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Abstract. We establish connections between contact isometry groups of cer-
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1. Introduction

Since the seminal work of Gromov, [10], the symplectomorphism groups of closed
4-manifolds have been a subject of much research, see for example [1], [20], as have
symplectomorphism groups of manifolds with convex ends, see for example [19], [7].
Here we investigate the simplest symplectic manifolds with both convex and concave
ends, namely the symplectizations sM of 3-dimensional contact manifolds M . In
the case when the contact manifold is a Lens space L(n, 1) the compactly supported
symplectomorphism group Sympc(sL(n, 1)) has a rich topology. In particular, we
obtain the following result:

Theorem 1.1. The group Sympc(sL(n, 1)), endowed with the C∞-topology, has
countably many components, each being weakly homotopy equivalent to the based
loop space of SU(2). There is a natural map from L (C Ison), the based loop group
of contact isometry group of L(n, 1), to Sympc(sL(n, 1)) which induces the weak
homotopy equivalence.

Now, if one of our contact manifolds can be embedded in a 4-dimensional sym-
plectic manifold as a hypersurface of contact type then there are natural maps
from compact subsets of Sympc(sL(n, 1)) to the symplectomorphism groups of the
4-manifold. But as the symplectomorphism group of the 4-manifold may have
much simpler topology, the induced maps on homotopy groups will typically be far
from injective. For example, S3 ↪→ B4 as a contact type hypersurface, but while
Sympc(sS

3) is weakly homotopy equivalent to the based loop space of U(2), it is a
result of [10] that Sympc(B

4) is contractible.
Our proof of Theorem 1.1 identifies Sympc(sL(n, 1)) with the based loop space

of the Kähler isometry group Kn of the Hirzebruch surface Fn = P(O(n) ⊕ C).
Removing the section at infinity s∞ from Fn, and blowing down the zero section
s0, one obtains a singular 4-ball with a conical singularity of order n at the origin.
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Since the group Sympc(sL(n, 1)) is homotopy equivalent to Sympc(Fn \{s∞∪s0}),
we can rephrase Theorem 1.1 as a result on the space of symplectic embeddings of
a singular ball of size ε ∈ (0, 1) into a singular ball of size 1. In the second part of
the paper, we show that Theorem 1.1 is equivalent to the following result:

Theorem 1.2. The space of symplectic embeddings of a singular ball of size ε ∈
(0, 1) into a singular ball of size 1 is homotopy equivalent to the Kähler isometry
group Kn of the Hirzebruch surface Fn. Moreover, the group of reduced, compactly
supported symplectomorphisms of a singular ball of size 1 is contractible.

Note that in the case n = 1, the balls are in fact smooth and Theorem 1.2 reduces
to the fact that the space of symplectic embeddings B(ε) ↪→ B(1) deformation
retracts onto U(2).

In the third part of the paper we apply the techniques used in the proof of
Theorem 1.1 in the special case n = 4 to obtain the homotopy type of a space of
Lagrangian submanifolds:

Theorem 1.3. The space of Lagrangian RP 2 in the cotangent bunble T ∗RP 2,
endowed with the C∞-topology, is weakly contractible.

It is already known that the space of Lagrangian S2 in T ∗S2 is contractible, see
[11], [12], and Theorem 1.3 may be considered as a Z2-equivariant version.

Acknowledgements: The authors would like to thank the MSRI where part of
this work was completed. The second author is supported by a NSERC Discovery
Grant, The third author is supported by NSF Focused Research Grants DMS-
0244663.

2. Symplectomorphism Groups of sL(n, 1)

Consider the lens space

L(n, 1) =

{
S3 n = 1

S3/Zn n ≥ 2

As contact quotients of S3 with the standard contact form, the lens spaces inherit
natural contact one-forms, denoted as λn. There is a standard way to associate a
non-compact symplectic manifold to a contact manifold, called the symplectization.
Concretely, we consider L(n, 1) × R endowed with the symplectic form d(etλn),
where t is the coordinate of the second factor R. We denote this symplectic manifold
sL(n, 1). Compactly supported symplectomorphism groups will be denoted by
Sympc. In this section, we discuss the homotopy type of Sympc(sL(n, 1)), the
group of compactly supported symplectomorphisms of sL(n, 1).

2.1. Reducing sL(n, 1) to compact manifolds. We first reduce the problem to
the symplectomorphism groups of partially compactified symplectic manifolds. Let
O(n) be the complex line bundle over CP 1 with Chern class c1 = n. One can
endow the total space of this line bundle with a standard Kähler structure, whose
restriction to the zero section is the spherical area form with total area 1. We
denote the zero section as Cn.

