Math 20580	Name:
Midterm 2	Instructor:
March 5, 2015	Section:
exam. You will be finished.	NOT allowed. Do not remove this answer page – you will return the whole earlier if you are sellowed 75 minutes to do the test. You may leave earlier if you are
There are 8 mult each worth 11 po problem on this a	iple choice questions worth 7 points each and 4 partial credit questions pints. Record your answers by placing an × through one letter for each answer sheet.
Sign the pledge this Exam":	e. "On my honor, I have neither given nor received unauthorized aid on
	1. a b c d e
	2. a b c d e
	3. a b c d e
	4. a b c d e
	5. a b c d e
	6. a b c d e
	7. a b c d e
	8. a b c d e
Multiple Chai	

Multiple Choice.

9.

10.

11.

12.

Part I: Multiple choice questions (7 points each)

- 1. Which of the following form a vector space?
 - A. All continuous functions $f: [-1,1] \to \mathbb{R}$ with $\int_{-1}^{1} f(t) dt = 0$.
 - B. All vectors of the plane in \mathbb{R}^3 defined by x y z = -1.
 - C. All polynomials p(t) with p(0) = 0.
 - D. All continuous functions f on \mathbb{R} with f(1) = f(-1).
 - (a) C,D only (b) A,C,D only (c) A,B,C and D (d) A,B only (e) A,B,D only

A, C, D are vector space.

B is NOT since O does not belong to $\{(x,y,z) \mid x-y-z=-1\}$.

- 2. Let \mathbb{P}_2 be the space of all polynomials of degree less than or equal to two. What is the dimension of the subspace of \mathbb{P}_2 spanned by $\{1+t^2, 2-t+t^2, 1-t\}$?
 - (a) 1
- (b) 3
- (c) 4
- (d) 2
- (e) 0

In term of st basis $(1, t, t^2)$ the ive need to

Compute rank of $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 & 1 \\
0 & -1 &$

- 3. Which of the following statements are TRUE?
 - A. $rank(A) = rank(A^T)$.
 - B. An $n \times n$ matrix A is diagonalizable if and only if there is a basis of \mathbb{R}^n consisting of eigenvectors of A.
 - C. One can find n linearly independent vectors in \mathbb{R}^n whose span is NOT all of \mathbb{R}^n .
 - D. Two matrices that are row equivalent always have the same eigenvalues.
 - (a) A,B,D only (b) B,C, D only (c) C,D only (d) B only (e) A, B only.

rank (A) = # of columns of A = # of rows of AT. = sank(AT) So A. i TRUE

B : clearly TRUE & C is Clearly FALSE.

D is also FALSE. Sime any invertible matrix is row eq. 4. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that to I, but eigenvalue

$$T\begin{bmatrix}1\\2\end{bmatrix}=\begin{bmatrix}2\\0\\6\end{bmatrix}$$
 and $T\begin{bmatrix}3\\4\end{bmatrix}=\begin{bmatrix}0\\-2\\4\end{bmatrix}$ might be diff.

Find $T \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

(a)
$$\begin{bmatrix} 2 \\ -2 \\ 10 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}$ (c) $\begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$ (d) $\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$ (e) cannot be determined

$$\Rightarrow T(1) = -\frac{1}{2}T(1) + \frac{1}{2}T(3) = -\frac{1}{2}\binom{2}{6} + \frac{1}{2}\binom{0}{-2}$$

$$= \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}.$$

5. If
$$\begin{bmatrix} 1\\2\\1 \end{bmatrix}$$
 is an eigenvector of the matrix $\begin{bmatrix} 4&0&-1\\3&0&3\\2&-2&5 \end{bmatrix}$ then the corresponding eigenvalue is

(a)
$$3$$
 (b) -2

(c) 1 (d)
$$-1$$

(e)
$$-3$$

$$\begin{pmatrix} 4 & 0 & -1 \\ 3 & 0 & 3 \\ 2 & -2 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

6. The eigenvalues of the matrix
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{bmatrix}$$
 are

(a)
$$\lambda = 1$$
, $\lambda = 2$ and $\lambda = 3$ (b) $\lambda = 4$ and $\lambda = 1$ (with multiplicity 2)

(c)
$$\lambda = 0$$
 and $\lambda = 1$ (with multiplicity 2) (d) $\lambda = 0$, $\lambda = 1$ and $\lambda = 2$

 $\Rightarrow \lambda = 1, 1, 4$

$$\det(A-\lambda I) = \begin{vmatrix} 1-\lambda & -1 & 2 \\ 0 & 2-\lambda & 2 \\ 0 & 1 & 3-\lambda \end{vmatrix}$$

$$= (1-\lambda) \left[(2-\lambda)(3-\lambda) - 2 \right] = 0$$

$$\Rightarrow (1-\lambda) \left[\lambda^2 - 5\lambda + 4 \right] = 0$$

$$\Rightarrow (1-\lambda)(\lambda-1)(\lambda-4) = 0$$

- 7. Which of the following statements is <u>not</u> true for an invertible $n \times n$ matrix A?
 - (a) $\operatorname{rank} A = n$
- (b) dim Row A = n
- (c) $\dim \operatorname{Nul} A = 0$

- (d) $A^T A^{-1}$ is invertible
- (e) $\lambda = 0$ is an eigenvalue of A

A is invertible if & only if din Nul = 0 So only (e) i NOT true

- 8. Let $\mathcal{B} = \{1+t, 1-t^2, 1-t+t^2\}$ be a basis for the space of polynomials of degree at most 2. Find the coordinate vector $[p]_{\mathcal{B}}$ of $p(t) = 1 - 2t + t^2$.

