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Media
It is demonstrated by a concise standard derivation, motivated by principles of rati
continuum mechanics and irreversible thermodynamics augmented by novel detail
amples, that for heat conduction in linearly anisotropic solids: (1) common restricti
placed on the form of the thermal conductivity tensor are insufficient to guarantee s
faction of the second law of thermodynamics, and (2) satisfaction of the first and se
laws of thermodynamics alone is still insufficient to insure agreement between hea
predictions and observation. An additional constraint beyond that given in many stan
studies, namely that all three principal invariants of the conductivity tensor be pos
semi-definite, is imposed in order to guarantee satisfaction of the entropy inequality.
constrained, such a theory remains under-restricted and can admit purely cyclic
fluxes, which are not observed in nature. Imposition of the conjectures of Duhame
Stokes, which are in fact earlier specific incarnations of Onsager’s reciprocity theory
the constitutive model relating heat flux to temperature gradient is a sufficient rem
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Introduction
In this work, an exposition is given, accompanied by new illu

trative examples and minor clarifications to some of the exist
literature, to demonstrate that for energy diffusion in linearly a
isotropic solids:~1! restrictions given in common heat transf
references are necessary but insufficient to guarantee satisfa
of the second law of thermodynamics, and~2! fully satisfied first
and second laws of thermodynamics provide necessary but in
ficient restrictions on the functional forms of common constitut
laws. An additional independent condition, such as that provi
by Onsager reciprocity@1#, which itself is a generalization of the
earlier conjectures of Duhamel@2# and Stokes@3#, is required to
bring theory into agreement with experiment@4–6# for conduction
in an anisotropic medium.

General discussions of issues relevant to Onsager recipro
and anisotropic heat conduction are common in the commun
of irreversible thermodynamics, cf.@7–12#; continuum mechanics
cf. @13–15#; and theoretical physics and statistical mechanics,
@16–19#. It is noted, moreover, that statistical mechanics gives
effective microscale based theory which casts macro-scale
sager reciprocity and the second law of thermodynamics o
more fundamental theoretical foundation. Nevertheless, while
ten wide ranging, compact statements of theoretical restriction
models of anisotropic heat conduction are often difficult to p
point in these sources; the useful@14# is the most relevant. The
discussion in the traditional heat transfer community, cf.@20–31#,
is often more limited, and, as will be seen, incomplete. Und
standing such issues can be of aid to anyone doing computat
modeling of anisotropic materials, especially on nonorthogo
grids, designing experiments on materials with anisotropic mic
structure, or wanting to build a strong classical foundation fr

Contributed by the Heat Transfer Division for publication in the JOURNAL OF
HEAT TRANSFER. Manuscript received by the Heat Transfer Division January
2004; revision received June 3, 2004. Associate Editor: R. Pitchumani.
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which to explore the implications of molecular dynamics on e
ergy diffusion, especially relevant for energy transport on mole
lar lattice scales in solids.

In what follows, a simple model of diffusive energy transport
an anisotropic solid will be presented. The analysis is restricte
a classical, axiomatic, macro-scale approach with no detailed
peal to the underlying micro-scale physics; however, it is no
that the axioms employed here are consistent with conclus
which can be drawn from micro-scale models. For such a m
rial, a general form of the first law of thermodynamics is pos
along with constitutive models for internal energy and diffusi
heat flux. A first set of restrictions on the form of the constituti
laws is found by a standard application of the second law
thermodynamics. It will then be shown that these necessary l
tations alone nevertheless admit behavior which is not observe
experiment; this is remedied by further application of Onsa
reciprocity.

