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It is demonstrated by a concise standard derivation, motivated by principles of rational
continuum mechanics and irreversible thermodynamics augmented by novel detailed ex-
amples, that for heat conduction in linearly anisotropic solids: (1) common restrictions
placed on the form of the thermal conductivity tensor are insufficient to guarantee satis-
faction of the second law of thermodynamics, and (2) satisfaction of the first and second
laws of thermodynamics alone is still insufficient to insure agreement between heat flow
predictions and observation. An additional constraint beyond that given in many standard
studies, namely that all three principal invariants of the conductivity tensor be positive
semi-definite, is imposed in order to guarantee satisfaction of the entropy inequality. Thus
constrained, such a theory remains under-restricted and can admit purely cyclic heat
fluxes, which are not observed in nature. Imposition of the conjectures of Duhamel and
Stokes, which are in fact earlier specific incarnations of Onsager’s reciprocity theory, on
the constitutive model relating heat flux to temperature gradient is a sufficient remedy.
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Introduction which to explore the implications of molecular dynamics on en-
In this work, an exposition is given, accompanied by new illu ergy di_ffusion, especial_ly relevant for energy transport on molecu-
trative examples and minor clarifications to some of the existirlg" [attice scales in solids. o )
literature, to demonstrate that for energy diffusion in linearly an- N what follows, a simple model of diffusive energy transport in
isotropic solids:(1) restrictions given in common heat transfe@n anisotropic solid will be presented. The analysis is restricted to
references are necessary but insufficient to guarantee satisfacéigiassical, axiomatic, macro-scale approach with no detailed ap-
of the second law of thermodynamics, a®) fully satisfied first peal to the underlying micro-scale physics; however, it is noted
and second laws of thermodynamics provide necessary but insifat the axioms employed here are consistent with conclusions
ficient restrictions on the functional forms of common constitutivevhich can be drawn from micro-scale models. For such a mate-
laws. An additional independent condition, such as that provide@l, a general form of the first law of thermodynamics is posed
by Onsager reciprocitfl], which itself is a generalization of the along with constitutive models for internal energy and diffusive
earlier conjectures of Duhamg2] and Stokeg3], is required to  heat flux. A first set of restrictions on the form of the constitutive
bring theory into agreement with experim@at-6] for conduction |4vs is found by a standard application of the second law of

in an anisotropic medium. thermodynamics. It will then be shown that these necessary limi-

Ge”‘?ra' dls_cussmns of ISSues relevant to Qnsager rec'prc.)(i'z!ﬁ{ions alone nevertheless admit behavior which is not observed in
and anisotropic heat conduction are common in the communities

of irreversible thermodynamics, ¢fZ—12]; continuum mechanics, exp_erim_ent; this is remedied by further application of Onsager
cf. [13—15; and theoretical physics and statistical mechanics, ¢ECIProcity. o . , ,
[16-19. It is noted, moreover, that statistical mechanics gives anHoW these principles may be unintentionally violated is then
effective microscale based theory which casts macro-scale dfistrated in three simple examples, which should be useful for
sager reciprocity and the second law of thermodynamics onPgdagogical purposes. First, an anisotropic material which has a
more fundamental theoretical foundation. Nevertheless, while gfurely symmetric thermal conductivity tensor which also satisfies
ten wide ranging, compact statements of theoretical restrictions e limited second law requirements[@f1], but has a third prin-
models of anisotropic heat conduction are often difficult to pircipal invariant with negative value, in fact violates the second law.
point in these sources; the usefd] is the most relevant. The Next, for an anisotropic material that has a purely antisymmetric
discussion in the traditional heat transfer community[20-31, thermal conductivity tensor, it will be shown that a temperature
is often more limited, and, as will be seen, incomplete. Undegradient in a given direction induces a heat flux in an orthogonal
standing such issues can be of aid to anyone doing computatioggbction, all the while satisfying the first and second laws. This is
modeling of anisotropic materials, especially on nonorthogonghmgnstrated in two-dimensional geometries which are plane Car-
grids, designing experiments on materials W'.th anisotropic MiCrRsqiqn ang plane polar. In the plane polar geometry, it is seen that
structure, or wanting to build a strong classical foundation frorE)]urely radial temperature gradients induce purely circumferential
, o o heat fluxes. A qualitative analogy is made between such a flux and
Contributed by the Heat Transfer Division for publication in th®URNAL OF . . . .
HEAT TRANSFER Manuscript received by the Heat Transfer Division January 24,1) solid body rotation and2) the so-called cyclic chemical reac-
2004; revision received June 3, 2004. Associate Editor: R. Pitchumani. tions studied in the original work of Onsager.
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Model and Analysis wherek;; is taken to be a constant nonisotropic asymmetric tensor

