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2. Initials:

1.(5pts) Let A,B,C be 2× 2 matrices with det(A) = −2, det(B) = 5, and det(C) =
1

3
.

What is det
(

(A−1B)TC−1
)

?

Note: Remember that (A−1B)T means the transpose of (A−1B).

(a) −30 (b)
15

2
(c) −15

2
(d)

6

5
(e) −6

5

2.(5pts) Mary wants to solve the matrix equation Ax = b in her father’s thirty-year-old
notebook. However, due to the ink stain on the notebook, she can only read the partial
information

A =

� 0 −3
� 5 1
1 2 3

, det(A) = −4, x =

x1x2
x3

, and b =

 1
0
−3

.

(� means the ink stain.) Although she cannot solve the whole system, she observed that
she can still find x1 using Cramer’s rule. What is x1?

(a) 0 (b) 4 (c) −8 (d) −4 (e) 8



3. Initials:

3.(5pts) If the row space of a 7× 4 matrix A is of dimension 2, then what is the dimension of
the null space of AT (the transpose of A)?

(a) 5 (b) 3 (c) 1 (d) 4 (e) 2

4.(5pts) Let Pn be the vector space of all polynomials of degree at most n. Which of the
following statement is NOT true?

(a) P5 is a subspace of P9.

(b) If T : P5 → R2 is a linear transformation, then ker(T ) is a subspace of R2.

(c) The function D : P10 → P10 defined by D(f(t)) = f ′(t) (the derivative of f)
is a linear transformation.

(d) The set of f(t) in P3 such that f(−1) = f(2) is a subspace of P3.

(e) The function T : P2 → R2 defined by T (f(t)) =

[
f(0)

f(−2)

]
is a linear transformation.



4. Initials:

5.(5pts) The set B = {1, 1 − t, 1 − t − t2} forms a basis for the vector space P2. Find the
coordinate vector [p]B of p(t) = 4t2 + 5t− 2.

(a)

 3
1
4

 (b)

−4
1
3

 (c)

 4
5
−2

 (d)

 3
−1
−4

 (e)

−2
5
4



6.(5pts) Which of the following statements is false for a non-invertible, n× n matrix A?

(a) det(A) = 0. (b) The row space of A is Rn.

(c) AT is not invertible. (d) Nul(A) 6= {0}.

(e) λ = 0 is an eigenvalue of A.



5. Initials:

7.(5pts) Suppose that B = {b1,b2} and C = {c1, c2} are two bases for a vector space V , and

the change-of-coordinate matrix from B to C is given as P
C←B

=

[
2 −3
−1 2

]
.

For v = 2b1 + b2, what is [v]C, the C-coordinate for v?

(a)

[
0
1

]
(b)

[
−3

2

]
(c)

[
2
1

]
(d)

[
1
0

]
(e)

[
2
−1

]

8.(5pts) The linear transformation T : R2 → R2 is defined as T

([
x
y

])
=

[
x− y

2x+ 3y

]
.

For the basis B =

{[
1
−1

]
,

[
2
−1

]}
of R2, what is [T ]B (the B-matrix of T )?

(a)

[
1 2
−1 3

]
(b)

[
1 2
−1 −1

]
(c)

[
0 1
−5 4

]
(d)

[
0 −4
1 −5

]
(e)

[
0 −5
1 4

]



6. Initials:

9.(5pts) The vector

 1
1
0

 is an eigenvector of the matrix

 0 5 2
−1 6 2

3 −3 7

.

What is the corresponding eigenvalue?

(a) 0 (b) 5 (c) 7 (d) 3 (e) 1

10.(5pts) Find the eigenvalues of the matrix

[
0 −2
5 2

]
.

(a) 1 + 3i and 1− 3i . (b) 5 and −2. (c) 0 and 2.

(d) 1 + 6i and 1− 6i . (e) 1 +
√

11 and 1−
√

11.



7. Initials:

11.(5pts) Which of the following vector is orthogonal to the vector

−1
6
−2

?

