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1 Introduction

In this report, I discuss two different topics of thermodynamics and explain how they have

shaped the author’s conception of science and nature. Nature used to be perceived as a

predictable entity, which was governed by numerous sets of laws and equations. There was

one point when scientists believed that with the knowledge of enough data, the future of

the universe could be predicted considering that the universe can be reduced to a set of

physical laws [3]. However, advances in the field of thermodynamics, especially the topic of

dissipative structures, have shifted the scientific perception of nature. Through the lens of

thermodynamics, nature appears to be a dynamical entity that “decides” its own path, and

science turned out to be merely an attempt by humans to depict the way the universe works.

This paper is divided into three main parts. The first part will review the four basic

laws of thermodynamics to provide a background for the following discussion in the next two

parts. The second part will discuss the importance of the second law of thermodynamics and

its implications for the limitations of science to describe nature. And finally, the third part

will explore the non-linearity of nature through studying the model of weather simplified

by Edward Lorenz [4], and the mathematical model of the Brusselator, a chemical reaction

scheme created by Prigogine and several scientists at the Brussels School of Thermodynamics

to study oscillations of non-linear chemical systems [2].
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2 Thermodynamics review

Thermodynamics is studied based on four axioms.

2.1 The zeroth law

Although this law is numbered zero, it was in fact formulated after the other three laws

since it is the implied assumption of the other three laws. The law can be expressed in the

following statement:

If system A is in thermal equilibrium with system B, and system B is in thermal equi-

librium with system C, then system A is in thermal equilibrium with system C.

2.2 The first law

The change in energy of a system is equal to the heat supplied to the system and work done

by the system. The change in energy of adiabatic closed systems is zero.

The law can also be expressed by the following equation:

∆U = W −Q, (2.2.1)

in which ∆U is the change in internal energy of the system, W is the work done (or undone)

by the system, and Q is the change in heat supplied to the system. Equation (2.2.1) is

written with the assumption that the change of mechanical energy of the system is small

compared with its internal energy changes.

2.3 The second law

The total entropy of any isolated thermodynamic system, which is an indicator of how

random a system is, tends to increase over time to approach a maximum value.
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2.4 The third law

As temperature approaches absolute zero, the entropy of a system approaches a constant

minimum.

3 Discussion of the second law

3.1 The need for the second law

Before the formulation of the second law of thermodynamics, the time reversal invariance

of Newton mechanics affected the way scientists conceived nature: the physical events in

the Newtonian realm can happen in both directions of time without violating the laws of

mechanics. However, there were still some phenomena occurring in everyday life that cannot

be explained by Newtonian laws at all. For example, why does the hot cup of coffee always

cool as time progresses but never warm on its own? This hypothetical phenomenon can

happen without violating the first law of thermodynamics: the heat from the surrounding

environment can be used to warm the coffee, and in the heat engine case, the heat from the

environment can be used to do work; therefore, the total energy of the system is conserved.

The first law, however, fails to explain why we never observe that event in reality. There

are many more phenomena observed in everyday life that can only happen in one direction.

Why does the heat engine only take the heat from a hot environment to do work and release

the unused heat to a colder environment? Why does it not take in the heat from the cold

environment to do work and release unused heat to a hotter environment? Why does the

amplitude of bouncing of a ball dropped on the ground decay as time progresses? Why do we

never see broken pieces of a glass window reassemble themselves? These questions present a

need for a law, a model that better describes the monotonic progress of nature. The second

law of thermodynamics was formulated as a response to that need.
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3.2 The second law and the Carnot’s heat engine

Although the Second Law of Thermodynamics can be expressed in many different forms,

perhaps the most well known form of the law is the Clausius statement. As time progresses,

the entropy of an isolated system increases. Or, in mathematical form:

dS

dt
≥ 0. (3.2.1)

In equation (3.2.1), S is a the entropy of the system, which has the differential dS =

dQ/T for reversible processes. The quantity dQ is the heat change and T is the absolute

temperature of the system. The differential dS is only equal to zero when the system

undergoes an adiabatic reversible process. In irreversible processes, however, the relationship

between S and the state values of the system is described by the inequality (3.2.2):

dS >
dQ

T
. (3.2.2)

To illustrate this idea, let us consider a hypothetical reversible heat engine which was

first introduced by Carnot [1]. This engine is perfectly designed so that the work it produces

equals the difference of heat values between its cold state and its hot state: W = Qh −Qc

We then can derive an equation to calculate the efficiency of the Carnot heat machine:

η =
W

Qh

=
Qh −Qc

Qh

= 1− Qc

Qh

. (3.2.3)

For a reversible heat machine, dS = 0. This leads to: Qc/Qh = Tc/Th. Equation (3.2.3)

then becomes:

η =
W

Qh

= 1− Tc
Th
. (3.2.4)

Equation (3.2.4) shows that the Carnot engine can only achieve full efficiency when the

temperature of the cold reservoir is absolute zero. This, of course, can never be achieved in
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practice, and full efficiency cannot be reached. Because the Carnot engine is an ideal one,

its efficiency places an upper limit on all other heat machines. Before Carnot’s time, people

believed that achieving full efficiency was just a matter of design: better designs with less

friction would increase the efficiency of systems. However, the second law of thermodynamics,

and its application in the Carnot engine case have shown that even a perfect machine cannot

run at full efficiency. The author came to a realization that humans, once thinking they could

finally harness the forces of natures, still have to play by its rule.

