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1 Introduction 

Many new products fail because the demand for them is not high enough to allow profitable 

production by at least one firm. Indeed, failures are more common than successes. Moreover, learning 

whether a new product is a success or not may take time if demand is stochastic and its distribution is 

unknown. If demand can be either high or low in any period and the true probability of high demand is 

unknown, then mean demand is learned only if sales are observed in a large enough number of periods. In 

this case, whether the new product succeeds, and if so how many firms can profit from it, is learned only if 

some firms take the risk of producing it for a long enough period of time.   

This paper studies the nature of innovative leadership, in the form of a first-mover advantage, in the 

strategic adoption of an innovation subject to this type of uncertainty. It differs from previous studies (e.g., 

Reinganum [18], [19], Fudenberg and Tirole [5], Stenbacka and Tombak [22], and Hoppe [10]) in three 

major ways. First, profit is not only random, but its distribution is unknown. This implies that adoption 

does not instantaneously reveal whether the innovation is a success, so firms may cease production at any 

time after adopting, and need not adopt a success.1  

Second, all information is public. If at least one firm produces, the state of demand realized in that 

period is observed by all firms, including those which did not adopt. Thus, there is a free-rider problem 

associated with adoption. Each firm has an incentive to “wait and see” because adoption by a rival 

provides the same information as its own adoption.   

Finally, this is not a game of timing in which the objective is to determine the date at which each firm 

adopts. In this analysis, all firms adopt immediately for high enough probabilities of success. Conversely, 

adoption never occurs for low enough probabilities. There are no forces external to the industry that 

decrease the cost of, or increase the revenue from, adoption over time. Thus, the objective is to examine 

the implications of an exogenously-determined order of moves, not to endogenously determine the order of 

adoption. This paper, therefore, also contributes to the literature on first-mover advantages and 

disadvantages (e.g., see Gal-Or [6], [7]) by analyzing a problem where the entire sequence of moves is 

repeated (i.e., firms can adopt or not in more than one period). This provides interesting results on the 

intertemporal implications of being a first-mover.  

The experience of the convenience food industry over the last few decades provides an excellent 

example of the type of industries and potential innovations with these characteristics. Firms in this industry 

                                                 
1  Jensen [11], [12], Balcer and Lippman [1], McCardle [15], and Bhattacharya, Chatterjee, and Samuelson 
[3] study decision-theoretic adoption models with stochastic profit. Benoit [2] studies a game-theoretic 
model in which uncertainty about the innovation is not resolved until a finite time after adoption, but there 
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have regularly introduced new products, many of which have been quickly dropped from the product line. 

For example, consider the decision to expend the resources required to open for business in the morning 

and offer an additional line of breakfast products. This innovation was not considered a sure thing at the 

time of initial adoption, and some convenience food firms still do not offer a breakfast menu. Moreover, 

whether it would succeed or not was certainly not learned instantaneously after the first day, or even 

month, of adoption. It took time for the adopters to learn if there was sufficient demand for convenience 

breakfasts to make this innovation profitable, and during this time their experiences could be observed by 

the waiters.2 Also during this learning period, each adopter had to decide whether to continue producing or 

not, while each waiter had to decide whether to adopt or to continue to wait and observe. Finally, given the 

nature of this market, namely that breakfast can only be served at discrete time intervals, it is appropriate to 

assume these decisions occurred at discrete dates in time. 

Hence, a model of a stochastic game with two production periods is analyzed (adding more periods 

would merely complicate the analysis and exposition without offering additional insights). It applies to any 

innovation without patent protection3, but a new product interpretation is used because it seems the most 

natural. Each firm can produce or not in both periods. To begin production a one-time, lump-sum adoption 

cost must be paid (e.g., the cost of developing a convenience breakfast menu). All firms begin with the 

same, common knowledge initial estimate of the probability of high demand. If any firm adopts, all firms 

observe realized demand and revise the estimate accordingly in period two: up for good news (high 

demand), and down for bad news (low demand).   

One interesting result is that an increase in the initial estimate of high demand can decrease the 

number of firms that initially adopt in the subgame perfect Nash equilibrium. The reason is that an increase 

in this estimate is necessarily accompanied by an increase in both updated estimates of high demand in 

period two. The increase in the updated estimates may induce adoption in period two by a firm which 

                                                                                                                                                             
is no learning in the interim. 
2 The lack of patent protection distinguishes adoption studies from the more common patent races studies 
(see Reinganum [20] or Geroski [8] for surveys). See Gilbert and Newbery [9] for a discussion of reasons 
why patent protection may not exist. 
 
3 Admittedly, waiters do not have exactly the same information as adopters about their experience with the 
innovation. Nevertheless, the assumption that the adopters experience is common knowledge is not overly 
restrictive. Given the visible nature of operation in this market, it is easy to observe the flow of customers 
during any time of the day. Moreover, industries such as these have financial analysts and observers who 
routinely produce estimates of the viability of such new product innovations.  How adopters and analysts 
might try to strategically manipulate their private information to their advantage is an interesting question, 
but also one that is beyond the scope of this paper.   
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otherwise would have waited. Adoption by an additional firm reduces the expected profit of any producer 

in period two, and thus decreases the incentive to adopt initially. This downward discontinuity in the initial 

adoption payoff can reduce the equilibrium number of adopters. This outcome is more likely for more risky 

innovations, greater competition (more firms), and lower adoption costs. Moreover, note that this cannot 

occur when adoption is assumed to instantaneously reveal whether the innovation is a success (as in the 

preceding studies above). In such a model, for any initial estimate, good news reveals the innovation is a 

success with absolute certainty, so all remaining firms adopt in the next period. 

  Intuition suggests that early adopters are the “most innovative” firms. However, empirical 

observation shows that innovative leadership changes over time. Early adopters of past innovations often 

are not early adopters of current innovations (see Davies [4], Mansfield [13], Nasbeth and Ray [17], 

Rogers [21], and Stoneman [23], [24]). In fact, this phenomenon also seems to occur globally (see, for 

example, McCulloch [16] for evidence the United States is losing its position as the global innovative 

leader). A second interesting result is that, when innovative leadership takes the form of sequential moves, 

the leader (first-mover) may rationally decide not to be an early adopter.   

The logic of this result is somewhat unusual because it requires at least three firms. Assume that the 

firms move in the order given by their numbers (firm 1 moves first, and so on). A firm adopts if and only if 

its expected payoff exceeds that from waiting. The key is that innovative leadership can provide a larger 

waiting payoff as well as a larger adopting payoff. Suppose that if any one firm adopts initially and gets 

good news, then one of the waiters can adopt in period two (i.e., there are at least three firms, one initial 

adopter and two waiters). Then only the lowest-numbered waiter adopts and earns positive expected profit 

in period two. Hence, firm 1 has a positive waiting payoff, but all other firms have a zero waiting payoff if 

at least one more innovative rival also waits. Firm 1’s waiting payoff is larger because its leadership 

position guarantees that, if it waits, then it cannot be excluded from the new product market in the next 

period. The other firms, with no such guarantee, can have a larger incentive to adopt first because their 

waiting payoff is smaller. In general, initial adoption by k�1 firms, but not including the first k firms to 

move, can be a subgame perfect Nash equilibrium.   

