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Abstract We show that the space of Lagrangian spheres inside the cotan-

gent bundle of the 2-sphere is contractible. We then discuss the phenomenon

of Lagrangian unknottedness in other Stein surfaces. There exist homotopic

Lagrangian spheres which are not Hamiltonian isotopic, but we show that in a

typical case all such spheres are still equivalent under a symplectomorphism.

1 Introduction

Studying the space of Lagrangian submanifolds is a fundamental problem in

symplectic topology. Lagrangian spheres appear naturally in the Lefschetz pen-

cil picture of symplectic manifolds.

In this paper we demonstrate the uniqueness up to Hamiltonian isotopy of

the Lagrangian spheres in some 4-dimensional Stein symplectic manifolds. The

most important example is the cotangent bundle of the 2-sphere, T ∗S2, with its

standard symplectic structure. In this case we will go on to study the space of

all Lagrangian spheres in T ∗S2, showing that it is contractible.

Finally, we study an example of a Stein manifold in which a particular ho-

motopy class (even isotopy class) contains Lagrangian spheres which are not

Hamiltonian isotopic. We show that the spheres in this class are still unknotted

in a weaker sense, namely they are all equivalent under a global (non Hamil-

tonian) symplectomorphism built by composing a Hamiltonian diffeomorphism
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with a product of symplectic Dehn twists.

We recall that if a convex symplectic manifold has a boundary of contact-

type, then we can perform surgery operations on the manifold by adding handles

to the boundary. In the 4-dimensional case these handles can be of index 1 or

2. Our first examples are symplectic manifolds formed by adding 1-handles to

a unit cotangent bundle T 1S2. Questions regarding Lagrangian isotopy classes

are independent of which metric we use to define a unit tangent bundle or of

any choices involved in adding 1-handles.

Theorem 1 Let M be T ∗S2 or the result of adding any number of 1-handles

to T 1S2 and L ⊂ M be a Lagrangian sphere. Then there exists a Hamiltonian

diffeomorphism of M mapping L onto the zero-section.

We will establish this theorem by utilizing an existence result for almost-

complex structures on S2×S2 with convenient properties, taken from [18], and

a fact about diffeomorphisms of the 2-sphere.

In fact more is true. We let L denote the space of Lagrangian spheres in

T ∗S2 endowed with the topology of smooth convergence.

Theorem 2 The topological space L is contractible.

It is a consequence of a general theorem of J. Coffey [4], combined with the

result of [18], that the space of parameterized Lagrangian spheres in S2 × S2 is

homotopic to SO(3)× SO(3). A theorem of Y. Eliashberg and L. Polterovich,

see [11], says that the space of Lagrangian planes in a standard R4, equal to a

fixed plane outside of a compact set, is also contractible. The proof here involves

parameterized versions of the arguments in Theorem 1. In both cases we need

a result about diffeomorphisms of the 2-sphere.

Theorem 3 The subset of fixed-point free maps contained in the diffeomor-

phism group of S2 is contractible.

In section 2 we prove our result on the diffeomorphisms of S2. In section 3,

by using the conclusions of [18], we reduce our theorem in the case of M = T ∗S2
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to the statements in section 2. In section 4 we will deal with the addition of

handles. This involves slightly generalizing the results from [18] so we will review

them again there.

We now consider the addition of 2-handles. Let W be the Stein manifold

formed by adding to T 1S2 a single 2-handle along the Legendrian curve in a

single fiber of the boundary. As a Stein manifold it carries a symplectic structure

which has a conformally expanding vector field whose flow exists for all time.

The symplectic structure is the Kähler form associated to a plurisubharmonic

exhaustion function and all such forms are equivalent up to symplectomorphism

(see [10]). Alternatively W can be realized as the plumbing of two copies of

T 1S2. The resulting symplectic manifold W has two Lagrangian spheres L1

and L2 coming from the zero-sections in the copies of T 1S2 (or the original

zero-section and the stable manifold of the index 2 critical point in the added

handle). Again we will establish a uniqueness result for Lagrangian spheres in

W .

Theorem 4 Let L be a Lagrangian sphere in W , the plumbing of two copies of

T ∗S2, which is homotopic to one of the zero-sections L1. Then there exists a

symplectomorphism φ of W such that φ(L) = L1.

The proof combines Theorem 1 with some previous work of the author and

is described in section 5.

Thus any Lagrangian spheres which are homotopic to L1 but are knotted in

the Hamiltonian sense must arise from global symplectomorphisms applied to

L1. Such symplectomorphisms do indeed exist. Recall that associated to any

Lagrangian sphere L is a compactly supported symplectomorphism τL called a

generalized Dehn Twist. It is well-defined up to Hamiltonian symplectomor-

phism. The square τ2
L is smoothly but not necessarily symplectically isotopic

to the identity. Thus τ2r
L2

(L1) is a Lagrangian sphere in W which is smoothly

isotopic to L1 for any integer r. However, as demonstrated by P. Seidel in [29],

a Floer homology computation shows that none of the τ2r
L2

(L1) are Hamiltonian

isotopic. A natural question is whether these are the only examples of such
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Lagrangian knots, and we will show that this is indeed the case.

Theorem 5 Let L be a Lagrangian sphere in W . Then there exists a composi-

tion of Dehn twists τ such that τ(L) is Hamiltonian isotopic to L1 or L2.

This will be proven in section 6.

In a Stein manifold a Lagrangian isotopy can be composed with a confor-

mally contracting vector field (the negative gradient of the plurisubharmonic

exhaustion) so as to lie in an arbitrarily small neighborhood of the union of the

stable manifolds of the critical points. Also, a theorem of Weinstein, [34], says

that a Lagrangian sphere (or two Lagrangian spheres intersecting transversally

in a single point) have tubular neighborhoods unique up to symplectomorphism.

Thus Theorem 1 about Lagrangian spheres in T ∗S2 implies the following.

Theorem 6 Let L1 be a Lagrangian sphere in a symplectic 4-manifold M . Then

any other Lagrangian sphere L ⊂ M which is sufficiently C0 close to L1 is

Hamiltonian isotopic to L1.

Theorem 5 similarly gives the following.

Theorem 7 Let L1 and L2 be two Lagrangian spheres in a symplectic 4-manifold

M , intersecting transversally in a single point. Then for any other Lagrangian

sphere L ⊂ M which is sufficiently C0 close to L1∪L2 there exists a composition

τ of the Dehn twists τL1 and τL2 about L1 and L2 such that τ(L) is Hamiltonian

isotopic to L1 or L2.

Similar methods can generalize the unknottedness result of Theorem 5 to

a larger class of Stein manifolds, but it is unclear whether or not it is true

in general that homotopic Lagrangian spheres are equivalent under a global

symplectomorphism composed of a Hamiltonian flow and Dehn twists.

As yet we are unable to prove any similar results for Lagrangian surfaces

of higher genus. However in the case of RP 2 we can prove the following, see

section 3.1.
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Theorem 8 The space of Lagrangian submanifolds homotopic to the zero-section

in T ∗RP 2 is connected.

It is interesting to note that this can be established without the detailed

analysis required for Theorem 3, see Lemma 26.

A natural compactification of the (unit) cotangent bundle of RP 2 is CP 2.

Again the Lagrangian is unique.

Theorem 9 Let L be a Lagrangian RP 2 in CP 2. Then there exists a Hamil-

tonian isotopy taking L onto the standard embedding.

Perhaps our methods can be extended to cover this case, but, at least to show

connectedness of the space of Lagrangians, the theorem can be established by

other methods. For example, the surgery technique described by M. Symington

in [32] replaces a Lagrangian RP 2 by a symplectic sphere, transforming CP 2

into an S2×S2. This is a symplectic cut, see [25], where a tubular neighborhood

of our Lagrangian RP 2 is replaced by a tubular neighborhood of a symplectic

sphere S of self-intersection −4. Then the theorem can be established by using

results of F. Lalonde and D. McDuff, see [24], on uniqueness of symplectic

structures on S2 × S2, and M. Abreu and D. McDuff, see [1], on uniqueness of

symplectic spheres. This argument has been worked through in detail by T-J.

Li and W. Wu in [35], Theorem 5.9, see section 5.1.1.

Acknowledgement The author would like to thank Alex Ivrii and an

anonymous referee for helpful comments and suggestions.

2 Diffeomorphisms of the two-sphere

In this section we let f denote a diffeomorphism of the 2-sphere S2 and for a

point x ∈ S2 we denote its antipodal point by −x.

Definition 10 A diffeomorphism f is nowhere antipodal if f(x) 6= −x for all

x ∈ S2.
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The aim of the section is to prove the following theorem. It is equivalent to

Theorem 3, noting that composition with the antipodal map gives a bijection

between fixed point free and nowhere antipodal diffeomorphisms.

Theorem 11 Suppose that a smooth family of diffeomorphisms fp depending

upon a parameter p ∈ Sk, k ≥ 0, are all nowhere antipodal and f1 = id for

a point 1 ∈ Sk. Then there exists a family of isotopies fp,t, 0 ≤ t ≤ 1, with

fp,0 = fp and fp,1 = id for all p, f1,t = id for all t and such that fp,t is nowhere

antipodal for all p, t.

Remark 12 Note that nowhere antipodal diffeomorphisms of the 2-sphere are

necessarily orientation preserving. Then by analogy we can consider orientation

preserving isometries. These can be identified with the rotation group SO(3),

and this in turn is can be identified with

RP 3 ≡ S2 × [0, π]/(x, 0) ∼ (y, 0), (x, π) ∼ (−x, π).

Under this identification the S2 factor gives an oriented axis of rotation and

the [0, π] factor is the angle. In this picture, nowhere antipodal rotations get

identified with the subset

S2 × [0, π)/(x, 0) ∼ (y, 0) ' B3,

which is contractible.

Proof of theorem 11

For economy of notation, and also in the interests of readability, we will give

a complete proof of the theorem in the case when k = 0 so that all subscripts p

can be forgotten. However we will be careful throughout to ensure that all con-

structions and genericity assumptions apply equally well to the parameterized

situation, it is left to the reader to confirm this.

Let E denote an equator on S2. The complement of E consists of two open

disks H1 and H2 with −H1 = H2.
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We observe that any nowhere antipodal diffeomorphism g with the property

that g(E) = E is indeed isotopic to the identity through nowhere antipodal dif-

feomorphisms gt. To construct such an isotopy, we first isotope g to the identity

in a neighbourhood of E (using the contractibility of nowhere antipodal diffeo-

morphisms of S1). Now the resulting map restricts to a compactly supported

diffeomorphism of H1 and H2. But by a theorem of Smale, [30], compactly sup-

ported diffeomorphisms of the disk are isotopic to the identity (see for instance

[33], page 205). Combining these isotopies we get the required isotopy of g. It

is nowhere antipodal since −H1 = H2.

Given this, it suffices to find a nowhere antipodal isotopy from f to a diffeo-

morphism preserving an equator E.

We will construct our isotopy by applying the following proposition.

Proposition 13 Let Φ : (−1, 1) × S1 → S2 be a smooth embedding and Ls =

Φ( 2
π arctan(s)× S1), −∞ < s < ∞ be a foliation of Φ((−1, 1)× S1) by circles.

Suppose that there exist K, N such that f(Ls+N ) is transverse to −Ls for all

s > −K. Then there exists a nowhere antipodal isotopy ft such that f0 = f and

ft(Ls) = f(Ls+tN ) for all 0 ≤ t ≤ 1, s > −K. Further ft(z) = f(z) for all z

outside of the image of Φ and for all t.

Remark 14 Suppose that Φ extends to a diffeomorphism of S2 = [−1, 1] ×
S1/(±1, θ) ∼ (±1, θ′) such that Φ(−1, θ) = −fΦ(1, θ). Let z = fΦ(1, θ). Then

for any given fixed K there exists a δ such that Ls is disjoint from Bδ(Φ(−1, θ))

(the ball of radius δ centered at Φ(−1, θ)) for all s > −K. In other words, −Ls

is disjoint from Bδ(−Φ(−1, θ)) = Bδ(z) for all such s. On the other hand, if N

is chosen sufficiently large then f(Ls+N ) ⊂ Bδ(z) for all s > −K. Therefore,

given any K, there exists an N = N(K) such that the hypotheses of Proposition

13 are satisfied.

Proof of Proposition 13

As the condition of being nowhere antipodal is an open one, we may assume

any necessary genericity properties for the diffeomorphisms f with respect to the
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foliation Ls. Specifically for any r, s we will assume that f(Lr) ∩ −Ls consists

of an isolated set of points and any tangencies are of finite order.

Remark 15 We have two foliations of subsets of S2, namely {f(Ls)} and

{−Ls}. In the generic case the corresponding line fields will be tangent on

a set of codimension 1 and these tangents will be of order 2 except at isolated

points when they have order 3. In a high parameter family of foliations though

we do expect tangencies of higher order, but still expect the assumption above to

hold true.

Suppose that N > 0. Let ar be a family of diffeomorphisms of S2 depending

on a parameter r ∈ R such that ar(Ls) = Ls+r and ar extends as the identity

outside of the image of Φ and a0 = id. Then we will define ft on the image of

Φ by

ft(z) = htfaNt(z)

where ht is a diffeomorphism of the image of fΦ which preserves the foliation

{f(Ls)} and extends by the identity to a diffeomorphism of S2. We set ht,s =

ht|f(Ls+Nt). In order that f0 = f we require all h0,s = id.

