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1. Introduction

There is a canonical exact symplectic structure on the unit tangent
bundle of a Riemannian manifold M given by pulling-back the sym-
plectic two form ω and Liouville one form λ from the cotangent bundle
T ∗M using the Riemannian metric. The pull-back of λ gives a contact
form on level-sets of the length function on TM . The geodesic flow of
M is given by the Reeb vectorfield of this contact structure, and the
invariants of this flow are very important invariants of the symplectic
manifold with boundary, or even, in some cases, of the open symplectic
manifold. In such favorable circumstances, symplectic equivalence can
apply much stronger rigidity results. For example, the following result
is a straightforward application of the symplectic homology theory, see
[4], and a theorem of J. Otal [18] and C. Croke [5].

Theorem 1.1. If the interiors of the unit tangent bundles of two com-
pact Riemann surfaces of strictly negative curvature are exact symplec-
tomorphic then the underlying Riemann surfaces are isometric.

An exact symplectomorphism f is one for which the one form f ∗λ−λ
is exact.

Although in this paper we will mainly be considering tangent bundles
of surfaces, the above theorem 1.1 does have some generalizations to
higher dimensions. For example, using a result of U. Hamenstädt in
[11] we get

Theorem 1.2. Let M and N be closed, strictly negatively curved man-
ifolds and suppose that N is a locally symmetric space. If the interiors
of the unit tangent bundles of M and N are exact symplectomorphic
then M and N are isometric.

Theorem 1.1 was first remarked by Sikorav [20], and is the para-
digm of the type of result we would like to prove. For completeness,
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at the end of the introduction we detail how to obtain theorems 1.1
and 1.2 from the symplectic homology theory together with the results
on length spectrum rigidity. In the meantime we will concentrate on
surfaces.

Corollary 1.1. If the interiors of the unit tangent bundles of two Rie-
mann surfaces of strictly negative curvature are exact symplectomor-
phic then the closed symplectic manifolds are also symplectomorphic.

Although it is a weaker result than the theorem, this corollary is
still very interesting, especially in the light of work of Y. Eliashberg
and H. Hofer, see [8], showing that there exist C∞-small perturbations
of the standard unit ball in R2n whose interiors are symplectomorphic
but whose boundaries have inequivalent flows.

The main purpose of this paper is to extend the above symplectic
rigidity result, corollary 1.1, to a larger class of symplectic manifolds.

Fixing our underlying smooth surface M , the unit tangent bundles
corresponding to different metrics can symplectically be thought of as
domains in T ∗M with the restricted canonical symplectic form by ap-
plying the Legendre transform. We will look at the class of symplectic
manifolds obtained by deforming in T ∗M the domains corresponding to
negatively curved metrics and again restricting the canonical symplec-
tic form (the exact description is given below). This class of symplec-
tic manifolds is the same as the one obtained by fixing a unit tangent
bundle and deforming the primitive of the symplectic form in the same
cohomology class.

Remark. This class of symplectic manifolds is open and certainly
contains domains in T ∗M which are not the Legendre transform of
Riemannian unit tangent bundles. It also contains domains which are
not symplectomorphic to Riemannian unit tangent bundles. For exam-
ple, a negatively curved Riemannian metric can be deformed to give
a Finsler metric G which is non-symmetric (i.e., G(v) 6= G(−v), for
some v) with the property that a closed geodesic in a certain free ho-
motopy class γ is of different length to the unique closed geodesic in
the class −γ. Now, when one applies the Legendre transform to a unit
(Riemannian or Finsler) tangent bundle, the geodesic flow on the tan-
gent bundle (restricted to a fixed energy level) corresponds under the
Legendre transform to the Reeb flow and in particular the lengths of
closed geodesics correspond to the periods of closed orbits of the Reeb
flow. By the symplectic homology theory, these periods are invariants
of the exact symplectomorphism type of the domain. But for a Rie-
mannian metric the unique closed geodesic in the opposite class to a
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given closed geodesic is just the original closed geodesic traversed in the
opposite direction and has the same length. Thus the domain obtained
from our Finsler metric cannot be exact symplectomorphic to a Rie-
mannian domain. We do not know, on the other hand, whether there
exist symmetric domains in T ∗M which are not symplectomorphic to
Riemannian domains.

If one deforms a Riemannian unit cotangent bundle so that the de-
formed domain still intersects each fiber in a convex set containing the
origin, one can apply the inverse Legendre transform and associate to
the domain a Finsler metric. One might hope to generalise theorem
1.1 and say that if two such domains are symplectomorphic then their
associated Finsler metrics must be isometric. Unfortunately though, it
is easy to construct examples showing this to be false. In particular, it
is possible for a Finsler metric to have the same length spectrum as a
Riemannian metric while still not being Riemannian itself. To see this,
we start with a Riemannian domain W in T ∗M , say corresponding to a
metric g on M . Let H be a (Hamiltonian) function on T ∗M supported
in a sufficiently small neighbourhood of some point x ∈ ∂W . We as-
sume that the induced Hamiltonian diffeomorphism φ, the time-1 flow
of the Hamiltonian vector field, does not preserve ∂W , and then study
the domain W ′ = φ(W ). Applying the inverse Legendre transform to
W ′, provided that H was sufficiently small, we will get a domain in
TM which is the unit tangent bundle of a certain Finsler metric. We
want to observe that this Finsler metric is not Riemannian. But for
a Riemannian metric, the unit circle in each tangent space TpM is an
ellipse. In this case though, there are some tangent spaces where the
unit circle of the Finsler metric coincides with that for the Riemannian
metric g except in a neighbourhood of some point. Since ellipses which
coincide on open sets are actually equal, the Finsler unit circle can-
not be an ellipse and hence the metric is not Riemannian. Choosing
the Hamiltonian H to be supported in a neighbourhood of two points,
the above construction can be carried out symmetrically and gives ex-
amples of symmetric Finsler domains which are symplectomorphic to
Riemannian domains but are not Riemannian.

Given these limiting observations, we will therefore seek to extend
corollary 1.1. First we will be more specific about exactly which class
of symplectic manifolds will be considered.

Let W be the class of domains W in T ∗M with smooth boundary
such that the canonical Liouville form λ on T ∗M restricts to a contact
form on ∂W whose Reeb vector field X, uniquely defined by Xcdλ = 0
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and λ(X) = 1, generates an Anosov flow on ∂W . We will also assume
that the zero-section in T ∗M lies inside W , and that the fibers in T ∗M
are star-shaped.