A third interesting result is that innovative leadership is always beneficial in this model. The 

expected payoff of the most innovative firm 1 is at least as great as the expected payoff of firm 2, and so 

on. There is a distinct advantage to the first mover, although in equilibrium that advantage may take the 

form of waiting, not adopting. Therefore, one reasonable interpretation is that innovative leadership may, 

by its very nature, be transitory. If the order of moves is based on past experience (e.g., the order in which 

the firms adopted the last innovation), then an early adopter of past innovations may rationally decide not 
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to be an early adopter of the current innovation. This provides an explanation for the empirical 

phenomenon of a firm, or country, apparently becoming less innovative over time. Once it has become an 

innovative leader, it has a larger incentive to take a wait-and-see approach, and free ride on the information 

provided by its rivals’ adoption. 

Finally, these results are robust in two ways. They do not depend on a ranking based on past behavior 

or on whether firms make their decisions sequentially or simultaneously. For example, suppose firms are 

heterogeneous and firm1 has the highest production profit (or lowest R&D cost), firm 2 has the next 

highest profit (lowest cost), and so on. Then, ceteris paribus, firm 1’s adoption payoff is always greater 

that the other firms’ adoption payoffs. Nevertheless, it still may not be a first adopter because, as above, its 

waiting payoff is also greater than the other firms’ waiting payoffs. And if firms move simultaneously in 

each period, then there are many more equilibria, but they still include those from the sequential move 

game examined.  

Section 2 presents the adoption game. Section 3 analyzes initial adoption behavior. Section 4 

examines alternative approaches to leadership. Section 5 concludes, and the Appendix contains proofs of 

technical results.  

 

2 A Two-Period Stochastic Game of Innovation Adoption 

Consider N�3 firms deciding whether to use an innovation in each of two production periods. A firm 

cannot use the innovation unless it first adopts it. Adoption requires the payment of a one-time, lump-sum 

cost I>0. Profit from the use of the innovation is stochastic. In each period, any firm using it has either a 

good experience or a bad experience (good news or bad news), and every firm using it has the same 

experience. The true probability of good news is p*�[0,1]. No firm knows p*, so each initially estimates it 

by p�[0,1]. These facts are common knowledge. Formally, this is a common values problem in which 

experience is a Bernoulli random variable Z that equals 1 with probability p*. The true distribution of p*, 

denoted F, has support [0,1] and mean p. The game begins with a random draw from F that is not revealed, 

so each firm estimates it by p. 

For ease of exposition, consider the case of a new product, the demand for which can be high or low 

in each period. Demand can be stochastic for reasons either related to the new product, such as consumers 

needing to learn about it from experience, or unrelated to it, such as stochastic income. Producing the new 

product in the first few periods does not reveal if its average demand is large enough to allow profitable 

production by one or more firms (p* can be learned only in the limit, with probability 1, if demand has 

been observed often enough that the strong law of large numbers applies).  
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Assume that a firm that does not use the innovation in a period earns zero profit. That is, the period 

profit of a firm that does not adopt is normalized to zero. Further assume that all firms are identical as 

producers and make their product market choices simultaneously. Then a producer’s expected profit per 

period depends only on the total number of producers, k (1�k�N), and the current estimate of high 

demand, p, and so can be written as π(k,p). If p=0, so demand is certainly low in every period, then any 

producer expects a loss, even as a monopolist. If p=1, so demand is certainly high in every period, assume 

product market behavior that allows all N firms to earn positive expected profit, but only M firms 

(2�M�N) to earn positive expected profit net of the adoption cost. Then it is natural to also assume that 

this expected profit is increasing in the current estimate and decreasing in the number of producers. 

Assumption 1. A producer’s expected profit per period, π(k,p), is continuous and increasing in p, 

decreasing in k, and satisfies π(1,0)<0, π(N,1)>0>π(N+1,1), and π(M,1)>I>π(M+1,1) for some integers N 

and M such that 2�M�N.  A firm that does not produce earns zero profit.4 

It follows immediately that if k firms produce, then each producer expects positive profit if and only 

if the current estimate is high enough: for each k=1,...,N, there exists a unique ρk�(0,1), given by 

π(k,ρk)=0, such that π(k,p) >
< 0 if and only if p >

< ρk. Similarly, each producer expects positive profit net of 

the adoption cost if and only if the estimate is high enough: for k=1,...,M, there is a unique αk�(0,1), given 

by π(k,αk)=I, such that π(k,p) >
< I if and only if p >

< αk. Note that ρk and αk are increasing in k, and that ρk<αk 

for k=1,...,M. 

It is useful to provide an algebraic example of this market model. Assume the firms are considering 

adoption of a homogeneous new good with demand P=A+pθ�Q, where P is price, Q is market quantity, 

A>0 is a constant, and the random variable θ takes on the values θ*>0 with probability p* and 0 with 

probability 1�p*. Marginal cost is a constant c>0 and there is a fixed cost K>0 in any period the good is 

produced. Under Cournot quantity competition, expected profit is π(k,p)=[(A+pθ*�c)2/(k+1)2]�K, and the 

critical probabilities are ρk=[(k+1)K1/2
�A+c]/θ and αk=[(k+1)(K+I)1/2

�A+c]/θ. 

Now assume a common knowledge ranking of firms, based on past behavior toward innovations, 

such that firm 1 is the most innovative, firm 2 is the next most innovative, and so on. That is, in the sequel 

one firm is said to be more innovative than another if it has a lower number. In practice, innovative 

reputations do exist and are usually based on past behavior (see, e.g., Mansfield [13], Rogers [21], and 

Stoneman [23], [24]). All that matters herein is that such a ranking exists, and that it gives the more 

                                                 
4 Zero profit for a firm that does not produce the innovation implies that this firm either has no profit from 
other sources or such profit is not affected by the adoption of its rival(s). 
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innovative firms an advantage in the form of a type of Stackelberg leadership in which the firms make their 

decisions sequentially in the order determined by this ranking. 

Assumption 2. In period one, the firms move sequentially in deciding to adopt (pay I) or not in the 

order determined by their numbers: firm 1 moves first, firm 2 moves second, and so on. Each firm observes 

the actions taken in all preceding moves before making its decision. The firms that adopted then make their 

production5 choices simultaneously (and collect expected profits). After production, all firms observe if 

demand was high or low. In period two, firms that adopted in period one (incumbents) move sequentially 

in deciding whether to continue or not in the order determined by their numbers. Firms that did not adopt 

in period one (waiters) then move sequentially in deciding to adopt or not in the order determined by their 

numbers. Firms that have continued or adopted then make their production choices simultaneously, after 

which all firms observe if demand was high or low. 

