Math 20580
Practice Midterm 3
April 16, 2015

Name:_	Solutions	
Instructor:_		
Section		

Calculators are NOT allowed. Do not remove this answer page – you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

- 1. a b c d
- 2. a b d e
- 3. a b d e
- 4. a c d e
- 5. a b c e
- 6. a b c d
- 7. a b d e
- 8. a b c 2 e

Multiple Choice.

9.

10.

11.

12.

Part I: Multiple choice questions (7 points each)

1. Find the closest point to
$$\begin{bmatrix} 1\\1\\2 \end{bmatrix}$$
 in the subspace of \mathbb{R}^3 spanned by $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$.

(a)
$$\begin{bmatrix} -2\\1\\1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -1\\1\\2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 8/5 \\ 1 \\ 6/5 \end{bmatrix}$$

(a)
$$\begin{bmatrix} -2\\1\\1 \end{bmatrix}$$
 (b) $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$ (c) $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$ (d) $\begin{bmatrix} 8/5\\1\\6/5 \end{bmatrix}$ (e) $\begin{bmatrix} -3/5\\1\\6/5 \end{bmatrix}$

Note that the subspace has an orthogonal basis $\binom{0}{0}$, $\binom{-1}{0}$. Therefore the projection of $\binom{1}{2}$ onto the

subspace has formula

$$\frac{\binom{1}{2}\cdot\binom{0}{0}}{1}\binom{0}{0}+\frac{\binom{1}{2}\cdot\binom{0}{2}}{5}\binom{0}{2}\binom{1}{0}=\binom{0}{0}+\frac{3}{5}\binom{1}{0}$$

2. Which of the following is a least square solution $\hat{\mathbf{x}}$ to the equation

$$\begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & -2 \\ 2 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 3 \end{bmatrix}?$$

(a)
$$\begin{bmatrix} 11/9 \\ 1/9 \end{bmatrix}$$
 (b) $\begin{bmatrix} 3/2 \\ 1/2 \end{bmatrix}$ (c) $\begin{bmatrix} 7/5 \\ 1/5 \end{bmatrix}$ (d) $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ (e) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$

(b)
$$\begin{bmatrix} 3/2 \\ 1/2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 7/5 \\ 1/5 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$A^{T}A = \begin{pmatrix} 1 & 2 & 1 & 2 \\ -2 & 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 1 \\ 1 & -2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix}$$

$$A^{T}\begin{pmatrix} 1\\3\\1\\3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 2\\-2 & 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1\\3\\3 \end{pmatrix} = \begin{pmatrix} 14\\2 \end{pmatrix}$$

So we see that (7/5) solves the normal egns. and (1/5) is the least square solution.

3. Which of the following functions is a solution to the initial value problem

$$\frac{dy}{dt} = (y-t)^2 + 1;$$
 $y(0) = -1?$

(a)
$$y = \frac{1}{t+1} - 2$$
 (b) $y = t$ (c) $y = \frac{-1}{t+1} + t$ (d) $y = t - 1$ (e) $y = \frac{-2}{t+1} + 1$

Egn. is not linear or separable so we need to plug in and check.

We see that @ solves the problem.

- 4. Let A be an $m \times n$ matrix. Which of the following may be false?
 - (a) The equation $A^T A \mathbf{x} = A^T \mathbf{b}$ is always consistent for any \mathbf{b} in \mathbb{R}^m .
 - (b) $A^T A$ is invertible.
 - (c) A solution to $A^T A \mathbf{x} = A^T \mathbf{b}$ is a least squares solution of $A \mathbf{x} = \mathbf{b}$.
 - (d) The columns of A^T lie in the column space of A^TA .
 - (e) If $A^T A \mathbf{x} = A^T \mathbf{b}$ then $A \mathbf{x} \mathbf{b}$ is orthogonal to Col(A).

(b) is sometimes take - for example it A=0.

The rest are always true.

5. Which of the following is a general solution to the differential equation

$$1 + (\frac{x}{y} - \sin y)\frac{dy}{dx} = 0?$$

(a)
$$xy + y \sin y - \sin y = c$$

(b)
$$xy + y \cos y - \sin y = cy$$

(c)
$$xy + y \sin y - \cos y = c$$

(d)
$$xy + y \cos y - \sin y = c$$

(e)
$$xy + y\cos y - \cos y = c$$

The equation has an integrating factor $\mu = y$. Multiplyong gives an exact egn.

y + (x-ysiny)y'=0.

$$Y_{x}=y \Rightarrow Y=xy+h(y).$$

$$h'(y) = -y \sin y \implies h = y \cos y - \sin y + C$$

$$\implies Y = xy + y \cos y - \sin y = C$$
6. Consider the initial value problem

$$\sin(2x) + \cos(3y)\frac{dy}{dx} = 0 \qquad y(\pi/2) = \pi/3$$

Which of the following implicitly defines the solution?

(a)
$$\frac{-\cos(2x)}{2} + \frac{\sin(3y)}{3} = \frac{-1}{2}$$
 (b) $-\cos(2x) + \sin(3y) = \frac{1}{2}$

(b)
$$-\cos(2x) + \sin(3y) = \frac{1}{2}$$

$$(c) \sin(2x) + \cos(3y) = 1$$

(c)
$$\sin(2x) + \cos(3y) = 1$$
 (d) $-\cos(2x) + \sin(3y) = \frac{-1}{2}$

(e)
$$\frac{-\cos(2x)}{2} + \frac{\sin(3y)}{3} = \frac{1}{2}$$

This is reparable. For a solution

$$\int \cos 3y \, dy = -\int \sin 2x \, dx + C$$

Initial condition gives 0=-12+C => C=1/2.