Consider the first law of thermodynamics for an immobile, in(-)f thermal conductivity. The asymmetrig; can be decomposed

compressible solid, posed in Cartesian index notation Es Kij =k Kiijy . where the symmetrikj, and antisymmetric
rij7 are defined as

de  aq;

Pat ™ " ox @ Kip=Ki=7 (ki T ki), kpijj=—kpji=3 (ki =k (9)
1

Here, the standard Einstein convention, in which the repetition \é\(lth Eq. (9), Eq.(8) can be recast as

the indexi connotes a summation from=1 to 3, is employed. oT oT

The independent variables are distange wherei=1, 2, 3, for gi= _k(”)ﬂ_x,-_ k“”a_xj (10)

each of the orthogonal directions in space, and tinTéhe depen-

dent variables are internal energy per unit massnd the heat Substituting Eq.(10) into the Clausius-Duhem relatio®), it is

flux vector, ;. The densityy, is a constant parameter. For thegoop yhat the second law for this material becomes, after elimina-
incompressible immobile solid, which can undergo no deforma-
! . : . . fion of the nonzero temperature
tion work process, classical thermodynamics provides a Gibbs

equation for systems near equilibrium undergoing reversible heat

transfer o dror o arar_
i T——t kg ——=
de=Tds, ) W) gx; ax; U ox; ax; (11)
-
whereT is the temperature argis the entropy per unit mass. It is -0

then postulated that such a relation is valid for more general sys-
tems which may be undergoing irreversible heat transfer. Con
quently, one adopts the non-equilibriude/gt=Tads/ot, and the
first law, Eq.(1), can be rewritten in terms of entropy as

ow the part of Eq.(11) involving kjij1 is identically zero for
arbitrary values of temperature gradient dqgh . This is because
the tensor inner product of a symmetric tensor, such as
95 9, (8T/axj)(¢_9T/axi) an_d an antisymmetric tensor, suchl@?], al-

— (3) ways vanishes, which can be shown by direct expansion. So the

pT—o=-
at IXi second law reduces to

Next, use the product rule to expand the first law, B3], in a

nonintuitive fashion to get k(i-)a—T ﬁzo (12)
Dax; ax;
ds 9 [q;\ q; T @) ) . .
P = T 72 o, which must hold for any value of temperature gradient. So it is

seen that any nonzero antisymmetric componeri;ofannot in-
reversible  irreversible fluence the evolution of entropy or the second law.
Using standard results from linear algebra, cf. Strg®g], it
This formulation of the first law is written so as to segregat&®” further be stated that the entropy inequality, @), will be
entropy generating terms into those associated with both reveyélisfied if and only ifk ;) is positive semi-definite. This will be
ible and irreversible heat transfer. This is seen upon consideratfd case if and only if the eigenvaluasof k;, are positive
of the second law of thermodynamics, which for such a material §§Mi-definite. The eigenvalues are guaranteed to be real by the

