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INTRODUCTION 

When the surf~ce of a sphere vibrates in any assigned manner the spherical 
sound waves which are propagated outwards can be represented by well
known formulae provided that the motion is such that only small changes 
in air density occur. When the motion of the spherical ,surface is radial the 
velocity potential of the sound wave is 

rp = r-1f(r-at), (1) 

where a is the velocity of sound and r is the radial co-ordinate. The velocity, 
U, and the excess, P - Po, of pressure over the atmospheric pressure Po are 

U = r-2f(r-at)-r-1f'(r-at), 

P-Po = -par-1f'(r-at). 

(2) 

(3) 

If R is the radius of the sphere which, by its expansion, is producing waves, 
R is a function of t and the surface condition is 

R = R-2f(R-at)-R-lf'(R-at). (4) 

Equation (4) is an equation for finding the functionf. A simple case in which 
equation (4) can be, solved is when R is constant so. that the sphere is ex
panding at a uniform velocity. Taking t = 0 when R = 0 the radius at time 
t can be expressed in the form 

R = aat, (5) 

where a is a non-dimensional constant. The limitation that the changes in 
density are small implies that equations (1)-(3) are true only where a is 
small compared with 1. 

Writing w = R-at = (a-I)at equation (5) becomes 

a-I (a-I)2 -f'(w)- - f(w)+aa = O. 
aw aw 

The solution of equation (6) which is valid for negative values of w is 

aas 
f(w) = -1 2W2+C( -W)<"-l)/". 

-a 
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(6) 

(7) 

IS 
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The constant of integration c must be taken as zero in order that few) may 
vanish when w = O. Hence 

aa3 (r-at)2 
¢ = 1-a2 .r ' (8) 

u = ~·(a2t2 _ 1) } 
1-a2 r2 ' 

a2a3 (at ) P-Po = 2P1_a2 -r- 1 . 

(9) 

If at time t = 0, u = 0 and P - Po = 0 everywhere, then at all subsequent 
times u = 0 and P = Po in the region outside the sphere r = at. 

It will be seen that both u andp-po are constant when rjat is constant, 
thus points where u and p - Po have any assigned value are propagated 
outwards at uniform speeds which are proportional to distance from the 
centre. Subject to the limitations of the theory of sound therefore* the air 
wave produced by a uniformly expanding sphere expands at a uniform rate 
and the velocity and pressure at corresponding points are constant at all 
stages of the expansion. 

This result might have been expected a priori but the solution is here 
given in detail because it forms the starting point of the work which follows. 

ANALYSIS WHEN VELOCITY OF EXPANSION IS NOT SMALL 

It seems likely that a uniformly expanding sphere will be surrounded by 
a uniformly expanding air wave, accordingly a solution of the complete 
equations of motion is sought in which u and p are functions of x = r/t only. 
For such motions 

The equation of motion is 

( or a) at+t or (u,p,p) = o. 

ou au 1 ap 
-+u-=---at or par' 

and in view of equation (10) this may be written 

(u_x)du = _~dp. 
dx pdx 

(10) 

(ll) 

(12) 

* It is shown later that the sound wave equations themselves are not valid in this 
case, even when (X is small, but this fact does not invalidate the expression (8) 
regarded as a solution of those equations. 
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The equation of continuity is 

op op (OU 2U) 
ot +u or +p or +r = 0, 

which in view of equation (10) may be written 

u-xdp du 2u 
pdx+dx+x" (13) 

The gas equation pp-Y = constant, together with the expression for the 

velocity of sound, namely c2 = ddP = YP, give 
p p 

Idp 1 dc2 j' 
pdx = ')'-1 dx' 

Idp 1 dc2 
pdx = (1'-1) c2 dx· 

and 

Substituting from equations (14) in equations (12) and (13) 

dc2 du 
dx = -(y-l)(u-x)dx' 

u-x dc2 du 2u 0 
(I' - 1) c2 dx + dx + x = • 

For convenience in calculation equation (16) may be replaced by 

(14) 

(15) 

(16) 

:: = - 2;{I_(U~Xrrl. (17) 

Equations (15) and (17) may be expressed in non-dimensional form by sub
stituting the variables 

g = u/x, } 
1J = C2/X2, 

Z = logex. 

