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Abstract

We study symplectic surfaces in ruled symplectic 4-manifolds which
are disjoint from a given symplectic section. As a consequence, in any
symplectic 4-manifold two symplectic surfaces which are C0 close must
be Hamiltonian isotopic.

1 Introduction

This paper’s initial objective was to address a question of local isotopy
of symplectic surfaces in symplectic 4-manifolds (and this was originally
motivated by the question of local isotopy of lagrangian surfaces in 4-
manifolds [6]). More precisely, let (M,ω) be a symplectic 4-manifold and
let Σ ⊂ M be a compact embedded symplectic surface. It is natural
to ask whether other symplectic surfaces in some neighborhood of Σ are
smoothly or symplectically isotopic to Σ (that is isotopic through a family
of smooth or symplectic embedded surfaces). In fact we will show (see
corollary 8.3) the following:

Theorem 1.1. The set of symplectic surfaces homologous to Σ and lying
in a standard symplectic neighborhood of Σ is (weakly) contractible.

In section 2 we will briefly describe what these standard symplectic neigh-
borhoods (standard symplectic disk bundles over Σ) are, and refer the
reader to [2] for a more complete description of this. We point out that
any symplectic isotopy Σt, t ∈ [0, 1], is given by a Hamiltonian whose
support at each t is arbitrarily close to Σt (a proof of this can be found in,
for example, [14]). We would like to add that in general homologous sym-
plectic surfaces inside a symplectic 4-manifold do not need to be isotopic
(see [4]), however there are also cases when this is true ([13, 14]).

This paper’s real objective is to investigate the set of symplectic sur-
faces in ruled symplectic 4-manifolds. A 4-manifold X̄ is called ruled if
it is an S2-fibration over a Riemann surface Σ, such symplectic manifolds
have been extensively studied in the literature (see, for example, Lalonde-
McDuff [8], [9], and also [1], [11]). Our main theorem (see theorem 8.1)
can be formulated as follows:
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Theorem 1.2. Let Z be a symplectic surface in X̄ homologous to a sec-
tion. Consider the homology class of sections disjoint from Z and suppose
that it has positive symplectic area. Then the set of symplectic surfaces
in X̄ belonging to this homology class and avoiding Z is non-empty and
(weakly) contractible.

In particular the statement on local isotopy is an easy consequence of this.
We will discuss ruled symplectic 4-manifolds in more detail in section 3,
we also postpone till this section the section-by-section description of the
rest of the paper. Similar results have already been obtained by Joseph
Coffey (see [3]), and in fact the current version of this paper is highly
motivated by his results.

The group of symplectomorphisms of X̄ acts on the set of symplectic
surfaces in X̄ and this leads to an interesting connection between the two.
In particular we can obtain some results in the spirit of [1]. This is briefly
discussed in section 9.

Unless stated otherwise, we will always mean that a surface is embed-
ded, oriented and non-parameterized, any family is smoothly dependent
on parameters, and homotopical properties such as homotopy equivalence
or contractibility are to be understood in the weak sense (that is, weak
homotopy equivalence or weak contractibility).

Acknowledgments. The second author would like to thank Shengda
Hu, Octavian Cornea and François Lalonde for many helpful discussions
on the subject, Joseph Coffey for explaining his relating work and referring
us to his paper, and Paul Biran and Leonid Polterovich for a chance to
present the previous approach to the problem on Geometry and Dynamics
seminar and helpful comments received therein.

2 Standard symplectic disk and sphere
bundles

Standard symplectic disk bundles:
Given a Riemann surface Σ of genus g and d ∈ Z, we will construct

the most canonical symplectic disk bundle (X,ω) of degree d over Σ (see
also [2]).

Denote by L the complex line bundle over Σ with Chern number d,
thus [Σ] ∈ H2(L) satisfies [Σ] · [Σ] = d. Let r denote the radial coordinate
on L with respect to a Hermitian metric on L, let π : L → Σ denote
the natural projection to the base, let Σ0 denote the 0-section, and let
P = {r = 1} ⊂ L denote the unit circle bundle.

First suppose that d 6= 0. Fix an area form σ on Σ with
∫

Σ
σ = |d|. We

can choose an S1-invariant connection 1-form α on P so that dα = π∗σ,
and extend α to the complement of the 0-section of L as π∗α. In the
case d > 0, we let X = {r < 1} ⊂ L be the unit disk bundle and
define ω = π∗σ − d(r2α). In the case d < 0, we let X = L and define
ω = π∗σ + d(r2α). Note that in both cases on the complement of the
0-section the symplectic form can be written as ω = d((1± r2)α).

In the case d = 0, we let X = Σ × C be the trivial line bundle over
Σ. We fix an area form σ on Σ of total area 1, and let τ be the standard
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symplectic form on R2 = C. Define ω = σ ⊕ τ .
In all cases, ω is a symplectic form on X, and the fibers of X and the

0-section of X are ω-symplectic.

Symplectic neighborhood theorem:
Let (M,ω) be any 4-dimensional symplectic manifold and let Σ ⊂

M be a sympectic surface. By a symplectic neighborhood theorem, a
neighborhood of Σ is determined by the area

∫
Σ
ω and the self-intersection

number d = Σ · Σ, the latter being also equal to the first Chern number
of the symplectic normal bundle to Σ.

Thus in a neighborhood U of Σ an appropriate multiple cω of the
symplectic form ω can be written in a standard form described above:

(1) cω =


π∗σ − d(r2α) = d((1− r2)α) if d > 0
π∗σ + d(r2α) = d((1 + r2)α) if d < 0
π∗σ + dy1 ∧ dy2 if d = 0,

where σ is an area form on Σ normalized so that the total area of Σ equals
|d| if d 6= 0 and equals 1 if d = 0, π : U → Σ is a projection map, and α
(if d 6= 0) is a connection 1-form with dα = π∗σ.

