
Symplectic isotopy classes of ellipsoids and
polydisks in dimension greater than four

R. Hind

March 13, 2014

Abstract
1) In any dimension 2n ≥ 6 we show that certain spaces of ellipsoid

and polydisk embeddings into a product B4 ×R2(n−2) of a 4-ball and
Euclidean space, are not path connected. Thus a theorem of McDuff,
saying that the space of symplectic embeddings of one 4-dimensional
ellipsoid into another is always path connected, fails to be true in
higher dimensions.

1 Introduction

We study symplectic embeddings into Euclidean space R2n, with coordinates
xj, yj, 1 ≤ j ≤ n, equipped with its standard symplectic form ω =

∑n
j=1 dxj∧

dyj. Often it is convenient to identify R2n with Cn by setting zj = xj + iyj.
The basic domains for symplectic embedding problems are ellipsoids E and
polydisks P which we define as follows.

E(a1, . . . , an) = {
∑
j

π|zj|2

aj
≤ 1};

P (a1, . . . , an) = {π|zj|2 ≤ aj for all j}.
These are subsets of Cn and so inherit the symplectic structure. A ball

of capacity R is simply an ellipsoid B2n(R) = E(R, . . . , R). We will also
frequently use the notation Z(R) = B4(R) × R2(n−2) to denote the product
of a 4-ball of capacity R and Euclidean space.

1)Subject classification 53D35, 57R17.
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Definition 1.1. Two embeddings f0, f1 : E(a1, . . . , an) → W are symplec-
tically isotopic in a symplectic manifold W if there exists a smooth family
of symplectic embeddings ft : E(a1, . . . , an)→ W for t ∈ [0, 1], interpolating
between the original maps.

We emphasize this definition since in dimension 2n > 4 there is also
a weaker equivalence relation on embeddings, asking just that there is a
symplectic isotopy of W mapping the image f0(E) onto f1(E). In dimension
4 the two notions are the same; this follows from Gromov’s theorem [7] that
the compactly supported symplectomorphism group of a ball is contractible.
We do not know if the notions coincide in higher dimension, and our examples
will be nonisotopic in the sense of Definition 1.1.

In dimension 4, that is, when n = 2, a theorem of McDuff says that the
space of symplectic embeddings of one ellipsoid into another is always path
connected.

Theorem 1.2. (McDuff [20] Corollary 1.6, see also [21]) For any a, b, a′, b′,
the space of symplectic embeddings E(a, b) → E̊(a′, b′) is path connected
whenever it is nonempty.

In this paper we show that McDuff’s theorem is not true in higher di-
mensions, that is, when n ≥ 3 some spaces of ellipsoid embeddings are not
path connected. For example we will show the following.

Theorem 1.3. There exist nonisotopic symplectic embeddings

E(1.4, 5.59, 5.65, . . . , 5.65)→ Z(2.83) = B4(2.83)× R2(n−2).

Since B4(2.83)×R2(n−2) is exhausted by ellipsoids E(2.83, 2.83, S, . . . , S)
with S → ∞, we may replace the product B4(2.83) × R2(n−2) in Theorem
1.3 by an E(2.83, 2.83, S, . . . , S) for any S sufficiently large. Thus we obtain
non isotopic ellipsoid embeddings into an ellipsoid. The theorem extends
to ellipsoids with parameters satisfying certain inequalities which we state
in Theorem 3.1. However, we cannot claim that all spaces of ellipsoid em-
beddings into an ellipsoid are disconnected in dimension greater than 4. In
particular, we do not know if the space of embeddings of a ball into an
ellipsoid is ever disconnected.

In dimension 4 there are results showing that spaces of embeddings of
polydisks are not path connected. The first was due to Floer, Hofer and
Wysocki, showing that spaces of embeddings of a polydisk into a polydisk
may be disconnected.
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Theorem 1.4. (Floer-Hofer-Wysocki [6] Theorem 4) Let max(a, b) < R <
a+b. Then g1 : (z1, z2) 7→ (z1, z2) and g2 : (z1, z2) 7→ (z2, z1) give nonisotopic
embeddings P (a, b)→ P (R,R).

Note that if R > a + b then the embeddings are isotopic in P (R,R)
through unitary maps. The condition max(a, b) < R ensures that the gi
have images in P (R,R).

The starting point for our approach to Theorem 1.3 is the following the-
orem about polydisks embedded in a ball.

Theorem 1.5. (Hind, [8] Theorem 1.1) There does not exist a Hamiltonian
diffeomorphism φ with support contained in B4(2a+b) such that φ(P (a, b)) ⊂
B̊4(a+ b).

This leads immediately to examples of nonisotopic polydisks symplec-
tomorphic to P (a, b) with b > 2a. Indeed, by a symplectic fold, for any
ε > 0 there exists a symplectic embedding P (a, b)→ B4(2a+ b

2
+ ε), see [24],

Proposition 4.3.9.
It turns out that Theorem 1.5 does have a generalization to higher di-

mensions, not only for polydisks but also for polylike domains (products of
a disk and an ellipsoid) Q which we define as follows.

Q(b, a2, a3, . . . , an) = {π|z1|2 ≤ b,
n∑
j=2

π|zj|2

aj
≤ 1}.

Then a generalization of Theorem 1.5 is as follows. Note that by inclusion
the polylike domain Q(b, a2, . . . , an) sits inside B4(a2 + b)× R2(n−2).

Theorem 1.6. Suppose that a2 < b and aj > 2a2 for all j ≥ 3. There
does not exist a Hamiltonian diffeomorphism φ with support contained in
B4(2a2 + b)× R2(n−2) such that φ(Q(b, a2, . . . , an)) ⊂ B̊4(a2 + b)× R2(n−2).

Theorem 1.6 can be easily applied to give examples of nonisotopic poly-
disks inside products B4(R) × R2(n−2). The folding mentioned above ap-
plied to the first two complex coordinates gives a symplectic embedding
P (b, a2, . . . , an)→ B4(2a2+ b

2
+ε)×R2(n−2) for any ε > 0, and if 2a2 < b then

ε can be chosen such that 2a2 + b
2

+ ε < a2 + b. Hence, as Q(b, a2, . . . , an) ⊂
P (b, a2, . . . , an) ⊂ B4(a2 + b) × R2(n−2), Theorem 1.6 implies that this em-
bedding cannot be symplectically isotopic to the inclusion. Similarly, if
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a3 < b then by switching the z1 and z3 coordinates we get another embed-
ding P (b, a2, . . . , an)→ B̊4(a2+b)×R2(n−2). Therefore we have the following
corollary about polydisk embeddings.

Corollary 1.7. Let a3, . . . , an > 2a2 and choose R with a2+b < R < 2a2+b.
Suppose either 2a2 < b or a3 < b. Then there exists a symplectic embedding
P (b, a2, . . . , an) → B4(R) × R2(n−2) which is not symplectically isotopic to
the inclusion inside B4(R)× R2(n−2). Furthermore, even the images are not
symplectically isotopic.

It is also possible to work directly with higher dimensional polydisks and
obtain a similar result.

Theorem 1.8. If a1 ≤ a2 < a3 ≤ · · · ≤ an and a1 + a3 < R < 2a1 + a3
then the the space of embeddings P (a1, . . . , an)→ B4(R)×R2(n−2) is not path
connected.

More precisely, the embedding f : (z1, z2, z3, . . . , zn) 7→ (z1, z3, z2, z4, . . . , zn)
is not isotopic to any map with image contained in B̊4(a1 + a3)×R2(n−2). In
particular, the inclusion is not isotopic to f .

We remark that each of Theorems 1.6 and 1.8 generalize both of Theorems
1.4 and 1.5. For example, in the case of Theorem 1.8, the map f and the
inclusion would be isotopic in B4(2a1+a3)×R2(n−2) if we could find an isotopy
of the (z2, z3) plane rotating the polydisk P (a2, a3) inside B2(a1 +a3)×R2 to
switch the two coordinates (since then, fixing the remaining coordinates, we
would have an isotopy of P (a1, . . . , an) inside B4(2a1+a3)×R2(n−2) switching
the z2 and z3 coordinates). Setting a1 = a2 = a and a3 = b we therefore have
a corollary to Theorem 1.8 generalizing Theorem 1.4.

Corollary 1.9. Let a < b and b < R < a + b. Then the two embeddings
g1 : (z1, z2) 7→ (z1, z2) and g2 : (z1, z2) 7→ (z2, z1) from P (a, b) into B2(R)×R2

are not symplectically isotopic.

The proof of Theorem 1.8 is very similar to that of Theorem 1.6, although
there are more closed orbits to analyze on the boundary of a polydisk itself. In
this paper we focus on the proof of Theorem 1.6 because polylike domains are
in some sense closer to ellipsoids, and indeed we will use some analysis from
the proof of Theorem 1.6 to deduce the existence of nonisotopic ellipsoids.
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Outline of the paper.
The proof of Theorem 1.6 is contained in section 2. The techniques borrow

heavily from the proof of Theorem 1.5, but with some additional technicalities
due to working in higher dimension. The rough outline is as follows.