Proposition 2.1. The topological group Sympc(sL(n, 1)) is weakly homotopy equiv-
alent to Sympc(O(n)\Cn).
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Proof. Identifying L(n, 1) as a circle bundle in O(n) with contact structure given
by the connection 1-form, we get a canonical embedding:

(2.1) O(n)\Cn ↪→ sL(n, 1),

where the image is {(x, t) ∈ sL(n, 1) : t < 1}. Let Symprc(sL(n, 1)) be the subgroup
of Sympc(sL(n, 1)) consisting of symplectomorphisms supported in {t < r}, then
the embedding (2.1) induces an embedding of the corresponding groups of symplec-
tomorphisms, where the image is exactly Symp1

c(sL(n, 1)). On the one hand, for
r > 1, using the inverse Liouville flow one sees that Symprc(sL(n, 1)) deformation
retracts to Symp1

c(sL(n, 1)); on the other hand, Sympc(sL(n, 1)) is nothing but the
direct limit of Symprc(sL(n, 1)) as r →∞. This concludes the proof. �

2.2. Sympc(O(n)\Cn) as a loop space. We will find the weak homotopy type of
Sympc(O(n)\Cn) in this section by showing it is weakly homotopy equivalent to a
certain loop space. We start with some known results about Sympc(O(n)).

Lemma 2.2. Sympc(O(n)) is weakly contractible.

This result was shown in [5], Proposition 3.2. Coffey proceeded by compactifying
O(n) by adding an infinity divisor to obtain the projectivization of O(n), which is
the Hirzebruch surface Fn. Symplectomorphisms of Hirzebruch surfaces are then
studied using holomorphic curves. We note that this can also be deduced from
Abreu and McDuff’s results in [1].

Now, Coffey also showed that Sympc(O(n)) acts transitively on the space S(Cn)
of unparametrized embedded symplectic spheres in O(n) which are homotopic to
the zero section. We then have an action fibration

Stabc(Cn)→ Sympc(O(n))→ S(Cn)

where Stabc(Cn) is the subgroup of Sympc(O(n)) consisting of symplectomorphisms
which preserve the zero section Cn.

Lemma 2.3 (Coffey [5]). The stabilizer Stabc(Cn), is contractible.

Let Gω(ν) be the symplectic gauge transformations of the normal bundle ν of
Cn, that is, sections of Sp(ν)→ Cn, where Sp(ν) are the fiberwise symplectic linear
maps. Notice that Gω(ν) ' Map(Cn, Sp(2)) ' S1 (see [7], [19]).

Let Fixc(Cn) be the subgroup of Stabc(Cn) consisting of symplectomorphisms
which fix the zero section Cn pointwise. We will use the following lemma from time
to time.

Lemma 2.4. The homomorphism Fixc(Cn) → Gω(ν) given by taking derivatives
along Cn is surjective.

Proof. Let g ∈ Gω(ν). Then each g(z) for z ∈ S2 is a symplectic transforma-
tion of the normal fiber νz over z. Any such linear symplectic map is the time 1
Hamiltonian flow φ1 of a unique quadratic form Q(z) on νz.

Consider the Hamiltonian function H(z, v) = χ(|v|)Q(z)v on O(n), where χ is
a bump function equal to 1 near 0 and 0 when |v| ≥ 1. As dH = 0 along Cn the
resulting Hamiltonian flow ψt lies in Fixc(Cn). We will check that the corresponding
gauge action at time 1 is precisely g.

For this, let Y ∈ νz ∼= T0νz ⊂ TzO(n). Then we claim that dψt(Y ) = φt(Y ),
where in the second term Y is considered as a point in νz and φt is the Hamiltonian
flow of Q : νz → R. The vector Y can be extended to a Hamiltonian vector field on
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O(n) generated by a function L which is linear on νz. Let XH be the Hamiltonian
vector field generated by H. Then

LXH
Y = [XH , Y ] = X{H,L} = XdH(Y )

using the same notation throughout for Hamiltonian vector fields. Evaluating at z,
our Lie derivative is tangent to the fiber νz, and restricting to this fiber the function
dH(Y ) = dQ(z)(Y ) is linear and dual under the symplectic form toXQ(Y ). In other
words, LXH

Y (z) = XQ(Y ), identifying two vectors in νz. This is equivalent to our
claim and so the proof is complete. �

Let Fixid
c (Cn) denote the subgroup of Fixc(Cn) consisting of diffeomorphisms

whose derivatives act trivially on the normal bundle ν of the zero section. A sim-
ple application of Moser’s argument shows that Fixid

c (Cn) is homotopy equivalent
to Sympc(O(n)\Cn), and we will freely switch between these two groups without
explicitly mentioning it below.

Let us write Autω(ν) for the group of automorphisms of the normal bundle ν
of the zero section Cn which are symplectic linear on the fibers and preserve the
symplectic form along the zero section. The group Stabc(Cn) acts on Autω(ν) via
its derivative along the zero section. Clearly Stabc(Cn) acts transitively on Cn
and so by Lemma 2.4 the action on Autω(ν) is also transitive. Hence we have the
fibration

(2.2) Fixid
c (Cn) ↪−→ Stabc(Cn) −� Autω(ν)

which by Lemma 2.3 yields a weak homotopy equivalence (cf. Proposition 4.66 [9])

Fixid
c (Cn) ' L Autω(ν)

where L Autω(ν) is the space of based loops of Autω(ν). Therefore, the following
proposition will imply the first part of Theorem 1.1:

Proposition 2.5. The group Autω(ν) is homotopy equivalent to the Kähler isom-
etry group Kn of the Hirzebruch surface Fn. In particular,

Autω(ν) ' Kn ' U(2)/Zn '

{
SO(3)× S1 if n is even, n 6= 0

U(2) if n is odd

so that L Autω(ν) has countably many components, where each component is ho-
motopy equivalent to L SU(2), that is, to the identity component of L SO(3).