Moreover the same theorem with parameters applies to any compact
family of ωλ-symplectic surfaces Σλ to produce a family of such standard
presentations of ωλ in sufficiently small neighborhoods of Σλ.

Compactifying standard disk bundles to standard sphere bun-
dles:

Given a standard symplectic disk bundle X over Σ, let X(R) = {r ≤
R}, where R < 1 in the case d > 0.

If d 6= 0 then by symplectic cutting (see for example [2] for a proof)
one can compactify the symplectic disk bundle (X(R), ω) to a symplectic
sphere bundle without changing the area of the fiber. Slightly abusing
notation, we denote this sphere bundle by (X̄(R), ω). Roughly speaking
this construction collapses the boundary of X(R) to a symplectic section
Σ∞ of X̄, in particular (X̄(R)\Σ∞, ω) is symplectomorphic to (X(R), ω).

If d = 0, we note that a standard symplectic disk (D(R), τ) can be
compactified to a symplectic sphere, and so trivial symplectic disk bundle
(X(R), ω = σ ⊕ τ) can be compactified to a trivial symplectic sphere
bundle (X̄(R), ω = σ ⊕ τ). When clear, we omit the parameter R from
the notation.

The sphere bundles that we obtain are examples of ruled symplectic 4-
manifolds discussed in the next section. Note that up to a diffeomorphism
there are precisely two sphere bundles over a surface of genus g: a trivial
one and a nontrivial one.

3 Ruled symplectic 4-manifolds

We recall that a symplectic 4-manifold (X̄, ω) is called ruled if it is a fibra-
tion over a Riemann surface with fiber S2. Up to a symplectomorphism
ruled 4-manifolds have been classified by F. Lalonde and D. McDuff [8, 9]
who showed that any two cohomologous symplectic forms on X̄ are in fact
diffeomorphic.
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What makes understanding symplectic properties of ruled 4-manifolds
easier is that for a large class J of ω-tame almost complex structures
(all ω-tame almost complex structures if g > 0) X̄ admits a holomorphic
foliation by smooth embedded spheres representing the homology class of
the fiber. For a general theory of (pseudo)holomorphic curves we refer the
reader to [5, 12].

We introduce several notations which will be used throughout the pa-
per. We denote by F the homology class of a fiber and by Ad the homology
class of a section with self-intersection d ∈ Z. We note that if up to a
diffeomorphism X̄ is a trivial bundle over Σ then all homology classes Ad
with d even can be represented by embedded surfaces in X̄, and if X̄ is a
nontrivial bundle – then all homology classes Ad with d odd. We also note
that H2(X̄;R) is generated by F and Ad for any d ∈ Z, and F · F = 0,
Ad ·Ad = d, Ad · F = 1. We let ad(ω) and f(ω) denote the integrals of ω
on the homology classes Ad and F respectively.

For a fixed d ∈ Z we will say that (X̄, ω) satisfies the cohomology
assumption (∗d) if:

• either g 6= 0 or d 6= 0,

• ad(ω) > 0 and a−d(ω) > 0.

When the symplectic form is understood from the context, we will just
write ad and f .

The standard symplectic sphere bundles of degree d we obtained in the
previous section by compactification automatically satisfy this assumption
if either d 6= 0 or g 6= 0 since both sections Σ0 and Σ∞ are ω-symplectic.
For a more general ruled 4-manifold this assumption just means that both
homology classes Ad and A−d can be represented by sympectic surfaces.

As mentioned in the introduction, the main goal of this paper is to
understand the set of symplectic surfaces in X̄. We denote by Sd(X̄, ω)
the set of ω-symplectic surfaces in X̄ representing the homology class
Ad, and we denote by S(X̄, ω) the union of Sd(X̄, ω) over all d ∈ Z.
As follows from the classification of ruled 4-manifolds, a necessary and
sufficient condition for Sd(X̄, ω) to be nonempty is that ad(ω) > 0. When
clear from the context, we will omit the arguments X̄ or ω from the
notation. Given a symplectic surface Z ∈ S−d(X̄, ω), we will also denote
by Sd(X̄ \ Z, ω) the set of symplectic surfaces in Sd(X̄, ω) disjoint from
Z.

We describe the contents of later sections of this paper. In section 4
we prove a theorem on the existence of holomorphic foliations of X̄ by
spheres in the homology class F – this is very well-known if g ≥ 1, but
possibly our version is slightly uncommon in the case g = 0. A direct
consequence of this existence is the proof in section 5 that any Sn-family
Σλ ⊂ S(X̄ \Z, ω) of symplectic surfaces disjoint from a symplectic surface
Z ∈ S−d(X̄, ω) can be contracted through smoothly embedded surfaces.

Given a symplectic surface Σ ∈ Sd, a standard presentation (1) of the
symplectic form in a neighborhood of Σ, and a symplectic foliation F of
X̄ with all leaves intersecting Σ positively and transversely, we show in
section 6 how to modify this foliation near Σ so that its leaves near Σ
coincide with the fibers of π. We will say that F nicely intersects Σ to
denote this phenomenon.
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Many properties of ruled symplectic 4-manifolds have been obtained
using inflation. Inflation is a procedure which works in any symplectic
4-manifold (M,ω) and which consists of altering the cohomology class of
ω by adding to it multiples of the Thom class of a symplectic surface in
M of nonnegative self-intersection (see Lalonde-McDuff [8] and McDuff
[10, 11]).