In section 2.1 we describe the basic arrangement. The product B4(R)×
R2(n−2) for some R < 2a2 + b is partially compactified to CP 2 × R2(n−2)

and the polylike domain Q is approximated by a smooth domain W . We
argue by contradiction and assume that there exists a symplectic isotopy
Wt, 0 ≤ t ≤ 1, with W0 = W and W1 ⊂ B̊4(a2 + b)× R2(n−2).

Next, in section 2.2 the symplectic manifolds Xt = (CP 2 × R2(n−2)) \Wt

are given almost-complex structures with cylindrical ends and we compute
index and area formulas for finite energy holomorphic curves. We refer to
the series of papers of Hofer, Wysocki and Zehnder, [12], [13], [14], [15], for
the definitions and theory of finite energy curves.

In section 2.3 we study moduli spaces Mt of holomorphic curves corre-
sponding to the Wt. The constituent curves have area bounded above by
R− (a2 + b) and a monotonicity theorem as in [8] implies thatM1 is empty.
On the other hand we show that M0 has a single element. To complete the
proof of Theorem 1.6 we prove a compactness theorem, following [3], showing
thatM0 andM1 must be cobordant. This gives the required contradiction.

Finally then we address the case of ellipsoids. The strategy is to show
that two nonisotopic embeddings of polylike domains extend to embeddings
of ellipsoids. We give the ellipsoid embeddings in section 3.1, the second
one is an extension of an embedding of a polylike domain Q(b, 1, c, . . . , c)
into B4(S)× R2(n−2) with S < 1 + b. However we do not know whether the
first embedding restricts to an embedding of the polylike domain which is
isotopic the inclusion and therefore Theorem 1.6 does not apply directly to
give Theorem 1.3. More precisely the construction of a nonempty moduli
space of holomorphic curves in section 2.3 does not apply. The remainder
of the proof consists in showing that a relevant moduli space is nevertheless
nonempty and this is covered in section 3.2, where the nontriviality of the
moduli space is reduced to a Proposition 3.6. This proposition is proven
in section 3.3. Throughout the proofs we rely on the specific parameters of
the ellipsoids involved to exclude the existence of curves not in our moduli
spaces, and hence to establish compactness of these spaces.
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2 Finite energy curves.

This section gives a proof by contradiction of Theorem 1.6. Some preliminary
analysis is carried out in subsections 2.1 and 2.2, then we complete the proof
in subsection 2.3.

2.1 Approximation of Q.

Here we describe our smooth approximation W of Q = Q(b, a2, . . . , an), to-
gether with the closed characteristics on the boundary ∂W . The analysis is
similar to that in [8], section 2.1.

We start by fixing δ and ε with 0 < δ << ε. Recall that our argument will
be by contradiction and so we are assuming that there exists a symplectic
isotopy Qt ⊂ B4(R)×R2(n−2) with Q0 = Q and Q1 ⊂ B4(S)×R2(n−2), where
R < 2a2 + b and S < a2 + b. We will need to assume that ε is small relative
to both a2 + b− S and 2a2 + b−R. Also, by perturbing the aj if necessary,
we may assume that ε, 1/ε and the 1/aj are linearly independent over the
rationals.

Now we choose a function f : [0, b] → [0, 1] with f(0) = 0, f(b) = 1,
f ′(x), f ′′(x) ≥ 0 and with the property that there exists an x0 such that
f ′(x) = ε for x < x0 − δ and f ′(x) = 1

ε
for x > x0 + δ.

Given this, we define W as follows. It will be convenient to use symplectic
polar coordinates on R2n = Cn, so we set Rj = π|zj|2 and θj = arg zj ∈ S1.

W = {f(R1) +
n∑
j=2

Rj

aj
≤ 1}.

The boundary ∂W is foliated by the Lagrangian tori Lc = {Rj = cj}
which degenerate precisely when some of the Rj = 0. However, using the
coordinates θj we can identify the nondegenerate Lc with a fixed torus T n

and the integer homology with H1(T
n,Z) = Zn.

The characteristic foliation kerω|∂W is generated by the (Reeb) vectorfield

RW = f ′(R1)
∂

∂θ1
+

n∑
j=2

1

aj

∂

∂θj
.

In particular the Reeb vectorfield is tangent to the Lagrangian toric fibers
Lc.
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The Reeb vectorfield has two kinds of periodic orbits. The first are the
elliptic orbits γk = {zj = 0, j 6= k} ∩ ∂W , k = 1, . . . , n. We use the notation
rγk to denote the r-fold cover of γk.

Since the 1/aj are linearly independent all other periodic orbits lie in one
of the complex 2-planes Pk = {zj = 0, j 6= 1, k} for 2 ≤ k ≤ n. As ε, 1

ε
and

1
ak

are linearly independent orbits in these planes are either elliptic or are
called hyperbolic and lie in the region where x0 − δ < R1 < x0 + δ.

Suppose there exists such an R1 and a rational number written in lowest
terms as m

n
such that f ′(R1) = m

nak
. Then the corresponding torus fiber over

c = (R1, 0 . . . , 0, ak(1− f(R1)), 0, . . . , 0) (the nonzero entries are in positions
1 and k) is foliated by a 1-parameter family of periodic Reeb orbits in the
homology class (m, 0 . . . , 0, n, 0, . . . , 0). We denote these orbits by γkm,n. The
r-fold cover of γkm,n is written as γkrm,rn.

Now, if we fix a symplectic trivialization of TR2n|γ, the tangent bundle
of R2n restricted to a closed orbit γ of R of period T , then the derivative
of the Reeb flow (extended to act trivially normal to ∂W ) gives a map ψ :
[0, T ]→ Symp(2n,R), where Symp(2n,R) is the group of 2n×2n symplectic
matrices. Associated to such a path is a Conley-Zehnder index µ(γ) defined
in this case by Robbin and Salamon in [23]. The analogue of Lemma 2.2 in
[8] is the following.

Lemma 2.1. With respect to the standard basis of R2n the Conley-Zehnder
indices are as follows.

µ(rγk) = 2r + n− 1 + 2bεrakc+ 2
∑
j 6=k

brak
aj
c, ifk 6= 1

µ(rγ1) = 2r + n− 1 + 2
∑
j

bεr
aj
c

µ(γkm,n) = 2(m+ n) +
1

2
+ (n− 2) + 2

∑
j 6=k

bnak
aj
c.

(1)

2.2 Index and area formulas.

We compactify the open ball B̊4(R) by identifying it with the affine part of
CP 2(R), the complex projective plane with its Fubini-Study form scaled so
that lines have area R. We are considering a symplectic isotopy

Qt ⊂ B̊4(R)× R2(n−2) ⊂ CP 2(R)× R2(n−2)
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which restricts to an isotopy Wt ⊂ CP 2(R)× R2(n−2) of W .
Let Xt = CP 2(R)×R2(n−2) \Wt equipped with the restricted symplectic

form. We can choose tame almost-complex structures with cylindrical ends
Jt on Xt as in [5] and then study finite energy curves asymptotic to closed
Reeb orbits as in [12], [13], [14], [15]. It is convenient to define the degree d
of a finite energy curve to be its intersection number with CP 1(∞)×R2(n−2),
where CP 1(∞) is the line at infinity in CP 2(R). The basic arrangement here
has been described in [8], section 2.2.1, but here we work in CP 2(R)×R2(n−2)

rather than CP 2.
In this subsection we give an approximate formula for the area and the

virtual index formula for finite energy curves, the analogues of Lemmas 2.3
and 2.7 in [8].

Let C be a genus 0 finite energy plane with ek punctures asymptotic to
multiples of γk, 1 ≤ k ≤ n, the ith one asymptotic to rki γ

k, 1 ≤ i ≤ ek.
(Here rki is a natural number depending upon i and k, hopefully this is not
too confusing.) Also, let C have hk punctures asymptotic to hyperbolic orbits
in Pk, 2 ≤ k ≤ n, with the ith one asymptotic to γk

mk
i ,n

k
i
, 1 ≤ i ≤ hk.

Proposition 2.2. Up to an error of order ε, the symplectic area of C is
given by

area(C) =

∫
C

ω = dR−
e1∑
i=1

r1i b−
n∑
k=2

ek∑
i=1

rki ak −
n∑
k=2

hk∑
i=1

(mk
i b+ nki ak).

Note that the formula immediately implies that any nonconstant curves
(which have positive area) must have degree d ≥ 1.

Proof. To see this we can glue a disk in ∂Wt to each asymptotic end to
produce a closed cycle of degree d in CP 2, which has area dR. The areas
of these disks are roughly the negative terms in our formula (the error term
comes because our hyperbolic orbits lie on ∂Wt rather than the singular part
of ∂Qt).

