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1. INTRODUCTION

There exists a canonical symplectic structure on the cotangent bundle of a differentiable
manifold and similarly a canonical contact structure on the positive projectivization of the
cotangent bundle under the scaling R action. Given a Riemannian (or Finsler) metric on
the original manifold, this contact structure is contactomorphic to the contact structure
determined by the metric on the unit tangent bundle.
In symplectic topology it is a general question to ask to what extent the symplectic or con-
tact geometry of these structures determines the smooth structure of the smooth underlying
manifold. For example one might expect symplectic invariants to give interesting new
smooth invariants.
In this paper we study the canonical contact structures associated to 3 dimensional Lens
spaces L(r, s). These are the first examples of manifolds which may be homotopic but
not diffeomorphic. We will see that the contact structures on their unit tangent bundles do
indeed distinguish the smooth structures on the Lens spaces.
We note that homotopic but non diffeomorphic Lens spaces still have diffeomorphic tan-
gent bundles. Therefore we do need contact methods to distinguish these structures and in
particular we discover examples of different 5 dimensional contact structures on the same
manifold (with the same Chern class). Such examples are still quite rare (but see [6]).
One natural approach to this problem is to compute the contact homology of our manifolds
(see [3]). This was the approach of Ustilovsky. However the calculations in sections 2 and
3 show that this fails to separate the contact structures. Contact homology is a homology
theory with chain groups generated by certain periodic orbits of a Reeb vector field on our
contact manifold and with the differential defined by counting holomorphic curves. We
will see that nondegenerate Reeb vector fields on our contact manifolds have isomorphic
periodic orbits. Moreover these orbits are such that the necessary differentials vanish in all
cases.
Motivated by work of Bourgeois [1] we study holomorphic curves corresponding to natural
Morse-Bott contact forms in section 4. Relative to these contact forms we can describe
fairly explicitly various moduli spaces of holomorphic curves. They do not appear in the
differential defining contact homology although would certainly influence the more subtle
invariants coming from Symplectic Field Theory (see [2]). In any case, in section 4 we
show directly that properties of these moduli spaces of holomorphic curves are enough to
distinguish our contact manifolds.

2. FINSLER PERTURBATION OF THE ROUND METRIC

Consider a Riemannian manifold (M, g) and the induced Hamiltonian on the cotangent
bundle with the canonical Liouville structure ω = dp ∧ dq,

(1) Ho : T ∗M → R, Ho(ξ) = ‖ξ‖∗g f.a. ξ ∈ T ∗M,

where ‖ · |∗G is the norm of the dual metric.
Note that for any diffeomorphism ϕ : M → M we have the prolongation

φ = (Dϕ−1)∗ : T ∗M → T ∗M

covering ϕ which is symplectic and also preserves the Liouville 1-form λ = p dq.
1
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Suppose we have a 1-parameter group of isometries ϕt : M
∼=−→ M generated by the

Killing field V on M , then the prolongation of ϕt is a Hamiltonian diffeomorphism with
Hamiltonian

(2) H1 : T ∗M → R, H1(q, ξ) = ξ(V (q)) .

Since ϕt is an isometry, we have

(3) φt
Ho
◦ φs

H1
= φs

H1
◦ φt

Ho
f.a. s, t ∈ R,

or equivalently

{Ho,H1} = 0 .

Since H1 preserves the level sets H−1
0 (c) as well as the Liouville 1-form, the symplec-

tic flow φt
H1

preserves the contact form λ|H−1
o (c) and thus also the contact structure ξ =

kerλ|....
The Finsler perturbation of the round metric geodesic flow is given by the Hamiltonian

(4) Hα := Ho + αH1, α ∈ R .

Lemma 2.1. If the isometric action is periodic of period 1, ϕt+1
V = ϕt

V and α ∈ R\Q, then
the only closed periodic orbits of the Hamiltonian equation ẋ = XHα(x), corresponding
1-1 to the closed geodesic of the Finsler metric, are the geodesics of the Riemannian metric,
which are invariant under the isometric action ϕt

V .

From now on let us denote by c : R → M a closed geodesic of the Finsler metric corre-
sponding to Hα, with minimal period T > 0, and by

x : R/TZ→ H−1
α (1), ẋ = XHα(x),

the corresponding orbit of the Hamiltonian system.
The primary aim is to compute the Conley-Zehnder index of x as a closed Reeb orbit for
the contact form λ|H−1

o (1). This has to be carried out with respect to a suitably chosen
symplectic trivialization of the contact structure ξ.
Note that, due to the fact that the Hamiltonians Ho and H1 are homogeneous of degree 1,
the Hamiltonian flow for Hα satisfies

(5) φt
Hα

(λp) = λφt
Hα

(p) f.a. λ > 0, p ∈ T ∗M .