given by symmetry ofk;). The eigenvalues dk;j) can be shown to be
positive semi-definite if and only if the so-called invariants of
Js d g k(ij), 14, 1,, andl 5, are themselves positive semi-definite, which
P 52 - K(?) (5) can be inferred from Funfll3]. The invariants reside in the char-
' acteristic polynomial ok;;, , which determines the eigenvalues
Using Eq.(4) to eliminate the terms involving entropy and revers- 3 )
ible heat transfer, the second law, E§), can be re-expressed as AN =1 A"+ 1A= 13=0 (13)
a Clausius-Duhem inequality The three roots to Eq13) will be denoted as\;, A,, and\j.
q T Detailed analysis shows that the invariants, along with the neces-
-2 =o. (6) sary and sufficient conditions for positive semi-definiteness of
T2 9% symmetric matrices, are compactly summarized as
The only term which contributes to the Clausius-Duhem inequal- Iy =K, =tr(Kgj)) =A1+Xo+15=0 (14)
ity is that associated with irreversible heat transfer. While revers-
ible heat transfer does induce entropy changes, it makes no con- B A VRN S N -1
tribution to the irreversibility of the p?())/cess. ? 12= 2 (Kakay) ~kap ki) = dettky) ek )
Next two simple linear constitutive models are posed. First, the =NNo+NoA3t AN =0 (15)
internal energy is taken to be a linear function of temperature so
that the caloric state equation is |3: Eljkk(lj)k(2j)k(3]):de( k(lj)) :)\l)\z)\320 (16)
e=cT+e, (7) While it is likely the case that Eq$14)—(16 could be inferred

. . ) from [20], it is certainly not transparent. The conditiong 21] are
wherecis the constant specific heat aedis a reference energy. more clear, but the necessary Egi) is unaccountably omitted.
Second, the heat flux vector is given by Duhamel's generalizatiqihis omission propagates to other sources, €25]

[2] of Fourier's law, i.e., it is taken to be a linear function of '\ypan the special case in whiefT/ax, = (1,0,0)' is substituted
tgergqcﬂggattu_lfﬁug;ad'em which vanishes when there is no tempera% Eqg. (12), one fi_n;ls thak(l;)zo_. Equivalent results are ob-
) ' tained for the remaining two directions. As the symmetric part of
oT a diagonal element is the diagonal element itself, one then has
®

q.:fk.._
I IJ‘9)(1' Ki1y=K11=0, K=k3=0, K33=Kkz=0 (7)
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It seems that no further significant simplifications can be made 1 1 2

over those of Eqs(14)—(17). However, it is useful to keep in

mind the following imprecise, pragmatic, and rarely stated recipe: kij=Kj= 1 4 -1 (21)

To insure positive definiteness of the conductivity tensor, terms on 2 -1 5

the diagonal must be positive and, relative to terms off the diag-. ) .

onal, large. In the two-dimensional limit, the conditions are simpl% is easily seen that the two conditions [@1], Egs.(14)—(15),

and precise and reduce tq;=0, k=0, and \KipKzp are satisfied a$; =10 andl,=23. However, the tensor is not

=Ky, of, equivalently, k;;=0, k=0, and \Kykz= (ks positive semi-definite since it has eigenvalues\ef6, A=2

+Ky) /2. +5~4.2361, anch =2— 5~ —0.2361. Here, the neglected
Just as antisymmetric terms do not influence the entropy ifi- & and thus Eq(16) is not satisfied, rendering the tensor not

equality, it is easy to show that they do not influence the eneripSitive semi-definite, and the second law violated.
equation. Substituting Eq10) into Eq. (1), one finds That this would lead to a nonphysical prediction is clearly seen
upon rotating the coordinate system to one aligned with the prin-
cipal axes of the conductivity tensor. The principal axes are given
Je PT PT by the eigenvectors d{;;) . The normalized eigenvectors are then
p—=kij ——+kg —— (18) cast into the columns of an orthogonal matfix,,, which is the
ot Ox 9%, Ox 0%, matrix of direction cosines of the rotation
S——