Proposition 2.3. The virtual index of C in the space of curves with asymp-
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totic limits allowed to vary is given by

index(C) = (n− 3)(2−
n∑
k=1

ek −
n∑
k=2

hk) + 6d

−
e1∑
i=1

(2r1i + n− 1 + 2
∑
j

bεr
1
i

aj
c)

−
n∑
k=2

ek∑
i=1

(2rki + n− 1 + 2bεrki akc+ 2
∑
j 6=k

br
k
i ak
aj
c)

−
n∑
k=2

hk∑
i=1

(2(mk
i + nki ) + (n− 2) + 2

∑
j 6=k

bn
k
i ak
aj
c).

(2)

Note here that each elliptic limit not a cover of γ1 contributes a negative
term on the third line of the index formula, the limits asymptotic to γ1

contribute negative terms on the second line, and the hyperbolic limits each
contribute a negative term on the last line.

Proof. The general index formula for genus 0 curves with s negative ends is

index(C) = (n− 3)(2− s) + 2c1(C)−
s∑
i=1

(µ(γi)−
1

2
dimVi).

For this formula, see [2]. Here c1(C) is the Chern class which we have nor-
malized to be 3d, where d is the degree, µ(γi) is the Conley-Zehnder index
of the limiting Reeb orbit γi corresponding to the ith end, and dimVi is
the dimension of the family of orbits containing γi. In our case this dimen-
sion is 0 for an elliptic orbit and 1 for a hyperbolic orbit. Substituting the
Conley-Zehnder indices from Lemma 2.1 we get the formula as required.

In the remainder of this subsection we record a few algebraic consequences
of the area and index formulas.

Lemma 2.4. Suppose that a finite energy curve C has degree 1 and area(C) ≤
a2 (up to an error of order ε). Then C either has a single hyperbolic asymp-
totic limit γ21,1, or all asymptotic limits are elliptic and satisfy

b <

e1∑
i=1

r1i b+
n∑
k=2

ek∑
i=1

rki ak < 2a2 + b.
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Proof. As nonconstant curves must have positive area, the area inequality is
equivalent to

R− a2 ≤
e1∑
i=1

r1i b+
n∑
k=2

ek∑
i=1

rki ak +
n∑
k=1

hk∑
i=1

(mk
i ak + nki b) ≤ R.

As a2 + b < R < 2a2 + b (and ε is small relative to the differences) this gives

b <

e1∑
i=1

r1i b+
∑
k

ek∑
i=1

rki ak +
n∑
k=1

hk∑
i=1

(mk
i ak + nki b) < 2a2 + b.

Since ak > 2a2 for all k ≥ 3 we see that if there exists a hyperbolic orbit it
must be of type γ21,1 and be the only asymptotic limit. On the other hand, if
all limits are elliptic then they satisfy the inequality of the lemma.

Lemma 2.5. Suppose that a finite energy curve C has degree 1, virtual index
at least −1, and only elliptic asymptotic limits. Then it has only a single
asymptotic limit, that is, C is a finite energy plane.

Proof. Let E be the total number of elliptic asymptotic limits. Since all
terms in the sums on the second and third lines of the index formula of
Proposition 2.3 are at least n+ 1, we have the formula

−1 ≤ index(C) ≤ (n− 3)(2− E) + 6− (n+ 1)E = 2(n− (n− 1)E).

Hence (n− 1)E ≤ n and so as n ≥ 3 we have E ≤ 1 as required.

Putting the previous two lemmas together we have the following, which
describes the curves we will be interested in.

Lemma 2.6. Suppose that a finite energy curve C has degree 1 and area(C) ≤
a2 and index(C) ≥ −1. Then C is a finite energy plane asymptotic to either
γ21,1, 2γ1 or 2γ2.

Proof. By Lemmas 2.4 and 2.5, if the curve C is not asymptotic to γ21,1 then it
is a finite energy plane asymptotic to a cover of one of the γk, say asymptotic
to rγk.

Suppose first that k = 1. Then by Lemma 2.4 we have b < rb < 2a2 + b
and Proposition 2.3 again implies that r ≤ 2. Putting the two together we
have r = 2.
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Next suppose that k = 2. Again by Lemma 2.4 we have b < ra2 < 2a2 +b
and by Proposition 2.3 we have

index(C) ≤ (n− 3) + 6− (2r + (n− 1)).

As index(C) ≥ −1 this implies that r ≤ 2. Since by our original hypothesis
a2 < b, combining the two inequalities gives r = 2.

Finally suppose that k ≥ 3. By hypothesis ak > 2a2 and so the term
2b rak

a2
c in the index formula contributes at least 4. Hence

index(C) ≤ (n− 3) + 6− (2r + (n− 1) + 4) ≤ −2r

a contradiction as required.

2.3 Moduli spaces of finite energy planes.

Let us fix an orbit ηt of type γ21,1 in each ∂Wt. Consider the corresponding
moduli space

Mt = {u : C→ X|degree(u) = 1, ∂Jtu = 0, u ∼ ηt}/G

where u ∼ η means that u is asymptotic at infinity to η, and G is the
reparameterization group of C. The area formula of Proposition 2.2 gives
says that curves in Mt have area roughly R− (a2 + b).

We will need to choose the almost-complex structure J0 such that the line
at infinity CP 1(∞) × R2(n−2) is complex and such that it is invariant with
respect to the T n−2 action rotating the (z3, . . . , zn) planes. This is possible
since W = W0 is invariant under the same action. A genericity assumption
will also be made as explained in Lemma 2.8. The almost-complex struc-
ture J1 can be assumed to be the standard product integrable structure on
(CP 2(R) \B(S))×R2(n−2) for some S < a2 + b, as W1 ⊂ B̊(a2 + b)×R2(n−2).

Lemma 2.7. The virtual dimension of Mt is 0.

Proof. Proposition 2.3 gives virtual dimension 1 for finite energy planes of
degree 1 asymptotic to an orbit of type γ21,1. However a curve lies inMt only
if it is asymptotic to the specific orbit ηt, and this imposes a 1-dimensional
constraint.

The moduli spaces when t = 0, 1 are easily described.
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Lemma 2.8. There exists an almost-complex structure J0 such that the mod-
uli space M0 consists of a single, regular curve.

As this is a direct generalization of Lemma 2.8 in [8], utilizing the analysis
in [10] to extend the results to higher dimension, we restrict here to an outline.

Outline of proof. As J0 is invariant under rotations of the (z3, . . . , zn)
planes, the (z1, z2)-plane P1 = {z3 = · · · = zn = 0} is J0-invariant. Hence
J0 can be restricted to Y = X0 ∩ P1 to give an almost-complex manifold
with a cylindrical end over ∂Y := ∂W0 ∩ P1. The almost-complex manifold
Y is exactly the one studied in [8], and elements of M0 lying in Y form
a moduli space M̃0 in their own right. In particular Lemma 2.8 from [8]
implies that M̃0 is nonempty, that is, there exists an element ofM0 lying in
Y . To complete the proof we will show first that there can be no more than
one element of M̃0 and second that, for a generic choice of invariant J0, all
elements of M0 must lie in Y . Lemma 3.17 in [10] shows that, for invariant
almost-complex structures, curves in M̃0 are regular in M0.

For the first part, we argue by contradiction and suppose that two distinct
curves u0 and u1 represent equivalence classes in M̃0. Automatic regularity
in dimension 4 (see [26], Theorem 1, or the discussion after Theorem 2.9 in
[8]) implies that u0, say, can be included in a local 1-parameter family of
curves ut, −ε < t < ε, with a single curve in the family asymptotic to each
γ21,1 orbit close to η0. Meanwhile, as u0 and u1 are both asymptotic to η0, on
a suitable subset of the cylindrical end (−∞, S0] × ∂Y we can represent u1
as a section ξ of the normal bundle to the image of u0. Furthermore, if S0 is
sufficiently negative, the section ξ has no zeros and so defines a winding of
u1 about u0. For this see [14]. This winding is the same as the winding of
an eigenvector of an asymptotic operator associated to the orbit η0, and as
we are dealing with a negative puncture the associated eigenvalue must be
positive.

Now, the asymptotic operator acts on sections of the normal bundle to η0
in ∂Y , which has an induced complex structure still called J0. With respect
to a basis of the normal bundle extending a tangent vector to the space of
γ21,1 orbits, the asymptotic operator takes the form

−J0
d

dt
− T

(
0 0
0 1

)
,

where T is the period of η0. We see that the only eigenvectors with winding
number 0 have eigenvalues 0 or −T and so can conclude that in this basis u1
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must wind around u0. Hence u1 must intersect the ut, which have winding
0 because they are asymptotic to different orbits. However, by gluing planes
inside W0 the images of u1 and the ut can be included in cycles of degree 1
in CP 2, which therefore have intersection number 1. The added planes can
be assumed to have a unique (positive) intersection point at the origin and
so the intersections of u1 and ut contribute 0. This contradicts positivity of
intersection.