Differentiating with respect to λ implies that the real line Rx(t) ⊂ x∗T vT ∗M , where we
identify the point x(t) in the cotangent bundle with the vertical tangent vector at this point,
is invariant under the flow. Hence, the vectors (x(t), ẋ(t)) ∈ x∗TT ∗M span an invariant
symplectic subbundle.
We call a trivialization of x∗TT ∗M standard if it is derived from any trivialization of the
vertical bundle along x. By means of the invariant symplectic subbundle from (x, ẋ) this
induces a symplectic trivialization of the contact structure.
In order to compute such a standard trivialization in concrete terms, one can proceed as
follows. Given any periodic isometric action ϕ : S1 → M , such that the geodesic c in
question appears as a closed orbit of ϕ, the prolongation φ of ϕ preserves the contact
structure along x and its linearization provides a standard trivialization. Thus it remains to
find computable isometric actions in view of the geodesic under consideration.

2.1. Standard Trivialization in the concrete case of S3 ⊂ C2. Consider (M, g) =
(S3, go) the standard unit sphere embedded as { (z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1 } with
theinduced round metric.
For the Finsler perturbation we consider the isometric S1-action

(6) ϕt
V (z1, z2) = (ei2tz1, e

i3tz2), t ∈ R/Z .
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It follows that the only 4 remaining closed geodesic for Hα lie in the the z1- and z2-plane,

c±1 (t) = (e(1±2α)ti, 0), T =
2π

1± 2α
,

c±2 (t) = (0, e(1±3α)ti), T =
2π

1± 3α
,

(7)

In order to determine the contact structure along x±1,2 note that the entire vertical subbundle
is contained in the kernel of the Liouville 1-form pdq, and also the complementary complex
plane along c1,2. It follows that in the coordinates of the ambient vector space C2 × C2 ⊃
x∗TT ∗S3, the contact structure x∗ξ is given by

(x±1 )∗ξ = {0} × C× {0} × C
(x±2 )∗ξ = C× {0} × C× {0}(8)

which is obviously trivialized by the constant trivialization (1, i) in the corresponding fac-
tor.
In the case of a lens space S3/Γ we have to choose suitably rotating trivializations of TS3,
see below, such that they become compatible with the discrete group action of Γ.
Consider the following isometric group actions of Z/r on the round sphere,

Γr,s : Z/r × S3 → S3,

σ(z1, z2) = (e2πi/rz1, e
2πis/rz2),

(9)

which is free if (r, s) are relatively prime, 1 ≤ s < r − 1. This gives rise to the lens space

L(r, s) = S3/Γr,s .

In order to determine the suitable trivializations of (x±1,2)
∗ξ, we first note that

σ(c±1 (t)) = c±1 (t± T/r),

σ(c±2 (t)) = c±2 (t± Ts/r),
(10)

where T is the respective period. For the trivialization Φ+
1 along c+

1 this means, DσΦ+
1 (t) =

Φ+
1 (t+T/r), etc. Since the contact structure ξ along x is obtained from the plane comple-

mentary to the one in which the geodesics c lies, we have Dσ = e2πis/r ⊕ e2πis/r along
c±1 and Dσ = e2πi/r⊕e2πi/r along c±2 . (10) leads to the following compatibility condition
for the trivializations Φ±1,2,

DσΦ±1 (t) = Φ±1 (t± T/r),

DσΦ±2 (t) = Φ±2 (t± sT/r),
(11)

where the latter can be transformed into

(12) (Dσ)kΦ±2 (t) = Φ±2 (t± T/r),

with

ks ≡ 1 (mod r) .

We obtain for the trivialization component in the respective complex plane,

Φ±1 (t) = e±2πst/T ,

Φ±2 (t) = e±2πkt/T .
(13)
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3. INDEX COMPUTATION

3.1. A Formula for the Conley-Zehnder Index. Consider
(
Ψ(t))0≤t≤1 ∈ Sp(2,R) given

by Ψa,b(t) = A(t)B(t) where

A(t) =




cos a(t) − sin a(t) 0 0
sin a(t) cos a(t) 0 0

0 0 cos a(t) − sin a(t)
0 0 sin a(t) cos a(t)


(14)

B(t) =




cos b(t) 0 sin b(t) 0
0 cos b(t) 0 sin b(t)

− sin b(t) 0 cos b(t) 0
0 sin b(t) 0 cos b(t)


 ,(15)

with a, b ∈ C0([0, 1],R). Compute

det(1−Ψ(t)) = det
(
A−1(t)−B(t)

)

=
[(

cos a(t)− cos b(t)
)2 +

(
sin a(t)− sin b(t)

)2
]

·
[(

cos a(t)− cos b(t)
)2 +

(
sin a(t) + sin b(t)

)2
]
.

Hence, the path Ψ satisfies Ψ(1) ∈ Sp∗(2,R) if and only if

(16) a(1) 6≡ b(1) (mod 2π) and a(1) 6≡ −b(1) (mod 2π) .

