Department of Mathematics
University of Notre Dame
Math 20580 - Spring 2013

Name: \qquad

Version \#1
Exam 2

March 19, 2013

This exam is in 2 parts on 10 pages and contains 15 problems worth a total of 100 points. You have 1 hour and 15 minutes to work on it. No calculators, books, notes, or other aids are allowed except for one piece of paper you brought with you. Be sure to write your name on this page and to put your initials at the top of every page in case pages become detached. On the partial credit problems you must show your work and all important steps to receive credit. Good luck!
Honor Pledge: As a member of the Notre Dame community, I will not participate in nor tolerate academic dishonesty.

Signature: \qquad
Mark your answers to the multiple choice problems here.
Place an \times through your answer to each problem.

1. (a)
(b)
(•)
(d)
(e)
2. (a)
(b)
(c)
(d)
(•)
3. (•)
(b)
(c)
(d)
(e)
4. (a)
(•)
(c)
(d)
(e)
5. (a)
(b)
(c)
(•)
(e)
6. (a)
(•)
(c)
(d)
(e)
7. (a)
(b)
(c)
(•)
(e)
8. (a)
(b)
(c)
(d)
(•)
9. (a)
(•)
(c)
(d)
(e)
10
(b)
(c)
(d)
(e)
10. (a)
(b)
(•)
(d)
(e)
11.

(b)
(c)
(d)
(e)

Please do not write below this line.
This space is for grading.
Answers to the partial credit problems should be circled along with your work on the page with the problem.
MC. \qquad
13. \qquad
14. \qquad
15. \qquad

Department of Mathematics
University of Notre Dame
Math 20580 - Spring 2013

Name: \qquad

Section: \qquad

Exam 2

March 19, 2013

This exam is in 2 parts on 10 pages and contains 15 problems worth a total of 100 points. You have 1 hour and 15 minutes to work on it. No calculators, books, notes, or other aids are allowed except for one piece of paper you brought with you. Be sure to write your name on this page and to put your initials at the top of every page in case pages become detached. On the partial credit problems you must show your work and all important steps to receive credit. Good luck!
Honor Pledge: As a member of the Notre Dame community, I will not participate in nor tolerate academic dishonesty.

Signature: \qquad
Mark your answers to the multiple choice problems here.
Place an \times through your answer to each problem.

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)
8. (a)
(b)
(c)
(d)
(e)
9. (a)
(b)
(c)
(d)
(e)
10. (a)
(b)
(c)
(d)
(e)
11. (a)
(b)
(c)
(d)
(e)
12. (a)
(b)
(c)
(d)
(e)

Please do not write below this line.
This space is for grading.
Answers to the partial credit problems should be circled along with your work on the page with the problem.
MC. \qquad
13. \qquad
14. \qquad
15. \qquad
2. Initials: \qquad

1. (5pts) Let A, B, C be 2×2 matrices with $\operatorname{det}(A)=-2$, $\operatorname{det}(B)=5$, and $\operatorname{det}(C)=\frac{1}{3}$.

What is $\operatorname{det}\left(\left(A^{-1} B\right)^{T} C^{-1}\right)$?
Note: Remember that $\left(A^{-1} B\right)^{T}$ means the transpose of $\left(A^{-1} B\right)$.
(a) -30
(b) $\frac{15}{2}$
(c) $-\frac{15}{2}$
(d) $\frac{6}{5}$
(e) $-\frac{6}{5}$
2.(5pts) Mary wants to solve the matrix equation $A \mathbf{x}=\mathbf{b}$ in her father's thirty-year-old notebook. However, due to the ink stain on the notebook, she can only read the partial information

$$
A=\left[\begin{array}{rrr}
\square & 0 & -3 \\
\mathbf{\square} & 5 & 1 \\
1 & 2 & 3
\end{array}\right], \operatorname{det}(A)=-4, \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text {, and } \mathbf{b}=\left[\begin{array}{r}
1 \\
0 \\
-3
\end{array}\right]
$$