The resulting equations are 

d1J 21J1J+(y+l)g-yg2-1 
dg = T 31J - (1 - g)2 

dz 1 1J- (l-g)2 
dg= -g 31J- (l-g)2" 

(18) 

(19) 

(20) 

The solution of equation (19), which contains two variables only, will contain 
one arbitrary constant. Without attempting to express this solution in 

18-2 
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mathematical form it is possible to construct by numerical integration a 
complete set of (;,1]) relationships each corresponding with a given value 
of the arbitrary constant and to set them out graphically in a single set of 
curves on a diagram whose co-ordinates are; and 1]. This diagram is shown 
in figure 1. The arbitrary constant a is defined so as to correspond with the 
constant a in equations (5), (8) and (9), and the value of a corresponding 
with each (;,1]) curve is shown in figure 1. The single curve which cuts across 
all the graphical solutions of equation (19) in figure 1 will be explained later. 

BOUNDARY CONDITION AT THE SURFACE OF THE SPHERE 

At the surface of the expanding sphere u = rjt = x so that 

; = 1. (21) 

In the sound-wave solution the constant a specifies the velocity of radial 
expansion of the sphere as a fraction of the velocity of sound. In the com
plete solution 1] represents c2jx2 at any point so that at the surface of the 

( local velocity of SOUnd)2 . 
sphere 1] represents l't f . . Correspondence between 

ve oc! y 0 expanSIon 
the complete solution arid the sound-wave solution is therefore attained 
when the arbitrary constant a is defined by the relation 

(22) 

where 1]2 is the value of 1] at ; = 1. 
The curves in figure 1 were constructed for a series of values of a starting 

at the point (; = 1, 1] = a-2 ) and calculating the change in 1] step by step for 
small decrements 8; in ; through the range; = 1 to; = O. The change 8z 
in z in each interval 8; was also calculated using equation (20). When 1] has 
been found as a function of; the solution of equation (20) is of the form 

Z-Z2 = (function of ;), 

where Z2 is the constant of integration. If Z2 is chosen so that Z = Z2 when 
; = 1 then 

(23) 

OUTER BOUNDARY CONDITIONS 

At the outer boundary of the expanding air it must be possible to connect 
the still air conditions with those which obtain in the disturbed region. This 
can be done in two possible ways: either (a) it might be found that u = 0 at 
radius r = at, so that the (;,1]) curve passes through the point (; = 0,1]= 1); 
01' (b) it might be found that at some radius the pressure temperature and 
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velocity are attained which correspond with the pressure, temperature and 
velocity immediately behind a shock wave moving into still air with velocity 
r/t. In case (b) the expanding region would be bounded by an expanding 

O·'I-~+---I--+-+--+--t----j'---t---r-~O·I 

OL-~O.~'--~~2~~O·~3--~O~4~-O~5~~O~6--~O~7--~o~a~~O~9'-~,.ao 
f., 

FIGURE 1* 

spherical shock wave and the air outside this sphere would be at rest. The 
sound wave solution (equations (8) and (9» satisfies condition (a), for at 
f' = at both 'U = 0 and P - Po = O. 

* The area of figure 9 is indicated by a broken line on the right of the area.. 
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For values of ex. larger than those to which sound wave analysis can be 
applied it appears that it is not possible to satisfy condition (a). If the solu
tion for ex. = 0·7 for instance is followed (see figure 1) for values of ~ decreasing 
from ~ = 1 it is found that z reaches a maximum while ~ is still positive and 
for smaller values of~, z decreases. Thus the same value of z would correspond 
with two different values of ~ which is physically impossible. It remains to 
find out whether the alternative condition (b) can be satisfied. For this 
purpose it is necessary to express the appropriate shock wave conditions in 
terms of the variables ~ and 'fl. 