For the second part of the proof we must exclude curves inM0 not lying
in Y . As J0 is T n−2 invariant, any such curves appear in (n− 2)-dimensional
families and so are certainly not regular. Hence if we are able to assume that
J0 is regular forM0 and at the same time T n−2 invariant then no such curves
exist. The proof of the existence of regular invariant almost-complex struc-
tures follows the usual regularity argument working with invariant rather
than general almost-complex structures. For this to work, instead of assum-
ing that our holomorphic curves are somewhere injective we need the stronger
assumption that corresponding to each curve in M0 there exists an orbit of
the T n−2 action which intersects the curve in a single point, see the proof of
Proposition 3.16 in [10]. This is automatic in our case since by positivity of
intersection a degree 1 curve must intersect CP 1(∞)× R2(n−2) exactly once
transversally, and hence intersect exactly one T n−2 orbit in CP 1(∞)×R2(n−2),
in a single point.

Lemma 2.9. For J1 chosen as above, the moduli space M1 is empty.

Proof. This is identical to the proof of Lemma 2.11 in [8]. Indeed, the image
of any curve inM1 can be restricted to a proper curve in (CP 2(R)\B(S))×
R2(n−2). As the complex structure is assumed to be a product the curve
projects to a holomorphic curve in CP 2(R) \ B(S), and then by a mono-
tonicity theorem, see [8], Lemma 2.12, we see that it has area at least R−S.
This is a contradiction as curves in any Mt have area R− (a2 + b).

Next we consider the universal moduli space

M = {(u, t)|u : C→ Xt, degree(u) = 1, ∂Jtu = 0, u ∼ ηt, t ∈ [0, 1]}/G.

This has virtual dimension 1, but to show that it is a compact 1-dimensional
manifold (the source of our contradiction) we will need some assumptions on
the family of almost-complex structures Jt.
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First of all, since the curves in M have degree 1 they are not multiply
covered and so we may choose a family Jt so that M is a 1-dimensional
manifold giving a cobordism betweenM0 andM1. The Jt can be chosen to
coincide with those we already have when t = 0, 1. Indeed, J0 is regular by
Lemma 2.8, and since no curves lie entirely in (CP 2(R) \B(S))×R2(n−2) we
are free to take J1 standard here and perturb elsewhere to obtain regularity
if necessary.

Second, a collection of families {Jt} of the second category is regular in
the sense that any somewhere injective Jt0-holomorphic finite energy curve,
for t0 ∈ [0, 1], has deformation index at least −1 (amongst Jt0 curves). We
will also assume then that our Jt are regular in this sense.

Finally, the cylindrical ends of the Xt are all symplectomorphic, and af-
ter identifying them by a symplectomorphism we may assume that all Jt
are identical outside of a compact set. This implies that they induce iden-
tical translation invariant almost-complex structures on the symplectization
S(∂W ) = R× ∂W . Holomorphic curves in S(∂W ) are either translation in-
variant, which means they are covers of cylinders over Reeb orbits, or come
in families of dimension at least 1. Therefore, if an almost-complex structure
is regular, somewhere injective finite energy curves are either trivial cylin-
ders or have deformation index at least 1. As above such almost-complex
structures form a subset of the second category and we will assume our Jt
induce a structure in this class.

The final lemma is the following, which contradicts Lemmas 2.8 and 2.9.

Lemma 2.10. The universal moduli space M is sequentially compact.

Proof. The general compactness theorem for finite energy curves can be
found in [3]. In our situation, it implies that a sequence of finite energy
curves ui representing classes in Mti with ti → t∞, after taking a subse-
quence, converge in the sense of [3] to a holomorphic building in Xt∞ . For
components in Xt∞ to be nonconstant they must have positive degree (see the
comment after Proposition 2.2), and so since degree is preserved in the limit
and the ui have degree 1 our limit must consist of a single curve u in Xt∞

of degree 1. Therefore the curve is also somewhere injective. By regularity
of the family of Jt we have index(u) ≥ −1, and as the ui have area roughly
R − (a2 + b) the area of u is bounded above by R − (a2 + b). This excludes
planes asymptotic to 2γ1 and hence by Lemma 2.6, the curve u is a finite
energy plane asymptotic to either an orbit γ11,1 or to 2γ2. In the first case,
as the limit preserves area, it must be asymptotic to ηt∞ itself (as otherwise
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we would see symplectization components of positive area). Hence (u, t∞)
represents a class in M and we have compactness as required.

It remains to exclude limiting curves asymptotic to 2γ2 and for this
we look at components of the limit mapping to the symplectization layers
S(∂W ). There is a single curve in the highest level with positive end asymp-
totic to 2γ2. If the curve is a multiple cover then it has two negative ends,
both asymptotic to γ2. But this leads to a contradiction since our curve has
genus 0 and so only one of the ends can connect to the lowest negative end
ηt∞ . On the other hand, each of these ends have action less than the action
of ηt∞ . Hence the curve in the highest level is a somewhere injective curve.
The negative ends have total action less than 2b, but one of them must have
action at least a2 + b (if it is to be connected through lower level curves to
the negative end at γ21,1). As 2b < R < 2a2 + b (as the component in Xt∞

has positive area) any other negative end must have area bounded above
by a2, a contradiction. Thus we see that the only possibility is a cylinder
with negative end asymptotic to γ1,1. A variation of Proposition 2.3 shows
that such cylinders have deformation index 0. This is a contradiction to our
choice of regular almost-complex structure on S(∂W ) above.

3 Isotopies of ellipsoids.

The main result of this section is the following theorem, from which Theorem
1.3 follows directly by setting b = 3/2 and checking the inequalities.

Theorem 3.1. Let A,B,C3, . . . , Cn, R be parameters satisfying the following
inequalities for some 1 < b < 2.

i. 1 < A < 3
2
;

ii. 1 + b
4
< A < 1

2
+ 3b

4
;

iii. Ab
A−1 < B < 4A < C3 < 2R < A+ b+ 3;

iv. 4A−b
C3

+ b
B
< 1;

v. R− A < b;

vi. R < min( b+7
3
, 2b, 3+2b

2
);

vii. C3 < Ci for all i > 3;
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viii. C3 < A(4A− b).

Then there exist nonisotopic embeddings E(A,B,C3, . . . Cn)→ B4(R)×Cn−2.

An immediate consequence of these inequalities is that 1 + b < R < 3 <
2 + b. To see that R > 1 + b, by condition (iii) we have R > 2A, and by
condition (ii) we have 2A > 2 + b/2. Then as b < 2 we have 2 + b/2 > 1 + b.
Also R < b+7

3
by condition (vi) and b+7

3
< 3 < 2 + b since 1 < b < 2.

Therefore, in dimension 4, the inclusion gives an embedding P (1, b)→ B4(R)
and Theorem 1.5 implies that the inclusion is not isotopic within B4(R) to
an embedding into B̊4(1 + b).

In subsection 3.1 we describe our ellipsoid embeddings and state a result
on isotopies of polylike domains which implies that the ellipsoids are non-
isotopic in the sense of Definition 1.1. In section 3.2 we prove the result on
polylike isotopies modulo an existence result for certain holomorphic curves
which is reserved for section 3.3.

3.1 Construction of ellipsoid embeddings.

Suppose we are given an ellipsoid E(B,A,C3, . . . Cn) with parameters satis-
fying the inequalities of Theorem 3.1. Note that for notational convenience
we have reversed the order of the first two factors. The lower bounds on
B and C3 in condition (iii) imply that P (1, b) ⊂ E(A,B) and furthermore
that Q(b, 1, 4, . . . , 4) ⊂ E(B,A,C3, . . . Cn). However we need to work with a
slightly larger polylike domain.

By condition (iv) there exists a c with c > 4A−b and c
C3

+ b
B
< 1. We claim

that Q(b, 1, c, . . . , c) ⊂ E(B,A,C3, . . . Cn). Indeed, suppose (z1, . . . , zn) ∈
Q(b, 1, c, . . . , c), that is, π|z1|2 ≤ b and (z2, . . . , zn) ∈ E(1, c, . . . , c). Then we
have

π|z1|2

B
+
π|z2|2

A
+
π|z3|2

C3

+ . . .
π|zn|2

Cn

≤ b

B
+

c

C3

(
C3π|z2|2

Ac
+
π|z3|2

c
+ · · ·+ π|zn|2

c

)
≤ b

B
+

c

C3

(
π|z2|2 +

π|z3|2

c
+ · · ·+ π|zn|2

c

)
≤ 1

by our bounds on c. For the inequality between lines two and three note that
by condition (viii) we have C3 < A(4A− b) < Ac and so C3

Ac
< 1.
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By condition (ii) we have 4A − b < 2 + 2b and so we may assume that
4A − b < c < 2 + 2b. Note that as 4A > 4 + b we automatically have c > 4
but c < 2 + 2b < 4 + b < 4A.

We will produce two embeddings of the ellipsoid which will be shown to
restrict to nonisotopic polylike domains.

The embedding f0.
First note that we have a symplectic embedding g0 given by the compo-

sition

E(A,B) := AE(1,
B

A
) ⊂ AE(1, 4)→ AB4(2) = B4(2A) ⊂ B4(R).

