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The dynamics of one-dimensional, piston-driven hydrogen–air detonations are
predicted in the presence of physical mass, momentum and energy diffusion. The
calculations are automatically verified by the use of an adaptive wavelet-based
computational method which correlates a user-specified error tolerance to the
error in the calculations. The predicted frequency of 0.97 MHz for an overdriven
pulsating detonation agrees well with the 1.04 MHz frequency observed by Lehr in
a shock-induced combustion experiment around a spherical projectile, thus giving
a limited validation for the model. A study is performed in which the supporting
piston velocity is varied, and the long time behaviour is examined for an initially
stoichiometric mixture at 293.15 K and 1 atm. Several distinct propagation behaviours
are predicted: a stable detonation, a high-frequency pulsating detonation, a pulsating
detonation with two competing modes, a low-frequency pulsating detonation and a
propagating detonation with many active frequencies. In the low-frequency pulsating
mode, the long time behaviour undergoes a phenomenon similar to period-doubling.
Harmonic analysis is used to examine how the frequency of the pulsations evolves
as the supporting piston velocity is varied. It is found that the addition of viscosity
shifts the neutral stability boundary by about 2 % with respect to the supporting
piston velocity. As the supporting piston velocity is lowered, the intrinsic instability
grows in strength, and the effect of viscosity is weakened such that the results are
indistinguishable from the inviscid predictions.
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1. Introduction
A combustion wave in which exothermic energy release contributes to driving a

leading shock is a detonation. Much of detonation modelling has neglected diffusive
processes, as their effects are thought to be small in comparison with advection
and reaction (Shepherd 2009), cf. Fickett & Davis (1979), Oran et al. (1998),
Hu et al. (2004, 2005), Tsuboi, Eto & Hayashi (2007), Deiterding (2009) and
Taylor et al. (2012). However, Singh, Powers & Paolucci (1999) and Powers (2006),
in a two-dimensional study of detonation patterns using a one-step kinetics model,
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demonstrated that for the reactive Euler equations detonation patterns were grid-
dependent. Moreover, the patterns using the reactive Navier–Stokes equations reduced
to a grid-independent dissipative structure. In addition, in regions that require high
resolution for a one-step detonation in a channel, diffusion played an important role
(Mazaheri, Mahmoudi & Radulescu 2012). Furthermore, it was demonstrated by
Romick, Aslam & Powers (2012) that for the one-step kinetics model the long time
behaviour of the detonation is affected by the addition of viscosity; these viscous
effects delay the transition to instability, and in the regime where multiple frequency
oscillations exist, viscosity can play a dramatic role. Moreover, Al-Khateeb, Powers
& Paolucci (2013) suggested that hydrogen–air mixtures have reaction length scales
present which have time scales associated with them over which both chemistry and
diffusion can be important. This suggests that viscosity has a role to play in the
dynamics of detonations; however, the role of viscosity in pulsating detonations of a
detailed kinetics model has not been quantified in a detailed manner.

In detonations propagating into mixtures at atmospheric pressure, there are reaction
dynamics and gradients in flow variables evolving on scales near a micrometre or
smaller (Powers & Paolucci 2005). For a steady, travelling, inviscid, Chapman–Jouguet
(CJ) hydrogen–air detonation propagating into ambient atmospheric conditions, the
reaction length scales range from 10−5 to 100 cm at equilibrium, and near the
detonation front this breadth of scales can be even wider. These length scales are a
manifestation of the averaged continuum representation of the collisions that occur
between molecules, which have an underlying principal length scale of the mean
free path (Al-Khateeb, Powers & Paolucci 2010). Resolving this range of scales is a
difficult task, but to attain a mathematically verified prediction, this breadth of scales
must be captured.

Nonetheless, detailed kinetics have been used in previous studies; many of these
studies have been restricted to one dimension in the inviscid limit. Sussman (1995)
examined pulsating hydrogen–air detonations in the inviscid limit at ambient pressure
of 0.421 atm. Eckett (2001) considered a similar mixture of hydrogen–oxygen and
found in the inviscid limit that detonations propagating into atmospheric pressure
in one dimension needed to have a minimum of 150 points in the induction zone.
Yungster & Radhakrishan (2004) reported that the necessary resolution in the inviscid
limit for hydrogen–air detonations in one dimension was near 10−4 cm. Daimon &
Matsuo (2007) studied various one-dimensional, inviscid, overdriven hydrogen–air
mixture detonations and predicted that as the overdrive is lowered, the long time
behaviour of the detonation becomes more complex. These results were to similar to
those reported for other hydrogen-based fuel mixtures predicted by Sussman (1995),
Eckett (2001) and Yungster & Radhakrishan (2004).

Viscous effects have been included in several previous studies; the earliest studies
by Hirschfelder & Curtiss (1958) and Wood (1963) are summarized by Fickett &
Davis (1979). These works focused on finding the viscous steady-state solution using
a single step model in one dimension. Using the one-step kinetics model, Clarke,
Kassoy & Riley (1986), Clarke et al. (1990), examined the effects of diffusion in one
dimension on the development of a detonation from a small energy release. Gasser
& Szmolyan (1993) were able to show the existence of steady diffusive strong
detonations in the limit of weak diffusion using the one-step model. Singh et al.
(2001) calculated the development of an argon-diluted hydrogen–oxygen viscous
detonation in one dimension after a reflected shock passes through the mixture.
Lyng & Zumbrun (2004) studied the stability of a one-step detonation in the weak
diffusion limit. Using a simplified kinetics model, Kivotides (2007) demonstrated that
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in a micro-channel the transverse wave behaviour of a detonation could be altered.
Texier & Zumbrun (2011), expanding on the earlier work of Lyng & Zumbrun (2004),
demonstrated that in the weak diffusion limit a one-step detonation will undergo a
transition through a Hopf bifurcation as the overdrive is lowered. While studying
flame acceleration to a detonation in a channel, it has been shown that there is
qualitative agreement between experiments and computations for a hydrogen–oxygen
mixture (Liberman et al. 2010; Ivanov, Kiverin & Liberman 2011; Liberman, Kiverin
& Ivanov 2012; Ivanov et al. 2013). Ziegler et al. (2011) reported that for a viscous
double Mach reflection detonation of hydrogen–air a near-micrometre grid-size was
not quite sufficient to resolve all of the strong shocks present. Chinnayya, Hadjadj
& Ngomo (2013) examined the viscous behaviour of a one-step detonation in a
narrow channel at low pressure after formation and showed in narrower channels the
addition of viscosity can completely damp the transverse wave behaviour. Recently,
Lv & Ihme (2014) studied several test problems for a discontinuous Galerkin method
including several detailed kinetics detonations with the inclusion of diffusion.

The goal of this paper is to examine how the long time behaviour in both the
time and frequency domains evolves as the supporting piston velocity is varied; in
addition, it will address how the addition of physical mass, momentum and energy
diffusion affects the long time behaviour in one-dimensional detonations of mixtures
modelled by detailed kinetics and multicomponent transport. The plan of the paper
is as follows. In § 2, the mathematical model is presented followed by a description
of the computational method and a brief description of the physical problem. This
is followed by a brief validation of the model and verification of the computational
method. Next, the model is used to predict the dynamics of several piston-driven
hydrogen–air flows. It will be demonstrated that as the supporting piston velocity
is lowered, the long time behaviour becomes more complex in a similar manner to
previous inviscid studies of hydrogen-based overdriven detonations (Sussman 1995;
Eckett 2001; Yungster & Radhakrishan 2004; Daimon & Matsuo 2007). Moreover,
the long time behaviour is examined using harmonic analysis and with the use of the
fine resolutions in this study, gives further insight into how the behaviour changes
as the supporting piston velocity is varied. In addition, this analysis is used to find
similarities and differences between the inviscid and viscous analogues.