4 Nature as a dynamic entity

Traditional thermodynamics focuses on the study of closed, isolated systems which, if given

enough time, always approach stable equilibrium states. Nature, however, is an assemblage

of many different open systems which, when driven by the continuous flow of matter and

energy, are far from equilibrium and often develop into a multitude of states. Since the

study of science is not complete until it forms a connection with our everyday experience,

it is necessary for us to depart from traditional thermodynamics to step into the study of

far-from-equilibrium thermodynamics in order to have a more complete understanding of

nature. In this section, we will discuss the development of thermodynamics from the linear,

equilibrium realm to the non-linear realm by studying chemical kinetics. This discussion

consists of three sections. The first section serves as a review of traditional thermodynamics

through studying a one-step reaction. In the second section, we have our first taste of

modern thermodynamics by studying the oscillating behavior of the famous Brusselator

system. Finally, we will see a more complex thermodynamical system through analyzing

chaos modeled by the Lorenz’s equations.
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4.1 A review of traditional thermodynamics

Let us consider the following chemical reaction:

X + 2Y ⇀↽ 2Z. (4.1.1)

Let [X], [Y ], [Z] be the concentrations of substances X, Y, Z respectively. By using the

law of mass action for reaction (4.1.1), we can define the following system of differential

equations

d[X]

dt
= −kf [X][Y ]2 + kr[Z]2, X[0] = X0, (4.1.2)

d[Y ]

dt
= −2(kf [X][Y ]2 + kr[Z]2), Y [0] = Y0,

d[X]

dt
= 2(kf [X][Y ]2 − kr[Z]2), Z[0] = Z0.

With kf = 0.5, kr = 0.05, X0 = 2.0, Y0 = 3.0, Z0 = 0, we can then use the software tool

Mathematica to generate numerical solutions for the above system of equations. Plots of

[X], [Y ], [Z] as functions of time are shown in Figure 1:
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Figure 1: Concentrations of X, Y, Z as time progresses.

As Figure 1 shows, as the time progresses, the concentrations of the chemicals approach

constant values. The general development of the reaction can be better seen with the para-

metric plot of the concentrations:
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Figure 2: Parametric plot of [X], [Y ], [Z].

The parametric plot featured in Figure 2 shows a monotonic process that is typical for

systems approaching equilibrium states. Also, it was found out that small changes in the

initial conditions do not affect the general trend of the reaction. Since all the reaction

monotonically approaches equilibrium as time increases, it is easy to predict the outcomes

of chemical processes in the realm of classical thermodynamics. However, it was discov-

ered that in reality, instead of approaching constant values, concentrations of chemicals can

sometimes oscillate, which create many observed patterns in nature. This oscillation can be

studied by analyzing the Brusselator, a simple model created by Prigogine and Lefever when

they started to look into the behavior of non-linear chemical systems that are organized by

thermodynamical forcings governed by the extremum principles.
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4.2 The Brusellator and oscillating chemical reactions

The Brusselator is characterized by the following reaction scheme:

A→ X, (4.2.1)

B +X → Y +D,

2X + Y → 3X,

X → E.

If we assume that there is an infinite constant flow of A and B into the system, and D and

E are removed, we will have the following system of equations of concentrations of X and

Y :

d[X]

dt
= k1[A]− k2[B][X] + k3[X]2[Y ]− k4[X] ≡ Z1([X], [Y ]), (4.2.2)

d[Y ]

dt
= k2[B][X]− k3[X]2[Y ] ≡ Z2([X], [Y ]).

By setting Z1 and Z2 equal to 0, it is easy to calculate the stationary solutions to system

4.2.3:

[X]s =
k1
k4

[A], [Y ]s =
k4k2
k3k1

[B]

[A]
, (4.2.3)

in which k1, k2, k3, k4 are the respective reaction constants of the elementary reactions in the

system. In order to know at what values of [A] and [B] and reaction rate constants the

system will shift to the oscillating state, we need to analyze the eigenvalues of the Jacobian

matrix of system 4.2.2: k2[B]− k4 k3[X]2s

−k2[B] −k3[X]2s

 . (4.2.4)
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The eigenvalues of matrix 4.2.4 are calculated by equation 4.2.5:

λ2 − (k2[B]− k4 − k3[X]2s)λ+ [X]2s(−k2k3[B] + k4k3 + k3k2[B]) = 0. (4.2.5)

The system is only unstable when at least one of the eigenvalues has a positive real part.

