default: XGUESS = (a + b) / 2.0.

ERRREL — The required relative accuracy in the final value of x. (Input)
This is the first stopping criterion. On a normal return, the solution X is in an interval
that contains a local minimum and is less than or equal to MAX(1.0, ABS(X)) * ERRREL.
When the given ERRREL is less than machine epsilon, SORT(machine epsilon) is used
as ERRREL.
Default: ERRREL = 1.e-4.

GTOL — The derivative tolerance used to decide if the current point is a local minimum.
(Input)
This is the second stopping criterion. X is returned as a solution when Gx is less than or
equal to GTOL. GTOL should be nonnegative, otherwise zero would be used.
Default: GTOL = 1.e-4.

MAXFN — Maximum number of function evaluations allowed. (Input)
Default: MAXEN = 1000.

FX — The function value at point x. (Output)

GX — The derivative value at point x. (Output)
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FORTRAN 90 Interface
Generic: CALL UUWMD(F, G A B, XI[,.])

Specific: The specific interface names are S_UYM Dand D_UVM D.

FORTRAN 77 Interface

Single: CALL UVMID (F, G, XGUESS, ERRREL, GTOL, MAXFN, A, B, X, FX,
GX)
Double: The double precision name is DUVM D.
Example

A minimum point of e* — 5x is found.

USE UVMID INT
USE UMACH_ INT
! Declare variables
INTEGER MAXFN, NOUT
REAL A, B, ERRREL, F, FX, G, GTOL, GX, X, XGUESS
EXTERNAL F, G
! Initialize variables
XGUESS .0
! Set ERRREL to zero in order
! to use SQRT (machine epsilon)
! as relative error
ERRREL = 0.0

Il
o

GTOL = 0.0
A = -10.0
B = 10.0
MAXEN = 50

! Find minimum for F = EXP(X) - 5X
CALL UVMID (F, G, A, B, X, XGUESS=XGUESS, ERRREL=ERRREL, &
GTOL=FTOL, MAXFN=MAXFN, FX=FX, GX=GX)
! Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, FX, GX

99999 FORMAT (' The minimum is at ', 7X, ¥7.3, //, ' The function ' &

, 'value is ', F¥F7.3, //, ' The derivative is 7, F7.3)

|

END
! Real function: F = EXP(X) - 5.0*X

REAL FUNCTION F (X)

REAL X
I

REAL EXP

INTRINSIC EXP

F = EXP(X) - 5.0E0*X
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RETURN
END

REAL FUNCTION G (X)
REAL X

REAL EXP
INTRINSIC EXP

G = EXP(X) - 5.0EO

RETURN
END

Output

The minimum is at 1.609
The function value is -3.047

The derivative is -0.001

Comments

Informational errors

Type Code
3 1 The final value of X is at the lower bound. The minimum is probably
beyond the bound.
3 2 The final value of X is at the upper bound. The minimum is probably
beyond the bound.
4 3 The maximum number of function evaluations has been exceeded.
Description

The routine UVMID uses a descent method with either the secant method or cubic interpolation to
find a minimum point of a univariate function. It starts with an initial guess and two endpoints.
If any of the three points is a local minimum point and has least function value, the routine
terminates with a solution. Otherwise, the point with least function value will be used as the
starting point.

From the starting point, say x,, the function value f. = f'(x,), the derivative value g. = g(x.), and
a new point x,, defined by x,, = x. — g, are computed. The function f, = f(x,)), and the derivative
g2, = g(x,) are then evaluated. If either f,, > £, or g, has the opposite sign of g., then there exists a
minimum point between x, and x,,; and an initial interval is obtained. Otherwise, since x,. is kept
as the point that has lowest function value, an interchange between x,, and x,. is performed. The
secant method is then used to get a new point

gn _g()

)Cn - 'xc

x, =x,—g.(
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Let x,, < x, and repeat this process until an interval containing a minimum is found or one of the
convergence criteria is satisfied. The convergence criteria are as follows: Criterion 1:

X —xn|Sg

c c

Criterion 2:

g|<&

where €. = max{1.0, [x.[}€, € is a relative error tolerance and &, is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new point.
Function and derivative are then evaluated at that point; and accordingly, a smaller interval that
contains a minimum point is chosen. A safeguarded method is used to ensure that the interval
reduces by at least a fraction of the previous interval. Another cubic interpolation is then
performed, and this procedure is repeated until one of the stopping criteria is met.