Proof. First notice that Autω(ν) acts transitively on the symplectic reparametri-
zation group of the zero section, or equivalently, the symplectomorphism group of
CP 1. We thus have an action fibration

(2.3) Gω(ν) ↪−→ Autω(ν) −� Symp(CP 1).

whose fiber is the subgroup which fixes CP 1 pointwise and thus is simply the gauge
group Gω(ν).

Recall that the Hirzebruch surface Fn is the projectivation P(O(n)⊕C). Under
the action of its Kähler isometry group Kn ' U(2)/Zn, the complex surface Fn is
partitionned into three orbits: the zero section Cn, the section at infinity C∞n and
their open complement Fn \{Cn∪C∞n }, see Appendix B in [2]. Since the Kn action
preserves the ruling Fn → CP 1, every element in Kn acts as an isometry of CP 1
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and Kn acts faithfully on the normal bundle ν on Cn via derivatives. We thus get
a commutative diagram of fibrations

Gω(ν) // Autω(ν) // // Symp(CP 1)

S1

OO

// Kn

OO

// // SO(3)

OO

in which the first and third vertical inclusions are homotopy equivalences. It fol-
lows that the middle inclusion is a weak homotopy equivalence. Since all spaces
involved are homotopy equivalent to CW-complexes, this weak equivalence is a
genuine homotopy equivalence. The second part of the statement now follows from
substituting M = SO(3) and N = Kn in the following simple lemma:

Lemma 2.6. Let M be a CW-complex with π2(M) = 0 and π1(M) at most count-
able. Suppose N is an S1-bundle over M . Then L (N) has countably many com-
ponents and we have a weak homotopy equivalence between identity components
L 0(N) ' L 0(M).

Proof of the lemma. This fact is an elementary consequence of the usual “path-
loop” construction. Fix a base point on N and let P (N) ' ∗, be the corresponding
based path space. The fibration map π : N →M induces the commutative diagram:

(2.4) L (N)

π̃

��

� � // P (N)

π

��

// // N

π

��
L (M) �

� // P (M) // // M

By assumption, the projections π∗ : πk(N)→ πk(M), are isomorphisms for k ≥ 2,
and the circle fiber and its multiples are non-zero in π1(N). From the commutative
diagram of the long exact sequence of homotopy groups induced by (2.4), we deduce
that:

(2.5) π̃∗ : πk(L (N))
∼= // πk(L (M)) , when k ≥ 1;

Moreover, we have noticed that π1(N) is the central extension of Z and π1(M),
hence the lemma follows. �

This concludes the proof of Proposition 2.5 �

2.3. The loop group of the contact isometries of L(n, 1). In this section, we
prove the second part of Theorem 1.1 by showing that a natural inclusion map is
a weak homotopy equivalence. Unlike the usual notion of contactomorphism which
preserves only the contact structures, we need to consider the automorphisms of
L(n, 1) called contact isometries. These are diffeomorphisms which preserve the
contact form λn and the round metric induced from the round metric on S3 under
projection. We denote the group of contact isometries of the lens spaces of L(n, 1)
as C Ison. It acts on L(n, 1) in such a way that the Reeb orbits are preserved.
Therefore, if we think of L(n, 1) as a unit circle bundle in O(n) with the Reeb
orbits as the circle fibers, there is an induced isometric action of C Ison on the base
CP 1 endowed with the standard round metric. Also, since the action on the fibers
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is linear, there is a natural inclusion C Ison ↪→ Autω(ν). Therefore, along with (2.3),
one obtains the following diagram of fibrations :

(2.6) S1
� _

��

� � // C Ison� _

��

// // SO(3)� _

��
Gω(ν) �

� // Autω(ν) // // Symp(CP 1)

Notice that we have weak homotopy equivalences in both the base and fiber. There-
fore, the natural inclusion of C Ison into Autω(ν) is in fact a (weak) homotopy
equivalence.

We now want to describe a natural map from L (C Ison) to Sympc(O(n)\Cn) (or

equivalently Fixid
c (Cn), see section 2.2) which induces a weak homotopy equivalence.

Given Proposition 2.1 this will imply the remainder of Theorem 1.1. To this end,
consider the smooth path space

P (C Ison) = {φ : (−∞,+∞)→ C Ison : φ(t) = id, t ≤ 0, φ(t) = φ(1), t ≥ 1}.

This is just the usual based path space when restricted to t ∈ [0, 1], thus it is a
contractible space. Recall from Section 2.1 that, up to a scaling, we may identify
symplectically O(n)\Cn with sL(n, 1)t<2. Therefore, for φ ∈ P (C Ison), one can
define the following diffeomorphism of sL(n, 1):

φ′ : L(n, 1)× R −→ L(n, 1)× R(2.7)

(x, t) 7−→ (φ(t)x, t)(2.8)

By definition, φ′|t≤0 = id, and φ′|1≤t≤2 is a symplectomorphism induced by a
contact isometry multiplied by identity in the R-direction. However, φ′ fails to be
a symplectomorphism in general. Let ω0 = d(etλn), the canonical symplectic form
on sL(n, 1), and ω1 = φ′∗ω0. Then nevertheless we claim that the exact forms
ωu = (1− u)ω0 + uω1 are symplectic for all 0 ≤ u ≤ 1.