Then we need to find smoothly varying ht,s such that ht,s(f(aNt(z))) 6= −z

for all s, all z ∈ Ls, and 0 ≤ t ≤ 1.

Fixing N , for s very large and z ∈ Ls we notice that aNt(z) must very close

to z (as the aNt extend as the identity outside of the image of Φ). We may

assume it is so close to z that faNt(z) is very close to f(z) and hence disjoint

from −z (as f is nowhere antipodal). Therefore we may choose ht,s = id for s

sufficiently large. We must show that we can extend these diffeomorphisms for

all parameters s.

We observe that once we have defined the ht,s0 for some s0 we can smoothly

extend the functions to define ht,s for s slightly less than s0, again relying on

the fact that nowhere antipodal is an open condition. Similarly we can always

define ht,s for t close to 0 by extending the identity map.

The following lemma will be useful.
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Lemma 16 Suppose that there exist ht,s for all 0 ≤ t ≤ 1 and all s ≥ s′

such that the corresponding maps ft restricted to
⋃

s≥s′ Ls are nowhere antipo-

dal. Then the isotopies ft can be extended to nowhere antipodal isotopies of S2

mapping the circles {Ls} into the circles {f(Ls)}.

We remark that the maps ft are not required to map Ls into f(Ls+tN ). One

application of the lemma is that it allows us to conclude the proof of Proposition

13 once the ht,s have been defined for s > −K.

Proof of Lemma 16 Define a vector field X on
⋃

s′+N≥s≥s′ f(Ls) by

X(ft(x)) = d
dt (ft(x)). Then X can be extended to all of S2 by setting X = 0

outside of
⋃

s≥s′−ε f(Ls) and defining X over
⋃

s′≥s≥s′−ε f(Ls) in such a way

that the corresponding flow φt takes the circles f(Ls) into other such circles.

The lemma will be established by setting ft = φt ◦ f once we check that such

an isotopy is nowhere antipodal.

Again let x ∈ Ls′ . Then ft(x) 6= −x for all 0 ≤ t ≤ 1 and so there exists a δ

such that φt(f(x)) = ft(x) /∈ Bδ(−x), a δ-ball about −x, for all 0 ≤ t ≤ 1. (By

compactness, the same δ can be chosen for all x ∈ Ls′ .) If ε is sufficiently small

and t < 0 then φt(f(x)) is very close to f(x) and so we may assume that in fact

φt(f(x)) /∈ Bδ(−x) for all −∞ < t ≤ 1 and f−1
t (f(x)) = f−1φ−t(f(x)) ∈ Bδ(x)

for all t > 0. Thus the points which flow through f(x) also avoid their antipodal

points and the extension of ft is nowhere antipodal as required. This completes

the proof of Lemma 16. ¤
Returning to Proposition 13, for any s, as t increases from 0 to 1 there is a

varying collection of points It,s = f(Ls+tN ) ∩ −Ls. The diffeomorphisms ht,s

can be extended arbitrarily over f(Ls+Nt) once they define the inverse image of

these intersections. That is, we only need to check that ht,s(f(aNt(z))) 6= −z

for all z ∈ −It,s.

For a fixed value of s the It,s will consist of a set of points varying with t.

For each t, we are assuming that It,s is a finite set of points in f(Ls+tN ). If

we identify all f(Ls+tN ) then as t varies the only qualitative changes in It,s are

collections of points appearing or vanishing.
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For each s we can define a map

Ts : −Ls ∩ (∪1
t=0f(Ls+tN )) → [0, 1]

by mapping z ∈ −Ls to the unique r such that z ∈ f(Ls+rN ).

Lemma 17 Suppose that Ts′′ is a Morse function without critical values at 0 or

1. Equivalently, −Ls′′ is transverse to f(Ls′′) and f(Ls′′+N ) and any tangencies

with other f(Ls′′+tN ) are of order 2. Then if ht,s′ is defined for some s′ > s′′

with s′ − s′′ sufficiently small we can also define a continuous family of ht,s for

all s′′ ≤ s ≤ s′.

Proof of Lemma 17 We know that ht,s′(f(aNt(z))) 6= −z for all z ∈ Ls′

and all t, in particular for z ∈ −It,s′ . To reduce notation, let us assume slightly

more generally that ht,s′(f(aNt(z))) /∈ It,s′ for all z ∈ −It,s′ and all t.

First we consider the case when the critical points of Ts′′ all have distinct

values. We recall that Morse functions without critical points on the boundary

and with distinct critical values are stable up to reparameterization, that is, if

Ts′′ is Morse then so are all Ts for s sufficiently close to s′′. Moreover, fixing

such an s′ with s′ − s′′ sufficiently small there exist continuous families of dif-

feomorphisms ψs : −Ls → −Ls′ and φs of [0, 1] such that Ts = φ−1
s Ts′ψs for all

s′′ ≤ s ≤ s′.

Note that ψs can be extended to a diffeomorphism from ∪1
t=0f(Ls+tN ) to

∪1
t=0f(Ls′+tN ) (preserving the foliation {f(Lr)}). We still denote this extended

map by ψs. Then ψs necessarily maps each of the sets It,s onto Iφs(t),s′ . Indeed,

ψs(f(Ls+tN )) = f(Ls′+φs(t)N ).

We can now define our ht,s by

ht,s(f(atN (z))) = ψ−1
s hφs(t),s′faφs(t)N (−ψs(−z))

for z ∈ Ls and check that if z ∈ −It,s then ht,s(f(atN (z))) /∈ It,s.

In the case when Ts′′ has critical points with the same critical values, we

simply divide −Ls′′ into subintervals on which Ts′′ is Morse and stable and
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define the ht,s on each subinterval as above, adjusting our maps to ensure they

match at the boundaries. ¤
Summarizing our situation so far, the goal is to define ht,s for all s > −K

and all 0 ≤ t ≤ 1. The maps can easily be defined for s very large and all t,

and for all s when t = 0 (here they are the identity). Further, by Lemma 17, if

s′′ is the infimum of the set of s′ such that ht,s can be continuously defined on

s ≥ s′ then Ts′′ is either not Morse, or is Morse with boundary critical points.

Suppose that there exists a finite infimum s′′ of the above set. For conve-

nience, assume that there is a single point in S2 and a single t parameter, for

which f(Ls′′+tN ) is tangent to −Ls′′ to high order, or for which f(Ls′′+tN ) is

tangent to −Ls′′ and t = 0 or t = 1. In other words, Ts′′ has a single degenerate

critical point with value t.

By hypothesis we are assuming that f(Ls′′+N ) is transverse to −Ls′′ . If

f(Ls′′) is tangent to−Ls′′ then diffeomorphisms can still be defined as in Lemma

17 to give a continuous extension of ht,s to s ≥ s′′ which give nowhere antipodal

maps at least for t away from 0. But as all h0,s are the identity anyway, the

resulting ft will in fact be nowhere antipodal even for t close to 0 (maps with

antipodal points can only arise through nontrivial isotopies).

So finally we consider the situation when f(Ls′′) and f(Ls′′+N ) are trans-

verse to −Ls′′ and there exists a σ with 0 < σ < 1 and f(Ls′′+σN ) tangent to

high order with −Ls′′ , say at a point z. By this we mean that we can choose local

coordinates (x, y) in a neighborhood U of z in S2 such that −Ls′′ = {y = xn}
and f(Ls′′+tN ) = {y = t−σ} for some integer n > 1, the order of the tangency.

Nevertheless the It,s still consist of isolated sets of points. We suppose that

ht,s′ can be defined for some s′ > s′′ and s′′ is the largest critical parameter less

than s′.

A short digression. Figure 1 illustrates a possible scenario when n = 3

(the typical case which arises for a single generic f). Setting ε = s− s′′ close to

0, suppose that the curves −Ls are modeled by graphs fε(x) = x3 − εx + ε. So

when s > s′′ the It,s ∩U consists of a single point when t is sufficiently far from

σ, but may consist of three points for some t close to σ. On the other hand,
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Figure 1: Curves near the point z
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It,s ∩ U is always a single point when s < s′′. Thus, for certain fixed t, as s

decreases we find a continuous family of points −x(s),−y(s) ∈ It,s ⊂ f(Ls+tN )

which converge (come together) as s → s′′.

Let ft,s = ft|Ls
. A problem would then arise if for some s′ > s′′ we find

an interval [x(s′), y(s′)] ∈ Ls′ and t′ close to σ such that ft′,s′([x(s′), y(s′)]) ⊂
[−x(s′),−y(s′)] ⊂ f(Ls′+t′N )∩U . Such ft′,s′ could certainly not be extended to

s ≥ s′′ without finding an s for which either ft′,s(x(s)) = −x(s) or ft′,s(y(s)) =

−y(s), a contradiction if our ft are to be nowhere antipodal. However, letting t

decrease with s′ now fixed, the horizontal line f(Ls′+tN ) moves down our figure,

and, as σ > 0, will eventually move into the negative half-space where It,s′ is a

single point. In other words, we also find a contracting interval [−x(t),−y(t)] ⊂
f(Ls′+tN ) with −x(t),−y(t) ∈ It,s′ , where x(t′) = x(s′) and y(t′) = y(s′), and

so such an ft′,s′ could also not be extended to smaller t. But we already know

this to be possible in our case since for s > s′′ the ht,s exist for all t. So the

potential obstruction does not in fact arise. End of digression.

We formalize the intuition of the above digression in the following lemma.

We choose a small neighborhood U of z such that −Ls∩U consists of a small

interval Vs for all s′′ ≤ s ≤ s′, and which contains all of the points in It,s for t

close to σ and s close to s′′ which converge to z as t → σ and s → s′′. We note

that Iσ,s′′ ∩ U = z, but for s close to s′′ and t close to σ, Iσ,s ∩ U may contain

several points.

Lemma 18 We may isotope our maps ht,s′ such that ft(Ls′ ∩ −U) is disjoint

from U for all t.

Remark 19 The construction here is sufficiently canonical that it should be

clear no additional obstructions arise in higher parameter families.

Proof of Lemma 18 There is a well defined map π from U to Ls′ (defined

using our original ft, before the current isotopy) which takes a point w ∈ U to

the unique x ∈ Ls′ with ft(x) = w for some t. The image of U is an interval

W ⊂ Ls′ . If −Vs′ is disjoint from W then there is nothing to do, otherwise
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by choosing U sufficiently small we may assume that W ∪ −Vs′ is an interval

inside Ls′ . For each x ∈ −Vs′ we have π(−x) ∈ W and if we orient the interval

W ∪−Vs′ we observe that either x > π(−x) for all x ∈ Vs′ or x < π(−x) for all

x ∈ Vs′ . For otherwise, by the intermediate value theorem, we can find a y ∈ Vs′

for which ft(y) = −y, a contradiction. Suppose that the first scenario arises.

Then we can redefine the ht,s′ to be unchanged on parts of their domain away

from U but to move the image of −Vs′ (under faNt) in the positive direction

in order to displace it from U . As points of −Vs′ move only in the positive

direction, we notice that the new ft = ht,s′faNt are still nowhere antipodal. ¤
Given Lemma 18, to complete the proof of Proposition 13 we can now mimic

the proof of Lemma 17 by defining, for s′′ ≤ s ≤ s′, diffeomorphisms ψs from

∪1
t=0f(Ls+tN ) to ∪1

t=0f(Ls+tN ) which preserve the foliations {f(Lr)} and φs :

[0, 1] → [0, 1] by the formula ψs(f(Ls+tN )) = f(Ls′+φs(t)N ). Making the same

assumptions as in Lemma 17, as Ts′′ is Morse away from −Ls′′ ∩ U , we may

assume that ψs maps −Ls \ U to −Ls′ ∩ U and hence that ψs(It,s \ U) maps

to Iφs(t),s′ \ U . For s′ − s′′ sufficiently small, we may also assume that the

diffeomorphisms ψs preserve U itself. Then we check that the formula

ht,s(f(atN (z))) = ψ−1
s hφs(t),s′faφs(t)N (−ψs(−z))

still works to define our ht,s for s′′ ≤ s ≤ s′. Indeed, if z ∈ −(It,s \ U) then

ht,s(f(atN (z))) 6= −z as before, but if z ∈ −(It,s ∩ U) then, by applying the

isotopy of Lemma 18, we may assume that ht,s(f(atN (z))) /∈ U and so again

ht,s(f(atN (z))) 6= −z.

This completes the proof of Proposition 13, that is, the maps ht,s can be

defined for all t for both an open and closed subset of s, including large s. Thus

they can be defined everywhere and we have our isotopy. ¤

We apply Proposition 13 in various situations to complete the proof of The-

orem 11.

Let n denote the north pole in S2, and define z = f(n). Let γ be a great

circle intersecting n, z and −z. Then we can define E to be the great circle

perpendicular to γ and intersecting the two midpoints of γ between n and −z.
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We note that n 6= −z (since f is nowhere antipodal). In the case when z = n

there is of course a family of great circles intersecting n = z and −z, but

all produce the same E, which in this case is just the standard equator. By

definition n and −z lie on opposite sides of E. As the antipodal map preserves

E but maps one hemisphere to the other, z must lie on the same side of E as

n, while −n, the south pole, lies on the same side as −z.