How these principles may be unintentionally violated is th
illustrated in three simple examples, which should be useful
pedagogical purposes. First, an anisotropic material which h
purely symmetric thermal conductivity tensor which also satisfi
the limited second law requirements of@21#, but has a third prin-
cipal invariant with negative value, in fact violates the second la
Next, for an anisotropic material that has a purely antisymme
thermal conductivity tensor, it will be shown that a temperatu
gradient in a given direction induces a heat flux in an orthogo
direction, all the while satisfying the first and second laws. This
demonstrated in two-dimensional geometries which are plane
tesian and plane polar. In the plane polar geometry, it is seen
purely radial temperature gradients induce purely circumferen
heat fluxes. A qualitative analogy is made between such a flux
~1! solid body rotation and~2! the so-called cyclic chemical reac
tions studied in the original work of Onsager.
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Model and Analysis
Consider the first law of thermodynamics for an immobile,

compressible solid, posed in Cartesian index notation

r
]e

]t
52

]qi

]xi
(1)

Here, the standard Einstein convention, in which the repetition
the indexi connotes a summation fromi 51 to 3, is employed.
The independent variables are distancexi , wherei 51, 2, 3, for
each of the orthogonal directions in space, and timet. The depen-
dent variables are internal energy per unit mass,e, and the heat
flux vector, qi . The density,r, is a constant parameter. For th
incompressible immobile solid, which can undergo no deform
tion work process, classical thermodynamics provides a Gi
equation for systems near equilibrium undergoing reversible h
transfer

de5Tds, (2)

whereT is the temperature ands is the entropy per unit mass. It i
then postulated that such a relation is valid for more general
tems which may be undergoing irreversible heat transfer. Co
quently, one adopts the non-equilibrium]e/]t5T]s/]t, and the
first law, Eq.~1!, can be rewritten in terms of entropy as

rT
]s

]t
52

]qi

]xi
(3)

Next, use the product rule to expand the first law, Eq.~3!, in a
nonintuitive fashion to get

(4)

This formulation of the first law is written so as to segrega
entropy generating terms into those associated with both rev
ible and irreversible heat transfer. This is seen upon considera
of the second law of thermodynamics, which for such a materia
given by

r
]s

]t
>2

]

]xi
S qi

T D (5)

Using Eq.~4! to eliminate the terms involving entropy and rever
ible heat transfer, the second law, Eq.~5!, can be re-expressed a
a Clausius-Duhem inequality

2
qi

T2

]T

]xi
>0. (6)

The only term which contributes to the Clausius-Duhem inequ
ity is that associated with irreversible heat transfer. While reve
ible heat transfer does induce entropy changes, it makes no
tribution to the irreversibility of the process.

Next two simple linear constitutive models are posed. First,
internal energy is taken to be a linear function of temperature
that the caloric state equation is

e5cT1eo (7)

wherec is the constant specific heat andeo is a reference energy
Second, the heat flux vector is given by Duhamel’s generaliza
@2# of Fourier’s law, i.e., it is taken to be a linear function
temperature gradient which vanishes when there is no temper
gradient. Thus,

qi52ki j

]T

]xj
(8)
Journal of Heat Transfer
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whereki j is taken to be a constant nonisotropic asymmetric ten
of thermal conductivity. The asymmetricki j can be decomposed
aski j 5k( i j )1k@ i j # , where the symmetrick( i j ) and antisymmetric
k@ i j # are defined as

k~ i j ![k~ j i !5
1
2 ~ki j 1kji !, k@ i j #[2k@ j i #5

1
2 ~ki j 2kji ! (9)

With Eq. ~9!, Eq. ~8! can be recast as

qi52k~ i j !

]T

]xj
2k@ i j #

]T

]xj
(10)

Substituting Eq.~10! into the Clausius-Duhem relation~6!, it is
seen that the second law for this material becomes, after elim
tion of the nonzero temperature

(11)

Now the part of Eq.~11! involving k@ i j # is identically zero for
arbitrary values of temperature gradient andk@ i j # . This is because
the tensor inner product of a symmetric tensor, such
(]T/]xj )(]T/]xi) and an antisymmetric tensor, such ask@ i j # , al-
ways vanishes, which can be shown by direct expansion. So
second law reduces to

k~ i j !

]T

]xj

]T

]xi
>0 (12)

which must hold for any value of temperature gradient. So it
seen that any nonzero antisymmetric component ofki j cannot in-
fluence the evolution of entropy or the second law.