Inflation first appeared in the papers on the classification of symplectic
structures on ruled 4-manifolds (see [8, 9]) where the authors use it in a
combination with another idea. We give a very rough sketch of this.
Let (X̄, ω) be a ruled symplectic 4-manifold, let J ∈ J be an almost
complex structure, let F be the corresponding J-holomorphic foliation
of X̄ by spheres in the homology class F , and let Σ be a symplectic
section of F . Consider other symplectic forms on X̄ which have the form
ω + kπ∗σ, where π : X̄ → Σ denotes the projection along F , σ is an
area form on Σ, and k ≥ 0 is any nonnegative constant. It is easy to
check that the forms ωk = ω+ kπ∗σ are indeed symplectic for any k ≥ 0:
ωk∧ωk = ω2+2kω∧π∗σ and both terms evaluate positively on a positively
oriented basis of tangent vectors. However the cohomology classes of ωk
are now different from the cohomology class of ω. Under certain conditions
one can inflate along a suitable symplectic surface, obtaining symplectic
forms ω′k whose cohomology classes are multiples of [ω]. Rescaling the
symplectic forms, Moser’s argument can be applied to produce interesting
results.

In section 7 we prove a version of the above argument which has the
advantages that no assumption on the self-intersection of surfaces is made
and that it applies nicely to families. This will allow to prove the main
theorem stated in the introduction. This proof and its simple corollaries
are discussed in section 8.

4 Holomorphic foliations

Let J be the set of ω-tame almost complex structures on X̄. For a
symplectic surface Σ ∈ Sd(X̄) we denote by JΣ ⊂ J the subset of almost
complex structures for which Σ is holomorphic. For J ∈ J and a homology
class A ∈ H2(M) we define M(J ;A) as the moduli space of irreducible
J-holomorphic spheres representing the homology class A. We abbreviate
M(J ;F ) as M(J).

By [7], for any J ∈ J ,M(J) is a smooth manifold. If nonempty, then
by the index formula its dimension is 2. Since F ·F = 0, different spheres
in M(J) cannot intersect by the positivity of intersection.

Proposition 4.1. Let (X̄, ω) be a ruled symplectic 4-maifold. Let J ∈ JΣ.

• Suppose that either g ≥ 1, or that g = 0, d 6= 0 and the cohomology
assumption (∗d) is satisfied. Then the spheres inM(J) form a holo-
morphic foliation of X̄. Moreover, each such sphere intersects the
surface Σ uniquely and transversely. Furthermore, these foliations
depend smoothly on J .

• If g = d = 0, then the spheres in M(J ;A0) form a holomorphic
foliation of X̄ = S2 × S2. Moreover, each such foliation contains
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the sphere Σ and these foliations depend smoothly on J .

Proof. Consider the first part of the proposition. Given that the spheres
in M(J) form a foliation of X̄, the second statement follows from the
positivity of intersection with Σ and the third from the general theory
of holomorphic curves (see [5, 12]). Now, the fact that for J ∈ J the
J-holomorphic spheres in M(J) produce a foliation of X̄ is well-known
when g > 0, or when g = 0, d 6= 0 and J ∈ J is generic (that is away from
a subset of codimension 2), see [12]. Thus it remains to prove the first
statement only in the case g = 0, d 6= 0 under the cohomology assumption
ad > 0 and a−d > 0.

Assuming g = 0, d 6= 0, let Jn ∈ J be a sequence of generic almost
complex structures approximating J ∈ JΣ. By compactness theorem there
is a (possibly) cusp J-holomorphic curve through every point of X̄ which
represents the homology class F . We prove by contradiction that such a
curve must in fact be nondegenerate. We break the proof into two cases.

Case d > 0.
Suppose that C = ∪ni=1Ci is a cusp J-holomorphic curve representing the
homology class F and n ≥ 2. Write [Ci] = kiA−d + miF . Thus F =∑n
i=1(kiA−d + miF ), with

∑
ki = 0 and

∑
mi = 1. By the cohomology

assumption, ω([Σ]) = ad = a−d + d · f > f and so no component Ci
can be a multiple cover of Σ. Thus by the positivity of intersection with
Σ, mi ≥ 0 for all i. It follows that exactly one of the mi’s is 1 (we
denote this mi by m1) and the rest are zero. Also note that k1 < 0,
for otherwise ω([Ci]) > f . Thus the splitting in homology becomes F =
(F − kA−d) +

∑n
i=2 kiA−d, where k = −k1 =

∑n
i=2 ki > 0 and ki ≥ 0 for

i ≥ 2.
We note that F · (F − kA−d) = −k < 0 and so there cannot be any

non-cusp J-holomorphic spheres representing the class F . Choose a point
p not on C. There must exist a cusp J-holomorphic sphere C′ through
p representing F . Repeating previous arguments, C′ must be also split
as ∪n

′
i=1C

′
i, with [C′1] = F − k′A−d, k′ > 0. However, (F − kA−d) · (F −

k′A−d) = −k− k′ − kk′d < 0, which is a contradiction since both C1 and
C′1 are J-holomorphic.