FIGURE 2. Diagram of symbols. 

A shock wave is an extremely thin region within which the pressure, 
density, temperature and velocity change from one set of values to another. 
The ratios of density and temperature on the two sides of a shock wave 
depend only on the ratio of the corresponding pressures. If PI is the pressure 
immediately behind a shock wave and Po is the atmospheric pressure in 
front of it, y = PI/PO may be regarded as the independent variable in terms 
of which all other changes occurring at the shock wave may be expressed. 
Figure 2 shows the positions in the field to which the various symbols apply. 
The shock wave formulae were first given by Rankine (1870) and later 
independently by Hugoniot (1889). The ratio of densities on the two sides 
of the shock wave is 

PI y-l+(y+l)y 
Po = Y + 1 + (y - 1) y' 

(24) 
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where y, the ratio of specific heats, is the same as the" y" which appears in 
equation (19). In the present calculations y is taken as 1·405. Continuity 
requires that PI/PO must be equal to the ratio of the velocities of the air on 
the two sides relative to the shock wave itself. Hence if U1 is the velocity of 
the shock wave and u1 that of the air behind it 

or, using equation (24), 

U1 -U1 Po 
--u;- = PI' 

U 1 2(y-l) 
U1 = y-l+(y+l)y· 

(25) 

The condition that the shock wave may expand uniformly with the rest of 
the system is 

~ = r 1/t, 
where r 1 is the radius of the shock wave. 

Hence U 1/U1 = U 1 t/r = 61> 

or 
2(y-l) 

61 = y-l+(y+l)y· (26) 

So far as this condition is concerned an appropriate value of y may be chosen 
and a corresponding possible shock wave found at any point in the field. 
Equation (26), however, is not the only necessary condition. The velocity 
of sound in the air behind the shock wave must also satisfy the condition 

1/1 = c~t2/ri = cijUi, 

and c2 _ I _ a2 {y+ 1 + (y-l)y} 
l-YPlIPl- y y-l+(y+l)y' 

where a is the velocity of sound in the undisturbed atmosphere. 
expressed in terms of a making use of the momentum equation 

PO~Ul = PI-PO = (y-l)po, 

substituting a2/y for Po/Po and U 1/U1 from (25) 

a2 2y 
Ui=y-l+(y+l)y' 

hence from equations (27), (28) and (30) 

2yy{y+ 1 + (1'-1) y} 
1/1= {y-l+(y+l)y}2 • 

(27) 

(28) 

U1 maybe 

(29) 

(30) 

(31) 

Values of 6 and r; have been calculated from equations (26) and (31) for a 
sequence of values of y. These are plotted in a curve in figure 1. The inter
sections of this curve with those which describe the flow in the expanding 
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air determine the values of ~ and 'fj, and hence the value of y, corresponding 
with possible shock waves. These have been taken from figure 1 and are 
given in cols .. 2 and 3 of table 1 for values of OG ranging from 0·5 to 2·1. The 
corresponding values of r 11 R obtained by numerical integration of equation 
(20) are also given in col. 4 of table 1. . Corresponding values of yare given 
in col. 5 of table 1. 

TABLE 1 

2 3 4 5 () 1 8 
a: gl 7fl r1/R Y p y' P2/PO 
0 

0·2 4·93 1·000 0·203 0·928 1-075 
0·4 0·0021 0·998 2·44 1·003 0·410 0·775 1-295 
0·5 0·033 0·974 1-950 1'050 0·523 0·750 10400 
0·6 0'103 0·916 1·763 1-169 0·638 0'749 1-569 
0·7 0·198 0·833 1-503 1·365 0·761 0·755 1·808 
0·8 0·291 0·749 1·392 1-629 0·891 0'774 2·105 
1·0 0·453 0'597 1·256 2·400 1-180 0·8U 2·959 
1·2 0·575 0·474 1-182 3'59 1-520 0·847 4·250 
1·4 0·662 0·382 1-135 5·60 1·953 0·887 6·32 
1-6 0·727 0·313 1-103 9·06 2·560 0·917 9·89 
1·8 0·779 0·256 1-083 17·95 3'598 0·92 19·7 
2·1 0·832 0·197 1·060 co co 0·93 co 