We can choose an embedding Φ1 : (−1, 1) × S1 → S2 with s × S1 → n as

s → 1 and s×S1 → −z as s → −1. Then we may suppose that Φ1 extends to a

diffeomorphism of spheres and so by Remark 14 the hypotheses of Proposition

13 are satisfied (for any K given a suitably large N) and we can find a smooth

isotopy of nowhere antipodal diffeomorphisms from f to a new map f1 with

f1(n) = z and f1(E) = C, a small circle around z. We have tried to illustrate

the situation in Figure 2.

Repeating this argument, as f1 is nowhere antipodal f−1
1 (−n) 6= n and

so we can choose another embedding Φ2 : (−1, 1) × S1 → S2 such that now

s×S1 → f−1
1 (−n) as s → 1 and s×S1 → n as s → −1. Then f1Φ2((−1, 1)×S1)

is a cylinder converging at its positive end to −n and at its negative end to z,

see again Figure 2. As E separates these two points we can also choose Φ2

such that f1Φ2({0} × S1) = E and f1Φp({−K} × S1) = C for a −K close to

−1. Thus applying Proposition 13 again gives an isotopy f1,t of f1 through

nowhere antipodal diffeomorphisms such that there will be a moment t0 when

the corresponding diffeomorphism f1,t0 maps E to itself. By our first observation

this is enough to complete the proof of Theorem 11. ¤

3 Lagrangian spheres in T ∗S2

Let L be a Lagrangian sphere in T ∗S2. This has self-intersection number −2

and so must be homotopic to the zero-section. By scaling in the fibers we may

assume that L ⊂ T 1S2, the unit disk bundle defined using a round metric. We

will identify T 1S2 with the complement of the diagonal ∆ in S2 × S2 with its

standard split symplectic form ω = ω0⊕ω0. Under this identification, the zero-
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section in T 1S2 becomes the antidiagonal ∆. Thus Theorem 1 in this case is

equivalent to the following.

Theorem 20 Given a Lagrangian sphere L ⊂ S2 × S2 \ ∆ homotopic to ∆,

there exists a Hamiltonian isotopy of S2 × S2 which fixes ∆ and maps L onto

∆.

Given an almost-complex structure J on S2×S2 tamed by ω, Gromov showed

in [12] that there exist unique foliations F0 and F1 by J-holomorphic curves in

the classes [S2×pt] and [pt×S2]. With respect to the standard almost-complex

structure J0 = i⊕ i, these foliations are exactly S2 × pt and pt× S2. The key

lemma which we need from [18] is the following.

Lemma 21 There exists a tame almost-complex structure J on S2 × S2 such

that each curve in the corresponding foliations F0 and F1 intersects L transver-

sally in a single point. The almost-complex structure J can be taken to agree

with J0 near ∆.

The second statement was not included in [18] but is clearly true from the

proof.

There exists a family of tame almost-complex structures Jt, 0 ≤ t ≤ 1 on

S2 × S2 with J1 = J and, for all t, Jt = J0 = i ⊕ i near ∆. In particular,

∆ is a Jt-holomorphic curve for all t. By the positivity of intersections for

Jt-holomorphic curves, each holomorphic curve in the foliations F0 and F1 in-

tersects ∆ transversally in a single point. Therefore we can make the following

definition.

Definition 22 Fi(t, x) is the Jt-holomorphic sphere in the foliation Fi which

intersects ∆ at the point x.

We define a diffeomorphism f : ∆ → ∆ by f(x) = y, where y ∈ ∆ is the

unique point such that F1(1, y) ∩ F0(1, x) ∈ L. Then, as L is disjoint from ∆,

we have f(x) 6= x for all x ∈ ∆. Equivalently, this means that −f−1 is nowhere

antipodal.
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As in the previous section, for a point x ∈ ∆ we denote its image under the

antipodal map by −x. Then F0(0, x) ∩ F1(0,−x) ∈ L for all x ∈ ∆.

We can apply the Theorem 11 without the parameter p (or in the case k = 0)

to get the following.

Lemma 23 There exists an isotopy gt : ∆ → ∆, 0 ≤ t ≤ 1, of nowhere

antipodal maps with g0 = id and g1 = −f−1.

We now define maps φt : S2×S2 → S2×S2 to be the unique diffeomorphisms

sending F0(t, x) to F0(0, x) and F1(t, y) to F1(0, gt(y)) for all x, y ∈ ∆. The

map is illustrated in Figure 3.

Then φ0 = id, φ1(L) = ∆ and φt(∆) is disjoint from ∆ for all t. For the

second point, note that F0(1, x) ∩ F1(1, y) ∈ L if and only if y = f(x) or,

equivalently, g1(y) = −f−1(y) = −x. The third point is equivalent to gt being

nowhere antipodal.

Let Lt = φ−1
t (∆), so Lt gives a smooth isotopy from L to ∆ in S2 × S2 \∆.

Now, as the coordinate foliations are holomorphic, φt∗(Jt) is tamed by the

split form ω, and we see from this that φt(∆), which is φt∗(Jt)-holomorphic, is
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a symplectic submanifold for all t.

For fixed t, set ωs = sφ∗t (ω) + (1 − s)ω. This is a symplectic form for all

0 ≤ s ≤ 1. It is clearly closed and is symplectic since it tames Jt. We note that

∆ is symplectic for all ωs and, if t = 0 or t = 1, Lt is Lagrangian with respect to

all ωs. Hence by an application of Moser’s theorem we can find diffeomorphisms

ψt of S2×S2 such that ψ∗t (ω) = φ∗t (ω). The ψt can be chosen to vary smoothly

with t, to fix ∆ and such that ψ0 = id and ψ1 fixes L. To see this, we recall

that Moser’s method involves writing ωs = ω0 + dαs and studying the flow

of the vector field Xs defined by Xscωs = dαs

ds . The definition implies that

LXsωs = d(dαs

ds ) = dωs

ds . We have the freedom in this construction to add any

smooth family of exact 1-forms βs to the αs. These βs can be chosen such that

αs + βs vanishes on the symplectic normal bundle to ∆ and, if t = 0 or t = 1,

on the tangent bundle to Lt. Then the flow fixes ∆ and, if t = 0 or t = 1, also

fixes Lt.

Thus ψt(Lt) is a Lagrangian isotopy from L to ∆ inside S2 × S2 \ ∆ as

required.

To show that the space L of Lagrangian spheres is contractible, by applying

a result of R. S. Palais [28], the Corollary following Theorem 15, it suffices to

show that πk(L) = 0 for all integers k ≥ 0. Thus Theorem 2 reduces to the

following.

Theorem 24 Given a family of Lagrangian spheres Lp ⊂ S2×S2\∆ for p ∈ Sk

there exists a family of Hamiltonian isotopies of S2 × S2 which fix ∆ and map

Lp onto ∆.

This follows exactly as Theorem 1 for T ∗S2 by applying the full parameter-

ized version of Theorem 11 once we establish the analogue of Lemma 21, that

is, we need to show the following.

Lemma 25 There exists a family of tame almost-complex structures Jp on S2×
S2 such that each curve in the corresponding foliations F0 and F1 intersects Lp
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transversally in a single point. The almost-complex structures Jp can be taken

to agree with J0 near ∆.

Proof of lemma 25 We briefly recall the construction of the almost-

complex structures in [18]. Associated to each p ∈ Sk and positive integer

N there exists a tame almost-complex structure Jp,N on S2 × S2 which cor-

responds to stretching the neck to length N along the boundary of a small

tubular neighborhood of Lp. It is easy to arrange that the Jp,N vary smoothly

with p. For fixed p it was shown in [18] that, after taking a subsequence as

N →∞, reparameterizations of Jp,N -holomorphic spheres in the corresponding

foliations F0 and F1 converge smoothly to finite energy planes in T ∗Lp. For

a suitable choice of the Jp,N these finite energy planes must be transverse to

Lp, in particular the Jp,N holomorphic foliations F0 and F1 are transverse to

Lp for N sufficiently large. We claim that there exists an N such that the

Jp,N -holomorphic foliations are transverse to Lp for all p, thus establishing the

lemma.

Suppose that the claim is false. Then for all j there exists a point qj ∈ Sk and

a Jqj ,j-holomorphic sphere Cj tangent somewhere to Lqj . A subsequence of {qj}
will converge to some p ∈ Sk. Now, there exist diffeomorphisms aj : S2×S2 →
S2 × S2 such that aj(Lqj ) = Lp and aj is an (Jqj ,j , Jp,j)-biholomorphism on

the tubular neighborhood of Lqj . Furthermore, after taking the subsequence,

the aj can be chosen to converge C∞ uniformly to the identity and so Ij =

aj∗(Jqj ,j) is a sequence of almost-complex structures on S2 × S2 agreeing with

Jp,j near Lp and which are tame for j large. We apply the compactness theorem

from [3] exactly as in [18] to the Ij-holomorphic foliations F0 and F1. The

same proof shows that reparameterizations converge to finite energy planes in

T ∗Lp transverse to Lp. But this gives a contradiction as required since the Ij

holomorphic spheres aj(Cj) are tangent to Lp. ¤

20



3.1 Lagrangian projective planes

Here we remark that the same methods as above can be used to derive Theorem

8.

The involution σ of S2 × S2 interchanging the two factors has fixed-point

set equal to ∆ and restricts to the antipodal map on ∆. Quotienting out by

σ, we observe that S2 × S2 \∆ is a double-cover of a unit cotangent bundle of

RP 2 and Lagrangian projective planes in T ∗RP 2 homotopic to the zero-section

therefore correspond to σ-invariant Lagrangian spheres in S2×S2\∆ homotopic

to ∆. Therefore Theorem 8 can be established by showing that if the initial

Lagrangians Lp are σ-invariant then it is possible to repeat the proof above and

find a family Lp,t of Lagrangian spheres for 0 ≤ t ≤ 1 with Lp,0 = Lp and

Lp,1 = ∆ and such that all Lp,t are σ-invariant. As in section 2, for convenience

let us drop the subscript p consider the case of a single invariant Lagrangian L.

As L is σ-invariant we may assume that the almost-complex structures in-

volved in the proof are all σ-invariant, in particular σF0(t, x) = F1(t, x) for all

x and t. Then Moser’s argument at the end of the proof will give a family of

σ-invariant Lagrangians provided that the Lt = φ−1
t (∆) are σ-invariant. This

holds provided that the maps gt can be chosen such that (g−1
t A)2 = id., where A

is the antipodal map. We recall that g1 = −f−1 where f is the diffeomorphism

of ∆ defined such that F0(1, x)∩F1(1, f(x)) ∈ L for all x. As L is disjoint from

∆ the map f is fixed point free and, as L is σ-invariant, f2 = id..

The following can be established without relying on Theorem 3. We identify

∆ with the 2-sphere S2.

Lemma 26 There exists a family ft of fixed point free diffeomorphisms of S2

for 0 ≤ t ≤ 1 with f0 = A and f1 = f and f2
t = id. for all t.

Setting gt = −f−1
t we then have an isotopy satisfying the conclusions of

Lemma 23 but also generating σ-invariant Lagrangians. Thus, given the above,

Lemma 26 immediately implies Theorem 8.

Proof of Lemma 26
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First observe that any such f is an isometry of S2 with respect to the round

metric given by pulling back a round metric from RP 2 = S2/x ∼ f(x). We also

observe that a round metric on S2 has a unique orientation reversing isometry

which is fixed point free and squares to the identity, for the standard metric this

is just the antipodal map A. The space of round metrics on S2 is contractible by

Smale’s theorem [30] again. Thus we have a surjective map from a contractible

space to the space of fixed point free diffeomorphisms which square to the iden-

tity, and therefore our space of diffeomorphisms is connected as required. ¤

4 Manifolds with 1-handles

We will now consider the class of convex symplectic manifolds constructed by

adding 1-handles to the unit cotangent bundle T 1S2 in order to establish The-

orem 1 in this case. Our first observation is that any such manifold M can be

symplectically embedded in (S2×S2, ω), see Figure 4, after perhaps scaling the

symplectic form. This follows from the methods of [10]. We can arrange that

the zero-section in T 1S2 again becomes identified with ∆ and the boundary

of M is a smooth hypersurface Σ of contact-type in S2 × S2. More precisely

one can think of M as a Stein manifold having a bounded plurisubharmonic

exhaustion function which is zero on the zero-section in T ∗S2 and whose other

critical points are nondegenerate and have Morse index 1. The symplectic form

on M is the Kähler form of the plurisubharmonic exhaustion. Now, as in [7] or

[8], 2-handles can be added to M to cancel the 1-handles and produce a Stein

manifold symplectomorphic to T 1S2 = S2 × S2 \∆. We will later use the fact

that Σ is now a level-set of a plurisubharmonic exhaustion on S2 × S2 \∆.