Note that we also have always detΨ(1) ≥ 0, that is, Ψ(1) ∈ Sp+(2,R) if regular.
In order to determine the Conley-Zehnder index µ(Ψ) of the given path we define

ã := a(1)−
⌈

a(1)− π

2π

⌉
2π ∈ (−π, π],(17)

b̃ := b(1)−
⌈

b(1)− π

2π

⌉
2π ∈ (−π, π] .(18)

Which extension of the paths a(t), b(t) has to be chosen such that Ψ(2) = −1 depends on
the following case distinctions: |ã| ≶ |b̃| and b̃ ≶ 0. Due to the Lagrangian-orthogonal
form of A(t), the value of the index in each different case then depends only on b(1). We
obtain following table for the index µ of the path Ψ:

(19)

b̃ > 0 b̃ < 0

|ã| < |b̃| 2
⌈

b(1)
π

⌉
2

⌊
b(1)
π

⌋

|ã| > |b̃| 2
⌊

b(1)
π

⌋
2

⌈
b(1)
π

⌉

3.2. Computation for the contractible orbits. Note first that a closed Finsler geodesic on
the lens space L(r, s) is contractible if and only if it lifts to a contractible geodesic on S3.
Hence, for the index computation we can work without the consideration of the Γr,s-action.
When computing the linearization of the Hamiltonian flow φt

Hα
along the Finsler geodesics

x±1,2, we observe that

Dφt
Hα

= Dφαt
H1
·Dφt

H0
.

Since we can use the constant trivialization (1, i) for the contact structure from (8), the
corresponding path of symplectic matrices Ψ(t), reparametrized for 0 ≤ t ≤ 1 has exactly
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the shape Ψ(t) = A(t)B(t) as in (14) with a(t), b(t) depending on c±1,2 as follows,

c+
1 : a(t) = − 3α

1 + 2α
2πt, b(t) =

2πt

1 + 2α
,

c−1 : a(t) = − 3α

1− 2α
2πt, b(t) =

2πt

1− 2α
,

c+
2 : a(t) = − 2α

1 + 3α
2πt, b(t) =

2πt

1 + 3α
,

c−2 : a(t) = − 2α

1− 3α
2πt, b(t) =

2πt

1− 3α
,

(20)

where the negative sign in a(t) stems from the definition of a(t) and the fact that the flow
of H1 is the isometric action by rotation, in the complementary plane to the geodesic.
From this, we obtain

c+
1 : ã = − 3α

1 + 2α
2π, b̃ = − 2α

1 + 2α
2π,

c−1 : ã = − 3α

1− 2α
2π, b̃ =

2α

1− 2α
2π,

c+
2 : ã = − 2α

1 + 3α
2π, b̃ = − 3απ

1 + 3α
2π,

c−2 : ã = − 2α

1− 3α
2π, b̃ =

3απ

1− 3α
2π,

(21)

and, taking into account that we can choose α > 0 arbitrarily small, the following indices
for the primitive orbits:

µ(c+
1 ) = 2

⌈
(
b(1)
π

)
⌉

= 4, µ(c+
2 ) = 2

⌊
(
b(1)
π

)
⌋

= 2,

µ(c−1 ) = 2
⌊
(
b(1)
π

)
⌋

= 4, µ(c−2 ) = 2
⌈
(
b(1)
π

)
⌉

= 6,

(22)

which is consistent with the fact that the Finsler perturbation is equivalent with the Morse-
Bott approach to the round metric which gives a critical family of contractible geodesics of
the type of a Grassmannian Gr(4, 2).

3.3. Computation for the non-contractible orbits. Taking care of the trivializations ad-
justed to the Γr,s-action we have,

Ψ(t/T ) = (Φ±1,2)
−1Dφαt

H1
Dφt

Ho
.

Hence we obtain with (13) for n-fold multiple covers of the primitive orbits

nc+
1 : a(t) =

(
s− 3α

1 + 2α

)n

r
2πt, b(t) =

2πt

1 + 2α

n

r
,

nc−1 : a(t) =
(− s− 3α

1− 2α

)n

r
2πt, b(t) =

2πt

1− 2α

n

r
,

nc+
2 : a(t) =

(
k − 2α

1 + 3α

)n

r
2πt, b(t) =

2πt

1 + 3α

n

r
,

nc−2 : a(t) =
(− k − 2α

1− 3α

)n

r
2πt, b(t) =

2πt

1− 3α

n

r
,

(23)

Moreover, note that the multiplicities n have to be chosen according to the homotopy class
of c+

1 , that is we have 4 representatives of the same homotopy class, namely

(24) c+
1 , (r − 1)c−1 , sc+

2 , (r − s)c−2 .
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3.4. The case s = 1. In this case, formula (23) provides for the 4 representatives of the
class of nc+

1 ,

nc+
1 : a(1) =

(
1− 3α

1 + 2α

)2nπ

r
, b(1) =

2nπ

r(1 + 2α)
,

(r − n)c−1 : a(1) =
(− 1− 3α

1− 2α

)r − n

r
2π, b(1) =

2π

1− 2α

r − n

r
,

nc+
2 : a(1) =

(
1− 2α

1 + 3α

)2nπ

r
, b(1) =

2nπ

r(1 + 3α)
,

(r − n)c−2 : a(1) =
(− 1− 2α

1− 3α

)r − n

r
2π, b(1) =

2π

1− 3α

r − n

r
.

