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Abstract We analyze the efficacy of a standard manifold-based reduction method
used to simplify reaction dynamics and find conditions under which the reduction can
succeed and fail. In the standard reduction, a heteroclinic trajectory linking saddle and
sink equilibria is taken as a candidate reduced manifold which we call a Canonical
Invariant Manifold (CIM). We develop and exercise analytic tools for studying the
local behavior of trajectories near the CIM. In so doing, we find conditions under
which nearby trajectories are attracted to the CIM (ACIM) as well as conditions for
which the dynamics on the ACIM are slow (SACIM). The method is demonstrated on a
(1) simple model problem, (2) Zel’dovich mechanism for nitric oxide production, and
(3) hydrogen–air system. For systems that evolve in a three-dimensional composition
space, we find that normal stretching away from the CIM in a volume-shrinking vector
field is admitted and that depending on the magnitude of the local rotation rate, may or
may not render the CIM to be attractive. The success and failure of the candidate CIM
as a SACIM is displayed for the model system. Results for the Zel’dovich mechanism
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and hydrogen–air systems are less definitive, though for specific conditions a SACIM
is identified for both systems.

Keywords Slow manifold · Attractive manifold · Invariant manifold · Chemical
kinetics · Model reduction

Mathematics Subject Classification 80A30 · 34C37 · 34C45

1 Introduction

It is widely recognized that many important physical problems possess features that
can only be captured by mathematical models which are both non-linear and reflect
the problems’ multiscale nature. In some cases, the disparity of scales and effects
of non-linearity are not severe, and a so-called direct numerical modeling approach,
which employs a large number of degrees of freedom, is viable. In other cases, the
disparity of scales is too large for even the most powerful computers. This necessitates
the employment of additional reduction strategies in which the model is simplified in
such a fashion that the essence of the solution can be captured, while reducing the
required computational resources. Such reductions nearly always entail the filtering
of detail. For non-linear multi-scale problems, one should ensure that such a filter has
retained as much of the original nature of the full solution as possible; colloquially,
one wishes to retain the “signal” and filter the “noise.” However, determining what is
signal and what is noise is not always straightforward.

The problem of gas-phase combustion chemistry is a paradigm example which is
known both experimentally and theoretically to exhibit non-linear, multi-scale phe-
nomena. Given the importance of combustion in practical applications, the devel-
opment of both detailed models and their rational reduction has been the focus of
significant effort over many decades. General background on combustion and some
relevant aspects of detailed models and their reduction are summarized by Law [1].

One class of reduction which has attracted much attention in both the applied
mathematics and combustion chemistry communities over the past 20 years is a
so-called manifold-based method. Extensive reviews are given by Mengers and Pow-
ers [2] and Mengers [3]. Examples include works of Lam and Goussis [4], Maas
and Pope [5], Roussel [6], and Büki et al. [7]. The essential idea is as follows. The
dynamics of a combustion system can nearly always be modeled as an evolution of
a trajectory within a finite- or infinite-dimensional phase space. For many systems,
there is a rapid relaxation of a trajectory onto a manifold of lower dimension than the
original space. On this lower dimensional manifold, it is often the case that only slow
dynamics occur, and these are often the dynamics which are most physically relevant.
If one can identify a priori such lower dimensional manifolds, it may be possible
to project the trajectories of combustion dynamics onto such a manifold so that fine
time scale events are “filtered,” thus reducing the computational time necessary for
solving a challenging and otherwise multi-scale problem. Such a manifold has been
colloquially named a “slow manifold.”

However, a precise definition of a slow manifold has proved non-trivial, evidence
of which can be seen in a series of articles by Lorenz [8–10]; further detailed analysis
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(a) (b)

Fig. 1 Sketches of a one-dimensional SACIM, and b non-attractive CIM

for Lorenz’s system was provided by Camassa and Tin [11] and Ginoux [12]. While
Lorenz’s questions were applied mainly to problems motivated by limit cycles for the
dynamics of inert gases, they are in a general sense relevant for reactive systems which
may or may not be undergoing limit cycle behavior. It is noted that a rich literature
exists describing rigorous analysis of attractive manifolds, especially for inert systems
undergoing limit cycle behavior, as summarized in the recent monograph of Nipp
and Stoffer [13]. While studies of attractive manifolds of combustion chemistry have
largely evolved independently, future studies would benefit from examining ways to
provide closer linkages. That said, our approach here will be more closely aligned
with the chemistry-based approach of Adrover et al. [14], who give a more detailed
comparative discussion, than the non-chemistry-based approach exemplified in [13].

A visualization of a common manifold reduction introduced by Davis and Skodje
[15] for combustion chemistry systems is sketched in Fig. 1a. Shown are two equi-
libria: one a sink which corresponds to a physical equilibrium in a closed fixed-mass
combustion system [16], and the other a saddle with one unstable mode, which is a
non-physical equilibrium in a combustion system. It is often possible to identify a
heteroclinic connection between the saddle and the sink. Because such a connection
is a trajectory, it is also an Invariant Manifold (IM) of the system, see Perko [17].
Because it is a canonical trajectory, due to its connection to the single unstable mode
of the saddle, we call it a Canonical Invariant Manifold (CIM). It is well known that
the CIM attracts nearby trajectories near both the saddle and sink equilibria. Figure 1a
also depicts trajectories far from the equilibria that are attracted to the CIM; in com-
bustion problems such behavior is often realized. If it is, we define the CIM to be an
Attractive Canonical Invariant Manifold (ACIM). If it is further the case that relax-
ation to the ACIM occurs much faster than the motion on the ACIM, we call the ACIM
a Slow Attractive Canonical Invariant Manifold (SACIM). Much of manifold-based
reduction in combustion chemistry relies on the implicit assumption that the manifolds
employed are in fact SACIMs.

Unfortunately, classical gas phase combustion models offer no guarantee that man-
ifolds identified as a reduction have all the desirable properties found in a SACIM.
Such models, which employ the law of mass action and Arrhenius kinetics, are at
most guaranteed to have a unique sink equilibrium in the region of phase space where
all species mass fractions are positive. Far from the sink, there is no guarantee that
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trajectories nearby to the CIM are attracted to it, thus rendering the scenario of Fig. 1b
a possibility. In this scenario, a trajectory which is initially near the CIM may actually
be repelled from the CIM before ultimately returning to the sink equilibrium. Such a
scenario would render any reduction which was based on projection onto a CIM to
have large inaccuracies and would predict non-physical system behavior.

It is the purpose of this paper to describe diagnostic tools which allow one to
ascertain whether a given CIM is actually a SACIM, which would have utility in
rational reduction of reactive dynamics. Our main result is that CIMs need not be
SACIMs, though many are, and that users of reduced chemistry should take precautions
to see that any manifolds they employ do not suppress relevant chemical dynamics. We
will take advantage of local linearization tools which have been previously developed,
e.g. [14], for the deformation of trajectories near a CIM. These useful stretching-based
diagnostics are necessary but insufficient to determine whether a CIM is a SACIM.
To remedy this deficiency, we develop the notion of rotation of trajectories for three-
dimensional systems and show how the competition between stretching and rotation
rates can play a determining role in SACIM diagnosis. We believe the use of a rotation-
based diagnostic to be novel within the reduced combustion chemistry community.

Many of these tools are similar to those employed in analyzing the kinematics
of translation, stretching, and rotation of compressible fluid particles in motion, as
described for example by Aris [18]. Additional general background for geometric
interpretation of slow manifolds is given by Ginoux and Rossetto [19]. While some
of our analysis will apply to arbitrarily large systems, most of our discussion where
rotation is relevant will be limited to systems that evolve in a phase space with dimen-
sion of three. This is because the notion of a generalized rotation in higher dimensions
introduces significant complications into the analysis which we will defer to future
work. Indeed, realistic combustion systems are typically of higher dimension; never-
theless, we will demonstrate that even for the low dimensional systems we analyze,
consideration of rotation yields new insights into chemical dynamics.