Case d < 0.
Again, suppose that C = ∪Ci is a cusp J-holomorphic curve in the homol-
ogy class F . Since Σ2 = d < 0, any holomorphic curve whose homology
class is a multiple of Ad must be geometrically a multiple cover of Σ. We
group together those components which represent multiple covers of Σ and
those which do not. Thus in homology F =

∑n
j=1 sjAd +

∑ñ
i=1(kiA−d +

miF ) with ñ > 0 and no component in the second sum is a multiple cover
of Σ. By the positivity of intersections with Σ, mi ≥ 0 for all i. By the
cohomology assumption a−d = ad + |d| · f , in particular a−d > f . Hence
for every component in the second sum, mi ≥ 1 and ki < 0. Clearly
sj > 0 for all j. Let k̄i = −ki > 0. Since Ad = A−d + dF ,

∑
sj =

∑
k̄i

and 1 +
∑
sjd =

∑
mi.

Since the area of each component must be positive, ω(miF− k̄iA−d) =
mif − k̄ia−d > 0. Recall that a−d/f > |d| and so mi ≥ k̄i|d|+ 1. Adding
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this inequalities for i = 1, . . . ñ, we get∑
mi ≥ ñ+

∑
k̄i|d| = ñ+

∑
sj |d| = ñ− 1 +

∑
mi.

It follows that ñ− 1 ≤ 0 and so the second sum consists of an exactly one
term. Let k = k̄1, m = m1, then

∑
sj = k > 0 and m1 = 1− kd. Thus in

homology the splitting of C must be of the form F = (kΣ) + ((1−kd)F −
kA−d) with (1− kd)F − kA−d represented by a J-holomorphic sphere.

Note that ((1 − kd)F − kA−d) · F = −k < 0, and so there cannot
be any non-cusp J-holomorphic spheres in the class F . Choose a point
p not on C and not on Σ, and let C′ be a cusp J-holomorphic curve
through p representing F . By the above arguments C′ must contain a
component C′1 with homology (1− k′d)F − k′A−d where k′ > 0. We note
that C1 ·C′1 = ((1−kd)F −kA−d) · ((1−k′d)F −k′A−d)) = −k(1−k′d)−
k′(1− kd)− kk′d = −k− k′ + kk′d < 0, contradicting to the positivity of
intersection.

Consider the second part of the proposition. We note that since Σ is
J-holomorphic, there cannot be any cusp J-holomorphic spheres repre-
senting the homology class A0. The existence of the required foliation
and its smooth dependence on J now follow by standard methods.

5 Diffeomorphisms and smooth isotopy

Assume that (X̄, ω) is a ruled symplectic 4-manifold, that Σ ⊂ Sd(X̄) is
a symplectic surface, and that the conclusions of the first part of proposi-
tion 4.1 hold. In other words, assume that for every J ∈ JΣ the spheres in
M(J) form a holomorphic foliation of X̄. This is automatically satisfied
if one imposes the cohomology assumption (∗d), but this is also satisfied
when g = d = 0 and f(ω) ≤ a0(ω).

We will write F(J) for the foliation given by M(J). Note that we
have a canonical diffeomorphismM(J)→ Σ associating to a holomorphic
sphere in M(J) its point of intersection with Σ.

Suppose that Jt, t ∈ [0, 1], is a family of almost complex structures in
JΣ. Let Ft = F(Jt) be the family of corresponding foliations. For p ∈ Σ
we denote by Ct,p the sphere in Ft intersecting Σ at p. We will define
a canonical vector field Yt generating a family Φt of diffeomorphisms of
X̄ mapping the spheres C0,p to the spheres Ct,p. Denote by Nt,p the
symplectic normal bundle to Ct,p. For each t and p, for |ε| sufficiently
small, Jt+ε-holomorphic spheres Ct,p can be viewed as sections Γt,p,ε of
Nt,p. Define Yt(p) = d

dε

∣∣
ε=0

Γt,p,ε (note that Yt vanishes on Σ) and let Φt
be the time t flow of Yt, 0 ≤ t ≤ 1. Thus Φt maps the spheres C0,p ∈ F0

to the corresponding spheres Ct,p ∈ Ft, and Φt = id on Σ.
We are now ready to prove the smooth version of the main theorem

(see theorem 1.2):

Lemma 5.1. Let (X̄, ω) be a ruled symplectic 4-manifold. Fix d and
suppose that the cohomology assumption (∗d) holds. Let Σ ⊂ Sd(X̄, ω) be
a symplectic surface. Let Σλ ⊂ S−d(X̄ \ Σ, ω) be a family of symplectic
surfaces parameterized by λ ∈ Sn, n ≥ 0. Then the family Σλ can be
contracted through smooth surfaces within X̄ \ Σ.
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Proof. Given a family of symplectic surfaces Σλ, λ ∈ Sn, we can choose
a family Jλ ∈ JΣ of almost complex structures such that for each λ the
surface Σλ is Jλ-holomorphic.

Since JΣ is contractible, we can contract the loop Jλ to any given
almost complex structure J1 ∈ JΣ. In other words, there exists a family
Jλ,t ⊂ JΣ, t ∈ [0, 1], so that

1. Jλ,0 = Jλ

2. Jλ,1 = J1.

Since the assumptions of proposition 4.1 are satisfied, for each λ and
t there exists a foliation Fλ,t = F(Jλ,t) of X̄ by holomorphic spheres
in the homology class F . Moreover, Fλ,t depends smoothly on the two
parameters. We let F1 = F(J1) be the foliation corresponding to J1.
Fixing λ, we define the canonical vector field Yλ,t whose time t flow Φλ,t
maps the foliation Fλ,0 to the foliation Fλ,t and which is id on Σ. Note
that by positivity of intersections, each surface Σλ intersects every sphere
in Fλ,0 uniquely and transversely, and thus can be viewed as a section of
the foliation Fλ,0. Define Σλ,t = Φλ,t(Σλ). Then Σλ,t a section of Fλ,t for
every λ and t, and Σλ,t provides a smooth isotopy between the Sn-family
Σλ = Σλ,0 and an Sn-family of sections Σλ,1 of F1. By construction, all
the surfaces Σλ,t are disjoint from Σ. Since the set of sections of F1 which
are disjoint from Σ is contractible, the Sn-family Σλ,1 can be contracted
to any given section of F1 which disjoint from Σ through similar sections.
This provides the required smooth contraction of Σλ.

