Name: \qquad
Department of Mathematics University of Notre Dame
Math 20580 - Fall 2012
Version \#1
Instructor:
Exam 1
Misiolek |Taylor \qquad

September 18, 2012

This exam is in 2 parts on 9 pages and contains 12 problems worth a total of 100 points. You have 1 hour and 15 minutes to work on it. No calculators, books, notes, or other aids are allowed. Be sure to write your name on this page and to put your initials at the top of every page in case pages become detached. On the partial credit problems you must show your work and all important steps to receive credit. Good luck!
Honor Pledge: As a member of the Notre Dame community, I will not participate in nor tolerate academic dishonesty.

> Signature:
\qquad
Mark your answers to the multiple choice problems here.
Place an \times through your answer to each problem.

1. (a)
(b)
(•)
(d)
(e)
2.

(a)
(b)
(c)
(•)
(e)
3.
(a)
(b)
(c)
(d)
(•)
4.
(a)
(b)
(•)
(d)
(e)
5.
(a)
(•)
(c)
(d)
(e)
6.
(a)
(b)
(c)
(•)
(e)
7.
(b)
(c)
(d)
(e)
8.
(b)
(c)
(d)
(e)

Please do not write below this line.
This space is for grading.
Answers to the partial credit problems should be circled along with your work on the page with the problem.

MC
9.
10.
11.
12.

Name: \qquad
Department of Mathematics
University of Notre Dame
Instructor:
Math 20580 - Fall 2012
Misiolek |Taylor \qquad

Exam 1

September 18, 2012

This exam is in 2 parts on 9 pages and contains 12 problems worth a total of 100 points. You have 1 hour and 15 minutes to work on it. No calculators, books, notes, or other aids are allowed. Be sure to write your name on this page and to put your initials at the top of every page in case pages become detached. On the partial credit problems you must show your work and all important steps to receive credit. Good luck!
Honor Pledge: As a member of the Notre Dame community, I will not participate in nor tolerate academic dishonesty.

Signature: \qquad
Mark your answers to the multiple choice problems here.
Place an \times through your answer to each problem.

1. (a)
(b)
(c)
(d)
(e)
2.

(a)
(b)
(c)
(d)
(e)
3.
(a)
(b)
(c)
(d)
(e)
4.
(a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6.
(a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)
8.
(a)
(b)
(c)
(d)
(e)

Please do not write below this line.

MC
9.
10.
11.
12.
1.(6pts) If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, which matrix below is $A A^{T}$ for all choices of real numbers a, b, c and $d ?$
(a) $\left[\begin{array}{ll}a^{2} & b c \\ b c & d^{2}\end{array}\right]$
(b) $\left[\begin{array}{cc}a d-b c & 0 \\ 0 & a d-b c\end{array}\right]$
(c) $\left[\begin{array}{cc}a^{2}+b^{2} & a c+b d \\ a c+b d & c^{2}+d^{2}\end{array}\right]$
(d) $\left[\begin{array}{cc}2 a & b+c \\ b+c & 2 d\end{array}\right]$
(e) The matrices A and A^{T} can not be multiplied.
2. (6pts) Which column in the matrix below is the first column from the left which is a linear combination of the preceding ones?
$\left[\begin{array}{rrrrr}1 & 2 & -1 & -3 & 2 \\ 2 & 5 & -1 & -6 & 6 \\ 3 & 7 & -2 & -8 & 8 \\ 4 & 9 & -3 & -11 & 10 \\ 1 & 2 & -1 & -5 & 3\end{array}\right]$
(a) $\left[\begin{array}{l}2 \\ 5 \\ 7 \\ 9 \\ 2\end{array}\right]$
(b) $\left[\begin{array}{r}2 \\ 6 \\ 8 \\ 10 \\ 3\end{array}\right]$
(c) $\left[\begin{array}{r}-3 \\ -6 \\ -8 \\ -11 \\ -5\end{array}\right]$
(d) $\left[\begin{array}{l}-1 \\ -1 \\ -2 \\ -3 \\ -1\end{array}\right]$
(e) $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 1\end{array}\right]$
\qquad
3.(6pts) Consider the subspace of all vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ in the span of $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$. Which relation below must always hold?
(a) $a b c=0$
(b) $a+c-2 b=2$
(c) $a+c+2 b=2$
(d) $a+c+2 b=0$
(e) $a+c-2 b=0$
4. (6 pts) Which number below is the 2,1 entry in the product