In the context of the example, adoption in period one means to incur the adoption cost I and the fixed 

production cost K, and production means to generate the gross expected production profit 

(A+pθ*�c)2/(k+1)2. In period two, continue means to incur the fixed production cost K, adoption again 

means to incur the adoption cost I and the fixed production cost K, and production means to generate the 

gross expected production profit (A+pθ*�c)2/(k+1)2. 

The analysis focuses on the subgame perfect Nash equilibria (SPNE) both within and between each 

period. It is worth noting that the assumption that all incumbents move before waiters in period two is 

made simply because it seems natural. All the qualitative results that follow would also hold under the 

assumption that the firms move in the order determined by their numbers in both periods. 

 

2.1 Subgames in Period Two 

Because all firms observe the period-one outcome, every subgame is characterized by a record of 

the choices of the firms in period one and a (possibly updated) estimate of high demand, say q. Let si 

denote firm i’s period one (pure) strategy, where si=a if it adopts and si=w if it waits. Also let s *
i  denote the 

equilibrium strategy chosen by firm i in period one. The history of the game in period two is then this 

record of moves in period one, h=(s *
1 ,…,s *

N ). The state variable for each firm in period two is then the 

history of the game and the current estimate of high demand, (h,q).  

In period two, an incumbent first must decide whether to continue or not, while a waiter must decide 

                                                                                                                                                             
 
5 Although the discussion proceeds in terms of production, the same results occur if firms produce 
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whether to adopt or not. Recall that, by Assumption 2, each subgame is a sequential-move game in which 

the incumbents move first, in the order of their numbers, and then the waiters move, also in the order of 

their numbers. Thus, the history of the game determines the order of moves in period two. For example, if 

h=(w,a,w,a,a,w,a), then in the resulting period-two subgame, firm 2 moves first, followed by firms 4, 5, 7, 

1, 3, and 6.   

Suppose no firm adopted in period one, so h=(w,...,w) and the estimate remains p. If p<α1, no firm 

adopts in period two because the adoption cost exceeds expected profit for any number of producers, 

π(k,p)<I for all k. If p�[αk,αk+1) for k=1,...,M�1, then k firms adopt because expected profit exceeds the 

adoption cost if and only if k or fewer firms produce. The adopters are the k most innovative firms, those 

numbered 1 to k. Finally, if p�αM, then firms 1 to M adopt.   

Note that multiple equilibria occur when the marginal firm is indifferent. For example, if none have 

adopted and p=αk, then adoption by firms 1 to k�1 is an equilibrium, but adoption by firms 1 to k is also an 

equilibrium; π(k�1,αk)>I=π(k,αk), so firm k is indifferent between adopting or not. There is no loss of 

generality in focusing on equilibria in which the maximum number of firms adopt.   

Assumption 3. Only pure strategy equilibria in which the maximum possible number of firms adopt 

are considered in any period.   

Now suppose n�1 firms adopted initially and the period-two estimate is q�[0,1]. For brevity's sake, 

let N=M=3. If q<ρ1, no incumbents continue and no waiters adopt. If q�[ρ1,ρ2) and ρ2�α1, the most 

innovative incumbent continues, but no other incumbents continue and no waiters adopt. This is also the 

equilibrium if α1<ρ2 and q�[ρ1,α1). But if α1<ρ2 and q�[α1,ρ2), then firm 1 either continues or adopts, 

because it can adopt as long as no rival continues, and no incumbent can continue once it adopts. 

Similarly, if q�[ρ2,ρ3) and ρ3�α2, there are two possibilities. If n�2, the two most innovative incumbents 

continue, but no other incumbents continue and no waiters adopt. If n=1, the lone incumbent continues, 

but no waiters adopt. These are also the equilibrium possibilities if α2<ρ3 and q�[ρ2,α2). But if α2<ρ3 and 

q�[α2,ρ3), then firms 1 and 2 either continue or adopt. There are six possibilities if q�ρ3. If n=3, all 

incumbents continue. If n=2, both incumbents continue, but the waiter adopts if and only if q�α3. If n=1, 

α2>ρ3, and q�[ρ3,α2), the incumbent continues, but no waiters adopt. If n=1 and q�α2, the incumbent 

continues, the most innovative waiter adopts, but the other waiter adopts if and only if q�α3 as well.   

It is impractical to provide a detailed summary of the SPNE in all possible subgames. Fortunately, 

this is not necessary. For each period two state (h,q), Assumptions 1-3 guarantee there is a unique SPNE 

for the resulting subgame. Thus, each firm i’s period-two SPNE payoff is uniquely defined as a function of 

                                                                                                                                                             
differentiated products and compete in prices. 
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the state, and so can be written as Vi(h,q). In the example of the preceding paragraph, suppose qε[α2,α3) 

and firm 1 adopted in period one. Then in period two, firm 1 continues, firm 2 adopts, and firm 3 waits, so 

V1((a,w,w),q)=π(2,q), V2((a,w,w),q)=π(2,q)�I, and V3((a,w,w),q)=0. However, if firm 3 adopted in period 

one, then in period two firm 1 adopts, firm 2 waits, and firm 3 continues, so V1((w,w,a),q)=π(2,q)�I, 

V2((w,w,a),q)=0, and V3((w,w,a),q)=π(2,q). Clearly, as noted above, the period-two SPNE payoff for any 

firm depends on the specific firms that adopted in period one, as well as the total number of adopters. 

 

2.2 Payoffs in Period One, Given SPNE Behavior in Period Two 

Now consider the expected payoffs from adopting and waiting in period one, conditional on SPNE 

behavior in period two. Let s=(s1,...,sN) be a vector of period-one strategies, one for each firm, and s
�i be 

the (N�1)-vector of the strategies of firm i’s rivals, formed from s by deleting si. From firm i’s perspective, 

then, the history of the game in period two is written as h=(a,s *
i− ) if it adopted and h=(w,s *

i− ) if it waited. 

Recall that, if any firm adopts, then all firms observe the experience and update p using Bayes rule. 

Assume p is updated up to g(p) given good news (high demand) and down to b(p) given bad news (low 

demand), where g and b map [0,1] into [0,1], g(p) and b(p) are increasing functions of p, and 

0�b(p)<p<g(p)�1 for p�(0,1). Formally, each updated estimate is the mean of the posterior of p* derived 

from the prior F and the realization of Z. A common example is a beta (µ,�) prior, for which the mean is 

p=µ/(µ+�) and the updated estimates are g(p)=(µ+1)/(µ+�+1)=[(µ+�)p+1]/(µ+�+1) and 

b(p)=µ/(µ+�+1)=(µ+�)p/(µ+�+1).  

