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Math 20580 Name:_ D6 /M g['lbn.S

Practice Midterm 3 Instructor:
April 16, 2015 Section:

Calculators are NOT allowed. Do not remove this answer page — you will return the whole
exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are
finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions
each worth 11 points. Record your answers by placing an x through one letter for each
problem on this answer sheet.

Sign the pledge. “On my honor, I have neither given nor received unauthorized aid on
this Exam”:
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Part I: Multiple choice questions (7 points each)
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1. Find the closest point to [IJ in the subspace of R® spanned by [IJ and ,: 1 } .
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2. Which of the following is a least square solution % to the equation
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3. Which of the following functions is a solution to the initial value problem
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4. Let A be an m x n matrix. Which of the following may be false?
(a) The equation ATAx = ATb is always consistent for any b in R™.
(b) AT A is invertible.
(c) A solution to ATAx = ATb is a least squares solution of Ax = b.
(d) The columns of AT lie in the column space of ATA.
(e) If ATAx = ATb then Ax — b is orthogonal to Col(A).
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5. Which of the following is a general solution to the differential equation

7 dy
1+ (E —sing) ¥ = 07
(y sin y) 0

(a) zy + ysiny —siny =c¢ (b) zy + ycosy — siny = cy
(c) zy + ysiny —cosy =c¢ (d) zy + ycosy —siny = ¢
(e) zy + ycosy —cosy =c¢
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6. Consider the initial value problem
: dy
sin(2z) + cos(3y)% =0 y(=/2)=x/3
Which of the following implicitly defines the solution?

(a) = co;(2x) L sin§3y) L _71 (b) — cos(2z) + sin(3y)1= %

(c) sin(2z) + cos(3y) = 1 (d) — cos(2z) + sin(3y) = —7
—cos(2z)  sin(3y) 1

e e

TZLD ) )ﬂ/dfqé/e . Fb'r‘ o )a/ot%b?\
géos %//aéf = ”[&P\Z;(c/x NG

S0 %Bl‘:\;/ = ‘2(052)( SR
\—Z:fuék/ é’dn.a/n{bn 7(V2> 0 :“’/Z_—fC ) C’;I/Z_



7. Let y(t) be the unique solution of the initial value problem

(2 —t) +cos( t) il
USSR

¥(3/2) =0

What is the largest interval where y is defined?
(a)t>0 (b)0<t<2 (c)l<t<?2 (dt<1/2 ()t <2
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8. A tank initially contains 100! of pure water. Then, at ¢ = 0, a sugar solution with
concentration of 4g/! starts being pumped into the tank at a rate of 5//min. The
tank is kept well mixed, and the solution is being pumped out at the rate of 4//min.
Which of the following is the initial value problem for y(t) = quantity of sugar, in
grams, in the tank at time ¢?

(a) g% = 5y — 4(100 + t) y(0) =

(b) gt =20—4y y(0)=0

(c) pre ¥(0) = 100
dy 4y K
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(e) d—f =20- (I_OO{W y(0) = 100
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Part II: Partial credit questions (11 points each). Show your work.

9. Using the Gram-Schmidt Process, find an orthonormal basis of the subspace of R*

1 1 1
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spanned by the vectors , and 1l
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10. By drawing a direction field, sketch two solutions to the ODE

dy_ 2 2

with initial conditions y(0) = 1 and y(0) = 3.
Indicate clearly the limiting behavior lim y(¢) and lim ().
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11. Find the function y(t), for ¢ > 0, which solves the initial value problem

dy e’
t—2 4 4y = 1) =
zTY="7 y(1)=0
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12. Consider the differential equation

dy

2 = —¢%
yd:z: €

(a) Find the general solution.
(b) Find the solution with y(0) = 1.
(c) What is the largest interval in which the solution in part (b) is defined?
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