2. Formulation
2.1. Mathematical model

The governing equations are the one-dimensional, reactive, compressible Navier–
Stokes equations:
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∂

∂t
(ρu)+ ∂

∂x

(
ρu2 + p− τ)= 0, (2.2)

∂

∂t

(
ρ

(
e+ u2

2

))
+ ∂

∂x

(
ρu
(

e+ u2

2

)
+ (p− τ) u+ q

)
= 0, (2.3)

∂

∂t
(ρYi)+ ∂

∂x
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where (2.1)–(2.4) represent the conservation of mass, linear momentum and energy
and evolution of species. The independent variables are t, time, and x, the spatial
coordinate. The dependent variables are the mixture mass density, ρ, the mixture
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particle velocity, u, the mixture pressure, p, the viscous stress, τ , the specific internal
energy of the mixture, e, the total heat flux, q, the mass fraction, Yi, the diffusive
mass flux, ji, the molecular mass, Mi and the molar production rate per unit volume,
ω̇i, for the ith specie.

To close the system, constitutive relations must be specified. The following
constitutive relations have been chosen for an ideal mixture of calorically imperfect
gases consisting of N species composed of L elements interacting in J reactions,
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N∑

i=1

φliνij = 0, (2.19)

νij = ν ′′ij − ν ′ij, (2.20)

where M is the mixture molecular mass, Dik the multi-component diffusion coefficient
between the ith and kth species, yi the mole fraction of the ith species, DT

i
the thermal diffusion coefficient of the ith species, T the temperature, µ the
dynamic viscosity of the mixture, k the thermal conductivity of the mixture, cP,i

the specific heat at constant pressure, hi the specific enthalpy, and href
i the specific

enthalpy evaluated at the reference pressure of the ith species, R the universal gas
constant which is 8.314 × 107 erg mol−1 K−1, pref the reference pressure which is
1.01325 × 106 dyn cm−2, T ref the reference temperature which is 298.15 K, νij the
net stoichiometric coefficient, ν ′ij the forward stoichiometric coefficient and ν ′′ij the
reverse stoichiometric coefficient of the ith species in the jth reaction, rj the reaction
rate, kj the Arrhenius model for the reactions’ temperature sensitivity, aj the collision
frequency factor, βj the temperature exponent, Ej the activation energy and Kc

j the
equilibrium constant for the jth reaction, go

i the ith species’ chemical potential at
the reference pressure and φli the number of atoms of element l in the ith species.
Equations (2.5)–(2.7) give the constitutive relations for mass, momentum and energy
diffusion, which are an extended Fick’s law, a Newtonian stress–strain rate relation
under Stokes’ first assumption and an extended Fourier’s law, respectively. The
extended Fick’s law consists of three driving influences, the material diffusion, the
pressure diffusion and the temperature diffusion, which is commonly referred to as
the Soret effect. In addition, the extended Fourier’s law also consists of three driving
influences, the heat flux due to heat diffusion, mass diffusion and the DuFour effect
due to the pressure and material gradients. The forms of both Fourier’s and Fick’s
laws are appropriate for a mixture of ideal gases, as detailed in a derivation by Merk
(1959) and summarized by Kee et al. (1991). The reaction and mixture properties
are evaluated using the CHEMKIN (Kee, Rupley & Miller 1992) and TRANSPORT
(Kee et al. 1991) packages, respectively.

To initiate a detonation in an initially quiescent fluid, an accelerating piston is
positioned on the left side of the domain. For computational purposes it is easier to
use a domain attached to the face of the accelerating piston. Assuming the piston is
initially located at x= 0 and the velocity of the piston is a known function of time,
up(t), the accelerating frame can be related to the laboratory frame as

x̃= x−
∫ t

0
up(t̂)dt̂, (2.21)

t̃= t, (2.22)

where x̃ is the location in the accelerating frame, t̃ the time in the accelerating frame
of reference and t̂ a dummy variable. Thus, the velocity in the accelerating frame, ũ,
can be related to the laboratory frame particle velocity as

ũ= u− up(t). (2.23)

Applying this transformation, the governing equations (2.1)–(2.4) in the accelerating
frame of reference become
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2

))
+ ∂

∂ x̃

(
ρũ
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(ρũYi + ji)=Miω̇i, i= 1, . . . ,N − 1. (2.27)

From here on, t will be used in place of t̃.

2.2. Computational method
The viscous calculations are performed using the wavelet adaptive multiresolution
representation (WAMR) method, first developed by Vasilyev & Paolucci (1996, 1997).
This adaptive mesh refinement technique is enabled by wavelet functions. These
functions have compact support in scale and space, allowing for a large compression
of data. Therefore, to accurately represent a flow field, many fewer points are
needed compared with a wide variety of other approaches. The WAMR method is a
method of lines approach at collocation points and utilizes central finite difference
schemes to calculate derivatives with special one-sided differences near boundaries.
In addition, it utilizes a user-specified control threshold parameter that correlates
to the error tolerated in the solution, allowing unnecessary points to be discarded.
See Paolucci, Zikoski & Wirasaet (2014b) for a more detailed description of the
method in its current form. It has been applied successfully to a number of fluids
problems, see Paolucci, Zikoski & Grenga (2014a) and the references therein. The
temporal integration is accomplished using an error-controlled nominally fifth-order
Runge–Kutta scheme (Press et al. 1996).

In addition, inviscid calculations are compared directly with the viscous calculations.
For these inviscid calculations, all diffusion coefficients, viscosity and thermal
conductivity are taken to be zero. A uniform finite difference grid is used for
these calculations and utilizes a combination of a nominally second-order mid–mod
and Lax–Friedrichs scheme to calculate derivatives in a similar manner to that Xu,
Aslam & Stewart (1997) implemented in their WENO and Lax–Friedrichs scheme.
Temporal integration for the inviscid calculations is accomplished using a third-order
Runge–Kutta method.

2.3. Physical parameters
In this study, a series of one-dimensional, piston-driven flows of an initially
stoichiometric mixture of hydrogen–air (2H2 + O2 + 3.76N2) at ambient conditions
of 293.15 K and 1 atm are considered. The detailed kinetics mechanism employed
is drawn from Miller et al. (1982) and is used by Powers & Paolucci (2005). It
contains 9 species, 3 elements and 19 reversible reactions where nitrogen is treated
as a non-reacting species and is shown in table 1.