Proof of claim. To see this, arguing by contradiction, note that if an ωu fails
to be symplectic then it has a kernel of dimension at least 2, which must intersect
the tangent space to some level L(n, 1)× {t} nontrivially. As our φ(t) are contact
isometries this kernel must be the kernel of dλn, namely the Reeb direction. But
as the Reeb direction is preserved and φ′∗(

∂
∂t ) always has a positive ∂

∂t component,

the Reeb vector pairs nontrivially with ∂
∂t under all ωt.

Given our claim, we can apply Moser’s method, see [18], to isotope φ′ to a sym-

plectomorphism φ̃ of sL(n, 1) compactly supported in {t ≥ 0}. As π′∗ω0|t≥1 =
ω0|t≥1, indeed on this region φ′ preserves our primitive etλn, Moser’s flow will van-

ish here, and φ̃|t≥1 = φ′|t≥1. Next, as φ′ is translation invariant on {t ≥ 1} we can

perform a symplectic cut at the level of {t = 2} so that φ̃ descends to a compactly
supported symplectomorphism of O(n) preserving the zero-section, that is, we have

a map P (C Ison)→ Stabc(Cn), φ 7→ φ̃.

Claim: The following diagram of fibrations is commutative and all maps are con-
tinuous. The rightmost vertical arrow is a homotopy equivalence:
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(2.9) L (C Ison)

��

� � // P (C Ison)

��

// // C Ison_�

��
Fixid

c (Cn) �
� // Stabc(Cn) // // Autω(ν)

Proof of claim: The second arrow of the first row is simply the restriction of an
element φ to φ(2). The continuity of the vertical maps follows from the continuous
dependence of solutions of an ODE on initial conditions when applying Moser’s
method. The rightmost vertical arrow is the one induced from (2.6) and is thus a
homotopy equivalence. The commutativity of the diagram (2.9) is straightforward
from definitions. �

Now the middle vertical arrow is a homotopy equivalence due to the contractibil-
ity of both spaces, see Lemma 2.3, and the rightmost arrow is also a weak homotopy
equivalence from the argument at the start of this subsection. Therefore, the left-
most vertical arrow is a homotopy equivalence as well, and provides the desired
mapping. Hence, the second part of Theorem 1.1 follows.

3. Space of Symplectic Embeddings of Orbifold Balls

In this section, we study the space of symplectic embeddings of balls with a
single conical singularity at the origin. We first briefly recall the two different
notions of maps between orbifolds that we use and the related definition of orbifold
embeddings. A comprehensive discussion of orbifold structures and of orbifold maps
can be found in [4].

Given an orbifold A, we write |A| for its underlying topological space. An

unreduced orbifold map (f, {f̂}) between two orbifolds A and B consists of the
following data:

(1) a continuous map f : |A| → |B| of the underlying topological spaces;

(2) for all x ∈ |A|, the choice of a germ f̂x of local lift of f to uniformizing
charts U and V centered at x and f(x).

A reduced orbifold map is a continuous map f : |A| → |B| of the underlying
topological spaces such that smooth lifts exist at every point. The set of smooth
unreduced orbifold maps between A and B will be denoted by C∞orb(A,B), while
we will write C∞red(A,B) for the set of smooth reduced orbifold maps. Smooth
unreduced or reduced diffeomorphisms are defined accordingly by requiring f to be
a homeomorphism and all lifts to be smooth local diffeomorphisms. The sets of all
unreduced or reduced diffeomorphisms of an orbifold A can be naturally endowed
with a C∞ topology that make them Fréchet Lie groups. The short exact sequence

1→ Γid → Difforb(A)→ Diffred(A)→ 1

is then a principal bundle whose fiber Γid is the (discrete) group of all lifts of the
identity map.

A smooth (unreduced, resp. reduced) embedding f : A → B is a smooth
(unreduced, resp. reduced) orbifold map which is a diffeomorphism onto its im-
age and which covers a topological embedding f : |A| → |B|. We will denote by
Emborb(A,B) and Embred(A,B) the corresponding embedding spaces.
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If all the uniformizing charts are symplectic, and if all the local group actions
preserve the symplectic forms, the orbifold atlas is said to be symplectic. Orbifold
symplectic maps are then defined in the obvious way. In particular, since the
open set of regular points Areg becomes an open symplectic manifold, orbifold
symplectomorphisms restrict to genuine smooth symplectomorphisms of Areg.