=0 0.3015 0.3868 —0.871

£.,=| —0.3015 0.9058 0.2977 22
Once again the tensor inner product of the symmefid/ 9x; dx; m @2

with the antisymmetrikg;; identically vanishes, giving rise, after 0.9045 0.1730 0.389
imposition of the caloric state equatigr), to a temperature evo- The transpose of this special matrix can be shown to be its in-
lution equation of verse, and is also known as the rotation matrix, which results in
JT 2T €inlmn= Ojm . Here, 5y is the Kro_necker delte_l. As des_crlbed in
pC—=Kijy oo (19) Mmany sources, cf33], under rotation, a generic vectoy is rep-
ot IX;IX; resented in the rotated, denoted by a prime superscript, coordinate

, o - )
Now while an antisymmetric component &f; cannot affect syst,em g = lipu; - Likewise, ageqerlc tens:a_rij Is represented .

either the temperature field or the entropy inequality, it woul@S@pn= €ip@ij€jn - The relevant rotation operations are as follows:

induce a heat flux, and if such a flux existed, it could be measured oT

with standard techniques. In fact in a hypothetical anisotropic ma- gi=

terial which had a purely antisymmetric thermal conductivity, one

could imagine the following experiment. Take a thin rectangular

plate and hold two parallel boundaries at two moderately different €p0i=— Cipkij=——

temperatures. The antisymmetric conductivity would then not in- X

duce a flux normal to the isothermal boundary, but would induce

a parallel flux. This flux would induce as much energy to enter at o= —CipKij Sjmm— (23)
one end and as to leave at the other. One could then put each of IXm

the nonisothermal boundaries in finite reservoirs of liquid water,

and one would observe one reservoir solidify and the other boil. €oGi=— (£iokii € )<€ (7_T)

Such an observation has never been made, despite related careful P PRI Mgy

attemptg4—6]. One might view this as a violation of the second

law for the combined system of the reservoirs and the plate. If, , , T

however, the reservoirs were infinite, the energy flux would in- Ap= _kpng

duce negligible temperature change, and thus no violation of the n

second law. The eigen-rotation of Eq(22) rendersk;,=¢;,k;¢;, to be a

In [9] it is contended that nonzeig;;; can have no observable purely diagonal tensor with the eigenvalues on the diagonal. Con-
consequences. It is then argued that this implies that one c@yuently, the generalized Fourier’s law in this particular refer-

choosek;;;; arbitrarily without resort to Onsager reciprocity. Ref-ence frame is that of an orthotropic material and can be written as
erence[9] goes on to choosk(;j;=0, thus recovering Onsager

reciprocity, while suggesting that other choices would be equally aT
as valid. In light of the argument in the preceding paragraph, it is —
contended here that Onsager reciprocity q; 6 0 0 Xy

aT

Kpij;=0 (20) g, |=—-[ 0 4.2361 0 — (24)

. . . . - . a 0 o -o023 | 7
is the unique choice to bring predictions of heat conduction in oT
anisotropic materials into agreement with observation. This gen- —
eral conclusion is in agreement with Millgt1]. X3

Such a conductivity tensor admits the non-physicaj

=0.236VT/dx;; i.e., it predicts energy to be transported by ran-
Counter Examples dom diffusion from regions of low temperature to regions of high

Here three counterexamples are presented which illustrate ffEPErature, in direct violation of Clausius’ formulation of the

necessity of imposing the conditions described in the previog§cond law. . iy o .
section y P 9 P Note that selection of a conductivity tensor which is more di-

agonally dominant can render the tensor to be positive semi-
Second Law Violation. Consider a conductivity tensor which definite. For example, changirkg, ) from 1 to 2 in Eq.(21) gives
is purely symmetric, as well as having positive diagonal elementise to satisfaction of the second law, as for this new tensor
with a value of =6.1135,1,=0.4829, anc\ ;=4.4036.
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Onsager Reciprocity Violation, Plane Cartesian Case. Application of Eq.(26) gives for the heat flux
Consider now a purely antisymmetric conductivity tensor applied