Define Ri(a;s
�i,p) as firm i’s expected payoff if it adopts in period one, given the estimate p, rival 

strategies s
�i, and SPNE behavior in period two under Assumptions 1-3. If n(s) is the number of producers 

in period one given the strategy s and δ�(0,1) is the discount factor, then  

Ri(a;s
�i,p)=π(n(s),p)�I+δ[pVi((a,s

�i),g(p))+(1-p)Vi((a,s
�i),b(p))]. (1) 

Similarly define Ri(w;s
�i,p) as firm i’s expected payoff from waiting in period one, given p, σ

�i, and SPNE 

behavior in period two. Then 

Ri(w;s
�i,p)=δ[pVi((w,s

�i),g(p))+(1-p)Vi((w,s
�i),b(p))] if n(s)>0, (2) 

and 

Ri(w;s
�i,p)=δVi((w,s

�i),p) if n(s)=0. (3) 

Because these payoffs embody SPNE behavior in stage two, the SPNE of the entire game are 

determined by finding the SPNE of the “reduced-form” sequential-move game in period one in which firm 

1 moves first, firm 2 moves second, and so on, and the payoffs are given by (1)-(3). Given this period-one 

outcome, summarized in the state (h,q), the corresponding period-two SPNE is then determined as noted 
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above. In general, the SPNE can have period one outcomes with adoption by any number of firms or by 

none. No firm adopts in either period if p is low enough, but all firms adopt initially if p is high enough. 

Otherwise, some but not all firms adopt, in which case there are three types of period two outcomes: some 

incumbents continue but others do not; all incumbents continue but no waiters adopt; and all incumbents 

continue and some or all waiters adopt. The remainder of the paper, however, focuses on properties of 

initial (period-one) adoption in the SPNE.  

 

3 Initial Adoption Behavior 

One interesting result is that an increase in the initial estimate of high demand can decrease the 

SPNE number of initial adopters. The reason is that an increase in the initial estimate is accompanied by an 

increase in the updated estimates. These increases in the updated estimates may induce adoption by an 

additional waiter in period two. If so, then the higher initial estimate decreases an incumbent’s period two 

SPNE payoff, and so also decreases its adoption payoff. In fact, this decrease takes the form of a 

downward, jump discontinuity in the adoption payoff function. Hence, an increase in the initial estimate 

can result in a decrease the SPNE number of initial adopters whenever there is at least one waiter that can 

adopt in period two. 

Consider the outcome if p=γ2, where γ2 is defined by g(γ2)=α2. If firm i adopts and gets good news, 

then it continues and one waiter adopts in period two. Also assume b(γ2)<ρ1, so if firm i adopts and gets 

bad news, then no firms continue or adopt in period two. Thus, its payoff from lone adoption is 

Ri(a;(w,...,w),γ2)=π(1,γ2)�I+δγ2π(2,α2). However, now consider the outcome for any p just below γ2. If firm 

i adopts and gets good news, then in period two it continues but no waiter adopts because g(p)<α2 for p<γ2. 

Now its lone adoption payoff is Ri(a;(w,...,w),p)=π(1,p)�I+δpπ(1,g(p)). The period-two payoff given good 

news is discontinuous at p=γ2, where it decreases from (almost) expected monopoly profit π(1,α2) to 

expected duopoly profit π(2,α2), so the lone adoption payoff is also discontinuous at p=γ2.6 It is, therefore, 

possible that this adoption payoff is positive for p just below γ2, but negative at γ2, so the SPNE is one firm 

adopts for p just below γ2, but no firm adopts if p=γ2. This is depicted in Figure 1, where 

Ri(a;(w,...,w),p)>0>Ri(a;(w,...,w),γ2) for such p.   

            (FIGURE 1) 

However, as p rises above γ2, the lone adoption payoff must become positive again, certainly for 

p>α1, where π(1,p)>I. Thus, lone adoption can be a SPNE on two disjoint intervals of estimates.  In fact, it 

                                                 
6 It is worth noting that Assumption 2 does not cause this discontinuity. It merely guarantees that the 
payoff function is continuous from the right whenever such a discontinuity occurs. 
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can be a SPNE on as many as M disjoint intervals of estimates. In general, discontinuities in the adoption 

payoff can occur at estimates of the form p=γk where g(γk)=αk whenever there is at least one waiter that can 

adopt in period two, or k<M. If so, then an increase in p can decrease the SPNE number of adopters from k 

to k�1, and adoption by k firms can be a SPNE on disjoint intervals of p, for any k=1,...,M�1. 

Theorem 1. In the SPNE, an increase in the initial estimate of high demand can decrease the number 

of initial adopters. Furthermore, initial adoption by k<M firms can occur on two or more disjoint intervals 

of estimates. 

For example, if N=M=3, then as F changes so that p increases from 0 to 1, the equilibrium number of 

initial adopters can be 0, 1, 0, 1, 2, 1, 2, 3. If the prior is beta (µ,�), one can do this by fixing µ, so that p, 

g(p), and b(p) all increase as � decreases. This allows one to determine the SPNE as F varies so that p rises 

from 0 to 1. For this prior, the critical estimates at which discontinuities can occur are given by 

γk=[(µ+�+1)αk�1]/(µ+�) for k<M. In the algebraic market model given above, let θ*=9, A=c, K=2.25, 

I=.99, and δ=.95. Then π(k,p)=[81p2/(k+1)2]�2.25, ρ1=1/3, α1=.4, ρ2=.5, α2=.6, ρ3=2/3, and α3=.8. Fix 

µ=.4, and start with an ��2.8, so g(p)�ρ1 and no firms adopt. As � decreases and p increases, the SPNE 

have initial adoption by: no firms if p=2/9, firm 1 if p=.298 and g(p)=.598, no firms if p=.3 and g(p)=.6, 

firm 2 if p=4/11 and g(p)=2/3, firm 1 if p=4/9 and g(p)=.737, firms 1 and 2 if p=.5 and g(p)=7/9, firm 1 if 

p=8/15 and g(p)=.8, firms 1 and 2 if p=.6 and g(p)=.814, and all firms if p=.8 and g(p)=.933. 

Notice that a necessary condition for this result is that adoption does not immediately reveal if the 

innovation is a success. If adoption immediately reveals the true state to all firms, as assumed in the 

preceding strategic studies, then the updated good news estimate is g(p)=1 for all p. Thus, good news 

induces all remaining firms to adopt in the next period. The result of Theorem 1 cannot hold with 

instantaneous learning because an increase in the initial estimate cannot further increase the updated good 

news estimate, and thus induce adoption by an additional waiter in the next period.   

Another necessary condition is that good news increases the estimate of high demand more than the 

distance between the critical adoption probabilities. Consider an initial estimate p such that p<αk�1 and 

g(p)=αk. If k�1 firms adopt at p, then each suffers a loss in period one because p<αk�1 implies π(k�1,p)<I. 