(25)

From this we compute in the case 1 ≤ n ≤ r
2 ,

nc+
1 : ã =

1− α

1 + 2α

2nπ

r
, b̃ =

1
(1 + 2α)

2nπ

r
,

(r − n)c−1 : ã =
1− (3r − 1)α

1− 2α

2nπ

r
, b̃ = −1− 2rα

1− 2α

2nπ

r
,

nc+
2 : ã =

1 + α

1 + 3α

2nπ

r
, b̃ =

1
1 + 3α

2nπ

r
,

(r − n)c−2 : ã =
1− (2r + 1)α

1− 3α

2nπ

r
, b̃ = −1− 3rα

1− 3α

2nπ

r
,

(26)

Since r ≥ 2 we obtain the indices

µ(nc+
1 ) = 2

⌈
b(1)
π

⌉
= 2, µ(nc+

2 ) = 2
⌊

b(1)
π

⌋
= 0,

µ((r − n)c−1 ) = 2
⌊

b(1)
π

⌋
= 2, µ((r − n)c−2 ) = 2

⌈
b(1)
π

⌉
= 4,

(27)

which is consistent with the non-Finsler Morse-Bott point of view that the corresponding
critical manifold consists of a disjoint union of S2’s.
In the case that r

2 < n < r we obtain instead of (26) the conditions

nc+
1 : ã = −r − n + (n + 2r)α

1 + 2α

2π

r
, b̃ = −r − n + 2rα

(1 + 2α)
2π

r
,

n(r − 1)c−1 : ã = −r − n + ((3n− 2)r − n)α
1− 2α

2π

r
, b̃ =

r − n + 2(n− 1)rα
1− 2α

2π

r
,

nc+
2 : ã = −r − n + (3r − n)α

1 + 3α

2π

r
, b̃ = −r − n + 3rα

1 + 3α

2π

r
,

n(r − 1)c−2 : ã = −r − n + (2rn + n− 3r)α
1− 3α

2π

r
, b̃ = +

r − n + 3r(n− 1)α
1− 3α

2π

r
,

(28)

We obtain

µ(nc+
1 ) = 2

⌈
b(1)
π

⌉
= 4, µ(nc+

2 ) = 2
⌊

b(1)
π

⌋
= 2,

µ((r − n)c−1 ) = 2
⌊

b(1)
π

⌋
= 0, µ((r − n)c−2 ) = 2

⌈
b(1)
π

⌉
= 2,

(29)

3.5. The Case s 6≡ ±1 (mod r). Here, we can assume wlog that α = 0, since already for
the round metric, the noncontractible solutions for s 6≡ ±1 are non-degenerate as can be
also seen from (23).
It turns out that for all cases of (r, s) we always find (0, 2, 2, 4) as index tuples for all
homotopy classes.
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We have

nc+
1 : a(1) =

sn

r
2π, b(1) =

n

r
2π,

(r − n)c−1 : a(1) = −s(r − n)
r

2π, b(1) =
r − n

r
2π,

nsc+
2 : a(1) =

ksn

r
2π, b(1) =

ns

r
2π,

(r − sn)c−2 : a(1) = −k(r − sn)
r

2π, b(1) =
r − sn

r
2π .

(30)

4. HOLOMORPHIC CURVES

The computations of the previous section show that the contact homology groups of the unit
contangent bundles T 1L(r, s) are independent of s, whether we look only at contractible
orbits or at the contact homology generated by periodic orbits in any other homotopy class.
The contact homology is generated by the periodic orbits themselves since they all have
even index and so the boundary map is trivial. Nevertheless there are finite energy curves
in ST 1L(r, s) = T ∗L(r, s) \O and we will use these to distinguish the contact structures.
We work with homogeneous coordinates (z0 : z1 : z2 : z3 : z4) in CP 4. Let Q be the
quadric {∑4

i=1 z2
i = z2

0}. Then Q \ {z0 = 0} can be identified with the affine quadric
Q′ = {∑4

i=1 w2
i = 1} by setting wi = zi/z0. The real points x = (x1, x2, x3, x4) of

Q′ we identify with S3 and Q′ itself can be identified with TS3 by sending (w1, .., w4)
to the pair of vectors x = ( Rw1√

1+
∑

(Iwi)2
, .., Rw4√

1+
∑

(Iwi)2
) and y = (Iw1, .., Iw4). We

check that x and y are orthogonal and x has norm 1, and therefore they define a point
on TS3. Furthermore, under this identification the complex tangencies to the level sets∑

(Iwi)2 = c correspond to the standard contact hyperplanes in |y|2 = c. We remark
however that the complex structure on Q′ is not scale invariant, so choosing different values
of c ∈ (0,∞) defines different complex structures on T 1S3 compatible with the contact
form.
Let

A =




cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos sθ − sin sθ
0 0 sin sθ cos sθ


 ,(31)

where θ = 2π
r .

