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The Dynamics of Unsteady Detonation in Ozone
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An ultra-fine, sub-micron discrete grid is used to capture the unsteady dynamics of

a one-dimensional detonation in an inviscid O − O2 − O3 mixture. The ultra-fine grid is

necessary to capture the length scales revealed by a complementary analysis of the steady

detonation wave structure. For the unsteady calculations, shock-fitting coupled with a high

order spatio-temporal discretization scheme combine to render numerical corruption neg-

ligible. As a result, mathematically verified solutions for a mixture initially of all O3 at one

atmosphere and 298.15 K have been obtained; the solutions are converging at a rate much

faster than the sub-first order convergence rate of all shock-capturing schemes. Addition-

ally, the model has been validated against limited experimental data. Transient calculations

show that strongly overdriven waves are stable and moderately overdriven waves unstable.

New limit cycle behavior is revealed, and the first high resolution bifurcation diagram for

detonation with detailed kinetics is found.

I. Introduction

W
e significantly extend calculations of unsteady detonation in ozone mixtures first reported by the
authors1 to capture long time limit cycle behavior and bifurcation phenomena. Much of the discussion

of the original work is repeated for completeness; the calculations and results are new for the present
study. Recently, a shock-fitting method2 coupled with a high order spatial discretization3 was used to
fully capture the unsteady dynamics of an inviscid one-dimensional detonation for the case of pulsating
detonations which obey simple one step kinetics.2 The high accuracy of the method enabled the prediction
of a rich set of bifurcation phenomena, including a transition to chaos at a rate consistent with the geometric
progression characterized by Feigenbaum’s constant. Formal grid convergence studies revealed that the error
was converging at a rate approaching the fifth order error of the spatio-temporal discretization employed.
The key to obtaining such results was the use of a shock-fitting technique so as to avoid the corrupting
influences of common shock-capturing methods. Convergence rates for shock-capturing methods are at or
below first order, even if nominally high order methods are used in smooth regions of the flow.3

Here, we extend this approach by using a more realistic detailed kinetics model, which introduces ad-
ditional length scales, relative to the one-step model. With an analysis of spatial eigenvalues, Powers and
Paolucci4 have shown for inviscid hydrogen-air detonations that the length scales for steady Chapman-
Jouguet (CJ) detonations can span over five orders of magnitude: near equilibrium, the smallest length
scale is ∼ 10−5 cm and the largest is ∼ 100 cm; away from equilibrium, the breadth can be larger. Resolving
this wide range of scales, necessary for a mathematically verified and scientifically repeatable calculation,
poses a daunting challenge. Adaptive methods5, 6 can be used effectively when extended to the viscous
regime, but for inviscid flows, there remain fundamental difficulties in formally adapting a grid to a shock
discontinuity.

The fine reaction scales can be attributed to the fact that constitutive laws for detailed kinetics models are
a manifestation of an averaged representation of a molecular collision model in which the fundamental length
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scale is the mean free path.7, 8 This suggests that collision-based mass, momentum, and energy diffusion,
which has a role at such fine scales, should be modeled as well. However, we choose here to defer such
calculations to the future, and in this paper introduce only resolved detailed kinetics coupled with advective
transport. Certainly, there is an extensive literature (cf. Fedkiw, et al.,9 Oran, et al.,10 Hu, et al.,11 Wang,
et al.,12 Walter and da Silva,13 He and Karagozian,14 or Tsuboi, et al.15) which makes the same inviscid
assumption. Notably, Tsuboi, et al., in their recent calculations that required significant super-computer
resources, employ grids sizes near 10−4 cm for their three-dimensional unsteady calculations of detonations
in hydrogen-air, and report strong sensitivity of wave dynamics to the fineness of the grid. Consequently, we
believe assessment of the common inviscid approach, stripped here from the method-dependent distortions of
numerical diffusion, is a useful exercise, even if one ultimately wants to consider models with more physical
richness.