It follows from Anosov’s structural stability theorem, see [1], that W
is an open set (with a topology of smooth convergence). Furthermore,
the geodesic flow of a negatively curved metric restricts to an Anosov
flow on constant energy surfaces and so all the deformed domains de-
scribed above lie in W , and in fact they lie in the same connected
component W◦. We can now generalise the above corollary as follows.

Theorem 1.3 (Main Theorem). Suppose that the interiors of two
domains W1 and W2 in W◦ are exact symplectomorphic. Then the
closed symplectic manifolds are symplectomorphic and in fact the sym-
plectomorphism can be taken to be the restriction of a smooth Hamil-
tonian diffeomorphism on T ∗M , perhaps composed with the differential
of a diffeomorphism of M .

We emphasize the smoothness here as this relies on results in dynam-
ical systems due to Feldman and Ornstein [9], and to R. de la Llave
and R. Moriyon [16]. As far as the authors are aware, there are no
other known examples of a collection of symplectic manifolds which is
invariant under small perturbations and has the property given by the
above theorem.

Let ∂W = {∂W |W ∈ W◦}. Given a hypersurface Σ in ∂W , each
free homotopy class in π1(M) corresponds to the projection of a unique
closed orbit on Σ. The marked length spectrum of Σ is the map as-
sociating the length of the closed orbit to the homotopy class. The
only infomation needed about the interior symplectomorphism above
is that it preserves the marked length spectrum of the Reeb flow on the
boundary, that is, corresponding closed orbits have the same length.
Therefore we also have the following result.

Theorem 1.4. Suppose that two hypersurfaces Σ0 and Σ1 in ∂W have
the same marked length spectrum. Then they are connected by a smooth
1-parameter family of hypersurfaces in ∂W whose Reeb flows are all
smoothly time-preserving conjugate to the flow on Σ0 by a smooth fam-
ily of Hamiltonian diffeomorphisms.

In particular, the subvarieties of constant marked length spectra are
path-connected. The subsets of Riemannian hypersurfaces of constant
marked spectra are of course also connected, as follows from the marked
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length spectrum rigidity of Croke and Otal together with the Dehn-
Nielsen Theorem (Theorem 4.6.25 from [21], which gives a short his-
tory of the result). Although the theorem of Croke and Otal does not
generalize to Finsler metrics, this result does.

1.1. Proof of Theorem 1.1. By [5] or [18], it suffices to show that
the surfaces have the same marked length spectrum (up to diffeomor-
phism).

But suppose that the interiors are symplectomorphic via an exact
symplectomorphism φ. Then φ induces an isomorphism of the first ho-
motopy groups of the underlying surfaces. By a theorem of Nielsen, see
[17], any such isomorphism can be induced by a diffeomorphism of the
surface. Hence, by composing with the inverse of this diffeomorphism,
we may assume that the map φ∗ on π1(M) is the identity.

Now we apply the symplectic homology theory, see for example [4],
to deduce that each (oriented) closed geodesic in the first surface, which
gives a closed orbit of the characteristic flow on the boundary of the
symplectic manifold, must correspond to a closed orbit of the char-
acteristic flow and hence a closed geodesic in the second surface of
the same length. In fact, one may define symplectic homology groups
Sa(TrM, [γ]) localized at the free homotopy class [γ] for a ∈ R and any
free homotopy class [γ] in TrM (or equivalently, M) as follows.

One constructs chain groups as in [4], restricting attention to Hamil-
tonians as in [4] together only with their period 1 closed orbits in the
free homotopy class [γ]. The differential of the complexes are still de-
fined as in [4], and the proof that this defines a complex is the same
as in [4]. The key point is that the solution surfaces used to define the
differentials in [4], p. 32, are cylindrical and therefore only join period-
1 trajectories in the same free homotopy class. One then passes to the
limit over Hamiltonians as in [4], and if all closed characteristics in the
free homotopy class [γ] are transversally non-degenrate on ∂TrM , then
one can pass to groups Sa(TrM, [γ]), a ∈ R. In this latter case, the
same computation as in [4] shows that these groups are zero for a not
equal to the action of a closed characteristic in the free homotopy class
[γ], and each closed characteristic with action a in this free homotopy
class contributes exactly two copies of Z2 to the group Sa(TrM, [γ]).

In our case, there is a unique closed characteristic in the boundary
of TrM in any free homotopy class of TrM , and this characteristic is
transversally non-degenerate. Applying the symplectic homology lo-
calized at [γ] above, it follows that Sb(TrM, [γ]) = 0, for b 6= the
action of the closed characteristic in the free homotopy class [γ], and
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Sa(TrM, [γ]) = two copies of Z2 for a = the action of this closed char-
acteristic = (−r)× the length of the corresponding closed geodesic in
M . As φ∗ preserves (localized) symplectic homology, by construction,
we may identify the fundamental groups of M and M ′ in such a way
that the length functions for the two metrics are the same on the fun-
damental group, as required.

1.2. Proof of Theorem 1.2. Again, now according to Hamenstädt,
see [11], it suffices to show that the manifolds M and N have the same
marked length spectrum. As M and N are strictly negatively curved,
each free homotopy class of closed curves in M or N contains a unique
closed geodesic. Hence the marked length spectrum can be thought of
as a map from conjugacy classes in π1 to the real numbers, assigning
to each class the length of the unique closed geodesic in that class. By
having the same marked length spectrum we now mean that there is an
isomorphism Ψ : π1(M) → π1(N) which pulls back the marked length
spectrum of N to that of M .

Given an exact symplectomorphism φ of the open unit tangent bun-
dles, we claim that the induced map φ∗ : π1(M) → π1(N) gives such
an isomorphism Ψ. To see this, observe again that the closed geodesic
γ in a particular class [γ] of π1(M) can be lifted to a closed orbit of the
characteristic flow on the unit tangent bundle, since this characteristic
flow is exactly the geodesic flow. Now the symplectic homology theory,
restricted to considering orbits in the class [γ], can be used to show
that the class φ∗[γ] similarly contains a unique closed orbit of the char-
acteristic flow of the same length. In other words, the closed geodesic
of N in the class φ∗[γ] of π1(N) has the same length as the geodesic γ
in M . This establishes our claim and proves the theorem.