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 2 & 1 \\
0 & 4 & -2
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
3 & 4 \\
-2 & 1
\end{array}\right] \quad ?
$$

(a) 16
(b) 13
(c) 3
(d) -4
(e) 0
\qquad
5.(6pts) Which sets of vectors below are linearly independent?

$$
S_{1}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
6 \\
8
\end{array}\right]\right\}, S_{2}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
8
\end{array}\right],\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{r}
5 \\
13 \\
17
\end{array}\right]\right\}, S_{3}=\left\{\left[\begin{array}{l}
11 \\
23 \\
17 \\
18
\end{array}\right],\left[\begin{array}{l}
17 \\
13 \\
23 \\
19
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right\}
$$

(a) Only S_{2}.
(b) They are all linearly dependent
(c) Only S_{1} and S_{2}.
(d) Only S_{1}
(e) Only S_{3}.
6. (6pts) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ satisfy $T\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}4 \\ 7\end{array}\right], T\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}7 \\ 4\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Which matrix below is the standard matrix for T ?
(a) $\left[\begin{array}{lll}7 & 4 & 0 \\ 4 & 7 & 0\end{array}\right]$
(b) $\left[\begin{array}{lll}4 & 7 & 0 \\ 7 & 4 & 0\end{array}\right]$
(c) $\left[\begin{array}{lll}7 & 4 & -11 \\ 4 & 7 & -11\end{array}\right]$
(d) $\left[\begin{array}{lll}4 & 7 & -18 \\ 7 & 4 & -15\end{array}\right]$
(e) Can not be determined from the given information.
\qquad
7.(6pts) The rank of the matrix $A=\left[\begin{array}{rrr}1 & 2 & -3 \\ 2 & 5 & -6 \\ 3 & 7 & -9 \\ 4 & 9 & -12 \\ 1 & 2 & -3\end{array}\right]$ is clearly 2 . What is the dimension of $\operatorname{Nul}(A) ?$
(a) 3
(b) 5
(c) 2
(d) 4
(e) 1
8.(6pts) Exactly one of the subsets listed in the answers is NOT a subspace. Which one is it? Here A is an $m \times n$ matrix, $\mathbf{x} \in \mathbf{R}^{n}$ and $\mathbf{b} \in \mathbf{R}^{m}$.
(a) The subset of all \mathbf{x} for which $A \mathbf{x}=\mathbf{b}$ for a fixed $\mathbf{b}, \mathbf{b} \neq \mathbf{0}$.
(b) The subset of all $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ such that $x_{1}=0$.
(c) The subset of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has a solution.
(d) The subset of all $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ such that $x_{1}^{2}+\cdots+x_{n}^{2}=0$.
(e) The subset of all \mathbf{x} for which $\mathbf{x}^{T} A^{T}=\mathbf{0}$

Initials:
9.(13pts) If V and W are subspaces of \mathbf{R}^{n}, define $V \cap W$ to be the subset of all vectors \mathbf{v} in \mathbf{R}^{n} such that \mathbf{v} is in V and \mathbf{v} is in W. Show that $V \cap W$ is a subspace.

For some credit, indicate what three things you need to show even if you are unable to show them.
\qquad
10.(13pts) Compute the inverse to the matrix $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$.

Initials: \qquad
11.(13pts) Find a basis for the null space and the column space of the matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 0 & 5 & 6 & 4 \\
2 & 3 & -2 & 2 & -2 \\
3 & 1 & 11 & 11 & 5
\end{array}\right]
$$

12. (13pts) Let $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1\end{array}\right]\right\}$ be a basis for a subspace V of \mathbf{R}^{6} Find a 6×2 matrix A
so that given any vector $\mathbf{w} \in V$ with \mathcal{B}-coordinate vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]_{\mathcal{B}}, A\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]_{\mathcal{B}}=\mathbf{w}$.

