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1 Introduction

1.1 Main results

Our main result demonstrates the existence of different Hamiltonian isotopy
classes of symplectically embedded polydisks inside a 4-ball, and by the same
argument also in the complex projective plane. Furthermore, we find exactly
how large the ball can be before the embeddings become isotopic; the optimal
isotopy is a version of symplectic folding.

Before stating the result precisely we fix some notation. We work in R4

with coordinates (x1, y1, x2, y2) and standard symplectic form ω =
∑

i dxi ∧
dyi. We denote by B(a) the open ball of capacity a, that is

B(a) = {π
∑
i

(x2
i + y2

i ) < a} ⊂ R4

with the restricted symplectic form. The polydisk P (a, b) is defined by

P (a, b) = {π(x2
1 + y2

1) ≤ a, π(x2
2 + y2

2) ≤ b} ⊂ R4.

For the results in this section, when describing a polydisk we will always
assume that a < b. Sometimes D(a) will be used to denote a closed disk of
area a in R2. The inclusion map then gives a symplectic embedding P (a, b)→
B(R) for any R > a+ b.

Let Ht : R4 → R, 0 ≤ t ≤ 1 be a smooth family of compactly supported
functions. The forms dHt are dual to vectorfields XHt under the symplec-
tic form, that is, we define XHt by XHtcω = dHt. Then the Hamiltonian
diffeomorphism generated by {Ht} is the time-1 flow of the time-dependent
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vectorfield XHt . Hamiltonian diffeomorphisms are symplectic. On the other
hand, by a theorem of Gromov, [8], a compactly supported symplectomor-
phism of B(a) is Hamiltonian.

Here is the first part of our main result.

Theorem 1.1. Let S < a + b < R < 2a + b. Then there does not exist
a Hamiltonian diffeomorphism φ with support contained in B(R) such that
φ(P (a, b)) ⊂ B(S).

In cases when the ratio b
a

is sufficiently large there do exist Hamiltonian
diffeomorphisms ψ of R4 such that ψ(P (a, b)) ⊂ B(S) for S < a+ b. In fact,
as the ratio b

a
→∞ we may take S →

√
ab, that is, the image of the polydisk

can occupy an arbitrarily large proportion of the volume of the ball. For this,
see for example [17].

Hence, together with Gromov’s theorem mentioned above we can produce
examples of the following.

Corollary 1.2. Suppose that a+ b < R < 2a+ b, so in particular P (a, b) ⊂
B(R), and b

a
is very large. Then there exist symplectic embeddings P (a, b)→

B(R) which do not extend to symplectomorphisms B(R)→ B(R).

On the other hand, when the ratio b
a

is close to 1 there may be no sym-
plectic embeddings P (a, b) → B(S) for any S < a + b. For example, the
second Ekeland-Hofer capacity of P (1, 1) is 2 whereas the second Ekeland-
Hofer capacity of B(S) is S, see [5], and these capacities are monotonic under
symplectic embeddings.

The easiest way to construct an embedding P (a, b)→ B(S) for S < a+ b
(when such an embedding exists) is via symplectic folding, and we shall see
that Theorem 1.1 is sharp in the sense that this method applies whenever
R > 2a+ b.

Theorem 1.3. Let R > 2a + b. Then for any ε > 0 there exists a Hamilto-
nian diffeomorphism φ with compact support in B(R) such that φ(P (a, b)) ⊂
B(2a+ b

2
+ ε).

Let us consider symplectic embeddings f : P (a, b) → B(R) under the
equivalence relation that f1 ∼ f2 if there exists a Hamiltonian diffeomorphism
φ with support in B(R) such that φ ◦ f1 = f2. Hamiltonian diffeomorphisms
with support in B(R) can be generated by functions which all have support in
B(R). Thus we call the equivalence classes Hamiltonian isotopy classes. Then
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combining with Theorem 1.1 we can say the following, making Corollary 1.2
more precise.

Corollary 1.4. Suppose that 2a < b and a+b < R < 2a+b. Then there exists
at least two Hamiltonian isotopy classes of polydisks P (a, b) inside B(R).

In section 2 we study holomorphic curves in manifolds with cylindrical
ends in order to prove Theorem 1.1. The technique of symplectic folding is
now fairly well known. It was introduced in [14] and studied extensively in
[17], but in section 3 we review the construction and show that it implies
Theorem 1.3.

1.2 Related work

1.2.1 Isotopies of polydisks

There are known to be non-isotopic polydisks embedded in larger polydisks.
Observe that if a, b < 1 then the polydisks P (a, b) and P (b, a) both lie in
P (1, 1). We consider these as giving two embeddings g1, g2 : P (a, b) →
P (1, 1). For any R > a + b, there exists a unitary transformation mapping
P (a, b) to P (b, a) generated by a Hamiltonian with support contained in
B(R) ⊂ P (R,R). The following theorem is due to A. Floer, H. Hofer and K.
Wysocki.