(a)

 √
6
1

−
√

3

 (b)

 0
1
−3

 (c)

 2
√

5
0

−
√

5

 (d)

 6
−1
−3

 (e)

 2
1
3



12.(5pts) If A =

[
1 1
1 0

]−1 [−1 0
0 1

2

] [
1 1
1 0

]
, what is the (2, 1)-entry of A5 ?

(a) −33

32
(b)

1

32
(c) −31

32
(d)

33

32
(e)

31

32



8. Initials:

13.(10pts) The matrix A =


2 −1 4 4 3
3 0 3 2 −7
5 −1 7 6 −4
1 1 −1 5 −3

 is row equivalent to


1 0 1 0 −3
0 1 −2 0 −5
0 0 0 1 1
0 0 0 0 0

.

(You do not need to check for this.)
(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the null space of A.



9. Initials:

14.(10pts) For the matrix

A =

−1 6 −2
0 2 5
0 0 3

 ,
find an invertible matrix P and a diagonal matrix D such that A = PDP−1.

Note: You do not need to calculate P−1



10. Initials:

15.(10pts) Let B =

{[
7
−4

]
,

[
6
1

]}
and C =

{[
5
−2

]
,

[
3
−1

]}
be two basis of R2.

Find the change-of-coordinate matrix from B to C, i.e., P
C←B

.
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2. Initials:

1.(5pts) Suppose that B = {b1,b2} and C = {c1, c2} are two bases for a vector space V , and

the change-of-coordinate matrix from B to C is given as P
C←B

=

[
2 −3
−1 2

]
.

For v = 2b1 + b2, what is [v]C, the C-coordinate for v?

(a)

[
2
1

]
(b)

[
2
−1

]
(c)

[
1
0

]
(d)

[
−3

2

]
(e)

[
0
1

]

2.(5pts) If the row space of a 7× 4 matrix A is of dimension 2, then what is the dimension of
the null space of AT (the transpose of A)?

(a) 3 (b) 1 (c) 2 (d) 4 (e) 5



3. Initials:

3.(5pts) Let Pn be the vector space of all polynomials of degree at most n. Which of the
following statement is NOT true?

(a) If T : P5 → R2 is a linear transformation, then ker(T ) is a subspace of R2.

(b) The function D : P10 → P10 defined by D(f(t)) = f ′(t) (the derivative of f)
is a linear transformation.

(c) The set of f(t) in P3 such that f(−1) = f(2) is a subspace of P3.

(d) The function T : P2 → R2 defined by T (f(t)) =

[
f(0)

f(−2)

]
is a linear transformation.

(e) P5 is a subspace of P9.

4.(5pts) Which of the following statements is false for a non-invertible, n× n matrix A?

(a) Nul(A) 6= {0}. (b) det(A) = 0.

(c) AT is not invertible. (d) The row space of A is Rn.

(e) λ = 0 is an eigenvalue of A.



4. Initials:

5.(5pts) The vector

 1
1
0

 is an eigenvector of the matrix

 0 5 2
−1 6 2

3 −3 7

.

What is the corresponding eigenvalue?

(a) 5 (b) 7 (c) 0 (d) 3 (e) 1

6.(5pts) If A =

[
1 1
1 0

]−1 [−1 0
0 1

2

] [
1 1
1 0

]
, what is the (2, 1)-entry of A5 ?

(a) −31

32
(b)

33

32
(c)

31

32
(d) −33

32
(e)

1

32



5. Initials:

7.(5pts) Let A,B,C be 2× 2 matrices with det(A) = −2, det(B) = 5, and det(C) =
1

3
.

What is det
(

(A−1B)TC−1
)

?

Note: Remember that (A−1B)T means the transpose of (A−1B).

(a) −6

5
(b)

15

2
(c) −30 (d)

6

5
(e) −15

2

8.(5pts) Mary wants to solve the matrix equation Ax = b in her father’s thirty-year-old
notebook. However, due to the ink stain on the notebook, she can only read the partial
information

A =

� 0 −3
� 5 1
1 2 3

, det(A) = −4, x =

x1x2
x3

, and b =

 1
0
−3

.