Using standard results from linear algebra, cf. Strang@32#, it
can further be stated that the entropy inequality, Eq.~12!, will be
satisfied if and only ifk( i j ) is positive semi-definite. This will be
the case if and only if the eigenvaluesl of k( i j ) are positive
semi-definite. The eigenvalues are guaranteed to be real by
symmetry ofk( i j ) . The eigenvalues ofk( i j ) can be shown to be
positive semi-definite if and only if the so-called invariants
k( i j ) , I 1 , I 2 , andI 3 , are themselves positive semi-definite, whi
can be inferred from Fung@13#. The invariants reside in the cha
acteristic polynomial ofk( i j ) , which determines the eigenvaluesl

l32I 1l21I 2l2I 350 (13)

The three roots to Eq.~13! will be denoted asl1 , l2 , andl3 .
Detailed analysis shows that the invariants, along with the ne
sary and sufficient conditions for positive semi-definiteness
symmetric matrices, are compactly summarized as

I 15k~ i i !5tr~k~ i j !!5l11l21l3>0 (14)

I 25
1
2 ~k~ i i !k~ j j !2k~ i j !k~ j i !!5det~k~ i j !!tr~k~ i j !

21 !

5l1l21l2l31l3l1>0 (15)

I 35e i jkk~1 j !k~2 j !k~3 j !5det~k~ i j !!5l1l2l3>0 (16)

While it is likely the case that Eqs.~14)–(16! could be inferred
from @20#, it is certainly not transparent. The conditions in@21# are
more clear, but the necessary Eq.~16! is unaccountably omitted
This omission propagates to other sources, e.g.,@25#.

When the special case in which]T/]xi5(1,0,0)T is substituted
into Eq. ~12!, one finds thatk(11)>0. Equivalent results are ob
tained for the remaining two directions. As the symmetric part
a diagonal element is the diagonal element itself, one then ha

k~11!5k11>0, k~22!5k22>0, k~33!5k33>0 (17)
OCTOBER 2004, Vol. 126 Õ 671
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It seems that no further significant simplifications can be m
over those of Eqs.~14!–~17!. However, it is useful to keep in
mind the following imprecise, pragmatic, and rarely stated rec
To insure positive definiteness of the conductivity tensor, terms
the diagonal must be positive and, relative to terms off the di
onal, large. In the two-dimensional limit, the conditions are sim
and precise and reduce tok(11)>0, k(22)>0, and Ak(11)k(22)
>k(12) , or, equivalently, k11>0, k22>0, and Ak11k22>(k12
1k21)/2.

Just as antisymmetric terms do not influence the entropy
equality, it is easy to show that they do not influence the ene
equation. Substituting Eq.~10! into Eq. ~1!, one finds

(18)

Once again the tensor inner product of the symmetric]2T/]xi]xj
with the antisymmetrick@ i j # identically vanishes, giving rise, afte
imposition of the caloric state equation~7!, to a temperature evo
lution equation of

rc
]T

]t
5k~ i j !

]2T

]xi]xj
(19)

Now while an antisymmetric component ofki j cannot affect
either the temperature field or the entropy inequality, it wou
induce a heat flux, and if such a flux existed, it could be measu
with standard techniques. In fact in a hypothetical anisotropic m
terial which had a purely antisymmetric thermal conductivity, o
could imagine the following experiment. Take a thin rectangu
plate and hold two parallel boundaries at two moderately differ
temperatures. The antisymmetric conductivity would then not
duce a flux normal to the isothermal boundary, but would indu
a parallel flux. This flux would induce as much energy to ente
one end and as to leave at the other. One could then put ea
the nonisothermal boundaries in finite reservoirs of liquid wa
and one would observe one reservoir solidify and the other b
Such an observation has never been made, despite related c
attempts@4–6#. One might view this as a violation of the secon
law for the combined system of the reservoirs and the plate
however, the reservoirs were infinite, the energy flux would
duce negligible temperature change, and thus no violation of
second law.