The map σ : x 7→ Ax gives a free Zr action on S3 and the quotient S3/σ is the Lens space
L(r, s).
We observe that σ extends to a free Zr action on Q′ and to a Zr action with fixed points on
Q.
The surface S = Q∩{z0 = 0} = {z2

1+z2
2+z2

3+z2
4 = 0} can be identified withCP 1×CP 1.

To do this, choose homogeneous coordinates ((s0 : s1), (t0 : t1)) on CP 1 × CP 1 and
identify this point with the point

(s0t0 + s1t1,−i(s0t0 − s1t1), s0t1 − s1t0,−i(s0t1 + s1t0)) ∈ S.

In these coordinates the action of σ on S becomes

σ((s0 : s1), (t0 : t1)) = ((ei(s+1)θs0 : s1), (e−i(s−1)θt0 : t1)).

The Fubini-Study form on CP 4, normalized such that the lines have area 1, restricts to a
symplectic form ω on S which is the standard split form in our coordinates. The normal
bundle ν of S in Q has first Chern class ω. We can identify ST 1S3 with ν \ S.
Let L be the unit normal bundle of ν with respect to an Hermitian metric. For a suitable
choice of connection iα on L the Reeb vector field R corresponding to the contact form α
will be tangent to the fibers of L and the contact hyperplanes coincide with the complex
tangencies. This is an example of a Morse-Bott contact form, see [1]. Thinking of L as
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a fixed length level set in T ∗S3, such a contact form can also be induced from the round
metric on S3. Thus studying holomorphic curves in the symplectization of T 1S3 with re-
spect to compatible almost-complex structures is exactly the same as studying holomorphic
curves in the symplectization of L.
We choose an almost-complex structure on ξ = kerα which is invariant under the periodic
Reeb flow and extend this to an almost-complex structure J on ν \S ∼= (L×(0,∞), d(tα))
which is scale invariant and satisfies J( ∂

∂t ) = R. Since J is R invariant it projects to give
an almost-complex structure on S and in fact it extends to give an almost-complex structre
on ν with holomorphic fibers. Restricted to the bundle over a holomorphic curve in S,
the complex structure J is automatically integrable and defines a holomorphic line bundle
over the curve. Thus finite energy curves in ν \ S correspond to curves C in S together
with meromorphic sections of a holomorphic line bundle, see again [1]. Zeros correspond
to posivite asympotoic limits and poles to negative asymptotic limits. We will work with
almost-complex structures projecting to σ-invariant almost-complex structures on S. Then
finite energy curves in ST 1L(r, s) correspond to σ invariant sections over C. In order for
the finite energy curve to have noncontractible asymptotic limits the curve C ⊂ S must be
connected and the holomorphic curve in ν \S become multiply covered under the quotient
by σ.
To study such sections we first calculate the action of σ on the fibers of ν over the fixed
points of the action. Recall that points in S correspond to geodesics on S3, in fact we can
think of S precisely as a symplectic reduction of T ∗S3 under the S1 action of the geodesic
flow. The fixed points correspond to geodesics in S3 which are invariant under σ.
In our coordinates, the point ((0 : 1), (0 : 1)) ∈ S corresponds to c+

1 and the action
on the corresponding fiber is multiplication by eiθ. The point ((1 : 0), (1 : 0)) ∈ S
corresponds to c−1 and the action on the corresponding fiber is multiplication by e−iθ. The
point ((0 : 1), (1 : 0)) ∈ S corresponds to c+

2 and the action on the corresponding fiber is
multiplication by eisθ. The point ((1 : 0), (0 : 1)) ∈ S corresponds to c−2 and the action on
the corresponding fiber is multiplication by e−isθ.
We can now describe σ-invariant finite energy curves in ν \ S with respect to a standard
almost-complex structure, that is, one projecting to the integrable complex structure above
on S.
The only isolated σ invariant curves in S are t0 = 0, t1 = 0, s0 = 0 and s1 = 0. We study
these separately.
t0 = 0 Suppose that f is a σ invariant section. Then it has either zeros or poles at the fixed
points s0 = 0 and s1 = 0. In local coordinates let f(z) =

∑
anzn near s0 = 0. Since σ

acts as ei(s+1)θ on the base and eiθ on the fiber, for f to be locally σ invariant it must satisfy
f(ei(s+1)θz) = eiθf(z). So if an 6= 0 we have n(s + 1) ≡ 1(r) or n ≡ (s + 1)−1(r). We
note that if s ≡ −1(r) then such a section must be identically zero.
Near s1 = 0 let f(z) =

∑
bnzn, then bn 6= 0 implies that n ≡ s(s + 1)−1(r).