The flow is accelerated using a piston with a velocity, up(t), taking the form

up(t)= 1
2

(
upo (1+ tanh (a (t− ta)))−

(
upo − up

)
(1+ tanh (b (t− tb)))

)
, (2.28)

where upo is the initial plateau in piston velocity, up the final piston velocity, a the rate
of acceleration to the initial plateau, ta the time at which the acceleration is centred, b
the rate of acceleration to the final supporting piston velocity and tb the time at which
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FIGURE 1. The supporting piston velocity versus time curve for up= 1.500× 105 cm s−1.

j Reaction aj ((mol cm−3)
(1−∑N

i=1 ν
′
ij)/(Kβj s)) βj Ej (cal mol−1)

1 H2 +O2 
 2OH 1.70× 1013 0.00 47 780
2 OH+H2 
 H2O+H 1.17× 109 1.30 3 626
3 H+O2 
 OH+O 5.13× 1016 −0.816 16 507
4 O+H2 
 OH+H 1.80× 1010 1.00 8 826
5 H+O2 +M 
 HO2 +Ma 2.10× 1018 −1.00 0
6 H+O2 +O2 
 HO2 +O2 6.70× 1019 −1.42 0
7 H+O2 +N2 
 HO2 +N2 6.70× 1019 −1.42 0
8 OH+HO2 
 H2O+O2 5.00× 1013 0.00 1 000
9 H+HO2 
 2OH 2.50× 1014 0.00 1 900

10 O+HO2 
 O2 +OH 4.80× 1013 0.00 100
11 2OH 
 O+H2O 6.00× 108 1.30 0
12 H2 +M 
 H+H+Mb 2.23× 1012 0.50 92 600
13 O2 +M 
 O+O+M 1.85× 1011 0.50 95 560
14 H+OH+M 
 H2O+Mc 7.50× 1023 −2.60 0
15 H+HO2 
 H2 +O2 2.50× 1013 0.00 700
16 HO2 +HO2 
 H2O2 +O2 2.00× 1012 0.00 0
17 H2O2 +M 
 OH+OH+M 1.30× 1017 0.00 45 500
18 H2O2 +H 
 HO2 +H2 1.60× 1012 0.00 3 800
19 H2O2 +OH 
 H2O+HO2 1.00× 1013 0.00 1 800
Enhanced third-body efficiencies with M:

Ma: αH2O = 21.0, αH2 = 3.30, αN2 = 0.00, αO2 = 0.00
Mb: αH2O = 6.00, αH = 2.00, αH2 = 3.00
Mc: αH2O = 20.0

TABLE 1. Hydrogen–air reaction mechanism.

the deceleration is centred. This form has two plateaus and is chosen to allow for a
more rapid formation of the initial detonation. Figure 1 shows the chosen form of the
piston velocity for case A in table 2 for up = 1.500× 105 cm s−1.

The form of the piston acceleration in the initialization of the detonation plays
a significant role in the early time behaviour, also known as the deflagration-to-
detonation transition problem. The compression wave pushed into the fluid by the
piston causes a shock to form which then proceeds to propagate away from the piston
face. The strength of this shock wave is dependent on the supporting piston velocity
and gives rise to a reaction wave due to preheating. This reaction wave eventually
gives rise to localized explosion, which eventually develops into an overdriven
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FIGURE 2. The detonation pressure versus time curve up = 1.500× 105 cm s−1. (Case A,
solid light grey line; Case B, dashed black line; and Case C, dashed dark grey line.)

Case upo (cm s−1) up (cm s−1) a (s−1) ta (s) b (s−1) tb (s)

A 1.650× 105 1.500× 105 108 5× 10−8 107 1× 10−6

B 1.650× 105 1.500× 105 107 1× 10−6 107 3× 10−6

C 1.500× 105 1.500× 105 107 1× 10−6 107 3× 10−6

TABLE 2. Initialization parameters.

detonation before relaxing at long times. This process is similar to that described by
a localized thermal power deposition used by Kassoy et al. (2008), Kassoy (2010)
and Regele, Kassoy & Vasilyev (2012). The weaker the inertial confinement of the
initial reaction wave, the longer the initial detonation takes to form.

Because this work focuses on the long time behaviour of the detonation, the long
time behaviour of three piston acceleration profiles is examined with the same final
supporting piston velocity of up = 1.500× 105 cm s−1 to examine whether this early
time effect continues to later times. The parameters for the three different initialization
profiles are listed in table 2. As shown in figure 2, the inertial confinement of the
initial reaction wave plays a dramatic role in the time to detonation. In addition, the
over-pressure is much greater for the weaker driven shock, and it also takes longer
to relax to a steady state. However, the long time behaviour relaxes to a stable
detonation in all three cases, with the local maximum pressure at the front, which
is the detonation pressure, of pA = 36.75 atm, pB = 36.76 atm and pC = 36.73 atm,
meaning all three cases are within 0.1 % of each other. For the remainder of the
paper, case A is used allowing only up to vary. Final piston velocities ranging from
1.200× 105 to 1.500× 105 cm s−1 are examined.

For the viscous calculations the threshold used for the WAMR method is
ε = 10−3 unless otherwise specified. This selection leads to a spatial resolution
of O(3 × 10−6 cm) to be utilized which results in a time step of O(10−12 s). After
the formation of the detonation, a typical simulation time for a viscous calculation
of ∼1 µs took on O(300 CPUh) on 32 cores. For the inviscid calculations a spatial
discretization of 2.5× 10−5 cm is used which results in a time-step of O(10−10 s).

3. Validation and verification
As the model has been restricted to one dimension, there are limited means

of validation. However, in experiments of shock-induced combustion flow around
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FIGURE 3. (a) Detonation pressure versus ε and (b) difference in detonation pressure
between ε = 1× 10−6 and ε for up = 1.500× 105 cm s−1.

spherical projectiles in a hydrogen–air mixture at 0.421 atm and 293.15 K, Lehr
(1972) observed longitudinal oscillations. For an inflow condition corresponding to
an overdrive f ≈ 1.10, Lehr observed a frequency of νo = 1.04 MHz, where the
overdrive f = (D/DCJ)

2 and D and DCJ are the detonation wave speed and the wave
speed at which the detonation terminates at the sonic point, respectively. Starting the
viscous calculation with the inviscid steady-state profile with a superimposed smooth
transition from the shocked state to the ambient condition over 5 × 10−4 cm, a
frequency of νo = 0.97 MHz is predicted. Thus, it seems that the instability observed
by Lehr in multiple dimensions is captured well by a one-dimensional model. This
is similar to results reported by Yungster & Radhakrishan (2004) of νo = 1.06 MHz
for an overdrive of f = 1.09 with an ambient temperature of 298 K and Daimon
& Matsuo (2007) who do not report frequency explicitly, but visual inspection
suggests that the frequencies are in the 1 MHz range. The predicted frequency here
is only 6.7 % different from that measured by Lehr; the discrepancy is likely due the
one-dimensional assumption and uncertainty in chemical kinetic parameters.

The WAMR procedure is a self-converging method, which means that as the error-
threshold parameter, ε, is reduced, the overall error is reduced. To verify that in fact
the procedure is convergent regime, several values of ε are examined for up= 1.500×
105 cm s−1. The long time behaviour at this supporting piston velocity is a stable,
steadily travelling detonation as shown in figure 2. Figure 3(a) shows the long time
detonation pressure versus ε. The detonation pressure is converging to 36.68 atm. It
should be noted that the standard deviation on the detonation pressure are indicated by
the vertical lines. As the error-threshold parameter is reduced, the standard deviation is
reduced around the detonation pressure point indicated by the dots. In fact, at the two
most accurate solutions, the standard deviation in the detonation pressure is difficult to
identify. In addition, the difference in the long time detonation pressure is calculated
from the most accurate solution; this is shown in figure 3(b). As the error-threshold
parameter is reduced the difference decreases near O(ε0.9), as indicated on the log–log
plot. Furthermore, the largest percentage difference is 0.2 % giving a good indication
that the WAMR method is in the convergent regime.