¤

1.3. Relations with complex geometry. The authors first were
drawn to this subject by the paper of J.-C. Sikorav [19], and com-
ments on it made to us by David Barrett concerning the translation
of the symplectic rigidity results there to holomorphic rigidity results.
This leads directly to the consideration of Grauert tubes [10], [13], [2],
a natural complex structure on a ball bundle in the (co-)tangent bundle
of a real-analytic Riemannian manifold. A translation of theorem 1.1
above in terms of complex structures is the following

Corollary 1.2. For two compact Riemannian surfaces M, M ′ of stricly
negative curvature, with Grauert tube complex structures defined on the
respective tangent ball bundles of radius r, Tr(M), Tr(M

′), the following
are equivalent:
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(i) TrM and TrM
′ are symplectomorphic

(ii) TrM and TrM
′ are biholomorphic

(iii) M and M ′ are isometric.

The result of Benci and Sikorav [19] gives a similar result, but for
translation invariant sets in T (T n), with fibers over T n which have
vanishing first homolgy. The only Riemannian disk bundles in this
case are for flat metrics on T n. The rigidity result theorem 1.1 for
surfaces holds when the metric is allowed not to be of constant sectional
curvature, but the metric has to be Riemannian. We wish to thank
David Barrett for his insightful remark.

We have noted above that if TrM and TrM
′ are symplectomorphic

smoothly to the boundry for two Finsler manifolds M , M ′, they need
not be Finsler isometric. Duchamp and Kalka [6] have extended the
Grauert tube construction to the case of real analytic Finsler metrics,
and we observe the following:

Corollary 1.3 (Holomorphic Finsler Rigidity). For real-analytic,
symmetric Finsler manifolds M, M ′ with Grauert tubes TrM , resp.,
TrM

′, if Φ : TrM → TrM
′ is a biholomorphism, then Φ is induced by

the differential of an isometry φ : M → M ′.

Recall that a symmetric Finsler metric g is one for which g(v) =
g(−v), for any tangent vector v. To see the corollary 1.3, note that in
this case, it follows from [6] that the antipodal map σ : v → −v is anti-
holomorphic on the Grauert tube. Then, by [2], the mapping Φ of the
corollary must take the zero section of TrM to that of TrM

′. By [6],
TrM,TrM

′ carry solutions u, u′ of the homogeneous Monge-Ampére
equation which are 0 on M, resp., M ′, and r on ∂TrM, resp., ∂TrM

′.
Again, by [6], this implies that Φ |M := φ induces a Finsler isometry.

We remark that corollary 1.3 is false for non-symmetric Finsler met-
rics, at least in dimension 1. To see this consider a standard annulus
A ⊂ C of finite, positive inner and outer radius. There is a circle C0

in the interior of A and a complex conjugation σ of A which exchanges
boundary components and which fixes C0 pointwise. Choose any other
concentric circle C in the interior of A. Since we can find a harmonic
function u on A \C which is 1 on ∂A, and 0 on C, A is the total space
of a Finsler Monge-Ampère model as in [6] for a non-symmetric Finsler
metric g on C. Any biholomorphism Φ of A which exchanges boundary
components of A sends C to σ(C) 6= C, violating corollary 1.3.
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We do not know of examples of this last phenomenon in higher di-
mensions.

1.4. The case of genus 0. We have not said anything in this paper
about metrics on the 2-sphere. It turns out that Eliashberg and Hofer’s
construction in [8] can be used to give an example of two arbitrarily
small perturbations of the round metric on the sphere such that the
corresponding symplectic domains in T ∗S2 have symplectomorphic in-
teriors but non-conjugate Reeb flows on the boundary, hence the closed
domains are not symplectomorphic.

It is not clear however whether this construction can be performed
such that the perturbed metrics are Riemannian rather than just Finsler.
It is also unknown whether the round sphere itself is rigid, that is, if
any other Riemannian or Finsler metric has a symplectomorphic open
unit tangent bundle. Symplectic homology will not provide the answer
though. Ideas from [22] can be used to give examples of Riemannian
metrics on S2 whose unit tangent bundles have the same symplectic
homology (and volume) as the round metric.

1.5. Outline of sections. The proof the main theorem is in section
3. We foliate a neighborhood of both boundaries smoothly by con-
tact hypersurfaces whose Reeb flows will be continuously conjugate
by homeomorphisms, up to parametrizations, by Anosov’s theory. As
above, symplectic homology will tell us that the marked length spectra
of these flows will be identical near the boundaries. Then we use more
recent results to deduce regularity properties of the conjugating home-
omorphisms, these results being special to dimension three Anosov sys-
tems. Finally, in section 3.2, we have to extend the symplectomorphism
constructed above near the boundaries to a global symplectomorphism.
This requires a technical lemma about isotopies of diffeomorpisms of
three manifolds which almost preserve a non-vanishing vectorfield. The
vectorfield condition means that this is a basically two-dimensional
problem, and the most laborious task of the paper is to use the analy-
sis of two dimensional diffeomorphisms in [21] to analyze this situation
carefully. This analysis is the content of section 2. Basically, we have
to show a more or less canonical procedure for isotoping a small diffeo-
morphism in dimension two to the identity by an isotopy which is slow
in the deformation parameter.

2. A technical lemma

The purpose of this section is to prove the following lemma which
will be needed for our main result Theorem 1.3. Let N be a compact
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3-manifold and X a nowhere-vanishing vector field on N . We fix a
metric on N , which induces a norm on TxN for all x ∈ N . We denote
by dist(x, y) the corresponding distance between x and y ∈ N , while
for maps f, g : N → N , we set ‖f − g‖∞ = maxx∈N dist(f(x), g(x))
and ‖f∗X −X‖∞ = maxx∈N ‖df(x)(X)−X‖.
Lemma 2.1. There exists an ε (depending only on N , X and the
metric) such that if f is a diffeomorphism of N with ‖f − I‖∞ < ε and
‖f∗X−X‖∞ < ε then f is isotopic to the identity through maps ft with
‖ft∗X −X‖∞ < Cε, for some C independent of f and ε.

In our proof the condition about the vector field is heavily used and
makes this an essentially two-dimensional problem. In section 3 we will
need to apply lemma 2.1 to isotopies:

Lemma 2.2. Let F (x, τ) be an isotopy of N indexed by τ with ‖F −
I‖∞ < ε, ‖F∗X − X‖∞ < ε, for all τ ∈ [0, 1], and F (x, τ) ≡ x, for
τ = 0, 1. Then there is a one-parameter family of isotopies F (x, τ, t)
indexed by t with ‖Ft∗X−X‖∞ < Cε and such that F (x, τ, 0) = F (x, τ),
F (x, τ, 1) = I and F (x, τ, t) ≡ x for τ = 0, 1 and all t ∈ [0, 1].