Name: \qquad
Department of Mathematics University of Notre Dame
Math 20580 - Fall 2012
Version \#2
Instructor:
Misiolek / Taylor \qquad

Exam 1

September 18, 2012

This exam is in 2 parts on 9 pages and contains 12 problems worth a total of 100 points. You have 1 hour and 15 minutes to work on it. No calculators, books, notes, or other aids are allowed. Be sure to write your name on this page and to put your initials at the top of every page in case pages become detached. On the partial credit problems you must show your work and all important steps to receive credit. Good luck!
Honor Pledge: As a member of the Notre Dame community, I will not participate in nor tolerate academic dishonesty.

> Signature:
\qquad
Mark your answers to the multiple choice problems here.
Place an \times through your answer to each problem.

1. (a)
(b)
(c)
(d)
2. (a)

-

(c)
(d)
(•)
(e)
3. (a)
(b)
(c)
(d)
(e)
4.
(a)
(•)
(c)
5. (a)
(b)
(c)
(d)
(•)
6. (•)
(b)
(c)
(d)
(e)
7. (a)
(b)
(•)
(d)
(e)
8.
(a)
(b)
(d)
(e)

Please do not write below this line.
This space is for grading.
Answers to the partial credit problems should be circled along with your work on the page with the problem.

MC
9.
10.
11.
12.

Name: \qquad
Department of Mathematics
University of Notre Dame
Math 20580 - Fall 2012

Instructor:
Misiolek / Taylor \qquad

Exam 1

September 18, 2012

This exam is in 2 parts on 9 pages and contains 12 problems worth a total of 100 points. You have 1 hour and 15 minutes to work on it. No calculators, books, notes, or other aids are allowed. Be sure to write your name on this page and to put your initials at the top of every page in case pages become detached. On the partial credit problems you must show your work and all important steps to receive credit. Good luck!
Honor Pledge: As a member of the Notre Dame community, I will not participate in nor tolerate academic dishonesty.

Signature: \qquad
Mark your answers to the multiple choice problems here.
Place an \times through your answer to each problem.

1. (a)
(b)
(c)
(d)
(e)
2.

(a)
(b)
(c)
(d)
(e)
3.
(a)
(b)
(c)
(d)
(e)
4.
(a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6.
(a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)
8.
(a)
(b)
(c)
(d)
(e)

Please do not write below this line.

MC
9.
10.
11.
12.
\qquad
1.(6pts) If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, which matrix below is $A A^{T}$ for all choices of real numbers a, b, c and d ?
(a) $\left[\begin{array}{cc}a d-b c & 0 \\ 0 & a d-b c\end{array}\right]$
(b) $\left[\begin{array}{cc}2 a & b+c \\ b+c & 2 d\end{array}\right]$
(c) The matrices A and A^{T} can not be mul
(d) $\left[\begin{array}{ll}a^{2} & b c \\ b c & d^{2}\end{array}\right]$
(e) $\left[\begin{array}{cc}a^{2}+b^{2} & a c+b d \\ a c+b d & c^{2}+d^{2}\end{array}\right]$
2.(6pts) Which column in the matrix below is the first column from the left which is a linear combination of the preceding ones?
$\left[\begin{array}{rrrrr}1 & 2 & -1 & -3 & 2 \\ 2 & 5 & -1 & -6 & 6 \\ 3 & 7 & -2 & -8 & 8 \\ 4 & 9 & -3 & -11 & 10 \\ 1 & 2 & -1 & -5 & 3\end{array}\right]$
(a) $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{l}-1 \\ -1 \\ -2 \\ -3 \\ -1\end{array}\right]$
(c) $\left[\begin{array}{r}-3 \\ -6 \\ -8 \\ -11 \\ -5\end{array}\right]$
(d) $\left[\begin{array}{r}2 \\ 6 \\ 8 \\ 10 \\ 3\end{array}\right]$
(e) $\left[\begin{array}{l}2 \\ 5 \\ 7 \\ 9 \\ 2\end{array}\right]$
\qquad
3.(6pts) Consider the subspace of all vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ in the span of $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$. Which relation below must always hold?
(a) $a+c+2 b=0$
(b) $a b c=0$
(c) $a+c-2 b=2$
(d) $a+c-2 b=0$
(e) $a+c+2 b=2$
4. (6 pts) Which number below is the 2,1 entry in the product