UVMGS

Finds the minimum point of a nonsmooth function of a single variable.

Required Arguments
F — User-supplied FUNCTTION to compute the value of the function to be minimized. The
form is F(x), where

X — The point at which the function is evaluated. (Input)
x should not be changed by F.

F — The computed function value at the point X. (Output)
F must be declared EXTERNAL in the calling program.

A — On input, A is the lower endpoint of the interval in which the minimum of F is to be
located. On output, A is the lower endpoint of the interval in which the minimum of F
is located. (Input/Output)

B — On input, B is the upper endpoint of the interval in which the minimum of F is to be
located. On output, B is the upper endpoint of the interval in which the minimum of F

is located. (Input/Output)

XMIN — The approximate minimum point of the function F on the original interval (a, B).
(Output)
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Optional Arguments

TOL — The allowable length of the final subinterval containing the minimum point. (Input)

Default: ToL = 1.e-4.

FORTRAN 90 Interface

Generic: CALL UVMGS (F, A, B,

Specific:

FORTRAN 77 Interface

XMIN [,..])

The specific interface names are S_ UVMGSS and D_UVMGS.

Single: CALL UVMGS (F, A, B, TOL, XMIN)
Double: The double precision name is DUVMGS.
Example

A minimum point of 3x* — 2x + 4 is found.

USE UVMGS INT
USE UMACH_ INT

! Specification of variables

XMIN

TOL=TOL)

INTEGER NOUT
REAL A, B, FCN, FMIN, TOL,
EXTERNAL FCN
! Initialize variables
A = 0.0EO0
B = 5.0E0
TOL = 1.0E-3
! Minimize FCN
CALL UVMGS (FCN, A, B, XMIN,
FMIN = FCN (XMIN)

! Print results

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) XMIN, FMIN, A, B
99999 FORMAT (' The minimum is at ', F5.3, //, ' The ', &
’ function value is ', F5.3, //, ' The final ', &
"interval is (', Fo6.4, ’',', Fo6.4, "Y', /)

END

! REAL FUNCTION: F = 3*X**2 - 2*X + 4

REAL FUNCTION FCN
REAL X

(X)

FCN

RETURN
END

3.0E0*X*X - 2.0E0*X + 4.0EO
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Output

The minimum is at 0.333

The function value is 3.667

The final interval is (0.3331,0.3340)

Comments
1. Informational errors
Type Code
3 1 TOL is too small to be satisfied.
4 2 Due to rounding errors F does not appear to be unimodal.
2. On exit from UVMGS without any error messages, the following conditions hold: (B-2) <
TOL.
A < XMIN and XMIN < B
F(XMIN) < F(a) and F(XMIN) < F(B)
3. On exit from UVMGS with error code 2, the following conditions hold:
A < XMIN and XMIN < B
F(XMIN) > F(2) and F(XMIN) > F(B) (only one equality can hold).
Further analysis of the function F is necessary in order to determine whether it is not
unimodal in the mathematical sense or whether it appears to be not unimodal to the
routine due to rounding errors in which case the A, B, and XMIN returned may be
acceptable.
Description

The routine UVMGS uses the golden section search technique to compute to the desired accuracy
the independent variable value that minimizes a unimodal function of one independent variable,
where a known finite interval contains the minimum.

Let © = TOL. The number of iterations required to compute the minimizing value to accuracy T is
the greatest integer less than or equal to

In(z/(b-a))

1
ln(l—c) "

where a and b define the interval and

c=(3—\/§)/2

The first two test points are v; and v, that are defined as

vw=a+cb—-a),andv,=b—c(b—a)
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If f{(v;) <A(v,), then the minimizing value is in the interval (a, v,). In this case, b <— v,, v, < v,
and vy < a + c(b —a). If f{(v)) 2 f(v,), the minimizing value is in (v, b). In this case, a < v, v
«— vy, and v, < b —c(b — a).

The algorithm continues in an analogous manner where only one new test point is computed at
each step. This process continues until the desired accuracy 7 is achieved. XMIN is set to the
point producing the minimum value for the current iteration.