: - h 4i(Tmax— To) Xo
to a strictly two-dimensional geometry. Take then Qy(Xq X0, 1) = msx ° (1,2ﬁ L Oa(Xy,Xp,1)=0
(-0 " (25) (34)
: 0 The temperature gradient in the 2 direction induces a heat flux in

where k is a characteristic scalar value of thermal conductivitghe 1 direction. At the midplanes,=H/2, there is no heat flux,
Obviously for this tensok;,=0 andkg;;;=k;; . From the gener- and the maximum amplitude of the heat flux occurs at the bound-

alized Fourier’s law, Eq(8), one then has aries with a magnitude of /(T To)/H. In a rectangular con-
trol volume aligned with the domain, the same amount of energy
JT enters at a giver, as exits at a downstreaxy. Moreover, all the
a; 0 -« (771 energy remains confined to the domain. Consequently, the spa-
(qz) Tl o0 JT (26) tially nonuniform temperature field has no variation in time. Had
— the conduction tensor been that of an ordinary isotropic material,
2 energy flux through the boundaries »a=0 andx,=H would
or more simply, have induced (x4,X,,t—)=0. In the absence of a driving po-
tential difference in temperature at the boundaries, a positive iso-
qi=x ﬂ Qo= — K ﬂ 27) tropic conductivity causes the system to come to equilibrium with
7% ax,t 2 %4 its environment.
Substituting Eq(26) into the Clausius-Duhem inequality, E@), Onsager Reciprocity Violation: Plane Polar Case. A simi-
the second law reduces to lar result is obtained in non—Cartesian coordinates. Consider a
JT problem related to the previous example in plane polar coordi-
- nates, for which one has
1/(oT ﬂT) 0 —K) g | _ .
T2\ 3% %, o /| ot =0 (28) X1=Tr C0SH, X,=rsing (35)
sz Application of standard coordinate transformations leads one to
) ) ) formulate the generalized Fourier's law for the antisymmetric
Expanding, one finds that the equality holds conductivity tensor as
q Kk JT q JT (36)
1 oT oT oT dT [l 9= T K——
7("‘55“55)?0 (29) oo i
r 172 27 It is trivial to show that the first law still reduces &¥/dt=0, and
-0 that the second law is satisfied, with zero irreversibility. Consider

now a similar initial boundary value problem on the domain of a
and consequently the irreversibility is identically zero for such @ircular disk for whichr e [O,R], 6€[0,27], te[0,»):

conductivity. _
Similarly the first law of thermodynamics, El), after appli- T(RO)=To, T(0.0,1)<e,

cation of the caloric state equation, Ed@), and Eq.(26), is writ- r\2
ten as T(r,0,0):To+(TmaX—TO)(1—(§) ) (37)
ﬂ Here,R is the outer radius of the disk. Once again the maximum
Cﬂ: J 0 —xj| oxs (30) temperature s ., here realized at=0. The solution for the
PE 5t Xy X\ k0 aT time-dependent temperature field and heat flux is straightfor-
9y wardly found to be
. 2
This reduces to r
T(ryevt):To+(Tmax_To)(l_(§> ) (38)
aT T . T a1
PCot = T ko, T axgoxy (31) qr(r,6,t)=0 (39)
which holds that no temperature changes are induced by such a 2k(Tmax—To) [ T
heat flux. Qo(r.0)=—"F17—"|R (40)

Consider now an initial boundary value problem for a plane
Cartesian problem with a purely antisymmetric conductivity ten- Appropriately scaled temperature and heat flux fields are plot-
sor. Consider the domair; e (—=,»), x,e[0H], te[0®), tedin Fig. 1. Figure (8 shows the temperature field. Despite the
where H is the height of the domain. Next, take as Dirichletack of forcing either within the domain or at the boundary, the

boundary conditions and initial conditions initial temperature disturbance persists for all time in the presence
_ _ of purely antisymmetric conductivity. Figurgld) depicts the un-

