Math 20580 Name;

Midterm 2 Instructor:

March 5, 2015 Section:

Calculators are NOT allowed. Do not remove this answer page — you will return the whole
exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are
finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions
each worth 11 points. Record your answers by placing an x through one letter for each
problem on this answer sheet.

Sign the pledge. “On my honor, I have neither given nor received unauthorized aid on
this Exam”:
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Part I: Multiple choice questions (7 points each)

1. Which of the following form a vector space?

1
A. All continuous functions f : [~1,1] = R with / f@@)dt=0o.
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B. All vectors of the plane in R? defined by z — y—z=-1.
C. All polynomials p(t) with p(0) = 0.
D. All continuous functions f on R with f(1) = f(-1).
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2. Let IP; be the space of all polynomials of degree less than or equal to two. What is
the dimension of the subspace of P, spanned by {1 +t2,2 — ¢ +2,1 — t}?
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3.

Which of the following statements are TRUE?

A. rank(A) = rank(AT).

B. An n x n matrix A is diagonalizable if and only if there is a basis of R® consisting
of eigenvectors of A.

C. One can find n linearly independent vectors in R™ whose span is NOT all of R™.

D. Two matrices that are row equivalent always have the same eigenvalues.

(a) A,B,D only (b) B,C, D only (c) C,D only (d) B only\(ﬁ/A, B only.
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Let T': R?2 — R be a linear transformation such that J{,} I { t,\_é_ LA gl v m(, Al
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5. If |2[ is an eigenvector of the matrix [3 0 3 | then the corresponding
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eigenvalue is

@3 -2 @©1 @-1 ()-3
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@A=1,A=2and A=23 \W)/)\ =4 and A = 1 (with multiplicity 2)
(c) A=0and A =1 (with multiplicity 2) (d) A=0,A=1and A =2
(e) The only real eigenvalue of A is 1.
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6. The eigenvalues of the matrix A = l:O 2 2J are



7. Which of the following statements is not true for an invertible n x 7 matrix A?

(a) rank A =n (b) dimRow A = n (c) dimNulA =0
(d) ATA™! is invertible (8} A = 0 is an eigenvalue of A
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8. Let B={1+1¢,1—1*1—t+1} be a basis for the space of polynomials of degree at
most 2. Find the coordinate vector [p]g of p(t) = 1 — 2¢ + ¢2.
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Part II: Partial credit questions (11 points each). Show your work.

9. Consider the following 3 x 4 matrix :

(a) Find a basis for the row space of A.
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(b) Based on your calculations above, what is the dimension of the null space of AT,
(Hint: The rows of A are the columns of AT)

AN . L4x3
pamk (A) = 2= 2amk (A7)
= Wl (A7) = ##z{ curans of AT — 2

|



10. Consider two bases B = {[51)] ! [_11]} and C = {BJ . [ZJ} for R%. Find the change of

coordinates matrix sending a B-coordinate vector [x]s to a C-coordinate vector [x]c.
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11. Consider the matrix A = [l 2 —3J . Find an invertible matrix P such that
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12. Let P; and PP3 denote the spaces of polynomials of degree less than or equal to two
and three respectively. Define a linear transformation T : P; — P, by

T(ao + a1Z + 627° + a3z®) = (ap + a3) + (ay + a3)z + (a1 — ag)z?.

(a) Write down the standard bases B; and Bj; for P; and P4 respectively.
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(b) Find the matrix for T relative to the bases B, and Bs.
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