Theorem 1.5. (Floer-Hofer-Wysocki [7] Theorem 4) When a, b < 1 and
a+ b > 1 there does not exist a Hamiltonian diffeomorphism φ with support
contained in P (1, 1) such that φ ◦ g1 = g2.

In other words, if the ambient polydisk does not contain the support
of a rotation moving P (a, b) onto P (b, a) then the polydisks are not isotopic
under any Hamiltonian flow. We contrast this with our Theorems 1.1 and 1.3
saying that if the ambient ball is not large enough to support a Hamiltonian
generating the symplectic folding construction, then the polydisks are not
isotopic under any Hamiltonian flow.

The theorem was established as an application of symplectic homology,
although as pointed out by K. Ono it can also be derived from Floer theoretic
methods applied to the distinguished boundary ∂D(a) × ∂D(b) ⊂ ∂D(a, b)
of the polydisk, which is a Lagrangian torus.
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1.2.2 Isotopies of ellipsoids

Besides polydisks, another convenient class of domains used to investigate
symplectic embedding problems are ellipsoids. The ellipsoid E(a, b) is defined
by

E(a, b) = {π(x2
1 + y2

1)

a
+
π(x2

2 + y2
2)

b
≤ 1} ⊂ R4.

In particular E(a, a) = B(a). The ellipsoid E(a, b) is embedded in the ball
B(R) by inclusion whenever R > max{a, b}. In contrast to Theorem 1.1
however, according to a theorem of D. McDuff this is the only isotopy class
inside the ball. Indeed, this remains the case if we study any embedding
from an ellipsoid to an ellipsoid.

Theorem 1.6. (McDuff [15] Corollary 1.6) The space of symplectic embed-
dings E(a, b)→ E◦(a′, b′) is path connected whenever it is nonempty.

2 Restriction on isotopies

In this section we establish our constraint on the Hamiltonian diffeomor-
phisms of the standard polydisk P (a, b) ⊂ B(R) for some a+b < R < 2a+b.
Our techniques apply to smooth domains so first we approximate P (a, b) by
a slightly smaller domain W with smooth boundary. We recall that a Hamil-
tonian diffeomorphism with support in B(R) generates a symplectic isotopy
of P (a, b) inside B(R) by choosing generating Hamiltonian functions with
support in the ball. As an isotopy of P (a, b) restricts to one of W constraints
on isotopies of W imply constraints for the polydisk.

2.1 The smooth domain W and orbits on the boundary

Fix a small irrational ε > 0 and a 0 < δ << ε and let x0 = a−εb
1−ε2 . Then let

f : [0, a]→ [0, b] be a smooth convex function with f(x) = b−εx for x < x0−δ
and f(x) = 1

ε
(a− x) for x > x0 + δ. Finally set K(x, y) = y − f(x).

It will be convenient to use symplectic polar coordinates on R4, so we set
Ri = π(x2

i + y2
i ) and tan yi

xi
= θi. Then we define our approximation W to

P (a, b) by
W = {K(R1, R2) ≤ 0}.
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This is a smooth domain with contact-type boundary and Reeb flow R gen-
erated by the Hamiltonian vector field of K, namely

R = 2π

(
KR1

∂

∂θ1

+KR2

∂

∂θ2

)
where KRi

denotes the partial derivative with respect to Ri as usual.
The Reeb flow preserves the Lagrangian tori {(R1, R2) = const.} in ∂W

and using the coordinates (θ1, θ2) we can identify these tori with a fixed
torus T 2 and the integer homology with H1(T 2,Z) = Z2. Then we get closed

orbits in a homology class (m,n) ∈ H1(T 2) exactly when
KR1

KR2
= m

n
. By

the definition of K, in our case KR2 ≡ 1 and KR1 is a function only of R1

and is increasing from ε to 1
ε

as R1 moves through x0. Therefore, given a
rational m

n
∈ [ε, 1

ε
] we will have a 1-parameter family of closed Reeb orbits

in the corresponding homology class lying in the torus over (R1, R2) where
KR1 = m

n
. As ε is irrational these are the only closed Reeb orbits in ∂W

except for covers of {R1 = 0} and {R2 = 0}.

Definition 2.1. Given m,n ∈ Z≥0 with m
n
∈ (ε, 1

ε
) let γm,n denote a Reeb

orbit in the corresponding homology class (m,n). Thus if m,n are coprime,
γrm,rn denotes an r-fold cover of a primitive Reeb orbit γm,n.