The first inclusion here follows from the upper bound on B < 4A in condition
(iii). The next map E(1, 4) → B4(2) can be read off from the classification
of ellipsoid embeddings into balls contained in [19], although this particular
embedding was also known at least to Opshtein, [22] Lemma 2.1. Finally the
inclusion B4(2A)→ B4(R) also holds by condition (iii). Taking our map to
be the identity in coordinates z3, . . . , zn we get an embedding

f0 : E(B,A,C3, . . . Cn)→ B4(R)× Cn−2,

(z1, . . . , zn) 7→ (g0(z2, z1), z3, . . . , zn).

The embedding f1.
The construction of the second embedding is more subtle. In particular,

to get the restriction to Q we require, we will need to invoke Theorem 1.2.
First we observe again from [19], Theorem 1.1.2, or by inspection of Figure

1.1, that since C3 > 4A by condition (iii) we have an embedding

g̃1 : E(A,C3) := AE(1,
C3

A
)→ AB4(

C3

2A
) := B4(

C3

2
) ⊂ B4(R)

where the final inclusion is also a consequence of condition (iii). As c <
4A < C3 (by condition (iii)) this embedding restricts to an embedding of
E(1, c), which is precisely the intersection of our polylike domain with the
(z2, z3) plane.

Now as c > 4 there also exists an embedding

E(1, c)→ B4(
c

2
) ⊂ B4(1 + b) ⊂ B4(R)

as c < 2 + 2b and R > 1 + b (see the comment directly after the statement
of Theorem 3.1). Hence by Theorem 1.2 we may replace our embedding
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g̃1 : E(A,C3) → B4(R) by an embedding g1 which restricts to one sending
E(1, c) → B̊4(1 + b). Extending this map to be the identity in coordinates
z3, . . . , zn and composing with a linear map interchanging the first and third
coordinates we get another embedding

f1 : E(B,A,C3, . . . Cn)→ B(R)× Cn−2,

(z1, . . . , zn) 7→ (g1(z2, z3), z1, z4, . . . , zn).

This maps the polylike domain to B̊4(1 + b)× Cn−2.
Of course, if f0 and f1 were isotopic then the images of the polylike

domains would also be isotopic. Hence Theorem 3.1 is a consequence of the
following.

Theorem 3.2. Let R,A,B,Ci, b satisfy the inequalities of Theorem 3.1 and
c > 4A− b be chosen as above. Let

f0 : Q(b, 1, c, . . . , c)→ B4(R)× Cn−2

be a symplectic embedding which is a restriction of an embedding E(B,A,C3, . . . , Cn)→
B4(R)× Cn−2 of the form

f0(z1, . . . , zn) = (g0(z1, z2), z3, . . . , zn)

and let
f1 : Q(b, 1, c, . . . , c)→ B4(S)× Cn−2

be a symplectic embedding for some S < 1 + b. Then f0 and f1 are not
isotopic through symplectic embeddings into B4(R) × Cn−2 which extend to
E(B,A,C3, . . . , Cn).

The proof of Theorem 3.2 is the subject of subsections 3.2 and 3.3. We
observe here though that as R < 3 < 2+b (by the comment directly after the
statement of Theorem 3.1), Theorem 3.2 would be a special case of Theorem
1.6 if we knew that the map g0 were isotopic to the identity.

3.2 Another isotopy obstruction.

3.2.1 Preliminaries.

Here we outline the proof of Theorem 3.2. The proof will follow exactly the
same scheme as that of Theorem 1.6. As coordinates z4, . . . zn play no role in
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the proof, for notational convenience we will restrict to the case of n = 3, that
is, dimension 6. Then we study embeddings of a polylike domain Q(b, 1, c)
which lies in an ellipsoid E(B,A,C). As in section 2 our method is to replace
the image of Q(b, 1, c) under f0 by a smooth domain W = W0 and argue by
contradiction assuming there exists a symplectic isotopy Wt for 0 ≤ t ≤ 1
with W1 ⊂ B4(S)×C. The Reeb orbits in ∂W were described in section 2.1
and we make a choice of a specific orbit ηt ⊂ ∂Wt of type γ21,1 and σt ⊂ ∂Wt

of type γ21,4 for each t. We also choose compatible almost-complex structures
Jt on Xt = CP 2(R) × C \Wt exactly as in section 2.2. Now however there
are two corresponding moduli spaces of curves we will need to examine, a
moduli space Mt defined as in section 2.3 and a second moduli space Nt.
Define

Mt = {u : C→ X|degree(u) = 1, ∂Jtu = 0, u ∼ ηt}/G
where u ∼ η means that u is asymptotic at infinity to η, and G is the
reparameterization group of C, and analogously

Nt = {u : C→ X|degree(u) = 2, ∂Jtu = 0, u ∼ σt}/G.

By Lemma 2.3 both moduli spaces have dimension 0. Note that curves in
Mt have area roughly R− (1 + b) and curves in Nt have area approximately
2R − (4 + b), which is less than R − (1 + b) since R < 3. Hence Lemma 2.9
implies that both moduli spaces are empty for a suitable choice of J1 which
is the standard product on X1 \ (B4(1 + b)× C).

We will choose J0 as in section 2.3 so that it is invariant under rotations
in the z3 plane. Then in subsection 3.2.3 we prove the following.

Proposition 3.3. For any choice of invariant J0 either the moduli spaceM0

or the moduli space N0 is nonempty.

The uniqueness part of Lemma 2.8 applies again here to show that if
these moduli spaces are nonempty then they consist of a single curve which
appears transversally, in particular they represent a nontrivial cobordism
class. This follows exactly as in Lemma 2.8 for the degree 1 curves, that
is, a positivity of intersection argument shows that there exists at most one
element of the moduli space in {z3 = 0}, and regularity implies that all
elements lie in {z3 = 0}. The same argument applies to the degree 2 curves
once we show that there exists a regular, invariant J0. The proof that such
almost-complex structures exist follows from a stretching argument as in [10],
Proposition 3.16.
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At this point the proof of Theorem 3.2 breaks into two parts according
to whether M0 or N0 is nonempty. If M0 is nonempty for any J0 then the
proof proceeds exactly as Theorem 1.6. Indeed, Lemma 2.9 implies thatM1

is empty for a suitable choice of J1 and Lemma 2.10 implies that M0 and
M1 are cobordant. This gives our contradiction.

We do not know if the analogue of Lemma 2.10 applies in full generality
for the moduli spaces Nt. However we will see in section 3.2.2 that it does
hold for a particular family of Jt. As we already have a proof if M0 is
nonempty for any invariant J0, this will complete the proof.

3.2.2 The moduli space of degree 2 curves.

In this section we analyze the moduli spaces of degree 2 curves

N (Jt) = {u : C→ Xt|degree(u) = 2, ∂Jtu = 0, u ∼ σt}/G

where Jt is an almost-complex structure on Xt.
Recall that our isotopy, say φt, of W extends to one of E(B,A,C). Set

Et = φt(E(B,A,C)). We will choose Jt = JNt to be an almost-complex
structure on Xt stretched to length N along ∂Et. We may assume that
A,B,C are rationally independent. Then there are three distinct closed
Reeb orbits on ∂E(B,A,C), namely the intersection of ∂E(B,A,C) with
the coordinate planes. We label the closed Reeb orbits in the respective
coordinate planes by δk for 1 ≤ k ≤ 3.

As E0 and E1 are invariant under rotations in the z3 plane we may take
JN0 and JN1 to be invariant and also, following [10] to be regular.

Lemma 3.4. For some N sufficiently large, the universal moduli space

N = {(u, t)|u : C→ Xt, degree(u) = 2, ∂Jtu = 0, u ∼ σt, t ∈ [0, 1]}/G

is sequentially compact.

Proof. We suppose that there exists a sequence of planes (ui, ti) ∈ N which
degenerates to a Jt holomorphic building. A degree 2 plane can degenerate
in Xt into either two planes of degree 1 or a single degree 2 plane of smaller
area.

Degree 1 planes are necessarily somewhere injective and as in Lemma
2.6 (see also Lemma 2.10) have index at least −1 and area bounded by
2R − (b+ 4) < R − (b+ 1) only if they are asymptotic to either 2γ2 or γ21,1.
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Thus they have area R − 2 or R − (b + 1) and so the sum of the areas is
at least 2R − (2b + 2). As b < 2 we have 2R − (2b + 2) > 2R − (b + 4), a
contradiction as the ui have area 2R− (b+ 4).

Suppose then that the limiting building has a degree 2 curve C in Xt.
The area inequalities above imply that C is not a double cover of a degree
1 plane and so it must be somewhere injective and we may assume it has
index at least −1 (this is the deformation index amongst Jt holomorphic
curves, equivalently it has nonnegative index in a universal moduli space).
Now, any symplectization components of our limit are necessarily cylinders
(as otherwise, as we are taking a limit of genus 0 curves we will see planar
components which must have area at least 1). It is then easy to check that
any nontrivial components necessarily have index at least 1, and it follows
that our degree 2 plane has index exactly −1, and as planes asymptotic to
elliptic orbits have even index, C has a hyperbolic limit.

If the curve is asymptotic to γ2m,n then the index condition gives

index = 12− (2(m+ n) + 1 + 2bn
c
c) = −1.