Since (s+1)−1 +s(s+1)−1 ≡ 1(r) and c1(ν)|t0=0 = 1 there exist meromorphic sections
with (s+1)−1(r) zeros at s0 = 0 and s(s+1)−1(r) zeros at s1 = 0 and a number of poles
distributed σ equivariantly at the other points.
Since a meromorphic section is determined up to scale by its zeros and poles, if these zeros
and poles are σ equivariant then so is the section itself.
Therefore such sections will project in ST 1L(r, s) to finite energy holomorphic curves
with positive asymptotic limits q1c

+
1 and q2c

−
2 and contractible negative asymptotic limits,

where q1 ≡ (s+1)−1(r) and q2 ≡ s(s+1)−1(r). We check that indeed q1c
+
1 is homotopic

to −q2c
−
2 .

t1 = 0 Again we must have zeros or poles at s0 = 0 and s1 = 0. Near s0 = 0 if f(z) =∑
anzn then an 6= 0 implies that n ≡ s(s + 1)−1(r). Near s1 = 0 the zero or pole must

have order (s + 1)−1(r). Since s(s + 1)−1 + (s + 1)−1 ≡ 1(r) there exist sections with
zeros at s0 = 0 and s1 = 0 and poles elsewhere.
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In ST 1L(r, s) the sections correspond to finite energy curves with positive asymptotic
limits q1c

+
2 and q2c

−
1 and contractible negative asymptotic limits where q1 ≡ s(s+1)−1(r)

and q2 ≡ (s + 1)−1(r).
We observe that the positive asymptotic limits here are homotopic to those in the case of
t0 = 0.
s0 = 0 Now sections will have poles at t0 = 0 and t1 = 0.
A similar analysis to those above shows that we find finite energy holomorphic curves in
ST 1L(r, s) with positive asymptotic limits q1c

+
1 and q2c

+
2 and contractible negative limits

where q1 ≡ −(s− 1)−1(r) and q2 ≡ s(s− 1)−1(r).
s1 = 0 Sections here project to finite energy holomorphic curves in ST 1L(r, s) with pos-
itive asymptotic limits q1c

−
2 and q2c

−
1 and contractible negative limits where q1 ≡ s(s −

1)−1(r) and q2 ≡ −(s− 1)−1(r).
The positive asymptotic limits are homotopic to those in the case of s0 = 0.
Proof of main result
Now suppose that there exists an orientation preserving contactomorphism φ from T 1L(r, s)
to T 1L(r, s′). For convenience we suppose that s, s′ 6= ±1(r). Then φ will push for-
ward our Morse-Bott contact form αs on T 1L(r, s) to a form β on T 1L(r, s′) generat-
ing the same contact structure as the Morse-Bott form αs′ on T 1L(r, s′). Suppose that
φ∗[c+

2 ] = n[c+
2 ]. Then φ will map periodic orbits in the class m[c+

2 ] in T 1L(r, s) to peri-
odic orbits in the class mn[c+

2 ] in T 1L(r, s′) for all 0 ≤ m < r.

Lemma 4.1. With respect to any translation invariant almost-complex structure compatible
with the contact form αs′ there exist finite energy spheres in ST 1L(r, s′) with two positive
punctures asymptotic to orbits homotopic to ±ns(s + 1)−1[c+

2 ] and a negative puncture
asymptotic to a contractible orbit. Also, there exist finite energy spheres with two positive
punctures asymptotic to orbits homotopic to ±ns(s − 1)−1[c+

2 ] and a negative puncture
asymptotic to a contractible orbit. Here ns(s + 1)−1 and ns(s− 1)−1 denote the smallest
positive integers which take the given value modulo r.

Proof We show the existence of the first class of spheres. With respect to the contact form
β we have curves in ST 1L(r, s′) with the same asymptotic limits as those described in
the lemma. It is required to show that such curves also exist given a complex structure
compatible with αs′ . To this end, we look at the moduli space of finite energy curves from
CP 1\{0, 1,∞}with two positive punctures at 0 and 1 having the required asymptotics, say
q1 and q2, and one negative puncture at ∞ asymptotic to a contractible orbit. With respect
to the complex structure compatible with β it consists of the images under projection and φ
of meromorphic sections in ν \ S over t0 = 0 or t1 = 0. This moduli space has dimension
4. We can see this directly from the construction. The negative asymptotic limit must
lie in t0 = 0 or t1 = 0 and so there exists a 2-parameter family of such limits. Once
this is fixed the curve is defined up to the (2-dimensional) phase. By fixing the positive
asymptotic limits we will restrict to the image of meromorphic sections over t0 = 0. We
prefer to work with a 0-dimensional moduli space and so impose additional constraints on
our curves as follows. First we fix an embedded sphere T in S transverse to t0 = 0 and
intersecting in a single point. Then let x0 be a fixed point on the noncontractible periodic
orbit giving the asymptotic behaviour at 0. Let a : CP 1 \ {0, 1,∞} → R be the vertical
(radial) component of a curve in ST 1L(r, s′) and v the horizontal T 1L(r, s′) component.
Denote by J an almost-complex structure on ST 1L(r, s′) which outside of a compact set
is translation invariant and compatible with β.