Let γr1 denote the r-fold cover of γ1 = {R2 = 0} and γr2 denote the r-fold
cover of γ2 = {R1 = 0}.

Now, if we fix a symplectic trivialization of TR4|γ, the tangent bundle of
R4 restricted to a closed orbit γ of R of period T , then the derivative of the
Reeb flow (extended to act trivially normal to ∂W ) gives a map ψ : [0, T ]→
Symp(4,R), where Symp(4,R) is the group of 4 × 4 symplectic matrices.
Associated to such a path is a Conley-Zehnder index µ(γ) defined in this
case by Robbin and Salamon in [16].

Lemma 2.2. With respect to the standard basis of R4 we have µ(γri ) = 2r+1
and µ(γm,n) = 2(m+ n) + 1

2
.

Proof. The computation for the orbits in the coordinate planes is contained
for example in [9], Lemma 1.6 and we omit that. Similar computations for
the other orbits can be found in [1], see also [13], but we review this anyway.

First of all, consider a different symplectic trivialization consisting of the
Reeb vector field R itself, a normal vector n to ∂W , a vector v perpendicular
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to R and tangent to the Lagrangian torus, and a vector w in ∂W symplec-
tically orthogonal to n and v. The flow preserves R and n (by definition)
and so the index is determined by its action on the symplectic complement
< v,w >. Restricted to this subspace the marix ψ(t) is of the form

ψ(t) =

(
1 t
0 1

)
, (1)

that is, v is preserved (as the flow is linear on the Lagrangian fibers) but
the image of w has a component in the direction of v due to the change in
direction of R as we vary the fibers. Thus the orbits γm,n are said to be of
hyperbolic type and the index with respect to this trivialization is 1

2
.

We wish to work with a different trivialization and so the matrix ψ(t)
above must be composed with a symplectic change of basis matrix ζ(t) taking
the basis described above to the standard basis of R4. If we identify R4 with
C2 then this change of basis is actually complex and so up to scale we can
write ζ(t) in complex coordinates as

ζ(t) =

(
ieimt ieimt

ieint −ieint
)
, 0 ≤ t ≤ 2π. (2)

The path ζ(t) has Maslov index 2(m+ n) and so by the catenation formula
for Conley-Zehnder indices, see [16] Theorem 2.3, with respect to our chosen
trivialization we have µ(γm,n) = 2(m+ n) + 1

2
.

2.2 Holomorphic curves in CP 2 \W
Let CP 2(R) denote the complex projective plane with its Fubini-Study sym-
plectic form scaled such that lines have area R. There exists a natural
symplectic embedding B(R) ⊂ CP 2(R) whose image is the complement of
CP 1(∞), the line at infinity. In order to study holomorphic curves, we can
therefore think of W as embedded W ⊂ B(R) ⊂ CP 2(R).

2.2.1 The almost-complex structure on X and finite energy curves

A neighborhood of ∂W ⊂ CP 2(R) is symplectomorphic to ∂W × (−ε, ε)
with symplectic form d(etλ), where λ is a contact form on ∂W and t is the
coordinate on (−ε, ε). Indeed, let Z denote the radial vector field

Z = 2
∑

Ri
∂

∂Ri
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on R4. This is a Liouville vector field transverse to ∂W , that is, LZω = ω.
Then σ = Zcω is a primitive of ω, and we also have LZσ = σ. Note that
σ(Z) = 0. We identify a neighborhood of ∂W = ∂W ×{0} with ∂W ×(−ε, ε)
such that Z is given by ∂

∂t
, where t is the coordinate on (−ε, ε). Then in these

coordinates we can write σ = etλ where λ is the restriction of σ = Zcω to
∂W . Let ξ = {λ = 0} be our corresponding contact structure on ∂W .

Now, following [6] we will study holomorphic curves in

X = (CP 2(R) \W ) ∪ (∂W × (−∞, 0])

where the gluing is defined using the above identification of a neighborhood
of ∂W with ∂W × (−ε, ε). The symplectic form on CP 2(R) \ W extends
smoothly to all of X after a small perturbation near ∂W by the formula
ω = d(φ(t)λ) where φ is an increasing function with φ(t) = et for t close to
ε and φ(t) → 1 as t → −∞. We associate a tame almost-complex structure
J which is translation invariant outside of a compact set and maps the Reeb
vector R to ∂

∂t
. We also assume that J preserves the contact planes ξ. The

symplectic form is chosen so that X is symplectomorphic to CP 2(R) \W ,
but the description of the complex structure on the cylindrical end is clearer
in terms of X.