(■ means the ink stain.) Although she cannot solve the whole system, she observed that she can still find x_{1} using Cramer's rule. What is x_{1} ?
(a) 0
(b) 4
(c) -8
(d) -4
(e) 8
\qquad
3. (5pts) If the row space of a 7×4 matrix A is of dimension 2 , then what is the dimension of the null space of A^{T} (the transpose of A)?
(a) 5
(b) 3
(c) 1
(d) 4
(e) 2
4. $(5 \mathrm{pts})$ Let \mathbb{P}_{n} be the vector space of all polynomials of degree at most n. Which of the following statement is NOT true?
(a) \mathbb{P}_{5} is a subspace of \mathbb{P}_{9}.
(b) If $T: \mathbb{P}_{5} \rightarrow \mathbb{R}^{2}$ is a linear transformation, then $\operatorname{ker}(T)$ is a subspace of \mathbb{R}^{2}.
(c) The function $D: \mathbb{P}_{10} \rightarrow \mathbb{P}_{10}$ defined by $D(f(t))=f^{\prime}(t)$ (the derivative of f) is a linear transformation.
(d) The set of $f(t)$ in \mathbb{P}_{3} such that $f(-1)=f(2)$ is a subspace of \mathbb{P}_{3}.
(e) The function $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ defined by $T(f(t))=\left[\begin{array}{r}f(0) \\ f(-2)\end{array}\right]$ is a linear transformation.
\qquad
5. (5pts) The set $\mathcal{B}=\left\{1,1-t, 1-t-t^{2}\right\}$ forms a basis for the vector space \mathbb{P}_{2}. Find the coordinate vector $[p]_{\mathcal{B}}$ of $p(t)=4 t^{2}+5 t-2$.
(a) $\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$
(b) $\left[\begin{array}{r}-4 \\ 1 \\ 3\end{array}\right]$
(c) $\left[\begin{array}{r}4 \\ 5 \\ -2\end{array}\right]$
(d) $\left[\begin{array}{r}3 \\ -1 \\ -4\end{array}\right]$
(e) $\left[\begin{array}{r}-2 \\ 5 \\ 4\end{array}\right]$
6. (5pts) Which of the following statements is false for a non-invertible, $n \times n$ matrix A ?
(a) $\operatorname{det}(A)=0$.
(b) The row space of A is \mathbb{R}^{n}.
(c) A^{T} is not invertible.
(d) $\operatorname{Nul}(A) \neq\{\mathbf{0}\}$.
(e) $\lambda=0$ is an eigenvalue of A.
\qquad
7.(5pts) Suppose that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ are two bases for a vector space V, and the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} is given as $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{rr}2 & -3 \\ -1 & 2\end{array}\right]$. For $\mathbf{v}=2 \mathbf{b}_{1}+\mathbf{b}_{2}$, what is $[\mathbf{v}]_{\mathcal{C}}$, the \mathcal{C}-coordinate for \mathbf{v} ?
(a) $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{r}-3 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(e) $\left[\begin{array}{r}2 \\ -1\end{array}\right]$
8.(5pts) The linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined as $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{r}x-y \\ 2 x+3 y\end{array}\right]$. For the basis $\mathcal{B}=\left\{\left[\begin{array}{r}1 \\ -1\end{array}\right],\left[\begin{array}{r}2 \\ -1\end{array}\right]\right\}$ of \mathbb{R}^{2}, what is $[T]_{\mathcal{B}}($ the \mathcal{B}-matrix of $T)$?
(a) $\left[\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right]$
(b) $\left[\begin{array}{rr}1 & 2 \\ -1 & -1\end{array}\right]$
(c) $\left[\begin{array}{rr}0 & 1 \\ -5 & 4\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & -4 \\ 1 & -5\end{array}\right]$
(e) $\left[\begin{array}{rr}0 & -5 \\ 1 & 4\end{array}\right]$
6.

Initials: \qquad
9.(5pts) The vector $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is an eigenvector of the matrix $\left[\begin{array}{rrr}0 & 5 & 2 \\ -1 & 6 & 2 \\ 3 & -3 & 7\end{array}\right]$.