In this paper, we consider an ozone-based mixture, O−O2−O3, in which, relative to hydrogen-air, there
are fewer reactions, and the range of length scales is smaller (∼ 105 for hydrogen-air, ∼ 103 for ozone).
This reduction of the number of reactions, and more importantly, the range of scales, enables the resolved
computation to be completed in a reasonable time. Kinetics for this system are well characterized,16–18 and
limited experimental data for ozone detonation are available.19 We give a brief synopsis of the mathematical
model and computational method. This is followed by a validation of the model by comparison of the
predictions of steady state detonation waves with experimental data. We then perform unsteady simulations
at a variety of overdrives. Strong overdrive yields a stable solution which converges to the independent
predictions of the steady wave model. As overdrive is weakened, the steady solution loses its stability, and
the solution undergoes a bifurcation process in which the long term behavior is described by non-linear limit
cycles. This bifurcation process is qualitatively similar to that predicted from one-step kinetics models.2 We
close with brief conclusions.

II. Mathematical Model

The governing equations are the one-dimensional reacting Euler equations for a mixture of calorically
imperfect ideal gases which react via mass action kinetics. They are of the form

∂qi

∂t
+

∂fi(qj)

∂x
= gi(qj), (1)

where Eq. (1) represents the conservation of mass, linear momentum, and energy, as well as the evolution
of molecular species. These are supplemented by a standard set of constitutive equations to complete the
system. Full details of the model equations have been previously published.4 Here qi is a vector of state
variables, fi is a flux of the state variables, and gi is a reaction source, also a function of the state variables.
Time is t, and x is the distance coordinate. Equation (1) is valid in smooth regions of the flow, and represents
a set of hyperbolic partial differential equations. The set admits discontinuities propagating at speed D.
Equation (1) is not valid across such a discontinuity and must be supplemented by a set of Rankine-Hugoniot
jump conditions, which take the form

D(t) =
fi

s
− fi

o

qi
s − qi

o
, (2)

where D is the time-dependent shock speed, s denotes the shocked state, and o the unshocked state.
We employ a three step, three species (O, O2, O3) model. The reaction mechanism is that of Hirschfelder,

et al.16 as used later by Margolis17 and Singh, et al.,18 each of whom provide numerical values of rate
constants.

O3 + M ⇆ O2 + O + M, (3)

O + O3 ⇆ 2O2, (4)

O2 + M ⇆ 2O + M. (5)

Here M represents an inert third body, taken to have a collision efficiency of unity.

III. Computational Method

For spatially dependent steady wave calculations, a double precision FORTRAN-77 code has been developed
and linked with the International Mathematical and Statistical Libraries (IMSL) routines DFDJAC for Jacobian
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evaluation, DEVLRG for eigenvalue estimation, a double precision version of the public domain edition of the
CHEMKIN package20, 21 to obtain kinetic rates and thermodynamics properties, and the standard LSODE

22

solver to yield highly accurate solutions to the governing ordinary differential equations. Typical run times
on a Linux-based desktop computer were ten seconds.

For transient calculations, the shock-fitting strategy of Henrick et al.2 has been adapted to allow for
an arbitrary number of chemical species as well as general equations of state, suitable to interface with the
CHEMKIN package. The underlying numerical scheme is a method of lines with fifth order upwind-central
spatial and fifth order Runge-Kutta temporal discretization. Special one-sided differences were utilized near
the shock, as well as a shock state being enforced as a boundary condition. Typical run times on Macintosh
desktop computer were two hours.

IV. Results

Here, we report a series calculations for ozone detonations with an initial mass fraction composition of
YO3

= 1, YO2
= 0, YO = 0 at 298.15 K and 1.01325× 106 dyne/cm2.

IV.A. Validation for steady near-CJ wave

For such a system, Streng, et al.19 report an observed CJ velocity of 1.863×105
±2×103 cm/s. From equi-

librium thermochemistry using no kinetics, they calculated a equilibrium temperature, equilibrium pressure,
and detonation wave speed of 3340 K, 3.1188× 107 dyne/cm2, and 1.878× 105 cm/s, respectively.

Using the method of Powers and Paolucci,4 for steady waves, one can employ conservation of mass,
momentum, energy, atomic elements to reduce the system to two ordinary differential equations. These
are solved from the shock state to the equilibrium end state. This results in an equilibrium temperature,
equilibrium pressure, and detonation wave speed of 3571.4 K, 3.4111 × 107 dyne/cm2, and 1.936555 ×

105 cm/s, respectively. We denote this detonation speed to be Dmin. Our mixture required a detonation
velocity slightly above the CJ velocity, so as to avoid sonic singularities within the reaction zone. This slight
overdrive, as well as uncertainties in the equations of state used in the study of Streng, et al. likely explain
the small discrepancies.