While our analysis is based on linearization near the CIM and thus will only have
local validity, we note that there have been efforts made towards global analysis of
manifold stability. In the context of chemical kinetic systems, one can review the
global analysis of Roussel and Fraser [20], which draws upon a different strategy:
functional iteration. It is intriguing that, analogous to the scenario of Fig. 1b, they note
that iterations can suffer intermediate divergence from the manifold before ultimate
convergence. Relevant global analysis of a different nature is considered by Ren and
Pope [21], who study the evolution of trajectories emanating from a wide variety
of initial conditions, including those far from a manifold of a given low dimension.
They employ a local linear analysis of each trajectory, based on the singular value
decomposition, to diagnose the appropriate dimension of the local slow manifold in
the region far from the given manifold.

The plan of our paper is as follows. We first give a general mathematical background
of CIM construction via heteroclinic connections similar to that found in [2,15], and
[3]. This is accompanied by a discussion of stretching-based diagnostics similar to that
of [14], as well as a new discussion of rotation-based diagnostics. We then illustrate
the diagnostic tools by applying them to three problems: (1) a combustion-inspired
model problem, (2) the Zel’dovich mechanism of nitric oxide production, and (3)
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hydrogen–air kinetics. The first problem was originally discussed in [3]. It considers
a system that evolves in a three-dimensional chemical composition space, rendering
rotation to be a relevant concern. The second, the Zel’dovich model, is studied under
the same conditions considered by Al-Khateeb et al. [22]. The Zel’dovich model
evolves in a two-dimensional chemical composition space; thus, while stretching-
based diagnostics are relevant, rotation is not. The third, the hydrogen–air model, is
identical to that considered first by Ren et al. [23] and later by [22] and is restricted to
a small number of species and reactions to better illustrate the geometrical features of
the chemical dynamics. It evolves in a three-dimensional chemical composition space,
again rendering rotation to have potential relevance. It is extracted from a larger model
which describes dynamics of a more realistic hydrogen–air system. We close with brief
conclusions.

2 Mathematical background

2.1 Nonlinear problem

We restrict our discussion to a spatially homogeneous ideal mixture of N ideal gases
in a closed vessel with constant volume V . The constant total mixture mass is m. The
number of moles of each species ni , i = 1, . . . , N , evolves in time t due to chemical
reactions. We scale ni by m to obtain the specific number of species i :

zi = ni

m
, i = 1, . . . , N (1)

At any given t only N ′ ≤ N of the zi are linearly independent, as physical restrictions
provided by principles such as element conservation for chemical reactions provide
N − N ′ linear constraints. Sometimes reaction mechanisms are such that other linear
constraints exist. For example, a mechanism in which each elementary reaction has
the property that the number of molecules is unchanged will have an additional linear
constraint due to conservation of number of molecules. Much of the following analysis
applies to N ′ ≥ 1; as such, we leave N ′ general at this point. However, we will later
confine attention to systems which have N ′ = 2 or 3, as it is those systems which best
illustrate our results.

Time-dependent spatially homogeneous reaction of this mixture is described by a
system of N ′ ordinary differential equations (ODEs) of the form

dz
dt

= f(z); z(0) = zo; {z, zo, f} ∈ R
N ′

(2)

Here the independent variable is t . The dependent variables zi , i = 1, . . . , N ′, are
embodied in z, with zo as their set of initial values. The remaining N − N ′ values of zi

can be determined by the linear constraints. One way to develop the linear constraints
is to specify a provisional set of initial conditions for zi , i = 1, . . . , N , which can
later be relaxed so as to allow zo to have parametric variation. The law of mass action
with Arrhenius kinetics is represented within the non-linear algebraic function f . Full
details of the linear constraints and underlying physical principles are given in [2].
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Equilibrium is attained at points for which

f(z) = 0 (3)

and in general one can expect multiple equilibria within R
N ′

. However, it is well
known, as summarized by Powers and Paolucci [16], that a unique stable equilibrium
exists when z is restricted to values which are physically realizable. Mathematically,
one can show that the eigenvalues of the Jacobian

J = ∇f (4)

where ∇ = ∂/∂zi , i = 1, . . . , N ′, are guaranteed real and negative at this equilibrium.
The physically realizable region of R

N ′
is that portion for which zi ≥ 0, i = 1, . . . , N ,

the boundary of which is a convex polytope. We define the physically realizable region
as S, its boundary as ∂S, and the non-physical region as S

′. No species can have a
negative number of moles within S. Physical systems are further constrained by the
second law of thermodynamics, which is manifested in additional restrictions on the
functional form of f . Omitting details described in [16], one can say that f must be
constructed such that within S, there exists a scalar function of the state variables z
whose value changes monotonically with t through the action of f until it reaches
an extreme value at the physical equilibrium. Depending on the particular physical
scenario, that scalar function could be the entropy, the enthalpy, the Helmholtz free
energy, or the Gibbs free energy. It is straightforward to formulate this scalar so that
it is a Lyapunov function for the system within S. Typically these scalar functions are
singular on ∂S.

While the state variables z are obviously non-physical in S
′, they are often otherwise

mathematically well-behaved. In S
′, one typically finds a set of non-physical equilibria

with local dynamics that can include all combinations of modes: stable, unstable, and
oscillatory. For equilibria with one or more unstable modes, it is possible for there to
exist a heteroclinic connection between a non-physical equilibrium and the physical
equilibrium. Typically, such orbits are easy to identify by numerical integration, with
values of z encountering no singularities (even while the second law-motivated scalar
function takes on a singular value as the trajectory passes through ∂S).

Our procedure is to focus attention on saddles with one unstable mode and to
numerically integrate the system starting from a perturbation from the saddle in the
eigen-direction of the unstable mode pointing towards the physical equilibrium. We
call a heteroclinic trajectory connecting a non-physical equilibrium to the physical
equilibrium a Canonical Invariant Manifold (CIM). Because it is often the case that
a CIM is the trajectory to which the slowest dynamics of the system are confined as
well as the trajectory which attracts nearby trajectories, it has the potential to be the
ideal candidate for a reduced model of chemical kinetics. Because it is a trajectory,
it meets well known criteria for invariant manifolds; see [17]. We focus attention on
one-dimensional CIMs which originate from saddle points with one unstable mode.
This guarantees that the CIM is attractive in the neighborhood of each equilibrium;
far from equilibrium there is no guarantee of attraction to the CIM, as illustrated in
Fig. 1b. Higher dimensional CIMs could be considered, though the topology and its
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interpretation becomes more challenging. So, given a one-dimensional CIM, which is
not difficult to identify, one would like to quantifiably ascertain whether such a CIM
is both slow and attractive. This is more difficult, and we describe in detail in the
following sections how to use a set of well-defined diagnostic tools based on linear
analysis to make this determination for a general CIM.

Before proceeding to linear tools, one recognizes that a somewhat useful non-
linear diagnostic tool for attractiveness of a CIM is the time evolution of the distance
separating the CIM and a local trajectory which originates near the CIM as both
progress towards the stable equilibrium point. We take this distance as

s(t) = min
τ∈(−∞,∞)

||zC I M (τ ) − z(t)|| (5)

Here zC I M represents the CIM which is known parametrically as a function of τ .
At a given time t the coordinates of a nearby trajectory z(t) are known, and s(t) is
the minimum distance from z(t) to any point on the entire CIM. A necessary but
insufficient condition for an attractive CIM is that s(t)/s(0) � 1 as t → ∞. This
condition is in fact weak in that any trajectory originating within the basin of attraction
of the sink equilibrium will satisfy Eq. 5. Loosely speaking, for an attractive CIM, we
would like s(t) for a trajectory such as that sketched in Fig. 1a to rapidly decrease to
near zero on its approach to the CIM and then slowly approach zero as it moves to the
sink along the CIM.