Let us write Bn(ε) for a symplectic ball of size ε with a single conical singularity
of order n ≥ 1 at the origin, that is,

Bn(ε) := B4(nε)/Zn
where B4(r) stands for the standard ball of radius

√
r/π in R4. In this paper,

we are only interested in the simplest possible embedding spaces between symplec-
tic orbifolds, namely Embred(Bn(ε), Bn(1)). In that case, it is easy to see that
Emborb(Bn(ε), Bn(1)) consists of smooth symplectic embeddings f : B4(nε) →
B4(n) of standard smooth balls that are equivariant with respect to the standard
Zn action, and that

Embred(Bn(ε), Bn(1)) = Emborb(Bn(nε), Bn(n))/Zn
This follows from the fact that any local smooth lift at the conical point extends
uniquely to the whole ball, see [4]. Since the space of smooth symplectic embeddings
retracts onto U(2), and since the Zn action belongs to the center of U(2), one can
show that the space of Zn-equivariant embeddings of smooth balls is itself homotopy
equivalent to U(2), see [22]. Therefore, we have the following results:

Proposition 3.1. The space of reduced symplectic embeddings Embred(Bn(ε), Bn(1))
is homotopy equivalent to

Kn := U(2)/Zn '

{
SO(3)× S1 if n is even, n 6= 0

U(2) if n is odd

Just as in the smooth case, one can show that the group of compactly supported
and reduced symplectomorphisms of the open orbifold ball Bn(1) acts transitively
on Embred(Bn(ε), Bn(1)), see [22]. We get an action fibration

Stabc,red(ι)→ Sympc,red(Bn(1))→ Embred(Bn(ε), Bn(1))

where ι : Bn(ε) → Bn(1) is the inclusion, and where Stabc,red(ι) is the subgroup
made of those reduced symplectomorphisms that are the identity on the image
ι(Bn(ε)). This subgroup is homotopy equivalent to the group of reduced diffeo-
morphisms that are the identity near the image ι(Bn(ε)). Performing a symplectic
blow-up of the ball ι(Bn(ε)), those symplectomorphisms lift to symplectomorphisms
of the Hirzebruch surface Fn that are the identity near the zero section and near the
section at infinity. This last group is itself homotopy equivalent to Sympc(sL(n, 1)).
Hence, we get a homotopy fibration

Sympc(sL(n, 1))→ Sympc,red(Bn(1))→ Embred(Bn(ε), Bn(1))

which shows that the homotopy equivalence Sympc(sL(n, 1)) ' LKn, together
with Proposition 3.1, imply the following mild generalization of a fundamental
result due to Gromov:

Proposition 3.2. The group Sympc,red(Bn(1)) of reduced, compactly supported
symplectomorphisms of an open ball of size 1 with a single conical singularity of
order n at the origin is contractible.
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This completes the proof of Theorem 1.2.

4. Space of Lagrangian RP 2 in T ∗RP 2

We prove Theorem 1.3. Let the space of Lagrangian RP 2 in T ∗RP 2 be denoted as
L. The group of compactly supported Hamiltonian symplectomorphisms of T ∗RP 2

acts transitively on L, see [12], and our point of departure is the corresponding
action fibration

(4.1) Stabc(0) ↪−→ Sympc(T
∗RP 2) −� L

where Stabc(0) is the subgroup of Sympc(T
∗RP 2) which preserves the zero sec-

tion 0.
Notice that for any Lie group G, π0(G) inherits a natural group structure from

G. It is proved in [7] that:

Theorem 4.1. Sympc(T
∗RP 2) is weakly homotopic to Z. Moreover, the generator

of π0(Sympc(T
∗RP 2)) as a group is the generalized Dehn twist in T ∗RP 2.

We will also make use of the following fact, which may be well-known but for
which the authors unfortunately know of no reference:

Lemma 4.2. Let H ↪−→ G −� B be a homotopy fibration where H � G are
groups. Then the following two maps in the induced long exact sequence are both
group homomorphisms:

π1(B)
i // π0(H)

j // π0(G)

Proof. Let x0 ∈ B be the image of id ∈ G. Given a loop α : [0, 1] → B, α(0) =
α(1) = x0, let ᾱ be the lift of α and i(α) be the connected component of H where
ᾱ(1) lies. Consider another loop β : [0, 1] → B, β(0) = β(1) = x0, then the lift of
concatenation α#β can be chosen to be

α#β(t) =


ᾱ(2t), t ≤ 1

2

ᾱ(1) · β̄(2t− 1), t >
1

2

Therefore, i(α#β) = α#β(1) = ᾱ(1)β̄(1), verifying the claim for the map i.
The fact that j is a homomorphism is trivial because the inclusion H ↪→ G is a
homomorphism. �

To compute the homotopy type of Stabc(0) we need to consider the diffeomor-
phism group of RP 2. We have the following result, of which the proof is postponed
to the appendix:

Proposition 4.3. The diffeomorphism group of RP 2 is weakly homotopic to SO(3).
Moreover, the standard inclusion is a weak homotopy equivalence.

With this understood, we define Fixc(0) to be the subgroup of compactly sup-
ported symplectomorphisms of T ∗RP 2 which fixes the zero section pointwise. We
obtain a further action fibration:

Fixc(0) ↪−→ Stabc(0) −� Diff(RP 2).
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We may also consider the following object: given the standard round metric g0
on RP 2, let StabIso

c (0) be the symplectomorphisms which are compactly supported
and induce an isometry on the zero section.