For this to happen, inequality (4.2.6) must be satisfied:

[B] >
k4
k2

+
k3k

2
1

k2k24
[A]2. (4.2.6)

With k1 = k2 = k3 = k4 = 1.0, [A] = 1.0, [B] = 3.0, we satisfy inequality (4.2.6). We use

these values to plot the graphs of the concentrations as functions of time in Figure 3:
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Figure 3: Oscillations of [X] and [Y ] as time progresses.
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To see the general progress of the system, let us examine its limit cycle projected on the

phase plane in Figure 4:
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Figure 4: Parametric plot of [X] and [Y ].

Figure 4 shows that the Brusselator begins with non-periodic changes of concentrations

and spirals into a periodic limit cycle as time progresses. Unlike system (4.1.1), this reaction

scheme is sustained by a constant supply of external matters, in this case A and B, which

destabilizes the concentrations of X and Y and make them oscillate as time progresses.

Also, while small change in initial conditions do not affect traditional thermodynamics
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systems, a small change in the supply of A and B can also shift the Brusselator into another

state. For example, the system does not spiral into a limit cycle if [B] = 1.9, as illustrated

by Figure 5:
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Figure 5: Parametric plot of [X] and [Y].

Figure 5 shows that that instead of spiraling into a limit cycle, the system spirals into

a single point as time progresses. As a result, the concentrations of X and Y oscillate with

decreasing magnitude and become stable as time approaches infinity. The graphs of the
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concentrations of X and Y are shown in Figure 6:
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Figure 6: Oscillations of [X] and [Y ] as time progresses.

Therefore, in far-from-equilibrium chemical systems like the Brusselator, small perturba-

tions in the flow of matter into the systems can shift them to different states. The oscillations

of these systems in nature create patterns that we can observe. Figure 7 features the pattern

observed during the Belousov-Zhabotinsky reaction [5], a reaction which is also a non-linear

oscillator.
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Figure 7: Belousov chemical reaction.

In the next section, we will take one more step to explore chaotic systems by looking into

the Lorenz’s system, which is a simplified model of weather.

4.3 A chaotic nature

In section 4.1, we learn that chemical reactions within the traditional thermodynamics realm

monotonically progress into stable states, in which the concentrations of the participating

chemicals remain constant. In section 4.2, we move into studying far-from-equilibrium sys-

tems through the Brusselator model. We learn that some systems in nature can oscillate in

a periodic fashion while others can oscillate into a decaying mode depending on the inflow of

matter into the systems. In this section, we will look at Lorenz’s model and its implications

for a chaotic nature.

During the 1960’s, after the advent of computers, meteorologists believed that accurate

long-range weather forecast would be achieved eventually if enough data about weather was

collected. At that time, scientists paid more attention to the statistics of turbulence in

weather, which, in contrast to the details of turbulence, are more organized. However, Ed-

14



ward Lorenz disproved this belief in 1963 with his paper on deterministic non-periodic flow.

By studying the simple problem of convective motion of fluid, Lorenz was able to point out

that the solutions to some non-linear hydrodynamical systems vary in a “haphazard man-

ner” (Lorenz, 1963). and small perturbations in external forcings can result in a drastically

different evolution of the system.

In his paper, Lorenz revisits the fluid convection problem studied by Rayleigh. In this

problem, the motion of a layer of fluid, which has a depth of H and a temperature difference

of ∆T between its upper and lower surface, is analyzed. After expanding and using different

variables to transform the convective equations, Lorenz presented the following system of

differential equations:

dX

dt
= −σX + σY, (4.3.1)

dY

dt
= −XZ + rX − Y,

dZ

dt
= XY − bZ.

in which X is proportional to the intensity of the convective motion, while Y is propor-

tional to the temperature difference between the ascending the descending currents, and

Z is proportional to the distortion of vertical temperature profile from linearity. With

σ = 5.8, r = 28, b = 8/3, we can graph the parametric curve of X, Y, Z as time changes:
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Figure 8: Chaotic evolution of the system.

As shown in Figure 8, this parametric curve of the system exhibits a non-periodic charac-

teristic: it never catches its “tail”. As time progresses, the curve neither spirals into a point

or a limit cycle or spirals out in an organized manner. However, with small perturbations in

external forcings, the system can go back to a decaying mode. For example, with r = 5.6,
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the parametric curve spirals into a point again, as shown in Figure 9:
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Figure 9: Decaying System.