4. Results
In this section, a study of the long time behaviour of the propagating detonation is

performed as the final supporting piston velocity, up, is varied. This is done first in
the time domain, and then harmonic analysis is used to examine the active frequencies
of the pulsating detonations. Several comparisons between the viscous and inviscid
calculations are performed in both the time and frequency domains.
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FIGURE 4. (a) Several time shots of the spatial pressure profile (solid black line, 10×
10−6 s; solid light grey line, 35 × 10−6 s; and dashed grey line, 60 × 10−6 s) and
(b) typical spatial profile of mass fractions at a up = 1.500× 105 cm s−1.

4.1. Stable detonations
For sufficiently high up, a steadily travelling detonation arises and persists at
long times. The detonation pressure versus time curve for a stable detonation, at
up = 1.500 × 105 cm s−1, is shown in figure 1. For case A, by 10 × 10−6 s the
detonation relaxes to a steadily travelling piston-supported detonation travelling to the
right at 2.244 × 105 cm s−1. Spatial pressure profiles after the detonation relaxes to
the stable detonation are shown in figure 4(a) for t = 10 × 10−6 s, t = 35 × 10−6 s
and t = 60 × 10−6 s. The later time profiles have been shifted in space using the
steady wave speed. There are only minuscule differences between the front locations;
these differences are more clearly shown in the inset. However, the largest difference
between the front locations is still only 2.5× 10−4 cm. Figure 4(b) shows the spatial
mass fraction at t = 50 × 10−6 s which is representative of the steadily travelling
detonation front. As a particle passes through the detonation, it first encounters a thin
viscous shock accompanied by rapid pressure and temperature rise. Then, its pressure
and temperature remain relatively constant as it traverses a short induction zone. In
this zone radicals are generated. When a sufficient number of radicals are present,
the fluid particle enters a thin zone in which vigorous reaction commences. Here
pressure and temperature vary rapidly. Finally, it passes into a thick relaxation zone,
where all state variables equilibrate.

4.2. High-frequency pulsating detonations
After up is lowered below a critical value, the long time behaviour of the propagating
detonation undergoes a transition from a steadily travelling wave to a pulsating
detonation. This transition occurs between up = 1.420 × 105 cm s−1 and up =
1.410 × 105 cm s−1. Figure 5(a) shows the detonation pressure versus time curves
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FIGURE 5. (a) Detonation pressure versus time and (b) phase space plot for both up =
1.420 × 105 cm s−1 (dashed black line) and up = 1.410 × 105 cm s−1 (solid grey line).
Note the phase space plot for up = 1.420× 105 cm s−1 has been enlarged by 10 times.

for a supporting piston velocity just above and just below the transition point. These
pulsations are caused by the slight detachment between the pressure wave and
the reaction wave, which in turn elongates the induction zone. The phase space
plot for both the stable and unstable case for both the stable and unstable case
is shown in figure 5(b). For the stable case, the phase space plot is a black dot
located at p = 34.95 atm, the dot is enlarged by 10 times for ease of viewing. At
up = 1.410× 105 cm s−1, it becomes clear that detonation is pulsating; however, it is
difficult to extract whether it is near cyclic from the phase space plot. This case will
be examined further in § 4.5 to extract more information about the pulsations.

In contrast to the clear periodic limit cycles predicted by Henrick, Aslam & Powers
(2006) for the simple one-step model in the CJ limit, the pulsating detonations here
do not produce nearly as smooth limit cycles. This is likely influenced by several
factors. First, the piston-driven flows in this study are overdriven in nature; as
such, the positively moving characteristic waves travel through different decaying
N-waves in the negatively moving characteristic field emanating from the detonation
front. The likelihood of these positively moving characteristic waves and decaying
negatively moving characteristic N-waves being synchronized is extremely low, and
thus precludes precisely periodic cycles. These positively moving characteristics in
the overdriven case clearly reach the detonation shock front. In the CJ case, there
is a sonic locus that remains a finite distance behind the front. As demonstrated
by Kasimov & Stewart (2004) for the one-step model, this sonic locus acts as an
information barrier. It only allows characteristics in front of it to propagate towards
the front. In addition, the one-step model has only a single length scale of reaction,
whereas the detailed hydrogen–air mechanism has reaction length scales that span
several orders of magnitude. Furthermore, the one-step model is irreversible, while
the detailed kinetics has reversible reactions.

The induction zone length changes in the pulsating detonations due to slight
separation between the pressure wave and the reaction front. For up = 1.410 ×
105 cm s−1, the minimum induction zone length is 8.06 × 10−3 cm during the
cycle which corresponds to the point of peak detonation pressure. The maximum
temperature gradient behind the front is used as the indicator for the end of the
induction zone length. The maximum induction zone length occurs at the minimum
detonation pressure in the cycle and is 8.73 × 10−3 cm. As figure 6 shows, the
stable detonation just above the bifurcation point, at up = 1.420× 105 cm s−1, has a
induction zone length of 8.11× 10−3 cm. This induction zone length is close to the
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FIGURE 7. (a) Detonation pressure versus time and (b) phase space plot for both up =
1.400× 105 cm s−1 (dashed black line) and up = 1.370× 105 cm s−1 (solid grey line).

minimum of that of the pulsating detonation because the detonation pressure for the
stable case is similar to the peak detonation pressure in the pulsating case. At the
minimum detonation pressure in the cycle, it is clear that the gradient in temperature
is delayed and decreased in magnitude; likewise, at the peak detonation pressure the
peak is slightly greater than that in the stable case.

As shown in figure 7(a), when up is lowered further below the bifurcation point,
the oscillations grow in amplitude. In addition, the frequency shifts towards lower
frequencies. As the pulsations become larger in amplitude, it becomes clearer that they
are nearly periodic as demonstrated by successive pulsations nearly coinciding in the
phase plot of figure 7(b).

4.3. Multiple mode pulsating detonations
The behaviour becomes even more complex at lower supporting piston velocities with
a dual mode behaviour arising below a second bifurcation point. An example of this
type of propagating detonation is shown in figure 8(a) for up= 1.310× 105 cm s−1. It
is apparent that the dual mode behaviour persists at long times. Although these dual
mode detonations do not repeat in a clean limit cycle, it is still obvious that it is
stably bounded at long times which is demonstrated by the phase plane plot shown
in figure 8(b).
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FIGURE 8. (a) Detonation pressure versus time and (b) phase space plot for a up =
1.310× 105 cm s−1.