Now we have the following commutative diagram of fibrations:

(4.2) Fixc(0) �
� // StabIso

c (0)
_�

��

// // SO(3)
_�

��
Fixc(0) �

� // Stabc(0) // // Diff(RP 2)

From Proposition 4.3, we observe that the vertical arrows on the two sides are
weak homotopy equivalences, so the middle one is also a weak homotopy equiva-
lence. Note also that the inverse Liouville flow contracts T ∗RP 2 to the zero section.
Now, taking into consideration the bundle metric on T ∗RP 2 induced by g0, we may
talk about the length of cotagent vectors. By the same direct limit and Liouville
flow argument as in Proposition 2.1 we may restrict our attention to the symplec-
tomorphisms supported in T ∗r RP 2, which consists of cotagent vectors with length
≤ r for some r > 0. We will assume that r = 1 below.

Lemma 4.4. (i) StabIso
c (0) is weakly homotopy equivalent to Z;

(ii) π0(StabIso
c (0)) is isomorphic to Z as a group.

Remark 4.5. It is very tempting to conclude (i) directly from the results in the
previous sections by setting n = 4, see the first paragraph of the proof. However,
the connecting map in (4.2) seems then difficult to understand directly. That is
why we use a slightly different argument below.

of Lemma 4.4. We first notice the following fact: a symplectomorphism which fixes
a smooth Lagrangian pointwise also fixes the framing of the Lagrangian. This
follows from the corresponding linear statement that, a symplectomorphism of T ∗M
which is linear on the fibers is indeed a cotangent map of a diffeomorphism on the
base. This is also used in [5], proof of Theorem 1.3. It follows from this that the

subgroup of StabIso
c (0) consisting of maps which act on a neighborhood of RP 2

by the cotangent map of an isometry of RP 2 is weakly homotopy equivalent to
StabIso

c (0). Therefore we are able to consider this subgroup instead of StabIso
c (0),

and use the same notation to denote it throughout the rest of the proof.
Given ψ ∈ StabIso

c (0), denoting the cotangent map of ψ|RP 2 as cψ, we may

consider the symplectomorphism ψ̃ := c−1ψ ◦ ψ on T ∗RP 2. The map ψ̃ is not

compactly supported in T ∗RP 2 , but it fixes RP 2 pointwise and thus (by our
assumption that the maps are cotangents near RP 2) also a neighborhood. Since ψ
preserves the round metric on RP 2, cψ preserves the Reeb vector field on the level
sets of T ∗RP 2. Therefore, by a symplectic cut on the level set r = 1, one obtains
a symplectomorphism ψ′ of T ∗RP 2 cut along the level r = 1. This symplectic
manifold is just CP 2 with the standard symplectic form ωFS , see [3] and [14].
From the construction, ψ′ preserves the symplectic reduction of the boundary, a
symplectic (+4)-sphere which is indeed the quadratic sphere {[x, y, z] ∈ CP 2 :
x2 + y2 + z2 = 0}, and it fixes a neighborhood of the standard Lagrangian RP 2 =
Re(CP 2). Removing the Lagrangian RP 2, one sees that ψ′ descends to a compactly
supported symplectomorphism of O(4), which is denoted as ψ̄. Define H to be the
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image of the bar assignment ψ 7→ ψ̄, H is clearly homeomorphic to StabIso
c (0). In

the rest of the proof we investigate the homotopy type of H.

Lemma 4.6. Let U be a sufficiently small neighborhood of the zero section in O(4),
then H|U = SO(3), and it acts transitively on the zero section.

Proof. From the construction, there is a surjective map f : SO(3) → H|U . But
remembering that points of the zero section in O(4) corresponds to the lifts of a
geodesic, the map f is clearly injective. �

Remark 4.7. There is an interesting model described to the authors by Yi Liu.
Consider R3 with the standard Euclidean metric gE . Consider an oriented normal
frame (e1, e2, e3) as a point on RP 3, it fibers over S2 by projection to e1. Let
$ : RP 3 → RP 3 be the involution sending (e1, e2, e3) to (−e1,−e2, e3) and consider
its quotient L(1, 4). This can be identified with the unit cotengent bundle of RP 2

and fibers over RP 2 by the projection

(4.3) [e1, e2, e3]→ [e1]

with fiber S1. On the other hand, one may project L(1, 4) to S2 by sending

(4.4) [e1, e2, e3]→ e3

Endow all the spaces involved with the metric inherited by gE and use the obvious
SO(3) action on RP 2 as constructed, then the projections interplay correctly with
the symplectic structure on T ∗RP 2. In other words, given an isometry of RP 2,
represented by an element R ∈ SO(3) in the above model, the corresponding action
on the unit cotangent bundle is described by the same element R acting on L(1, 4).
In turn R acts on the fibration (4.4). In this way we retrieve the action of H|U .