Because weather is much more complicated than this hydrodynamical model, small vari-

ations in nature can turn a highly organized state of weather to complete chaos, in which

predictions are impossible. Lorenz’s model is often called the “butterfly effect,” a name
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which refers to the idea that the flap of a butterfly’s wings in one place can result in large-

scale weather events in other places due to the non-linear nature of weather. Therefore,

long-range weather forecast remains an elusive dream of mankind.

5 Conclusion

Science is the tool of humans to depict the way the universe works. The legalistic connotation

of the word “law” in science, as in “Newton’s Laws”, “Ohm’s Law”, gives many people,

including the author, the false impression that nature is dictated by equations and laws,

and that our future is determined before the world came into being. The study of modern

thermodynamics throughout this course, however, has proved that nature is independent

our perception, and it is able to decide its own path. This realization moves people to the

positive view that they can still be an agent of change through our interaction with nature.

Despite its powerful capability to describe nature, science can never substitute our experience

of nature.
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Appendix 1: Mathematica code for figures 1 and 2

kf = 0.5;

kr = 0.05;

e1 = X’[t] == -kf*X[t]*Y[t]^2 + kr*Z[t]^2;

e2 = Y’[t] == 2*(-kf*X[t]*Y[t]^2 + kr*Z[t]^2);

e3 = Z’[t] == -2*(-kf*X[t]*Y[t]^2 + kr*Z[t]^2);

SOL = NDSolve[{e1, e2, e3, X[0] == 2.0, Y[0] == 3.0, Z[0] == 0.0}, {X, Y, Z},

{t, 0, 3}]

Plot[Evaluate[{X[t], Y[t], Z[t]} /. SOL], {t, 0, 3}, PlotRange -> All, AxesLabel

→ {t, Concentrations}, BaseStyle → {FontSize → 14}] %figure 1

ParametricPlot3D[Evaluate[{X[t], Y[t], Z[t]} /. SOL], {t, 0, 3}, PlotRange

→ All, AxesLabel → {"[X]", "[Y]", "[Z]"}, BaseStyle → {FontSize → 14}] %figure

2
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Appendix 2: Mathematica code for figures 3 and 4

k1 = 1.0;

k2 = 1.0;

k3 = 1.0;

k4 = 1.0; A = 1;

B = 3;

Soln2 = NDSolve[{X’[t] == k1*A - k2*B*X[t] + k3*(X[t])^2*Y[t] - k4*X[t], Y’[t]

== k2*B*X[t] - k3*(X[t])^2*Y[t], X[0] == 1.0, Y[0] == 1.0}, {X, Y}, {t, 0, 400}];

Plot[Evaluate[{X[t], Y[t]} /. Soln2], {t, 0, 50}, PlotRange -> All, AxesLabel

-> {t, Concentrations}, BaseStyle -> {FontSize -> 14}]

ParametricPlot[Evaluate[{X[t], Y[t]} /. Soln2], {t, 0, 400}, PlotRange ->

All, AxesLabel -> {"[X]", "[Y]"}, BaseStyle -> {FontSize -> 14}] %figure 4
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Appendix 3: Mathematica code for figures 5 and 6

k1 = 1.0;

k2 = 1.0;

k3 = 1.0;

k4 = 1.0;

A = 1.1;

B = 2;

Soln2 = NDSolve[{X’[t] == k1*A - k2*B*X[t] + k3*(X[t])^2*Y[t] - k4*X[t], Y’[t]

== k2*B*X[t] - k3*(X[t])^2*Y[t], X[0] == 1.0, Y[0] == 1.0}, {X, Y}, {t, 0, 400}];

Plot[Evaluate[{X[t], Y[t]} /. Soln2], {t, 0, 50}, PlotRange -> All, AxesLabel

-> {t, Concentrations}, BaseStyle -> {FontSize -> 14}]

ParametricPlot[Evaluate[{X[t], Y[t]} /. Soln2], {t, 0, 400}, PlotRange ->

All, AxesLabel -> {"[X]", "[Y]"}, BaseStyle -> {FontSize -> 14}] %figure 5
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Appendix 4: Mathematica code for figures 8 and 9

eqs = {x’[t] == 10 (y[t] - x[t]), y’[t] == 28 x[t] - y[t] - x[t] z[t], z’[t]

== -8/3 z[t] + x[t] y[t], x[0] == y[0] == z[0] == 1}

solv = NDSolve[eqs, {x, y, z}, {t, 0, 25}]

ParametricPlot3D[Evaluate[{x[t], y[t], z[t]} /. solv], {t, 0, 25}, PlotRange

-> All] %figure 8

eqs = {x’[t] == 10 (y[t] - x[t]), y’[t] == 28 x[t] - y[t] - x[t] z[t], z’[t]

== -10 z[t] + x[t] y[t], x[0] == y[0] == z[0] == 1}

ParametricPlot3D[Evaluate[{x[t], y[t], z[t]} /. solv], {t, 0, 25}, PlotRange

-> All] %figure 9

23