There is a theory of holomorphic curves mapping Riemann surfaces with
punctures into X, which are asymptotic at their punctures to cylinders γ ×
(−∞, 0), where γ is a closed Reeb orbit in ∂W . These are sometimes called
finite energy curves. The literature is fairly extensive, fundamental works
include [9], [10], [11], [12]. Of course, under the symplectomorphism from
X to CP 2(R) \W we could also think of holomorphic curves with image in
CP 2(R)\W . In this case, the curves extend to maps from the oriented blow-
up of the Riemann surface at its punctures, mapping the boundary circles to
closed Reeb orbits on ∂W , see Proposition 5.10 of [3].

2.2.2 Area and index formulas for degree 1 curves

The punctures of a finite energy holomorphic curve are called elliptic if they
are asymptotic to a γri or hyperbolic if they are asymptotic to a γm,n. We
can define the Chern class c1(C) of such a curve C to be 3d, where d is the
degree, that is, the intersection number of C with CP 1(∞). This is exactly
the number of zeros of a section of the determinant line bundle Λ2(TX, J)|C
which agrees with a trivial section of C2 near the punctures.
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Suppose that a curve C of degree d has e1 punctures asymptotic to orbits
γri1 for 1 ≤ i ≤ e1 and e2 punctures asymptotic to orbits γ

sj
2 for 1 ≤ j ≤ e2.

Also, suppose the curve has h hyperbolic punctures asymptotic to γmk,nk
for

1 ≤ k ≤ h respectively.
We recall from section 2.1 that δ is a very small parameter chosen to

control the approximation of our rounded domain W to P (a, b).

Lemma 2.3. The symplectic area of C is given by∫
C

ω = dR−
e1∑
i=1

ria−
e2∑
j=1

sjb−
h∑
k=1

(mka+ nkb) + δ(C),

where δ(C) is an error term of order δ.

Proof. A Reeb orbit γm,n ⊂ ∂W lying over some (R1, R2) bounds a disk in W
of area mR1 +nR2. Due to our rounding of the polydisk all hyperbolic orbits
lie over radial coordinates which are approximately (a, b). The difference
between the actual radial coordinates and (a, b) accounts for the error term
in our formula.

Given this, each of the negative terms in the formula correspond roughly
to the areas of disks which can be glued to C (thought of now as lying in
CP 2(R) \W ) to produce a closed cycle in CP 2 of degree d and hence area
dR.

Remark 2.4. We observe immediately from Lemma 2.3 that curves of non-
positive degree have negative area and so cannot exist for a tame almost-
complex structure.

Under the assumption that a+b < R < 2a+b we now document all genus
0 holomorphic curves of degree 1 satisfying a certain area restriction. The
motivation for the restriction is that such curves can appear as boundary
components of a certain moduli space of finite energy planes which will be
the basis of our proof of Theorem 1.1. We will henceforth also use δ to
denote the maximum of the possible error terms in Lemma 2.3 and assume
it is chosen very small, in particular δ < 2a+ b−R.

Lemma 2.5. Finite energy curves in X of degree 1 and area at most R −
a− b+ δ are of one of the following types.

I. e2 = h = 0, 1 + b
a
≤
∑e1

1 ri < 2 + b
a
;
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II. e1 = h = 0, e2 = 1, s1 = 2;

III. e1 = h = 0, e2 = 2, s1 = s2 = 1;

IV. e1 = e2 = 1, h = 0, r1 = s1 = 1;

V. e1 = e2 = 0, h = 1, m1 = n1 = 1.

Proof. The area formula of Lemma 2.3 implies that for such a curve we must
have

−δ < R−
e1∑
i=1

ria−
e2∑
j=1

sjb−
h∑
k=1

(mka+ nkb) ≤ R− a− b+ δ,

which, as R < 2a+ b, implies

a+ b− δ ≤
e1∑
i=1

ria+

e2∑
j=1

sjb+
h∑
k=1

(mka+ nkb) < 2a+ b

when δ is sufficiently small. Now, recalling that the ri, sj, mk and nk are
all nonnegative integers we can simply check that the only possibilities are
those described, at least provided that δ is chosen sufficiently small.

Remark 2.6. As holomorphic curves have positive area, curves of types II
and III are possible only if b < 2a.

Moduli spaces of finite energy curves, that is, spaces of such curves of
a certain type modulo reparameterizations of the underlying Riemann sur-
face, have a virtual index, and we now compute this for the types of curves
appearing in Lemma 2.5.

Lemma 2.7. The virtual index of the curves described in Lemma 2.5 are as
follows.