REDUCTION TO MORE FAMILIAR FORMS 

The physical cause of the motion of the expanding air being the motion 
of the sphere, the results are more comprehensible when expressed in terms 
of the ratio 

f3 = velocity of expanding spherical surface = U2 (32) 
velocity of sound in undisturbed atmosphere a ' 

rather than in terms of OG. Since U2 tjU1t is Rlr1 

fJ = U2 U1 = RJ(Y-1 + (y+ 1) Y), (33) 
U1 a r1 2y 

values of fJ are given in col. 6 of table 1. 

The ratio 
, pressure behind shock wave P1 

y = pressure at surface of sphere = pz' 
(34) 

is related to c1/c2 by the equation 

y'(l-y)/y = c~M. (35) 

Values of y' are given in col. 7 of table 1. By definition of 'fj 

c2 'fj R2 R2 
i=~=-2--' 
C1 'fj1 r 1 rlOG~1 
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so that 
P2 _ JL _ (~)1'/(1'-1) 
Po - y' - y riCX21/1 • (36) 

Values of P2/PO namely the pressure at the surface of the sphere expressed 
in atmospheres, are given in col. 8 of table 1. The way in which P1/PO and 
P2/PO vary with fJ is shown in figure 3. 
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FIGURE 3. Pressure P2 at sphere and PI behind shock wave 
as multiples of atmospheric pressure Po' 

LIMITING VALUES FOR VERY HIGH RATES OF EXPANSION 

The limiting values of;1 and 1/1 when y~oo are 

; = y! 1 = 0.8316,} 

2y(y-1) 
'1J = (y+1)2 . 

(37) 

Starting from these values equations (19) and (20) were integrated numeric
ally for increasing values of;. At ; = 1 the value of 1/ so found was 0·226 
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corresponding with ex = (0'226)-2 = 2'103, and the value ofr1/Rwas 1·0602. 
These are given in the last line of table 1. It seems therefore that as the 
velocity of expansion becomes infinitely great the pressure at the surface 
becomes infinite, but the density remains finite. The thickness of the layer of 
expanding air is never less than 6·0 % of the radius of the sphere. 

VARIATION OF VELOCITY WITH RADIUS 

The numerical solutions of equations (19) and (20) give 1] and r/R in terms 
of g. The most convenient variables for describing velocity distribution are 
u/a and r/at which are connected with g, 1] and r/R by the relations 

u/a = pgr/R,} 
r/at = pr/R. 

(38) 

Some calculated values of u/a and r/at are given in table 2. These velocity 
distributions are shown in figure 4 forvalues of p ranging from 0·20 to 1·95. 

IX = 0'2, fJ = 0·203 
r/at u/a p/Po 

0·203 0·203· 1·0752 
0·214 0·182 1·0745 
0·228 0·159 1·0727 
0·253 0·127 1·0671 
0·300 0·090 1-0571 
0·374 0·356 1-0431 
0·425 0·042 1·0362 
0·594 0·018 1·0196 
0·766 0·008 1·0087 
1·000 0·000 1·0000 

IX = 0'6, fJ = 0·638 
r/at u/q, p/Po 

0·638 0·638 1-569 
0·660 0·597 1·566 
0·723 0·489 1·539 
0·787 0·405 1·494 
0·850 0·332 1·437 
0·936 0·249 1·349 
0·978 0·209 1'300 
1·020 0·167 1·245 
1·042 0·145 1-186 
1·067 0·114 1-169 

TABLE 2 

IX = 0'4, fJ = 0·410 
r/at u/a p/Po 

0·410 0·410 1·295 
0·430 0·369 1·293 
0·451 0·334 1·286 
0·471 0·303 1·280 
0·512 0·211 1·263 
0·614 0·162 1·213 
0·697 0·113 1-173 
0·799 0·069 1-122 
0·901 0·035 1'068 
0·984 1·015 
1-000 1-003 

