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Abstract

This paper provides a new explanation for why large ¯rms tend to adopt
sooner that also admits the possibility of exceptions in which small ¯rms
adopt sooner. The analysis focuses on the adoption of an innovation of un-
certain pro¯tability by a large ¯rm with two plants and a small ¯rm with one.
Production costs are increasing at the margin in each plant, but economies
of multiplant operations are possible. These have con°icting e®ects on the
incentive to adopt. The large ¯rm earns more from adoption of a success.
However, when an adopter must shut down to learn about the innovation,
the loss of multiplant cost economies reduces the large ¯rm's incentive to
adopt. If there are no multiplant economies, then the large ¯rm is more
likely to lead the di®usion because its greater return from adoption of a suc-
cess dominates. However, if there are multiplant economies, and the large
¯rm's resulting learning cost disadvantage dominates, then the small ¯rm is
more likely to lead the di®usion.
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1 Introduction
One of the empirical regularities associated with the adoption of new tech-
nology in oligopolies is that large ¯rms tend to adopt sooner than small ¯rms
(e.g., see Davies (1979), Mans¯eld (1968, 1971), or Stoneman (1983, 1995)).
The primary reason given for this, of course, is that large ¯rms expect a
greater return from adoption. However, large ¯rms do not always adopt ¯rst,
as can be seen from the di®usion of the basic oxygen furnace and continuous
casting in the U.S. steel industry (Adams and Mueller (1982)). This paper
provides a new explanation for why large ¯rms tend to adopt sooner that
also admits the possibility of exceptions in which small ¯rms adopt sooner.

The analysis focuses on the adoption of an innovation of uncertain prof-
itability when a ¯rm's size is measured by the number of plants it operates.
As is well-known, one reason for operating multiple plants is production costs
that are increasing at the margin. Another reason is economies of multiplant
operations. The empirical evidence on whether there are such economies is
mixed (see, for example, Scherer, et al. (1975)). It often shows that there are
none. Moreover, when such economies do exist, the consensus is that they
involve savings in nonproduction costs, such as costs of transportation, distri-
bution, and/or inventory. Multiplant operation may also involve economies
of massed reserves (the cost savings associated with retaining proportionately
fewer spare parts, backup machines, and repairpersons in reserve).

Interestingly, these two reasons for operating multiple plants can have
con°icting e®ects on the incentive to adopt. A ¯rm with more plants certainly
earns more from (complete) adoption of a success. However, if there are ad-
justment costs associated with adoption, then nonproduction cost economies
actually result in a smaller incentive to adopt for a large ¯rm. Suppose
there are two ¯rms, a large ¯rm with two plants and small ¯rm with one
plant. Also suppose that, when the innovation is ¯rst installed in a plant,
the adopter must shut down that plant while it experiments with (tries to
implement) the innovation in order to learn if it is a success or not. That
is, the opportunity cost of initial adoption includes a \learning cost" in the
form of pro¯t foregone during the experimental implementation period. This
learning cost can be greater for a large ¯rm because the cost savings from
multiplant operations are lost, or at least reduced, when it shuts down one of
its plants to adopt. That is, the pro¯t lost when that plant is shut down ex-
ceeds the \production pro¯t" in either plant, and thus can exceed the pro¯t
lost by the small ¯rm if it shuts down to adopt.
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This learning cost provides an incentive to wait and learn about the inno-
vation from the rival's adoption (see Adams and Mueller (1982) for examples
of this phenomenon in the U.S. steel industry). The incentive to free ride on
rival adoption implies the subgame perfect Nash equilibrium in pure strate-
gies must be either no adoption or a di®usion. In fact, for some probabilities
of success a di®usion is the unique subgame perfect Nash equilibrium. Joint
adoption occurs only if both ¯rms randomize in equilibrium, and in this case
a di®usion led by the large ¯rm or the small ¯rm is also possible. If there are
no economies of multiplant operations, then the large ¯rm leads the di®usion
because the greater return from adoption of a success dominates. However,
if there are such economies, and the large ¯rm's resulting learning cost dis-
advantage dominates, then the small ¯rm leads the di®usion.