4.4. Low-frequency-dominated pulsating detonations and chaos
At yet even lower supporting piston velocities, this dual mode behaviour relaxes into
a mode that is dominated by a single low-frequency pulsating flow. Figure 9(a) shows
this relaxation to a nearly periodic limit cycle at long times. However, the phase
space plot, shown in figure 9(b), indicates that even at long times there is still some
variation in the cycle. Once this low-frequency mode becomes the dominant mode, a
behaviour similar to period-doubling is predicted. As shown in figure 9(c), a nearly
period-two detonation is predicted at up = 1.230 × 105 cm s−1. At this supporting
piston velocity, the relative maxima can be grouped into two distinct groups; the first
at p1 = 47.56 ± 0.68 atm and the second being p2 = 50.9 ± 0.84 atm. Figure 9(d)
clearly exhibits the distinct two-lobe phase space for a period-two detonation. This
phenomenon is exhibited even more prominently at up=1.220×105 cm s−1, as shown
in figure 9(e). However, the higher relative maxima is more erratic as indicated by the
wider spread in right-most lobe shown in the phase space plot of figure 9(f ). This
period-doubling behaviour is more clearly seen in the frequency domain and will be
discussed further in § 4.5. After this period-doubling regime, the detonation pressure
versus time curve exhibits many more relative maxima, which is shown in figure 9(g)
for up= 1.200× 105 cm s−1. This is further elucidated by examining the phase space
plot, shown in figure 9(h), where no consistent cycle is visible. The system likely
underwent a transition to chaos. However, to definitively categorize the system as
chaotic further analysis would be needed.

4.5. Harmonic analysis
Next, the detonation pressure versus time behaviour is examined using harmonic
analysis. This is a tool that can be used to extract important information of a signal,
such as the dominant frequency and a ratio of energy carried at various frequencies.
The specific tool that is used is the power spectral density (PSD). This tool is chosen
because it describes how the variance (or power) is distributed in the frequency
domain. It is real valued for any real signal. The PSD is defined as the Fourier
transform of the auto-correlation of a signal (Hamilton 1994; Billinger 2001) and can
be written as the magnitude squared of the Fourier transform of the signal by using
the Wiener–Khinchin theorem. The PSD of a signal reveals periodicities that can be
hidden in a complex signal, e.g. the dual mode pulsating behaviour. Furthermore, it
can be helpful to discern how the frequency of the pulsations is affected by changing
the supporting piston velocity. The detonation pressure time series curves are analysed
after the initialization period.
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FIGURE 9. Detonation pressure versus time and phase plots for (a,b) up = 1.250 ×
105 cm s−1, (c,d) up = 1.230× 105 cm s−1, (e, f ) up = 1.220× 105 cm s−1 and (g,h) up =
1.200× 105 cm s−1.

In this study, the discrete one-sided mean-squared amplitude PSD is used. The
single-sided PSD is chosen so that the aliasing effect at high frequencies could
be bypassed. This normalization is chosen such that, as Parseval’s theorem states
(Oppenheim & Schafer 1975), the sum of Φd to equal the mean-squared amplitude
of the discrete detonation pressure signal, where Φd(νk) is the discrete PSD of the
detonation pressure–time signal at frequency, νk. Ng et al. (2005) applied a similar
type of procedure to pulsating detonations using the simple one step kinetics model
in the inviscid limit. The PSDs presented are for the detonation pressure–time signal.
For signals with deviations larger than 0.04 atm from the mean, the mean detonation
pressure is subtracted for calculation.
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FIGURE 10. PSD viscous spectra at (a) up = 1.500 × 105 cm s−1, (b) up = 1.410 ×
105 cm s−1, (c) up = 1.340× 105 cm s−1 and (d) up = 1.310× 105 cm s−1.

As discussed previously in § 4.1, when the supporting piston velocity is sufficiently
high, the long time behaviour is a steadily travelling detonation wave. As depicted
in the frequency domain as shown in figure 10(a), the PSD spectrum demonstrates
all of the energy is concentrated near the zero frequency. Lowering up below the
first bifurcation point, gives rises to a pulsation at νo = 3.41 MHz at up = 1.410 ×
105 cm s−1. In figure 10(b) it is clear that the majority of the pulsation energy is
carried at a single frequency. However, the second harmonic frequency also carries
energy; this results in slight differences in the relative maxima in detonation pressure
in cycle. As the supporting piston velocity is lowered, the frequency spectrum blue
shifts. At up = 1.340× 105 cm s−1, shown in figure 10(c), the fundamental frequency
is now located at νo= 2.85 MHz, and the harmonics have shifted as well. In fact, the
ratio of the amount of energy being concentrated at higher harmonics has increased,
which is demonstrated by the appearance of the third harmonic in the plot. Examining
a up further below the neutral stability boundary, it becomes clear there is a low-
frequency mode that is now playing an important role in the long time behaviour
of the pulsations as shown for up = 1.310 × 105 cm s−1 in figure 10(d). At this up,
the low-frequency mode occurs at νl = 0.44 MHz and carries a significant amount of
energy. However, the high-frequency mode, which occurs at νh=2.65 MHz, is still the
dominant mode. These modes remain stationary at a smaller error-threshold parameter,
once again confirming the WAMR is capturing the long time behaviour. Furthermore
in this regime where there are two dominant modes; the modes interact giving rise to
many more modes that carry energy.
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FIGURE 11. PSD viscous spectra at (a) up = 1.290 × 105 cm s−1, (b) up = 1.260 ×
105 cm s−1, (c) up = 1.230× 105 cm s−1 and (d) up = 1.220× 105 cm s−1.

This interaction of the two dominant modes gives rise to a modulation instability.
This modulation instability phenomenon occurs in many other physical systems due
to the inherent nonlinearity of the physical world (Zakharov & Ostrovsky 2009). In
these pulsating detonations it manifests itself as active modes, called sidebands, at
multiples of the low frequency around the high frequency and its harmonics. These
active modes surrounding the high-frequency mode and its harmonics form envelope
waves that persist at long times.

After the appearance of the dual mode behaviour, the ratio of the energy present in
the pulsation carried at the high fundamental frequency continues to decrease as up
is lowered further. Figure 11(a) shows the PSD for a up = 1.290 × 105 cm s−1 and
demonstrates that a much more dominant low fundamental frequency at 0.41 MHz
exists compared with that of figure 10(d). However, the high-frequency mode, which
is located at 2.64 MHz, still carries energy. In fact, the lower side bands around the
high-frequency mode carries a similar order of magnitude of energy as the second
harmonic of the low-frequency mode. However, it is also clear the side bands have
also been reduced, indicating further that the high-frequency modes have weakened.
Even as more energy is shifting to the lower frequency, the spectrum continues to blue
shift towards lower frequencies as the supporting piston velocity is lowered, but at a
slower rate than predicted in the high-frequency mode. Eventually the low frequencies
become so dominant that the high-frequency mode and side bands carry less energy
than the fourth harmonic of the low-frequency mode, as shown figure 11(b) by the
PSD at up = 1.260× 105 cm s−1, where νo = 0.38 MHz. Nonetheless, there is a side



170 C. M. Romick, T. D. Aslam and J. M. Powers

band frequency mode that still persists at long times, but at a lower energy state. This
is likely a manifestation of the multiple reaction length scales interacting with each
other as well as the diffusion length scales.

As briefly mentioned in § 4.4, after the low-frequency mode has become dominant,
the long time behaviour goes through a phenomenon similar to period-doubling. This
is more clearly illustrated in the frequency domain shown in the two PSD spectra in
figure 11(c,d) for up = 1.230× 105 cm s−1 and up = 1.220× 105 cm s−1, respectively.
This near period-doubling is illustrated by the appearance of subharmonics of the
fundamental frequency. As an example, in figure 10(c) the fundamental frequency
is located at 0.34 MHz, but there are peaks in the PSD spectrum at 0.17 MHz
and 0.49 MHz, which 1/2 and 3/2 the fundamental frequency, respectively. These
are subharmonic frequencies, which indicates that the long time behaviour of the
pulsations is near a limit cycle with two distinct relative maxima in the detonation
pressure time curve. Figure 11(d) shows that the first set of subharmonics have grown
in amplitude indicating the strength of the period-two detonation has grown.