I. index = 4− 2
∑
ri ≤ −2;

II. index = 0;

III. index = 0;

IV. index = 0;
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V. index = 1.

Proof. The general index formula is

index(C) = e1+e2+h−2+2c1(C)−
e1∑
i=1

µ(γri1 )−
e2∑
j=1

µ(γ
sj
2 )−

h∑
k=1

(µ(γmk,nk
)−1

2
dimVk).

For this, see [2]. Here c1(C) is the Chern class which we have normalized
to be 3 for degree 1 curves, and dimVk is the dimension of the family of
hyperbolic orbits containing γmk,nk

, namely dimVk = 1. Substituting the
Conley-Zehnder indices from Lemma 2.2 we get

index(C) = 4 + e1 + e2 +h− 2−
e1∑
i=1

(2ri + 1)−
e2∑
j=1

(2sj + 1)−
h∑
k=1

2(mk +nk)

or equivalently

index(C) = 4 + h− 2

e1∑
i=1

ri − 2

e2∑
j=1

sj − 2
h∑
k=1

(mk + nk).

The formulas follow readily from here. For the inequality on the index for
curves of type I we note from Lemma 2.5 that

∑
ri ≥ 1 + b

a
and so the index

satisfies

index = 4− 2
∑

ri ≤ 4− 2(1 +
b

a
) = 2(1− b

a
) ≤ −2

since we always assume b > a.

2.3 Proof of Theorem 1.1

Our method of proof is to construct a moduli space of holomorphic curves
Mt for 0 ≤ t ≤ 1 corresponding to each polydisk (or rather copy of W ) in
a symplectic isotopy; M0 will relate to the standard polydisk and we shall
argue by contradiction and suppose thatM1 corresponds to a symplectically
isotopic polydisk in B(S). We will show that M0 is nonempty (and in fact
represents a nontrivial cobordism class) while M1 is empty. The key to the
proof is then that ∪tMt gives a compact cobordism between M0 and M1

provided all polydisks lie in B(R) or CP 2(R) for some R < 2a+b. This gives
a contradiction. If R > 2a+b then the universal moduli space is noncompact.
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2.3.1 Existence of finite energy curves

Here we establish the following. Recall from Lemma 2.5 that curves of type
V are finite energy planes (that is, curves with domain the complex plane C)
of degree 1 which are asymptotic at infinity to an orbit of type γ1,1.

Lemma 2.8. There exists a compatible almost-complex structure J0 on X
such that there exist J0 holomorphic finite energy curves of type V .

Proof. We can produce finite energy curves in the manifold X by starting
with curves in CP 2 and stretching the neck along ∂W . This means that
we start with a tame almost-complex structure restricting to a translation
invariant structure on ∂W×(−ε, ε) ⊂ CP 2 satisfying J(R) = ∂

∂t
and replace it

by a sequence of tame almost-complex structures JN satisfying JN(R) = 1
N

∂
∂t

,
but such that JN = J on the contact planes ξ, which are preserved. For this
see section 3.4 of [3]. We can choose embeddings φN of CP 2(R) \W into
X pushing forward JN to an almost-complex structure which on increasingly
large subsets of the cylindrical end ∂W×(−∞, 0] ⊂ X is translation invariant
and satisfies J(R) = ∂

∂t
.

Now, there exists a unique pair (R1, R2) with K(R1, R2) = 0 and KR1 =
KR2 , see the definitions at the start of section 2.1. In the corresponding
Lagrangian fiber the Reeb flow is generated by ∂

∂θ1
+ ∂

∂θ2
. Let c ∈ C satisfy

|c|2 = R2

R1
. Then any complex line z2 = cz1 (thought of as the affine part

of a sphere in CP 2(R)) is tangent to both the radial vector field Z (that
is, ∂

∂t
in the local coordinates on the neck region) and to the Reeb vector

field on ∂W . Thus, if we choose our initial almost-complex structure J such
that these curves are indeed holomorphic, then they will remain holomorphic
during our stretching construction. Therefore, in the limit as N → ∞, see
[3], such curves converge to a holomorphic building whose component in X
is a degree 1 finite energy plane asymptotic to an orbit γ1,1. Denote by J0

the limiting almost-complex structure on X.

2.3.2 Moduli spaces

Let us fix an orbit η of type γ1,1. Consider the moduli space

M0 = {u : C→ X|degree(u) = 1, ∂J0u = 0, u ∼ η}/G

where u ∼ η means that u is asymptotic at infinity to η, and G is the
reparameterization group of C.
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Lemma 2.9. The moduli space M0 is a non-empty oriented manifold of
dimension 0, and all points have positive orientation.