2.2 Local linear analysis

To attempt to quantify the notion of slowness and attractiveness just discussed, we
will in this section pose two useful ansatzs based on local linear analysis, which will
be tested a posteriori in a later section on simple examples with N ′ of either 2 or 3. Let
us then consider Eq. 2 and require that zo be a point on a CIM, far from equilibrium.
Then, local linearization in the neighborhood of zo gives

d

dt
(z − zo) = f(zo) + J|zo

· (z − zo) + · · · . (6)

One recognizes that f(zo) is a constant vector of dimension N ′, and J|zo is a constant
Jacobian matrix of dimension N ′ × N ′. Now let us define the symmetric and anti-
symmetric parts of J as Js and Ja , respectively:

Js = J + JT

2
; Ja = J − JT

2
(7)

which allows us to recast Eq. 6 as

d

dt
(z − zo) = f(zo)

︸︷︷︸

translation

+ Js |zo · (z − zo)
︸ ︷︷ ︸

stretch

+ Ja |zo · (z − zo)
︸ ︷︷ ︸

rotation

+ · · · . (8)
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saddle

sinkCIM

Fig. 2 Sketch of volume and trajectory modulation near a CIM

Equation 8 describes the motion of points in the neighborhood of the CIM. For
N ′ = 3, this motion has a geometric interpretation which is easily visualized. For a
related detailed analysis, one can consult [21]. Because this motion is analogous to
that of a three-dimensional fluid particle moving in a known velocity field, one can
draw upon standard notions from differential geometry and continuum kinematics
such as given in [18]; we shall draw upon many of these concepts and present results
without detailed proof. As sketched in Fig. 2, one might imagine a set of points initially
confined within a small sphere which is close to a non-physical saddle equilibrium
point. These points evolve under the action of f , until they are brought into the physical
sink equilibrium point. Let us imagine that the volume defined by these points is
monotonically shrinking with time. Mathematically, we are thus considering systems
for which

∇ · f < 0 (9)

In the dynamical systems literature, such a system is known as dissipative. In the chem-
istry literature “dissipative” often has a different connotation, implying satisfaction of
a second law restriction sometimes known as a Clausius–Duhem inequality. Within
S, chemistry demands the second type of dissipation, but requires the first only in the
neighborhood of the physical equilibrium. As it is common for reactive systems to
satisfy Eq. 9 in large portions of R

N ′
, we will restrict discussion to systems satisfying

Eq. 9 throughout. We shall see that even for such CIMs, it remains an open question
as to whether they are additionally slow and attractive.

The decomposition of motion given in Eq. 8 allows one to associate f(zo) with
translation of the volume along the CIM. The term involving Js can be associ-
ated with stretching of the volume; moreover, because of the symmetry of Js , one
can define a local orthonormal set of basis vectors as well as principal axes of
stretch. The term involving Ja can, for N ′ = 3, be associated with rotation as a
solid body about a central axis. For N ′ = 3, the dual vector associated with Ja

is aligned with the axis of rotation, and its magnitude gives the rotation rate. For
N ′ > 3, translation and stretching are not difficult to imagine, but rotation is not easily
generalized.
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Taking v as the small volume initially near the saddle equilibrium, one can easily
show that the local relative volumetric stretching rate is given by

˙ln v = 1

v

dv

dt
= tr J = tr Js = ∇ · f (10)

which we consider to be negative.
Let us now select a unit vector α, pointing in an arbitrary direction, and use it to

define a scalar σ which we associate with a local stretching rate in the direction of α.
It is not difficult to show that

σ = αT · J · α = αT · Js · α (11)

Note that for any given direction α, the local vector of differential motion at zo attribut-
able to Js is given by Js · α. The component of Js · α aligned with α is in fact σ . Also
note that Eq. 11 gives a general result; α and σ need not be an eigenvector/eigenvalue
pair of either J or Js . If σ and α were an eigenvalue/eigenvector pair of Js , they would
represent an associated principal value and principal axis of stretch.

Now let us consider a CIM which is known parametrically as a function of t via
numerical integration, zC I M . It is then straightforward to determine the unit tangent
vector to the CIM, αt , to be

αt = f(zC I M )

|f(zC I M )| (12)

The unit tangent is uniquely defined and points in the direction of motion; however,
αt need not be a principal axis of stretch.

We next consider the unit vectors orthogonal to the direction of motion. For N ′ = 1,
there can be no motion orthogonal to αt . For N ′ = 2, there are two unit vectors
orthogonal to αt , and one can be selected. For N ′ ≥ 3, there exists an infinite number
of unit vectors which are orthogonal to αt . Through procedures such as the Gram-
Schmidt algorithm, we can select N ′ − 1 of them, labeled αn,i , i = 1, . . . , N ′ − 1,
which are mutually orthonormal and, in combination with αt , span the N ′-dimensional
space. Note that the αn,i are not unique.

With αt and αn,i , one then has the tangential stretching rate σt :

σt = αT
t · Js · αt (13)

and the normal stretching rates σn,i :

σn,i = αT
n,i · Js · αn,i ; i = 1, . . . , N ′ − 1 (14)

Because the αn,i are not yet uniquely determined, we have not yet determined the
extreme values of σn,i , which will be of relevance.

At a generic point on a CIM, each individual stretching rate can be either positive,
negative, or zero. It is also easy to show that the sum of all stretching rates yields the
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relative volumetric stretching rate:

˙ln v = σt +
N ′−1
∑

i=1

σn,i (15)

and because we are focusing on systems for which volumetric stretching is negative,
any positive stretching in a given direction must be more than counter-balanced by
negative stretching in other directions.

2.3 Diagnostics in the normal plane

It will be useful to isolate attention to the plane whose unit normal is αt . To this end,
we first form the N ′ × (N ′ − 1) matrix Qn whose columns are populated with the
N ′ − 1 unit normals, αn,i :

Qn =

⎛

⎜

⎜

⎜

⎝

...
...

...
...

αn,1 αn,2
... αn,N ′−1

...
...

...
...

⎞

⎟

⎟

⎟

⎠

(16)

We then project the N ′ × N ′ Jacobian J onto this plane to form the (N ′ −1)× (N ′ −1)

Jacobian Jn :
Jn = QT

n · J · Qn (17)

As J = Js + Ja , we also can easily show that Jn = Jns + Jna , where

Jns = QT
n · Js · Qn; Jna = QT

n · Ja · Qn (18)

It is clear that Jns is symmetric and Jna is anti-symmetric.

2.3.1 Stretching

To identify the magnitudes and directions of extremal normal stretching, one can
consider Jns and calculate its N ′ − 1 eigenvalues σn,i and eigenvectors βn,i . Because
of symmetry, these eigenvalues are purely real. It can be verified by applying a standard
optimization procedure to Eq. 11, namely to select α such that one extremizes σ =
αT · Js · α, subject to αT · α = 1 and αT · αt = 0, that the eigenvalues of Jns are
the extreme values of σ from Eq. 11 in the plane whose unit normal vector is αt .
One can find the directions of extreme normal stretch via αn,i = (QT

n )+ · βn,i ; here
the “+” denotes the Moore–Penrose inverse. Because αn,i , i = 1, . . . , N ′ − 1, span
the same space as the column vectors of Qn , there is no loss of information in the
Moore–Penrose projection. One also has QT

n · αn,i = βn,i . Direct application of the
optimization procedure yields the identical directions αn,i associated with the extreme
values of normal stretchings σn,i .