We plan to find families of almost-complex structures Jt on S2 × S2 and

diffeomorphisms ft : ∆ → ∆ such that F0(t, x) intersects F1(t, ft(x)) on em-

bedded spheres Lt ⊂ M with L0 = ∆ and L1 = L. The notation here is from

Definition 22. The almost-complex structures can be constructed by deforming

J0 in a neighbourhood of Σ and, for t close to 0 or 1, also in a neighbourhood

of ∆ or L.
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Suppose that we perform the operation of stretching-the-neck along Σ. That

is, we symplectically identify a neighbourhood of Σ in S2 × S2 with ((−ε, ε) ×
Σ, d(etα)), where α is a fixed contact form on Σ. We can then produce a

manifold AN by replacing this neighbourhood by (−N, N) × Σ. Our original

almost-complex structure can be extended over (−N, N)× Σ to be translation

invariant and the symplectic form can be extended over (−N,N)×Σ such that

AN is symplectomorphic to (S2 × S2, ω) via a symplectomorphism equal to the

identity outside (−N,N)×Σ (for this see [23]). Under this symplectomorphism

we can think of stretching the neck as studying a family of almost-complex

structures JN on S2 × S2 which degenerate along Σ as N →∞.

At the same time, we can deform the almost-complex structure along the

boundary of tubular neighborhoods U0 or U1 of L0 = ∆ or L1 = L respectively,

see again Figure 4. Stretching to length N1 and N2 on the contact hypersurfaces

Σ and ∂Ui respectively we obtain almost-complex structures JN,0 and JN,1,

where N = (N1, N2). There exist smooth families of almost-complex structures

JN,t connecting JN,0 and JN,1 which are fixed on the tubular neighborhoods of

Σ and in the complement of M .

The following summarizes work of H. Hofer, K. Wysocki and E. Zehnder, see

[23], applied to our situation. We recall that the completion of a symplectic man-

ifold with a contact boundary (P, ξ = {λ = 0}) denotes the union of the sym-

plectic manifold with a cylindrical end equal to the positive ((0,∞)×P, d(etλ))

or negative ((−∞, 0) × P, d(etλ)) symplectization of the boundary, depending

upon whether the boundary is convex or concave respectively.

Lemma 27 Given a sequence N = (N1, N2) in which both entries tend towards

infinity, there exists a subsequence such that for i, j = 0, 1 the corresponding

JN,i-holomorphic curves in Fj will converge to unions of finite energy curves as

N →∞. The limiting finite energy curves can be chosen to extend to foliations

of three symplectic manifolds with cylindrical ends, namely the completion W of

the complement of M in S2 × S2, the completion of Ui, which will be a copy of

T ∗S2, and the completion of M\Ui, which has two ends symplectomorphic to the
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positive symplectization of Σ and the negative symplectization of the boundary

of Ui.

A priori these foliations will depend upon the subsequence (N1, N2) → ∞.

Similarly we can let just N1 or N2 tend towards infinity. In the first case we

produce foliations of W and the completion of M . In the second case we produce

foliations of the completions of Ui and S2 × S2 \ Ui.

Outline of the proof of Lemma 27

The relevant compactness result here as N →∞ is contained in [3]. Specif-

ically it says that given a fixed point p ∈ S2 × S2 there exists a subsequence of

N such that the JN -holomorphic curves through p converge to a holomorphic

building, that is, a union of finite energy curves in our completed symplectic

manifolds (with respect to a compatible almost-complex structure translation

invariant near the ends). If we choose a countable dense collection of p in each of

the three manifolds then taking a diagonal subsequence we may find a sequence

of N such that the JN -holomorphic curves through all p in the collection con-

verge. Note that any point in one of our competed manifolds can be identified

with a point in each AN provided that N is sufficiently large. The result is

finite energy curves through a dense set of points in each of our completions.

These curves either coincide or are distinct by positivity of intersection, see [26],

since, as the curves are limits of the same sequence of N , any intersections of

curves with different images will also be seen as intersections of JN -holomorphic

curves, which are known to form a foliation. Finally, limits of the finite energy

curves through the dense set of points produce curves through every point, and

positivity of intersection again implies that these form a foliation.

Further facts about finite energy curves, such as definitions, asymptotic con-

vergence to Reeb orbits and Fredholm properties can be found in the series

of papers [20], [21], [22]. A brief summary containing the facts we need here

appears in section 2 of [18]. ¤
The foliations of the completion of Ui were determined in [18], Lemma 10.

For Ui and its almost-complex structure suitably chosen, the Reeb flow on ∂Ui
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is foliated by closed orbits, and exactly one curve in each foliation is asymptotic

to each closed orbit. Also, each curve in the foliation from F0 intersects in a

single point each curve in the foliation from F1 provided that the curves have

different asymptotic limits. Another result coming from the analysis in [18],

see Lemmas 8 and 9, is that the curves in both foliations are transverse to the

zero-section, and it follows that, for a fixed N1, the curves in the foliations of

S2 × S2 are transverse to Li for N2 sufficiently large.

We now look at the resulting foliations of W coming from taking limits of

curves in F0 or F1. A priori of course these foliations could depend on the

almost-complex structure J on M as well as the original homology class. We

fix once and for all the restriction of the almost-complex structure to W . There

is a natural topology on almost-complex structures on M which are allowed to

degenerate along one of the ∂Ui. Namely we use the topology of smooth uni-

form convergence to define the restriction of the topology to the nonsingular and

singular (degenerate) structures, and say that under neck stretching the nonsin-

gular structures converge to the singular limit. We will use Fi(J) to denote the

limiting foliation of W resulting from stretching curves in Fi, suppressing the

possible dependence on the sequence N1 → ∞. In the case when J is singular

this corresponds to taking limits of curves in Fi as N1 << N2 but both tend to

infinity (since when N2 is very large the holomorphic spheres in the Fi intersect

the complement of Ui in a foliation arbitrarily close to the finite energy foliation

of S2 × S2 \ Ui coming from letting N2 →∞).

Lemma 28 For a fixed singular J on M the foliations F0(J) and F1(J) formed

by taking limits of a common convergent subsequence of N1 → ∞ coincide.

Therefore we may denote the common foliation by F (J).

Proof

Suppose that a curve in the limiting F0(J) foliation intersects one in the lim-

iting F1(J) foliation but that the curves do not have identical images. Then, by

the positivity of intersections, any intersections of limiting finite energy curves

must also be seen as intersections of holomorphic spheres in the foliations F0
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and F1 of the complement of Ui when N1 is large. By the positivity of intersec-

tions again, intersections are stable under perturbation and so we may assume

that the curves have distinct asymptotic limits on ∂Ui. But this gives a contra-

diction since we can then topologically glue in planes in Ui homologous to the

corresponding finite energy planes to produce spheres in the classes [S2 × pt]

and [pt× S2] with intersection number 2. ¤
Now we consider limits when the complex structure J1 on M is nonsingular.

Lemma 29 The foliation Fi(J1) of W coincides with F (J), where J is the fixed

singular structure on M above. Therefore we can denote the common foliation

simply by F .

Proof We study the limits of curves through a generic point x ∈ ∆. By this

we mean that the deformation index I(C) of the finite energy curve C in F (J)

passing through the point x satisfies I(C) = 2. This is equivalent to saying that

the constrained index (amongst curves passing through x) is 0. Suppose that

the curve C ′ in Fi(J1) passing through x does not coincide with C. Note that if

Fi(J1) differs from F (J) then an open subset of the corresponding curves must

be different, and in particular curves through a generic point will differ.

By considering a family of almost-complex structures Jt connecting J0 = J

and J1 and fixed on W (so that the almost-complex structures are degenerating

along ∂Ui), we find corresponding families of Jt-holomorphic curves, say CN1,t,

such that, as N1 →∞, the curves CN1,0 have C as a limiting component in W

and the curves CN1,1 have C ′ as a limiting component. Denote the intersection

of a holomorphic curve D with a compact subset K of W by DK . Then,

given an ε > 0, for N1 sufficiently large, and provided the curves are suitable

parameterized, CK
N1,0 is ε-close to CK , and CK

N1,1 is ε-close to C
′K in a fixed

C∞ topology. Now, as C and C ′ are distinct, the distance between CK and

C
′K is bounded away from 0 in our C∞ topology. Therefore, for any given

small ε and N1 sufficiently large we can find a Jt holomorphic sphere CN1,t

such that the distance between CK
N1,t and CK is exactly ε. Taking a limit, the

same is true for the limiting finite energy curve, say C ′′ in W , that is, CK
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and C
′′K are exactly ε apart. Then, if the almost-complex structure on W is

regular and ε is chosen suitably, C ′′ must have positive constrained deformation

index (as curves through x of constrained index 0 form a 0-dimensional set)

or, equivalently, unconstrained index I(C ′′) ≥ 3. But, following the analysis of

M-L. Yau, see [36], for a suitable choice of contact form on Σ the Reeb orbits (of

a bounded period) correspond either to Reeb orbits on a perturbed T 1S2, or are

multiple covers of orbits lying entirely in the 1-handles. In any case, they have

Conley-Zehnder index at least 1 and therefore the components D of the limit of

the CN1,t in M all have nonnegative deformation index. Now I(C ′′)+I(D) = 2,

the index of our original curves, and so it follows that I(C ′′) ≤ 2 and we have

a contradiction. ¤

Corollary 30 Given a compact subset of singular and nonsingular almost-

complex structures on M and a compact subset K of W , there exists an N1

such that if the complex structure is stretched to length N1 along Σ then (in-

dependently of the almost-complex structure on M) we may assume that the

restriction to K of the curve in either F0 or F1 through a point x ∈ ∆ lies C∞

ε-close to the corresponding curve in F restricted to K.

Otherwise, letting N1 → ∞, we reach a contradiction. In particular, if we

stretch to length at least N1 then curves in F0 and F1 through any pair of points

x, y ∈ ∆ which are distance order ε apart do not intersect in the fixed compact

subset of W .

The following is the key proposition for the proof of Theorem 1.

Proposition 31 There exists a family of almost-complex structures Jt and dif-

feomorphisms ft of ∆ such that F0(t, x) ∩ F1(t, ft(x)) ∈ M for all x ∈ ∆.

Furthermore, we may assume that the sphere isotopy

Lt = {F0(t, x) ∩ F1(t, ft(x))|x ∈ ∆}

satisfies L0 = ∆ and L1 = L.

Proof Letting N2 = ∞, for i = 0, 1 we have two foliations of Ui and a single

foliation of S2 × S2 \ Ui coming from limits of curves in F0 and F1. We can
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define diffeomorphisms fi of ∆ as follows. Each p ∈ Li lies on a unique plane P0

in the foliation of the completion of Ui coming from limits of F0. Similarly, p lies

on a unique plane P1 in the completion of Ui coming from limits of F1. There is

a unique plane Q0 in S2 × S2 \Ui whose negative asymptotic limit corresponds

to the positive limit of P0, and there is a unique plane Q1 in S2 × S2 \ Ui

whose negative asymptotic limit corresponds to the positive limit of P1. If we

denote the intersection of Q0 with ∆ by x then fi(x) can be defined to be the

intersection with ∆ of Q1.

By construction the fi are fixed-point free, therefore by Theorem 3 they can

be connected by a family of fixed-point free diffeomorphisms ft of ∆. Assume

that for any x ∈ ∆ and t ∈ [0, 1] the points x and ft(x) are at least ε′ apart.

Leaves of F which intersect ∆ in points ε′ apart we may assume to remain an

ε apart on W (thought of as a compact subset of its completion). Therefore we

can choose a corresponding N1 as in Corollary 30 such that when we stretch to

length N1 along Σ the sphere in F0 through x does not intersect the sphere in

F1 through ft(x) in W for any x, t. In other words the spheres intersect in M .

We can find a family of almost-complex structures Jt on S2 × S2 such that

if t < δ then Jt is stretched to length N2 along ∂U0; if t > 1 − δ then Jt is

stretched to length N2 along ∂U1; if δ ≤ t ≤ 1− δ then Jt is stretched to length

N1 along Σ. Then we claim that if N2 is chosen sufficiently large the spheres

Lt are all disjoint from W as required. Given our choice of N1 this is already

established for the spheres Lt when δ ≤ t ≤ 1− δ. For other t the claim follows

by taking a limit as N2 →∞. If the claim were false for t < δ then, taking the

limit, we could find an x ∈ ∆ such that the curve in the foliation of S2×S2 \U0

coming from F0 and passing through x intersects in the curve in the foliation

of S2 × S2 \ U0 coming from F1 through ft(x). Indeed, the intersection point

is a limit of intersection points of Jt-holomorphic spheres in W . But this is a

contradiction as these two foliations coincide.

We remark that for a fixed large, but finite, N2 this construction gives L0

and L1 only C∞ close to ∆ and L respectively, but this can easily be corrected

with a small adjustment of the ft and Proposition 31 is established. ¤
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Using Proposition 31, we now complete the proof of Theorem 1. Following

the method of section 3, we can find a family of symplectic forms ωt on S2×S2

such that Lt is Lagrangian with respect to ωt. The ωt restrict to exact symplectic

forms on M , say ωt = dαt, which tame Jt. In a tubular neighborhood V =

(−ε, 0)×Σ of the boundary Σ = {0}×Σ of M , define a function χ : V → [0, 1)

such that χ(r, y) = χ(r) is an increasing function of r, χ(r, y) = 0 for r close

to −ε and χ(r, y) = 1 for r close to 0. Then, first scaling αt if necessary, we

can replace it by βt = (1− χ)αt + χerα in V . The new form ωt = dβt will still

be symplectic and tamed by Jt (for αt suitably scaled) but now agrees with ω

near Σ. Assuming V to be disjoint from all Lt, the submanifolds Lt will still be

Lagrangian with respect to ωt.