Proof. The fact thatM0 is non-empty is Lemma 2.8 and its virtual dimension
is 0 by Lemma 2.7, part V . The index is 0 here rather than 1 as we are
requiring our curves to be asymptotic to a specific orbit η, rather than any
orbit of the type γ1,1. Moduli spaces of finite energy curves can be oriented
by following [4]. That all points have the same orientation follows from
automatic regularity for finite energy planes, which is due to C. Wendl, [18]
Theorem 1.

Arguing by contradiction, suppose that we have a symplectic isotopy
Wt ⊂ B(R) for 0 ≤ t ≤ 1 of the domain W with W0 = W and W1 ⊂ B(S).
Then we can form a family of manifolds Xt = CP 2(R) \Wt as before, equip
them with almost-complex structures Jt, and study finite energy curves. The
analysis is exactly the same as for X, in particular Lemmas 2.5 and 2.7 hold
unchanged. The area formula of Lemma 2.3 remains the same since the
isotopy is symplectic. We can now define moduli spacesMt for each t and a
universal moduli space

M = {(u, t)|u : C→ X, degree(u) = 1, ∂Jtu = 0, u ∼ η, t ∈ [0, 1]}/G.

Assuming that the family Jt is chosen generically, M is a 1-dimensional
manifold with boundary M0

∐
M1. Next we have the following.

Lemma 2.10. The moduli space M1 is empty.

The proof of this will rely on a monotonicity theorem.

Lemma 2.11. Let u : Σ → CP 2(R) \ B(S) be a proper holomorphic curve
where Σ is a Riemann surface and CP 2(R) \ B(S) is equipped with its inte-
grable complex structure. Then

∫
Σ
ω ≥ R− S.

Proof of Lemma 2.11. First we observe by the maximum principle that
u(Σ)∩CP 1(∞) 6= ∅. There exist disjoint balls in CP 2(R) with its integrable
complex structure embedded both holomorphically and symplectically of ca-
pacities S and R − S respectively. Using a holomorphic isometry we may
assume that the ball of capacity S is the standard one and that of capacity
R − S is centered at a point of u(Σ) ∩ CP 1(∞). Then u(Σ) passes through
the center of a ball of capacity R − S and therefore has area at least R − S
from the monotonicity theorem, see [8], section 2.3.E ′2.
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Proof of Lemma 2.10. First note that by Lemma 2.3 curves in M have
area R−(a+b), at least up to an error of order δ. Next, as W1 ⊂ B(S) we can
restrict elements of M1 to CP 2(R) \ B(S) and as holomorphic curves have
positive area any such restriction has area bounded above by R− (a+ b) + δ,
which, by choosing δ sufficiently small, we may assume is (strictly) bounded
above by R − S (as S < a + b). As W1 is disjoint from CP 2(R) \ B(S) we
may assume that J1 restricts to the standard integrable structure here, then
we have a contradiction to Lemma 2.11.

Together Lemmas 2.9 and 2.10 imply that the moduli space M is not
compact. In the next section we investigate this using the compactness the-
orem of [3].

2.3.3 Compactness

According to [3], any sequence (ut, t) ∈ M has a subsequence converging
in the sense of holomorphic buildings. Roughly speaking, a holomorphic
building is a union of finite energy curves whose domains are components
of a nodal Riemann surface minus the nodes. Matching nodes in the nodal
Riemann surface correspond to matching asymptotic limits.

More precisely, in our situation the nodal Riemann surface is a degen-
eration of the complex plane given by contracting circles. The components
of the limiting holomorphic building map to either X or the symplectization
∂W × R of ∂W . For the components in ∂W × R, we can distinguish posi-
tive and negative punctures in the obvious way. Each positive puncture is
matched either to a negative puncture of another component, or to a punc-
ture of a component in X. There will be one unmatched asymptotic limit,
corresponding to the original puncture in C which is asymptotic to η.

It follows from this that the curves in the symplectization layer can be
projected to ∂W and glued along their matching asymptotic limits to pro-
duce a map from a (possibly disconnected) Riemann surface whose remaining
positive limits are the asymptotic limits of components in X and which has
a single remaining negative limit asymptotic to η.

The sum of the degrees of the components in X is 1, but as by Remark
2.4 there are no components of nonpositive degree, we conclude that the limit
has a single component in X of degree 1. Also, as area is preserved in the
limit and curves of M have area R − (a + b), we have that the component
in X is of one of those types listed in Lemma 2.5. Furthermore, assuming
that we choose a sufficiently generic family Jt of almost-complex structures,
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any limiting components appearing should have index at least −1. Hence
the limit is of type II, III, IV or V . We deal with these separately.