For the purposes of section 8 we will still denote the extended isotopy
from Σλ to a section of F1 by Σλ,t. We can extend the initial family Fλ,t
of foliations by a constant family F1. Since all the objects corresponding
to (λ, 1) are identified, we can think of a pair µ = (λ, t) as of a point in
Bn+1.

6 Straightening foliations

We show how to modify symplectic foliations so that they intersect with
symplectic surfaces nicely.

Lemma 6.1. Let (X̄, ω) be a ruled symplectic 4-manifold. Let Σ ⊂ X̄ be a
symplectic surface and fix a standard presentation (1) of ω near Σ. Given
any symplectic foliation of X̄ intersecting Σ positively and transversely,
one can modify it in a (arbitrarily small) neighborhood of Σ so that the new
foliation coincides with the foliation by fibers of π in some (even smaller)
neighborhood of Σ.

Proof. Fix a point p ∈ Σ. Denote by Cp the curve in the foliation inter-
secting Σ at p and denote by by Fp the fiber of π through p (which is
defined in a neighborhood of Σ).

We first consider the case d = Σ · Σ = 0. In a neighborhood U ×
V of p the symplectic form can be written as ω = dx1 ∧ dx2 + dy1 ∧
dy2 = dx1 ∧ dx2 + rdr ∧ dθ, where (x1, x2) ∈ U ⊂ Σ are coordinates on a
neighborhood U of p on Σ, (y1, y2) ∈ V ⊂ Fp are rectilinear coordinates
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on a neighborhood V of p on Fp, and (r, θ) are the corresponding polar
coordinates on V .

By restricting to a possibly smaller neighborhood U×V we can assume
that Cp∩(U×V ) is a graph over V , thus in (r, θ, x1, x2)-coordinates Cp has
the form Cp = {(r, θ, x1(r, θ), x2(r, θ)) | (r, θ) ∈ V }. Let q ∈ Cp∩ (U ×V ).
Notice that since Cp intersects Σ positively and transversely, the restric-
tion of the form rdr∧dθ to TqCp induces positive orientation. The tangent
space TqCp (when q 6= p) is spanned by e1 = (1, 0, ∂x1

∂r
(r, θ), ∂x2

∂r
(r, θ)) and

e2 = (0, 1, ∂x1
∂θ

(r, θ), ∂x2
∂θ

(r, θ)). Since TqCp is symplectic, for r > 0 we have
that

(2) ω(e1, e2) = r +D(r, θ) > 0,

where D(r, θ) = [ ∂x1
∂r

∂x2
∂θ
− ∂x2

∂r
∂x1
∂θ

](r, θ). Since Cp is smooth and sym-
plectic at p, we have that lim(r,θ)→0(1 +D(r, θ)/r) exists and is positive.
Since V is compact, there is a constant δ > 0 so that

(3) (1− δ)r +D(r, θ) > 0

for r > 0.
Given ε1 > 0 sufficiently small, and given ε0 > 0 sufficiently small

compared to ε1, one can choose a nonnegative nondecreasing function
β(r) so that β(r) = 0 for r ≤ ε0, β(r) = r for r ≥ ε1, β(r) ≤ r and
(1− δ)β′(r) < 1.

We choose ε1 > 0 sufficiently small so that {r ≤ ε1} ⊂ V and so
that it satisfies whatever smallness assumptions of the lemma. We choose
ε0 and β(r) as in the preceding paragraph. We define the curve C̃p by
“radially-rescaling” Cp: C̃p = {(r, θ, x1(β(r), θ), x2(β(r), θ)) | (r, θ) ∈ V }.
We note that C̃p defined in this way is a smooth sphere which coin-
cides with Fp for r ≤ ε0 and which coincides with Cp for r ≥ ε1. We
claim that C̃p is ω-symplectic. We only need to verify this for ε0 <
r < ε1. For q ∈ C̃p lying above (r, θ) ∈ Fp, the tangent plane TqC̃p
is spanned by ẽ1 = (1, 0, β′(r) ∂x1

∂r
(β(r), θ), β′(r) ∂x2

∂r
(β(r), θ)) and ẽ2 =

(0, 1, ∂x1
∂θ

(β(r), θ), ∂x2
∂θ

(β(r), θ)). Thus at q we have:

ωq(ẽ1, ẽ2) = r +D(β(r), θ)β′(r) ≥ r − (1− δ)rβ′(r) > 0,

verifying that C̃p is symplectic (at q).
Next, for each p′ ∈ Σ we let Cp′ be the curve in the foliation through p′

and we let Fp′ be the fiber through p′. We note that for p′ sufficiently close
to p, Cp′ is a graph over Fp′ ∩ (U × V ). Moreover (being symplectic is an
open condition), for p′ sufficiently close to p the radially-rescaled curves
C̃p′ (defined in the analogous way with the same function β(r)) are also
ω-symplectic. By a compactness argument one can choose the same β
to work for every sphere in the foliation. Thus the “radially-rescaled”
spheres C̃p depend smoothly on p and satisfy all the requirements of the
lemma.

