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Complex Patterns in a Simple System

John E. Pearson
Numerical simulations of a simple reaction-diffusion model reveal a surprising variety of
irregular spatiotemporal patterns. These patterns arise in response to finite-amplitude
perturbations. Some of them resemble the steady irregular patterns recently observed in
thin gel reactor experiments. Others consist of spots that grow until they reach a critical
size, at which time they divide in two. If in some region the spots become overcrowded,
all of the spots in that region decay into the uniform background.

Patterns occur in nature at scales ranging
from the developing Drosophila embryo to
the large-scale structure of the universe. At
the familiar mundane scales we see snow-

flakes, cloud streets, and sand ripples. We
see convective roll patterns in hydrodynamic
experiments. We see regular and almost
regular patterns in the concentrations of
chemically reacting and diffusing systems
(1). As a consequence of the enormous

range of scales over which pattern formation
occurs, new pattern formation phenomenon
is potentially of great scientific interest. In
this report, I describe patterns recently ob-
served in numerical experiments on a simple
reaction-diffusion model. These patterns are

unlike any that have been previously ob-
served in theoretical or numerical studies.

The system is a variant of the autocata-
lytic Selkov model of glycolysis (2) and is
due to Gray and Scott (3). A variety of
spatio-temporal patterns form in response

to finite-amplitude perturbations. The re-

sponse of this model to such perturbations
was previously studied in one space dimen-
sion by Vastano et al. (4), who showed that
steady spatial patterns could form even
when the diffusion coefficients were equal.
The response of the system in one space
dimension is nontrivial and depends both
on the control parameters and on the initial
perturbation. It will be shown that the
patterns that occur in two dimensions range
from the well-known regular hexagons to
irregular steady patterns similar to those
recently observed by Lee et al. (5) to cha-
otic spatio-temporal patterns. For the ratio
of diffusion coefficients used, there are no
stable Turing patterns.

Most work in this field has focused on

pattern formation from a spatially uniform
state that is near the transition from linear
stability to linear instability. With this
restriction, standard bifurcation-theoretic
tools such as amplitude equations have
been developed and used with considerable
success (6). It is unclear whether the pat-
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terns presented in this report will yield to
these now-standard technologies.

The Gray-Scott model corresponds to
the following two reactions:

U + 2V-3V (1)
V-P

Both reactions are irreversible, so P is an

inert product. A nonequilibrium constraint
is represented by a feed term for U. Both U
and V are removed by the feed process. The
resulting reaction-diffusion equations in di-
mensionless units are:

au

=DUV2U- UV2+F(1 - U)at

av
= DVV2V+ UV2 -(F+ k)V (2)

where k is the dimensionless rate constant
of the second reaction and F is the dimen-
sionless feed rate. The system size is 2.5 by
2.5, and the diffusion coefficients are Du =

2 x 10-5 and D, = 10-5. The boundary
conditions are periodic. Before the numer-
ical results are presented, consider the be-
havior of the reaction kinetics which are

described by the ordinary differential equa-
tions that result upon dropping the diffusion
terms in Eq. 2.

In the phase diagram shown in Fig. 1, a

trivial steady-state solution U = 1,V = 0
exists and is linearly stable for all positive
F and k. In the region bounded above by
the solid line and below by the dotted
line, the system has two stable steady
states. For fixed k, the nontrivial stable
uniform solution loses stability through
saddle-node bifurcation as F is increased
through the upper solid line or by Hopf
bifurcation to a periodic orbit as F is
decreased through the dotted line. [For a

discussion of bifurcation theory, see chap-
ter 3 of (7).] In the case at hand, the
bifurcating periodic solution is stable for k
< 0.035 and unstable for k > 0.035.
There are no periodic orbits for parameter
values outside the region enclosed by the
solid line. Outside this region the system is
excitable. The trivial state is linearly sta-
ble and globally attracting. Small pertur-
bations decay exponentially but larger per-
turbations result in a long excursion
through phase space before the system
returns to the trivial state.

The simulations are forward Euler integra-
tions of the finite-difference equations result-
ing from discretization of the diffusion opera-
tor. The spatial mesh consists of 256 by 256
grid points. The time step used is 1. Spot
checks made with meshes as large as 1024 by
1024 and time steps as small as 0.01 produced
no qualitative difference in the results.