123



J Math Chem (2015) 53:737–766 747

2.3.2 Rotation

We next discuss the portion of the motion in the normal plane attributable to Ja , which
for N ′ = 3 will be interpreted as being related to rotation, which is non-deforming.
We first recognize that for any given direction α, the local vector of differential motion
at zo attributable to Ja is given by Ja · α. Part of this vector will be parallel with αt ,
and part will be normal. The part which is normal is Ja · α − (αT

t · Ja · α)αt .
We then wish to identify the α which is associated with the maximum magnitude

of this vector in the normal plane. Thus our optimization problem is to select α so
as to maximize

∣

∣

∣

∣Ja · α − (αT
t · Ja · α)αt

∣

∣

∣

∣, subject to αT · α = 1, and αT · αt = 0.
It will be useful to take

||Jna || ≡ ω (19)

For N ′ = 1, 2, it is easy to show that
∣

∣

∣

∣Ja · α − (αT
t · Ja · α)αt

∣

∣

∣

∣ = ||Jna || = ω = 0
for all suitably constrained α. For N ′ = 3, it can be shown that all α satisfying the con-
straints induce

∣

∣

∣

∣Ja · α − (αT
t · Ja · α)αt

∣

∣

∣

∣ = ||Jna || = ω. For N ′ = 3, we interpret ω

as the magnitude of the relevant component of rotational velocity in the normal plane.
For N ′ = 3, indeed each α induces a unique vector Ja ·α−(αT

t ·Ja ·α)αt ; however, each
of these has identical magnitude. For N ′ > 3, the value of

∣

∣

∣

∣Ja · α − (αT
t · Ja · α)αt

∣

∣

∣

∣

varies with suitably constrained α. However, its maximum value is in fact given by ω.
For N ′ > 3, the geometric interpretation of ω is unclear. Equipped with these tools, we
next turn to how to use them to diagnose the attractiveness and slowness of a candidate
CIM.

2.3.3 Attractiveness

Loosely defined, an attractive CIM is one for which trajectories originating from points
near the CIM are brought towards the CIM by the action of f . Certainly for points on
the CIM for which all possible normal stretching rates are negative: σn,i < 0; i =
1, . . . , N ′ − 1, trajectories which originate in the near neighborhood of the CIM will
be carried towards the CIM. This important result holds for all N ′ > 1. Conversely, if
all possible normal stretching rates are positive, the CIM is not attractive. For N ′ = 1
there is no possibility of normal stretching, and the notion of an attractive manifold is
irrelevant. If N ′ = 2, there is only one normal stretching rate, and one has sufficient
information to determine attractiveness.

We next consider the interesting case where some of the σn,i may be positive and
some negative. For N ′ = 3, a CIM with one positive and one negative normal stretching
rate can still be attractive in the presence of rotation in the normal plane of sufficiently
large magnitude and a negative volumetric stretching rate. One can imagine a trajectory
originating at a point near the CIM where σn,i > 0 for some i . Such a trajectory could
be initially repelled from the CIM. However, if that trajectory is simultaneously being
rotated with sufficient rapidity through the action of non-zero Jna , one can imagine
it being rapidly rotated out of the region of positive normal stretching into a region
of negative normal stretching. If the rotation rate is sufficiently more rapid than the
positive normal stretching rate, the trajectory will be modified so that it spends more
time in regions of negative normal stretching than positive normal stretching, because
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the overall volumetric stretching rate is negative. Thus, even though a particle could
experience a small transient growth away from the CIM, it is rapidly restored by
rotation to return to the CIM. Mathematically then, if for N ′ = 3, one of the extreme
values of σn,i is positive, we take as our first ansatz that the CIM is attractive if the
ratio μ (≥ 0) is

μ ≡ ω

maxi σn,i
> 1; N ′ = 3 (20)

This plausible hypothesis will be tested in upcoming examples. Note that μ can vary
along the CIM. In practice μ � 1 may be sufficient to realize attractiveness. For μ � 1
or μ < 1, a trajectory could be carried far from the CIM. If the trajectory originates
within S, it will ultimately return to the physical sink. If it originates within S

′, there
is no guarantee of connection to the physical sink. For systems with N ′ > 3 which
have both positive and negative σn,i , it is difficult to characterize rotation, and thus
difficult to arrive at a simple criteria for attractiveness.

2.3.4 Slowness

For a given attractive CIM (ACIM), we now ask if the ACIM is also slow, rendering it
a SACIM. For the ACIM to be slow, one can insist that normal stretching be faster than
tangential stretching on the ACIM. It is the value of σn,i with the smallest magnitude
that must be compared to the tangential stretching rate. And thus we take as a second
ansatz that the criteria for a SACIM must be that the ACIM exist and possess

κ ≡ mini |σn,i |
|σt | > 1 (21)

This too will be tested in upcoming examples. Note that κ can vary along the ACIM.
Large κ � 1 will correspond to trajectories moving normally towards the SACIM,
followed by a region of high trajectory curvature, where the trajectory then aligns to
be nearly tangent to the SACIM. As κ > 1 reduces, such a trajectory will encounter
weaker curvature in its relaxation to the SACIM. For κ < 1, trajectory motion will
be towards the equilibrium point, but not strongly aligned with the ACIM. In prac-
tice κ � 1 may be sufficient for a SACIM. ACIMs with κ � 1 or κ < 1 will have
nearby trajectories whose dynamics are as slow or slower than those on the ACIM,
thus rendering such an ACIM to be of little or no value in a rational reduction. One
recognizes that any trajectory nearby an ACIM will formally coincide with the ACIM
only at the sink equilibrium. A SACIM will have nearby trajectories which are rapidly
pulled normally towards it, while an ACIM which is not a SACIM has nearby trajec-
tories which evolve nearly parallel to it. We remark that a SACIM is one which locally
attracts nearby trajectories to an arbitrarily close distance of the CIM on a time scale
which is much faster than that of the dynamics on the CIM.

2.4 Algorithmic diagnostic procedure

We summarize an algorithmic diagnostic procedure for identification of a SACIM for
a system of the form of Eq. 2 as follows:
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1. Identify all equilibria by solving Eq. 3. This requires some means to solve non-
linear algebraic equations.

2. Determine the Jacobian J from Eq. 4, along with Js and Ja from Eq. 7.
3. Evaluate J near each equilibrium to determine its local dynamical character as a

sink, saddle, source, etc.
4. Integrate from the neighborhood of all saddles within S

′ with one unstable mode
to identify any and all heteroclinic connections to the unique sink within S so as
to determine a one-dimensional CIM, zC I M , which is a candidate ACIM.

5. Determine the unit tangent αt along the CIM from Eq. 12.
6. Determine the tangential stretching rate σt along the CIM from Eq. 13.
7. Use a Gram-Schmidt procedure to identify N ′−1 unit normal vectors, thus forming

the orthonormal basis {αt ,αn,1, . . . ,αn,N ′−1}.
8. Form Qn from Eq. 16.
9. Form Jns and Jna from Eq. 18.

10. Identify the extremal values of normal stretching and their associated directions
from calculation of the eigenvalues and eigenvectors of Jns .

11. Identify ω from ||Jna || and associate it with rotation for N ′ = 3.
12. If all extremal normal stretching is negative, the CIM is an ACIM; use Eq. 21 to

determine κ to discern if and where the ACIM is a SACIM.
13. For N ′ = 3, if one extremal normal stretching is positive and the other negative,

from Eqs. 20 and 21, determine μ and κ along the CIM so as to discern if and
where the CIM is an ACIM and, moreover, a SACIM.

To concisely illustrate the system behavior, one can from Eq. 5 determine s(t)/s(0)

for several trajectories to demonstrate the attractiveness of the CIM.

3 Results

We present results for three problems relevant to combustion in this section. The first
has a simple mathematical form and shares certain features with physically derived
combustion models. It has N ′ = 3, and the magnitude of rotation will be shown to
be critical in diagnosing the manifold as a CIM, ACIM, or SACIM. The second has
a more complicated mathematical form, being derived from a physical combustion
model. However, it has the simplifying feature of N ′ = 2, in which case rotation will
be irrelevant. The third has both a physical origin as well as N ′ = 3, rendering rotation
to be of potential relevance.