Hence m + n + bn
c
c = 6. As c > 4 we see that if n ≤ 4 then m + n = 6.

In fact, since m ≥ 1 in all cases we have m + n ≥ 6. Meanwhile the area
inequality gives 0 ≤ 2R− (mb+ n) ≤ 2R− (b+ 4) and the first inequality is
a contradiction as R < 3.

The remaining possibility is if C is a degree 2 curve asymptotic to an
orbit γ3m,n. Now we have

index = 12− (2(m+ n) + 1 + 2bncc) = −1

and hence m + n + bncc = 6. As c > 4 the unique solution is m = n = 1.
For a generic almost-complex structure we do not know whether or not such
planes can exist. However we will show that at least they do not exist if N
is chosen sufficiently large.

Arguing by contradiction, suppose such planes exist for all N . Then we
can take a limit as N →∞ and the limit will be a holomorphic building with
components in Xt\Et and Et\Wt. The components in Xt\Et necessarily have
even index so by regularity we may assume that the index is nonnegative. An
analysis similar to that above implies that these components consist either
of two planes of degree 1 or a single plane of degree 2, and all planes must
have index 0.
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The index formula for planes of degree d in Xt \Et asymptotic to rδk, for
1 ≤ k ≤ 3 are given respectively by

index = 6d− (2r + 2 + 2brB
A
c+ 2brB

C
c)

index = 6d− (2r + 2 + 2brA
B
c+ 2brA

C
c)

index = 6d− (2r + 2 + 2brC
A
c+ 2brC

B
c)

Note that our bounds on A and b together with condition (iii) imply that
B > Ab

A−1 > 2A. Therefore setting the index to be 0 we find only either
degree 1 planes asymptotic to 2δ2 or degree 2 planes asymptotic to 4δ2. In
both cases the total area of the planes in Xt \ Et is 2R − 4A which exceeds
2R− (b+ c) as c > 4A− b. This gives a contradiction as required.

Lemma 3.4 implies, for large N , that N0(J0) is cobordant to N1(J1). If
we assume N0(J0) is nontrivial this implies N1(J1) is also nontrivial for a
regular, invariant almost-complex structure J1 = JN1 . Such almost-complex
structures can be shown to exist by following [10], Proposition 3.16. By regu-
larity this means we have a degree 2 curve lying in X1∩{z3 = 0} asymptotic
to γ21,4. This is not an immediate contradiction to monotonicity however since
J1 is chosen to be stretched along ∂E1 rather than the standard product on
X1 \(B4(1+b)×C). To derive a contradiction we need to show that such de-
gree 2 curves persist as we deform J1 to be a product outside of B4(1+b)×C.
The proof of this is omitted as it is almost identical to the first part of the
proof of Lemma 3.4. However we can now work entirely in the 4-manifold
{z3 = 0} = CP 2(R) \W1 which means all curves are asymptotic to orbits in
the (z1, z2) plane. In particular there is no bubbling to planes asymptotic to
γ31,1 orbits, and so we do not need the almost-complex to be stretched along
an ellipsoid to arrive at the conclusion.

3.2.3 The proof of Proposition 3.3

Here we prove Proposition 3.3, or rather reduce it to another existence result,
namely Proposition 3.6. We recall that the proof in Lemma 2.8 thatM0 was
nonempty consisted of essentially writing down an explicit curve. Now, since
the map g0 defining f0 is nonstandard, a new, indirect, method is required.
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On the other hand, as J0 is invariant under rotations in the z3 plane it will
suffice as in Lemma 2.8 to prove the following in dimension 4.

Proposition 3.5. Let W ⊂ B(R) ⊂ CP 2(R) be a smoothing of the image
of a sympectically embedded polydisk P (b, 1) which extends to an ellipsoid
E(B,A) with our parameters satisfying the bounds of Theorem 3.1. Then
Y = CP 2(R) \W admits either a finite energy plane of degree 1 asymptotic
to an orbit γ1,1 or a finite energy plane of degree 2 asymptotic to an orbit
γ1,4.

We note that as we are now working entirely in the (z1, z2) plane there is
no need for superscripts on our hyperbolic orbits.

Proof. Rescaling slightly we may assume that the image of the polydisk
P (b, 1) lies in the interior of W . Using coordinates induced from the poly-
disk, let L = {|z1| = b, |z2| = 1} be the Lagrangian torus in its distin-
guished boundary. Now, for any compatible almost-complex structure on
CP 2(R) \ L, with a cylindrical end symplectomorphic to the complement of
the zero-section in the unit cotangent bundle of L, we can study finite en-
ergy curves asymptotic to geodesics on L. The key proposition which implies
Proposition 3.3 is the following.

Proposition 3.6. Any almost-complex structure on Y = CP 2(R) \W ex-
tends to an almost complex structure on CP 2(R) \ L such that CP 2(R) \ L
admits either a degree 1 finite energy plane of area roughly R − 1 − b or a
degree 2 finite energy plane of area roughly 2R − 4 − b. In either case, the
planes have deformation index 1.

We recall that the degree of a finite energy curve is defined to be its
intersection number with the line at infinity CP 1(∞). The proof of Propo-
sition 3.6 will involve the use of finite energy foliations following [11] and we
postpone this until section 3.3.

Given Proposition 3.6, to complete the proof of Proposition 3.3 we con-
sider a sequence of finite energy planes from Proposition 3.6 with respect to a
sequence of almost-complex structures JN stretched to length N along ∂W .

We divide our proof into cases. First suppose that for each N in a se-
quence N → ∞ Proposition 3.6 produces finite energy planes of degree 1.
Then in the limit we have a finite energy curve u of degree 1 in Y . Proposition
3.3 is completed in this case by the following lemma.



3 ISOTOPIES OF ELLIPSOIDS. 24

Lemma 3.7. The curve u has a single end asymptotic to a hyperbolic orbit
of type γ1,1.

Proof. Suppose that u has ek punctures asymptotic to multiples of γk, now
with k = 1, 2, the ith one asymptotic to rki γ

k, 1 ≤ i ≤ ek. Also, suppose u
has h punctures asymptotic to hyperbolic orbits with the ith one asymptotic
to γmi,ni

, 1 ≤ i ≤ h. Then as in the area formula of Proposition 2.2, we have

area(u) = R−
e1∑
i=1

r1i b−
e2∑
i=1

r2i −
h∑
i=1

(mib+ ni)

and since we are taking limits of curves of area R− 1− b this implies

1 + b ≤
e1∑
i=1

r1i b+
e2∑
i=1

r2i +
h∑
i=1

(mib+ ni) ≤ R.

As R < 2 + b we see that if there is a hyperbolic limit then it is the only
limit and is of type γ1,1.

For elliptic orbits, we first claim that the only possibility is two ends
asymptotic to the elliptic orbits γ1 and γ2.

Proof of claim. For this, we note that as R < 3 and R < 2b (by condition
(vi)), the limits cannot cover γ2 more than twice in total, and cannot cover
γ1 more than once. Furthermore, if we have ends covering γ2 twice in total,
since b > 1 the lower bound above implies that there must still be another
end, which then contradicts our upper bound.

To conclude, if one end is asymptotic to a cover of γ1, it is the only
end asymptotic to γ1 and the other ends cover γ2. Then to satisfy the area
inequalities we see that there can only be one more end, which is asymptotic
to γ2. Similarly, if one end is asymptotic to a cover of γ2 it covers γ2 exactly
once and to satisfy the inequalities we must have another end asymptotic to
γ1. This justifies our claim.

Finally, to exclude these elliptic orbits, recall that as we are taking limits
of finite energy planes the limiting building has genus 0, and so only one of
the ends can be connected in W to a finite energy curve with an asymptotic
limit on L. The other end is then connected to components of area at least 1,
and this is a contradiction as the original planes have area R−1− b < 1.
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In the second case of Proposition 3.3 we now suppose that for each N in
a sequence N →∞ Proposition 3.6 produces finite energy planes of degree 2.
We will deduce from this the existence of a degree 2 plane in Y asymptotic
to an orbit γ1,4.

By the same area argument as in Lemma 3.7 the components of the limit
in Y can each have only a single negative end, and so the limit contains either
a single plane of degree 2 or two planes of degree 1 in Y . We deal with these
possibilities separately, starting with the limit containing two planes.

Degree 1 planes are necessarily somewhere injective and have nonnegative
index only if they are asymptotic to either an elliptic orbit rγ1 or rγ2 with
r ≤ 2 or to a hyperbolic orbit of type γ1,1. As R < 2b by condition (vi),
planes asymptotic to 2γ1 are excluded, and so by Proposition 2.2 all possible
planes have area at least R − (1 + b). But then the sum of the areas is at
least 2(R − (1 + b)) and 2R − (2 + 2b) > 2R − (4 + b) since b < 2, giving a
contradiction as the degree 2 planes from Proposition 3.6 have area 2R−4−b.

With two planes now excluded, our limit has a single plane of degree 2 in
Y . First suppose the plane is asymptotic to rγ2. As its area lies between 0
and 2R− 4− b we have

4 + b ≤ r ≤ 2R

which is a contradiction as 4 + b > 5 and 2R < 6.
Next suppose the plane is asymptotic to rγ1. Then the area inequality is

1 +
4

b
≤ r ≤ 2R

b
.