Initially, the entire system was placed in
the trivial state (U = 1,V = 0). The 20 by
20 mesh point area located symmetrically
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about the center of the grid was then
perturbed to (U = 1/2,V = 1/4). These
conditions were then perturbed with ± 1%
random noise in order to break the square
symmetry. The system was then integrated
for 200,000 time steps and an image was
saved. In all cases, the initial disturbance
propagated outward from the central
square, leaving patterns in its wake, until
the entire grid was affected by the initial
square perturbation. The propagation was
wave-like, with the leading edge of the
perturbation moving with an approximately
constant velocity. Depending on the param-
eter values, it took on the order of 10,000 to
20,000 time steps for the initial perturbation
to spread over the entire grid. The propaga-
tion velocity of the initial perturbation is
thus on the order of 1 x 10-4 space units per
time unit. After the initial period during
which the perturbation spread, the system
went into an asymptotic state that was either
time-independent or time-dependent, de-
pending on the parameter values.

Figures 2 and 3 are phase diagrams; one
can view Fig. 3 as a map and Fig. 2 as the key
to the map. The 12 patterns illustrated in
Fig. 2 are designated by Greek letters. The
color indicates the concentration ofU with
red representing U = 1 and blue represent-
ing U ~ 0.2; yellow is intermediate to red
and blue. In Fig. 3, the Greek characters
indicate the pattern found at that point in

0.3

0.2-

0.1

0.0
o.00 0.02 0.04 0.06 0.08

k
Flg. 1. Phase diagram of the reaction kinetics.
Outside the region bounded by the solid line,
there is a single spatially uniform state (called
the trivial state) (U = 1,V = 0) that is stable for
all (F, A). Inside the region bounded by the solid
line, there are three spatially uniform steady
states. Above the dotted line and below the
solid line, the system is bistable: There are two
linearly stable steady states in this region. As F
is decreased through the dotted line, the non-
trivial stable steady state loses stability through
Hopf bifurcation. The bifurcating periodic orbit
is stable for k < 0.035 and unstable for k >
0.035. No periodic orbits exist for parameter
values outside the region bounded by the solid
line.

parameter space. There are two additional
symbols in Fig. 3, R and B, indicating
spatially uniform red and blue states, respec-
tively. The red state corresponds to (U =
1,V = 0) and the blue state depends on the
exact parameter values but corresponds
roughly to (U = 0.3,V = 0.25).

Pattern a is time-dependent and consists
of fledgling spirals that are constantly col-
liding and annihilating each other: full
spirals never form. Pattern P is time-depen-
dent and consists ofwhat is generally called

a a

E

phase turbulence (8), which occurs in the
vicinity of a Hopf bifurcation to a stable
periodic orbit. The medium is unable to
synchronize so the phase of the oscillators
varies as a function of position. In the
present case, the small-amplitude periodic
orbit that bifurcates is unstable. Pattern y is
time-dependent. It consists primarily of
stripes but there are small localized regions
that oscillate with a relatively high frequen-
cy (-10`-). The active regions disappear,
but new ones always appear elsewhere. In

'v C

-I

'I

Flg. 2. The key to the map. The patterns shown in the figure are designated by Greek letters, which
are used in Fig. 3 to indicate the pattern found at a given point in parameter space.

0. 08 . a. . . . . . . a. . a a. .. a a a

0.06

0.04

0.02

u.u

0.03 0.04 0.05
k

Fig. 3. The map. The Greek letters
indicate the location in parameter
space where the patterns in Fig. 2
were found; B and R indicate that
the system evolved to uniform blue
and red states, respectively.
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Fig. 2 there is an active region near the top
center of pattern y. Pattern 8 consists of
regular hexagons except for apparently sta-
ble defects. Pattern ai is time-dependent: a
few of the stripes oscillate without apparent
decay, but the remainder of the pattern
remains time-independent. Pattern L is
time-dependent and was observed for only a
single parameter value.

Patterns 0, K, and p resemble those
observed by Lee et al. (5). When blue waves
collide, they stop, as do those observed by
Lee et al. In pattern ,±, long stripes grow in
length. The growth is parallel to the stripes
and takes place at the tips. If two distinct
stripes that are both growing are pointed
direcdy at each other, it is always observed
that when the growing tips reach some
critical separation distance, they alter-their
course so as not to collide. In pattens 0 and
K, the perturbations grow radially outward
with a velocity normal to the stripes. In
these cases if two stripes collide, they sim-
ply stop, as do those observed by Lee et al.
I have also observed, in one space dimen-
sion, fronts propagating toward each other
that stop when they reach a critical separa-
tion. This is fundamentally new behavior
for nonlinear waves that has recently been
observed in other models as well (9).