What is the corresponding eigenvalue?
(a) 0
(b) 5
(c) 7
(d) 3
(e) 1
10. (5pts) Find the eigenvalues of the matrix $\left[\begin{array}{rr}0 & -2 \\ 5 & 2\end{array}\right]$.
(a) $1+3 i$ and $1-3 i$.
(b) 5 and -2 .
(c) 0 and 2 .
(d) $1+6 i$ and $1-6 i$.
(e) $1+\sqrt{11}$ and $1-\sqrt{11}$.
\qquad
11. $(5 \mathrm{pts})$ Which of the following vector is orthogonal to the vector $\left[\begin{array}{r}-1 \\ 6 \\ -2\end{array}\right]$?
(a) $\left[\begin{array}{r}\sqrt{6} \\ 1 \\ -\sqrt{3}\end{array}\right]$
(b) $\left[\begin{array}{r}0 \\ 1 \\ -3\end{array}\right]$
(c) $\left[\begin{array}{r}2 \sqrt{5} \\ 0 \\ -\sqrt{5}\end{array}\right]$
(d) $\left[\begin{array}{r}6 \\ -1 \\ -3\end{array}\right]$
(e) $\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$
12.(5pts) If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{-1}\left[\begin{array}{rr}-1 & 0 \\ 0 & \frac{1}{2}\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, what is the $(2,1)$-entry of A^{5} ?
(a) $-\frac{33}{32}$
(b) $\frac{1}{32}$
(c) $-\frac{31}{32}$
(d) $\frac{33}{32}$
(e) $\frac{31}{32}$
8.
13. (10pts) The matrix $A=\left[\begin{array}{rrrrr}2 & -1 & 4 & 4 & 3 \\ 3 & 0 & 3 & 2 & -7 \\ 5 & -1 & 7 & 6 & -4 \\ 1 & 1 & -1 & 5 & -3\end{array}\right]$
\qquad
(You do not need to check for this.)
(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the null space of A.
9.

Initials:
14.(10pts) For the matrix

$$
A=\left[\begin{array}{rrr}
-1 & 6 & -2 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right],
$$

find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. Note: You do not need to calculate P^{-1}
10.

Initials: \qquad
15.(10pts) Let $\mathcal{B}=\left\{\left[\begin{array}{r}7 \\ -4\end{array}\right],\left[\begin{array}{l}6 \\ 1\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{r}5 \\ -2\end{array}\right],\left[\begin{array}{r}3 \\ -1\end{array}\right]\right\}$ be two basis of \mathbb{R}^{2}.

Find the change-of-coordinate matrix from \mathcal{B} to \mathcal{C}, i.e., ${ }_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$.

Department of Mathematics
University of Notre Dame
Math 20580 - Spring 2013

Name: \qquad

Version \#2
Section: \qquad

Exam 2

March 19, 2013

This exam is in 2 parts on 10 pages and contains 15 problems worth a total of 100 points. You have 1 hour and 15 minutes to work on it. No calculators, books, notes, or other aids are allowed except for one piece of paper you brought with you. Be sure to write your name on this page and to put your initials at the top of every page in case pages become detached. On the partial credit problems you must show your work and all important steps to receive credit. Good luck!
Honor Pledge: As a member of the Notre Dame community, I will not participate in nor tolerate academic dishonesty.

Signature: \qquad
Mark your answers to the multiple choice problems here.
Place an \times through your answer to each problem.