(� means the ink stain.) Although she cannot solve the whole system, she observed that
she can still find x1 using Cramer’s rule. What is x1?

(a) −8 (b) 8 (c) 0 (d) −4 (e) 4



6. Initials:

9.(5pts) The set B = {1, 1 − t, 1 − t − t2} forms a basis for the vector space P2. Find the
coordinate vector [p]B of p(t) = 4t2 + 5t− 2.

(a)

 3
1
4

 (b)

 3
−1
−4

 (c)

−2
5
4

 (d)

−4
1
3

 (e)

 4
5
−2



10.(5pts) The linear transformation T : R2 → R2 is defined as T

([
x
y

])
=

[
x− y

2x+ 3y

]
.

For the basis B =

{[
1
−1

]
,

[
2
−1

]}
of R2, what is [T ]B (the B-matrix of T )?

(a)

[
1 2
−1 −1

]
(b)

[
1 2
−1 3

]
(c)

[
0 −5
1 4

]
(d)

[
0 −4
1 −5

]
(e)

[
0 1
−5 4

]



7. Initials:

11.(5pts) Find the eigenvalues of the matrix

[
0 −2
5 2

]
.

(a) 1 + 6i and 1− 6i . (b) 1 + 3i and 1− 3i . (c) 1 +
√

11 and 1−
√

11.

(d) 0 and 2. (e) 5 and −2.

12.(5pts) Which of the following vector is orthogonal to the vector

−1
6
−2

?

(a)

 2
√

5
0

−
√

5

 (b)

 √
6
1

−
√

3

 (c)

 2
1
3

 (d)

 6
−1
−3

 (e)

 0
1
−3





8. Initials:

13.(10pts) The matrix A =


2 −1 4 4 3
3 0 3 2 −7
5 −1 7 6 −4
1 1 −1 5 −3

 is row equivalent to


1 0 1 0 −3
0 1 −2 0 −5
0 0 0 1 1
0 0 0 0 0

.

(You do not need to check for this.)
(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the null space of A.



9. Initials:

14.(10pts) For the matrix

A =

−1 6 −2
0 2 5
0 0 3

 ,
find an invertible matrix P and a diagonal matrix D such that A = PDP−1.

Note: You do not need to calculate P−1



10. Initials:

15.(10pts) Let B =

{[
7
−4

]
,

[
6
1

]}
and C =

{[
5
−2

]
,

[
3
−1

]}
be two basis of R2.

Find the change-of-coordinate matrix from B to C, i.e., P
C←B

.
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2. Initials:

1.(5pts) The set B = {1, 1 − t, 1 − t − t2} forms a basis for the vector space P2. Find the
coordinate vector [p]B of p(t) = 4t2 + 5t− 2.

(a)

 3
1
4

 (b)

 4
5
−2

 (c)

 3
−1
−4

 (d)

−2
5
4

 (e)

−4
1
3



2.(5pts) Let A,B,C be 2× 2 matrices with det(A) = −2, det(B) = 5, and det(C) =
1

3
.

What is det
(

(A−1B)TC−1
)

?

Note: Remember that (A−1B)T means the transpose of (A−1B).

(a) −30 (b) −15

2
(c)

15

2
(d)

6

5
(e) −6

5



3. Initials:

3.(5pts) Which of the following vector is orthogonal to the vector

−1
6
−2

?

(a)

 2
√

5
0

−
√

5

 (b)

 √
6
1

−
√

3

 (c)

 0
1
−3

 (d)

 2
1
3

 (e)

 6
−1
−3



4.(5pts) If the row space of a 7× 4 matrix A is of dimension 2, then what is the dimension of
the null space of AT (the transpose of A)?

(a) 1 (b) 5 (c) 4 (d) 2 (e) 3



4. Initials:

5.(5pts) The linear transformation T : R2 → R2 is defined as T

([
x
y

])
=

[
x− y

2x+ 3y

]
.