The proof is almost analogous in the case d 6= 0. Since TpΣ and
TpFp are ω-orthogonal, ω has the form ωp = dx1 ∧ dx2 + rdr ∧ dθ at the
point p and is sufficiently close to this form in a sufficiently small neigh-
borhood U × V of p. More precisely, for q ∈ Cp in a sufficiently small
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neighborhood U × V of p the planes TqCp are ωp-symplectic. By the
previous construction we can define an ωp-symplectic “radially-rescaled”
curve C̃p. The tangent planes to C̃p are ωq-symplectic for all q sufficiently
close to p. Thus shrinking the defining function β(r) if necessary (i.e.
considering 1

K
β(Kr) for K sufficiently large), we can obtain the required

ω-symplectic rescaling of Cp. The rest of the proof follows by a compact-
ness argument.

Remark 6.2. Suppose that Σλ, λ ∈ Sn, is a family of ω-symplectic
surfaces in X̄, and Fλ is a family of ω-symplectic foliations of X̄ such that
for each λ every sphere in Fλ intersects Σλ positively and transversely. We
fix a family of standard presentations of ω near Σλ and denote by πλ the
corresponding family of projection maps (each defined in a neighborhood
of the corresponding surface). Clearly one can choose the same function
β(r) for every sphere in every foliation. Thus we can obtain a new family
Fλ of ω-symplectic foliations so that for each λ the foliation Fλ intersects
Σλ nicely.

7 An inflation-like argument

The heart of this paper lies in the following simple argument.

Proposition 7.1. Let (X̄, ω) be a ruled symplectic 4-manifold. Let Σ ⊂
Sd(X̄) be a symplectic surface and fix a standard presentation (1) of ω
near Σ. Let F be a symplectic foliation of X̄ nicely intersecting Σ. Then
there exists a family ω̂k, k ≥ 0, of cohomologous symplectic forms on X̄
which smoothly depend on the parameter k and which satisfy:

• ω̂k = ω near Σ,

• ω̂k is a multiple of ω + kπ∗σ outside U ,

• ω̂k = ω when k = 0.

Proof. Recall that for k ≥ 0 the forms ωk
def
= ω+kπ∗σ are symplectic. We

break the construction into 3 cases.

Case: d > 0:
Define the form ω′k by rescaling the form ωk:

ω′k = λkωk,

where

λk =
1− f

1 + k − f .

Note that λk ∈ (0, 1] and a−d(ω
′
k) = a−d(ω).

Choose ε so that {r ≤ ε} ⊂ U . Let β(r) be a positive decreasing
function which equals 1 − r2 near r = 0 and equals 1−f

k+1−f (k + 1 − r2)
near ε. To verify that such a function exists, notice that when k = 0
the expressions 1−f

k+1−f (k + 1 − r2) and 1 − r2 coincide, and when k > 0

the expression 1 − r2 is strictly greater than 1−f
k+1−f (k + 1 − r2), at least

for all r sufficiently small. The function β(r) can be constructed by an
appropriate smoothing between these two functions.
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Define the form ω̂k = d(β(r)α). By construction it is a symplectic
form, it equals ω near r = 0 and equals λk(ω + π∗σ) outside U . Since
H2(X̄;R) is generated by Ad and A−d and since ad(ω̂k) = ad(ω) and
a−d(ω̂k) = a−d(ω), the form ω̂k is cohomologous to ω. Finally note that
the construction can be done to depend smoothly on k.

Case: d < 0:
Again define ω′k = λkωk with

λk =
1 + f

1 + k + f
.

Note that λk ∈ (0, 1] and a−d(ω
′
k) = a−d(ω).

Choose ε so that {r ≤ ε} ⊂ U . Let β(r) be a positive increasing
function which equals 1 + r2 near r = 0 and equals 1+f

k+1+f
(k + 1 + r2)

near ε. To verify that such a function exists, notice that when k = 0
the expressions 1+f

k+1+f
(k + 1 + r2) and 1 + r2 coincide, and when k > 0

the expression 1 + r2 is strictly smaller than 1+f
k+1+f

(k + 1 + r2), at least
for all r sufficiently small. The function β(r) can be constructed by an
appropriate smoothing between these two functions.

Define the form ω̂k = d(β(r)α). By construction it is a symplectic
form, it equals ω near r = 0 and equals λk(ω + π∗σ) outside U . Since
ad(ω̂k) = ad(ω) and a−d(ω̂k) = a−d(ω), the form ω̂k is cohomologous to
ω. Again the construction can be done to depend smoothly on k.

Case: d = 0:
With λk = 1

k+1
define

ω′k = λkωk = π∗σ + λkdy1 ∧ dy2.

Note that λk ∈ (0, 1] and a0(ω′k) = a0(ω).
Choose ε so that {r ≤ ε} ⊂ U . Choose a positive function φ(r) so that

φ(r) = 1 near r = 0, φ(r) = λk for r ≥ ε and f(π∗σ + φ(r)dy1 ∧ dy2) =
f(ω). Define ω̂k = π∗σ + φ(r)dy1 ∧ dy2. This is a symplectic form, it
equals ω near r = 0, equals λk(ω+kπ∗σ) outside U , and is cohomologous
to ω. The construction can be done to depend smoothly on k.

8 Topology of spaces of surfaces

We can now prove the main theorem (see theorem 1.2) if either d 6= 0 or
g 6= 0.

Theorem 8.1. Let (X̄, ω) be a ruled symplectic 4-manifold. Fix d ∈ Z
and suppose that the cohomology assumption (∗d) holds. Let Z ∈ Sd(X̄)
be a symplectic surface representing the homology class Ad. Then the set
S−d(X̄ \ Z) of symplectic surfaces representing the homology class A−d
and disjoint from Z is non-empty and contractible.