IX = 0'7, fJ = 0·761 
r/at u/a p/Po 

0·761 0·761 1·808 
0·782 0·717 
0·826 0·640 
0·890 0·541 
0·934 0·484 
1·000 0·404 
1·043 0·353 
1·087 0·302 
H09 0·275 
1-130 0·240 
1·145 0·225 

1·786 
1·736 
1'692 
1·612 
1'550 
1·480 
1·442 
1·399 
1·365 

IX = 0'5, fJ = 0·523 
r/at u/a p/Po 

0·523 0·523 1'400 
0·544 0·481 1·397 
0'564 0·444 1·391 
0·586 0·411 1·386 
0·627 0·353 1·363 
0·669 0·304 1·338 
0'711 0·262 1·310 
0'774 0·209 1·265 
0·836 0·162 1·219 
0·900 0·120 1-171 
0·940 0·093 1-137 
0·983 0·065 HOO 
1-017 0·031 1-050 

IX = 0·8, fJ = 0·891 
r/at u/a p/Po 

0·891 0·891 2-105 
0·935 0·805 2·096 
0'980 0·729 2·067 
1·025 0·662 2·022 
1·068 0·598 1·965 
1·114 0·537 1'898 
1-158 0'478 1-820 
1·203 0·417 1·133 
1·225 0·384 1'677 
1·242 0·357 -1'630 
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,,= 1·0, fJ = 1·180 
r/at u/a p/Po 

1-180 1-180 2·959 
1·227 1·088 2·939 
1·274 1·004 2·889 
1·321 0·927 2·822 
1·368 0·853 2·731 
1·415 0·779 2·621 
1·463 0·704 2·485 
1·482 0·670 2·413 

" = 1'6, fJ = 2·560 
r/at u/a p/Po 

2·560 2·560 9·89 
2·603 2·474 9·87 
2·649 2·385 9·82 
2·696 2·291 9·72 
2·750 2-198 9·50 
2·824 2·050 9·07 

2' 0 

,. & 

·6 

TABLE 2 (continued) 

,,= 1'2, fJ = 1'520 
r/at u/a p/Po 

1-520 1·520 4·250 
1·570 1'421 4·231 
1-620 1'330 4·169 
1·671 1·233 4·067 
1·722 1-157 3·927 
1·772 1·071 3·747 
1·800 1-029 3·636 

,,= 1'8, fJ = 3·60 
r/at u/a p/Po 
3·60 3'60 19·7 
3·66 3·47 19·7 
3·73 3·35 19·5 
3·79 3·22 19·0 
3·86 3·09 18·3 
3·90 3·03 17·9 

/ 

,,== 1'4, fJ = 1·953 
r/at u/a p/Po 

1·953 1·953 6·317 
2·010 1·843 6·286 
2·065 1·742 6·191 
2·120 1·643 6·033 
2·175 1·544 5·811 
2·215 1·470 5·607 
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FIGUR1il 4. Distribution of velocity. 
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The sudden jump in velocity which occurs at the shock wave is represented 
in each case by a vertical line and the subsequent increase from the shock 
wave to the sphere by a sloping curve behind it. The points corresponding 
with the surface of the expanding sphere lie on the line u = rjt because this 
is the condition which must be satisfied at the sphere. For high rates of 
expansion the velocity distribution is practically linear. When the thickness 
of the layer of expanding air is small compared with the radius of the sphere 

~ ~: does not differ appreciably from its value at the spherical surface which 

is, according to equation (17), equal to -2. The mean slope of the velocity 
distribution curve for P = 1· 95 is infactfound from figure 4 to be tan -1 ( - 1· 8). 
The mean slopes for p = 2·56 and 3·598 which are outside the range of 
figure 4 are still closer to the approximate value tan-1 ( - 2). 