4.6. Bifurcation diagram
A bifurcation diagram is constructed showing the various propagation modes. It has
been created with 31 supporting piston velocities spaced at 1.0 × 103 cm s−1 and
as such is a coarse approximation of the full diagram. Figure 12(a) shows how the
maximum detonation pressure evolves versus the supporting piston velocity. Note
the peak detonation pressure has been scaled by the average detonation pressure. As
the peak detonation pressure varies from cycle to cycle, the standard deviation of
peaks in the stable, high-frequency-dominated and low-frequency-dominated modes
are indicated by vertical lines. In both the stable and high-frequency-dominated
modes, the standard deviations are difficult to distinguish from the peak detonation
pressure. The region in which there are two active modes is indicated by the dense
number of points near up = 1.300 × 105 cm s−1; likewise, the dense region near
up = 1.200 × 105 cm s−1 is indicative of a detonation with many active modes,
which is likely chaotic. This is more clearly understood by looking at the bifurcation
plot in of active frequencies, shown in figure 12(b), in which the shade of the
points indicates the magnitude with the darkest being the most dominant mode and
the lightest being the weakest. In the high-frequency mode, there are three active
frequencies: the fundamental frequency, the second harmonic, and the third harmonic.
The blue shift of the frequency spectrum is most clearly seen in the third harmonic. In
the dual mode region, it is apparent that side banding occurs near the high-frequency
mode and its harmonics; however, there are still just two dominant modes. The
side banding continues in the low-frequency mode, but at weaker strengths than
that of the dual mode. In addition, subharmonics appear at 1/2 and 3/2 at both
up = 1.230 × 105 cm s−1 and up = 1.220 × 105 cm s−1. At this lower supporting
piston velocity, further subharmonics appear at the half intervals as well as the
previously mentioned subharmonics grow in strength. In the lowest supporting piston
velocities studied, many frequencies are active indicating that it is likely that the
detonation is in a chaotic regime.

4.7. Comparison with the inviscid analogue
Several supporting piston velocities are examined in the inviscid limit to elucidate
the effects of physical diffusion on a one-dimensional detonation of detailed kinetics
mechanism where instabilities are manifested as pulsations. As in the viscous case,
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when the supporting piston velocity is sufficiently high, a stable steadily travelling
detonation is formed and persists at long times. Figure 13(a) shows both the viscous
and inviscid detonation pressure versus time curves at up = 1.500 × 105 cm s−1.
The inviscid case relaxes to a detonation pressure of 36.68 atm which is less
than 0.1 % different from the viscous analogue at this piston velocity. However,
at up = 1.430 × 105 cm s−1 the inviscid detonation begins to pulsate with an
oscillation amplitude of ∼1 atm whereas the viscous analogue remains stable as
shown in figure 13(b). This pulsation amplitude is larger than that of the viscous
case at up = 1.410 × 105 cm s−1. Thus, the addition of diffusion to the model has
added a slightly stabilizing effect, shifting the transition to a pulsating detonation by
greater than 1.5 %, but less than 2 % with respect to the supporting piston velocity.
Figure 13(c) shows the long time behaviour at up = 1.400 × 105 cm s−1 for both
the inviscid and viscous cases. The relative maxima in detonation pressure are
p= 35.66± 0.10 atm and p= 36.62± 0.005 atm, for the viscous and inviscid cases,
respectively. In addition to the reduction of the maximum detonation pressure, the
amplitude of oscillations has also been reduced by 40 % by the addition of viscosity.
However, as the pulsations become stronger, the effect of viscosity is reduced as
demonstrated in figure 13(d) for up = 1.320 × 105 cm s−1. The pulsation amplitude
reduction due to diffusion is weakened to less than 0.1 % near the transition point
to the dual mode behaviour. Figure 13(e) shows the detonation pressure versus time
curve for both the inviscid and viscous cases at up= 1.310× 105 cm s−1, which is in
the dual mode pulsating behaviour in both cases. It is difficult to identify differences
in the time domain due to the interacting modes; the frequency domain will be
discussed later. The average detonation pressure and the average maximum detonation
for the viscous case are p = 34.32 atm and p = 36.2 ± 0.7 atm. Likewise for the
inviscid case, the average detonation pressure and the average maximum detonation
are p = 34.33 atm and p = 36.1 ± 0.7 atm. In the low-frequency-dominated mode
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the effect of viscosity is nearly negligible, which is demonstrated in figure 13(f )
for up = 1.250 × 105 cm s−1. The local maxima are p = 46.5 ± 0.4 atm and
p= 46.6± 0.5 atm, for the viscous and inviscid cases; respectively. This is a relative
difference of 0.2 %, and it is clear that the maxima overlap.

The PSD spectra are calculated and compared using the average inviscid detonation
pressure to scale both the inviscid and viscous detonation pressures; furthermore, the
PSD is calculated in decibels using the maximum value of either case. Supporting
piston velocities ranging from 1.250 × 105 to 1.500 × 105 cm s−1 are shown in
figure 14. At up = 1.500 × 105 cm s−1, both of the PSD spectra are concentrated
around the zero frequency, as shown in figure 14(a), indicating that the detonation is
stable at long times. Figure 14(b) shows the PSD spectra at up= 1.430× 105 cm s−1;
it is clear the inviscid case is pulsating at νo = 3.60 MHz, but the PSD of the
viscous calculation is still concentrated around the zero frequency indicating a stable
detonation. At up = 1.400 × 105 cm s−1, the fundamental frequency in the inviscid
case is νo= 3.36 MHz, whereas in the viscous case it is minimally shifted to a lower
frequency by 1 %. The shift is more apparent in the second harmonic, which is shifted
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by 0.06 MHz. Figure 14(c) shows that the magnitude of fundamental frequency is
larger in the inviscid case indicating the reduction in pulsation amplitude. The addition
of viscosity affects more the size of the pulsation than the frequency of pulsations.
Near the transition point to the dual mode behaviour, at up= 1.320× 105 cm s−1, the
frequency shift is reduced to 0.01 MHz. Figure 14(d) indicates that the fundamental
frequency peaks in the inviscid and viscous case are closer in magnitude than at
the higher supporting piston velocities, giving another indication that the pulsation
amplitude is nearly identical. In the dual mode, as shown in figure 14(e) the active
modes are only barely distinguishable from each other; however, the strength of the
low-frequency mode is stronger in the inviscid case, and the high-frequency mode
is weaker. This indicates that, though small, the addition of physical viscosity to
the model is still playing a role and slightly delays the transition to the dual mode
behaviour. In addition, the high-frequency mode is shifted, but only by 0.3 %. When a
low-frequency dominated mode (up= 1.250× 105 cm s−1) is examined, it is seen that
the PSD spectra, shown in figure 14(f ), are nearly indistinguishable from each other.
The fundamental frequencies are identical, and as the magnitude of the pulsations are
the same, the magnitude of the PSD at this frequency are also identical. However,
the PSD for the viscous case is missing the fifth harmonic and has minimally more
energy carried at the higher frequencies.