Mathematically, the algorithm always produces the minimizing value to the desired accuracy;
however, numerical problems may be encountered. If fis too flat in part of the region of interest,
the function may appear to be constant to the computer in that region. Error code 2 indicates that
this problem has occurred. The user may rectify the problem by relaxing the requirement on T,
modifying (scaling, etc.) the form of f'or executing the program in a higher precision.

UMINF

Minimizes a function of N variables using a quasi-Newton method and a finite-difference gradient.

Required Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is
CALL FCN (N, X, F),where

N — Length of x. (Input)

X — The point at which the function is evaluated. (Input)
x should not be changed by FcN.

F — The computed function value at the point x. (Output)
FCN must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)
Default: N = size (x,1).

XGUESS — Vector of length N containing an initial guess of the computed solution. (Input)
Default: XGUEss = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: xscaLe = 1.0.
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FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FscaLe = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set TPARAM(1) to zero for default values of TPARAM and RPARAM. See Comment 4.
Default: 1pARAM = 0.

RPARAM — Parameter vector of length 7.(Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UM NF(FCN, X [,.])

Specific: The specific interface names are S_UM NF and D_UM NF.

FORTRAN 77 Interface

Single: CALL UMINF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,
X, FVALUE)
Double: The double precision name is DUM NF.
Example

The function

2 2
f(x)=100(x, -x) +(1-x,)
is minimized.
USE UMINF INT
USE U4INF_INT
USE UMACH_ INT

INTEGER N
PARAMETER (N=2)

INTEGER IPARAM(7), L, NOUT
REAL F, RPARAM(7), X(N), XGUESS(N), &
XSCALE (N)

EXTERNAL ROSBRK

DATA XGUESS/-1.2E0, 1.0E0/

Relax gradient tolerance stopping
criterion
CALL U4INF (IPARAM, RPARAM)
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RPARAM (1) = 10.0E0*RPARAM (1)
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
CALL UMINF (ROSBRK, X, XGUESS=XGUESS, IPARAM=IPARAM, RPARAM=RPARAM, &
FVALUE=F)
! Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)

99999 FORMAT ('’ The solution is ', 6X, 2F8.3, //, ' The function ', &
"value is ', F8.3, //, ' The number of iterations is ', &
10X, I3, /, ' The number of function evaluations is ’, &
I3, /, ' The number of gradient evaluations is ', I3)

END

SUBROUTINE ROSBRK (N, X, F)
INTEGER N

REAL X(N), F

F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

RETURN
END
Output
The solution is 1.000 1.000
The function value is 0.000
The number of iterations is 15

The number of function evaluations is 40
The number of gradient evaluations is 19
Comments

1. Workspace may be explicitly provided, if desired, by use of U2 INF/DU2INF. The
reference is:

CALL U2INF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X,FVALUE, WK)

The additional argument is:

WK — Work vector of length N (N + 8). WK contains the following information on
output: The second N locations contain the last step taken. The third N locations
contain the last Newton step. The fourth N locations contain an estimate of the
gradient at the solution. The final N? locations contain the Cholesky
factorization of a BFGS approximation to the Hessian at the solution.

2. Informational errors

Type Code
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Both the actual and predicted relative reductions in the function are
less than or equal to the relative function convergence tolerance.

4 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

4 5 Maximum number of gradient evaluations exceeded.

4 6  Five consecutive steps have been taken with the maximum step
length.

2 7  Scaled step tolerance satisfied; the current point may be an
approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

3 8  The last global step failed to locate a lower point than the current x
value.

3. The first stopping criterion for UMINF occurs when the infinity norm of the scaled

gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping
criterion for UMINF occurs when the scaled distance between the last two steps is less
than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UMINF, then set TPARAM(1) to zero and call the
routine UMINF. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling UMINE:

CALL U4INF (I PARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4 INF will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.

1PARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

1PARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(S) = Maximum number of gradient evaluations.

Default: 400.
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IPARAM(6) = Hessian initialization parameter.
If 1PARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it is
initialized to a diagonal matrix containing

max(|f(t)|,ﬂ)*s[2

on the diagonal where ¢ = XGUESS, f, = FSCALE, and s = XSCALE.
Default: 0.

1PARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in UMINF.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at
x is calculated as

|g,.|*max(|x,.|,1/s,.)
max(|f(x)|,ﬂ,)

where g = Vf(x), s = XSCALE, and f; = FSCALE.
Default:

Ve e

in double where € is the machine precision.

RPARAM(2) = Scaled step tole