Thus, adoption by k�1 firms cannot be a SPNE unless the period-two SPNE payoff is large enough to 

offset this loss. But there is a downward jump discontinuity in the period-two payoff at p, because good 

news induces adoption in period two by a kth firm. This is why it is possible that adoption by k�1 firms is 

not profitable at p, but is profitable for slightly lower estimates p’, where g(p’)<αk and so good news does 

not induce the kth firm to adopt in period two. Hence, this result requires that p<αk�1<αk�g(p), or 

g(p)�p�αk�αk�1. 
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How does the condition g(p)�p�αk�αk�1 vary with parameters in the model? A mean-preserving 

increase in the variance of F (e.g., for a beta prior) increases the extent to which good news raises the 

estimate of high demand, g(p)�p. Such an increase in variance is usually interpreted as greater uncertainty, 

or greater risk, associated with the new good. Next, note that the difference between critical probabilities, 

αk�αk�1, is decreasing in the number of producers k if increased competition decreases each firm=s 

expected profit at a decreasing rate, or π(k,q)�π(k�1,q) is decreasing in k. Because αk is increasing in k, 

higher initial estimates correspond to larger values of αk, and so smaller values of αk�αk�1. Last, consider a 

change such as a decrease in adoption cost or an increase in production profit that increases the number of 

firms that can profitably adopt a success from M to M+1. Denote the new values where expected profit 

equals I by βk. Then one expects βk+1�βk<αk+1�αk (simply because 0<α1<...<αM<1 before the change, but 

0<β1<...<βM<βM+1<1 after), in which case the result is more likely after this change. These last two 

possibilities do hold for reasonable explicit market models, including the one introduced above with 

π(k,p)=[(A+pθ*�c)2/(k+1)2]�K. The next result follows immediately. 

Corollary. An increase in the initial estimate of high demand is more likely to decrease the SPNE 

number of initial adopters, in the sense that g(p)�p increases relative to αk�αk�1, if: (i) the new product is 

riskier; (ii) the initial estimate is higher; or (iii) the number of firms that can profitably adopt a success is 

larger.   

Recall the specific market model presented after Theorem 1, in which α1=.4 and α2=.6. In this case, 

γ2=[.6(µ+�)�.4]/(µ+�) for any beta (µ, �). If the prior is a beta (1,1.5), then p=.4<γ2=.44 and 

g(p)=.57<α2=.6. Hence, as the initial estimate increases from below to α1=.4, the payoff to lone adoption 

does not suffer a downward jump discontinuity because a second firm will not adopt in the next period at 

g(α1). Reducing µ and � proportionately to obtain a beta (.8,1.2) results in a mean-preserving increase in 

the variance of the prior, as now p=γ2=.4 and g(p)=α2=.6. As the initial estimate increases to α1=.4, the 

payoff to lone adoption does suffer a downward jump discontinuity because a second firm adopts in the 

next period at g(α1)=α2. Increasing the risk of the innovation, by a mean-preserving increase in the variance 

of the prior on the probability of high demand, increases the extent to which good news changes the initial 

estimate from .17 to .2, and generates the result that an increase in the initial estimate decreases the SPNE 

number of initial adopters.  

Now recall that Assumption 2 gives the most innovative firm the advantage of deciding to adopt 

before its rivals do. An intriguing result is that the most innovative firm is not always one of the first 

adopters. Recall that a firm adopts initially if and only if its adoption payoff exceeds its waiting payoff. 

Naturally, this advantage gives a firm an adopting payoff at least as large as that of any less innovative 
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rival. However, it also gives a firm a waiting payoff at least as large as that of any less innovative rival. For 

example, suppose that if some firms adopt and get good news, then in period two all incumbents continue, 

but only one of several waiters adopts. Then the most innovative waiter adopts in period two and so has a 

positive waiting payoff, but all the other waiters do not adopt and so have a zero waiting payoff. Therefore, 

the most innovative firm may not be one of the first adopters because its waiting payoff is larger. Note well 

that this argument requires at least three firms: one to adopt initially, so good news is possible, and two 

others to wait, only one of which can adopt in period two. 

Consider, therefore, the SPNE in an example with three firms, N=M=3. Assume the estimates satisfy 

p<α1, g(p)�(α2,α3), and b(p)<ρ1. The good news estimate is chosen so that at least two firms continue or 

adopt in period two, but the third firm would not adopt. The bad news estimate is chosen so that no firms 

continue or adopt in period two. Then the adoption payoff to any firm i is 

Ri(a;w,w,p)=π(1,p)�I+δpπ(2,g(p)) (4) 

if it adopts alone, and  

Ri(a;a,w,p)=Ri(a;w,a,p)=π(2,p)�I+δpπ(2,g(p)) (5) 

if it and one rival adopt. If the adoption payoff is positive if one firm adopts but negative if two firms 

adopt, π(1,p)�I+δpπ(2,g(p))>0>π(2,p)�I+δpπ(2,g(p)), then the SPNE involves initial adoption by one firm, 

with adoption by one waiter in period two given good news.   

That lone adopter, however, may not be firm 1. If it waits, then whether firm 2 or 3 adopts, it is the 

one waiter that adopts in period two given good news, so its waiting payoff is 

R1(w;a,w,p)=δp[π(2,g(p))�I]. (6) 

Therefore, firm 1 waits if δp[π(2,g(p))-I]>π(1,p)�I+δpπ(2,g(p)). In this event, however, firm 2 cannot 

afford to wait. If it waits, then firm 3 adopts and its waiting payoff is R2(w;w,a,p)=0 because, given good 

news, firm 1 is the one waiter that adopts in period two. The unique SPNE in this case has initial adoption 

by only firm 2. Firm 1 is not the first adopter in this case because it has a larger waiting payoff, while all 

firms have the same adoption payoff. Firm 1 has a positive waiting payoff because its leadership position 

guarantees it is the lone adopter in period two, given good news. Firms 2 and 3 have a zero waiting payoff 

because they have no such guarantee. 

Moreover, there are also unique SPNE in which the k most innovative firms are not initial adopters 

for any k<M.  Suppose p<αm, b(p)<ρ1, and g(p)�(αm+k,αm+k+1). If m�M-k firms adopt initially and get good 

news, then in period two all incumbents continue, the k most innovative waiters adopt, but no other waiters 

adopt (m�M�k implies g(p)>αm+k is possible). Hence, all firms have the same adoption payoff, firms 

numbered 1 to k have a positive waiting payoff, but firms numbered k+1 to N have a zero waiting payoff. 
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The unique SPNE, therefore, can be firms numbered k+1 to k+m adopt initially, but all other firms wait. 

Theorem 2. If, and only if, there are at least three firms (N�M�3), there exist SPNE in which initial 

adoption occurs, but the adopters do not include the k most innovative firms (for k=1,...M�1).  

  Again recall the example after Theorem 1. If p=4/11<α1=.4 and g(p)=2/3>α2=.6, we have 

R1(w;a,w,p)=δp[π(2,g(p))-I]=.262>Ri(a;w,w,p)=π(1,p)�I+δpπ(2,g(p))=.041>R2(w;w,a,p)=0 and 

Ri(a;a,w,p)=π(2,p)�I+δpπ(2,g(p))=�1.446<0. As noted above, the unique SPNE in this case is firm 2 

adopts in period one. Then in period two, firm 1 adopts and firm 2 continues given good news in period 

one, but no firm adopts or continues given bad news. 