3.1 Combustion-inspired model problem

Let us apply these diagnostic tools to a model problem first discussed in [3]. Consider
the system, of the form of Eq. 6, with N ′ = 3:

dz1

dt
= 1

20

(

1 − z2
1

)

(22a)

dz2

dt
= −2z2 − 35

16
z3 + 2

(

1 − z2
1

)

z3 (22b)
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dz3

dt
= z2 + z3 (22c)

The problem shares many, but not all, features with practical combustion problems.
Shared features include possession of 1) non-linearity, 2) a unique stable sink equi-
librium contained in the domain with positive zi , 3) a saddle node equilibrium with
not all positive zi , 4) a heteroclinic trajectory linking the saddle to the sink, forming a
CIM, 5) a local volumetric deformation rate which is strictly negative on the CIM as
well as throughout the domain of positive zi . In contrast with combustion systems, the
system has no clearly identified 1) additional linear constraints, so one cannot discuss
the convex polytope S, or 2) entropy-based scalar Lyapunov function.

This system has two finite roots, R1 at z = (−1, 0, 0)T and R2 at z = (1, 0, 0)T .
The Jacobian

J =

⎛

⎜

⎜

⎝

− z1

10
0 0

−4z1z3 −2 − 35

16
+ 2(1 − z2

1)

0 1 1

⎞

⎟

⎟

⎠

(23)

has eigenvalues λ = {1/10,−1/4,−3/4} at R1 and λ = {−1/10,−1/4,−3/4} at
R2. Thus, R1 is a saddle with one unstable mode, and R2 is a sink, analogous to a
physical equilibrium in a reactive system. There is a CIM defined by the heteroclinic
orbit that connects R1 to R2; by inspection, it is seen that the CIM is confined to the
z1 axis with z1 ∈ [−1, 1] and z2 = z3 = 0. The relative volumetric stretching rate is

˙ln v = tr J = −1 − z1

10
(24)

and is negative along the entire CIM, with values ranging from −9/10 at R1 monoton-
ically decreasing to −11/10 at R2. The unit tangent to the CIM is αt = (1, 0, 0)T ,
yielding a tangential stretching rate of

σt = αT
t · J · αt = (

1 0 0
)

⎛

⎜

⎜

⎝

− z1

10
0 0

−4z1z3 −2 − 35

16
+ 2(1 − z2

1)

0 1 1

⎞

⎟

⎟

⎠

⎛

⎝

1
0
0

⎞

⎠ = − z1

10

(25)

On the CIM, we thus find that σt ∼ 1/10 near R1 and σt ∼ −1/10 near the physical
equilibrium R2. On the CIM, we have

J =

⎛

⎜

⎜

⎝

− z1

10
0 0

0 − 2 − 35

16
+ 2(1 − z2

1)

0 1 1

⎞

⎟

⎟

⎠

(26)

123



J Math Chem (2015) 53:737–766 751

and

Js =

⎛

⎜

⎜

⎜

⎜

⎝

− z1

10
0 0

0 −2 −19

32
+ 1 − z2

1

0 −19

32
+ 1 − z2

1 1

⎞

⎟

⎟

⎟

⎟

⎠

(27)

Ja =

⎛

⎜

⎜

⎜

⎝

0 0 0

0 0 −51

32
+ 1 − z2

1

0
51

32
− 1 + z2

1 0

⎞

⎟

⎟

⎟

⎠

(28)

A trivial Gram-Schmidt procedure yields αn1 = (0, 1, 0)T and αn2 = (0, 0, 1)T ,
and thus

Qn =
⎛

⎝

0 0
1 0
0 1

⎞

⎠ (29)

The reduced Jacobian for the stretching in the normal plane is, from Eq. 18,

Jns =
( −2 − 19

32 + 1 − z2
1

− 19
32 + 1 − z2

1 1

)

(30)

The eigenvalues of Jns give the extremal normal stretching rates σn,i :

σn,i = −1

2
±

√

2,473 − 832z2
1 + 1,024z4

1

32
(31)

Evaluating, we find σn,1 ∼ 1 and σn,2 ∼ −2 for z1 ∈ [−1, 1]. The presence of a
positive normal stretching rate opens the possibility of divergence of a nearby trajectory
from the CIM.

The reduced Jacobian for the rotation in the normal plane is, from Eq. 18,

Jna =
(

0 − 51
32 + 1 − z2

1
51
32 − 1 + z2

1 0

)

(32)

Its magnitude, ||Jna || = ω, on the CIM ranges from 19/32 to 51/32.
We verify that this CIM does not lead to an ACIM by direct calculation. We present

the CIM and a family of trajectories which originate in the neighborhood of R1 in
Fig. 3a. The initial conditions near R1 have z1 = −0.99 and z2, z3 comprised of a

number of equally spaced points on the circle
√

z2
2 + z2

3 = ε = 2×10−16. Clearly the
trajectories remain close to the CIM at early time, but as they approach R2, they suffer
large deviations from the CIM. These large deviations are aligned with the direction
of maximal normal stretching. Ultimately rotation combined with stability brings all
trajectories to R2 as t → ∞. The large deviations from the CIM are consistent with the
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Fig. 3 Results for a simple model problem showing the heteroclinic connections and behavior of nearby
trajectories for two cases: a weak rotation, which induces a CIM, and b moderate rotation, which induces
a SACIM

fact that the ansatz for attractiveness, Eq. 20, is not met here. Calculation reveals that
the attractiveness parameter μ ∈ [0.563, 1.43]. Consequently there are regions where
the positive normal stretching is not overcome by sufficiently rapid rotation, allowing
the trajectory to suffer a large deviation from the CIM before its ultimate return to the
sink at R2. This can also be considered an effect of what is known as non-normality
[24,25], a feature of dynamical systems whose Jacobians are asymmetric such as those
that arise in reactive systems.

Positive normal stretching does not guarantee divergence from a CIM; it simply
permits it. Since trajectories spend infinite time approaching equilibria, the time spent
near a sink equilibrium in regions of negative normal stretching overwhelms the time
spent in regions of positive normal stretching, which induces the ultimate return of all
trajectories to the sink. However, any reduction algorithm which relies on projection
onto such a CIM in regions far from equilibrium would likely induce significant error
in the prediction of many state variables. Lastly, we note that nearby points to the CIM
are either normally repelled or attracted much faster than motions on the CIM because
the magnitude of each extremal σn,i is much greater than σt . In this case, we have
κ ∼ 5. We easily verify the lack of attractiveness by direct calculation of s(t)/s(0)

from Eq. 5, which for this simple CIM is

s(t)

s(0)
=

√

z2
2(t) + z2

3(t)

ε
(33)

Results are shown in Fig. 4a. It is seen that the relative deviation becomes large for
t ∼ 100, thus verifying that this CIM is not attractive.

If we make one minor change so as to increase the rotation rate, we find the CIM
becomes a SACIM, even in the presence of regions of positive normal stretching. Let
us replace Eq. 22c with

dz3

dt
= 10z2 + z3 (34)
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Fig. 4 Results for a simple model problem showing the evolution of the scaled distance from a nearby
trajectory to the CIM: a weak rotation, and b moderate rotation

The equilibria remain the same with R1: (−1, 0, 0)T and R2: (1, 0, 0)T . The dynam-
ics near each equilibrium have a slight change of character. The eigenvalues of
J near R1 are λ = {−1/2 ± i

√
314/4, 1/10}. Thus, R1 has one linearly unsta-

ble mode and two stable oscillatory modes. The eigenvalues of J near R2 are
λ = {−1/2 ± i

√
314/4,−1/10}. The presence of oscillatory modes near R2 ren-

ders this model problem less like combustion problems. Nevertheless, R2 is stable,
with two of its modes containing an oscillatory character. Therefore, a CIM again
exists as a heteroclinic connection between R1 and R2; it is confined to the z1 axis,
with z1 ∈ [−1, 1]. The relative volumetric stretching rate is unchanged and strictly

negative on the CIM, ˙ln v = −1 − z1/10. The tangential stretching rate on the CIM is
unchanged and is σt = −z1/10. The Gram-Schmidt orthogonalization is identical as
well. The change induces enhanced rotation with ω ranging from 163/32 to 195/32.
Evaluation of Jns leads to normal stretching rates which are weakly varying functions
of z1 with extrema σn,1 ∼ 4 and σn,2 ∼ −5.