By now there is a fairly large theoretical literature on innovation adoption
and di®usion.1 These studies typically assume that ¯rms are identical, and
the exceptions do not focus on di®erences in the size of the ¯rm.2 One
noteworthy exception is David (1969), who analyzes a capital-embodied new
process with lower variable cost but higher ¯xed cost. He shows that a
di®usion occurs if wages rise over time relative to capital costs (notice this
is very similar to Fellner's (1951) argument that a di®usion occurs as the
cost of maintaining a plant with the old technology rises over time). Large
¯rms adopt sooner because their larger outputs mean larger labor savings.
Most empirical studies simply conjecture large ¯rms adopt ¯rst because they
expect to earn more from adoption. For example, Davies (1979) assumes a
¯rm adopts if the expected time to pay o® the adoption cost is less than a
critical pay-o® period. Thus, large ¯rms adopt sooner because their higher
pro¯ts allow them to pay o® the adoption cost sooner.

The next section introduces the two-stage model of adoption under uncer-
tainty, and discusses the Nash equilibria in the period-two subgames. Section
3 derives initial subgame perfect adoption behavior and the conditions un-

1See Reinganum (1989), Rogers (1995), and Stoneman (1995) for surveys.
2In decision-theoretic studies, Jensen (1982) assumes ¯rms di®er in their prior beliefs,

Bhattacharya, Chatterjee, and Samuelson (1986) assume they receive di®erent informa-
tion, and Jensen (1988) assumes they have di®erent capacities to process information. In
a game-theoretic model, Stenbacka and Tombak (1994) assume that there is an implemen-
tation period of uncertain length after adoption, and that the ¯rms di®er in their hazard
rates for the date of successful implementation. Goetz (2000) extends their work to show
that the ¯rm with the higher hazard rate adopts sooner and earns more, in expectation.
In both of these the ¯rms are the same size.
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der which each ¯rm leads the di®usion. An algebraic example with linear
demand and quadratic cost is also provided. Section 4 then concludes, and
proofs are relegated to the Appendix.

2 A Model of Cost-Reducing Technology
Consider a two-period model of a duopoly faced with an exogenously devel-
oped innovation. The new technology can succeed or fail in that it may or
may not reduce marginal cost at all output levels. When it appears, each
¯rm's common knowledge estimate of the probability of success is p 2 [0; 1].
The large ¯rm L has two plants and the small ¯rm S has one plant. The
innovation is adopted by converting a plant to the new technology. That is,
the innovation must be a new machine, technique, or process that can be
grafted onto existing plants. Conversion at any date is instantaneous and
costless, but the ¯rst adoption by either ¯rm does not immediately reveal if
the innovation succeeds or fails. That is, after initial adoption, the adopter
must spend one period trying to implement the new technology to learn if
it succeeds or not. That is, although conversion is costless, initial adoption
is not because it entails a learning cost, the loss of pro¯t from shutting a
plant down to experiment with the innovation and learn whether it succeeds.
The true nature of the innovation is revealed to all at the end of the learning
period. If it succeeds, production with it can begin immediately. If it fails,
production can occur only if that plant is reconverted to the old technology.
Assumption 1. Converting a plant to the new technology, or back to

the old technology, is instantaneous and costless. After initial adoption, one
period is required in order to determine whether the innovation is a success
or failure. No production can occur in the plant during this period. At the
end of this period the success or failure of the innovation becomes common
knowledge.

This assumption is made to focus the analysis sharply on the e®ects of
shutting down to adopt and learn about the innovation. One can also view
this as an extreme version of adjustment costs in investment. That is, this
assumption could be replaced with the following one. Conversion requires a
lump-sum cost and adoption at any date takes time, during which the plant is
shut down, or output is substantially reduced, but the initial adoption takes
longer than subsequent ones (e.g., due to learning-by-doing in adoption).

Now consider the natural assumptions on the ¯rms' °ow pro¯ts. Each

4



¯rm's pro¯t at any date depends on how it and its rival use their plants. Each
plant can be operated with the new technology, if it succeeds (denoted by
n), operated with the old technology (denoted by o), or shut down (denoted
by d). Let L's two plants be denoted by (a1; a2) and S's plant be denoted
by a3, where aj 2 fn; o; dg for j = 1; 2; 3. Then the industry pro¯le of plants
(a1; a2; a3) determines °ow pro¯ts, which are written as ¦L(a1; a2; a3) for L
and ¦S(a1; a2; a3) for S.