Proof of 2.1 and 2.2. We prove lemma 2.1 for f , making comments to
show that the proof is compatible with the parameter τ in F of lemma
2.2.

We choose an open cover B1(xi), 1 ≤ i ≤ n for N of coordinate balls
of radius 1 and assume this is such that on each ball we can choose
coordinates (x, y, z) with X represented by ∂

∂z
. Further we assume that

in fact the balls B 1
4
(xi) also cover N .

In each B1(xi) we look at the disks D±
i = {(x, y,±1

2
)|x2 + y2 ≤ 1

2
}.

We may assume that as i varies these disks are all disjoint in N , and
even that there is a constant δ0 > 0 such that any two D±

i , D±
j are at

least 4δ0 apart. Furthermore, inside any B1(xi) we may assume that
the projection along X of any collection ∆ of D±

j ∩ B1(xi) onto D±
i

yields a set U ⊂ D±
i which is a smooth neighbourhood of a segment of

the boundary.
Our first goal is to show that by taking ε sufficiently small, any given

f as in the statement of lemma 2.1 can be isotoped to the identity in a
neighbourhood of each D±

i ⊂ {(x, y,±1
2
)|x2 + y2 < 3

4
} ⊂ B1(xi). To do

this, we first note that f∗X is transverse to each D±
i , for ε sufficiently

small, so we can find an isotopy of f to a new diffeomorphism which
doesn’t change the direction of f∗X, but may change the field by a
scalar factor very close to 1, so that, in local coordinates (x, y, z) on
B1(xi), the new map, still denoted by f , is given by

f(x, y, z) = (f1(x, y, z), f2(x, y, z), z),
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for (x, y, z) in a neighborhood of D±
i which contains at least D±

i ×
{±1

2
− δ0 < z < ±1

2
+ δ0}, where δ0 > 0 above is independent of f and

ε, for ε sufficiently small. This can obviously be done smoothly in the
parameter τ of lemma 2.2.

The maps f |D±i (or F (τ)|D±i )) now give planar diffeomorphisms of a

small neighborhood of D±
i into a 3ε neighborhood of D±

i in R2×{±1
2
},

satisfying |f−I| < 3ε. These maps can then be isotoped to the identity
and this isotopy can be extended to a small neighbourhood of the D±

i ,
at the expense perhaps of increasing ‖f∗X −X‖ slightly: to construct
this isotopy accurately requires a little care, and we exercise this care
in the following lemmas.

Lemma 2.3. Let h be a diffeomorphism of the δ1 neighborhood of the
unit square S in the plane into an η neighborhood of itself in the plane,
such that |h(x) − x| < η, for all x. Then there is an isotopy ht of h
supported in a neighborhood of S, with h0 = h, h1 = I on a neigh-

borhood of S, and such that |∂ht(x)
∂t

| ≤ C1η everywhere, where C1 is
independent of h and η. Furthermore, if we have a one parameter fam-
ily h(τ), τ ∈ [0, 1], of such diffeomorphisms such that h(0) = h(1) = I,
then we may construct ht(τ) smoothly so that ht(0) = ht(1) = I, for
all t ∈ [0, 1].

Proof. We will build up our isotopy from a finite sequence of isotopies,
each compactly supported in a union of squares of sidelength approx-
imately 100η. We will see that any such isotopies can be adjusted to
control their t-derivative.

First, we subdivide a neighborhood of the square S into a gridwork
of squares of sidelengths 100η. By our assumptions on h, we may easily

first isotope h by h
(1)
t to h

(1)
1 , so that |h(1)

t (x)−x| < 2η, h
(1)
t is constant

outside some δ2 neighborhood of S, and h
(1)
1 fixes every grid point in

the lattice of vertices of our squares. By an isotopy h(2) supported in
small, disjoint neighborhoods of each vertex, we may assume that the

derivative of h
(2)
1 is the identity at each grid point and that |h(2)

t (x)−
x| < 3η, and then further isotope by h

(3)
t in a neighborhood of each

vertex so that h
(3)
1 is the identity in a neighborhood of each vertex, and

that no point has moved more than 3η from its starting point at any
stage of the above isotopies.

In the case where h depends on τ we must note that the mapping
a : [0, 1] → S1 given by

a(τ) =
∂h

∂x
(p)/|∂h

∂x
(p)|
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with a(0) = a(1) = 1 ∈ S1 has winding number zero, where p = (0, 0)
is our grid point, and hence we can perform the above rotations so
that ∂ht

∂x
|τ=0 = ∂ht

∂x
|τ=1 = 1 for all t ∈ [0, 1]. We calculate this winding

number by using the following homotopy:

aε(τ) =





∂h(0,0,τ)
∂x

/|∂h(0,0,τ)
∂x

|, ε = 0,

h(ε,0,τ)−h(0,0,τ)
|h(ε,0,τ)−h(0,0,τ)| , ε ∈ (0, 100η].

Notice that the map is well-defined and smooth, and that at ε = 100η,
the map is identically equal to (1, 0), since (100η, 0) is also a grid point,
so that h(100η, 0, τ) = (100η, 0), independent of τ .

Make h
(3)
1 our new h. We will next isotope locally to make h re-

stricted to the sides of our grid squares the identity in a uniformly
large neighborhood (a disk of radius 12η) of each vertex in the grid.

To fix notation, assume the grid point is at the origin in the plane
with coordinates x, y, and the grid square sides are on the coordinate
axes. Consider the point (12η, 0). (Similar considerations will apply
independently to (−12η, 0), (0,±12η).)

By an ambient isotopy of h([0, 12η], 0) we may assume that |h(12η, 0)| >
|h(x, 0)| for 0 < x < 12η, provided that now we allow |h(x)− x| < 7η.