Proof. First we show that S−d(X̄ \Z) is non-empty, i.e. that we can find
a symplectic surface Σ ∈ S−d which is disjoint from Z. In the following
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we will assume that d 6= 0 (if d = 0 then the statement is clearly true by
moving Z slightly off itself).

Choose an ω-tame almost complex structure J for which Z is holomor-
phic. By proposition 4.1 we obtain a J-holomorphic foliation F of X̄ by
the spheres in the homology class F , each of which intersects Z uniquely,
transversely and positively. We fix a standard presentation (1) of ω near
Z. By lemma 6.1 we can modify the foliation F in a neighborhood of
Z so that it remains symplectic and intersects Z nicely (that is, near Σ
coincides with the foliation given by the fibers of π).

Choose any smooth section S of F which is disjoint from Z. For
K ≥ 0 sufficiently large, S is ω + Kπ∗σ-symplectic. By proposition 7.1
there exists a family ω̂k of symplectic forms which are cohomologous to
ω, coincide with ω near Z, and so that ω̂0 = ω and S is ω̂K-symplectic.

Consider the family ω̂k of symplectic forms, k ∈ [0,K]. By Moser’s
method there is a symplectomorphism ψ : (X̄, ω̂0 = ω)→ (X̄, ω̂K) which

is id near Z. It follows that Σ
def
= ψ−1(S) is an ω-symplectic surface disjoint

from Z.

Next we show that S−d(X̄ \ Z) is contractible. Consider any Sn-
family of symplectic surfaces Σλ ∈ X̄ \ Z. In the proof of lemma 5.1 we
have constructed a family Fµ of symplectic foliations and a corresponding
family Σµ of sections, so that: Σµ = Σλ is ω-symplectic for µ ∈ Sn =
∂Bn+1, Σµ is disjoint from Z for all µ, and Fµ intersects Z uniquely,
transversely and positively for all µ. Our goal is to modify the smooth
contraction Σµ in X̄ \ Z to a symplectic one.

We can assume that none of the surfaces Σµ intersect a sufficiently
small neighborhood of Z. Fixing a standard presentation (1) of ω near
Z, by the remark following lemma 6.1 we can modify all the foliations
Fµ near Z so that they intersect Z nicely. We denote by πµ : X̄ → Z
the projection along the fibers of Fµ, that is πµ sends each sphere in the
foliation Fµ to its intersection with Z.

For each µ ∈ Bn+1 we can choose Kµ sufficiently large so that Σµ

becomes symplectic with respect to the symplectic form ω′µ
def
= ω+Kµπ

∗
µσ.

The values for Kµ can be chosen to depend smoothly on µ and we can
assume that Kµ = 0 for µ ∈ ∂Bn+1 (so that ω′µ = ω for µ ∈ ∂Bn+1).

Applying proposition 7.1, for each µ we can find a family ω̂µ,k of
symplectic forms which are cohomologous to ω, coincide with ω near Z,
so that ω̂µ,0 = ω and Σµ is ω̂µ,Kµ -symplectic.

For each µ ∈ Bn+1 we can apply Moser’s argument to the family ω̂µ,k
for k ∈ [0,Kµ] to obtain a symplectomorphism ψµ : (X̄, ω)→ (X̄, ω̂µ,Kµ).
Note that each ψµ is id near Z and ψµ = id when µ ∈ ∂Bn+1.

The preceding construction can be made to depend smoothly on µ.
It follows that Σ̃µ = ψ−1

µ (Σµ) is a family of ω-symplectic surfaces in X̄
providing a symplectic contraction of Σλ = Σµ, µ ∈ ∂Bn+1, in X̄ \ Z.

Next consider the only case of theorem 1.2 not covered by the theorem
above, i.e. the case g = d = 0.

Proposition 8.2. Let Z ∈ S0(S2 × S2, ω) be a symplectic surface repre-
senting the homology class A0. Then the set S0(S2 × S2 \ Z, ω) of sym-
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plectic surfaces representing the homology class A0 and disjoint from Z is
non-empty and contractible.

Proof. First note that Z ⊂ S2 × S2 has a standard symplectic neighbor-
hood of the form Z ×D2 with a split symplectic form. Taking a constant
section Z × {pt} we see that S0(S2 × S2 \ Z, ω) is non-empty.

Next, let λ ∈ Sn parameterize a family in S2×S2 \Z. In other words,
let Σλ be an Sn-family of embedded ω-symplectic surfaces homologous
to Z and disjoint from Z. One can choose a family Jλ ⊂ JZ of almost
complex structures on S2 × S2 such that Σλ is Jλ-holomorphic for each
λ. Since JZ is contractible, we can extend Jλ to a Bn+1-family of almost
complex structures in JZ which coincides with the original family for
λ ∈ ∂B. According to proposition 4.1, for each λ ∈ Bn+1 there is a Jλ-
holomorphic foliation of S2 × S2 by spheres representing the homology
class A0. We will denote by BJλ the corresponding foliation of S2×S2 \Z
obtained by excluding Z. Let’s define

Y = {(λ,Z)|λ ∈ Bn+1, Z ∈ BJλ}.

This is a locally trivial fibration over Bn+1 (the projection map is given
by (λ,Z)→ λ) with the fiber homeomorphic to D2. Thus we can extend
the section Σλ defined for λ ∈ ∂Bn+1 to a global section of Y . This gives
the required symplectic isotopy of Σλ to a constant family.

The local isotopy claimed in the introduction (see theorem 1.1) is now
an easy consequence.