Definition 4.2. M(J) is the moduli space of J-holomorphic finite energy planes f : CP 1\
{0, 1,∞} → ST 1L(r, s′) such that f is asymptotic to q1 at 0, q2 at 1 and a contractible
orbit at ∞. Furthermore,
(1) da−1(0) ∩ a−1(0) 6= 0;
(2) limx→0+ v(x) = x0;
(3) the projection to S of the preimage of the contractible orbit in T 1S3 intersects T .
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We check that M(J) has dimension 0. With respect to the complex structure compatible
with β, if the surface is transverse to t0 = 0 the final condition fixes the position of our
pole (so determining the curve up to scale), and the two remaining conditions determine
the modulus and argument of the scale respectively. Therefore with respect to this complex
structure the moduli space contains a single curve.
We first establish the following.

Proposition 4.3. Let Jt for 0 ≤ t ≤ 1 be a generic family of almost-complex structures
on ST 1L(r, s′) which are identical outside of a compact set, where they are translation
invariant and compatible with β. Then ∪tM(Jt) is a compact 1-dimensional manifold.

Proof of Proposition
Suppose that tn → t0 ∈ [0, 1] and we are given a sequence fn ∈ M(Jtn

). It is required to
show that {fn} has a convergent subsequence. But the compactness theorem of Symplectic
Field Theory, see [2], shows that we have sequential compactness modulo degeneration
into a multiple level holomorphic curve. More specifically, the limit can be thought of as
a map from a punctured nodal curve whose components map to ST 1L(r, s′) and are either
Jt0-holomorphic or holomorphic with respect to the translation invariant almost-complex
structure compatible with β. The punctures are asymptotic to closed Reeb orbits of β and
there are natural matching conditions at the nodes, such that if we abstractly glue copies
of ST 1L(r, s′) with its translation invariant structure to the positive and negative ends of
(ST 1L(r, s′), Jt0) then the holomorphic components mapping to the different copies of
ST 1L(r, s′) fit together to give a genus 0 curve with the same asymptotic limits as the
curves in M(Jt). It is required to show that the limit in fact consists of a single nontrivial
Jt0-holomorphic component.
Chern classes are preserved in the limit and so the total deformation index of such a limit,
where we deform in the moduli space of multiple level curves with matching asymptotic
limits and which satisfy our constraints, must be 0.
Remark We need to clarify the meaning of the constraints for multiple level curves. The
point 0 ∈ R applies to the holomorphic component mapping to (ST 1L(r, s′), Jt0) and
so condition (1) applies similarly. To understand condition (2) we can think of our Jtn-
holomorphic curves as graphs

f : CP 1 \ {0, 1,∞} → CP 1 \ {0, 1,∞}× ST 1L(r, s′)

which are holomorphic with respect to the product structures on the range. The projection is
holomorphic and the limiting curves will also project holomorphically to CP 1 \ {0, 1,∞}.
Thus the limit consists of a holomorphic curve defined on CP 1 \ {0, 1,∞} together with
various components projecting to points in CP 1, possibly including 0,1 and ∞. The com-
ponents projecting to 0 fit across common asymptotic limits to form a surface with two as-
ymptotic ends, one asymptotic to q1 and the other matching the limit of theCP 1\{0, 1,∞}
component at 0. Ignoring any planar components and removing the corresponding singu-
larities on the remaining components, we are left with a finite sequence of cylinders, or
images of C∗, with matching asymptotic limits end to end along which they can abstractly
be glued to form a cylinder with one end asymptotic to q1 and the other matching the limit
of the CP 1 \ {0, 1,∞} component at 0. Then the radial directions in the C∗ give a formula
for associating a point on the asymptotic limit of the CP 1 \ {0, 1,∞} component at 0 to a
point on q1. Choosing the positive real points gives a point on the asymptotic limit of the
CP 1 \{0, 1,∞} component at 0 as before, and so a point on q1. The analogue of condition
(2) is that this point should be x0. The analogue of condition (3) is that after identifying all
matching asymptotic limits the remaining negative limit should lie on a contractible orbit
which lies in T when lifted to S. The key point here is that if a sequence of curves fn

satisfying conditions (1), (2) and (3) converges to a level curve f0, then f0 will also satisfy
the conditions in the sense here. This follows from the convergence of decorated curves,
[2].
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Returning to the proof of the proposition, if the family Jt is sufficiently generic then all
components of the limit have index at least−1. However all holomorphic curves appearing
in ST 1L(r, s′) have even index and so no deformation indices can be negative. Therefore
no component in our limit can have a positive index in the moduli space of similar compo-
nents with exactly the same asymptotic ends. We note that since our asymptotic limits have
minimal length in their homology classes none of our components can be nontrivial mul-
tiple covers. Thus all components mapping into ST 1L(r, s′) with its translation invariant
structure must themselves be translation invariant (otherwise they could be deformed while
still satisfying matching asymptotic conditions) and hence must be trivial cylinders. This
is equivalent to the moduli space being compact as required for the proposition.