One way of doing this is to find an isotopy replacing h([12η−δ, 12η], 0)
by a curve Γ, disjoint from h([0, 12η− δ], 0) and touching |(x, y)| = 15η
at a single point which we may reparameterize to be h(12η, 0). If
we choose the added curve canonically then this can also be done for
one-parameter families h(x, 0, τ). A canonical choice of Γτ is to fol-
low h(x, 0, τ) for x > 12η (slightly to one side) until we reach a point
when |h(x, 0, τ)| = 15η. Once Γτ reaches this point we can extend
it by doubling back towards h(12η, 0, τ). Of course, such a family of
curves Γτ may not vary continuously with τ . Assuming the map h
to be generic, discontinuities will occur at τ0 when h(x, 0, τ0) becomes
tangent to |(x, y)| = 15η. Suppose that this tangency occurs at a single
point h(x0, 0, τ0). We may assume that the tangency is of second order
and we deal with the case when h(x, 0, τ) is disjoint from |(x, y)| = 15η
for τ slightly less that τ0 and x close to x0. The other case, in which two
intersection points vanish, can be treated similarly. Such a tangency
does not result in any discontinuity in the choice of Γτ unless h(x, 0, τ0)
touches |(x, y)| = 15η first at the point x = x0, so we also suppose this.
The added curve then becomes suddenly shorter for τ ≥ τ0. For τ < τ0,
h(x, 0, τ) touches |(x, y)| = 15η first at points x = xτ > x0. We can as-
sume that these intersections are transversal and as τ → τ0, the points
xτ → x1 > x0, where h(x, 0, τ0) crosses |(x, y)| = 15η transversally at
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x = x1. We have that the curve h([x0, x1], 0, τ0) lies in |(x, y)| ≤ 15η
and the Jordan disk D formed by this curve together with the corre-
sponding portion of |(x, y)| = 15η is disjoint from h(x, 0, τ0) for x < x0,
and in particular for x < 12η−δ. There exists an isotopy gs, compactly
supported in a neighbourhood of D, which maps Γτ0 onto some Γτ for
τ < τ0. Throughout the isotopy it can be arranged that gs(Γτ0) touches
|(x, y)| = 15η at a single point. The isotopy fixes h([0, 12η − δ], 0, τ0)
and so combining our original isotopies with gs for τ close to τ0 gives
us a smooth choice of Γτ as required.

By another ambient isotopy we may rotate the angle of ∂h
∂x

(12η, 0) so

that the new ∂h
∂x

is identically equal to (1, 0). Now we may isotope h
further in a neighborhood of (12η, 0) so that h(x, 0, τ) = (x, 0), for x
close to 12η.

As already noted, similar normalizations may be obtained indepen-
dently for the other three half-axes as well.

In order to straighten out the images of our grid square sides near
this vertex, consider the curve traced counterclockwise from (12η, 0)
first along the vertical segment to (12η, 12η), then along the horizontal
segment to (0, 12η) then down along h(0, y, τ) to the origin, and then
along h(x, 0, τ) back to (12η, 0). Define a vectorfield along this curve

which is − ∂
∂y

along the first and second segments, equal to −∂h(0,y,τ)
∂y

along the third segment and along the fourth segment it is given as

the normal to ∂h(x,0,τ)
∂x

which is π/2 in the clockwise direction from this
tangent. If the mapping h(x, y, τ) were the identity, this would just
be − ∂

∂y
, and so by a degree argument, we may fill-in this vectorfield

smoothly and without zeroes to the Jordan region bounded by our
curve. This may be done analogously for the other three quadrants, and
adjusted so that we have a smooth vectorfield which is non-vanishing
on the whole square Σ centered at the origin, and of side length 24η.
We may also arrange that this field is identically equal to − ∂

∂y
on

a neighborhood of ∂Σ and of the origin. Call this field Ξ. Let H
denote the non-vanishing field orthogonal to Ξ which agrees with ∂

∂x
in

a neighborhood of ∂Σ. Again by a degree argument, we may deform
these orthogonal fields smoothly to Ξ1 ≡ − ∂

∂y
, H1 ≡ ∂

∂x
. Following [21],

by an argument similar to that of sec. 3.10. p. 205, we may induce a
compactly supported isotopy of the square Σ which straightens out the
flow lines of Ξ, H to those of − ∂

∂y
, ∂

∂x
. We restrict this isotopy to the

images of the coordinate axes within Σ and extend it to an ambient
isotopy of Σ. These straightening arguments are compatible with the
parameter τ , by the obvious degree arguments.
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As a result of these isotopies, we may assume that after a succession
of locally supported isotopies our h satisfies |h(τ) − I| < 15η on S
and that on the grid square sides within 12η of the vertices, h(τ) is
already the identity. Further, if we examine more precisely the isotopies
just performed, we have that restricted to the grid square side L =
[0, 100η]×{0}, the map h(τ) maps L into the rectangle R = [0, 100η]×
[−12η, 12η], and h(x, 0, τ) ≡ (x, 0), for x ∈ [0, 12η] or x ∈ [88η, 0].

We now apply the following two lemmas to correct the map h within
the rectangles.

Lemma 2.4. Let b(τ) : [0, 1] → R2 be a one-parameter family of
embeddings for τ ∈ [0, 1] with b(τ)(x) = (x, 0) near x = 0, 1, and
b(0), b(1) ⊂ [0, 1] × [−1, 1]. Then there exists another one-parameter

family of embeddings b̃(τ) with b̃(τ)(x) = b(τ)(x) for τ = 0, 1 or x close

to 0, 1 and with b̃(τ) ⊂ [0, 1]× [−1, 1].

Proof. First we will show that the isotopy can be adjusted to lie to the
right of x = 0. We can write b(τ)(x) = rτ (x)eiθτ (x) in complex coordi-
nates on C = R2 where rτ (x) > 0 for all τ, x and −π

2
< θτ (x) < π

2
for τ = 0, 1. The smooth functions rτ and θτ can be chosen to
vary smoothly with τ . We let kτ = max{1, 2

π
supx |θτ (x)|}, suitably

perturbed to depend smoothly on τ , and replace b(τ) by b̃(τ)(x) =

rτ (x)eik−1
τ θτ (x). Since the maps b(τ) are immersions, it is a straight-

forward exercise to check that the b̃(τ) must be immersions also, and
similarly embeddings.

We note that if b(τ) initially lies to the left of the line x = 1, an
isotopy can ensure that it lies within the disk D of radius 1 centered at
(0, 0). If b(τ) ⊂ D then b̃(τ) ⊂ D. Now a similar argument can adjust
b(τ) to lie to the left of x = 1 while leaving the image to the right of
x = 0. A simple scaling argument can then be applied to ensure that
the range of our isotopy lies within the required rectangle. ¤

Lemma 2.5. Let h : [0, 100η] → R be a smooth embedding which
is equal to (x, 0) 12η near the endpoints. Then there is a compactly
supported within R isotopy of h to the mapping i(x) ≡ (x, 0) ∈ R. Such
an isotopy can be constructed smoothly in the case of a one-parameter
family.