If the limit is of type V then it is asymptotic to an orbit γ1,1 and any
components in ∂W ×R have area 0 (as all γ1,1 orbits have exactly the same
area). Thus these components must be trivial cylinders, the γ1,1 orbit is
actually η and (ut, t) converge to an element of M.

Suppose now that this component is of type IV . Then the components in
∂W×R have a total of two positive ends, asymptotic to γ1 and γ2 respectively,
and a negative end asymptotic to η. As all such components have nonnegative
area and both γ1 and γ2 have smaller action than η we conclude that there
must be a single component in ∂W × R with two positive ends and a single
negative end. But this is impossible as gluing the positive ends of curves in
∂W × R to the negative ends of curves in X we must produce a surface of
genus 0, the genus of the ut. Gluing the limits as described here results in a
genus 1 curve.

Next suppose this component is of type III. Then the components in
∂W ×R again have two positive ends, and we can exclude such curves as for
type IV .

Hence if there exists an isotopy with W1 ⊂ B(S) we are left with the
conclusion that a sequence (ut, t) ∈ M converges to a holomorphic building
whose component in X is of type II. In other words, for some t0 ∈ [0, 1] we
have produced a Jt0-holomorphic finite energy plane asymptotic to γ2

2 .

Remark 2.12. Remark 2.6 observed that this is already a contradiction in
the case that b > 2a, and given Corollary 1.4 this is precisely the case in
which we are especially interested.

Despite the above remark, we proceed to prove Theorem 1.1 in its entirety
by showing that the bubbling of type II curves also leads to a contradiction.
We repeat the argument above using type II curves instead of type V and
for t now in the interval [t0, 1]. To be precise, we define moduli spaces

Nt = {u : C→ X|degree(u) = 1, ∂Jtu = 0, u ∼ γ2
2}/G

and a universal moduli space

N = {(u, t)|u : C→ X, degree(u) = 1, ∂Jtu = 0, u ∼ γ2
2 , t ∈ [t0, 1]}/G.

Again we see that Nt0 consists of a number of points which are all counted
positively, and N1 is empty. However now the 1-dimensional manifold N is
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compact. Indeed, if there is a loss of compactness we must see curves of types
I, III, IV or V in X. But type I can be still be excluded by genericity,
and type III in exactly the same way as above. Finally curves of types IV
and V have strictly larger area than curves of type II as b > a and so do
not appear either. Hence N is a compact oriented cobordism from N0 to the
empty set and this is a contradiction.

3 Symplectic folding

Here we establish Theorem 1.3 by following the symplectic folding construc-
tion while minimizing the size of the balls in which the support of our various
diffeomorphisms lie. It clearly suffices to find a Hamiltonian diffeomorphism
with support in an arbitrarily small neighborhood of B(2a + b) mapping
P (a, b) arbitrarily close to B(2a+ b

a
).

For convenience we will use symplectic polar coordinates (R, θ) on the
(x2, y2) plane, where R = π(x2

2 + y2
2) and tan θ = y2

x2
. Therefore we can write

a disk of area a in this plane as D(a) = {R ≤ a}.
We start with a polydisk P (a, b) = D(a) × D(b) where D(a) and D(b)

denote disks in the (x1, y1) and (x2, y2) planes respectively. This polydisk
lies inside B(a+ b).

Step 1. We apply a symplectomorphism ψ1 of the (R, θ) plane mapping
D(b) to an arbitrarily small neighborhood of

U = {R ≤ b

2
} ∪ {θ = 0,

b

2
≤ R ≤ a+

b

2
+ δ} ∪ {a+

b

2
+ δ ≤ R ≤ a+ b+ δ}.

We can take δ arbitrarily small, but for the following steps to apply it must
be strictly positive. Figure 1 is a sketch of the image of D(b).

Now for Step 1 we apply the symplectomorphism φ1 = id. × ψ1 to the
polydisk P (a, b). As U lies in a disk D(a+b+δ) the image of P (a, b) lies in a
ball B(a+ b+ δ+ a) and we can realize φ1 as a Hamiltonian diffeomorphism
with support arbitrarily close to B(2a+ b). Let P1 = φ1(P (a, b)).

Step 2. There exists a Hamiltonian diffeomorphism ψ2 displacing D(a)
from itself and having compact support in a small neighborhood of D(2a).
Let H2(x1, y1) be a generating Hamiltonian, that is, ψ2 is the time-1 flow
of the Hamiltonian vector field corresponding to H2. We may assume that
0 ≤ H2 ≤ a and it is also not hard to arrange that for all 0 < λ < 1 the
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θ = 0

R = b/2

R = a + b/2

R = a + b

R R R R 

Figure 1: The image of D(b) in the (R, θ) plane.