We now apply Moser’s method as in section 3 to find a symplectomorphism

between (M, ωt) and (M, ω) and thereby isotope the Lt into Lagrangian sub-

manifolds of (M, ω). As before, this can be arranged to fix L0 and L1 and now

also the neighborhood V . Thus it gives our Lagrangian isotopy as required.

5 Proof of Theorem 4

In this section we study the symplectic manifold W , which is a plumbing of two

copies of T ∗S2. Namely we take two copies of T ∗S2 and identify the cotangent

fibers projecting to a disk D in S2 with a product D×E in each copy. We then

identify the two copies of D×E, preserving the product structure but reversing

the factors. Alternatively W can be realized as a Stein manifold by adding a

2-handle to a disk bundle T 1S2 along the boundary of one fiber, a Legendrian

curve for the natural choice of contact structure.

In any case, W is naturally a symplectic manifold with symplectic form ω0

and contains two Lagrangian spheres L1 and L2 corresponding to the two zero-

sections. We will think of its non-compact end as a copy of [0,∞) ×M where

M carries a contact structure with contact form α and the symplectic structure

on the end is given by ω = d(etα).

The manifold M is a lens space L(3, 2). The contact form can be described
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as follows.

Let S be the 3-sphere given by

S = {(z1, z2) ∈ C2|H(x) = 1}

where

H(x) = |z1|2 +
1
r2
|z2|2

and equipped with the contact form λ|S where

λ =
i

4

2∑

j=1

(zjdz̄j − z̄jdzj).

Let r2 > 1 be an irrational number and let p0 and p1 denote the periodic

orbits {z2 = 0} ∩ S and {z1 = 0} ∩ S respectively.

Lemma 32 (see [19] Lemma 1.6) The associated Reeb vector field posesses pre-

cisely two periodic orbits p0 and p1. They are nondegenerate and have Conley-

Zehnder indices µ(p0) = 3 and µ(p1) = 2n + 1 where n < r2 + 1 < n + 1.

Now we observe that S and λ|S are invariant under the map σ : (z1, z2) 7→
(e

2πi
3 z1, e

4πi
3 z2) and so project to L(3, 2) to give the contact form α. The orbits

p0 and p1 triple cover periodic orbits x0 and x1 on our L(3, 2). Let X be the

corresponding Reeb vectorfield.

Our proof will proceed as follows. On [0,∞)×M we choose a tame almost-

complex structure J which is translation invariant, preserves the contact planes

on M and satisfies J( ∂
∂t ) = X. Throughout the proof we will fix this almost-

complex structure. It can be extended to a tame almost-complex structure J

on W and for each extension we will describe a foliation of W by finite energy

planes asymptotic to multiple covers of x0. Let L ⊂ W be a Lagrangian sphere

homotopic to L1. Then we pay specific attention to the pattern of the foliation

relative to L when we change J by stretching the neck near L. This is all done

in section 5.1.

In section 5.2, using our holomorphic foliations we can construct plurisub-

harmonic exhaustion functions on W . These functions will have exactly one
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Figure 5: An unstable manifold disjoint from L

minimum and two critical points of index 2. It will turn out that after stretch-

ing the neck along L, the unstable manifold with respect to the upward gradient

flow of one critical point will be disjoint from L. The arrangement we aim for

is illustrated in Figure 5.

All such plurisubharmonic exhaustions give isotopic symplectic structures

on W . The final part of the proof, in section 5.3, will use these isotopies to

construct the symplectomorphism needed for our theorem. Of course Theorem

1 will also be used, in a form which says that a Lagrangian sphere disjoint from

the unstable manifold of one critical point is Hamiltonian isotopic to the stable

manifold of the other critical point.
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5.1 Finite energy holomorphic curves in W

5.1.1 Finite energy foliations

As stated above, W admits a foliation by finite energy planes. More specifically

the following is true.

Theorem 33 For any tame extension J , the almost-complex manifold (W,J)

can be foliated by finite energy planes. Exactly three planes in the foliation, E0,

E1, E2, are asymptotic to x0. The other finite energy planes are all asymptotic

to 3x0. After choosing orientations for L1 and L2 we may assume that Ei•Lj =

−δij and E0 • Lj = 1 for i, j = 1, 2.

Proof

This is very similar to the proof in [16], (which of course is heavily reliant

on the series of papers [20], [21], [22]) but the arrangement of finite energy

planes is different to the situation covered there. In fact, [16] described finite

energy foliations of Stein manifolds diffeomorphic to disk bundles over S2 whose

boundaries are the Lens spaces L(p, 1). The basic case of the foliation of T ∗S2

with boundary RP 3 was worked out earlier in [15]. The proofs, and this one,

follow the same path in that they start with the finite energy planes in R× S3

constructed in [19] (using the method of filling by holomorphic disks) and project

these to get finite energy planes in W which are topologically trivial relative to

the boundary but appear in a 2-dimensional family. A process of elimination

using index and area inequalities then determines the behaviour of the family

of curves as they propagate into W .

More precisely, this reasoning, originating in the works of H. Hofer, K.

Wysocki and E. Zehnder, [19], Theorem 5.1, implies that there is a 2-dimensional

moduli space of unparameterized disjoint embedded finite energy planes asymp-

totic to 3x0. The planes lying in [0,∞) ×M are all disjoint from the cylinder

[0,∞)×x0 lying over the Reeb orbit and the natural S1 action onC2 by rotation

in the complex planes restricts to an action on our original 3-sphere which in

turn descends to act on this subset of the moduli space. Then we may assume
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Figure 6: Finite energy planes making up B

that there exists an S1 family of planes in [0,∞) ×M such that each plane in

the family touches {1} ×M in a single point (the family is given simply by the

S1 orbit of a plane whose R coordinate has a single absolute minimum). Choos-

ing R large, this S1 family will intersect {R} ×M in an S1 family of circles, a

2-torus, which bounds a solid torus U containing the periodic orbit x0. Let B

be the intersection of the S1 family of finite energy planes with [0, R]×M , see

Figure 6.

Now, we may change our almost-complex structure near B such that it is

biholomorphic to {|z1| ≤ 1, |z2| = 1} ⊂ C2, where B itself is identified with

34



{|z1| ≤ 1, |z2| = 1} and a neighborhood U ′ of ∂U ⊂ U with {1 − ε < |z2|2 ≤
1, |z2|2 = 2 − |z1|2}. We may assume when perturbing the almost-complex

structure that the planes intersecting B remain holomorphic, and also that

the foliation of nearby planes coincides with the z1-planes near B ∪ U and

with the original foliation away from a small neighborhood. Let us replace

B ∪ U ′ by the hypersurface {|z2|2 = h(|z1|2)} where h is a concave decreasing

function approximately equal to 1 when |z1|2 < 1 and equal to 2 − |z1|2 when

|z1|2 > 1+ ε. Then the new hypersurface is strictly pseudoconvex and, together

with U \ U ′, bounds a domain V . We recall that (complete) plurisubharmonic

exhaustions of Stein domains define a symplectic structure which depends only

upon the underlying complex domain, see [10] Theorem 1.4.A, and in our case

this structure is symplectomorphic to W (as it is isotopic to W through domains

defined by R translates of B).

We are interested in an extension of our moduli space to a family of finite

energy planes foliating V . After the perturbation of B∪U ′ we observe that there

exists an S1 family of finite energy planes (corresponding to |z2|2 = h(0)) which

intersects B in a circle γ of complex tangencies. Other nearby finite energy

planes in our moduli space intersect B in circles linking γ, see for example

Figure 2 in [16]. Since M is an L(3, 2), after choosing coordinates on U we

may assume that the finite energy planes intersecting ∂U do so in (3, 1) curves,

where the first component represents the class of a longitude homotopic to x0.

The planes in the moduli space intersecting U do not form a compact set.

In fact, as in [16], Lemma 3.2, bubbling occurs and sequences of finite energy

planes asymptotic to 3x0 will converge to three finite energy planes E0, E1,

E2 asymptotic to x0. (The topology of V implies that we now get bubbling

into three planes, energy considerations imply that they are all asymptotic to

x0.) We call these rigid planes since the moduli space of finite energy planes

asymptotic to x0 modulo reparameterization has dimension 0. Together with the

finite energy planes asymptotic to 3x0 the rigid planes complete our foliation.

We notice as in [16] that V is homotopic to the intersections of the rigid

planes with V , after identifying their boundaries in U . (This implies that there
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is no further bubbling.) To check the intersection numbers, we can choose a

convenient almost-complex structure J since the numbers are independent of

the choice. In fact there is an S1 subgroup of symplectomorphisms of W which

on each cotangent bundle corresponds to the extension via differentials of the

rotations of Lj about the axis through the intersection point q ∈ L1 ∩ L2. Let

q1 and q2 be the antipodal point of q in L1 and L2 respectively. If the almost-

complex structure is invariant under these symplectomorphisms, then so are

the rigid planes (as they appear only in dimension 0). Stokes’ Theorem implies

that holomorphic planes cannot intersect our Lagrangians in circles (since they

are symplectic and the symplectic form on W is exact) and so the rigid planes

must intersect the two Lagrangians in fixed points of the S1-action. A plane

disjoint from the Lagrangians is homotopic to a plane in [0,∞)×M where the

asymptotic limit x0 is not contractible. Therefore each rigid plane does indeed

intersect a Lagrangian and we can order our planes so that E0 ∩ Lj = {q},
E1 ∩L1 = {q1} and E2 ∩L2 = {q2}. Choosing orientations for L1 and L2 gives

the theorem as required. ¤

Topologically the intersections of our finite energy planes with U can be

visualized as follows. We note however that this is an idealized picture. In

practice holomorphic curves can have quite complicated tangencies with pseu-

doconvex hypersurfaces. In the next section we will use the technique of filling

by holomorphic disks to ensure that the pattern we describe here does indeed

occur.

We look at a cross-section A of U . The interior of A has three special

points corresponding to the intersection of A with the rigid planes. By taking

R sufficiently large, the rigid planes can be assumed to intersect U ⊂ {R} ×M

transversally. A finite energy plane intersecting ∂U hits ∂A in three points.

Choosing a path from one of these points to one of the special points deter-

mines a 1-parameter family of finite energy planes intersecting the path. The

intersections of these planes with A generate two more paths from our points

in ∂A to the remaining special points. Conversely a path in our moduli space
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Figure 7: flowlines in the cross-section A
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starting from a plane intersecting ∂U and converging to the bubbled planes

generates three paths in A. Starting with other planes intersecting ∂U we can

generate a vector field on A with elliptic points corresponding to the rigid planes.

The vector field will necessarily have hyperbolic points corresponding to tan-

gencies of finite energy planes with U . Assuming that there are no more elliptic

points (which could occur if a finite energy plane became tangent to U from the

outside) there must be two hyperbolic points and the various integral curves

are illustrated in Figure 7. The three marked points on the boundary are the

intersections of a typical finite energy plane with ∂A. With our choice of sub-

scripts the central special elliptic point in Figure 7 corresponds to E0. Notice

that the same picture is obtained in each cross-section Aθ of U for θ ∈ S1 and

we can continuously choose coordinates in each Aθ so that the elliptic points

lie in the same position. But then the points on ∂Aθ corresponding to a fixed

finite energy plane will rotate through 2π
3 in these coordinates as θ moves once

around. The integral curves leaving our points on Aθ can be chosen so that they

correspond to the same family of finite energy planes for each θ. These integral

curves will encounter a hyperbolic point for two values of θ, corresponding to

a 1-parameter family in the moduli space becoming tangent to U twice before

bubbling. Topologically this means that two curves in the plane must contract

to the boundary and that the plane will bubble into three components.

5.1.2 Stretching the neck

In this subsection we consider which finite energy planes in the foliation will

intersect L if we perform a stretching-the-neck operation to deform J along the

boundary of a tubular neighborhood of L. The result is the following.

Proposition 34 There exist tame extensions J on W such that the rigid planes

E0 and E1 intersect L transversally in a single point each and E2 is disjoint from

L. The nonrigid planes intersecting L contain an S1 family with the property

that the planes in the family intersect U in two disjoint circles. The union of

the first S1 family of circles form a torus enclosing E0 ∩ U and E1 ∩ U ; the
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union of the second S1 family of circles form a torus enclosing E2 ∩ U .

Proof of Proposition 34 The almost-complex structure is replaced by

other almost-complex structures JN as in section 4 where Σ is now the boundary

of a tubular neighborhood Z of our Lagrangian L, which of course is diffeomor-

phic to RP 3 = L(2, 1). We fix a contact form on Σ as above, now quotienting

S3 by the map σ : (z1, z2) 7→ (−z1,−z2). Denote by y0 and y1 the correspond-

ing Reeb periodic orbits on Σ. Note that this form and the corresponding Reeb

vector field are nondegenerate, unlike the Morse-Bott type form on ∂Ui used in

section 4.