Proof. It suffices to prove the lemma for embeddings h : [0, 1] → R =
[0, 1]×[−1, 1]. Certainly such an h is isotopic to the identity in C = R2.
We simply set ht(x) = h(t)−1 · h(xt) for t > 0 and h0(x) = x. We
conclude by using lemma 2.4.

¤



14 D. BURNS AND R. HIND

To complete the proof of lemma 2.3 we need one last lemma to control
the t-derivatives of our isotopies.

Lemma 2.6. Let gt be a compactly supported isotopy from g0 to the
identity of the closed disk Bη(0) of center 0 and radius η. Then there

exists a compactly supported isotopy g̃t from g0 to I such that |∂g̃t

∂t
| <

3η. Such an isotopy can be constructed smoothly in the case of a one-
parameter family.

Proof. Let K = max |∂gt

∂t
|, and let ψ : Bη(0) → [ η

K
, 1] be a smooth radial

function which is equal to η
K

on the support of gt, and identically 1 in
a neighborhood of the boundary of Bη(0). For t ∈ [0, 1], z ∈ Bη(0),
define

φt(z) = (1− t)z + tψ(z)z.

Note that |∂φt

∂t
| < η on Bη(0). Now define an isotopy from g0 to I as

follows:

gt =





φt ◦ g0, for 0 ≤ t ≤ 1,
φ1 ◦ gt−1, for 1 ≤ t ≤ 2,
φ3−t, for 2 ≤ t ≤ 3.

Smoothing the t dependence of this piecewise smooth isotopy and ad-
justing t to run from 0 to 1 proves the lemma. ¤

This lemma may be used for other configurations by conjugation:

Corollary 2.1. Let A,B be compact, convex sets with 0 ∈ A ⊂ B,
and set Aη = η · A,Bη = η · B. Suppose gt : Bη → Bη is a C1 isotopy
supported in Aη. Then there exists an isotopy compactly supported in
Bη, g̃t from g̃0 = g0 to g̃1 = g1, and a constant C2 independent of η
such that

|∂g̃t

∂t
| < C2η.

Proof. Let F : B1(0) → B be a smooth embedding of the closed unit
ball into B such that A ⊂ F (B1(0)). Let Mc denote scaling by c, and
then let Fη : Bη(0) → Bη be given by Mη ◦F ◦M1/η. Apply lemma 2.3

to the isotopy ht = F−1
η ◦gt◦Fη to get h̃t on Bη, and set g̃t = Fη◦h̃t◦F−1

η

on Fη(Bη(0)), and extended by g0 to all of Bη. Then

|∂g̃t

∂t
| < C2η,

where, by the chain rule,

C2 = 3 max
Bη(0)

|DFη| = 3 max
B1(0)

|DF |

is independent of η. ¤
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Returning to the case of the diffeomorphism in two dimensons, we
group the sides of our grid squares, into four groups Gi, i = 1, . . . , 4,
such that within each group, each side is surrounded by a rectangle
R congruent to [0, 100η] × [−12η, 12η] and the interiors of all the R-
rectangles in each Gi are pairwise disjoint. We may apply first lemma
2.5 within each R rectangle in G1. Then notice that within each of these
rectangles we may extend the isotopy of the embedded curve in lemma
2.5 to an isotopy of the plane, which is supported in an arbitrarily
small neighborhood of the curve’s isotopy (in particular, within R),
and which doesn’t move any of the six sides which share one of the
two vertices of our initial square side. Apply all of these isotopies
simultaneously to h(3) = h within each R-rectangle in G1, obtaining a
new diffeomorphism h(4). Then apply corollary 2.1 within each of the
R-rectangles in G1 to ensure our isotopy our satisfies the t-derivative
condition of lemma 2.3 in a neighborhood of all G1 R-rectangles. If we
apply corollary 2.1 carefully, we may guarantee that h(4) leaves all other
grid square sides fixed. Thus we may perform the same argument as
for G1 to the group of grid square sides G2, using lemma 2.5 and then
corollary 2.1, and so on, to arrive at h(7) which is the identity in a
neighborhood of all grid points and grid square sides, and which is

obtained from h by an isotopy H
(1)
t which satisfies

|∂H
(1)
t

∂t
| < C4η,

for C4 a constant independent of f and η.
For each square Σ of side length 100η in our grid, we can enclose it

symmetrically in a square Σ̃ of side length 101η. Group the squares
into four sets Fi so that the interiors of the Σ̃-squares for squares in
Fi are all pairwise disjoint. Following Thurston [21], sec. 3.10, p.
205, we may smoothly isotope h(7) restricted to an F1 Σ-square to the
identity within each grid square by an isotopy compactly supported
within that square. Within each Σ̃-square, we may apply corollary
2.1 to get an isotopy compactly supported within the Σ̃-square, and t-
derivative bounded by C5η, where C5 is a constant independent of η and
h(7). Again, we do this in turn for each of the groups Fi, compose the
isotopies, smooth the time parameters and put them onto the interval
t ∈ [0, 1], and we have constructed the isotopy required of lemma 2.3,
completing its proof in the case of a single isotopy. The case of one-
parameter families is identical. ¤

We can use lemma 2.3 to correct f |D±i by a planar isotopy with

t-derivative bounded by C1 independent of f, ε, where the constant
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has gotten a little bigger by the chain rule after we diffeomorph a
neighborhood of D±

i to a neighborhood of the square S in lemma 2.3.
Within a “δ0”-neighborhood of D±

i , we may subsequently perform
the following two isotopies: first, let ψ be a smooth, even, non-decreasing
function of z −±1

2
which is 0 for |z −±1

2
| < δ0/4 and identically 1 for

|z −±1
2
| > δ0/2; the isotopy is given by

Ft = (f1(x, y, (1− t)z + tψ(z)z), f2(x, y, (1− t)z + tψ(z)z), z),

which leaves F1(x, y, z) = (f1(x, y,±1
2
), f2(x, y,±1

2
), z) in a δ0/4 - neigh-

borhood of D±
i . Second, we apply lemma 2.3 to find a compactly sup-

ported planar isotopy ht of h0(x, y) = (f1(x, y,±1
2
), f2(x, y,±1

2
)) with

h1(x, y) = (x, y). The second isotopy of F1 is defined as:

Gt = (ht(1−ψ(4z))(x, y), z).