Direct calculation reveals that this modest enhancement in rotation rate is sufficient
to render the CIM to be an ACIM. The ACIM is seen to be a SACIM, verifying our
second ansatz, Eq. 21, as κ has a minimum value of 36.84, well above unity. We present
the SACIM and a family of trajectories which originate in the near neighborhood of
R1 in Fig. 3b. The initial conditions near R1 have z1 = −0.99 and z2, z3 comprised

of a number of equally spaced points on the circle
√

z2
2 + z2

3 = ε = 1 × 10−1. These
were chosen further from R1 so as to illustrate their fast attraction to the SACIM.
In spite of positive normal stretching, the rotation is sufficiently fast to keep nearby
trajectories close to the SACIM. Calculation reveals that the range of the attractiveness
parameter on the SACIM is μ ∈ [1.10, 1.65]. While modest, it is sufficiently large to
keep the trajectories from diverging. This is verified by direct calculation of s(t)/s(0)

with results shown in Fig. 4b. The oscillations are attributed to the trajectory rotating
in and out of regions of positive and negative σn,i .

3.2 Zel’dovich mechanism

We next consider a physically motivated problem from reaction dynamics with N ′ = 2.
The Zel’dovich reaction mechanism of nitric oxide formation is adopted as used in
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Table 1 Zel’dovich mechanism of nitric oxide formation [22]

j Reaction A j

(

cm3/
[

mol s Kβ j
)]

β j E j (cal/mol)

1 N + O2 � NO + O 5.841 × 109 1.01 6, 195.6

2 N + NO � N2 + O 21.077 × 1012 0.00 0.0

Sec. IV-A of [22], where more complete details of both the model and some of the
analysis can be found; additional This mechanism consists of N = 5 species, L = 2
elements, and J = 2 reversible reactions. The kinetic data are given in Table 1.

The dependent variables are the specific moles zi , where i = {1, 2, 3, 4, 5} cor-
responds to the species {NO, N, O, O2, N2}, respectively. The system is taken to
be isothermal and isochoric. The mixture temperature and volume are assigned as
T = 4,000 K and V = 103 cm3, respectively.

One can form five inhomogeneous ODEs to describe the time-evolution of the five
chemical species, and one must specify an initial value for each species. At this stage,
we take each of the five species to have a presence of 10−3 mol, though we will relax
this later. As the molecular masses Mi are known to be

Mi = {30.0061, 14.0067, 15.9994, 31.9988, 28.0134} g

mol
(35)

the constant mixture mass is m = ∑5
i=1 Mi ni = 0.120024 g, and the constant mass

density is ρ = m/V = 1.20024 × 10−4 g/cm3. The initial values are

zi (0) = ni (0)

m
= 0.00833164

mol

g
, i = 1, . . . , 5 (36)

Linear combinations of three of the ODEs can be formulated into three homoge-
neous ODEs, which can be integrated to form three algebraic constraints, using the
initial conditions to evaluate the integration constants. Two of these constraints are due
to the conservation of the elements N and O. The third is a consequence of having only
bimolecular reactions, rendering the total number of moles to be time-independent.
The three constraints are

z1 + z3 + 2z4 = 0.0333266
mol

g
(37)

z1 + z2 + 2z5 = 0.0333266
mol

g
(38)

z1 + z2 + z3 + z4 + z5 = 0.0416582
mol

g
(39)

We use these constraints to eliminate the explicit dependency of {O, O2, N2} in the
evolution equations for {NO, N}. Thus, we have N ′ = 2, and the system’s dynamics
can be fully described in the R

2 reactive composition space, though the number of
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species is 5. Because N ′ = 2, ω = 0, and rotation will not play a role in the system’s
dynamics.

The two ODEs that describe the system’s evolution are

dz1

dt
= 2.505452137 × 102 + 1.161477203 × 107z2 + 6.988326812 × 108z2

2

− 9.976388597 × 104z1 − 3.222205877 × 109z2z1 (40)
dz2

dt
= 2.505452137 × 102 − 1.165987934 × 107z2 − 6.979303516 × 108z2

2

+ 8.472811649 × 104z1 − 1.836514615 × 109z2z1 (41)

While we can certainly apply the initial conditions of Eq. 36, we relax these and actually
choose a broader range of initial conditions for z1 and z2, all the while maintaining
the constraints of Eqs. 37–39. This complete system, Eqs. 37–41, is identical to the
one given in [22], though we include more significant digits here so that equilibria
and eigenvalues can be easily independently verified. Lastly, we note that in [22],
there is a small ambiguity in the definition of zi which does not affect the results or
conclusions of [22]. There, two conflicting definitions for zi were presented. The one
used in calculations in [22] as well as here is Eq. 1.

Equations 37–41 have six real isolated equilibria: three located within the finite
domain, and three located at infinity. The ones located within the finite domain are:

R1 ≡ (

ze) =
(

−1.78 × 10−5,−1.67 × 10−2
) mol

g

R2 ≡ (

ze) =
(

−4.20 × 10−3,−2.66 × 10−5
) mol

g

R3 ≡ (

ze) =
(

3.05 × 10−3, 2.94 × 10−5
) mol

g

Here, R1 and R2 are non-physical equilibria, while R3 is a physical root that corre-
sponds to the reactive system’s unique physical equilibrium. Linear analysis within
the neighborhood of each finite critical point reveals that R3 is a sink, R1 is a source,
and R2 is a saddle. The eigenvalue spectrum associated with each finite critical point
is

R1: (λ) =
(

4.18 × 107, 2.35 × 107
)

s−1

R2: (λ) =
(

−4.64 × 106, 7.11 × 105
)

s−1

R3: (λ) =
(

−1.73 × 107,−1.91 × 105
)

s−1

The system’s temporal stiffness, defined as the ratio between the largest (slowest) and
the smallest (fastest) time scales at the physical equilibrium point, is 90.58.

The three equilibria located at infinity are identified using the projective space
technique described in [22]. The Zel’dovich system in the projective space is realized
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by the following transformation: Z1 = 1/z1, Z2 = z2/z1. The equilibria are:

I1 ≡ (

Ze) = (0, 0)

I2 ≡ (

Ze) = (0, 1.01)

I3 ≡ (

Ze) = (0, 2.60)

Analysis within the neighborhood of each critical point reveals that I2 is a source, I3
is a saddle, and I1 is a saddle-node. Note that I1 is a non-hyperbolic critical point, so
the Hartman–Grobman theorem is not applicable. Instead the normal form theory is
utilized to find that I1 is a saddle-node, which consists of two hyperbolic sectors, one
parabolic sector, and three separatrices. Only one of these separatrices is unstable.