Returning to the proof of Lemma 4.4, given the round metric g on the zero section
C4 of O(4), we consider the subgroups

Stabc(C4) = {ψ ∈ Sympc(O(4)) : ψ preserves the zero section C4}

StabIso
c (C4) = {ψ ∈ Stabc(C4) : ψ restricted to the zero section

is an isometry with respect to the metric g}

Fixc(C4) = {ψ ∈ StabIso
c (C4) : ψ|C4 = id}

We then again have a commutative diagram of fibrations:

(4.5) Fixc(C4) �
� // StabIso

c (C4)
_�

��

// // SO(3)
_�

��
Fixc(C4) �

� // Stabc(C4) // // Symp(CP 1)

Using the fact that the embedding of SO(3) into Symp(CP 1) is a weak homotopy

equivalence and Lemma 2.3, we deduce that StabIso
c (C4) is also weakly contractible.

Now consider the subgroup H ⊂ StabIso
c (C4). We construct the following group

homomorphism from StabIso
c (C4) to the gauge group:

φ : StabIso
c (C4) −→ Map(S2, Sp(2)) ' S1

To define φ, let t ∈ StabIso
c (C4). Then t|C4 acts on the zero section C4 isometrically.

By Lemma 4.6 and the remark following it, there exists an element u ∈ H such
that u|C4

= t|C4
. Now we define φ(t) to be the gauge of t · u−1.
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Notice first that for any u ∈ H, its action on the normal bundle of C4 is uniquely
determined by its action on C4, hence φ(t) does not depend on the choice of u and
is well-defined.

The homomorphism φ is clearly surjective by Lemma 2.4 since Fixc(C4) ⊂
StabIso

c (C4).
It is also not hard to verify that ker(φ) ' H: indeed, for t ∈ ker(φ), by definition

there exists u ∈ H, such that t · u−1 acts trivially on the normal bundle of C4.
However, up to homotopy, ker(φ) consists of t for which there is a u ∈ H such that
t · u−1 acts trivially on a neighborhood of C4. As all elements acting trivially on a
neighborhood lie in H, we deduce that all such t lie in H too.

Therefore we have the following fibration:

H ↪−→ StabIso
c (C4) −� S1

which implies that H is weakly homotopy equivalent to Z and, by Lemma 4.2,
that π0(S) ∼= Z since StabIso

c (C4) is contractible. This concludes our proof of
Lemma 4.4. �

Proof of Theorem 1.3: For πi(L ), i ≥ 1 the theorem follows immediately from
Lemma 4.4 and the homotopy fibration (4.1). Since the Dehn twists are also

contained in the subgroup StabIso
c (0), one sees that the map π0(Stabc(0)) →

π0(Sympc(T
∗RP 2)) is surjective. However, by Lemma 4.2, since both groups are

Z, it can only be an isomorphism. �
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Appendix A. The Diffeomorphism Group of RP 2

We give a proof of Proposition 4.3:

Proof. Thinking of RP 2 = S2/ ∼, where the equivalence relation identifies an-
tipodal points, the action of SO(3) on S2 preserves equivalence classes and thus
descends to an action on RP 2. Therefore Diff(RP 2) contains SO(3) as a subgroup.
We will show that the homogeneous space Diff(RP 2)/SO(3) is weakly contractible.
Fixing an x ∈ RP 2, first notice that given f ∈ Diff(RP 2), there exists a unique
element ιf ∈ SO(3), such that ιf ◦f fixes a framing of x, or rather, up to homotopy
we may assume it fixes a neighborhood of x. For the uniqueness, we observe that
the antipodal map on S2 fixes the equivalence class of the north pole, say, but re-
verses the orientation of a framing. Therefore, as the complement of a ball in RP 2

is a Möbius band, we may identify Diff(RP 2)/SO(3) with the compactly supported
diffeomorphism group of the Möbius band B with the boundary removed, which we
denote as Diffc(B). This is homotopic to the diffeomorphisms of the closed Möbius
band which fix the boundary. Below, we identify B with the bundle π : B → S1

with fibers the unit interval.
We fix a fiber F0 over p0 ∈ S1 and parameterize F0 as a map

F0 : (−∞,+∞)→ B.

Define

F = {φ : (−∞,∞)→ B : φ(t) = F0(t) when |t| > R for some R,φ is embedded}.

Then for φ ∈ F we have that π ◦φ is a closed loop in S1 with a well defined degree.
Given this, we partition F as follows:

Fi = {φ ∈ F : deg(π ◦ φ) = i}.

Lemma A.1. Fi is connected when i = 0, and empty except when i = −1, 0, 1.
Curves in F1,−1 divide B into two components.

Proof. Consider the strip I = {|Re(z)| ≤ 1} in C, then B is obtained by gluing the
two edges of the strip by z ∼ (−z) if |Re(z)| = 1 (see Figure (a)). We denote the
distinguished fiber in B obtained from the glued edges by F1. For a curve φ ∈ F ,

(a) “Example” of a curve in F2 (b) Pushing the curve
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we may assume that it intersects F1 transversely. We thus have a finite subset T
of R, such that T = φ−1(F1). Write T = {ti} where the ti are in increasing order.

Formally, we now consider φ as a map φ : R \ T → I̊, to the interior of I such
that

lim
t→t+i

φ(t) = − lim
t→t−i

φ(t).

Let zi = φ(ti) = limt→t−i
φ(t). For φ ∈ Fi with i 6= 0, T must be non-empty.