The stretching-the-neck procedure in section 4 applies again here to produce

a finite energy foliation of the completed tubular neighborhood of L which is

now identified with T ∗L = T ∗S2. Since y1 has large Conley-Zehnder index the

finite energy curves must be asymptotic to y0. The resulting foliation was first

described in [15], (see Theorem 2.1, or alternatively, for a description entirely

in terms of finite energy planes, rather than disks, Theorem 2.3 in [16]). There

are two finite energy planes asymptotic to y0 and the remaining planes are

asymptotic to 2y0. The planes asymptotic to y0 have intersection number ±1

with L. They are rigid in the sense that the corresponding moduli space has

dimension 0.

Taking limits of finite energy planes in the holomorphic foliations of (W,JN )

also results in a collection of finite energy curves lying in a completion of W \Z

and the symplectization of Σ equipped with suitable almost-complex structures.

After taking subsequences and additional limits as in Lemma 27 we also obtain

finite energy foliations of W \ Z.

Suppose that an embedded finite energy curve u in W \ Z has one positive

asymptotic limit mx0 and k negative asymptotic limits asymptotic to niy0,

1 ≤ i ≤ k. The virtual dimension of the moduli space of finite energy curves

containing u modulo reparameterization is given by

index(u) = −(2− 1− k) + µ(mx0)−
k∑

i=1

µ(niy0)
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where the µ are Conley-Zehnder indices with respect to a suitable trivialization

giving c1(TW ) = 0. For m, ni not too large µ(mx0) = 2bm
3 c+ 1 and µ(niy0) =

2bni

2 c+ 1 where bzc denotes the greatest integer less than or equal to z. Hence

index(u) = 2(bm
3
c −

k∑

i=1

bni

2
c). (1)

In particular all virtual indices are even. Note that by the compactness result

of [3] such curves are the only ones which can appear as components in W \ Z

of limits of our curves in W . Recall also our assumption is that L is homotopic

to L1.

Lemma 35 Limits of the rigid planes E0 or E1 as N → ∞ contain a rigid

plane in T ∗L and a cylindrical component in W \Z with ends asymptotic to x0

and y0. Limits of the rigid plane E2 have no components in T ∗L.

Proof

As their intersection number with L is ±1, the limits of the JN holomorphic

rigid planes E0 and E1 must contain planes in T ∗L, and as the indices of the

limiting components of the rigid planes add to 0 we may assume that these

planes are rigid. The corresponding components of the limits in W \ Z have

a single positive end asymptotic to x0 (which implies that there is only one

component in W \ Z and it is not a multiple cover), and, from the above, at

least one negative end asymptotic to a multiple of y0. The index formula (1)

implies that such a component has negative index unless it is a cylinder with

ends asymptotic to x0 and y0. As the curve is not a multiple cover we may

assume by regularity that it has nonnegative index.

Next, we note that for the component of the limit of the E2 in W \Z to have

nonnegative index, since m = 1 formula (1) implies that its negative asymptotic

limit can cover y0 at most once. Therefore if there is a component in T ∗L it

must be a single rigid curve. But as such a curve has intersection number ±1

with L and as E2 has intersection number 0 this is impossible. ¤
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Lemma 36 The limits of E0 and E1 in W \ Z coincide. Limits of nonrigid

planes either have no component in T ∗L or the components in W \Z consist of

the limit of E2 and a cylinder double covering the corresponding component of

the limit of E0.

Figure 8 illustrates the arrangement of the various limits of rigid curves.

Proof

We first note that since all indices are even the limiting foliation of W \ Z

must consist of the images of a single moduli space of deformation index 2 curves

together with isolated curves of index 0. Indeed, the image of the evaluation

map applied to such a 2-dimensional moduli space will be both open and closed

in W \ Z with boundary consisting of images of curves of index 0, which have

codimension 2. As we know the behaviour of curves on the cylindrical end this

2-dimensional moduli space consists of planes asymptotic to 3x0.

Suppose that a converging sequence of nonrigid planes has a limiting com-

ponent in T ∗L. As nonrigid planes have intersection number 0 with L this

limiting component is not a single rigid plane and so the negative ends of the

components in W \ Z cover y0 a total of at least two times. As the positive

ends cover x0 a total of three times we cannot have a plane asymptotic to 3x0

as part of the image (as this would be the only component, and we know there

are negative ends) and so all components in W \ Z have deformation index 0.

We next claim that for any converging sequence of nonrigid planes with a

nontrivial component in T ∗L the limiting component in W \ Z has the same

image. For suppose not. Then, arguing as in Lemma 29, we have sequences of

planes CN and C ′N whose limits have distinct images in W \ Z. For each large

N we can find a family of JN -holomorphic planes connecting CN and C ′N which

all intersect a compact subset of T ∗L (for example the family of planes in the

foliation which pass through a curve in T ∗L between CN and C ′N ). There is

a plane in this family, say DN whose distance from CN in a Hausdoff metric

on W \ Z is a fixed number independent of N and different from the distance

of all index 0 curves in W \ Z from the limit of the CN . Taking a limit of a
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subsequence of the DN then gives a contradiction.

Now if we take a limit of planes CN which lie arbitrarily close to the rigid

planes and converge to the rigid planes as N → ∞ we see that these unique

limiting components in W \ Z have image coinciding with that of the rigid

planes. If the component in T ∗L is a plane asymptotic to 2y0 then the only

possibility for the components in W \Z consist of a cylinder asymptotic to 2x0

and 2y0 and the plane asymptotic to x0 equal to the limit of E2. This cylinder

must contain the limits of the E0 and E1 and so we conclude that these limits

coincide and the map from the cylinder here is a double cover. ¤
Returning to the proof of Proposition 34, suppose that we fix a point p ∈ T ∗L

disjoint from the rigid planes. Then by Lemma 36 the limits of the planes

through p converge to a plane asymptotic to 2y0 in T ∗L and the cylinder double

covering the limits of the E0 and E1 and a plane equal to the limit of the E2

in W \Z. This implies by uniform convergence that for N sufficiently large the

nonrigid planes through p will intersect U in two disjoint circles, one close to

the intersection of U with E0 and E1 and homotopic to 2x0, the other close

to the intersection with E2. Looking at the points p lying in a small circle in

L around the intersection with one of the rigid planes we find an S1 family of

curves satisfying the requirements of Proposition 34. ¤

5.2 Plurisubharmonic exhaustion functions

In this section we produce a filling (or foliation) of V by holomorphic disks with

boundary on the perturbation of B ∪ U and use it to construct a plurisubhar-

monic exhaustion for V . The key property is that L will be disjoint from the

unstable manifold of one of the two index 2 critical points.

Theorem 37 For any extension J as in Lemma 34, the almost-complex man-

ifold (V, J) admits a plurisubharmonic exhaustion function with three critical

points, one a minimum and the others of index 2. The Lagrangian L is disjoint

from the unstable manifold of one of the index 2 critical points.

43



It would be convenient simply to use the intersections of V with finite energy

planes as our filling. Unfortunately it seems hard to control the tangencies of

such planes with U . Therefore we singularly foliate U with surfaces, each of

which in turn can be singularly foliated by the boundaries of holomorphic disks.

Together with the finite energy planes intersecting B these will complete the

filling.

Proof

We have discussed an S1 family of curves lying in [R,∞)×M which intersect

∂U in the proof of Theorem 33 (they form the hypersurface B). As described

at the end of the proof of Proposition 34 the JN -holomorphic curves passing

through a small circle in L around the intersection of L with E0 give another S1

family which forms the boundary of a tubular neighborhood of the intersection

of the rigid planes with V . These two S1 families bound a compact subset N of

the moduli space of planes asymptotic to 3x0 and if R′ > R is sufficiently large

we may assume that they all intersect {R′}×M transversally. Thus the curves

in N will intersect a cross-section A of a neighborhood U ′ of x0 in {R′} ×M

(as in Figure 7) in an annulus S with one boundary on ∂A, and each curve

will intersect S in three points. The corresponding degree 3 cover from S to

N shows that N itself is an annulus and will contain a circle (homotopic to a

circumference) which consists of planes which miss L but still intersect a fixed

compact subset of T ∗L. Indeed, the curves which touch only the boundary of

a small tubular neighborhood of L generically will correspond to a union of

embedded circles in N and one of the circles must separate the two boundary

components. As in Proposition 34, planes in these S1 families converge, as we

stretch along the boundary of a tubular neighborhood Z of L, to a nonrigid

plane in T ∗L and, in W \ Z, a cylinder covering the limits of E0 and E1 and a

plane equal to the limit of E2. Therefore for N sufficiently large we have that

the curves in the family will intersect U transversally in two families of circles,

one homotopic to 2x0 and the other to x0. The first family will foliate a torus

I enclosing (E0 ∪ E1) ∩ U and the second will foliate a torus enclosing E2 ∩ U .
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Figure 9: Different paths defining ΣC

We define vector fields on each Aθ ⊂ U looking exactly as described in the

previous section, but not necessarily corresponding to the intersections of the

Aθ with finite energy planes. The integral curves of our vector field converging

to the intersection of a particular curve C with ∂U will form a surface ΣC diffeo-

morphic to a sphere with four disks removed. The four boundary components

are the intersections of U with C, E0, E1 and E2. Now, it is easy to adjust our

vector field such that each of these surfaces intersect the torus I in the boundary

of one of the finite energy planes in our S1 family.

Remark 38 There are different choices of these surfaces which are not homo-

topic relative to the U ∩ Ei. Indeed, there are different homotopy classes of

singular foliations in a cross-section Aθ. This will be important in the next

section when we consider Lagrangian isotopies rather than global symplectomor-

phisms. The following arguments in this section apply to any choice of surfaces
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fulfilling our condition on their intersection with I, but we remark that this con-

dition does impose a constraint on the homotopy class. To see this, observe that

I ∩Aθ will be a circle enclosing (E0 ∪E1)∩Aθ and a finite energy plane inter-

secting I will meet I ∩Aθ in two points. Looking at integral curves of our vector

field converging to a C ∩∂Aθ (which consists of three points) generically we will

see three distinct curves with the other endpoints at the Ei ∩Aθ. Our condition

requires that exactly two of the curves intersect I, and do so in the intersection

with a single finite energy plane. This property of the curves is not preserved,

even up to homotopy, after, for instance, a Dehn twist along a circle enclosing

E0 ∪E2. Figure 9 gives shows good and bad choices of paths in Aθ which define

the surface ΣC . The first path intersects I ∩Aθ correctly, the second, deformed

by a Dehn twist, does not.

Next we use the theory of filling by holomorphic disks, see [6], [2], [8], [14]

(Theorem 1 in [14] unifies alot of the previous work) to singularly foliate each of

the surfaces ΣC above by boundaries of holomorphic disks in V . The theorem

we need is the following. This is a simplified version of Theorem 1 in [14] valid

only in the strictly pseudoconvex case. The theorem stated there accounts for

more complicated behaviour when the boundary is only weakly pseudoconvex.

We are free to assume that our complex structure is integrable near ∂V , and

will make this assumption whenever convenient in the remainder of this section.

Recall that a surface Σ in ∂V has a characteristic foliation η = TΣ ∩ ξ

where ξ is the 2-plane field T (∂V ) ∩ JT (∂V ) of complex tangencies. (In our

situation ξ on U is a small perturbation of the tangents to the cross-sections.)

On our ΣC the characteristic foliation η is a line field away from two hyperbolic

points (where ΣC is tangent to ξ, which itself). For the proof of our theorem the

intersections of the planes C and Ei with V , whose boundaries are the boundary

components of ΣC , act exactly like elliptic tangencies.

Theorem 39 After perhaps a C2 perturbation of the complex structure J near

the families of hyperbolic points, each ΣC has a singular foliation by circles. The

foliation is smooth away from the hyperbolic points and includes the boundary
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circles. Leaves passing through the hyperbolic points are not smooth and exactly

two different leaves intersect at each of these points. Each circle is the boundary

of a holomorphic disk u : (D, ∂D) → (V, ΣC), and the boundary circles are

the intersections of the planes C and Ei with V . The images of the disks are

disjoint apart from the boundary intersections at the hyperbolic points, and any

holomorphic disk with boundary on ΣC is one of the disks in our foliation (up

to reparameterization and multiple covers).

Uniqueness implies that our fillings include the intersection of the surfaces

with I. The filling looks as in Figure 10. In particular, since it includes the

disk through I, the arrangement of the singular (hyperbolic) points p and q in

relation to the Ei is as shown.

Disks in the fillings of different ΣC are either disjoint or coincide with the

rigid curves Ei. To see this, suppose by contradiction that a disk D in the filling

of ΣC and whose boundary is disjoint from the Ei intersects a disk D′ in the

filling of ΣC′ . Now, D and D′ can each be added to at most two other such

disks in their respective fillings to form a surface, say {Di} or {D′
j}, cobordant

through a subset of the filling to C ∩ V or C ′ ∩ V respectively, see Figure 10.

We know that C and C ′ are disjoint as they form part of our original foliation,

and therefore the sum of the intersection numbers of the Di and D′
j is zero.

But then by positivity of intersection, since the boundaries of these disks are

disjoint, this implies that the actual intersection must also be zero.

We construct a plurisubharmonic function by following [8], see also [15], [16].