In @9# it is contended that nonzerok@ i j # can have no observabl
consequences. It is then argued that this implies that one
choosek@ i j # arbitrarily without resort to Onsager reciprocity. Re
erence@9# goes on to choosek@ i j #50, thus recovering Onsage
reciprocity, while suggesting that other choices would be equ
as valid. In light of the argument in the preceding paragraph,
contended here that Onsager reciprocity

k@ i j #50 (20)

is the unique choice to bring predictions of heat conduction
anisotropic materials into agreement with observation. This g
eral conclusion is in agreement with Miller@11#.

Counter Examples
Here three counterexamples are presented which illustrate

necessity of imposing the conditions described in the previ
section.

Second Law Violation. Consider a conductivity tensor whic
is purely symmetric, as well as having positive diagonal eleme
with a value of
672 Õ Vol. 126, OCTOBER 2004
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ki j 5k~ i j !5S 1 1 2

1 4 21

2 21 5
D (21)

It is easily seen that the two conditions of@21#, Eqs. ~14!–~15!,
are satisfied asI 1510 and I 2523. However, the tensor is no
positive semi-definite since it has eigenvalues ofl56, l52
1A5;4.2361, andl522A5;20.2361. Here, the neglectedI 3
526, and thus Eq.~16! is not satisfied, rendering the tensor n
positive semi-definite, and the second law violated.

That this would lead to a nonphysical prediction is clearly se
upon rotating the coordinate system to one aligned with the p
cipal axes of the conductivity tensor. The principal axes are gi
by the eigenvectors ofk( i j ) . The normalized eigenvectors are the
cast into the columns of an orthogonal matrix,mn , which is the
matrix of direction cosines of the rotation

,mn5S 0.3015 0.3868 20.8715

20.3015 0.9058 0.2977

0.9045 0.1730 0.3897
D (22)

The transpose of this special matrix can be shown to be its
verse, and is also known as the rotation matrix, which results
, jn,mn5d jm . Here,d jm is the Kronecker delta. As described i
many sources, cf.@33#, under rotation, a generic vectorv i is rep-
resented in the rotated, denoted by a prime superscript, coord
system asvp85, ipv i . Likewise, a generic tensorai j is represented
asapn8 5, ipai j , jn . The relevant rotation operations are as follow

qi52ki j

]T

]xj

, ipqi52, ipki j

]T

]xj

, ipqi52, ipki j d jm

]T

]xm
(23)

, ipqi52~, ipki j , jn!S ,mn

]T

]xm
D

qp852kpn8
]T

]xn8

The eigen-rotation of Eq.~22! renderskpn8 5, ipki j , jn to be a
purely diagonal tensor with the eigenvalues on the diagonal. C
sequently, the generalized Fourier’s law in this particular ref
ence frame is that of an orthotropic material and can be written

S q18

q28

q38
D 52S 6 0 0

0 4.2361 0

0 0 20.2361
D S ]T

]x18

]T

]x28

]T

]x38

D (24)

Such a conductivity tensor admits the non-physicalq38
50.2361]T/]x38 ; i.e., it predicts energy to be transported by ra
dom diffusion from regions of low temperature to regions of hi
temperature, in direct violation of Clausius’ formulation of th
second law.

Note that selection of a conductivity tensor which is more
agonally dominant can render the tensor to be positive se
definite. For example, changingk(11) from 1 to 2 in Eq.~21! gives
rise to satisfaction of the second law, as for this new tensorl1
56.1135,l250.4829, andl354.4036.
Transactions of the ASME
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Onsager Reciprocity Violation, Plane Cartesian Case.
Consider now a purely antisymmetric conductivity tensor appl
to a strictly two-dimensional geometry. Take then

ki j 5S 0 2k

k 0 D (25)

wherek is a characteristic scalar value of thermal conductiv
Obviously for this tensork( i j )50 andk@ i j #5ki j . From the gener-
alized Fourier’s law, Eq.~8!, one then has

S q1

q2
D52S 0 2k

k 0 D S ]T

]x1

]T

]x2

D (26)

or more simply,

q15k
]T

]x2
, q252k

]T

]x1
(27)

Substituting Eq.~26! into the Clausius-Duhem inequality, Eq.~6!,
the second law reduces to

1

T2 S ]T

]x1

]T

]x2
D S 0 2k

k 0 D S ]T

]x1

]T

]x2

D >0 (28)

Expanding, one finds that the equality holds

(29)

and consequently the irreversibility is identically zero for such
conductivity.