For the basis B =

{[
1
−1

]
,

[
2
−1

]}
of R2, what is [T ]B (the B-matrix of T )?

(a)

[
1 2
−1 −1

]
(b)

[
0 −4
1 −5

]
(c)

[
1 2
−1 3

]
(d)

[
0 −5
1 4

]
(e)

[
0 1
−5 4

]

6.(5pts) Find the eigenvalues of the matrix

[
0 −2
5 2

]
.

(a) 0 and 2. (b) 1 + 6i and 1− 6i . (c) 5 and −2.

(d) 1 +
√

11 and 1−
√

11. (e) 1 + 3i and 1− 3i .



5. Initials:

7.(5pts) The vector

 1
1
0

 is an eigenvector of the matrix

 0 5 2
−1 6 2

3 −3 7

.

What is the corresponding eigenvalue?

(a) 0 (b) 5 (c) 1 (d) 7 (e) 3

8.(5pts) Mary wants to solve the matrix equation Ax = b in her father’s thirty-year-old
notebook. However, due to the ink stain on the notebook, she can only read the partial
information

A =

� 0 −3
� 5 1
1 2 3

, det(A) = −4, x =

x1x2
x3

, and b =

 1
0
−3

.

(� means the ink stain.) Although she cannot solve the whole system, she observed that
she can still find x1 using Cramer’s rule. What is x1?

(a) 0 (b) −4 (c) 8 (d) −8 (e) 4



6. Initials:

9.(5pts) Let Pn be the vector space of all polynomials of degree at most n. Which of the
following statement is NOT true?

(a) The function T : P2 → R2 defined by T (f(t)) =

[
f(0)

f(−2)

]
is a linear transformation.

(b) P5 is a subspace of P9.

(c) If T : P5 → R2 is a linear transformation, then ker(T ) is a subspace of R2.

(d) The set of f(t) in P3 such that f(−1) = f(2) is a subspace of P3.

(e) The function D : P10 → P10 defined by D(f(t)) = f ′(t) (the derivative of f)
is a linear transformation.

10.(5pts) If A =

[
1 1
1 0

]−1 [−1 0
0 1

2

] [
1 1
1 0

]
, what is the (2, 1)-entry of A5 ?

(a)
1

32
(b)

31

32
(c) −31

32
(d)

33

32
(e) −33

32



7. Initials:

11.(5pts) Suppose that B = {b1,b2} and C = {c1, c2} are two bases for a vector space V , and

the change-of-coordinate matrix from B to C is given as P
C←B

=

[
2 −3
−1 2

]
.

For v = 2b1 + b2, what is [v]C, the C-coordinate for v?

(a)

[
1
0

]
(b)

[
2
−1

]
(c)

[
2
1

]
(d)

[
−3

2

]
(e)

[
0
1

]

12.(5pts) Which of the following statements is false for a non-invertible, n× n matrix A?

(a) AT is not invertible. (b) Nul(A) 6= {0}. (c) λ = 0 is an eigenvalue of A.

(d) The row space of A is Rn.(e) det(A) = 0.



8. Initials:

13.(10pts) The matrix A =


2 −1 4 4 3
3 0 3 2 −7
5 −1 7 6 −4
1 1 −1 5 −3

 is row equivalent to


1 0 1 0 −3
0 1 −2 0 −5
0 0 0 1 1
0 0 0 0 0

.

(You do not need to check for this.)
(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the null space of A.



9. Initials:

14.(10pts) For the matrix

A =

−1 6 −2
0 2 5
0 0 3

 ,
find an invertible matrix P and a diagonal matrix D such that A = PDP−1.

Note: You do not need to calculate P−1



10. Initials:

15.(10pts) Let B =

{[
7
−4

]
,

[
6
1

]}
and C =

{[
5
−2

]
,

[
3
−1

]}
be two basis of R2.

Find the change-of-coordinate matrix from B to C, i.e., P
C←B

.