First assume that pre-innovation pro¯t is positive, old plants can be al-
ways operated at a pro¯t (i.e., a success is not drastic), and pro¯t from a
plant shut down is zero.
Assumption 2. Plants with the old technology earn positive pro¯t if

operated, but zero pro¯t if shut down.
(a) ¦L(o; o; a3) > ¦L(o; d; a3) > ¦L(d; d; a3) = 0 for any a3.
(b) ¦S(a1; a2; o) > 0 ¦S(a1; a2; d) = 0 for any (a1; a2).
Next, assume plants with the same technology are identical. This has

two implications. Given a3, the plant pro¯les (a1; a2) and (a2; a1) must give
L and S the same pro¯t. Similarly, if each ¯rm operates one plant with the
same technology, then each should earn the same pro¯t.
Assumption 3. Plants with the same technology are identical.
(a) ¦i(a1; a2; a3) = ¦i(a2; a1; a3) for all (a1; a2; a3) and i = S; L.
(b) ¦L(a1; d; a3) = ¦S(a1; d; a3) for a1 = a3 = n or a1 = a3 = o.
Finally, assume adoption of a successful new technology has the usual

e®ects of increasing the adopter's pro¯t but decreasing a nonadopter's pro¯t.
Assumption 4. If the innovation succeeds, adoption in one plant increases

the adopter's pro¯t and decreases its rival's pro¯t. Adoption in all plants
increases pro¯t for both ¯rms, but the increase is greater for the large ¯rm.

(a) ¦L(n; a2; a3) > ¦L(o; a2; a3) for all a2 and a3.
(b) ¦S(a1; a2;n) > ¦S(a1; a2; o) for all (a1; a2).
(c) ¦L(a1; a2;n) < ¦L(a1; a2; o) for all (a1; a2).
(d) ¦S(n; n; a3) < ¦S(n; o; a3) < ¦S(o; o; a3) for all a3.
(e) ¦i(n; n;n) > ¦i(o; o; o) for i = S,L.
(f) ¦L(n; n;n)¡ ¦L(o; o; o) > ¦S(n; n;n)¡ ¦S(o; o; o).
Three remarks are in order. First, notice that Assumptions 2(a), 3, and

4(a) imply that, under the same technology, the large ¯rm earns greater °ow
pro¯t than the small one. Assumption 4(f) says that the large ¯rm's gain
from adoption of a success in both of its plants exceeds the small ¯rm's gain
in its one plant. Nothing else is assumed about how ¯rm size a®ects °ow
pro¯ts at this time (this issue is deferred until Section 3). Second, these
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pro¯ts should be viewed as the Nash equilibrium pro¯ts of a static market
game in which ¯rms maximize pro¯t by choosing outputs if they produce a
homogeneous product, or by choosing either outputs or prices if they produce
di®erentiated products. That is, assuming the ¯rms earn positive pro¯ts is
not very restrictive because it rules out only Bertrand competition with a
homogeneous product. Third, Assumptions 2 ¡ 4 can be derived from any
of several algebraic examples of such duopolies. An example with linear
demand and quadratic cost is presented in Section 3.

To ¯nd the subgame perfect Nash equilibria, the analysis begins with
determination of Nash equilibrium behavior in each of the subgames that
can arise in period two. First note that, if neither ¯rm adopts initially, then
neither ¯rm adopts in period two either. If a ¯rm did adopt in period two, the
required learning period under Assumption 1 implies a ¯rm cannot bene¯t
from a success until the next period, so no ¯rm adopts in the \last" period.3
In this case period two pro¯ts are ¦L(o; o; o) and ¦S(o; o; o).

Suppose instead that the innovation is adopted initially in at least one
plant, so its success or failure becomes common knowledge at the end of
period one. Then Assumptions 1 and 2 guarantee that, if the innovation is a
failure, then both ¯rms revert to the old technology for period two and again
earn pro¯ts ¦L(o; o; o) and ¦S(o; o; o). If the innovation is a success, then
Assumption 4 implies industry-wide adoption of the new technology because
conversion of the remaining plants is costless, and so the ¯rms earn pro¯ts
¦L(n; n;n) and ¦S(n; n;n) in period two.