Similarly the first law of thermodynamics, Eq.~1!, after appli-
cation of the caloric state equation, Eq.~7!, and Eq.~26!, is writ-
ten as

rc
]T

]t
5S ]

]x1

]

]x2
D S 0 2k

k 0 D S ]T

]x1

]T

]x2

D (30)

This reduces to

rc
]T

]t
52k

]2T

]x1]x2
1k

]2T

]x2]x1
50 (31)

which holds that no temperature changes are induced by su
heat flux.

Consider now an initial boundary value problem for a pla
Cartesian problem with a purely antisymmetric conductivity te
sor. Consider the domainx1P(2`,`), x2P@0,H#, tP@0,̀ ),
where H is the height of the domain. Next, take as Dirichl
boundary conditions and initial conditions

T~x1,0,t !5To , T~x1 ,H,t !5To ,

T~x1 ,x2,0!5To14~Tmax2To!S x2

H D S 12
x2

H D (32)

Here,To is the boundary temperature, andTmax is the maximum
temperature, realized here atx25H/2. Then Eq.~31! simply re-
quires that the initial temperature distribution must hold for
time so that

T~x1 ,x2 ,t !5To14~Tmax2To!S x2

H D S 12
x2

H D (33)
Journal of Heat Transfer
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Application of Eq.~26! gives for the heat flux

q1~x1 ,x2 ,t !5
4k~Tmax2To!

H S 122
x2

H D , q2~x1 ,x2 ,t !50

(34)

The temperature gradient in the 2 direction induces a heat flu
the 1 direction. At the midplane,x25H/2, there is no heat flux,
and the maximum amplitude of the heat flux occurs at the bou
aries with a magnitude of 4k(Tmax2To)/H. In a rectangular con-
trol volume aligned with the domain, the same amount of ene
enters at a givenx1 as exits at a downstreamx1 . Moreover, all the
energy remains confined to the domain. Consequently, the
tially nonuniform temperature field has no variation in time. H
the conduction tensor been that of an ordinary isotropic mate
energy flux through the boundaries atx250 and x25H would
have inducedT(x1 ,x2 ,t→`)50. In the absence of a driving po
tential difference in temperature at the boundaries, a positive
tropic conductivity causes the system to come to equilibrium w
its environment.

Onsager Reciprocity Violation: Plane Polar Case. A simi-
lar result is obtained in non–Cartesian coordinates. Consid
problem related to the previous example in plane polar coo
nates, for which one has

x15r cosu, x25r sinu (35)

Application of standard coordinate transformations leads one
formulate the generalized Fourier’s law for the antisymmet
conductivity tensor as

qr5
k

r

]T

]u
, qu52k

]T

]r
(36)

It is trivial to show that the first law still reduces to]T/]t50, and
that the second law is satisfied, with zero irreversibility. Consi
now a similar initial boundary value problem on the domain o
circular disk for whichr P@0,R#, uP@0,2p#, tP@0,̀ ):

T~R,u,t !5To , T~0,u,t !,`,

T~r ,u,0!5To1~Tmax2To!S 12S r

RD 2D . (37)

Here,R is the outer radius of the disk. Once again the maxim
temperature isTmax, here realized atr 50. The solution for the
time-dependent temperature field and heat flux is straight
wardly found to be

T~r ,u,t !5To1~Tmax2To!S 12S r

RD 2D (38)

qr~r ,u,t !50 (39)

qu~r ,u,t !5
2k~Tmax2To!