7. Let y(t) be the unique solution of the initial value problem

$$(t^2 - t)\frac{dy}{dt} + \cos(\pi t)y = \frac{t^2 - t}{t - 2} \qquad y(3/2) = 0$$

What is the largest interval where y is defined?

(a)
$$t > 0$$

(b)
$$0 < t < 2$$

(b)
$$0 < t < 2$$
 (c) $1 < t < 2$

(d)
$$t < 1/2$$

(e)
$$t < 2$$

In standard from
$$p(t) = \frac{\cos tt}{t(t-1)}$$
 which is singular

$$p(t) = \frac{\cos tt}{t(t-1)}$$

and
$$g(t) = \frac{t(t-1)}{t(t-1)(t-2)} = \frac{1}{t-2}$$
 which is singular at $t=2$.

Therefore a soln-extends to the orterval 1<t<2.

8. A tank initially contains 100l of pure water. Then, at t = 0, a sugar solution with concentration of 4g/l starts being pumped into the tank at a rate of $5l/\min$. The tank is kept well mixed, and the solution is being pumped out at the rate of $4l/\min$. Which of the following is the initial value problem for y(t) = quantity of sugar, in grams, in the tank at time t?

(a)
$$\frac{dy}{dt} = 5y - 4(100 + t)$$

(b) $\frac{dy}{dt} = 20 - 4y$
(c) $\frac{dy}{dy} = 4$
(d) $\frac{dy}{dt} = 20 - \frac{4y}{100 + t}$
(e) $\frac{dy}{dt} = 20 - \frac{y}{(100 + t)^2}$

$$y(0) = 0$$

(b)
$$\frac{dy}{dt} = 20 - 4y$$

$$y(0) = 0$$

(c)
$$\frac{dy}{dy} = 4$$

$$y(0) = 100$$

(d)
$$\frac{dy}{dt} = 20 - \frac{4y}{100 + t}$$

$$y(0) = 0$$

(e)
$$\frac{dy}{dt} = 20 - \frac{y}{(100+t)^2}$$

$$y(0) = 100$$

dy = (rate sugar enters) - (rate it leaves tank) = 4.5 - 4. (conc. of sugar) at time t

$$= 20 - \frac{4y}{100 + t}$$

since volume of fluid = 100 +t.

Part II: Partial credit questions (11 points each). Show your work.

9. Using the Gram-Schmidt Process, find an orthonormal basis of the subspace of R4

spanned by the vectors
$$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$
, $\begin{bmatrix} 1\\2\\1\\2 \end{bmatrix}$ and $\begin{bmatrix} 1\\3\\1\\3 \end{bmatrix}$.

First get an orthogonal basis. Set
$$y_i = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.

$$y_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 2 \end{pmatrix}.$$

$$\begin{pmatrix} z \\ z \end{pmatrix} - \begin{pmatrix} z \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$=$$
 $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} a \\ c \end{pmatrix}$

$$-\left|\begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array}\right| =$$

$$y_{3} = \begin{pmatrix} 1 \\ 3 \\ 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ \frac{3}{3} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ \frac{3}{3} \\ \frac{1}{3} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 1 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 3 \\ 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} - \frac{13}{9} \begin{pmatrix} 0 \\ 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 19 \\ -99 \\ 14 \end{pmatrix}$$

Normalizing, an orthonormal basis

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\frac{1}{3}\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$, $\frac{1}{\sqrt{18}}\begin{pmatrix} 0 \\ -4 \\ 1 \end{pmatrix}$.

10. By drawing a direction field, sketch two solutions to the ODE

$$\frac{dy}{dt} = t^2 y^2 (y - 2)$$

with initial conditions y(0) = 1 and y(0) = 3.

Indicate clearly the limiting behavior $\lim_{t\to\infty} y(t)$ and $\lim_{t\to-\infty} y(t)$.

11. Find the function y(t), for t > 0, which solves the initial value problem

$$t\frac{dy}{dt} + 4y = \frac{e^{-t}}{t^2}$$
 , $y(1) = 0$

This is linear. In standard form
$$y' + (\frac{4}{t})y = \frac{e^{-t}}{t^3}$$
,

$$p(t) = \frac{4}{t}$$
 and $g(t) = \frac{e^{-t}}{t^3}$.

An integrating factor is
$$y(t) = e^{\int \frac{\pi}{4} dt} = t^4$$

$$-1/(1-t)+c$$

The general solution
$$y = \frac{1}{t^4} \left(\int te^{-t} dt + C \right)$$

Compak:
$$-\int te^{-t}dt = -te^{-t} + \int e^{-t}dt$$

the by Parts
$$u=t, \ v'=e^{-t} = -te^{-t} - e^{-t} + C$$

$$u'=1, \ v=-e^{-t}$$

$$= -te^{-t} - e^{-t} + C$$

So
$$y = -\frac{e^{-t}}{t^3} - \frac{e^{-t}}{t^4} + \frac{C}{t^4}$$

$$y(1)=0 \implies -e^{-1}-e^{-1}+C=0 \implies C=2e^{-1}$$

$$\mathcal{L}_{y} = \frac{1}{t^{4}} \left(2e^{-1} - (t+1)e^{-t} \right).$$

12. Consider the differential equation

$$2y\frac{dy}{dx} = -e^x$$

- (a) Find the general solution.
- (b) Find the solution with y(0) = 1.
- (c) What is the largest interval in which the solution in part (b) is defined?

$$\begin{cases} 2y \, dy = \int -e^{x} dx + C \end{cases}$$

 \Rightarrow $y^2 = -e^{\times} + C$, this is an implicit general solution.

So particular soh. is $y^2 = 2 - e^x$

or $y = \sqrt{2 - e^{x}}$ (positive square root) beause y(0) > 0).

(c) the solution exists only when 2-ex>0 or x</n2.