3 Initial Equilibrium Behavior
Given the Nash equilibrium subgame payo®s when the true state is revealed,
the payo®s to the entire game can now be written in reduced form as func-
tions of only the ¯rms' actions in period one. Let ¯rm i's action (pure strat-
egy) be ¾i, the number of plants in which it adopts, so §L = f0; 1; 2g and
§S = f0; 1g are the strategy sets. Let PL (¾L; ¾S) and PS (¾L; ¾S) be the ex-
pected payo®s to L and S from period one actions (¾L; ¾S), given equilibrium

3This is true for any game with a ¯nite number of stages. However, it is worth noting
that this result also holds in an in¯nite horizon model with learning period of length T > 0.
In such a model, if no ¯rm adopts initially, then absent some duex ex machina (to tell the
¯rms the truth, or change their pro¯ts or conversion cost), nothing changes to induce a
¯rm to adopt in the future.
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behavior in the period two subgames. A subgame perfect Nash equilibrium
(SPNE) in pure strategies for this dynamic adoption game is then a period-
one strategy pair (¾¤L; ¾¤S), and corresponding equilibrium behavior in the
period-two subgames, such that PL (¾¤L; ¾¤S) ¸ PL (¾L; ¾¤S) for all ¾L 2 §L
and PS (¾¤L; ¾¤S) ¸ PS (¾¤L; ¾S) for all ¾S 2 §S.

These payo®s are the discounted pro¯ts from both stages, expected in
period one, when the common estimate of the probability of success is p 2
[0; 1]. If the common discount factor is ¯ > 0, then

PL(2; ¾S) = ¯[p¦L(n; n;n) + (1 ¡ p)¦L(o; o; o)] for all ¾S, (1)

PL(1; 1) = ¦L(o; d; d) + ¯[p¦L(n; n;n) + (1 ¡ p)¦L(o; o; o)], (2)

PL(1; 0) = ¦L(o; d; o) + ¯[p¦L(n; n;n) + (1 ¡ p)¦L(o; o; o)], (3)

PL(0; 1) = ¦L(o; o; d) + ¯[p¦L(n; n;n) + (1 ¡ p)¦L(o; o; o)], (4)

PS(¾L; 1) = ¯[p¦S(n; n;n) + (1 ¡ p)¦S(o; o; o)] for all ¾L, (5)

PS(1; 0) = ¦S(o; d; o) + ¯[p¦S(n; n;n) + (1 ¡ p)¦S(o; o; o)], (6)

PS(2; 0) = ¦S(d; d; o) + ¯[p¦S(n; n;n) + (1 ¡ p)¦L(o; o; o)], (7)

and
Pi(0; 0) = ¦i(o; o; o) + ¯¦i(o; o; o)] for i = S; L. (8)

The learning cost implies that the SPNE cannot have initial adoption
either by L in both plants or by both L and S in one plant. That is, L
never adopts in both plants because it learns as much from adoption in
one plant, and it earns positive pro¯t from operating its second plant with
the old technology, PL(1; ¾S) > PL(2; ¾S) for all ¾S by Assumption (2a).
Moreover, because L can learn from S's adoption, L never adopts if S does,
PL(0; 1) > PL(1; 1) > PL(2; 1) again by Assumption (2a). Analogously, S
never adopts if L does because PS(1; 0) > PS(1; 1) by Assumption (2b).

Thus, there are only three possible period-one outcomes (in pure strate-
gies) in the SPNE: no adoption, (¾¤L; ¾¤S) = (0; 0); L adopts initially in one
plant but S does not, (¾¤L; ¾¤S) = (1; 0); or S adopts initially but L does
not, (¾¤L; ¾¤S) = (0; 1). Essentially, the issue is which ¯rm, if any, adopts
¯rst. Hence, it is essential to compare each ¯rm's incentive to adopt ¯rst,
FL(p) = PL(1; 0) ¡ PL(0; 0) and FS(p) = PS(0; 1) ¡ PS(0; 0) where

FL(p) = ¯p[¦L(n; n;n) ¡ ¦L(o; o; o)] ¡ [¦L(o; o; o) ¡ ¦L(o; d; o)] (9)
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and
FS(p) = ¯p[¦S(n; n;n) ¡ ¦S(o; o; o)] ¡ ¦S(o; o; o). (10)

In each of these, the ¯rst term is the discounted expected gain from a success.
The second (bracketed) term is the learning cost of initial adoption. Each
¯rm has an incentive to adopt initially only if the expected gain exceeds this
certain learning cost.