It is clear from lemma 2.3 that Ft and Gt are C0-close to the identity,
and we leave to the reader to check that

|∂Ft

∂z
− ∂

∂z
| < C5ε

and

|∂Gt

∂z
− ∂

∂z
| < C6ε

throughout the isotopies, where again the constants C5, C6 are inde-
pendent of f and ε.

We thus have that the map f may be assumed to be equal to the
identity in disjoint (if δ0 is small enough) neighborhoods of all the D±

i .
The idea will next be to isotope f to the identity between the D±

i .

Lemma 2.7. Suppose a disk in some D±
i is connected by flow-lines

of X, say of length no more than 1, to a disk in D±
j . Let V be the

union of the flow-lines. Then there is an isotopy of f , which leaves f
equal to the identity near Di and Dj and fixed away from V , such that
the resulting map is the identity on V except perhaps for an ε-small
neighbourhood of its boundary. Furthermore, if f = I on a subset of V
intersecting Di or Dj on a smooth neighbourhood of a segment of its
boundary then we may also leave f fixed there.

Proof. We start with a homotopy between the vector fields f∗X and
X, say Xt where X0 = f∗X and X1 = X. This can be arranged so
that ‖Xt−X‖∞ < ε for all t. We cut-off the Xt to remain as f∗X near
the boundary of V . Let ht be the diffeomorphism of a neighbourhood
of V defined by leaving Di fixed and flowing along the vector field −X
to Di then back along Xt for a similar time. Then h0 = f and h1 = I
away from the boundary of V , see figure 1. Unfortunately such ht are
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Figure 1. Flowlines between two disks.

not necessarily equal to the identity near Dj, except of course near its
boundary and when t = 0, 1. However we can rescale Xt to ensure that
the map preserves Dj and then compose with suitable isotopies in the
(x, y)-planes to correct this. The existence of such isotopies is provided
by the parameterized version of lemma 2.3. On a subset of V which is
a neighbourhood of a segment of the boundary and where f∗X = X
we may assume that Xt = X for all t and the maps ht can be taken to
be the identity all along.

¤

We now apply this lemma repeatedly between different Di and Dj.
Notice that a map is equal to the identity if it is equal to the identity on
the flow-lines connecting sets of the form D̃±

i = {(x, y,±1
2
)|x2 + y2 ≤

1
4
} ⊂ D±

i since these regions cover M . The order in which we apply the
lemma must be chosen carefully however, so as not to disturb regions
in which f has already been isotoped to the identity. We first isotope
f to the identity on the union Vij of flow-lines between all Di and Dj

such that the flow-lines are of length less than 1 and the Vij do not
intersect any other Dk. The disks Dk referred to here are the same as
those D±

k defined above, although we are not assuming that Di and Dj

are equal to D+
k and D−

k for the same k.
Next we apply the lemma to all remaining pairs of D±

i . The point
now is that if any Dk happens to sit between D+

i and D−
i then, away

from an ε-neighbourhood of its boundary, it must lie on a complete set
of flow-lines of X from D+

i to D−
i on which f has already been isotoped

to the identity. Moreover, making D±
i slightly smaller if necessary,

these complete flowlines will only intersect D±
i in a neighbourhood of

a boundary segment and so can be left fixed by our isotopy. Thus the
new isotopy will not affect f here. After all of the above isotopies then,
the resulting map f is equal to the identity.
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Figure 2. order of applying lemma 2.7

Figure 2 divides the region between two disks Dj and Dk into three
numbered regions showing the order in which the isotopy provided
by lemma 2.7 should be carried out if another disk Di intersects the
flowlines between them.

¤

3. Proof of the main result

3.1. Construction of a diffeomorphism. In this section we will con-
struct a diffeomorphism between two closed domains whose interiors
are symplectomorphic.

We start with two domains W1 and W2 in M◦. If the interiors of
W1 and W2 are symplectomorphic, then using the symplectic homology
theory and perhaps an application of Nielsen’s theorem as in the proof
of theorem 1.1 we may assume that Σ1 = ∂W1 and Σ2 = ∂W2 have
the same marked length spectrum. We observe that the differentials of
diffeomorphisms of M preserve the set M◦.

We choose a small r such that rW1 lies in the interior of both W1

and W2. Then foliate the rest of W1 by sΣ1, r ≤ s ≤ 1, and the rest
of W2 by hypersurfaces Σ2,s where Σ2,s = sΣ1 for s close to r and
Σ2,s = sΣ2 for s close to 1. Further, all Σ2,s ∈ ∂M. This is possible
for r sufficiently small by the connectedness of M◦ and the fact that
all of our domains have star-shaped fibers.

Now, as demonstrated originally by D. Anosov in [1], there exists a
continuous family of homeomorphisms sΣ1 → Σ2,s which map the Reeb
flow (of the restriction of the Liouville form λ) on sΣ1 to that on Σ2,s.
Actually, as is made precise in [15], the following is true. Fix a smooth
family ψs of diffeomorphisms Σ2,s → rW1 = Σ for r ≤ s ≤ 1 with ψr

the identity. Then the ψs push-forward the Reeb flows on Σ2,s to a
family of Anosov flows on Σ generated, say, by Xs. There are a family
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of homeomorphisms hs mapping s
r
Xr onto asXs, where as is a function

on Σ. Now, hs is the flow of a continuous time-dependent vector field,
Ys say, on Σ, where we may assume that Ys can be differentiated only
in the direction of the Reeb flow at time s. We arrange things so that
Ys ≡ 0 for s close to r and to 1.

The homeomorphism hs = h for s close to 1 is a conjugacy be-
tween Anosov flows which by assumption have the same marked length
spectrum. This homeomorphism is in fact Hölder continuous (see for
instance Chapter 9 of [12]) and hence we can apply a theorem of Livsic,
see [14], which constructs a function g on Σ such that the homeomor-
phism φ defined by shifting a point x a distance g(x) along the flow-line
through x makes φ◦h a time-preserving conjugacy, that is, it preserves
the Anosov vector field itself as opposed to just the flow-lines.

Such a conjugacy must in fact be of class C1 by a result of J. Feldman
and D. Ornstein, see [9], and so preserve the contact form λ, see for
instance [12], lemma 18.3.7. We now use the theorem of R. de la Llave
and R. Moriyon in [16] which says that our time-preserving conjugacy
must be C∞. Now let h be this diffeomorphism. The next step is to
extend f(x) = ψ−1

1 h(rx), which is a diffeomorphism between Σ1 and
Σ2, to a diffeomorphism f between the domains W1 and W2. It extends
trivially as f(x) = sf(1

s
x) on levels sΣ1 for s close to 1.