Hence, if innovative leadership comes from past behavior, the first adopters in the past need not be 

the first adopters of a current innovation. That is, innovative leadership may, by its nature, be transitory in 

that yesterday’s leaders need not be today’s leaders. This interpretation is somewhat problematic, of 

course, because the analysis also shows the most innovative firms often are first adopters. Nevertheless, it 

is accurate to say the advantages of innovative leadership include not only a larger adoption payoff, but 

also a larger waiting payoff that can dominate and thereby preclude the most innovative firms from initial 

adoption. 

Whether a firm adopts first or not, however, its expected SPNE payoff is greater than or equal to that 

of any less innovative rival. The logic of this result is simple. Suppose firm 1 waits initially. Because it 

moves first in period two, it adopts if any waiter does, and so its total waiting payoff is no less than that of 

any other waiter. Similarly, if firm 1 adopts initially, it continues in period two if any incumbent does, and 

so its adoption payoff is no less than that of any other initial adopter. Hence, firm 1’s SPNE payoff is no 

less than that of any other firm. Analogously, firm 2’s SPNE payoff is no less than that of any other firm 

except possibly firm 1, and so on. This proves the following result. 

Theorem 3. Any firm’s SPNE payoff is greater than or equal to that of any less innovative rival. 

This result says the SPNE payoffs are nonincreasing in the numbering of the firms. This is worth 

noting because some studies have found that, in sequential move games with two firms, the leader may 

have a disadvantage in that it earns a smaller payoff than the follower. In Gal-Or [7], for example, this 

occurs because the leader may produce less than the full-information Cournot output in an attempt to 

mislead the follower about its private information on the state of demand. Because all information is public 

in this model, such an effect is not possible. Hence, the fact that firm 1 is not one of the initial adopters 

does not mean there is a first-mover disadvantage, but rather that the first-mover advantage takes the form 

of a larger waiting payoff. 

Two remarks should be made in concluding this section. First, no attempt has been made to 
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characterize all the equilibria of the entire game. This is essentially a hopeless task due to the large number 

of possibilities. There are two sources of difficulty. First, the rankings of the critical probabilities are not 

clear. Although αk<αk+1 and ρk<ρk+1, and ρk<αk for all k, the ranking of αk and ρk+1 is not given. The 

possibilities range from ρ1<α1<ρ2<α2<ρ3<α3, and so on, to ρN<α1. As seen in Section 2, uncertainty about 

these rankings results in the need to consider many possibilities even for the simple case of three firms. 

Second, even given a fixed ranking of critical probabilities, the variable extent to which good and bad 

news change the initial estimate creates difficulties. Given p�(αk,αk+1), all we can conclude is that 

g(p)>p>b(p). The possibilities include everything from αk<b(p)<g(p)<αk+1 to b(p)<ρ1<max{αM,ρN}<g(p). 

This multiplicity of equilibrium possibilities will only increase exponentially if the analysis is 

extended to more than two periods. Nevertheless, the main results should carry over to adoption problems 

of this type with more than two periods. For example, consider the simple extension to three periods. Now 

an increase in p results in not only a higher g(p) in period two, but also a higher g(g(p)) in period three. 

Thus, an increase in the initial estimate results in higher updated estimates that could induce adoption by 

additional firms in both periods two and three. Next, recall the example of Theorem 2 when firm 2 adopts 

initially and firm 1 adopts in the next stage, given good news. It should be simple to extend this to a three-

period example in which firm 3 adopts initially, then firm 2 adopts in period two given good news, and 

then firm 1 adopts in period three given more good news. Finally, Theorem 3 continues to hold because it 

follows from the sequence of moves within periods. 

 

4 Alternative Assumptions on Innovative Leadership 

It is natural to ask if these results depend critically on the form of innovative leadership. There are 

two issues. First, do the results hold without leadership in adoption decisions as defined in Assumption 2? 

Second, do they hold when leadership is derived from a current advantage such as differences in adoption 

costs or production profits?   

The obvious alternative to leadership in adoption decisions is to assume that firms decide to adopt (or 

continue) or not simultaneously in both periods. More precisely, we could consider replacing Assumption 

2 with the following. 

Assumption 2’. In period one, the firms simultaneously decide to adopt (pay I) or not. Each firm then 

observes these actions, and the firms that adopted then make their production choices simultaneously (and 

collect expected profits). After production, all firms observe if demand was high or low. In period two, all 

firms move simultaneously in deciding whether to continue or adopt. Firms that have continued or adopted 

then make their production choices simultaneously, after which all firms observe if demand was high or 
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low. 

There are multiple SPNE under this assumption. For example, if all firms adopt initially, get bad 

news, and b(p)�[ρk�1,ρk), then the period-two Nash equilibria are any k�1 incumbents continue. One might 

argue any reasonable notion of innovative leadership should imply continuation by the k�1 most 

innovative (lowest numbered) incumbents is the focal point equilibrium. In any event, this outcome is a 

Nash equilibrium of the subgame. Also, when some but not all waiters adopt in period two, adoption by 

the most innovative waiters is a Nash equilibrium. Hence, one SPNE of the two-period adoption game with 

simultaneous adoption decisions can be found by assuming the same period-two SPNE behavior used 

above for the game with sequential adoption decisions. It then follows that the results of Theorem 1 and its 

Corollary hold in this game because they depended on only the discontinuity in the period-two expected 

payoff. 

Now consider period one when firms decide to adopt or not simultaneously in period one and period-

two behavior is given as above. Suppose N=M=3, p<α2, g(p)�(α2,α3), and b(p)<ρ1. Let Si(a;sj,sk,p) and 

Si(w;sj,sk,p) be the adopting and waiting payoffs in this game given p and rival strategies (sj,sk). Given bad 

news, no incumbents continue and no waiters adopt in period two.  If two firms adopt and get good news, 

then in period two they continue, but the waiter does not adopt. Similarly, if one firm adopts and gets good 

news, then in period two it continues and the more innovative waiter adopts, but the other waiter does not 

adopt. Hence, for any firm i, 

Si(a;a,w,p)=Si(a;w,a,p)=π(2,p)�I+δpπ(2,g(p)) (7) 

   Si(w;a,w,p)=Si(w;w,a,p)=Si(w;a,w,p)=δp[π(2,g(p))�I],  (8) 

and 

   Si(w;w,a,p)=Si(w;a,w,p)=Si(w;w,a,p)=0. (9) 

  The SPNE has firms 2 and 3 adopt initially, but firm 1 waits, if S2(a;w,a,p)>S2(w;w,a,p), 

S3(a;a,w,p)>S3(w;a,w,p), and S1(a;a,w,p)<S1(w;a,w,p) (notice that the last inequality implies 