Naturally, neither ¯rm adopts initially if the innovation is a certain failure
(p = 0) because the learning cost is paid, and there is no expected gain,
FL(0) = ¡[¦L(o; o; o) ¡ ¦L(o; d; o)] < 0 and FS(0) = ¡¦S(o; o; o) < 0.
However, even if the innovation is a certain success (p = 1), L adopts initially
only if

¯[¦L(n; n;n) ¡ ¦L(o; o; o) > ¦L(o; o; o) ¡ ¦L(o; d; o) (11)

and S adopts initially only if

¯[¦S(n; n;n) ¡ ¦S(o; o; o)] > ¦S(o; o; o). (12)

These conditions reemphasize the critical role of the length of the learning
period. That is, although this model has two periods, these periods do not
need be of equal length. One can interpret higher values of ¯ as corresponding
to innovations for which the learning period is short compared to the useful
life of a success. Under this interpretation, the only restriction on ¯ is that
it is positive, because it can exceed 1 if the learning period is short enough.4
Indeed, it is possible that ¯ > 1 is necessary for (11) and/or (12) to hold,
and thus for adoption to occur for any p.

Theorem 1 Under Assumptions 1-4, the only possible outcomes in period
one of the SPNE are as follows:

(i) If (11) holds and (12) does not, there exists unique pL 2 (0; 1) such
that no ¯rm adopts if p · pL and L adopts in one plant if p ¸ pL.

(ii) If (12) holds and (11) does not, there exists unique pS 2 (0; 1) such
that no ¯rm adopts if p · pS and S adopts if p ¸ pS.

4For example, consider a continuous-time model in which the length of the learning
period is T > 0, and the innovation can be used forever after. If the interest rate is r,
then the learning period payo®s are discounted by 1¡e¡rT

r and the remaining payo®s by
e¡rT

r . An increase in T then increases the weight 1¡e¡rT

r on the learning period payo®s
and decreases that on the remaining payo®s. Moreover, the payo®s in (1) ¡ (8) can be
obtained by dividing these continuous-time payo®s by 1 ¡ e¡rT and setting ¯ = e¡rT

1¡e¡rT .
This \modi¯ed" discount factor is decreasing in T , and greater than 1 for all T < log 2

r .
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(iii) If (11) and (12) both hold, then no ¯rm adopts if p · minfpL; pSg,
L adopts in one plant if p ¸ pL, S adopts if p ¸ pS, and L adopts with
probability ¹L(p) and ¯rm S adopts with probability ¹S(p) if p ¸ maxfpL; pSg,
where ¹L(p) 2 (0; 1) for p 2 (pS; 1) and ¹S(p) 2 (0; 1) for p 2 (pL; 1).

For low probabilities of success, p < minfpL; pSg, the unique SPNE is
neither ¯rm adopts initially, and the innovation is never adopted. For in-
termediate probabilities, the unique SPNE is one ¯rm adopts initially: L if
pL < pS and p 2 (pL; pS), and S if pS < pL and p 2 (pS; pL). But for high
probabilities, p > maxfpL; pSg, there are multiple SPNE: either ¯rm adopts
initially, or both randomize and adopt with positive probability. That is, the
pure strategy SPNE involves no adoption or a di®usion.

It is worthwhile to note that, for a success, a di®usion is the unique SPNE
outcome for intermediate probabilities of success. If pS < pL and p 2 (pS; pL),
then S adopts in period one, and L follows by adopting in both plants in
period two. This is an intraindustry di®usion led by S. But if pL < pS and
p 2 (pL; pS), then L adopts in one plant in period one, and it adopts in its
second plant and S follows in period two. This is an intra¯rm di®usion within
L as well as an intraindustry di®usion led by L. Of course, these outcomes
can also occur for high probabilities, but not uniquely (in the mixed strategy
equilibrium, initial adoption by neither ¯rm or both ¯rms can occur with
positive probability). Nevertheless, a di®usion occurs as the unique SPNE
for some p unless pL = pS, an unlikely \razor's-edge" case in this model.