The velocity distribution is shown on a larger scale in figure 5 for the case 
when a = 0·7, P = 0·761. The calculated points are marked in figure 5. The 
calculation has been carried beyond the point where the shock wave occurs 
and the corresponding part of the velocity distribution curve is marked in 
figure 5 with a broken line. It will be seen that in the virtual part of the curve 
the velocity for a given radius is no longer single-valued. 

PRESSURE DISTRIBUTION 

The pressure p at any point is given by 

p = JL (rJr2a2)Y/(Y-1l • 
Po y' R2 

(39) 

Values of pjpo for a selection of values of rjat are given in table 2. The pres
sure distributions for a = 0·2,0·4,0·5,0·6,0·7,0·8,1·0 and 1·2 are shown in 
figure 6. It will be noticed that those for a = 1·0 and 1·2 appear to be nearly 
parabolic. It can be shown in fact that the distribution is parabolic near the 
sphere so that when the thickness of the layer of expanding air is small com
pared with the radius of the sphere the distribution is nearly parabolic 
through the layer. If 

8=(r-R)jr sothat x=U2(1+8), (40) 

and 8 is supposed small the approximate linear distribution of velocity is 

u = U2(1- 28), 
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FIGURE 5. Distribution of velocity for " = O· 7 • 

equation (15) therefore takes the form 

dc2 
ds = - 6(')'-1) U~8, 

so that C~-C2 = 3(')'-1) U~82 or (41) 
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If 8 is small 
y C~-C2 

-----
y-l c~ 

so that 1-- = 3ya28 2 = 3ya2 -- , p (r-R)2 
P2 R 

(42) 

which represents a parabolic pressure distribution. 
As an example of the application of the approximate expression (42) the 

values of y' and a corresponding with infinite rate of expansion may be 
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FIGURE 6. Distribution of pressure. 

calculated. In this caseg1 = 0'8316, 111 = 0·1968 (see equation (37)) so 
that 8 1 , the value of 8 at the shock wave is given by 

Hence 8 1 = 0'056, so that 

r1/R = 1·056 and 111 = 0·1968 = a-2{1-2(0·056)}, 

so that a = 2·12. The approximate value of y' is 1-3ya28 2 or 0·94. These 
values may be compared with those given in table 1 which were found by 
numericalintegrationofthe full equations, namely, r1/R = 1·060, a = 2'103, 
y' = 0·93. 
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COMPARISON WITH SOUND WAVE SOLUTION 

FOR LOW RATES OF EXPANSION 

For small values of IX the sound wave solution of equations (8) and (9) 
may be expected to afford a good approximation to the true motion. The 
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FIGURE 7. Comparison between velocity and,pressure distributions calculated 

by the theory of sound and by the complete equations. 

velocity and pressure distributions calculated from the complete equations 
and from the approximate equations of the theory of sound are com
pared in figure 7 for the case IX = 0·2. So far as the velocity distribution is 
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concerned the agreement is good but the pressure distributions are distinctly 
different near the sphere. The true pressure distribution is in fact parabolic 
near the sphere and initially dp/dr = O. According to the sound wave equa-

2pa2 (a2) tion (9) the value of dp/dr close to the sphere is -1-a 2 R • The reason 

for the discrepancy is evidently that it is not justifiable to apply the 
equations· of the theory of sound in the neighbourhood of the sphere 
owing to the neglect of the term u au/ar in the equation of motion in 
comparison with au/at. In the correct equation u au/ax is equal to - au/at 
at the sphere. 

Apa.rt from this difference at the inner boundary the chief contrast 
between the sound wave solution and the true solution for values of a 
greater than 0·5 lies in the fact that the former involves no shock wave at 
the outer boundary. The true solution for a = 0·2 appears in figure 7 to 
resemble the sound wave solution in this respect. If this resemblance were 
true then some limiting value of a would exist below which no shock wave 
would be produced. Assuming that such a limit exists the author's rough 
attempts to determine its value placed it between a = 0·4 and a = 0·5. 
The matter was, however, examined later by Dr J. W. Maccoll using more 
accurate methods of numerical solution, and he came to the conclusion not 
only that a shock wave is formed when a is less than 0·4 but that no lower 
limit of the assumed type would be found. Subsequent analysis shows that 
this prediction is correct. 