IV.B. Stable Strongly Overdriven

We next consider a strongly overdriven case in which the overdrive is such that the steady detonation speed
is Do = 2.5 × 105 cm/s.

IV.B.1. Steady Structure

Again with the method of Powers and Paolucci,4 the spatial distribution of dependent variables can be
calculated; additionally, the spatial eigenvalues of the local Jacobian matrix can be found, and local length
scales predicted. Because the system can be reduced to two coupled ordinary differential equations, there
are two fundamental length scales in play. These length scales are attributable to the combined effects of
advection and reaction. The length scale analysis reveals that in the near post-shock zone of the detonation,
the fine and coarse scales are 6.4 × 10−8 and 2.7 × 10−7 cm, respectively. Near equilibrium, the fine and
coarse scales are 2.9 × 10−7 and 5.8 × 10−4 cm, respectively. Figure 1 shows a plot of the evolution of the
magnitudes of the resulting two length scales of the system. The two length scales coincide near x = 10−6 cm.
This is due to the spatial eigenvalues becoming complex conjugate pairs, with equal real parts, in this thin
zone. The length scales here were based on the real part of the eigenvalues only. One could easily adjust the
figure in this zone to include the length scale of oscillation, manifested in the imaginary component of the
eigenvalue; this would have limited value.

In the zone extremely near the shock, x < 10−8 cm, the continuum model predicts power law growth
of the O and O2 species mass fraction, as seen in Figure 2. This growth modulates at the beginning of the
induction zone, near x = 5 × 10−8 cm, which correlates well with the finest length scale in this region. The
induction zone terminates near x = 1.8× 10−7 cm. At this point, vigorous reaction commences. The system
first relaxes to a partial equilibrium at x = 4 × 10−6 cm, stays on a plateau for a few decades, and relaxes
to final equilibrium near x = 10−3 cm. The global length scale is well estimated by the longest length scale
predicted by the spatial eigenvalue analysis.
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Plots of temperature and pressure versus distance are shown in Figures 3 and 4, respectively. Here the
two disparate length scales are most clearly manifested in the initial relaxation process commencing near
x = 10−7 cm and the final relaxation commencing near x = 10−4 cm. It appears that the main temperature
rise around x = 10−7 cm is attributable to O3 converting to O2 over the short length scale. All species
then are in a partial equilibrium over several decades of length until a final, smaller temperature drop occurs
around x = 10−4 cm, which close examination reveals may be due to O3 and O coming into final equilibrium.
The final temperature and pressure are 4285.8 K and 9.2554× 107 dyne/cm2, respectively.

It is lastly noted that in all plots for clarity, we give predictions, formally admitted by the continuum
model, down to length scales slightly below 10−9 cm. Of course, the continuum model is only physically
valid down to length scales at or above the mean free path scale, which for this system can be roughly
estimated to be ∼ 10−7 cm. This correlates well with the finest length scale prediction from the spatial
eigenvalue analysis. One can argue, with some justification, that at such fine length scales, one should
account for physical diffusive transport. Here, we simply note that there is a long history of solving reactive
Euler equations with detailed kinetics, and that there is value in seeing what such models predict when the
distortion of numerical diffusion is rendered small by use of fine grids.

IV.B.2. Transient Behavior

Performing time-dependent shock-fitted computations on this strongly overdriven detonation reveals that the
one-dimensional detonation is stable. The calculation was initialized with the highly resolved steady solution
of the previous section. Figure 5 shows the computed detonation velocity D versus time for three spatial
resolutions. For this stable case, the steady solution is the exact solution for all time; any differences between
the steady solution and that obtained with the transient code are consequences of the slightly coarser (but
still ultra-fine) grid used in the transient calculation. This can also serve as a test problem for verification of
the numerical scheme. It is demonstrated in Figure 5 that under resolution, the solution tends towards the
exact solution of D(t) = 2.5 × 105 cm/s. Furthermore, the solution is very accurate; relative percent errors
in the detonation velocity at t = 10−9 s are, from lowest to highest resolution, 0.44%, 0.1% and 0.012%. The
grids employed had spatial resolutions of ∆x = 1 × 10−7, 5 × 10−8, and 2.5 × 10−8 cm, with corresponding
number of grid points of 1 × 104, 2 × 104, and 4 × 104. The domain length was 10−3 cm. Although these
errors are diminishing superlinearly, the point of asymptotic convergence in error has yet to be reached.