The eigenvalue spectrum associated with each finite critical point is

I1: (λ) =
(

−1.84 × 109, 0
) g

mol s2

I2: (λ) =
(

2.54 × 109, 1.12 × 109
) g

mol s2

I3: (λ) =
(

3.65 × 109,−2.90 × 109
) g

mol s2

Following the procedure presented in [22], the system’s three saddles are the candi-
date points, and they are categorized based on their location. The first category contains
the finite candidate point, and the second one contains the candidate points located
at infinity ordered based on the magnitude of their positive eigenvalue. Within each
category the first candidate point is the one with the least positive eigenvalue among
the candidate points. So, the first candidate point is R2, the second one is I1, and the
last one is I3. Then, two canonical invariant manifolds (CIMs), i.e. heteroclinic orbits,
are generated from the first two candidates via integrating the dynamical system start-
ing from R2 and I1 in the direction of the eigenvectors associated with the candidate
points’ positive eigenvalues pointing towards the reactive system’s physical equilib-
rium, R3. The generated two CIMs presented in Fig. 5 are connected with R3 along
its slowest mode. The attractiveness of these two CIMs is clearly shown in Fig. 5;
they are attracting all the trajectories inside the physically accessible domain. These
results are identical to the ones presented in [22]. The species evolution along the two
CIMs is presented in Fig. 6, where in Fig. 6b the species evolution is illustrated in the
original reactive composition space by mapping back the obtained results in the pro-
jective space via employing the following transformation: z1 = 1/Z1, z2 = Z2/Z1.
All species have zi > 0 within ∂S. Moreover, both approach the same equilibrium R3,
though that is difficult to discern in Fig. 6 due to the scaling.

To investigate the attractiveness and slowness of the two constructed CIMs,
stretching-based diagnostics are employed locally along the CIMs. The local relative
volumetric deformation rate of the systems along both CIMs is presented in Fig. 7.
The relative volumetric deformation rates are negative. The tangential stretching rates
along the two CIMs are presented in Fig. 8. Along R2 to R3, σt is initially positive, but
then becomes negative as it approaches the physical equilibrium. Along I1 to R3, σt is
always negative. Figure 9 gives the single normal stretching rate and shows that both
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Fig. 5 The two CIMs for the Zel’dovich system illustrated as thick lines. The solid dots are finite critical
points, and the circles are critical points located at infinity; R3 represents the system’s physical equilibrium
state, R2 represents starting point of the first CIM, and I1 represents the starting point of the second CIM.
The dashed simplex represents the boundary ∂S of the physical domain, and the thin green lines illustrate
several trajectories with the arrows indicating motion for increasing t (Color figure online)
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Fig. 6 The time evolution of species along the a R2 → R3 and b I1 → R3 CIMs for the Zel’dovich
system

CIMs, R2 → R3 and I1 → R3 are attractive because σn along the CIMs is always
negative. Thus, the two constructed CIMs are ACIMs. For this N ′ = 2 system, rotation
is irrelevant. Figure 10 confirms our second ansatz and shows that the dynamics on
the two ACIMs are slow, because κ along the two ACIMs is greater than unity. This
indicates that the motion on the two ACIMs is slower than the motion onto the ACIMs.
So, these two ACIMs are SACIMs. One must recognize that we have only studied a
single case and that it is possible that other conditions exist for which the CIMs are
not SACIMs.

3.3 Hydrogen–air combustion

We next consider a more complicated system with N ′ = 3 for which rotation could
be relevant. We examine the physically motivated combustion problem given first by
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Fig. 7 The relative volumetric deformation rate along the a R2 → R3 and b I1 → R3 CIMs for the
Zel’dovich system
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Fig. 8 The tangential stretching rate along the a R2 → R3, b I1 → R3 CIMs for the Zel’dovich system.
The red color indicates negative value and the black color indicates positive value; the spike indicates
switching signs (Color figure online)
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Fig. 9 The normal stretching rate along the a R2 → R3, b I1 → R3 CIMs for the Zel’dovich system

[23] and later studied by [22], each of whom provide more extensive details. The
reaction mechanism contains N = 6 species, L = 3 elements, and J = 6 reversible
reactions; see Table 2. The dependent variables are the specific moles zi = ni/m, i =
{1, 2, 3, 4, 5, 6} and correspond to the species {H2, O, H2O, H, OH, N2}, respectively.
As is standard in reaction dynamics, M represents a generic third body. The system
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Fig. 10 The ratio of the normal and tangential stretching rates along the a R2 → R3, b I1 → R3 CIMs
for the Zel’dovich system

Table 2 Simplified hydrogen–air mechanism of [23]

j Reaction A j

[

cm3/
(

mol s Kβj
)]

β j E j (cal/mol)

1 O + H2 � H + OH 5.08 × 104 2.7 6,290.0

2 H2 + OH � H2O + H 2.16 × 108 1.5 3,430.0

3 O + H2O � 2OH 2.97 × 106 2.0 13,400.0

4 H2 + M � 2H + M 4.58 × 1019 −1.4 104,380.0

5 O + H + M � OH + M 4.71 × 1018 −1.0 0.0

6 H + OH + M � H2O + M 3.80 × 1022 −2.0 0.0

The non-unity third body collision efficiency coefficients are: α j,H2 = 2.5, α j,H2O = 12, j = 4, 5, 6.

under consideration is isothermal and isobaric. The mixture temperature and pressure
are T = 3,000 K and p = 1 atm, respectively.

One can form N = 6 ODEs to describe the time-evolution of the six species, and one
must specify an initial value for each species. Because of element conservation, three
of the ODEs have first integrals, yielding three algebraic constraints and three ODEs.
Because reactions 4–6 do not conserve molecules, there is no constraint associated
with the number of molecules. The three ODEs that describe the system’s temporal
evolution are of the form of Eq. 2 with N ′ = N − L = 3. Because they are lengthy,
they are not given here. Thus, the dynamics are fully described by evolution equations
for {H2, O, H2O}, and the rest of the species, {H, OH, N2}, are given by the L = 3
linear constraints:

2z1 + 2z3 + z4 + z5 = 1.234 × 10−2 mol

g
(42)

z2 + z3 + z5 = 4.11 × 10−3 mol

g
(43)

2z6 = 6.581 × 10−2 mol

g
(44)
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which are identical to those given in [22,23]. These are easily solved to give z4 and
z5 as functions of z1, z2, and z3. Because N2 is modeled as inert, z6 remains constant.
As for the Zel’dovich system, we actually study a variety of initial conditions for z1,
z2, and z3, all the while maintaining the constraints of Eqs. 42–44.

As discussed in [22], the system has fifteen equilibrium points located within the
finite domain; eight of them are complex, and seven are real. The real ones are

R1 ≡ (

ze) =
(

−1.67204 × 10−1, 3.03617 × 10−3, 3.53209 × 10−3
) mol

g

R2 ≡ (

ze) =
(

6.44204 × 10−2, 1.20566 × 10−2,−7.12337 × 10−3
) mol

g

R3 ≡ (

ze) =
(

−6.47244 × 10−3,−2.00868 × 10−2,−2.19220 × 10−3
) mol

g

R4 ≡ (

ze) =
(

1.97888 × 10−3, 5.03888 × 10−3, 9.41881 × 10−3
) mol

g

R5 ≡ (

ze) =
(

−1.21290 × 10−3,−4.44837 × 10−3, 5.03482 × 10−3
) mol

g

R6 ≡ (

ze) =
(

2.72293 × 10−3, 3.34454 × 10−4, 4.71857 × 10−3
) mol

g

R7 ≡ (

ze) =
(

2.02552 × 10−3, 3.10118 × 10−4, 3.06770 × 10−3
) mol

g

Note that R4 and R6 are in S
′ because other species specific mole numbers obtained

from the linear constraints are negative. Thus, R7 is the unique physical equilibrium
in S, as indicated in Fig. 11, where the dashed simplex outlines the convex polytope
forming ∂S. Also, the system has two higher dimensional equilibria located at infinity.
One is one-dimensional and the other two-dimensional.