Given these results, it is natural to say that L is \more likely" to lead a
di®usion when pL < pS, and S is more likely to lead when pS < pL. Whether
L is more likely to lead depends on the relative magnitudes of the learning
costs. To see this, note that

pL =
¦L(o; o; o) ¡ ¦L(o; d; o)
¯[¦L(n; n;n) ¡ ¦L(o; o; o)]

(13)

and
pS =

¦S(o; o; o)
¯[¦S(n; n;n) ¡ ¦S(o; o; o)]

. (14)

In each of these, the numerator is the ¯rm's learning cost, while the denom-
inator is the ¯rm's discounted gain from industry-wide adoption of a success
in period two. Because L's gain from adoption is larger by Assumption 4(f),
it is more likely to lead unless its learning cost is also larger.
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The crucial issue now is the e®ect of L's larger size on the relative magni-
tudes of the learning costs. Note well, however, that if there are no economies
of multiplant operation, then L's learning cost is smaller,

¦L(o; o; o) ¡ ¦L(o; d; o) < ¦S(o; o; o), (15)

and it is more likely to lead because (15) implies pL < pS. To see this,
consider the market outcome when each ¯rm has one (identical) plant, so
they produce the same amount and earn the same duopoly pro¯t. If one ¯rm
opens another identical plant, then in the new equilibrium it does not simply
double its previous output and act as a triopolist. Although its total output
surely increases, its output per plant falls, and is less than the other ¯rms's
output. Similarly, its total pro¯t increases, but pro¯t per plant falls and is
less than the other ¯rm's pro¯t. This property also holds in several speci¯c
algebraic models that I have examined, including the one presented below.

As noted in the introduction, the empirical evidence on economies of
multiplant operation is mixed, and tends to support such economies primar-
ily when they involve nonproduction cost savings. If there are such cost
economies, then they are lost, or at least reduced, when L shuts down one of
its plants to adopt initially. These lost cost economies increase L's learning
cost above production pro¯t in the plant shut down. However, if there are
no such cost economies, or they are not substantial, then L's learning cost is
still smaller and it is more likely to lead.

Theorem 2 Under Assumptions 1¡ 4, the large ¯rm is more likely to lead
if there are no economies of multiplant operation, or if they exist but are
small.

Conversely, if economies of multiplant operation are substantial, then L's
learning cost is greater and it becomes possible that S is more likely to lead.

Theorem 3 Under Assumptions 1¡4, the small ¯rm is more likely to lead
only if there are substantial economies of multiplant operation.

It is worthwhile to note that a greater learning cost for L is not su±cient
to guarantee that S is more likely to lead. It is necessary that L not only has a
greater learning cost, but also has a learning cost disadvantage that outweighs
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its gain from industry-wide conversion of a success. That is, pS < pL only if
¦L(o; o; o) ¡ ¦L(o; d; o) >

h
¦L(n;n;n)¡¦L(o;o;o)
¦S(n;n;n)¡¦S(o;o;o)

i
¦S(o; o; o) > ¦S(o; o; o).5

Example. Suppose the ¯rms produce a homogeneous good with inverse
demand P = A ¡ (q1 + q2 + q3) where P is price, qi is L's output in its
plant i (i = 1,2) q3 is S's output, and A > 0 is a constant. L's cost function
is CL = (k1q1 + q21) + (k2q2 + q22) and S's cost function is CS = k3q3 + q23
where ki = k for the old technology and ki = k ¡ " for the new (successful)
technology, and k and " are constants such that A > k > " > 0. Notice that
this form of cost function for L assumes no economies of multiplant operation.
Then qi(o; o; o) = 3

22(A¡ k) for i = 1,2, q3(o; o; o) = 2
11(A¡ k); ¦L(o; o; o) =

6qi(o; o; o)2, and ¦S(o; o; o) = 2q3(o; o; o)2. Similarly, qi(n; n;n) = 3
22(A ¡

k + ") for i = 1,2, q3(n; n;n) = 2
11(A ¡ k + "); ¦L(n; n;n) = 6qi(n; n;n)2,

and ¦S(n; n;n) = 2q3(n; n;n)2. Finally, q1(o; d; o) = q3(o; d; o) = 1
5(A ¡ k);

¦L(o; d; o) = ¦S(o; d; o) = 2q1(o; d; o)2. It then follows that ¦L(n; n;n) ¡
¦L(o; o; o) = 27

242 [2(A¡k)"+ "2] > ¦S(n; n;n)¡¦S(o; o; o) = 16
242 [2(A¡k)"+

"2], ¦L(o; o; o) ¡¦L(o; d; o) = 191
6050(A¡ k)2 < ¦S(o; o; o) = 400

6050(A¡ k)2, and
pL =

³
191
675

´ h
(A¡k)2

2(A¡k)"+"2
i
=

³
191
675

´
pS < pS.