We start by defining a function g which is constant on the holomorphic disks

in our filling. We now fix J = JN for N suitably large. Recall that γ is the

circle in B along which finite energy planes from our foliation are tangent to

∂V and let T1, T2 be tori in U formed by the boundaries of holomorphic disks

passing through the hyperbolic points p and let S1, S2 be tori in U formed by

the boundaries of holomorphic disks passing through the points q. We label

things so that the inside of T1 in U encloses S1 and S2, see again Figure 10.

We define g to be a Morse function on γ with a single minimum at 0 and a
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single maximum at 1. As in [15] we define g to be constant on families of

holomorphic disks converging to points on γ. These families of disks can be

chosen to be parameterized either by an interval with the disks converging to

the points g−1(t) ∈ γ for t ≤ 1
4 or t ≥ 3

4 or alternatively by an interval with one

end converging to a point g−1(t) ∈ γ for 1
4 < t < 3

4 and the other to a cusp-disk

with boundary on T1 ∪ T2. This defines g on the disks passing through the

complement of the insides of T1 and T2.

Inside T2 we simply define g to be constant on 1-parameter families of disks

connecting the disks on which g = t. Inside T1 we again define g to be constant

on families of disks connecting the disks on which g = t and 1
4 < t < 3

8 or
5
8 < t < 3

4 . We also let g = t on intervals of disks connecting disks with

g = t ∈ [ 38 , 5
8 ] on one side and cusp-disks with boundary on S1 ∪ S2 on the

other. Inside S1 and S2 we extend g to be constant on the 1-parameter families

of disks connecting the disks on which g = t as before. Altogether this defines

a function g whose level-sets are foliated by holomorphic disks. Note that g has

no critical points in the interior of V .

Now, as in [8], see also [15], [16], the level-sets of g are Levi flat (foliated

by holomorphic curves) but we can perturb g such that they become pseudo-

convex. One way to do this is to choose a function ψ on W which satisfies

ddcψ(X, JX) >> |dψ| for any unit vector X tangent to the foliation (with re-

spect to a fixed metric). Then we can replace g by g + ψ. Recall that the

level-sets of a function f are pseudoconvex if −ddcf is positive on the complex

tangencies ker(dcf) ∩ ker(df). (Before the perturbation −ddcg vanishes on this

subspace.) We then have that ddc(g + ψ) is positive on the complex tangen-

cies of the level-sets of g, but the tangencies to the level-sets of g + ψ differ

only by order |dψ|
|dg| (which we can assume to be arbitrarily small) and so the

same is true for these subspaces. Let us now denote the perturbation g + ψ

simply by g. Next, composing g with a sufficiently convex function φ on R
with φ′′ >> φ′ > 0 it then becomes strictly plurisubharmonic. (To see this, we

compute −ddc(φ ◦ g) = −d(φ′dcg) = −φ′ddcg + φ′′dcg ∧ dg and observe that

the first term is positive on complex tangencies to the level sets of g while the
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second term vanishes, but on sufficiently transverse complex planes the second

term is positive and overwhelms the first.) Finally set f = max(g, h) where h

is a function increasing rapidly towards ∂V . The function f can be smoothed

to give a plurisubharmonic exhaustion, see for example [13], Theorem 1.4.12.

Investigating the pattern of holomorphic disks as in [15], section 3, we see that it

has three critical points. There is an index 0 critical point near the minimum of

g on γ and there are index 2 critical points near the maxima of g on S1∩S2 and

T1∩T2. We call these points a and b respectively. The construction ensures that

f(b) > f(a). Furthermore f < f(b) on all disks lying inside the hypersurface

formed by the holomorphic disks intersecting I. Therefore L is disjoint from

the unstable manifold of b as required, as it lies inside this hypersurface. ¤

5.3 Symplectomorphisms

The plurisubharmonic function f from the previous section gives a symplectic

form ω = −ddcf on W where dcf = df ◦ J (as they are diffeomorphic we will

now replace V by our original W ). This in turn gives us a vector field v = gradf

defined by vcω = dcf . By a suitable choice of f = h near ∂V we may assume

that v is complete in the sense that its positive integral flow exists for all time.

Further, as it is a plurisubharmonic exhaustion for an almost-complex struc-

ture Stein homotopic to a standard one on W , we can adjust f such that the

stable manifolds of the two critical points are embedded Lagrangian spheres

with respect to the form ω, which intersect transversally at the minimum. By

Weinstein’s Lagrangian neighborhood theorem applied to a pair of transversally

intersecting Lagrangians, a neighborhood of these two stable manifolds is sym-

plectomorphic to a neighborhood of L1 ∪ L2 ⊂ (W,ω0). We then use [10], see

Proposition 1.8.4.A to imply the following.

Lemma 40 (W,ω0) and (W,ω) are symplectomorphic via a symplectomorphism

ψ taking the stable manifolds of the critical points a and b of f onto L1 and L2

respectively.
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After perhaps adjusting f the following is also true. As above L denotes the

Lagrangian sphere homotopic to L1.

Lemma 41 There exists a symplectomorphism φ from (W,ω0) to (W,ω) taking

L onto a Lagrangian sphere disjoint from the unstable manifold of the critical

point b of f .

Lemmas 40 and 41 together imply our Theorem 4. To see this, note that the

one-parameter group of diffeomorphisms Dt generated by −v = −gradf satisfy

D∗
t ω = e−tω so the spheres Dt(φ(L)) are all Lagrangian. But a Lagrangian

isotopy of spheres is also a Hamiltonian isotopy, and therefore we get a Hamil-

tonian isotopy of spheres from φ(L) to a Lagrangian sphere L′ in a tubular

neighborhood of the stable manifold of the critical point a. Since this tubular

neighborhood can be taken to be symplectomorphic to a unit cotangent bundle

of S2, Theorem 1 implies that a further Hamiltonian diffeomorphism maps L′

onto the stable manifold of a itself. We denote the Hamiltonian diffeomorphism

mapping φ(L) onto the stable manifold of a by χ. Then, with ψ as in Lemma

40, ψ−1 ◦ χ ◦ φ is the symplectomorphism required by Theorem 4.

Proof of Lemma 41

By choosing f = h carefully near ∂V , now identified with the noncompact

end of W , we may assume that ω = ω0 outside of a compact subset of W . In

fact, both forms are exact and we can write ω − ω0 = dα where the 1-form α

is identically zero outside of a compact set. Furthermore, since ω and ω0 tame

the same almost-complex structure, ωt = (1− t)ω0 + tω is a symplectic form on

W for all t.

Using Moser’s method, we observe that the compactly supported time-

dependent vector field Xt defined by Xtcωt = α satisfies LXtωt = d
dtωt and

so its flow generates a symplectomorphism from (W,ω0) to (W,ω).

We are interested in the image of L under such a symplectomorphism, we

recall that L is initially disjoint from the unstable manifold of b and we want

to ensure that this remains the case under the flow of Xt. We will adjust f so

that this will be the case.
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Assume that a fixed tubular neighborhood Z of L is disjoint from the unsta-

ble manifold of b. Given the construction in Theorem 37 we may assume that

f ≥ 0 and Z ⊂ f−1([0, r]) for some r < f(b).

The composition of f with an increasing function s : [0,∞) → [0,∞) re-

mains plurisubharmonic provided that s′′
s′ >> 1. We choose s (and its deriva-

tives) to be very small on [0, r] but then to increase rapidly on (r,∞). Thus

we can replace f by another nonnegative plurisubharmonic exhaustion, still

denoted by f , and having the property that f |Z < 1. Further we arrange

that ω(X,JX) << ω0(X, JX) on f−1([0, 1]) for all tangent vectors X, while

ω(X,JX) >> ω0(X,JX) on f−1([2, 3]) for all X and now f(b) > 3. We observe

that for reasonable choices of functions s the Moser flow will still exist for all

time. Alternatively we can adjust ω0 near ∂V also such that the flow still has

compact support.

On the tubular neighborhood Z we have that ω and dcf are now uniformly

small. Thus the length of Xt (relative to the Riemannian metric defined by ω0

and J) remains bounded on this neighborhood for t < 1
2 say. Therefore there

exists a uniform ε (depending only upon ω0, J and Z) such that the flow of

L remains in Z for t < ε. But for t > ε we can suppose that on f−1([2, 3])

the vector field Xt is closely approximated by − 1
t gradf . Hence the flow of L

remains in f−1([0, 3]) for all 0 ≤ t ≤ 1 and so the symplectomorphism generated

by Xt can indeed be arranged to leave L disjoint from the unstable manifold of

b as required. ¤

6 Lagrangian isotopies and Dehn twists

In this section we use the analysis of section 5 to deduce Theorem 5.

First of all, by Weinstein’s Theorem a Lagrangian 2-sphere has self-intersection

−2, thus Lagrangian spheres in W are homologous to either L1, L2 or L1]L2.

Up to Hamiltonian isotopy L1]L2 = τL2(L1) and so it suffices to prove the result

assuming that L is homologous to L1.
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6.1 Section 5 revisited

Using the notation from the previous section, we recall that Theorem 33 con-

structed a finite energy foliation of (W,J) with respect to any tame almost-

complex structure J which is standard outside of a compact set. In fact the

finite energy foliation is described quite explicitly, in particular in terms of the

intersection of the finite energy planes with a level {R} ×M , for R large. The

rigid planes Ei intersect {R} ×M transversally in a certain tubular neighbor-

hood U of the Reeb orbit x0. The boundary of U is foliated by circles in an

S1-family of finite energy planes and this family divides W into two pieces. We

assume that the piece foliated by planes disjoint from U is disjoint from all

of the Lagrangian spheres, and when we vary J it will always be fixed in this

region.

In section 5.2, the finite energy foliation with respect to particular choices

of J was used as the starting point to construct a plurisubharmonic exhaustion

function f on a Stein domain V ⊂ W with ∂V = B ∪ U , see Theorem 37.

The plurisubharmonic function has three critical points, one of index 0 and two

of index 2. With respect to the Kähler structure associated to a well chosen

plurisubharmonic function the two stable manifolds form Lagrangian spheres

intersecting in a single point.

Such a plurisubharmonic exhaustion function can in fact be constructed

for any of the almost-complex structures we consider, provided we neglect the

requirement in Theorem 37 of unstable submanifolds avoiding a Lagrangian.

Furthermore, the construction is essentially canonical given a choice of embed-

ded curve in a cross-section A of U traveling from E1 to E2 through E0. This

is the content of the following lemma.

Lemma 42 Given an almost-complex structure J on W and a path γ between

the Ei ∩ A, we can construct a plurisubharmonic exhaustion function f on W

whose stable manifolds form two Lagrangian spheres intersecting transversally

at a single point.

The function is well defined given our data up to a homotopy through plurisub-
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harmonic exhaustions with the same properties.

Proof

The rigid planes Ei and the finite energy foliation are determined by a given

almost-complex structure J . However there are still ambiguities in the construc-

tion of the plurisubharmonic function in Theorem 37. First we must choose

families of surfaces in U diffeomorphic to a sphere with four disks removed.

One boundary of such a surface should coincide with the intersection of a fi-

nite energy plane with the boundary of U and the other three boundaries with

the intersections of the Ei with U . It can be seen that U can be singularly

foliated by such surfaces, the foliation being smooth away from the Ei. Now,

the surfaces themselves can be chosen in an essentially canonical way (so that

they intersect cross-sections as in Figure 7) given the position of the Ei ∩ U

and a choice of embedded curve in a cross-section A traveling from E1 to E2

through E0. To do this, we simply map the cross-section to the model picture in

Figure 7, mapping rigid planes to the special points in the figure and the curve

to the corresponding curve in the figure, and pull-back the foliation there. This

is well-defined up to a homotopy fixing the rigid planes and the path (but not

necessarily the boundary). It will be a consequence of the existence of different

homotopy classes of such paths that there exist different Hamiltonian isotopy

classes of Lagrangian spheres, see also Remark 38. Anyway, after the foliating

surfaces are chosen we can construct a plurisubharmonic function with the re-

quired properties as follows, and do this canonically modulo a contractible set

of choices.

This is done in a similar manner to Theorem 37. We first fill each of the

surfaces by holomorphic disks, however for a general choice of almost-complex

structure J we no longer have a torus I dividing the families of filling disks.

Therefore the pattern of holomorphic disks in the filling is no longer necessarily

that of Figure 10, that is, starting with a boundary in ∂U , the family may

reach the hyperbolic complex tangency q before reaching p. Nevertheless we

can construct a plurisubharmonic exhaustion in a canonical way by perturbing
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a function g constant on the holomorphic disks filling V . We define g as before on

disks with boundary on B. To extend g to U we proceed as follows. Parameterize

the boundaries of holomorphic disks on ∂U by ψ ∈ S1 and thus the foliating

surfaces starting from these boundaries. On each of the surfaces we can find a

smooth function hψ which is constant on the boundaries of holomorphic disks,

is equal to 1 on ∂U , and is equal to 0 on ∂Ei, i = 0, 1, 2. The hψ can be

chosen to vary continuously with ψ and such that hψ has critical points only

at the hyperbolic points of the surfaces. Then we can define a map P : U →
D2 = {x2 + y2 ≤ 1} by assigning to a point in U the point in D2 with polar

coordinates (hψ, ψ). By adjusting the parameterization we may assume that

g|∂U = P ∗L where L = y+2
4 and thus extend g to U by the same formula. After

taking the maximum f of g and a function h increasing rapidly towards ∂V and

smoothing appropriately, exactly as in Theorem 37, we see that as before f will

have only three critical points, a minimum on the circle of complex tangencies

in B and two index 2 critical points close to the hyperbolic points on the surface

extending the maximum circle of g on ∂U . ¤

6.2 Symplectomorphisms of (W,ω0)

We will identify our symplectic structure ω0 on W with the Kähler structure

coming from a J0-plurisubharmonic function, where J0 is a fixed almost-complex

structure and the plurisubharmonic function is constructed as above. Then the

stable manifolds of the index 2 critical points correspond to L1 and L2. Sup-

pose that J is another almost-complex structure tamed by ω0. Let ω1 be the

symplectic form corresponding to a J-plurisubharmonic function constructed as

above with 3 critical points. Then there are two natural symplectomorphisms

from (W,ω0) to (W,ω1). Since both ω0 and ω1 tame the same almost-complex

structure, convex linear combinations of the two forms are also symplectic and

so by Moser’s theorem we can generate a symplectomorphism φ between them.