IV.C. Unstable Moderately Overdriven

New calculation reveals the neutral stability boundary to be Do = 2.4125 × 105 cm/s ± 12.5 × 102 cm/s.
See Figure 6 for the time dependent detonation velocity for three different initial overdrives. For Do =
2.45×105 cm/s and Do = 2.5×105 cm/s, the detonation structure is stable, while for Do = 2.4×105 cm/s,
the structure is unstable. For detonations with overdrives corresponding to 2.1 × 105 cm/s < Do < 2.45 ×

105 cm/s, pulsating detonations are observed at times long compared to the pulsation frequency. See Figure
7 for the late time behavior of D for an initial overdrive corresponding to Do = 2.4 × 105 cm/s. As the
initial overdrive is lowered, one observes greater peaks in the transient shock pulsations. When lowered to
an initial overdrive of Do = 2.1 × 105 cm/s, one observes a period doubling-like bifurcation, where every
second peak seems to be significantly higher than the previous. See Figure 8.

One can track these relative maxima in D, Dmax, after the initial transients have passed. Figure 9
shows Dmax scaled by the initial overdriven detonation speed, D0, versus the quantity Dmin/D0. Note that
Dmax/D0 = 1 for a linearly stable case, and Dmin/D0 is inversely proportional to the overdrive.

For initial overdrives corresponding to Do < 2.1 × 105 cm/s, the oscillation amplitude is of sufficient
strength (T > 6000 K) to cause the curve fits used for thermodynamic properties to be outside their realm
of validity, at least with resolutions down to 5×10−8cm. As was previously demonstrated,1 there is a severe
disparity in scales within realistic gaseous detonation reaction zones. For the present ozone model, the
disparity in length scales is O(104). Thus, one needs 104

−106 computational spatial cells and 105
−107 time

integration steps, or equivalently 109
− 1013 computational cell updates. These simulations, on a modern

single processor, will take O(hour)-O(year). In dimensional terms, these detonations oscillate with a period
of 1.3× 10−10 s at a wavelength of 3.2× 10−5 cm. Simple calculation shows these scales are above the scales
of molecular collisions and in the continuum regime for this mixture. Nevertheless, the fineness of these
continuum length and time scales present a serious challenge for computational modeling, and demand a
resolution far finer than that which is commonly used.
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V. Conclusions

It has been demonstrated that mathematically verified unsteady detonation dynamics can be predicted
when sub-micron structures, admitted by continuum detailed kinetics models, are captured with ultra-fine
grids. Furthermore, shock-fitting coupled with high order spatio-temporal discretization assures negligible
numerical corruption of solutions to the underlying partial differential equations. Predicted detonation
dynamics for the detailed kinetics of ozone are qualitatively similar to previously studied one-step models;2

notably a similar bifurcation pattern for long time limit cycle amplitudes is predicted. It is also noted that
at these fine length scales, which are comparable to molecular mean free paths, diffusion will play a role and
should be included in future work.
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Figure 1. Reaction length scales versus distance in steady strongly overdriven ozone detonation, Do = 2.5 × 105 cm/s.
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Figure 2. Species mass fraction versus distance in steady strongly overdriven ozone detonation, Do = 2.5 × 105 cm/s.
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Figure 3. Temperature versus distance in steady strongly overdriven ozone detonation, Do = 2.5 × 105 cm/s.
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Figure 4. Pressure versus distance in steady strongly overdriven ozone detonation, Do = 2.5 × 105 cm/s.
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Figure 5. Computed shock velocity versus time in unsteady strongly overdriven ozone detonation, Do = 2.5 × 105 cm/s.
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Figure 6. Detonation velocity versus time for three different initial overdrives.
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Figure 7. Long time behavior of detonation velocity for an initial overdrive corresponding to Do = 2.4 × 105 cm/s
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Figure 9. Bifurcation diagram showing transition to period 1 and 2 limit cycle behavior.
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