4 Conclusions
This paper shows di®usions must occur, at least for some probabilities of
success, if ¯rms are not identical in size, if a plant must be shut down to
adopt initially and learn about the innovation, and if adoption reveals success
or failure to all after the learning period. Economies of ¯rm size (multiplant
operation) do not necessarily imply the large ¯rm is more likely to lead a
di®usion. Such economies can imply that the learning cost (the pro¯t lost
from shutting down a plant) is greater for the large ¯rm. Hence, the small
¯rm can adopt ¯rst if such economies exist and are large enough. However,
multiplant operation also implies that the large ¯rm's pro¯t increase from
adoption is greater, so it leads if the learning cost is not signi¯cant. Thus,
this paper shows di®usions are more likely than joint adoption when ¯rms
are not identical. It also provides an intuitively appealing reason for why
large ¯rms tend to adopt ¯rst, but need not always adopt ¯rst.

5It is interesting to note that this condition does not depend on the discount factor
¯. Hence, although the length of the learning period is critical in determining whether
adoption occurs, as noted above, it does not a®ect which ¯rm is more likely to lead.
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The analysis is easily extended in several directions. First, the same
results hold for drastic innovations when Assumptions 3 and 4 are changed
to re°ect the fact an old plant may be shut down if a new plant is operated.
The results also hold if the assumption of a learning period is replaced by the
assumption that conversion always takes time (during which a plant is shut
down), but the initial conversion takes longer than subsequent ones. This
extension is more cumbersome and complicated because di®erential times
for conversion and adoption make the use of discrete time somewhat more
arbitrary. There is also a loss of pro¯t when a ¯rm adopts after the new
technology is revealed to be a success. The main di®erence, however, is that
initial adoption now provides a future gain. If a ¯rm adopts initially in a plant
and the innovation succeeds, then that plant is operated in the conversion
period after success is revealed (rather than shut down to be converted then).
Thus, both may adopt initially unless the initial pro¯t loss outweighs this
future gain for both ¯rms. Nevertheless, L's advantage in adoption of a
success persists, so it is more likely to lead unless multiplant economies give
it a large learning cost disadvantage.
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6 Appendix

6.1 Subgames When Success Revealed
If L adopted in one plant and S adopted, then L adopts in its other plant
in period two if ¦L(n; n;n) ¸ ¦L(n; o;n). If S adopted but L did not, then L
adopts in both plants in period two if ¦L(n; n;n) ¸ maxf¦L(n; o;n);¦L(o; o;n)g.
If L adopted in both plants but S did not adopt, then S adopts in period
two if ¦S(n; n;n) ¸ ¦S(n; n; o). Finally, if L adopted in one plant but S
did not, then they play a simultaneous-move game in which each can adopt
or not. S adopts, whether L does or not, if ¦S(n; o;n) ¸ ¦S(n; o; o) and
¦S(n; n;n) ¸ ¦S(n; n; o) (i.e., adopt is a strongly dominant strategy for S).
In this case, L's best reply is to adopt if ¦L(n; n;n) ¸ ¦L(n; o;n). All these
inequalities follow from the conditions in Assumption 4.

6.2 Proof of Theorem 1
One can show from (1) ¡ (3) that PL(1; 0) ¡ PL(2; 0) = ¦L(o; d; o) > 0 and
PL(1; 1) ¡ PL(2; 1) = ¦L(o; d; d) > 0 for all p 2 [0; 1] by Assumption 3(a).
This proves that neither (¾¤L; ¾¤S) = (2; 0) nor (¾¤L; ¾¤S) = (2; 1) can be a
SPNE. It also proves that if a mixed strategy SPNE exists, then in it L must
place zero probability on initial adoption in both plants.

Next, from (2) and (4)¡(6), PL(0; 1)¡PL(1; 1) = ¦L(o; o; d)¡¦L(o; d; d) >
0 and PS(1; 0) ¡ PS(1; 1) = ¦S(o; d; o) > 0 for all p 2 [0; 1] by Assumption
3. Hence, (¾¤L; ¾¤S) = (1; 1) cannot be a SPNE for any p 2 [0; 1].