T(x1,00=To, T(x,H,H=To, usual consequence of a purely anti-symmetric conductivity: the

X5 X, heat flux vectors are tangent to the isotherms. This situation is

T(xl,xz,O)=T0+4(TmaxfTo)(—) ( 1- —) (32) analogous to velocity vectors and particle pathlines for a solid

H H rotating about a central axis. In fact it is easy to show that the

Here, T, is the boundary temperature, afig, is the maximum antisymmetric conductivity tensor has associated with it a vector
temperature, realized here xaf=H/2. Then Eq.(31) simply re- Which is analogous to the a solid body rotation vector; the equiva-
quires that the initial temperature distribution must hold for alent vector here is (1/2);kgi;;=(0,04)". Here, g;;y is the alter-

time so that nating unit tensor. Another analog is found in a classical chemical
kinetics problem described by Onsadé#i. There it was shown

that if Onsager reciprocity were not imposed on constitutive laws
for chemical kinetics, that so-called cyclic reactions, never ob-

Xo Xo
T(leXth):To+4(Tmax7To)(ﬁ)(17ﬁ) (33)
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X
R

Fig. 1 Example solution for conductive heat transfer in an an-
isotropic material with a purely antisymmetric thermal conduc-

tivity tensor; (a) surface plot of temperature  (dimensionless );
and (b) isotherms of (T—T,)/(Tmx—T,) and heat flux vectors

(dimensionless )

Conclusions

As the scenario in the first example clearly violates the second
law of thermodynamics, the necessity of the additional constraints
for positive semi-definiteness is obvious. As the phenomenon pre-
dicted in the second two examples has never been observed in
conductive heat transfer, despite the enforcement of first and sec-
ond laws of thermodynamics, it is concluded that an additional
condition is necessary. It is clear that Onsager reciprocity, equiva-
lent to the Duhamel-Stokes conjecture, provides a sufficient
condition.

Lastly, recent predictions such as those[ 8] that Onsager
reciprocity does not hold away from equilibrium suggest an inter-
esting possibility. If this contention is correct, then it may be
possible to repeat Soret’s experiméat, and with modern mea-
surement devices, detect spiral components of heat fluxes in
response to radial temperature gradients.
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Nomenclature

A = generic chemical species

B = generic chemical species

C = generic chemical species

H = domain height[m]

I, = first invariant of conductivity tensof\W/m/K]

|, = second invariant of conductivity tens@tW/m/K)?]
|3 = third invariant of conductivity tensof(W/m/K)]
R = domain outer radiugm]

T = temperature[K]
& = generic tensor

¢ = specific heat[J/kg/K]

e = specific internal energyJ/kg|

kij = thermal conductivity tensofW/m/K]
¢;; = direction cosine tensor
g = heat flux vector[Ww/m?]

r = radial coordinatejm|

s = specific entropy[J/kg/K]

t = time,[s]
vi = generic vector
X; = Cartesian distance vector coordindte)

served in closed adiabatic systems, could be predicted; for ex-
ample, in a system with three componeAtsB, andC, one could Greek Symbols
predict a situation which at long time admitted the situation de- 8m = Kronecker delta

picted in Fig. 2.

A

C

Fig. 2 Diagram of hypothesized cyclic chemical reaction for
which Onsager reciprocity does not hold
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€jx = alternating unit tensor
6 = circumferential coordinate
x = thermal conductivity scalar componefity/m/K]
N = eigenvalue of conductivity tensdW/m/K]
p = density,[kg/m’]
Subscripts

i = Cartesian index

j = Cartesian index

m = Cartesian index
max = maximum
= Cartesian index
reference state
Cartesian index
radial direction
circumferential direction
(---) = symmetric part of tensor
[---] = antisymmetric part of tensor

*—-T O3>
Il

Superscript
!

= rotated coordinate system
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