Linear analysis in the neighborhood of each real, finite critical point reveals that R3
and R7 are sinks, and R1, R2, R4, R5, and R6 are saddles. The eigenvalue spectrum
associated with each finite critical point is

R1: (λ) =
(

2.92 × 103,−6.67 × 106 ± i1.00 × 108
)

s−1

R2: (λ) =
(

1.84 × 1014,−1.27 × 1012,−1.70 × 1014
)

s−1

R3: (λ) =
(

−1.03 × 105,−2.97 × 107 ± i2.64 × 107
)

s−1

R4: (λ) =
(

1.62 × 107, 8.94 × 106,−4.65 × 104
)

s−1

R5: (λ) =
(

3.22 × 104,−2.13 × 106 ± i6.71 × 106
)

s−1

R6: (λ) =
(

1.57 × 104,−6.28 × 106 ± i4.37 × 106
)

s−1

R7: (λ) =
(

−5.59 × 103,−9.08 × 106,−1.77 × 107
)

s−1
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Fig. 11 Two CIMs, R1 → R7 and R6 → R7, for the simple hydrogen–air reactive system illustrated as
thick lines. The solid dots are finite critical points; R7 represents the system’s physical equilibrium state,
R1 represents starting point of the first CIM, and R6 represents the starting point of the second CIM. The
dashed simplex outlines the convex polytope defining ∂S, and the thin lines illustrate several trajectories.
The variables z1, z2, and z3 are associated with H2, O, and H2 O , respectively

Using our earlier definition, the system’s temporal stiffness is 3166. Out of the seven
real finite zero-dimensional equilibria, there is one sink, R7, located in S, one sink,
R3, located in S

′, and four saddles with one unstable mode: R1, R2, R5, and R6, all in
S

′. The root R4 has two unstable modes.
Following the procedure presented in [22], these four saddles are candidate points

for the one-dimensional CIM, and they are ordered based on the magnitude of their
positive eigenvalue; the first candidate point is the one with the least positive eigenvalue
among all candidate points. So, the first candidate point is R1, the second one is R6,
the third one is R5, and the last one is R2. Then, two CIMs are generated from the first
two candidates via integrating the dynamical system starting from R1 and R6 in the
direction of the eigenvectors associated with the candidate points’ positive eigenvalues
pointing towards the reactive system’s physical equilibrium, R7. These two CIMs,
presented in Fig. 11, connect with R7 along its slowest mode. The attractiveness of
these two CIMs is shown in Fig. 11; they are attractive to other trajectories within
the physically accessible domain, S. The species evolution along the two CIMs is
presented in Fig. 12. The other two candidate points, R5 and R2, generate another two
CIMs that connect with the unphysical sink R3 as depicted in Fig. 13.

To quantify the attractiveness and slowness of the physically relevant CIMs,
R1 → R7 and R6 → R7, stretching-based diagnostics are employed locally along the
CIMs. The local relative volumetric deformation rate of the systems is presented in
Fig. 14. The relative volumetric deformation rates are negative. The local rotation and
tangential stretching rates along the two CIMs are presented in Figs. 15 and 16, respec-
tively. The tangential stretching rates undergo sign changes, indicated by a change in
color in Fig. 16.

Figure 17 shows that the R1 → R7 CIM may not be attractive because one of
the extremal normal stretching rates σn,i along the CIM is positive. However, Fig. 18
indicates that the repulsion is overcome by the local rotation rate along the R1 → R7
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Fig. 12 The time evolution of species along the a R1 → R7 and b R6 → R7 CIMs for the simple
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00.05

0

0.02 z
2 (mol/g)

-0.15-0.05 -0.1

0

-0.15

-0.05

-0.1

-0.04

0.02

-0.06
R1

R7R5

R2
R6 R4

R3

z1 (mol/g)

z 3
(m

ol
/g

)

Fig. 13 Phase space for simple hydrogen–air dynamics. The black dots are the dynamical system’s sinks,
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represents the two CIMs that connect R1 and R6 with the physical sink R7, and the gold line illustrates the
two CIMs that connect R5 and R2 with the unphysical sink R3 (Color figure online)
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Fig. 14 The relative volumetric deformation rate along the a R1 → R7 and b R6 → R7 CIMs for the
simple hydrogen–air system

123



J Math Chem (2015) 53:737–766 763

0 2 4 6 8 10

t (s) t (s) ×10 -3

106

108

107

ω
 (

1/
s)

ω
 (

1/
s)

(a)

4

6

2

×10 6

0 1 2
×10 -3

3

(b)

Fig. 15 The local rotation rates along the a R1 → R7 and b R6 → R7 CIMs for the simple hydrogen–air
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Fig. 16 The tangential stretching rates along the a R1 → R7 and b R6 → R7 CIMs for the simple
hydrogen–air system. The red color indicates negative value and the black color indicates positive value;
the spike indicates switching signs (Color figure online)

CIM, because μ along the R1 → R7 CIM is greater than unity in the section of
the CIM where repulsion exists; the rotation is sufficiently fast to prevent any tra-
jectories from diverging from the CIM. Indeed at late time μ < 1; however, simul-
taneously all σn,i < 0, rendering the rotation irrelevant at late time. Thus, the two
CIMs are ACIMs. This is confirmed by plotting several trajectories originating near
both CIMs, where the results are presented in Fig. 19. It is shown that both CIMs are
attractive. The rotational effect has a major influence along the R1 → R7 CIM, sup-
pressing the effect of positive normal stretching. For the R6 → R7 CIM, the rotation
is weak; however, the normal stretching is strictly negative, thus rendering the CIM
attractive.

Figure 20 indicates that the dynamics on the constructed two ACIMs are slow,
because κ along the two ACIMs is greater than unity. This suggests that the motion
on the two ACIMs is slower than the motion onto the two ACIMs; i.e. these
two ACIMs are SACIMs. Finally, in Fig. 21, we show the physically relevant
SACIMs as they evolve in both the physical S and non-physical S

′. The SACIMs
here are colored by the magnitude of the relative slowness κ . Clearly within S

where κ ∼ 103, the one-dimensional manifold captures the slow dynamics of the
system.
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Fig. 17 The normal stretching rates along the a R1 → R7 and b R6 → R7 CIMs for the simple hydrogen–
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Fig. 19 Illustration exhibiting
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Fig. 21 The SACIMs for the simple hydrogen–oxygen system are colored based on the relative slowness κ .
The solid dots are finite critical points; R7 represents the system’s physical equilibrium state, R1 and R6
represent the starting points of the SACIMs, and the dashed simplex represents the physical domain (Color
figure online)

4 Conclusions

Diagnostic techniques based on local linearization near a manifold are seen to have
value in answering the question posed by Lorenz [10]: “the slow manifold–what is it?”
More particularly, these diagnostic tools can be applied to any candidate manifold,
including a CIM, and answer whether or not the manifold is both slow and attractive
in the neighborhood of the CIM. A related question which is as important in prac-
tical applications—the slow manifold–where is it?–remains unanswered. The CIM
identified by heteroclinic connection of saddle and sink equilibria is clearly a viable
candidate, but we have shown by example with a simplified three-dimensional model
problem that even for a CIM on which a local volume element is shrinking, the rota-
tion of that same element may not be sufficiently rapid to overcome localized growth
away from the CIM. Thus, any reduction algorithm which relies on projection onto
such a CIM in regions far from equilibrium would likely induce significant error in
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the prediction of many state variables. For two problems, each built on an actual com-
bustion model, we in fact identified SACIMs. It remains to be seen whether all such
CIMs are SACIMs. In the absence of a constructive method guaranteed to identify a
SACIM, it is should be considered that any manifold intended for use in a combustion
chemistry problem be subjected to diagnostics based on local linearization over the
span of expected conditions. It is recognized that this would be a daunting task for
practical combustion problems. In addition, the tools developed here based on local
analysis near the CIM cannot speak to the global stability of the CIM, which remains
an even more challenging problem.
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