1. (a)
(b)
(•)
(d)
(e)
2. (a)
(b)
(c)
(d)
(•)
3. (•)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(•)
(e)
5. (•)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(•)
(e)
7. (a)
(b)
(c)
(d)
(•)
8. (a)
(•)
(c)
(d)
(e)
9. (a)
(•)
(c)
(d)
(e)
10. (a)
(b)
(•)
(d)
(e)
11. (a)
(•)
(c)
(d)
(e)
12. (•)
(b)
(c)
(d)
(e)

Please do not write below this line.
MC. \qquad

This space is for grading.
13. \qquad
Answers to the partial credit problems should be circled along with your work on the page with the problem.
14. \qquad
15. \qquad

Department of Mathematics
University of Notre Dame
Math 20580 - Spring 2013

Name: \qquad

Section: \qquad

Exam 2

March 19, 2013

This exam is in 2 parts on 10 pages and contains 15 problems worth a total of 100 points. You have 1 hour and 15 minutes to work on it. No calculators, books, notes, or other aids are allowed except for one piece of paper you brought with you. Be sure to write your name on this page and to put your initials at the top of every page in case pages become detached. On the partial credit problems you must show your work and all important steps to receive credit. Good luck!

Honor Pledge: As a member of the Notre Dame community, I will not participate in nor tolerate academic dishonesty.

Signature: \qquad
Mark your answers to the multiple choice problems here.
Place an \times through your answer to each problem.

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)
8. (a)
(b)
(c)
(d)
(e)
9. (a)
(b)
(c)
(d)
(e)
10. (a)
(b)
(c)
(d)
(e)
11. (a)
(b)
(c)
(d)
(e)
12. (a)
(b)
(c)
(d)
(e)

Please do not write below this line.
MC. \qquad

This space is for grading.
13. \qquad
Answers to the partial credit problems should be circled along with your work on the page with the problem.
14. \qquad
15. \qquad
\qquad
1.(5pts) Suppose that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ are two bases for a vector space V, and the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} is given as $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{rr}2 & -3 \\ -1 & 2\end{array}\right]$. For $\mathbf{v}=2 \mathbf{b}_{1}+\mathbf{b}_{2}$, what is $[\mathbf{v}]_{\mathcal{C}}$, the \mathcal{C}-coordinate for \mathbf{v} ?
(a) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{r}2 \\ -1\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(d) $\left[\begin{array}{r}-3 \\ 2\end{array}\right]$
(e) $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
2. (5pts) If the row space of a 7×4 matrix A is of dimension 2 , then what is the dimension of the null space of A^{T} (the transpose of A)?
(a) 3
(b) 1
(c) 2
(d) 4
(e) 5
\qquad
3. (5pts) Let \mathbb{P}_{n} be the vector space of all polynomials of degree at most n. Which of the following statement is NOT true?
(a) If $T: \mathbb{P}_{5} \rightarrow \mathbb{R}^{2}$ is a linear transformation, then $\operatorname{ker}(T)$ is a subspace of \mathbb{R}^{2}.
(b) The function $D: \mathbb{P}_{10} \rightarrow \mathbb{P}_{10}$ defined by $D(f(t))=f^{\prime}(t)$ (the derivative of f) is a linear transformation.
(c) The set of $f(t)$ in \mathbb{P}_{3} such that $f(-1)=f(2)$ is a subspace of \mathbb{P}_{3}.
(d) The function $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ defined by $T(f(t))=\left[\begin{array}{r}f(0) \\ f(-2)\end{array}\right]$ is a linear transformation.
(e) \mathbb{P}_{5} is a subspace of \mathbb{P}_{9}.
4.(5pts) Which of the following statements is false for a non-invertible, $n \times n$ matrix A ?
(a) $\operatorname{Nul}(A) \neq\{\mathbf{0}\}$.
(b) $\operatorname{det}(A)=0$.
(c) A^{T} is not invertible.
(d) The row space of A is \mathbb{R}^{n}.
(e) $\lambda=0$ is an eigenvalue of A.
4.

Initials: \qquad
5.(5pts) The vector $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is an eigenvector of the matrix $\left[\begin{array}{rrr}0 & 5 & 2 \\ -1 & 6 & 2 \\ 3 & -3 & 7\end{array}\right]$.