The homeomorphism φ above is clearly the flow of a vector field,
which must be differentiable along the Reeb flow, so we may still assume
that h is the time-1 map of a continuous vector field Ys, still identically
zero for s close to 1.

We now approximate Ys by a smooth vector field. This can be
done in such a way that the resulting one-parameter family of dif-
feomorphisms, say h̃s, C0-approximate the original homeomorphisms
and map the Reeb vectorfield on rΣ1 to a vectorfield C0 close to
the asXs. We remark here that the inverse maps h̃−1

s will also map
asXs to a vectorfield C0 close to s

r
Xr since the inverse is given simply

by flowing along Ys in the opposite direction. In our current situa-
tion we have as ≡ 1 for s close to 1. Now for s less than 1, define
f |sW1(x) = fs(x) = ψ−1

s h̃s(
r
s
x). Suppose that fs is sufficiently close

to sf(1
s
x) on a level 1 − 2δ that we can apply Lemma 2.1. Then the

fs can be redefined for 1 − 2δ ≤ s ≤ 1 − δ to be the derived isotopy
between f1−2δ and f . These fs extend f smoothly over all levels sΣ1

and f further extends as the identity inside rΣ1.

3.2. Isotopy to a smooth symplectomorphism. In this section
we find an isotopy of W1 which, composed with the f of the previous
section, gives a smooth symplectomorphism between W1 and W2. We
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recall that f mapped the hypersurfaces sΣ1 onto Σ2,s, approximately
preserving the Reeb vectorfields. It was the identity near the zero-
section and near the boundary preserved the Liouville form, and so in
particular is already a symplectomorphism.

Lemma 3.1. Suppose ω0 and ω1 are two symplectic (nondegenerate,
antisymmetric) bilinear forms on R4 giving the same orientation and
Σ3 ⊂ R4 a linear subspace. Let X0 and X1 be nonzero vectors in
ker ω0|Σ and ker ω1|Σ. Suppose that

(i) there exist v, w ∈ Σ such that ωi(v, w) > 0 for i = 0, 1;
(ii) there exists a u transverse to Σ such that ωi(Xj, u) > 0 for

i, j = 0, 1.
Then, for all 0 ≤ t ≤ 1, ωt = (1− t)ω0 + tω1 is symplectic.

Proof. If not, since ωt(v, w) > 0, then ker ωt is 2-dimensional and in-
tersects Σ in a 1-dimensional kernel. Let Y be a nonzero vector in
(ker ωt)|Σ = ker(ωt|Σ). Then we can write Y = aX0 + bX1 with
a, b > 0. In fact, if when restricted to the plane spanned by v and
w we have ω0 = kω1, then we can take a = (1 − t)k and b = t. But
then ωt(Y, u) > 0, a contradiction.

¤
Corollary 3.1. For all 0 ≤ t ≤ 1, (1− t)ω + tf ∗ω is a symplectic form
on W1, where ω = dλ is the canonical symplectic form on the cotangent
bundle and f is suitably chosen as above.

Proof. We study ω0 = ω and ω1 = f ∗ω on TxW1 with Σ = TxsΣ1. Then
for i = 0, 1, ker ωi|Σ are generated by the Reeb vectorfield X0 on sΣ1

and the image X1 of the Reeb vectorfield on Σ2,s under f−1. Choosing
v, w to satisfy the condition (i) with respect to ω0, provided that f
is chosen so that X1 is close to X0 then v, w will also satisfy (i) with
respect to ω1. We recall that f is orientation preserving on the level
sets. Also, our construction ensures that both f and f−1 approximately
preserve the Reeb vectorfields. We choose u = (f−1

∗ )( ∂
∂s

), the image
under f−1 of the radial vectorfield in W2. This satisfies ω1(X1, u) > 0.
Also, ω0(X0, u) > K > 0, where the number K is independent of
any specific diffeomorphism mapping the sΣ1 onto Σ2,s. Therefore
ω0(X1, u) > 0 for f suitably chosen to approximately preserve the
Reeb vectorfields and ω1(X0, u) > 0 similarly.

¤
Now, since f ∗λ and λ agree near ∂W1, we can apply Moser’s method

to find an isotopy of W1, fixed near ∂W1, which generates a symplec-
tomorphism between ω and f ∗ω. Specifically, the isotopy can be taken
to be the time-1 flow of the time-dependent vector field Zt uniquely
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defined by Ztc((1− t)ω + tf ∗ω) = λ−f ∗λ. Note that Zt ≡ 0 both near
∂W1 and near the zero-section.

The composition of this isotopy with our original diffeomorphism,
denoted again by f , is now the required symplectomorphism between
W1 and W2.

We now represent f explicitly as a Hamiltonian diffeomorphism. Ob-
serve that associated to any 1-form µ on T ∗M is, in the terminology
of [7], a ‘contracting’ vector field Xµ defined by Xµcω = −µ. In the
case of µ = λ or µ = f ∗λ, this vector field vanishes only along the
zero-section M and the associated flow contracts a disk towards each
point on M . For Xλ, these disks are just the cotangent fibers. Now,
f maps Xf∗λ into Xλ. The only map doing this which is fixed near M
is defined as follows. Flow along Xf∗λ until we are in the region where
f = id, then flow out along −Xλ for the same time.

Let φt and φ
′
t denote the time-t flows of Xλ and Xf∗λ respectively.

Assume that φ
′
T (W1) lies in the region where f = id. Note that as

f ∗λ = λ near ∂W1 we can extend f ∗λ and Xf∗λ smoothly to T ∗M .
Define an isotopy ht, 0 ≤ t ≤ T by ht = φ−1

t ◦ φ
′
t. Then h0 = id and

hT = f .
Now, LXλ

ω = d(Xλcω) = −ω and similarly LXf∗λ
ω = −ω so we

have φ∗t ω = φ
′∗
t ω = e−tω and the ht are all symplectomorphisms.

Let Vt = dht

dt
, then 0 = LVtω = d(Vtcω). Hence the form Vtcω is

closed and the isotopy is Hamiltonian if it is exact. But Vt vanishes
near the zero-section and so we can use a parameterized version of the
Relative Poincaré Lemma to construct a smooth family of Ht on T ∗M
such that Vtcω = dHt as required.

¤
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