But as b < 2 the lower bound is greater than 3, and as R < 2b by condition
(vi) the upper bound is less than 4. This is another contradiction.

Thus we can conclude that the plane is asymptotic to a hyperbolic orbit,
say γm,n. A multiply covered curve can be ruled out using area considerations
as above, more precisely, the underlying curve has area at least R − (1 + b)
and so the plane itself has area at least 2(R−1−b), which exceeds 2R−4−b.
Hence the plane is somewhere injective and so has nonnegative index. By
the index formula in dimension 4 this means

m+ n ≤ 5.

We have area(u) = 2R−(mb+n), and as this is bounded by 0 and 2R−4−b
we also have the inequality

4 + b ≤ mb+ n ≤ 2R.
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Proposition 3.3 holds if we can show that m = 1, for then the lower bound
in the area inequality implies that n ≥ 4 and we get equality as the index
inequality says m+ n ≤ 5. Arguing by contradiction then, suppose m ≥ 2.

If m = 2 then n ≥ 4− b > 2. Thus as m+ n ≤ 5 we get n = 3. But then
mb+ n = 2b+ 3 > 2R by condition (vi). This is a contradiction to the area
inequality.

Similarly, if m ≥ 4 then mb+ n ≥ 4b > 2R, another contradiction.
It remains to exclude the case m = 3. Here the lower area bound gives

n ≥ 4 − 2b > 0. The upper area bound gives 3b + n ≤ 2R < 4b and so
n < b < 2. We deduce that n = 1 and the plane is asymptotic to an orbit
γ3,1.

Recall that u is a component of a holomorphic building arising as the
limit of a sequence of degree 2 planes in CP 2(R) \ L of index 1. The sum
of the virtual indices of the components of our limit, minus any matching
conditions, must also be 1, and we will derive our contradiction from this.
The limit has a single component u in Y but may also have components in
symplectization S(∂W ) and in W \ L.

As planar components in W have area at least 1, and as the total area
of the building is 2R − 4 − b < 1, all components of our (genus 0) limiting
building in the symplectization S(∂W ) and in W \L are cylinders. Moreover
there is a unique component in W \ L with its negative end on L. Further,
all asymptotic limits of all components are necessarily hyperbolic. Indeed,
if a component has elliptic ends we can abstractly glue it to higher level
components to produce a degree 2 plane with elliptic limits. This contradicts
our area inequalities as above.

Now, the curve u has virtual index 3. We will see in the next section that
the curve in W \ L has negative end on an indivisible Reeb orbit (that is,
the Reeb orbit cannot be written as a sum of shorter orbits). This implies
that that the curve is not multiplty covered and so has nonnegative index.
A cylindrical component in S(∂W ) with positive end asymptotic to an orbit
γm,n and negative end asymptotic to an orbit γm′,n′ has virtual index

index = 2(m+ n−m′ − n′) + 1.

For nontrivial somewhere injective curves this is at least 1 by translation
invariance of the symplectization. Hence m+n−m′−n′ ≥ 0. If the cylinder
is an r times multiple cover of a nontrivial cylinder as above then the virtual
index is 2r(m+ n−m′ − n′) + 1 which therefore again is at least 1.
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Let x be the number of nontrivial symplectization components in the
liming building, so we have x+1 matching asymptotic orbits. Then invariance
of the index gives

1 ≥ 3 + x− (x+ 1) = 2

and this is our contradiction, completing the proof of Proposition 3.3.

3.3 Proof of Proposition 3.6.

We recall that we are studying a Lagrangian L which is the distinguished
boundary of a polydisk P (b, 1) ⊂ B4(R) ⊂ CP 2(R). Our assumption that
the embedding of P (b, 1) extends to E(B,A) implies that there is a ball
B4(A) ⊂ E(B,A) ⊂ B4(R) which we may assume is disjoint from L. (Indeed,
reducing B if necessary, we can take L ⊂ ∂E(B,A).) However only the ball
of capacity 1 lies in the interior of W . We will study symplectic forms ωw and
corresponding almost-complex structures on Z = CP 2(R)]CP 1(w) \L given
by blowing-up a ball of some capacity w in the interval [1, A], and will prove
a refined version of Proposition 3.6. We will always assume that our almost-
complex structures leave the exceptional divisor E and the line at infinity
CP 1(∞) complex. In fact this is precisely the arrangement considered in
[11] and we follow those methods closely. Using coordinates on the polydisk
we can describe the homology class of an oriented geodesic on L by a pair
(k, l) ∈ Z2.

Proposition 3.8. Let Z be as above with w ∈ [1, A]. Then either there exists
a degree 1 finite energy plane asymptotic to a geodesic in the class (−1,−1)
and disjoint from E, or there exists a degree 2 finite energy plane asymptotic
to a geodesic in the class (−1,−4) and again disjoint from E.

By taking w = 1 and extending an almost-complex structure on CP 2(R)\
W to all of Z, this immediately implies Proposition 3.6 (after blowing the
ball back down).

In the course of the proof of Proposition 3.8 we will occasionally need the
index formula for curves in Z, which is as follows.

Proposition 3.9. (Hind-Lisi, [11], Proposition 3.1) Let C be a curve in
X \ L of degree d, with e intersections with E, and with s negative ends
asymptotic to geodesics in the classes (ki, li) respectively for 1 ≤ i ≤ s.
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The index of C (as an unparametrized curve, allowing the asymptotic
ends to move in the corresponding S1 family of Reeb orbits) is given by

index(C) = s− 2 + 6d− 2e+ 2
s∑
i=1

(ki + li).

Proof. (of Proposition 3.8.) We first record the following.

Lemma 3.10. Let Jt be a 1-parameter family of almost-complex structures
on Z tamed by a family of symplectic forms ωw(t).

The universal moduli spaces of degree 1 planes asymptotic to (−1,−1)
geodesics and disjoint from E, and the universal moduli space of degree 2
planes asymptotic to (−1,−4) geodesics and disjoint from E, are both com-
pact for generic 1-parameter families Jt.

Proof. We will deal only with the case of degree 2 planes. For generic 1-
parameter families of almost-complex structures there is no bubbling of holo-
morphic spheres. Also, as 2R − (b + 4) < 1 there can be no degree 0 curves
in the limit. Hence the only possible nontrivial degeneration of a degree 2
plane is into two planes of degree 1, which of course are necessarily some-
where injective. Suppose these are asymptotic to geodesics in the classes
(k1, l1) and (k2, l2) respectively. By Proposition 3.9, the deformation index
of such a plane is

index = 5 + 2(ki + li) ≥ −1

and so ki+li ≥ −3 for each i. However as the total homology class of geodesics
is preserved in any limit we also have (k1 + l1) + (k2 + l2) = −1 − 4 = −5
and so we may assume that k1 + l1 = −3 and k2 + l2 = −2. Focusing on the
first plane, it has area

area = R + bk1 + l1 = R− 3 + (b− 1)k1.

As R < 3 this is negative unless k1 ≥ 1, and in this case the area is at least
R + b− 4. This implies that the area of the second plane is at most

(2R− b− 4)− (R + b− 4) = R− 2b < 0

by our condition (vi), a contradiction.
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Combined with automatic regularity for finite energy planes in dimension
4, see [26], this implies that it suffices to construct our planes for a specific
almost-complex structure, and we will work with one tamed by the symplectic
form ωA.

An important tool for studying holomorphic curves in CP 2(R)]CP 1(A)
is the following result on foliations of holomorphic curves.

Proposition 3.11. (see [9], Proposition 4.1) For a generic J , the manifold
CP 2(R)]CP 1(A) is foliated by J holomorphic spheres in the class [CP 1(∞)]−
[E].

We are interested in the behavior of this foliation as we stretch the neck
along L to produce a finite energy foliation of Z. This process was first
described in [16], see also section 2 of [11] for the analysis in this particular
case. As in [11] the finite energy foliation has the following description.

Lemma 3.12. The foliation of Z consists of holomorphic spheres in the
homology class [CP 1(∞)]− [E] together with an S1-family of broken curves.

More precisely, there exists an S1 family of geodesics on L with each
geodesic corresponding to a unique broken curve. The broken curve consists
of two finite energy planes which are asymptotic to the geodesic with opposite
orientations.

Hence our finite energy foliation contains two S1 families of finite energy
planes asymptotic to the same family of geodesics in L with opposite orienta-
tions. As our broken curves are limits of closed curves of degree 1, one family
of planes will have degree 1 and the other will have degree 0. Similarly, one
family will intersect the exceptional divisor and the other will not. Further,
as they are part of a foliation the planes in the S1 families are disjoint. The
two possibilities for broken curves can be derived from the following lemma.

Lemma 3.13. Let C be the degree 0 component of a broken curve.
(i) If C is disjoint from E then C is asymptotic to a geodesic in the class

(1, 0) or (0, 1).
(ii) If C intersects E then C is asymptotic to a geodesic in the class (1, 1).