S1(a;s2,a,p)<S1(w;a2,a,p) for all s2). This occurs if δp[π(2,g(p))�I]>π(2,p)�I +δpπ(2,g(p))>0, which is 

possible because π(2,p)<I. Firm 1 will not adopt with either firm 2 or 3 because, given that one rival 

adopts, its waiting payoff exceeds its adopting payoff. The same is true for firm 2 if the rival that adopts is 

firm 1. However, if the rival that adopts is firm 3, then firm 2’s total waiting payoff is 0, less than its 

adopting payoff, because firm 1 is the lone adopter in period two given good news. Firm 3’s waiting payoff 

is similarly 0 if either firm 1 or 2 is the rival that adopts. Again, firm 1 is not an initial adopter because its 

waiting payoff is higher. Notice firm 1’s SPNE payoff (its waiting payoff) is greater than those of firms 2 

and 3 (their adopting payoffs), so Theorem 3 holds here also.  
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Naturally, Theorems 2 and 3 cannot hold for all SPNE of the entire game with simultaneous adoption 

decisions in each period. However, this is a moot point because examining all SPNE discards any notion of 

leadership. The main point is that, in any equilibrium where some but not all firms will adopt in the future, 

those firms which are “guaranteed” leadership in the future have a greater waiting payoff, and thus have a 

smaller incentive to adopt immediately. In these cases the initial adopters may be those firms not 

guaranteed leadership in the future. 

Finally, note well that these results do not require a ranking based on past behavior only. For 

example, the ranking of firms as innovators could be based on lower numbered firms having lower R&D 

costs or higher expected profits. Firm i could have R&D cost Ii, where I1<...<IN, or expected profit πi(k,q), 

where π1(k,q)>...>πN(k,q). It is evident that the examples above for both the simultaneous and sequential 

move games can be used to obtain the same results as long as the differences in R&D costs or expected 

profits are sufficiently small.  

Return to the explicit market example following Theorem 1, now with simultaneous moves in each 

period. As p increases, the SPNE have initial adoption by: no firms if p=2/9, firm 1 if p=2/7 and 

g(p)=7/12, no firms if p=.3 and g(p)=.6, firm 1 if p=4/11 and g(p)=2/3, firms 2 and 3 if p=.5 and g(p)=7/9, 

firm 1 if p=8/15 and g(p)=.8, firms 1 and 2 if p=.6, and all firms if p=.8.  This shows Theorems 1 and 2 are 

not vacuous for this adoption game.   

Finally, modify this example by assuming firm i has adoption cost Ii, and I1=.9<I2=.99<I3=1.3 is the 

basis for the innovative ranking. Then, again, initial adoption by firm 2 is the unique SPNE of the 

sequential move game if p=4/11 and g(p)=2/3, and initial adoption by firms 2 and 3 is a SPNE of the 

simultaneous move game if p=.5 and g(p)=7/9.  

 

5 Concluding Remarks 

This paper has examined innovation adoption when uncertainty about its profitability persists over 

some time, rather than being resolved instantaneously by the initial adoption. In this case, favorable 

information from some firm=s adoption may induce future adoption by other firms, but in general will not 

induce adoption by all remaining firms. This leads to somewhat more realistic dynamics in the sense that a 

favorable experience by one firm does not imply the diffusion is completed in the next instant. Although 

only two periods were analyzed, one can see how an extension to additional periods would allow outcomes 

where the innovation realistically diffuses through the industry (i.e., some but not all remaining firms adopt 

at future dates as the estimates probability of success increases over time with the observation of more 

favorable experiences).   
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One interesting implication of this non-instantaneous learning approach is that an increase in the 

initial estimate of high demand can reduce the initial number of adopters. The reason is that an increase in 

the initial estimate also increase the estimate to which all firms would update in the next period if the 

adopters had favorable experiences. Hence, such an increase in the estimate can decrease the future profit 

expected from adoption by inducing an additional firm to adopt tomorrow. This obviously cannot happen 

in an instantaneous learning model where a favorable experience leads to adoption by all remaining firms 

in the next period.        

Another interesting result is that innovative leadership (in the form of a first-mover advantage) does 

not guarantee that the most innovative firms always adopt first. Innovative leadership need not imply first 

adoption because it can give the leader a larger incentive to wait and free ride on its rivals’ experience. The 

conditions that imply this result are not pathological. They are: a more innovative firm decides whether to 

adopt before less innovative rivals do (at least at the last decision date); profit from the innovation is 

stochastic; a waiter can learn from rival adoption; and if at least one firm adopts, then some but not all 

waiters adopt in the next period (i.e., at least three firms). The result therefore also can hold in a game with 

any finite number of periods as long as there is a terminal subgame in which there are at least two waiters, 

not all of whom can adopt. Moreover, the result is also sensible because more innovative firms earn larger 

expected payoffs from the current innovation than do their less innovative rivals. 

 
6 Appendix 

6.1 Proof of Theorem 1 

For k=1,...,M�1, define γk by g(γk)=αk, so g(p) >
<  αk if and only if p >

< γk.  Let F be a prior such that 

b(p)<ρ1 and ρk<p<γk+1<αk, which implies g(p)�(αk,αk+1). If k firms adopt initially, then each has total 

adoption payoff π(k,p)�I+δpπ(k,g(p)) because in period two all k incumbents continue and no waiters 

adopt given good news, but no incumbents continue and no waiters adopt given bad news. Similarly, if 

m>k firms adopt initially, then by Assumption 1 each has a maximum possible total adoption payoff of 

π(m,p)�I+δpπ(k,g(p)). Assume that π(k,p)�I+δpπ(k,g(p))>0, but π(m,p)�I+δpπ(k,g(p))<0 for all m>k. 

Then initial adoption by some k firms must be a SPNE.  Now change F so that p=γk+1 and g(p)=αk. Also 

assume that b(γk)<ρ1 (this is convenient, not necessary). Now if k firms adopt initially, each has total 

adoption payoff π(k,γk+1)�I+δγk+1π(k+1,αk+1) because in period two all k incumbents continue, the most 

innovative waiter adopts by Assumption 3, but no other waiters adopt given good news (again no 

incumbents continue and no waiters adopt given bad news). By Assumption 1, it is possible that both 

π(k,γk+1)�I+ δγk+1π(k,αk+1)>0 and π(k,γk+1)�I+δγk+1π(k+1,αk+1)<0 hold simultaneously. If so, then for 
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arbitrarily small ε>0, the SPNE is k firms initially adopt if p=γk+1�ε. However, at p=γk+1, the SPNE is k�1 

firms adopt if π(k�1,γk+1)�I+δγk+1π(k+1,αk+1)>0. And if π(k�1,γk+1)�I+δγk+1π(k+1,αk+1)<0 and 

π(k�2,γk+1)�I+δγk+1π(k+1,αk+1)>0, then the SPNE is k�2 firms adopt (and so on). The example in the text 

shows this is possible. 