What is the corresponding eigenvalue?
(a) 5
(b) 7
(c) 0
(d) 3
(e) 1
6. (5pts) If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{-1}\left[\begin{array}{rr}-1 & 0 \\ 0 & \frac{1}{2}\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, what is the $(2,1)$-entry of A^{5} ?
(a) $-\frac{31}{32}$
(b) $\frac{33}{32}$
(c) $\frac{31}{32}$
(d) $-\frac{33}{32}$
(e) $\frac{1}{32}$
\qquad
7. $(5 \mathrm{pts})$ Let A, B, C be 2×2 matrices with $\operatorname{det}(A)=-2, \operatorname{det}(B)=5$, and $\operatorname{det}(C)=\frac{1}{3}$.

What is $\operatorname{det}\left(\left(A^{-1} B\right)^{T} C^{-1}\right)$?
Note: Remember that $\left(A^{-1} B\right)^{T}$ means the transpose of $\left(A^{-1} B\right)$.
(a) $-\frac{6}{5}$
(b) $\frac{15}{2}$
(c) -30
(d) $\frac{6}{5}$
(e) $-\frac{15}{2}$
8.(5pts) Mary wants to solve the matrix equation $A \mathbf{x}=\mathbf{b}$ in her father's thirty-year-old notebook. However, due to the ink stain on the notebook, she can only read the partial information

$$
A=\left[\begin{array}{rrr}
\boldsymbol{\square} & 0 & -3 \\
\boldsymbol{\square} & 5 & 1 \\
1 & 2 & 3
\end{array}\right], \operatorname{det}(A)=-4, \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \text { and } \mathbf{b}=\left[\begin{array}{r}
1 \\
0 \\
-3
\end{array}\right]
$$

(■ means the ink stain.) Although she cannot solve the whole system, she observed that she can still find x_{1} using Cramer's rule. What is x_{1} ?
(a) -8
(b) 8
(c) 0
(d) -4
(e) 4
\qquad
9. (5pts) The set $\mathcal{B}=\left\{1,1-t, 1-t-t^{2}\right\}$ forms a basis for the vector space \mathbb{P}_{2}. Find the coordinate vector $[p]_{\mathcal{B}}$ of $p(t)=4 t^{2}+5 t-2$.
(a) $\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$
(b) $\left[\begin{array}{r}3 \\ -1 \\ -4\end{array}\right]$
(c) $\left[\begin{array}{r}-2 \\ 5 \\ 4\end{array}\right]$
(d) $\left[\begin{array}{r}-4 \\ 1 \\ 3\end{array}\right]$
(e) $\left[\begin{array}{r}4 \\ 5 \\ -2\end{array}\right]$
10. 5 pts) The linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined as $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{r}x-y \\ 2 x+3 y\end{array}\right]$. For the basis $\mathcal{B}=\left\{\left[\begin{array}{r}1 \\ -1\end{array}\right],\left[\begin{array}{r}2 \\ -1\end{array}\right]\right\}$ of \mathbb{R}^{2}, what is $[T]_{\mathcal{B}}($ the \mathcal{B}-matrix of $T)$?
(a) $\left[\begin{array}{rr}1 & 2 \\ -1 & -1\end{array}\right]$
(b) $\left[\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right]$
(c) $\left[\begin{array}{rr}0 & -5 \\ 1 & 4\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & -4 \\ 1 & -5\end{array}\right]$
(e) $\left[\begin{array}{rr}0 & 1 \\ -5 & 4\end{array}\right]$
\qquad
11.(5pts) Find the eigenvalues of the matrix $\left[\begin{array}{rr}0 & -2 \\ 5 & 2\end{array}\right]$.
(a) $1+6 i$ and $1-6 i$.
(b) $1+3 i$ and $1-3 i$.
(c) $1+\sqrt{11}$ and $1-\sqrt{11}$.
(d) 0 and 2 .
(e) 5 and -2 .
12.(5pts) Which of the following vector is orthogonal to the vector $\left[\begin{array}{r}-1 \\ 6 \\ -2\end{array}\right]$?
(a) $\left[\begin{array}{r}2 \sqrt{5} \\ 0 \\ -\sqrt{5}\end{array}\right]$
(b) $\left[\begin{array}{r}\sqrt{6} \\ 1 \\ -\sqrt{3}\end{array}\right]$
(c) $\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$
(d) $\left[\begin{array}{r}6 \\ -1 \\ -3\end{array}\right]$
(e) $\left[\begin{array}{r}0 \\ 1 \\ -3\end{array}\right]$
8.
13. (10pts) The matrix $A=\left[\begin{array}{rrrrr}2 & -1 & 4 & 4 & 3 \\ 3 & 0 & 3 & 2 & -7 \\ 5 & -1 & 7 & 6 & -4 \\ 1 & 1 & -1 & 5 & -3\end{array}\right]$
\qquad
(You do not need to check for this.)
(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the null space of A.
9.