Patterns £A, and Xshares ties.
They consist ofblue spots on a red or yellow
background. Pattern ) is time-independent
and patterns c and g are time-dependent.
Note that spots occur only in regions of

parameter space where the system is excit-
able and the sole uniform steady state is the
red state (U = 1,V = 0). Thus, the blue
spots cannot persist for extended time un-
less there is a gradient present. Because the
gradient is required for the existence of the
spots, they must have a maximum size or
there would be blue regions that were es-
sentially gradient-free. Such regions would
necessarily decay to the red state. Note that
these gradients are self-sustaining and are
not imposed externally. After the initial
perturbation, the spots increase in number
until they fill the system. This process is
visually similar to cell division. After a spot
has divided to form two spots, they move
away from each other. During this period,
each spot grows radially outward. The
growth is a cons ence of excitability. As
the spots get furtier apart, they begin to
elongate in the direction perpendicular to
their motion. When a critical size is
achieved, the gradient is no longer sufficient
to maintain he center in the blue state, so
the center decays to red, leaving two blue
spots. This process is illustrated in Fig. 4.
Figure 4A was made just after the initial
square perturbation had decayed to leave the
four spots. In Fig. 4B, the spots have moved
away from each other and are beginning to
elongate. In Fig. AC, the new spots are
dearly visible. In Fig. 4D, the replication
process is complete. The subsequent evolu-
tion depends on the control parameters.
Pattern X remains in a steady state. Pattern ;

remains time-dependent but with long-range
spatial order except for local regions of ac-
tivity. The active regions are not stationary.
At any one instant, they do not appear
qualitatively different from pattern C (Fig. 2)
but the location of the red disturbances
changes with time. Pattern c appears to have
no long-range order either in time or space.
Once the system is filled with blue spots,
they can die due to overcrowding. This
occurs when many spots are crowded togeth-
er and the gradient over an extended region
becomes too weak to support them. The
spots in such a region will collapse nearly
simultaneously to leave an irregular red hole.
There are always more spots on the boundary
of any hole, and after a few thousand time
steps no sign of the hole will remain. The
spots on its border will have filled it. Figure
5-illustrates this process.

Pattern is chaotic. The Liapunov expo-
nent (which determines the rate of separa-
tion of nearby trajectories) is positive. The
Liapunov time (the inverse of the Liapunov
exponent) is 660 time steps, roughly equal to
the time it takes for a spot to replicate, as
shown in Fig. 4. This time period is also
about how long it takes for a molecule to
diffuse across one of the spots. The time
average of pattern £ is constant in space.

All of the patterns presented here arose
in response to finite-amplitude p rba-
tions. The ratio of diffusion coefficients used
was 2. It is now well known that Turing
instabilities that lead to spontaneous pattern

Fig. 4 (le. Time evolution of spot multiplication. This figure was FAg 5 (right), lime evolution of pattern e. The images are 250 time units
produced in a 256 by 256 simulation with physical dimensions of 0.5 by apart. In the corners (which map to the same point in physical space), one
0.5 and a time step of 0.01. The times t at which the figures were taken can see a yellow region in (A) to (C). It has decayed to red in (D). In (A) and
are as follows: (A) t = 0; (B) t = 350; (C) t = 510; and (D) t = 650. (B), the center of the left border has a red region that is nearly filled in (D).
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formation cannot occur in systems in which
all diffusion coefficients are equal. [For a
comprehensive discussion of these issues, see
Pearson and co-workers (10, 1 1); for a dis-
cussion of Turing instabilities in the model
at hand, see Vastano et al. (12).] The only
Turing patterns that can occur bifurcate off
the nontrivial steady uniform state (the blue
state). Most of the patterns discussed in this
report occur for parameter values such that
the nontrivial steady state does not exist.
With the ratio of diffusion coefficients used
here, Turing patterns occur only in a narrow
parameter region in the vicinity of F = k =
0.0625, where the line of saddle-node bifur-
cations coalesces with the line of Hopf bi-
furcations. In the vicinity of this point, the
branch of small-amplitude Turing patterns is
unstable (12).