- (a) $\begin{vmatrix} 1/3 \\ -4/3 \\ 2/3 \end{vmatrix}$ (b) $\begin{vmatrix} 1 \\ -2 \\ 1 \end{vmatrix}$ (c) $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ (d) $\begin{bmatrix} -2/3 \\ 1/3 \\ 4/3 \end{bmatrix}$ (e) $\begin{bmatrix} 4 \\ 1 \\ -2 \end{bmatrix}$

We need to solve

 $G(1+t) + G_2(1-t^2) + G_3(i-t+t^2) = 1-2t+t^2$ or taking coordinate vectors with respect to {1, t, t

$$C_{1}\begin{pmatrix}1\\1\\0\end{pmatrix}+C_{2}\begin{pmatrix}1\\0\\-1\end{pmatrix}+C_{3}\begin{pmatrix}1\\-1\\1\end{pmatrix}=\begin{pmatrix}-2\\1\end{pmatrix}.$$

Part II: Partial credit questions (11 points each). Show your work.

9. Consider the following 3×4 matrix:

$$A = \begin{bmatrix} 3 & 6 & 0 & -2 \\ 1 & 2 & 1 & -2 \\ 0 & 0 & -3 & 4 \end{bmatrix}$$

(a) Find a basis for the row space of A.

$$\begin{pmatrix}
3 & 6 & 0 & -2 \\
1 & 2 & 1 & -2 \\
0 & 0 & -3 & 4
\end{pmatrix}
\xrightarrow{R_1 \leftrightarrow R_2}
\begin{pmatrix}
1 & 2 & 1 & -2 \\
3 & 6 & 0 & -2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_2 - 3R_1 \\
0 & 0 & -3 & 4
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 1 & -2 \\
0 & 0 & -3 & 4
\end{pmatrix}
\xrightarrow{R_3 - R_2}
\begin{pmatrix}
1 & 2 & 1 & -2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

$$\begin{array}{c}
R_3 - R_2 \\
0 & 0 & -3 & 4
\end{pmatrix}$$

(b) Based on your calculations above, what is the dimension of the null space of A^T . (Hint: The rows of A are the columns of A^T .)

AT is
$$4 \times 3$$
,

 $2ank(A) = 2 = 2ank(A^{T})$
 $\Rightarrow null(A^{T}) = \# of columns of A^{T} - 2$.

 $= 3-2=1$

10. Consider two bases $\mathcal{B} = \{ \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \}$ and $\mathcal{C} = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \}$ for \mathbb{R}^2 . Find the change of coordinates matrix sending a \mathcal{B} -coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ to a \mathcal{C} -coordinate vector $[\mathbf{x}]_{\mathcal{C}}$.

$$\begin{pmatrix} 1 & 3 & 1 & 1 \\ 2 & 4 & 5 & -1 \end{pmatrix}$$

$$S = P = \begin{pmatrix} 1/2 & -7/2 \\ B \rightarrow C & \begin{pmatrix} -3/2 & 3/2 \end{pmatrix}$$

11. Consider the matrix
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & -3 \\ 1 & -1 & 0 \end{bmatrix}$$
.

$$A = PDP^{-1} \text{ where } D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Find an invertible matrix
$$P$$
 such that

11. Consider the matrix
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & -3 \\ 1 & -1 & 0 \end{bmatrix}$$
. Find an invertible matrix P such that
$$A = PDP^{-1} \text{ where } D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}. \implies P = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & -3 & 1 \end{pmatrix}$$
 eigenvalues $1, -1, 3$.

$$\Rightarrow \xi_{1} + \xi_{2} - 3\xi_{3} = 0, \quad \vec{V}_{1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}.$$

$$2\xi_{2} = 2\xi_{3}$$

$$\frac{\lambda = -1}{(A - \lambda 11 | 0)} = \begin{pmatrix} 2 & 0 & 0 & | 0 \\ \bullet & \bullet 3 & \bullet -3 & | 0 \\ | & -1 & | & | 0 \end{pmatrix}, \quad 2\xi_1 = 0$$

$$\vec{V}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\frac{\lambda=3}{(A-\lambda 1|0)} = \begin{pmatrix} -2 & 0 & 0 & |0| \\ 1 & -1 & -3 & |0| \\ 1 & -1 & -3 & |0| \end{pmatrix} \Rightarrow -\xi_2 = 3\xi_3$$

12. Let P2 and P3 denote the spaces of polynomials of degree less than or equal to two and three respectively. Define a linear transformation $T: \mathbb{P}_3 \to \mathbb{P}_2$ by

$$T(a_0 + a_1x + a_2x^2 + a_3x^3) = (a_0 + a_3) + (a_1 + a_3)x + (a_1 - a_2)x^2.$$

(a) Write down the standard bases \mathcal{B}_2 and \mathcal{B}_3 for \mathbb{P}_2 and \mathbb{P}_3 respectively.

$$B_2 = \{1, x, x^2\}$$
 $B_3 = \{1, x, x^2, x^3\}$

(b) Find the matrix for T relative to the bases \mathcal{B}_2 and \mathcal{B}_3 .

$$T(1) = 1 \Rightarrow \begin{bmatrix} T(1) \end{bmatrix}_{B_2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$T(x) = x + x^2 \qquad [T(x)]_{R_1} = (0)$$

$$T(\chi) = \chi + \chi^{2} \qquad \left[T(\chi)\right]_{B_{2}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$T(\chi^{2}) = -\chi^{2}.$$

$$T(\chi^2) = -\chi^2$$

$$T(\chi^3) = 1 + \chi \cdot \left[T(\chi^2)\right]_{B_2} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$

$$\left[T(\chi^3)\right]_{B_2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\Rightarrow$$
 matrix: $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & -1 & 0 \end{pmatrix}$.