R S r

RD (40)

Appropriately scaled temperature and heat flux fields are p
ted in Fig. 1. Figure 1~a! shows the temperature field. Despite th
lack of forcing either within the domain or at the boundary, t
initial temperature disturbance persists for all time in the prese
of purely antisymmetric conductivity. Figure 1~b! depicts the un-
usual consequence of a purely anti-symmetric conductivity:
heat flux vectors are tangent to the isotherms. This situatio
analogous to velocity vectors and particle pathlines for a so
rotating about a central axis. In fact it is easy to show that
antisymmetric conductivity tensor has associated with it a vec
which is analogous to the a solid body rotation vector; the equ
lent vector here is (1/2)e i jkk@ i j #5(0,0,k)T. Here,e i jk is the alter-
nating unit tensor. Another analog is found in a classical chem
kinetics problem described by Onsager@1#. There it was shown
that if Onsager reciprocity were not imposed on constitutive la
for chemical kinetics, that so-called cyclic reactions, never
OCTOBER 2004, Vol. 126 Õ 673
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served in closed adiabatic systems, could be predicted; for
ample, in a system with three componentsA, B, andC, one could
predict a situation which at long time admitted the situation
picted in Fig. 2.

Fig. 1 Example solution for conductive heat transfer in an an-
isotropic material with a purely antisymmetric thermal conduc-
tivity tensor; „a… surface plot of temperature „dimensionless …;
and „b… isotherms of „TÀTo…Õ„TmaxÀTo… and heat flux vectors
„dimensionless …

Fig. 2 Diagram of hypothesized cyclic chemical reaction for
which Onsager reciprocity does not hold
674 Õ Vol. 126, OCTOBER 2004
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Conclusions
As the scenario in the first example clearly violates the sec

law of thermodynamics, the necessity of the additional constra
for positive semi-definiteness is obvious. As the phenomenon
dicted in the second two examples has never been observe
conductive heat transfer, despite the enforcement of first and
ond laws of thermodynamics, it is concluded that an additio
condition is necessary. It is clear that Onsager reciprocity, equ
lent to the Duhamel-Stokes conjecture, provides a suffici
condition.

Lastly, recent predictions such as those of@18# that Onsager
reciprocity does not hold away from equilibrium suggest an int
esting possibility. If this contention is correct, then it may
possible to repeat Soret’s experiment@4#, and with modern mea-
surement devices, detect spiral components of heat fluxe
response to radial temperature gradients.
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Nomenclature

A 5 generic chemical species
B 5 generic chemical species
C 5 generic chemical species
H 5 domain height,@m#
I 1 5 first invariant of conductivity tensor,@W/m/K#
I 2 5 second invariant of conductivity tensor,@~W/m/K!2#
I 3 5 third invariant of conductivity tensor,@~W/m/K!3#
R 5 domain outer radius,@m#
T 5 temperature,@K#

ai j 5 generic tensor
c 5 specific heat,@J/kg/K#
e 5 specific internal energy,@J/kg#

ki j 5 thermal conductivity tensor,@W/m/K#
, i j 5 direction cosine tensor
qi 5 heat flux vector,@W/m2#
r 5 radial coordinate,@m#
s 5 specific entropy,@J/kg/K#
t 5 time, @s#

v i 5 generic vector
xi 5 Cartesian distance vector coordinate,@m#

Greek Symbols

d jm 5 Kronecker delta
e i jk 5 alternating unit tensor

u 5 circumferential coordinate
k 5 thermal conductivity scalar component,@W/m/K#
l 5 eigenvalue of conductivity tensor,@W/m/K#
r 5 density,@kg/m3#

Subscripts

i 5 Cartesian index
j 5 Cartesian index

m 5 Cartesian index
max 5 maximum

n 5 Cartesian index
o 5 reference state
p 5 Cartesian index
r 5 radial direction
u 5 circumferential direction

~¯! 5 symmetric part of tensor
@¯# 5 antisymmetric part of tensor

Superscript

8 5 rotated coordinate system
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