The flow used to define the symplectomorphism is well defined provided our

exhaustion functions have sufficiently fast growth towards the boundary. On
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the other hand, as in Lemma 40, given a plurisubharmonic exhaustion its gra-

dient flow is conformally symplectic with respect to the corresponding sym-

plectic form. Therefore we get another symplectomorphism by first identifying

neighborhoods of the stable manifolds using Weinstein’s Theorem and extending

this to a global symplectomorphism ψ using the gradient flows (see [10] section

1.8.4.A for these ideas). Composing the inverse of this symplectomorphism with

the Moser diffeomorphism gives a symplectomorphism Φ = ψ−1 ◦ φ of (W,ω0)

determined by a tame almost-complex structure J and corresponding plurisub-

harmonic function (that is, up to isotopy by J and the path γ of Lemma 42). If

J = J0 and γ is chosen as for the definition of ω0 (with the identification above)

then this map is the identity. In summary we have the following.

Lemma 43 An almost-complex structure J on W and a path γ between the

intersections of the rigid planes with a cross-section A of U determine up to

isotopy a symplectomorphism Φ of (W,ω0). If J = J0 and γ is a particular path

σ then Φ = Φ0 = id.

Now let L be a Lagrangian sphere in W homologous to L1. It was shown

in Lemma 37 that there exists an almost-complex structure J and plurisub-

harmonic function constructed as above generating a symplectic form ω1 such

that the corresponding unstable manifold of one of the index 2 critical points is

disjoint from L. Furthermore, under the Moser map φ from (W,ω0) → (W,ω1),

Lemma 41 implies that the Lagrangian L can be arranged to stay disjoint from

this unstable manifold. Therefore by Theorem 1, composing with a Hamiltonian

diffeomorphism we may assume that the Moser map takes L to one of the stable

manifolds. Thus the symplectomorphism Φ = Φ1 of (W,ω0) maps L onto L1.

This all gives a method of constructing a Lagrangian isotopy of L1. Namely

we start with the almost-complex structure J1 and path γ1 generating the map

Φ1 above and look at a family of almost-complex structures Jt connecting J0 and

J1. The rigid planes vary continuously with t and so we can find a corresponding

family of paths γt and hence symplectomorphisms Φt. Things are chosen such

that Φ1(L) = L1 and so Φt(L) gives a Lagrangian isotopy starting from L1.
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However γt is determined up to homotopy by γ1 and so may not equal σ up to

a homotopy fixing the rigid planes Ei ∩ A. In particular we cannot guarantee

that γ0 together with J0 generate the identity symplectomorphism, and thus an

isotopy from L1 to L. In the next section we examine the effect of carrying out

exactly the same construction starting with τ(L) rather than L, where τ is a

symplectic Dehn twist.

6.3 Symplectic Dehn twists

In section 6.2 we described how a Lagrangian sphere L homologous to L1 enables

us to construct a Lagrangian isotopy from L1 to a Lagrangian sphere Φ(L) where

Φ is the symplectomorphism from Lemma 43 determined by J0 and a path γ0

between the rigid planes. To find γ0 one starts with an almost-complex structure

J1 and path γ1 generating a plurisubharmonic function with the properties of

Lemma 37. Then we choose a family of almost-complex structures Jt connecting

J0 and J1, these define a family of rigid planes Ei and we can then define,

uniquely up to homotopy, a continuous family of compatible paths γt. So γ0

depends not just on the J0-holomorphic rigid planes but on the path of Jt-

holomorphic rigid planes, in particular their intersection with the cross-section

A. Here we examine how those intersections change if we repeat the whole

construction with τ(L) instead of L, where τ is an even power of the symplectic

Dehn twist about L1 or L2. Since τ is an even power it is smoothly isotopic to

the identity, in particular τ(L) is still homologous to L1.

First note that as τ has compact support the almost-complex structure τ(J)

is a compatible almost-complex structure with a cylindrical end on (W,ω0)

whenever J is. Furthermore, the new foliation is the image of the J-holomorphic

one under τ and in particular the intersection of the rigid planes with our cross-

section A will be identical. Thus if J1 and γ1 generate a plurisubharmonic

function f with an unstable manifold disjoint from L then τ(J1) and γ1 generate

a plurisubharmonic function τ(f) with an unstable manifold disjoint from τ(L).

If Jt is a family of almost-complex structures interpolating between J0 and
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J1 then τ(Jt) interpolates between τ(J0) and τ(J1). We observe that the inter-

section of τ(Jt)-holomorphic finite energy planes with U are exactly the same

as the intersections of the Jt-holomorphic finite energy planes. Therefore to

understand the new family of intersections Ei ∩ U it suffices to understand the

intersections Ei ∩U for a family of tame almost-complex structures connecting

τ(J0) and J0.

Case of T ∗S2

Before this, we first consider T ∗S2 with its standard symplectic form. This

again can be thought of as a Stein manifold with open end symplectomorphic to

[0,∞)×N where N = RP 3 with its standard contact form. The Reeb flow here

can be identified with the geodesic flow on S2 with a fixed round metric. We

also fix a tame almost-complex structure J0 invariant under the natural action

of Isom(S2). Then as described in [15], and used in [16] and [18], T ∗S2 admits a

finite energy foliation with all planes asymptotic to multiples of a Reeb orbit y0

corresponding to, say, the equator on S2. The foliation now contains two rigid

planes F0 and F1 asymptotic to the single orbit y0 and all other finite energy

planes in the foliation are asymptotic to 2y0. Let τS2 denote the square of the

symplectic Dehn twist about the zero section in T ∗S2, which we may assume is

supported in a neighborhood of the zero section. Denote by T rS2 the cotangent

vectors of length r in the round metric.

Lemma 44 Let Jt be a family of almost-complex structures interpolating be-

tween J0 and τS2(J0). Let R be very large, V a neighborhood of y0 in TRS2 and

B a cross-section of V transverse to the Reeb flow. Then the intersections of

the Jt-holomorphic rigid planes Fi with B rotate their positions exactly once in

the interval 0 ≤ t ≤ 1.

We recall that the J1-holomorphic planes are just the images of the J0-

holomorphic planes under τS2 , and so their intersections with B are identical.

Proof

We begin with a few remarks. The rigid planes project to opposite hemi-

spheres on the S2. Now rotation about the axis perpendicular to the equator
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preserves y0 and J0 and so also the rigid finite energy planes. It follows that

each intersects the zero-section at either the north or south pole and intersects

the tubes of radius r, denoted T rS2, in circles projecting to parallels on S2. The

square τS2 of the symplectic Dehn twist about the zero-section can be thought of

as the Hamiltonian flow of H = 1
2 |p|2 if the cotangent vector has length |p| ≤ 2π

and the identity if |p| ≥ 2π. (In other words, the tubes are preserved and for

r < 2π the diffeomorphism of T rS2 is the time-r geodesic flow.) This map τS2

is isotopic to the identity through (non-compactly supported) symplectomor-

phisms τt, where τt is equal to the Hamiltonian flow of H(tp) for |p| ≤ 2π
t and

the identity for |p| ≥ 2π
t . We observe that τt(J0) for 0 < t ≤ 1 give a family of

tame almost-complex structures converging to J0 as t → 0. In fact, for R suffi-

ciently large, τt(J0)|T≥RS2 is approximately equal to J0 for all t since τt acts as

the geodesic flow on a fixed level (which we can assume to preserve the relevent

CR structure) and is approximately translation invariant for R large. Therefore

after a small adjustment we will think of τt(J0) as a compactly supported varia-

tion of J0. In a level TRS2 let us choose coordinates (x, y) in the cross-section B

transverse to our Reeb orbit at (0, 0) such that our rigid J0-holomorphic planes

intersect in points (±ε, 0). Then we observe that for 0 < t ≤ 1 the positions of

τt(Fi) ∩ B perform one complete rotation. Since the space of almost-complex

structures is contractible, any family connecting τS2(J0) and J0 will have the

same effect on the intersections. ¤
Case of planes in W

Returning to our original situation, consider first the case when τ is the

square of the symplectic Dehn twist about L1. Then a family of almost-complex

structures Jt on W connecting τ(J0) and J0 can be chosen to be fixed away from

a neighborhood of L1, and we can derive the following from Lemma 44.

Corollary 45 Up to isotopy, the intersections of the Jt-holomorphic rigid planes

E0 and E1 with A rotate their position once over the interval 0 ≤ t ≤ 1 while

the intersection of E2 with A remains fixed.

Proof We will again follow the methods of section 5. Let M be a tubular
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neighborhood of L1, symplectomorphic to a tubular neighborhood T≤rS2 of the

zero-section in T ∗S2. We suppose that the Jt = J0 outside of M for all t. We

denote by JT
t the result of stretching Jt to length T along the boundary of M .

Then, rather than studying Jt-holomorphic planes for 0 ≤ t ≤ 1, it is enough to

show that for some N the intersections of the JN
t -holomorphic rigid planes E0

and E1 with A rotate their positions once. Indeed, as τ has compact support,

the intersections of JT
t -holomorphic and τ(JT

t )-holomorphic rigid planes with

A coincide on the interval 0 ≤ T ≤ N . Therefore, in a path from J0 to J1

which first connects J0 to JN
0 , then connects JN

0 to τ(JN
0 ), and finally connects

τ(JN
0 ) to τ(J0) = J1, any rotations on the first and last segments will cancel.

By Lemma 35, for N sufficiently large E2 is disjoint from M and so remains

fixed with respect to almost-complex structures in the path from JN
0 to τ(JN

0 ).

We stretch the neck a length N →∞ along the boundary of M . In the limit

as N →∞ we have complex structures Jt,∞ on T ∗S2 and our JN
t -holomorphic

finite energy foliations of W converge to Jt,∞-holomorphic finite energy folia-

tions of T ∗S2. These foliations may be taken to be exactly those described in

the model case of Lemma 44 (we get uniqueness near the boundary from [19]

and then globally by regularity), in particular the limits of the rigid planes ro-

tate positions once for 0 ≤ t ≤ 1. We recall also that the limits of the rigid

planes E0 and E1 in the completion of W \M converge to the same finite energy

cylinder, see Lemmas 35 and 36. We look at the intersections of our Ei with

a 1-parameter family of surfaces intersecting this cylinder transversally. The

surfaces can be chosen to be tangent to a cross-section A in U at one end and

tangent to a tube T rS2 at the other. Then for N sufficiently large our finite

energy planes Ei will intersect these surfaces transversally and so their relative

rotation will be the same in each. But by uniform convergence away from the

punctures of JN
t -holomorphic spheres to their limiting finite energy curves, see

[3], the rotation of the JN
t -holomorphic Ei in a T rS2 will be the same as that

of the limits with respect to the Jt,∞, in other words they rotate once. Our

corollary follows. ¤
Exactly the same argument applies for a symplectic Dehn twist about L2.
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Corollary 46 Let Jt be a family of almost-complex structures connecting J0

and J1 = τ2(J0) where τ2 is the square of the symplectic Dehn twist about L2.

Then, up to isotopy, the intersections of the Jt-holomorphic rigid planes E0

and E2 with A rotate their position once over the interval 0 ≤ t ≤ 1, while the

intersection of the rigid plane E1 remains fixed.

6.4 Conclusion of the proof of Theorem 5

We have seen in Corollaries 45 and 46 that for a suitable composition of Dehn

twists τ , a family of almost-complex structures connecting τ(J0) and J0 can

produce any relative movement of the Ei∩U up to homotopy. So given a J1, we

can find a τ such that a family of almost-complex structures Jt connecting τ(J1)

and J0 produces any relative movement of the Ei ∩ U . Suppose that J1 and γ1

generate a symplectomorphism Φ from Lemma 43 mapping L onto L1. Then

τ(J1) and γ1 generate a symplectomorphism mapping τ(L) onto L1. But τ can

be chosen such that given a family of almost-complex structures interpolating

between τ(J1) and J0, the intersections of the rigid planes with A are such

that the corresponding family of paths γt between the Ei end with a γ0 which

is homotopic relative to the Ei to σ, the path generating the identity map in

Lemma 43. Thus the Lagrangian isotopy Φt(τ(L)) is an isotopy between L1 and

τ(L) and our theorem is proved as required.
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