Initials:
14.(10pts) For the matrix

$$
A=\left[\begin{array}{rrr}
-1 & 6 & -2 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right],
$$

find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. Note: You do not need to calculate P^{-1}
10.

Initials: \qquad
15.(10pts) Let $\mathcal{B}=\left\{\left[\begin{array}{r}7 \\ -4\end{array}\right],\left[\begin{array}{l}6 \\ 1\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{r}5 \\ -2\end{array}\right],\left[\begin{array}{r}3 \\ -1\end{array}\right]\right\}$ be two basis of \mathbb{R}^{2}.

Find the change-of-coordinate matrix from \mathcal{B} to \mathcal{C}, i.e., ${ }_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$.

Department of Mathematics
University of Notre Dame
Math 20580 - Spring 2013

Name: \qquad

Version \#3
Section: \qquad

Exam 2

March 19, 2013

This exam is in 2 parts on 10 pages and contains 15 problems worth a total of 100 points. You have 1 hour and 15 minutes to work on it. No calculators, books, notes, or other aids are allowed except for one piece of paper you brought with you. Be sure to write your name on this page and to put your initials at the top of every page in case pages become detached. On the partial credit problems you must show your work and all important steps to receive credit. Good luck!

Honor Pledge: As a member of the Notre Dame community, I will not participate in nor tolerate academic dishonesty.

Signature: \qquad
Mark your answers to the multiple choice problems here.
Place an \times through your answer to each problem.

1. (a)
(b)
(•)
(d)
(e)
2. (a)
(•)
(c)
(d)
(e)
3. (•)
(b)
(c)
(d)
(e)
4. (a)
(•)
(c)
(d)
(e)
5. (a)
(b)
(c)

-

(e)
6. (a)
(b)
(c)
(d)
(•)
7. (a)
(•)
(c)
(d)
(e)
8. (a)
(b)
(•)
(d)
(e)
9. (a)
(b)
-
(d)
(e)
10. (a)
(b)
(c)
(d)
(•)
11. (•)
(b)
(c)
(d)
(e)
12. (a)
(b)
(c)
(•)
(e)

Please do not write below this line.
MC. \qquad

This space is for grading.
13. \qquad
Answers to the partial credit problems should be circled along with your work on the page with the problem.
14. \qquad
15. \qquad

Department of Mathematics
University of Notre Dame
Math 20580 - Spring 2013

Name: \qquad

Section: \qquad

Exam 2

March 19, 2013

This exam is in 2 parts on 10 pages and contains 15 problems worth a total of 100 points. You have 1 hour and 15 minutes to work on it. No calculators, books, notes, or other aids are allowed except for one piece of paper you brought with you. Be sure to write your name on this page and to put your initials at the top of every page in case pages become detached. On the partial credit problems you must show your work and all important steps to receive credit. Good luck!

Honor Pledge: As a member of the Notre Dame community, I will not participate in nor tolerate academic dishonesty.

Signature: \qquad
Mark your answers to the multiple choice problems here.
Place an \times through your answer to each problem.