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 2 & 1 \\
0 & 4 & -2
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
3 & 4 \\
-2 & 1
\end{array}\right] \quad ?
$$

(a) 0
(b) 3
(c) 16
(d) 13
(e) -4
\qquad
5.(6pts) Which sets of vectors below are linearly independent?

$$
S_{1}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
6 \\
8
\end{array}\right]\right\}, S_{2}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
8
\end{array}\right],\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{r}
5 \\
13 \\
17
\end{array}\right]\right\}, S_{3}=\left\{\left[\begin{array}{l}
11 \\
23 \\
17 \\
18
\end{array}\right],\left[\begin{array}{l}
17 \\
13 \\
23 \\
19
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right\}
$$

(a) Only S_{2}.
(b) Only S_{3}.
(c) Only S_{1} and S_{2}.
(d) Only S_{1}
(e) They are all linearly dependent
6.(6pts) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ satisfy $T\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}4 \\ 7\end{array}\right], T\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}7 \\ 4\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Which matrix below is the standard matrix for T ?
(a) $\left[\begin{array}{lll}4 & 7 & -18 \\ 7 & 4 & -15\end{array}\right]$
(b) $\left[\begin{array}{lll}4 & 7 & 0 \\ 7 & 4 & 0\end{array}\right]$
(c) $\left[\begin{array}{lll}7 & 4 & -11 \\ 4 & 7 & -11\end{array}\right]$
(d) $\left[\begin{array}{lll}7 & 4 & 0 \\ 4 & 7 & 0\end{array}\right]$
(e) Can not be determined from the given information.
\qquad
7.(6pts) The rank of the matrix $A=\left[\begin{array}{rrr}1 & 2 & -3 \\ 2 & 5 & -6 \\ 3 & 7 & -9 \\ 4 & 9 & -12 \\ 1 & 2 & -3\end{array}\right]$ is clearly 2 . What is the dimension of $\operatorname{Nul}(A) ?$
(a) 4
(b) 1
(c) 3
(d) 2
(e) 5
8.(6pts) Exactly one of the subsets listed in the answers is NOT a subspace. Which one is it? Here A is an $m \times n$ matrix, $\mathbf{x} \in \mathbf{R}^{n}$ and $\mathbf{b} \in \mathbf{R}^{m}$.
(a) The subset of all \mathbf{x} for which $\mathbf{x}^{T} A^{T}=\mathbf{0}$
(b) The subset of all $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ such that $x_{1}^{2}+\cdots+x_{n}^{2}=0$.
(c) The subset of all \mathbf{x} for which $A \mathbf{x}=\mathbf{b}$ for a fixed $\mathbf{b}, \mathbf{b} \neq \mathbf{0}$.
(d) The subset of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has a solution.
(e) The subset of all $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ such that $x_{1}=0$.

Initials:
9.(13pts) If V and W are subspaces of \mathbf{R}^{n}, define $V \cap W$ to be the subset of all vectors \mathbf{v} in \mathbf{R}^{n} such that \mathbf{v} is in V and \mathbf{v} is in W. Show that $V \cap W$ is a subspace.

For some credit, indicate what three things you need to show even if you are unable to show them.
\qquad
10.(13pts) Compute the inverse to the matrix $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$.

Initials: \qquad
11.(13pts) Find a basis for the null space and the column space of the matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 0 & 5 & 6 & 4 \\
2 & 3 & -2 & 2 & -2 \\
3 & 1 & 11 & 11 & 5
\end{array}\right]
$$

12. (13pts) Let $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1\end{array}\right]\right\}$ be a basis for a subspace V of \mathbf{R}^{6} Find a 6×2 matrix A
so that given any vector $\mathbf{w} \in V$ with \mathcal{B}-coordinate vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]_{\mathcal{B}}, A\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]_{\mathcal{B}}=\mathbf{w}$.