Now change F so p=αk, g(αk)�(αk+1,αk+2), and b(αk)<ρ1. Because π(k,αk)=I and period two expected 

payoffs are nonnegative, any firm's total adopting payoff is nonnegative if k firms adopt initially. Hence, at 

least k firms must adopt initially in the SPNE. If m>k firms adopt initially, then any firm’s maximum 

possible total adopting payoff is π(m,αk)+δpπ(k+1,g(αk)) because at least k+1 firms continue or adopt in 

period two given good news. So, if π(m,αk)+δpπ(k+1,g(αk))<0, which is possible because 

π(m,αk)<π(k,αk)=I for all m>k, then initial adoption by more than k firms cannot be a SPNE. Adoption by 

k firms is a SPNE at p=γk+1�ε and p=αk, but not at p=γk+1�(γk+1�ε,αk). 

 

6.2 Proof of SPNE in Example for Theorem 2 

The SPNE for the entire game are found by computing the SPNE in period one using (1)�(3). This is 

done by inducting backward in period one, starting with firm 3, who observes if firms 1 and 2 adopted or 

not. Notice no incumbents continue and no waiters adopt in period two given bad news because b(p)<ρ1. 

Suppose firms 1 and 2 adopted. If firm 3 adopts and there is good news, then in period two firms 1 and 2 

continue because g(p)>ρ2, but firm 3 does not continue because g(p)<ρ3. If firm 3 waits and there is good 

news, then in period two firms 1 and 2 continue, but firm 3 does not adopt because g(p)<α3. Next suppose 

either firm 1 or 2 (but not both) adopted. If firm 3 adopts and there is good news, then in period two it and 

the other incumbent continue, but the waiter does not adopt. If firm 3 waits and there is good news, then in 

period two the incumbent continues, the other waiter adopts, but firm 3 does not adopt. Now suppose firms 

1 and 2 wait. If firm 3 adopts and gets good news, then in period two it continues, firm 1 adopts, but firm 2 

does not adopt. If firm 3 waits, so all wait in period one, then no firm adopts in period two because p<α1. 

Hence, 

R3(a;a,a,p)=π(3,p)�I+max{δpπ(3,g(p)),0}, 

R3(a;a,w,p)=R3(a;w,a,p)=π(2,p)�I+δpπ(2,g(p)), 

R3(a;w,w,p)=π(1,p)�I+δpπ(2,g(p)), 

 and R3(w;s1,s2,p)=0 for all (s1,s2).  Recall R3(a;a,w,p)<0 by assumption. This and Assumption 1 imply that 

R3(a;a,a,p)<0. And because R3(a;w,w,p)>0 by assumption also, firm 3 adopts if and only if firms 1 and 2 

both wait.   

Next consider firm 2’s decision, after observing firm 1’s choice and knowing (as determined above) 
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how firm 3 will behave after it moves. If firm 1 adopts, then firm 2 knows that, whatever its decision, firm 

3 waits. If firm 2 adopts and there is good news, then in period two it and firm 1 continue, but firm 3 does 

not adopt, so R2(a;a,w,p)=R3(a;a,w,p). If firm 2 waits and there is good news, then in period two it adopts, 

firm 1 continues, but firm 3 does not adopt, so 

R2(w;a,w,p)=δp[π(2,g(p))�I]. 

Suppose instead firm 1 waits. If firm 2 adopts and there is good news, then in period two it 

continues, firm 1 adopts, but firm 3 does not adopt, so R2(a;w,w,p)=R3(a;w,w,p). If firm 2 waits (so firm 3 

adopts) and there is good news, then in period two firm 3 continues, firm 1 adopts, but firm 2 does not 

adopt, so R2(w;w,a,p)=0. Because R2(a;a,w,p)<0 and g(p)>α(2) implies R2(w;a,w,p)>0, firm 2 waits if firm 

1 adopts. But because R2(a;w,w,p)>0, firm 2 adopts if firm 1 waits. Hence, firm 2 adopts if and only if firm 

1 waits. 

To finish the induction, consider firm 1’s decision, knowing how firms 2 and 3 will behave after its 

choice (as determined above). If firm 1 adopts and gets good news, then in period two it continues, firm 2 

adopts, but firm 3 does not adopt, so R1(a;w,w,p)=R3(a;w,w,p). If firm 1 waits, then firm 2 adopts. If there 

is good news, then in period two firm 1 adopts, firm 2 continues, but firm 3 does not adopt, so 

R1(w;a,w,p)=R2(w;a,w,p). Again note that R1(w;a,w,p)>0 because g(p)>α2. Hence, the conditions 

δp[π(2,g(p))�I]>π(1,p)�I+δpπ(2,g(p))>0, which certainly can hold simultaneously because π(1,p)<I, imply 

that R1(a;w,w,p)<R1(w;a,w,p), in which case the unique SPNE is firm 2 adopts alone initially.  

 

6.3 Proof of Theorem 2 

For any m=1,...,M�1, assume a prior F such that p<αm, b(p)<ρ1, and g(p)�(αm+1,αm+2).  Also assume 

π(n,p)�I+δpπ(m+1,g(p))<0 for all n>m. Then because each firm’s maximum possible total adopting payoff 

if n>m firms adopt initially is π(n,p)�I+δpπ(m+1,g(p))<0 and the minimum possible total waiting payoff is 

0, initial adoption by m+1 or more firms is not a SPNE. Next assume δp[π(m+1,g(p))�I]>π(m,p)�I+ 

δpπ(m+1,g(p))>0. This is possible because π(m,p)<I, but π(m+1,g(p))>I. Then initial adoption by firms 

numbered 2 through m+1, but waiting by firm 1 and firms numbered m+2 to N (if N�M+1) is the unique 

SPNE. To see this, notice if m firms adopt initially, then only the most innovative waiter adopts in period 

two given good news. Hence, firm 1’s total waiting payoff is δp[π(m+1,g(p))�I]. Moreover, if firm 1 waits, 

firms 2 through m+1 adopt initially because they have a total waiting payoff of 0, and the total adopting 

payoff to each firm is π(m,p)�I+δpπ(m+1,g(p))>0. Finally, firm 1’s total waiting payoff is greater because 

δp[π(m+1,g(p))�I]>π(m,p)�I+δpπ(m+1,g(p)). This proves the “if” part for the case where firm 1 is not one 

of m�M�1 initial adopters. The proofs for the cases where firms 1 to k are not the m�M�k initial adopters 
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are entirely analogous. 

The “only if” part is proved by showing that if N=M=2, then firm 2 adopting initially cannot be the 

unique SPNE. If firm 2 adopts alone, then firm 1’s total waiting payoff is 0 if g(p)<α1, δp[π(2,g(p))�I] if 

b(p)<α1�g(p), and δ[pπ(2,g(p))+(1�p)π(2,b(p))�I] if b(p)�α1. This is also firm 2’s total waiting payoff if 

firm 1 adopts alone (because, unlike the example in Section 3, there is no firm behind firm 2 to adopt 

initially and exclude if from adopting in period two). Hence, because its total lone adoption payoff is less 

than or equal to firm 1’s by Theorem 3, firm 2 adopting alone cannot be the unique SPNE.  
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