FORM OF SOLUTION NEAR (;=0, 1J= I) 

Near the point (;= 0, 7J= I) equation (19) takes the form 

d~ ~+(y+1)g 
d;= g 

where ~ = 7J - 1. The solution of equation (43) is 

~ = (y+ I) glog (Ag), 

(43) 

(44) 

where A is the constant of integration. As g -+ 0, ~ -+ 0 but is negative when 
g < l/A. Multiplying both sides of (44) by A it will be seen that A~ is a 
function of Ag so that the shape of the (g,~) curve does not depend on the 
constant of integration though its scale is proportional to l/A. 

In the neighbourhood of (;1 =0, 7J1 = I) the relationship between ;1 and 
7J1 atashockwaveisfound bytakingy-1 as small in equations (26) and (31). 

Hence Lt 7J1- 1 = _ 3-y = -0,797. (45) 
k~O ;1 2 
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Comparing equations (45) with (44) the shock wave condition is satisfied if 

3-y 
logeAg = - 2(y+ 1) = -0·3316. (46) 

Hence Ag = +0·718, } 

A~ = A(1J-l) = -0·572. 
(47) 

+3'5,---,--..,.---,---, 

-O·!iH----+-"'<::V-

FIGURE 8 

Figure 8 shows the form of the solution near (~ = 0, '1'/ = 1) and the shock wave 
line intersecting the (~,1J) curve at the point (+0·718, -0·572). It may be 
concluded that provided the numerical solution brings the (~1J) curve into 
the neighbourhood of the point (g=O., '1'/= 1) the expanding air must be 
bounded by a shock wave. This indeed proves to be the case, but, as will 
be seen later, the shock wave is of very small intensity when a is less than 0'5." 

FITTING THE NUMERICAL SOLUTION TO THE 

SOLUTION VALID NEAR"g = 0 

Writing ~ = '1'/-1 equation (19) becomes 

d~ 2(1+~)~+(y+l)g-yg2 
dg = g 2+3~+2g-g2' 

Vol. 186. A. 

(48) 

19 
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In the approximate solution (44) t;/~ decreases as ~ decreases. In fitting the 
approximate solution to the numerical solution a pair of values of ~ and t; 
may be taken and the value of A found by inserting these in equation (44). 
To find the error committed in using equation (43) instead of (48) suppose 
that the solutions are joined where t;/~ = B the true value of dt;/d~ at this 
point is 

expanding this expression in powers of ~ the first two terms are 

[~~J = (B+Y+l){l-(l+!B+-Y --)}. 
~ B B+y+l 

The value of [dt;/d~JB in the approximate solution is B +Y+ 1. The pro
portional error is therefore 

6 = (1 +!B+ B+~+ l)~ 
and since in the approximate solution 

B = (y + 1) loge (A~), 

the error in dt;/d~ is given by 

A6=(1+.lB+ Y )e(Y+l)B. 
2 B+y+l 

Values of A6 for a series of values of B are given in table 3. 

TABLE 3 

(49) 

B -1 0 1 2 3 4 5 6 7 10 

Ae 0·96 1'58 2·9 5·5 9·6 16·9 29·4 50·2 84·4 387·0 

a = 0·4. When a = 0·4 values of ~ and t; given in lines 1 and 2 of table 4 
were calculated numerically. Values of A calculated from equation (44) are 
given in line 3, and the proportional error calculated from equation (49) in 
line 5. The error 6 is less than 5 % in the first three points. 