Hamiltonian diffeomorphism generated by λH2 maps D(a) into a neighbor-
hood of D((1 + λ)a).

Define χ(R) to be a decreasing function equal to 1 when R ≤ b
2

and 0
when R ≥ a+ b

2
+ δ and having slope bounded by 1

a
.

Our second step is to apply the Hamiltonian diffeomorphism φ2 generated
by χ(R)H2(x1, y1). Set P2 = φ2(P1). We examine separately the images of
points with {R ≤ b

2
}, { b

2
≤ R ≤ a+ b

2
+ δ} and {a+ b

2
+ δ ≤ R ≤ a+ b+ δ}

under this flow. As the generating Hamiltonian is independent of θ the flow
preserves the R coordinate and in particular these regions. Figure 2 is a
sketch of the projection of P2 to the (R, θ) plane, the figure is justified by
the following analysis.
• If R ≤ b

2
then the flow fixes (R, θ) and the (x1, y1) coordinates remain

in a neighborhood of a disk D(2a). Thus the flow remains close to a ball
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θ = 0

R = b/2

R = a + b/2

R = a + b

R R R = = = = = b/b/b/2222= = = 

22

R R R = a a + + + bbbR 

V

Figure 2: The projection of P2 to the (R, θ) plane.
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B(2a+ b
2
).

• If b
2
≤ R ≤ a + b

2
+ δ then, as the flow of λH2(x1, y1) maps D(a)

into a neighborhood of D((1 + λ)a), the trace of the (x1, y1) coordinates
throughout lie in a neighborhood of a disk D((1 + χ(R))a). As χ is roughly
a+b/2−R

a
, this disk is roughly equal to D(2a + b

2
− R). Therefore, as the

corresponding (x2, y2) coordinates lie in ∂D(R), the flow remains close to the
ball B(2a+ b

2
). Meanwhile the rate of increase of the θ coordinate is bounded

by 2πχ′(R)H2(x1, y1) < 2π. Hence we may assume that the projection of the
image to the (R, θ) plane continues to avoid a narrow segment V just below
the {θ = 0} axis as shown in Figure 2.
• Finally, the flow is constant in the region {a+ b

2
+ δ ≤ R ≤ a+ b}.

Step 3. Here we apply a symplectomorphism φ3 generated by a Hamilto-
nian H3(R, θ) with support in a neighborhood of D(a+ b+ δ) only to points
of P2 which lie in the region {a + b

2
+ δ ≤ R ≤ a + b + δ}. The flow of H3

will fix points close to the boundary {a + b
2

+ δ = R} of this region and so
can be extended as a constant to the rest of P2. In fact, we will take H3 to
be identically 0 on the region { b

2
≤ R ≤ a+ b

2
+ δ} \ V .

We choose H3 such that the corresponding flow moves all of P2∩{a+ b
2

+
δ ≤ R ≤ a + b + δ} to a neighborhood of {R ≤ b

2
} ∪ V . Such an H3 exists

because {a+ b
2

+ δ ≤ R ≤ a+ b+ δ} has area roughly b
2

and we may assume
that the projection of P2 to the (R, θ) plane is simply connected, see Figure
1. Then H3, thought of as a Hamiltonian on R4, can be used to define a
symplectomorphism φ3 of P2 once we check that the traces of points moved
by the flow of H3 are disjoint from the points of P2 where we are defining
φ3 to be the identity. This follows since the only possible intersections lie in
{R ≤ b

2
}, but the (x1, y1) coordinates of points in P2 ∩ {R ≤ b

2
} lie outside

D(a) while those of points in P2∩{a+ b
2
+δ ≤ R ≤ a+b+δ} lie in D(a) (and φ3

fixes our (x1, y1) coordinates). Hence we have a well-defined φ3, a symplectic
folding map. The only points moved by the flow have (x1, y1) ∈ D(a) and
R ≤ a+b+δ, and so the Hamiltonian isotopy remains in an arbitrarily small
neighborhood of B(2a+ b).

Finally, we recall that points of P2∩{R ≤ a+ b
2

+ δ} all lie in a neighbor-
hood of B(2a+ b

2
), and since they fixed by φ3 the image P3 = φ3(P2) lies in

the union of a neighborhood of B(2a+ b
2
) together with φ3(P2∩{a+ b

2
+ δ ≤

R ≤ a + b + δ}). This second part of the image lies in a neighborhood of
D(a)×{R ≤ a+ b

2
+δ} which in turn lies also in a neighborhood of B(2a+ b

2
).

In summary, our isotopy has support in a neighborhood of B(2a+ b) (we
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already approach the boundary of this region in Step 1), and the resulting
diffeomorphism has image close to B(2a+ b

2
) as required.
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