The amplitude reduction present in the high-frequency mode is weakened as
the supporting piston velocity is lowered. At lower piston velocities the intrinsic
instability grows stronger and, thus, the effect of physical viscosity is weaker. The
addition of physical viscosity to the model has an overall stabilizing effect, delaying
the initial transition to instability and reducing the amplitude of oscillations in
the pulsating mode dominated by high-frequency oscillations. This suggests that
in multiple dimensions, that diffusion can play an important role in the formation
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and propagation in detonations in narrow channels, where the transverse waves
can possibly be damped. This will examined with detailed kinetics in a future
study. However, the further away from this transition, physical viscosity plays a less
important role in determining the long time behaviour at least in one dimension.

5. Discussion

It is useful to consider a physics-based interpretation of these detailed unsteady
detonation dynamics. Our interpretation is supported either directly by the current
results or plausible hypotheses that could guide future studies. The discussion will
be mainly cast in the framework of the current one-dimensional piston-supported
detonations in a viscous hydrogen–air mixture; to quantitatively illustrate these
important points for viscous limit cycle detonations, an appeal is made to a simpler
model of one-step kinetics where the CJ limit cycle is well quantified (Romick et al.
2012). It is well understood that the compressible reactive Navier–Stokes equations
admit steady travelling wave solutions in response to a driving piston. The steady
wave is driven by a combination of mechanical energy input from the driving piston
and chemical energy input from the exothermic heat release in the subsonic region
following the thin lead shock. For sufficiently high piston speeds such that the kinetic
energy imparted by the piston is much greater than the chemical energy, the wave
behaves similarly to an inert shock wave. As the piston velocity is lowered, the
chemical energy makes an ever-increasing relative contribution to driving the wave.
At a critical CJ piston velocity, all of the energy to drive the wave is available from
the chemical energy, and the wave becomes self-propagating.

These steady waves can respond differently to small perturbations in the various
regimes of supporting piston velocity. The key question is whether such perturbations
grow or decay, and if they initially grow, what physical mechanisms prevent
unbounded growth. In general terms, there are two physical mechanisms present
which induce dissipation of structured mechanical and chemical energy into
unstructured thermal energy: diffusion and the irreversible part of chemical reaction.
Simultaneously, there are physical mechanisms present which induce the growth and
resonance of various oscillatory structures predicted in some cases: amplification of
selected modes by exothermic reaction combined with the effects of advection and
diffusion. Ultimately, nonlinearity has a role. It is often the case that modes which
grow linearly away from equilibrium can move into a region where nonlinear effects
become important and serve to either suppress further growth or induce some variety
of catastrophic growth. The action of these various physical mechanisms is a strong
function of the various length and time scales in play as the driving piston velocity
is varied.

For sufficiently high piston velocity, the effect of exothermic chemistry is minimal.
One might imagine that a small sinusoidal disturbance near the shock front would
segregate into one entropic and two acoustic modes, travelling near the local particle
and acoustic speeds, respectively. Diffusion would act to reduce the amplitude of the
disturbance. High-frequency modes would dissipate more rapidly than low-frequency
modes, but ultimately all would stabilize, and the system would relax to a steady
propagating wave. Such is what is predicted for up > 1.420× 105 cm s−1.

For lower piston velocities, e.g. 1.400 × 105 cm s−1, it is obvious that limit-
cycle-like behaviour is predicted. Thus, at this piston velocity, nature favors a
partition of the chemical and kinetic energy of the fluid into a pattern in which
some of the energy resides in the two modes displayed in figure 14(c). Under these



Unsteady viscous hydrogen–air detonations 175

conditions, there is little difference between the viscous and inviscid predictions,
so it is inferred that the physics are best understood in the context of a reactive
Euler model. This piston velocity is likely favourable for the establishment of an
organ-pipe-type resonance influenced by a balance between reaction and advection.
The relevant length is the induction zone, that is, the region between the lead shock
and the point where significant chemical reaction commences. Good estimates for
a similar mixture are given by Powers & Paolucci (2005). The reaction kinetics
are such that the induction zone length `ind ' 10−2 cm. And the material properties
are such that the post-shock acoustic speed c ' 105 cm s−1. A rough estimate of
the fundamental resonant frequency is thus ν ' c/`ind = 10 MHz. This is of the
same order of magnitude as that predicted. This scaling argument is consistent with
the results of Short (1996), who showed that perturbations within the induction
zone were linearly unstable while examining one-step square wave detonations at
high activation energy. Moreover, for this case, figure 14(c) reveals that diffusion
induces a small-amplitude reduction in the resonant modes, as well as a small
shift in the resonant frequencies. This is consistent with what is found in ordinary
nonlinear mass–spring–damper systems (Strogatz 2014). Again, similar to what is
found in a nonlinear mass–spring–damper system, it is most likely that nonlinear
effects serve a much stronger role in suppressing the growth of the resonant modes.
For higher-frequency modes, it is likely that diffusion plays the dominant role in
amplitude suppression. With the finest length scale of reaction given by Powers &
Paolucci (2005) for this mixture `finest ' 10−4 cm, and the diffusivity of the mixture
Dmix ' 10 cm2 s−1, one can estimate the frequency of the disturbance for which
diffusion clearly dominates as ν 'Dmix/`

2
finest = 1 GHz. Useful insights on the relative

importance of advection, reaction and diffusion in hydrogen–air chemistry is given by
Al-Khateeb et al. (2013) in the context of a laminar flame. There, it is shown that
diffusion clearly influences the various reaction time scales on length scales given
by a classical Maxwellian model, `i '√Dmixτi, where `i is the reaction length scale
associated with the chemical time scale τi.

As the piston velocity is lowered further, nonlinearity plays a more prominent
role, especially as seen in figures 10(d) and 11(a–d). As the oscillatory modes are
dominated here by ever-lower frequencies as the piston velocity is lowered, it is
likely that diffusion is playing even less of a role in the dominant low-frequency
dynamics, with its main effect being confined to much higher-frequency modes. Even
then, the presence of diffusion is important in providing a physically based cutoff
mechanism for high-frequency modes. As documented by Powers (2006), lack of
such a cutoff mechanism can then admit approximations which do not converge as
the grid discretization scale is reduced, thus rendering the results to be potentially
strongly influenced by the size of the discretization and the selected numerical
method. Moreover, Mazaheri et al. (2012) demonstrated that, in regions that have
large gradients in the flow, diffusion plays an influential role.

As it is prohibitively expensive to fully relax detonations with detailed kinetics to
limit cycles, these notions of piston-driven detonations are verified using a one-step
viscous detonation model previously examined by Romick et al. (2012) in the CJ
limit. Here, a simple study was performed at several piston velocities, for a fixed
non-dimensional activation energy of Ea = 29.98 which predicted a period-four
detonation in the CJ case. As the focus of this examination is the energy composition
driving the detonation at late times, only a domain near the front travelling at an
average detonation velocity is considered. The domain is taken to be sufficiently large
to encompass several half-reaction zone lengths. This domain has chemical energy
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entering from the unreacted ambient upstream conditions. Energy leaves the domain
behind the front due mainly to thermal energy released from the reaction, as well
as a small contribution from energy associated with viscous stresses. In addition,
depending on the magnitude of the piston velocity, kinetic energy either propagates
out of the domain or enters the domain emanating from the energy input from the
piston. However, only the composition of energy within this domain is of interest in
this case; thus, by integrating the individual amounts of these three (thermal, chemical
and kinetic) energies as well as the sum over this domain at each time, the evolution
of the energy composition driving the detonation at the different piston velocities can
be obtained. The sum of the energies in the domain can be written as

E(t)=
∫ x1+Ld

x1

(
ρcvT + ρ (1− λ) qr + ρ u2

2

)
dx, (5.1)

where E(t) is the total energy per unit area in the domain, x1 the position of the left
end of the domain, Ld the fixed length of the domain, cv the specific heat at constant
volume for the mixture in this one-step model, λ the reaction progress variable and
qr the heat release per unit mass of the reaction. The total domain length chosen for
integration is 50 steady half-reaction zone lengths with 35 steady half-reaction zone
lengths behind the front at the peak detonation velocity in the late time behaviour.
This choice allows for an almost complete reaction to occur within the domain at any
period of the cycles predicted.