TABLE 4. a=0·4 

; 0·0081 0·0122 0·160 0·0231 0·0306 0·0384 0·0446 0·0536 0·0651 

S 0·020 0·044 0·065 0'1l5 0·170 0·226 0·287 0·351 
A 342 367 337 342 327 301 325 248 227 
B 2·46 3·61 4·0 5·3 5·5 5·9 6·4 6·3 6·5 
e 0·021 0·038 0·046 0·105 0'12 0·16 0·19 0·24 0·29 
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Taking A = 340 the (£,1]) curve shown in figure 9 was calculated. The 
first three values of 1], namely, those corresponding with £ = 0·0081, 0·0122 
and 0·160 are shown in figure 9. It will be seen that though the curve 
calculated using equation (44) passes very nearly through these three points 
the existence of a portion of the (£1]) curve for which S is negative would not 
have been suspected from simple inspection of the 
apparent trend of the curve calculated step by step '·'0....--.----. 
through 99 % of the range £ = 1 to O. This point 
may perhaps be appreciated more clearly if the area '.Q9/---f---il 

covered by figure 9 is compared with the same area 
(marked with broken line) on the much smaller ,·OSI----!---H 

scale of figure 1. 
It appears from equation (47) that when IX = 0·4 f-07I----!---f-1 

the expanding air is bounded by a shock wave for 
which 1,061---+--1'-1 

£1 = 0·718/340 = 0·0021, 

1]1-1 = -0·572/340 = -0,0017. 

The corresponding change in pressure at the shock 
wave is y-1 = 1'£1 = 0·003 of an atmosphere. 

IX = 0'5: When IX = 0·5 the four lowest values of 
1] calculated numerically give A = 24, 21, 21 
and 21. Taking A = 21 the shock wave corresponds 
with 

£1 = 0'718/21 = 0·034, 

1]1 -1 = - 0·572/21 = - 0'027, 

so that Y - 1 = 0·0341' = 0'048, 

which agrees well with the value y = 1·05 deter
mined graphically by means of figure 1. 

IX = 0·2. When IX = 0·2 the lowest values of S cal
'Julated numerically are 

£ 0·0002· 0·0003 0·0005 

s +0'0175 +0'026 +0'043 

.-o51----!-+--1 

"04-1---++--1 

fJ 
'·031----'/---1 

"02/--";i-j---! 

0·9S'----'---..... 
o 0'01 0'02 

e 
FIGURE 9. g, 1] curve near 
f== 0,1] = 1, when a= 0·4. 

When inserted in equation (44) these give values of £ and 1] 'at the shock 
wave of order 10-19• So far as the equations of a non-viscous fluid are con
cerned this shock wave seems to be real enough in spite of its extreme small
ness but from the physical point of view such a minute shock wave has no 
meaning. The effect of viscosity and conductivity would in fact become 
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appreciable long before a shock wave with pressure change 10-19 atm. could 
be formed. Nevertheless it is curious that there is this definite mathematical 
differenc~ between a wave of finite intensity and the equivalent sound wave, 
It is especially curious that the point where the solution of the complete 
equ~tion differs from the approximate solution of the theory of sound is in 
the region of very small velocities and pressure changes, the region in fact 
where the theory of sound might be expected to be most accurate. 

In conclusion I wish to express my thanks to Mrs H. Glauert who carried 
out some of the calculations and to Dr J. W. MacColl for some valuable 
suggestions. 

SUMMARY 

The only case in which the motion of a gas at high speed in three dimen
sions has so far been discussed mathematically is that of the disturbance 
produced by a cone moving with velocity greater than that of sound. In 
the present work another case is analysed, namely, the radial outward flow 
produced by a uniformly expanding sphere. The region of expanding air is 
bounded by a shock wave outside which the air is undisturbed. As the radial 
velocity of the sphere increases the thickness of the layer of disturbed air 
decreases till at infinite rate of expansion it is only 6 % of the radius of the 
sphere. The distributions of velocity and pressure are given for a range of 
rates of expansion. When the radial velocity of the sphere is small an approxi
ma.te analysis based on the theory of sound yields results which are inaccurate 
near the sphere and also at the shock wave which forms the outer boundary 
of the expanding air. 
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