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)
8. (a)
(b)
(c)
(d)
(e)
9. (a)
(b)
(c)
(d)
(e)
10. (a)
(b)
(c)
(d)
(e)
11. (a)
(b)
(c)
(d)
(e)
12. (a)
(b)
(c)
(d)
(e)

Please do not write below this line.
MC. \qquad

This space is for grading.
13. \qquad
Answers to the partial credit problems should be circled along with your work on the page with the problem.
14. \qquad
15. \qquad
\qquad

1. (5pts) The set $\mathcal{B}=\left\{1,1-t, 1-t-t^{2}\right\}$ forms a basis for the vector space \mathbb{P}_{2}. Find the coordinate vector $[p]_{\mathcal{B}}$ of $p(t)=4 t^{2}+5 t-2$.
(a) $\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$
(b) $\left[\begin{array}{r}4 \\ 5 \\ -2\end{array}\right]$
(c) $\left[\begin{array}{r}3 \\ -1 \\ -4\end{array}\right]$
(d) $\left[\begin{array}{r}-2 \\ 5 \\ 4\end{array}\right]$
(e) $\left[\begin{array}{r}-4 \\ 1 \\ 3\end{array}\right]$
2.(5pts) Let A, B, C be 2×2 matrices with $\operatorname{det}(A)=-2$, $\operatorname{det}(B)=5$, and $\operatorname{det}(C)=\frac{1}{3}$. What is $\operatorname{det}\left(\left(A^{-1} B\right)^{T} C^{-1}\right)$?

Note: Remember that $\left(A^{-1} B\right)^{T}$ means the transpose of $\left(A^{-1} B\right)$.
(a) -30
(b) $-\frac{15}{2}$
(c) $\frac{15}{2}$
(d) $\frac{6}{5}$
(e) $-\frac{6}{5}$
3.

Initials: \qquad
3.(5pts) Which of the following vector is orthogonal to the vector $\left[\begin{array}{r}-1 \\ 6 \\ -2\end{array}\right]$?
(a) $\left[\begin{array}{r}2 \sqrt{5} \\ 0 \\ -\sqrt{5}\end{array}\right]$
(b) $\left[\begin{array}{r}\sqrt{6} \\ 1 \\ -\sqrt{3}\end{array}\right]$
(c) $\left[\begin{array}{r}0 \\ 1 \\ -3\end{array}\right]$
(d) $\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$
(e) $\left[\begin{array}{r}6 \\ -1 \\ -3\end{array}\right]$
4. (5pts) If the row space of a 7×4 matrix A is of dimension 2 , then what is the dimension of the null space of A^{T} (the transpose of A)?
(a) 1
(b) 5
(c) 4
(d) 2
(e) 3
4. Initials: \qquad
5.(5pts) The linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined as $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{r}x-y \\ 2 x+3 y\end{array}\right]$.

For the basis $\mathcal{B}=\left\{\left[\begin{array}{r}1 \\ -1\end{array}\right],\left[\begin{array}{r}2 \\ -1\end{array}\right]\right\}$ of \mathbb{R}^{2}, what is $[T]_{\mathcal{B}}($ the \mathcal{B}-matrix of $T)$?
(a) $\left[\begin{array}{rr}1 & 2 \\ -1 & -1\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & -4 \\ 1 & -5\end{array}\right]$
(c) $\left[\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right]$
(d) $\left[\begin{array}{rr}0 & -5 \\ 1 & 4\end{array}\right]$
(e) $\left[\begin{array}{rr}0 & 1 \\ -5 & 4\end{array}\right]$
6. (5pts) Find the eigenvalues of the matrix $\left[\begin{array}{rr}0 & -2 \\ 5 & 2\end{array}\right]$.
(a) 0 and 2 .
(b) $1+6 i$ and $1-6 i$.
(c) 5 and -2 .
(d) $1+\sqrt{11}$ and $1-\sqrt{11}$.
(e) $1+3 i$ and $1-3 i$.
5.

Initials: \qquad
7.(5pts) The vector $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is an eigenvector of the matrix $\left[\begin{array}{rrr}0 & 5 & 2 \\ -1 & 6 & 2 \\ 3 & -3 & 7\end{array}\right]$.