Figure 15 shows the fraction of the total energy each component carries for piston
velocities of up = 0.0, 0.5, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 × 105 cm s−1 in the late time
behaviour of the propagating detonation. In the ZND profile for this activation energy,
the CJ particle velocity is 0.96 × 105 cm s−1; therefore, it is anticipated piston
velocities above this velocity would have an effect on the late time behaviour. The
majority of the energy is carried in the thermal mode due to the energy released by
the reaction, depicted in figure 15(a), with all piston velocities predicting a mean
contribution near 75.5 % of the total energy. At sufficiently high piston velocities, a
stable detonation is formed. This can be most easily seen in figure 15(b,c), where
the chemical and kinetic modes are shown, respectively. In figure 15 the light
grey dashed horizontal lines are for the highest piston velocities. For these stable
detonations, the kinetic mode carries more energy than the chemical mode due the
high piston velocities. However, as the final piston velocity is lowered, a period-one
detonation propagates at late times as seen in figure 15 by the thick dark grey curve
for up = 1.3 × 105 cm s−1 and the solid light grey curve for up = 1.2 × 105 cm s−1.
Furthermore, at the higher piston velocity up = 1.3 × 105 cm s−1, the kinetic and
chemical modes are nearly identical in magnitude.

At an even slower piston speed, a period-two detonation is predicted, depicted by
the thinner dark grey curve. In this case, up = 1.1× 105 cm s−1, the chemical mode
is now dominant over the kinetic mode. Moreover, the ratio between the chemical
and kinetic modes at its maximum is 2.24. The lowest three piston velocities
examined, up = 0.0, 0.5, 1.0 × 105 cm s−1, exhibit period-four CJ behaviour. The
separations between these CJ detonations are almost exclusively temporal offsets,
and the curves would nearly be coincident if these offsets were removed. As the
up = 1.0 × 105 cm s−1 case is minutely above the CJ particle velocity for the
ZND profile, there is only a weak contribution from the piston affecting the energy
composition. These piston velocities are shown in figure 15 by the solid, dashed
and dashed-dotted curves, respectively. For the CJ case, which is present for the
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FIGURE 15. Fraction of total energy within the integration domain for (a) thermal,
(b) chemical and (c) kinetic energies in the one-step model with Ea = 29.98 for several
piston velocities.

up = 0.0, 0.5 × 105 cm s−1 cases, the maximum ratio between chemical and kinetic
modes grows to 2.95 which is the maximum for this particular activation energy.

As discussed earlier, identifying the beginning and end of the limit cycle is
challenging for multistep kinetics. However, given sufficiently long computation time
it is presumed that fully relaxed limit cycles would be predicted. Therefore, it is
hypothesized that these explanations which hold for one step kinetics also extend to
multistep kinetics.

6. Conclusions
An investigation of one-dimensional piston-supported hydrogen–air detonations

in the presence of mass, momentum, and energy diffusion has shown that as the
final supporting piston velocity is decreased, the long time behaviour becomes more
complex. For detonation propagating into a stoichiometric mixture at 1 atm and
293.15 K there are several distinct phases in the long time behaviour. At sufficiently
high piston velocities, the detonation relaxes to a stable steadily propagating
detonation wave. Below a critical supporting piston velocity, a pulsating detonation
with a single high-frequency oscillation is predicted. In comparison with the inviscid
analogue, the inclusion of physical diffusion delays this neutral stability boundary
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by ∼2 % with respect to the supporting piston velocity. In addition, once the viscous
analogue has begun pulsating, the addition of physical viscosity reduces the magnitude
of oscillations by 40 % at times. This suggests that using methods in which numerical
diffusion is important, such as filtering, large eddy simulation, or a calculation on
a coarse grid, may be problematic in this regime as it may shift bifurcation points
or reduce the amplitude of oscillations significantly. Lowering the supporting piston
velocity further gives rise to a pulsating detonation in which both low and high
frequencies exist and carry a significant amount of the pulsation energy at late
times. Near this transition to the dual mode behaviour, the effect of adding viscosity
has been weakened; with the magnitude of oscillations being reduced to less than
0.1 % difference between the inviscid and viscous cases. Below another critical point
in supporting piston velocity, the long time behaviour becomes dominated by the
low-frequency oscillations. In this regime, the inviscid and viscous cases are nearly
indistinguishable due to the intrinsic instability growing in strength compared with the
high-frequency mode. Within in this regime, a nearly period-doubling phenomenon is
predicted giving rise to a period-two detonation. At sufficiently low piston velocities,
the long time detonation pressure exhibits many different local maxima in time which
is indicative of chaotic detonation.

In addition to examining the long time detonation pressure behaviour in the time
domain, it was also examined in the frequency domain using the PSD to gain
insight into how the energy variance changes versus supporting piston velocity.
The fine resolutions used in this study enabled detailed results to be obtained
from the harmonic analysis. It was found that in the high-frequency mode of
pulsations the spectrum blue shifts towards lower frequencies as the supporting piston
velocity was lowered with the fundamental frequency moving from 3.41 MHz at
up = 1.410× 105 cm s−1 to 2.71 MHz at up = 1.320× 105 cm s−1. After the second
bifurcation point when the pulsations exhibit both a high- and a low-frequency
oscillation, the spectrum begins to shift more energy to the lower frequency as
the supporting piston velocity is lowered. In this dual mode region, there exists side
banding around the high-frequency mode and its harmonics due to the interaction with
the active low frequency mode. In addition, the spectrum continues to blue shift but at
a slower rate than in the high-frequency mode. Though small, the addition of physical
viscosity does have a stabilizing effect near the transition which is exhibited by the
higher frequency carrying more energy in the viscous case than the inviscid analogue.
As the supporting piston velocity is lowered further, the low-frequency mode becomes
the dominant mode of the pulsations. In this region, the PSD spectrum eventually
exhibits subharmonic frequencies indicating a near period-doubling phenomenon has
occurred. At sufficiently low piston velocities, the long time behaviour has many
active modes which is usually indicative of a chaotic detonation.

In addition, the form of initialization was briefly addressed and it was found
that at long times the detonation relaxed to the same steadily travelling detonation.
A limited validation study was conducted, and a frequency of ν = 0.97 MHz was
predicted for an overdriven detonation of f = 1.10 which is in agreement with the
observation of 1.04 MHz by Lehr (1972) in shock-induced combustion experiments
around spherical projectiles in a hydrogen–air mixture at 0.421 atm and 293.15 K.
Furthermore, the effect of the threshold parameter, ε, was examined, and it was
found that only minuscule differences between the detonation pressure for a stable
detonation indicating the WAMR method was in the convergent regime.
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