¤
If J0 denotes the translation invariant almost-complex structure on ST 1L(r, s′) compatible
with β then we have seen that M(J0) consists of a single curve. Proposition 4.3 implies
that M(J) is cobordant to M(J0) for any J agreeing with J0 outside of a compact set. In
particular M(J) is nonempty, it consists of an odd number of curves.
Now we begin to deform the complex structure on ST 1L(r, s′) to structures JN such that
we can holomorphically embed copies of [−N,N ] × T 1L(r, s′) with its almost-complex
structure compatible with αs′ . We do this such that {0}×T 1L(r, s′) maps to itself. Then by
the above, for all values of N there still exist finite energy planes with the same asymptotic
properties (in fact an odd number).
Again following [4] we now take a limit as N → ∞. According to [2] the result is a
nodal curve but the limit is now potentially more complicated than in Proposition 4.3. The
components map to manifolds Wk, where −m ≤ k ≤ n for some m, n. Here Wk =
ST 1L(r, s′) with a complex structure compatible with β for −m < k < −m1; W−m1 =
ST 1L(r, s′) with a complex structure compatible with β for large negative t and αs′ for
large positive t; Wk = ST 1L(r, s′) with a complex structure compatible with αs′ for
−m1 < k < n1; Wn1 = ST 1L(r, s′) with a complex structure compatible with αs′ for
large negative t and β for large positive t; Wk = ST 1L(r, s′) with a complex structure
compatible with β for n1 < k < n. We identify our [−N, N ]× T 1L(r, s) with increasing
subsets of W0.
We can form a tree from the limiting components. The components correspond to vertices
and branches join components in Wi and Wi+1 such that the positive asymptotic limits
of the component in Wi and the negative limits of the component in Wi+1 have a Reeb
orbit in common. This common asymptotic limit results from a degenerating circle in
CP 1 \ {0, 1,∞}.
Since our JN -holomorphic curves are all of genus 0 with two positive punctures, the com-
ponents of the limit abstractly fit together to form a connected genus 0 curve with two
positive punctures. All components must have at least one positive puncture (by the maxi-
mum principle) and so we observe that exactly one curve can have two positive punctures
and none can have more than two. As in Proposition 4.3 the limiting component with two
positive punctures inherits a parameterization as a map from CP 1 \ {0, 1,∞} perhaps mi-
nus some additional punctures coming from nodes. The two positive punctures must be
asymptotic to the same required noncontractible orbits (at least up to homotopy). In fact,
the components in Wn have a total of two positive punctures asymptotic to q1 and q2 and
the components in W−m have a single negative puncture which after lifting and projection
lies in T . As in Proposition 4.3, the total deformation index of our limit, where we deform
in the moduli space of multiple level curves with matching asymptotic limits and which
satisfy our constraints, must be 0. We claim that all components not mapping into W0 are
cylinders, the result then readily follows.
To justify the claim, we first observe that components mapping into Wk for k 6= −m1, 0, n1

are invariant under translation and so must be trivial cylinders. A component in W0 not
equal to the image of our CP 1 \{0, 1,∞} is invariant under the S1 action coming from the
argument of the phase since this action preserves the condition (1) and does not affect con-
dition (2) for these components. Thus such components must also be trivial cylinders, and
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the component in W0 satisfying condition (1) must be the image of our CP 1 \ {0, 1,∞},
which again may have additional negative punctures.
Therefore, if the claim is false, either the image of CP 1 \ {0, 1,∞} in W0 has additional
negative punctures or there exists a noncylindrical component in either W−m1 or Wn1 with
a single positive asymptotic limit but multiple negative ends. In either case another com-
ponent must be a holomorphic plane (and in fact it must map to W−m1). But holomorphic
planes, even with a fixed asymptotic limit, always appear in a moduli space of dimension
at least 2. (All planes lift to ST 1S3 or ν \ S where, with the standard complex structure,
they are equivalent to the data of a holomorphic sphere in S and a holomorphic section of
ν with a fixed zero. But the phase acts nontrivially on such sections fixing the zero.) Thus
we obtain a positive dimensional space of deformations and therefore a contradiction as in
Proposition 4.3. This proves the claim and therefore Lemma 4.1.

¤
The above Lemma has constructed finite energy planes in T 1L(r, s′) with a standard com-
plex structure under the assumption that there exists an orientation preserving contacto-
morphism from T 1L(r, s) to T 1L(r, s′). But the considerations prior to Lemma 4.1 have
already determined which such curves exist. So, since we know in particular which homo-
topy classes in T 1L(r, s′) can be asymptotic limits for our curves the above lemma implies
that if a contactomorphism exists then either

s(s + 1)−1 ≡ ±n−1s′(s′ + 1)−1(r)ands(s− 1)−1 ≡ ±n−1s′(s′ − 1)−1(r)

or

s(s + 1)−1 ≡ ±n−1s′(s′ − 1)−1(r)ands(s− 1)−1 ≡ ±n−1s′(s′ + 1)−1(r).

Therefore
s + 1
s− 1

≡ ±(
s′ + 1
s′ − 1

)±1(r).

Checking the possibilities this implies that s ≡ s′±1(r) and so the Lens spaces are diffeo-
morphic.
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