What is the corresponding eigenvalue?
(a) 0
(b) 5
(c) 1
(d) 7
(e) 3
8.(5pts) Mary wants to solve the matrix equation $A \mathbf{x}=\mathbf{b}$ in her father's thirty-year-old notebook. However, due to the ink stain on the notebook, she can only read the partial information

$$
A=\left[\begin{array}{rrr}
\boldsymbol{\square} & 0 & -3 \\
\square & 5 & 1 \\
1 & 2 & 3
\end{array}\right], \operatorname{det}(A)=-4, \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \text { and } \mathbf{b}=\left[\begin{array}{r}
1 \\
0 \\
-3
\end{array}\right]
$$

(■ means the ink stain.) Although she cannot solve the whole system, she observed that she can still find x_{1} using Cramer's rule. What is x_{1} ?
(a) 0
(b) -4
(c) 8
(d) -8
(e) 4
\qquad
9. (5 pts) Let \mathbb{P}_{n} be the vector space of all polynomials of degree at most n. Which of the following statement is NOT true?
(a) The function $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ defined by $T(f(t))=\left[\begin{array}{r}f(0) \\ f(-2)\end{array}\right]$ is a linear transformation.
(b) \mathbb{P}_{5} is a subspace of \mathbb{P}_{9}.
(c) If $T: \mathbb{P}_{5} \rightarrow \mathbb{R}^{2}$ is a linear transformation, then $\operatorname{ker}(T)$ is a subspace of \mathbb{R}^{2}.
(d) The set of $f(t)$ in \mathbb{P}_{3} such that $f(-1)=f(2)$ is a subspace of \mathbb{P}_{3}.
(e) The function $D: \mathbb{P}_{10} \rightarrow \mathbb{P}_{10}$ defined by $D(f(t))=f^{\prime}(t)$ (the derivative of f) is a linear transformation.
10. (5pts) If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{-1}\left[\begin{array}{rr}-1 & 0 \\ 0 & \frac{1}{2}\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, what is the $(2,1)$-entry of A^{5} ?
(a) $\frac{1}{32}$
(b) $\frac{31}{32}$
(c) $-\frac{31}{32}$
(d) $\frac{33}{32}$
(e) $-\frac{33}{32}$
\qquad
11. (5pts) Suppose that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ are two bases for a vector space V, and the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} is given as $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{rr}2 & -3 \\ -1 & 2\end{array}\right]$. For $\mathbf{v}=2 \mathbf{b}_{1}+\mathbf{b}_{2}$, what is $[\mathbf{v}]_{\mathcal{C}}$, the \mathcal{C}-coordinate for \mathbf{v} ?
(a) $\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{r}2 \\ -1\end{array}\right]$
(c) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{r}-3 \\ 2\end{array}\right]$
(e) $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
12. $(5 \mathrm{pts})$ Which of the following statements is false for a non-invertible, $n \times n$ matrix A ?
(a) A^{T} is not invertible.
(b) $\operatorname{Nul}(A) \neq\{\mathbf{0}\}$.
(c) $\lambda=0$ is an eigenvalue of A.
(d) The row space of A is \mathbb{R}^{n}.(e) $\operatorname{det}(A)=0$.
8.
13. (10pts) The matrix $A=\left[\begin{array}{rrrrr}2 & -1 & 4 & 4 & 3 \\ 3 & 0 & 3 & 2 & -7 \\ 5 & -1 & 7 & 6 & -4 \\ 1 & 1 & -1 & 5 & -3\end{array}\right]$
\qquad
(You do not need to check for this.)
(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the null space of A.
9.

Initials:
14.(10pts) For the matrix

$$
A=\left[\begin{array}{rrr}
-1 & 6 & -2 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right],
$$

find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. Note: You do not need to calculate P^{-1}
10.

Initials: \qquad
15.(10pts) Let $\mathcal{B}=\left\{\left[\begin{array}{r}7 \\ -4\end{array}\right],\left[\begin{array}{l}6 \\ 1\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{r}5 \\ -2\end{array}\right],\left[\begin{array}{r}3 \\ -1\end{array}\right]\right\}$ be two basis of \mathbb{R}^{2}.

Find the change-of-coordinate matrix from \mathcal{B} to \mathcal{C}, i.e., ${ }_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$.