With equal diffusion coefficients, no pat-
terns formed in which small asymmetries in
the initial conditions were amplified by the
dynamics. This observation can probably be
understood in terms of the following fact:
Nonlinear plane waves in two dimensions
cannot be destabilized by diffusion in the
case that all diffusion coefficients are equal
(13). During the initial stages of the evolu-
tion, the corners of the square perturbation
are rounded off. The perturbation then
evolves as a radial wave, either inward or
outward depending on the parameter values.
Such a wave cannot undergo spontaneous
symmetry breaking unless the diffusion coef-
ficients are unequal. However, I found sym-
metry breaking over a wide range of param-
eter values for a ratio of diffusion coefficients
of 2. Such a ratio is physically reasonable
even for small molecules in aqueous solu-
tion. Given this diffusion ratio and the wide
range of parameters over which the replicat-
ing spot patterns exist, it is likely that they
will soon be observed experimentally.

Recently Hasslacher et al. have demon-
strated the plausibility of subcellular chem-
ical patterns through lattice-gas simulations
of the Selkov model (14). The patterns
discussed in the present article can also be
found in lattice-gas simulations of the
Selkov model and in simulations carried out
in three space dimensions. Perhaps they are
related to dynamical processes in the cell
such as centrosome replication.
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Pattern Formation by Interacting Chemical Fronts

Kyoung J. Lee, W. D. McCormick, Qi Ouyang, Harry L. Swinney*
Experiments on a bistable chemical reaction in a continuously fed thin gel layer reveal a
new type of spatiotemporal pattern, one in which fronts propagate at a constant speed until
they reach a critical separation (typically 0.4 millimeter) and stop. The resulting asymptotic
state is a highly irregular stationary pattern that contrasts with the regular patterns such
as hexagons, squares, and stripes that have been observed in many nonequilibrium
systems. The observed patterns are initiated by a finite amplitude perturbation rather than
through spontaneous symmetry breaking.

In recent years, pattern formation has be-
come a very active area of research, moti-
vated in part by the realization that there
are many common aspects of patterns
formed by diverse physical, chemical, and
biological systems and by cellular automata
and differential equation models. In exper-
iments on a chemical system, we have
discovered a new type of pattern that differs
qualitatively from the previously studied
chemical waves [rotating spirals (1)1, sta-
tionary "Turing" patterns (2-4), and cha-
otic patterns (5). These new patterns form
only in response to large-amplitude pertur-
bations-small-amplitude perturbations de-
cay. A large perturbation evolves into an
irregular pattern that is stationary (time-
independent) (Fig. 1). The patterns have a
length scale determined by the interaction
of the chemical fronts, which propagate
toward one another at constant speed until
they reach a critical distance and stop, as
Fig. 2 illustrates. The growth of these front
patterns is markedly different from Turing
patterns: The front patterns develop locally
and spread to fill space, as in crystal growth,
whereas Turing patterns emerge spontane-
ously everywhere when the critical value of
a control parameter is exceeded.

The front patterns are highly irregular,
in contrast with Turing patterns, which
emerge as a regular array of stripes or hexa-
gons (in two-dimensional systems) at the

Center for Nonlinear Dynamics and the Department of
Physics, University of Texas at Austin, Austin, TX
78712.
*To whom correspondence should be addressed.
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transition from a uniform state (4). The
interaction of fronts illustrated in Fig. 2 also
contrasts with the behavior in excitable
chemical media, where colliding fronts an-
nihilate one another (1), and with solitons,
where nonlinear waves pass through one
another (6).

Our experiments have been conducted
using an iodate-ferrocyanide-sulfite reac-
tion, which is known to exhibit bistability
and large oscillations in pH in stirred flow
reactors (7). The other reactions that yield
stationary chemical patterns are the well-
studied chlorite-iodide-malonic acid reac-
tion (3-5) and a variant reaction (8) that
uses chlorine dioxide instead of chlorite.
We chose the iodate-ferrocyanide-sulfite re-
action as a new candidate for studies of
pattern formation because a pH indicator
could be used to visualize patterns that
might form.

The following experiments illustrate the
differences between our patterns and those
previously observed in reaction-diffusion
systems. A diagram of the gel disc reactor is
shown in Fig. 3. Gel-filled reactors were
developed several years ago (9) to study
reaction-diffusion systems maintained in
well-defined states far from equilibrium.
These reactors are now widely used for
studying sustained patterns that arise solely
from the interplay of diffusion and chemical
kinetics-the gel prevents convective mo-
tion. A thin polyacrylamide gel layer (0.2
mm thick, 22 mm in diameter) is fed
diffusively by a continuously refreshed res-
ervoir of chemicals (10). There are two
thin membranes between the polyacrylam-
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