Claim. There exists an isotopy of φ to a curve φ′ ∈ F with corresponding points
z′j such that either Re(z′j) = −1 or Re(z′j) = 1 for all j.

Proof of Claim. If Re(zi) = −Re(zi+1) for some i then the image of φ|(ti,ti+1) is

a curve in I̊ converging at both ends to points on the same edge. It is possible that
the region formed by φ|(ti,ti+1) and F1 contains other such loops (see the shaded
area of Figure (b)). If there are no such loops then the region is empty. Hence
we can find a j such that Re(zj) = −Re(zj+1) and the region formed by φ|(ti,ti+1)

and F1 is empty. Now we can perform an isotopy to remove the intersections zj
and zj+1 by pushing φ across the region. After such an isotopy the number of
intersection points with F1 will reduce by 2 and so after a finite number we must
arrive at a curve satisfying our claim.

Given a curve φ we may now assume that Re(zi) = Re(zj) for all i, j. Without
loss of generality suppose that Re(zi) = 1 for all i. Then if φ ∈ F0 we see that φ
avoids F1 completely and thus is isotopic to F0. This proves the first statement.

For the second statement, assume that |T | ≥ 2, that is, there are intersections z1
and z2 with T1. Then we observe that all paths φ|(ti,ti+1) must lie beneath φ|(t1,t2)
for all i ≥ 2, and thus cannot converge towards +∞ in I. This gives a contradiction
thus proving the second statement. The final statement is similarly clear. �

Corollary A.2. The space Diffc(B) is connected.

Proof. Indeed, any f ∈ Diffc(B) maps F0 to a path which, like F0 cannot divide
B. Thus, by Lemma A.1 the image of F0 lies in F0 and, moreover, we may as-
sume up to isotopy that f fixes F0, and by a further isotopy a neighborhood of
F0 and the complement of a compact set in B. But removing a tubular neighbor-
hood of the boundary and F0 from B leaves a set diffeomorphic to a disk, and as
diffeomorphisms of the disk are connected, see [21], our corollary follows. �

Recall that to prove Proposition 4.3 we must show that Diffc(B) is contractible.
Line fields on B are maps from B to its projectivized unit tangent bundle, where we
identify vectors differing up to sign. We will only consider fields which are trivial,
that is, coincide with fibers of B, outside of a compact set. The bundle is trivialized
by the fibers of B and so line fields are equivalent to maps from B to S1. Let l0 be
the trivial line field tangent to the fibers. The space of sections L0 homotopic to l0
is contractible as all such sections lift to maps to R with compact support.

Given an f ∈ Diffc(B) the line field f∗l0 is homotopic to l0 by Corollary A.2.
Thus we have a continuous map Diffc(B)→ L0. There is also an inverse map which
is well defined at least up to homotopy. For this we need the following claim.

Claim: Line fields in L0 have no closed loops.
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Proof of the Claim: We first observe that any closed loops must project from B to
S1 with degree 1 or 2 (up to a sign). This is because line fields lift to line fields
on an annulus, and it is easily seen that only the generating homotopy class here
can admit a closed orbit. Furthermore, if the loop has degree 2 then it bounds a
compact region G in B. Up to an isotopy we may assume that G∩F0 is an interval
and we have a return map from G ∩ F0 to itself which reverses the two boundary
points. The return map must have a fixed point which corresponds to a loop of
degree 1.

Next, we observe that the set of line fields in L0 which have a closed loop of
degree 1 are open. This is because the Poincaré return map defined on a suitable
interval transverse to the loop is orientation reversing, so the fixed point is stable.
As this subset of L0 is also closed, and l0 has no closed loops, we deduce that our
subset must be empty, proving the claim. �

Now, starting with a line field in L0, given the above claim all integral curves
correspond to fibers of B outside of a compact set. Thus, following these curves we
get a orientation preserving diffeomorphism from S1 (thought of as the boundary
of B) to itself with the following properties: it does not have any fixed points, and
squares to identity.

Claim: The space of such diffeomorphisms, denoted as D, is contractible.

Proof of the Claim: Fix a point x0 ∈ S1. Given f ∈ D, consider f(x0) which ranges
in a contractible set S1\{x0}. Such assignment D → S1\{x0} is clearly a fibration.

For any choice of f(x0), the two points x0 and f(x0) divides S1 into two closed in-
tervals I1 and I2 (including these two points themselves). Therefore, f is identified
with a diffeomorphism from I1 to I2 since it is orientation preserving. Such diffeo-
morphisms are further identified with Diff(I1), which is also contractible. (Thinking
of the diffeomorphisms as graphs on the interval, it is a convex set.) The claim then
follows. �

Notice that deformations in D can be generated by deformations of the line
fields near the boundary of B. Therefore there is a deformation retract from L0 to
line fields whose integral curves coincide with the same fiber outside of a compact
set. Up to a choice of parameterizing the curves, such line fields generate elements
of Diffc(B) by mapping the fibers onto the corresponding integral curves. The
resulting map, up to homotopy, is an inverse of the natural map Diffc(B) → L0

described above. Hence, Diffc(B) is homotopic to L0, which is contractible, and
the proof is complete. �
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