Proof. We start with case (i). Let C be asymptotic to a geodesic in the class
(k, l) and let C ′ be the other half of the broken curve. Then C ′ must intersect
the exceptional divisor. Suppose first that k, l ≥ 0. Then we can replace C
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by a (possibly singular) disk

D = {(z
b

)k = eiθwl}

where (z, w) denote coordinates on the polydisk P (b, 1) := {π|z|2 ≤ b, π|w|2 ≤
1}. We choose θ such that the boundaries of C and D coincide. We may as-
sume that D is also disjoint from E and so it can be glued to C ′ to produce a
sphere S which lies in the class [CP 1(∞)]−[E] and hence has self-intersection
0.

Now, we can also compute the self-intersection number of S by pushing
both D and C ′ onto disks asymptotic to a nearby geodesic. As it is part of
the finite energy foliation C ′ will have no intersections with its perturbation,
however D and its perturbation have intersection number kl relative to the
boundaries. Also, as the broken curves are part of a foliation, relative to
their boundaries we have C ′ · C = 0, and similarly, since π2(C2 \ L) = 0, we
have C ′ ·D = C ′ · C = 0. Therefore there are no other contributions to the
intersection number and so kl = 0 and we are in one of the cases described.

If either k or l are negative then this argument only implies that C is
asymptotic to a geodesic in the class (±1, 0) or (0,±1), but as degree 0
planes asymptotic to geodesics in the classes (−1, 0) or (0,−1) have negative
index we can exclude these cases by regularity.

For case (ii), we again replace C by a disk D and glue D to C ′. However
now C ′ is disjoint from E and so the result is a sphere in the class [CP 1(∞)]
which has self-intersection number 1. This implies that kl = ±1. Then for
C to have nonnegative index we conclude that the plane is asymptotic to a
geodesic in the class (1, 1).

We have concluded that three kinds of finite energy foliation are possible.
If the degree 0 broken curves intersect E then the degree 1 components of the
broken curves are disjoint from E and asymptotic to geodesics in the class
(−1,−1). Thus Proposition 3.8 is valid in this case.

If the degree 0 broken components are planes disjoint from E and asymp-
totic to (1, 0) geodesics, then the degree 1 components are asymptotic to
(−1, 0) geodesics and have area R − A − b, recalling that this component
must intersect an exceptional divisor of area A. But the contradicts condi-
tion (v) and so may be excluded.

Thus we may assume that the foliation is exactly the one described in [11],
that is, the broken curves consist of degree 0 planes asymptotic to geodesics
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in the class (0, 1) and degree 1 planes which intersect E and are asymptotic
to geodesics in class (0,−1). These have area R− 1− A.

It is useful to define the map π : Z → E given by projection along the
leaves of the finite energy foliation, which all intersect E in a single point
(considering broken finite energy curves as representing a single leaf). Then
the broken curves project onto a circle Γ ⊂ E.

The next step is to consider limits of high degree holomorphic spheres,
whose existence is claimed by the following.

Proposition 3.14. (see [10] Proposition 2.2, [11], Proposition 2.1) Let J
be a regular almost complex structure on CP 2(R)]CP 1(A) (so all somewhere
injective curves are regular).

Then, there is a co-meagre set P ⊂ X2d consisting of 2d constraint points
so that for each tuple of constraints p1, . . . , p2d, there is a unique embedded
holomorphic sphere S in the class d[CP 1(∞)] − (d − 1)[E] passing through
the points.

We note that such curves S have intersection number 1 with curves in
the foliation of Proposition 3.11. As in [11], we fix 2d points on L and take a
limit of our high degree curves from Proposition 3.14 as the almost-complex
structure is stretched along L. The limit contains a union F of finite energy
planes in Z. By positivity of intersection, if p ∈ E\Γ then π−1(p)∩F consists
of a single point corresponding to the unique intersection of the fiber curve
through p with F . This implies two possibilities for the curves F .

Case 1. F consists of a number of curves covering leaves of the foliation
together with a single curve F0 asymptotic to geodesics of the form (0,±l).
Then π(F0) is equal to E \ {qi} where the {qi} correspond to the broken
leaves asymptotic to the limiting geodesics.

Case 2. F consists of a number of curves covering leaves of the foliation
together with two curves F0 and F1 asymptotic to geodesics of the form (1, l0)
and (−1, l1) respectively. In this case π(F0) ∪ π(F1) = E \ Γ.

Case 1 was dealt with in [11]. It turns out that the remaining components
of F consist of 2d planes covering broken components of degree 0. These
components have a total area of at least 2d, while closed curves in the class
d[CP 1(∞)] − (d − 1)[E] have area dR − (d − 1)A. Therefore we must have
dR− (d− 1)A ≥ 2d and hence R ≥ 3− 1/d. As R < 3 this is a contradiction
if d is sufficiently large.

Eliminating this case, we have now reduced to Case 2 provided d is chosen
large.
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By Proposition 3.9 we see that F0 and F1 have odd deformation indices.
Hence, as they cannot be multiple covers (as they are planes asymptotic to
nondivisible geodesics in the classes (1, l0) or (−1, l1)) for a generic almost-
complex structure we have index(F0) ≥ 1 and index(F1) ≥ 1. In fact, to
simplify our calculations, we can actually prove the following.

Lemma 3.15. index(F0) = index(F1) = 1.

Proof. Besides F0 and F1, it turns out that in fact all components in Z have
virtual index at least equal to their number of negative ends. For example, if a
component C with s ends is an r-times multiple cover of a broken component
of degree 1, then Proposition 3.9 gives

index(C) = s− 2 + 6r − 2r − 2r = s− 2 + 2r.

Next we recall that our components arise as a limit of holomorphic spheres of
constrained index 0 (that is, the moduli space of holomorphic spheres passing
through the constraint points has virtual index 0). Therefore the sum of the
constrained indices of the components of our holomorphic building, minus
the number of matched asymptotic ends, should also be 0. The virtual index
of components in T ∗L is nondecreasing under multiple covers (see again [11],
Proposition 3.2 and 3.3) and thus the constrained index can be assumed to
be nonnegative. Hence our sum can be 0 only if all components in Z have
index exactly equal to their number of ends. In particular F0 and F1 have
index 1.

Suppose F1 has degree d1 and intersection number e1 with E. Then
computing using Proposition 3.9 we find

1 = index(F1) = −1 + 6d1 − 2e1 + 2l1 − 2

and so 3d1 − e1 + l1 = 2. Therefore

area(F1) = Rd1 − Ae1 − b+ l1

= (3d1 − e1 + l1)− (3−R)d1 − (A− 1)e1 − b

= 2− (3−R)d1 − (A− 1)e1 − b.

Suppose that d1 ≥ 3. Then

area(F1) ≤ 2− 9 + 3R− b
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which contradicts condition (vi). Next suppose that d1 = 1 and e1 ≥ 1.
Then

area(F1) ≤ 2− 3 +R− A+ 1− b = R− A− b
which contradicts condition (v). If d1 = 1 and e1 = 0 then by the index
formula l1 = −1 and we have a curve of degree 1 as required for Proposition
3.8. Thus we reduce to the case when d1 = 2. Now if e1 ≥ 1 we have

area(F1) ≤ 2− 6 + 2R− A+ 1− b = 2R− A− 3− b

which contradicts the upper bound on R of condition (iii). Hence the curve
F1 may be assumed to have degree 2 and avoid E. Then by the index formula
l1 = −4 and we have a degree 2 curve as required, completing the proof of
Proposition 3.8.
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Birkhäuser, Basel, 1999.

[16] H. Hofer, K. Wysocki and E. Zehnder, Finite energy foliations of
tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2), 157
(2003), 125–255.

[17] F. Lalonde and D. McDuff, The geometry of symplectic energy, Ann. of
Math., 141 (1995), 349–371.

[18] D. McDuff and D. Salamon, J-holomorphic curves and symplectic
topology. American Mathematical Society Colloquium Publications, 52.
American Mathematical Society, Providence, RI, 2004.

[19] D. McDuff and F. Schlenk, The embedding capacity of 4-dimensional
symplectic ellipsoids, Ann. of Math., 175 (2012), 1191–1282.



REFERENCES 35

[20] D. McDuff, Symplectic embeddings of 4-dimensional ellipsoids, J.
Topol., 2 (2009), 1-22.

[21] D. McDuff and E. Opshtein, Nongeneric J-holomorphic curves and sin-
gular inflation, preprint, arXiv:1309.6425.

[22] E. Opshtein, Maximal symplectic packings of P2, Compos. Math.,
143(2007), 1558-1575.

[23] J. Robbin and D. Salamon, The Maslov index for paths, Topology, 32
(1993), 827–844.

[24] F. Schlenk, Embedding problems in symplectic geometry De Gruyter
Expositions in Mathematics 40. Walter de Gruyter Verlag, Berlin. 2005.

[25] M. Schwarz, Cohomology operations from S1-cobordisms in Floer ho-
mology, PhD thesis, ETH Zürich, 1995.
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