The only remaining pure strategy SPNE candidates are: neither ¯rm
adopts, (¾¤L; ¾¤S) = (0; 0); L adopts in one plant but S does not, (¾¤L; ¾¤S) =
(1; 0); and S adopts but L does not, (¾¤L; ¾¤S) = (0; 1). Hence, (¾¤L; ¾¤S) =
(1; 0) is a SPNE if PL(1; 0) ¸ PL(0; 0) and PS(1; 0) ¸ PS(1; 1), (¾¤L; ¾¤S) =
(0; 1) is a SPNE if PL(0; 1) ¸ PL(1; 1) and PS(0; 1) ¸ PS(0; 0), and (¾¤L; ¾¤S) =
(0; 0) is a SPNE if PL(0; 0) ¸ PL(1; 0) and PS(0; 0) ¸ PS(0; 1). But, as shown
above, PL(0; 1) > PL(1; 1) and PS(1; 0) > PS(1; 1)for all p. Therefore, if
FL(p) = PL(1; 0)¡PL(0; 0) and FS(p) = PS(0; 1)¡PS(0; 0), then (¾¤L; ¾¤S) =
(1; 0) is a SPNE if FL(p) ¸ 0, (¾¤L; ¾¤S) = (0; 1) is a SPNE if FS(p) ¸ 0,
and (¾¤L; ¾¤S) = (0; 0) is a SPNE if FL(p) · 0and FS(p) · 0. Furthermore,
(¾¤L; ¾¤S) = (1; 0) is the unique SPNE at some p if and only if FL(p) > 0 >
FS(p) at that p, and (¾¤L; ¾¤S) = (0; 1) is the unique SPNE for some p if and
only if FS(p) > 0 > FL(p) at that p.
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As noted in the text, using (3), (5), and (8) ¡ (10), one can show that
Assumption 3 implies FL(0) < 0 and FS(0) < 0, while FL(1) > 0 if and only
if (11) holds, and FS(1) > 0 if and only if (12) holds. Because FL(p) is linear,
if (11) holds, then there exists a unique pL 2 (0; 1) de¯ned by (13) such that
FL(pL) = 0, FL(p)><0 if and only if p><pL. Similarly, because FS(p) is linear,
if (12) holds, then there exists a unique pS 2 (0; 1) de¯ned by (14) such that
FS(pS) = 0, FS(p)><0 if and only if p><pS.

Finally, let D(p) = PL(0; 1) ¡ PL(1; 1) and E(p) = PS(1; 0) ¡ PS(1; 1).
Then a mixed strategy equilibrium in which L adopts in one plant with
probability ¹L and S adopts with probability ¹S exists if and only if ¹L =
FS(p)

FS(p)+E(p)
2 (0; 1) and ¹S = FL(p)

FL(p)+D(p)
2 (0; 1). Because D(p) > 0 for all p

and E(p) > 0 for all p, it follows that ¾L 2 (0; 1) if and only if p > pS and
¾S 2 (0; 1) if and only if p > pL.

6.3 Proof of Theorems 2 and 3
From (13) and (14), pL¡pS has the sign of [¦L(o; o; o)¡¦L(o; d; o)][¦S(n; n;n)¡
¦S(o; o; o)]¡¦S(o; o; o)[¦L(n; n;n)¡¦L(o; o; o)]. And because ¦L(n; n;n)¡
¦L(o; o; o) > ¦S(n; n;n) ¡ ¦S(o; o; o) by Assumption 4(f), it follows that
pL < pS if and only if ¦L(o; o; o)¡¦L(o; d; o) <

h
¦L(n;n;n)¡¦L(o;o;o)
¦S(n;n;n)¡¦S(o;o;o)

i
¦S(o; o; o).

So, (15) is su±cient but not necessary for pL < pS. Similarly, pS < pL if and
only if ¦L(o; o; o) ¡ ¦L(o; d; o) >

h
¦L(n;n;n)¡¦L(o;o;o)
¦S(n;n;n)¡¦S(o;o;o)

i
¦S(o; o; o) > ¦S(o; o; o),

so the converse of (15) is necessary, but not su±cient, for pS < pL.
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