Corollary 8.3. Let (M,ω) be a symplectic 4-manifold and let Σ ⊂M be
an embedded symplectic surface. Then there is a (arbitrarily small) neigh-
borhood U of Σ so that the set S(U,ω) of embedded symplectic surfaces in
U homologous to Σ is weakly contractible.

Proof. Let U be any open standard symplectic neighborhood of Σ, i.e.
given by the standard form (1). Let Σλ be any Sn-family in S(U,ω).
As described in section 3 we can compactify U to a standard symplectic
sphere bundle X̄. In particular U is symplectomorphic to X̄ \ Σ∞ for a
symplectic surface Σ∞ ∈ X̄. By theorem 8.1 Σλ can be symplectically
contracted in X̄ \ Σ∞ and hence in U .

The proof of the main theorem 8.1 can be easily generalized as follows:

Proposition 8.4. Let (X̄, ω) be a ruled symplectic 4-manifold. Fix d 6= 0
and suppose that the cohomology assumption (∗d) holds. Let Zλ ∈ Sd(X̄),
λ ∈ Sn, be a family of symplectic surfaces representing the homology class
Ad. Then there exists a corresponding family Σλ of symplectic surfaces
representing the homology class A−d so that for each λ ∈ Sn the sur-
face Σλ is disjoint from Zλ. Moreover, the set of such families {Σλ} is
contractible.

Corollary 8.5. Let (X̄, ω) be a ruled symplectic 4-manifold satisfying
the cohomology assumption (∗d). Then Sd(X̄, ω) is homotopy equivalent
to S−d(X̄, ω).
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Proof. Consider the set Y of pairs (Z,Σ) with Z ∈ Sd, Σ ∈ S−d, and Z
and Σ disjoint. The projection maps Y → Sd and Y → S−d are fibrations
with contractible fiber and hence are both homotopy equivalences.

9 Relations with groups of symplectomor-
phisms

Motivated by [3], we consider some obvious connections between the
groups of symplectomorphisms of a ruled symplectic 4-manifold and the
sets of symplectic surfaces. Let (X̄, ω) be a ruled symplectic 4-manifold.
Fix d 6= 0 and suppose that (X̄, ω) satisfies the homology assumption (∗d).

First we introduce some notations. We denote by Symph(X̄, ω) the
group of symplectomorphisms of X̄ which act as identity on homology.
Given Z ∈ Sd(X̄), we denote by Symph[Z](X̄, ω) ⊂ SymphZ̄(X̄, ω) ⊂ SymphZ(X̄, ω) ⊂
Symph(X̄, ω) the subsets of Symph(X̄, ω) consisting of symplectomor-
phisms which, respectively, fix a neighborhood of Z, fix Z, and preserve
Z.

Consider the action of Symph[Z](X̄, ω) on S−d(X̄ \Z). By theorem 8.1,

any two symplectic surfaces in S−d(X̄ \ Z) can be joined by a path of
such symplectic surfaces. None of these surfaces intersect a sufficiently
small neighborhood of Z and so this path can be generated by a Hamilto-
nian which is identity in a neighborhood of Z. It follows that the action
above is transitive. By the same theorem, the set S−d(X̄ \ Z) is in fact
contractible. The stabilizer of a surface Σ ∈ S−d(X̄ \ Z) is the set of
symplectomorphisms of X̄ which preserve Σ and fix a neighborhood of Z.
As shown in [3], this set is also contractible. It follows that

Lemma 9.1. Assuming the cohomology assumption (∗d), the group of
symplectomorphisms of (X̄, ω) which act as identity on homology and fix
a neighborhood of a symplectic surface Z ∈ Sd(X̄) is contractible.

Next consider the action of SymphZ(X̄, ω) on S−d(X̄\Z). As before this
action is transitive and the set S−d(X̄\Z) is contractible. The stabilizer of
a surface Σ ∈ S−d(X̄ \Z) consists of symplectomorphisms which preserve
both Σ and Z. By [3], this set is homotopy equivalent to the set D0,∞
of fiber preserving diffeomorphisms of a standard sphere bundle of degree
d over Σ which also preserve the sections Σ0 and Σ∞. It follows that
SymphZ(X̄, ω) is homotopy equivalent to D0,∞.

By [3], given any two pairs of non-intersecting symplectic sections
(Z1, Z̄1), (Z2, Z̄2) with Z1, Z2 ∈ Sd(X̄) and Z̄1, Z̄2 ∈ S−d(X̄), there exists
an Symph(X̄, ω) mapping Z1 to Z2 and mapping Z̄1 to Z̄2. In particular,
the group Symph(X̄, ω) acts transitively on Sd(X̄). The stabilizer of this
action corresponding to Z ∈ Sd(X̄) is precisely the set SymphZ(X̄, ω) of
symplectomorphisms which preserve Z considered before. Therefore we
obtain the following:

Lemma 9.2. Assuming the cohomology assumption (∗d), the group Symph(X̄, ω)
acts transitively on the set Sd(X̄, ω) with the stabilizer homotopy equiva-
lent to D0,∞.
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It is interesting to note the connection with the theorem of [1] (see
also [11]) which can be formulated as follows. Let X̄ = Σ × S2 and
let ωµ = µσΣ + σS2 . Denote by Sympid(X̄, ωµ) ⊂ Symph(X̄, ωµ) the
group of symplectomorphisms which are isotopic to id as diffeomorphisms,
and denote by D the identity component of the group of fiber preserving
diffeomorphisms of Σ×S2. The theorem states that as µ tends to infinity,
the groups Sympid(X̄, ωµ) tend to a limit which is homotopy equivalent
to D.
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