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Maximum Likelihood for Cross-Lagged Panel Models  
with Fixed Effects 
 
ABSTRACT 
 
Panel data make it possible both to control for unobserved confounders and to allow for lagged, 

reciprocal causation. Trying to do both at the same time, however, leads to serious estimation 

difficulties. In the econometric literature, these problems have been solved by using lagged 

instrumental variables together with the generalized method of moments (GMM). Here we show 

that the same problems can be solved by maximum likelihood estimation implemented with 

standard software packages for structural equation modeling (SEM). Monte Carlo simulations 

show that the ML-SEM method is less biased and more efficient than the GMM method under a 

wide range of conditions. ML-SEM also makes it possible to test and relax many of the 

constraints that are typically embodied in dynamic panel models. 

 

1. INTRODUCTION 

Panel data have two big attractions for making causal inferences with non-experimental data: 

• The ability to control for unobserved, time-invariant confounders. 

• The ability to model the direction of causal relationships.  

Controlling for unobservables can be accomplished with fixed effects methods that are now well 

known and widely used (Halaby 2004, Allison 2005a, Allison 2009, Firebaugh et al. 2013). For 

examining causal direction, the most popular approach has long been the cross-lagged panel 

model, originating with the two-wave, two-variable model proposed by Duncan (1969) and 

elaborated by many others (e.g., Markus 1979, Kessler and Greenberg 1981, Finkel 1995, Kenny 
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and Judd 1996, McArdle and Nesselroade 2014, Hamaker et al. 2015). In these models, x and y 

at time t affect both x and y at time t+1.  

Unfortunately, attempting to combine fixed effects models with cross-lagged panel 

models leads to serious estimation problems that are well known in the econometric literature. 

Economists typically refer to such models as dynamic panel models because of the lagged effect 

of the dependent variable on itself. The estimation difficulties include error terms that are 

correlated with predictors, the so-called “incidental parameters problem”, and uncertainties about 

the treatment of initial conditions. For reviews of the extensive literature on dynamic panel data 

models, see Wooldridge (2010), Baltagi (2013), or Hsiao (2014).  

The most popular econometric method for estimating dynamic panel models has long 

been the generalized method of moments (GMM) that relies on lagged variables as instruments. 

This method been incorporated into several widely available software packages, including SAS, 

Stata, LIMDEP, RATS and plm (an R package) , usually under the name of Arellano-Bond  

(AB) estimators. While the AB approach provides consistent estimators of the coefficients, there 

is evidence that the estimators are not fully efficient (Ahn and Schmidt 1995), have considerable 

small-sample bias, and often perform poorly when the autoregressive parameter (the effect of a 

variable on itself at a later point in time) is near 1.0. 

In recent years, econometricians have explored maximum likelihood (ML) estimation as 

a way to overcome many of the limitations of the GMM methodology. These efforts have 

culminated in the work of Moral-Benito (2013) who developed an ML method that effectively 

addresses the key problems of dynamic panel data models. Unfortunately, there is currently little 

software available to implement his method. In this paper, we show that the model and method 

of Moral-Benito falls within the framework of linear structural equation models (SEM), and that 
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it can therefore be estimated in a straightforward way with widely available SEM packages. 

Using simulated data, we show that the ML-SEM method outperforms the AB method under 

most conditions. 

This will be accomplished in several steps: 

• Section 2 explores the relationship between the dynamic panel data models of 

econometrics and the cross-lagged panel models used in other social sciences. 

• Section 3 reviews GMM estimation of dynamic panel data models and examines its 

limitations. 

• Section 4 reviews the development of ML methods for dynamic panel data models. 

• Section 5 shows how the ML method of Moral-Benito can be implemented in the SEM 

framework.  

• Section 6 presents an empirical example. 

• Section 7 presents results from a Monte Carlo study comparing the AB method and the 

ML-SEM method.  

• Section 8 concludes with a discussion.  

 

2. CROSS-LAGGED PANEL MODELS VS. DYNAMIC PANEL DATA MODELS 

Cross-lagged panel models  

We begin with a cross-lagged panel model that is specified in a way that facilitates 

comparisons with the dynamic panel models of econometrics. The data consist of a sample of N 

individuals, each of whom is observed at T points in time (t=1,…,T). Thus, the data set is 

“balanced”, having the same number of observations for each individual. Although the methods 

to be considered can be extended to unbalanced data, the initial development is simpler if that 
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possibility is excluded. We also presume that the number of time points is substantially smaller 

than the number of individuals. 

At each time point, we observe two quantitative variables, xit and yit, and we want to 

allow for the possibility that they have a lagged, reciprocal causal relationship. We may also 

observe a column vector of control variables wit that vary over both individuals and time 

(possibly including lagged values), and another column vector of control variables zi that vary 

over individuals but not over time.  

 Consider the following equation for y, with i = 1,…, N and t = 2, …, T: 

itiiititittit zwyxy εαγδββµ ++++++= −− 111211 ,    (1) 

where µt is an intercept that varies with time, β1 and β2 are scalar coefficients, δ1 and γ1 are row 

vectors of coefficients, εit is a random disturbance, and αi represents the combined effects on y of 

all unmeasured variables that are both constant over time and have constant effects. The lags for 

x and y are shown here as lags of one time unit, but the lags could be greater and could be 

different for each variable.  

We also specify an analogous equation for x: 

itiiititittit zwyxx υηγδββτ ++++++= −− 221413  (2) 

where τt, is an intercept that varies with time, β3, and β4 are scalar coefficients, δ2 and γ2 are row 

vectors of coefficients, υit is a random disturbance, and ηi is a set of individual effects analogous 

to αI in Equation (1). Equations (1) and (2) do not allow for simultaneous causation, which 

would require problematic assumptions in order to estimate and interpret the causal effects.  

These two equations differ from the classic cross-lagged panel model in two ways: first, 

by the introduction of the unobserved individual effects, αi and ηi and, second, by the 
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presumption that the coefficients for all variables are constant over time. The constancy 

assumption can certainly be relaxed, but will be maintained for now for simplicity.  

The individual effects αi and ηi may be specified either as random variables or as sets of 

fixed parameters. Outside of economics, they are usually treated as random variables that are 

independent of all other exogenous variables (e.g., Hamaker et al. 2015).   

 More needs to be said about the random disturbance terms, εit and υit. We assume that 

they are independent of each other (both within and between time points) and normally 

distributed with means of 0 and constant variance (at least across individuals, although we will 

allow for variances that change over time). We also assume that wit and zi are strictly exogenous, 

meaning that for any t and any s, wit and zi are independent of εis and υis. With respect to x and y, 

we cannot assume strict exogeneity because both variables appear as dependent variables. In 

fact, (1) and (2) together imply that εit and υit are correlated with all future values of x and y.  

Dynamic panel data models  

The basic dynamic panel data model found in the econometric literature is essentially the 

same as equation (1), above, but with a few changes in meaning:  

• x is typically a vector rather than a scalar 

• x is usually not lagged  

• αi is treated as a set of fixed constants rather than as a set of random variables. 

The first two differences are relatively unimportant, but the third is crucial. Treating α as a set of 

fixed constants (“fixed effects”) is equivalent to allowing for unrestricted correlations between α 

and the time-varying predictors, both x and w. Allowing these correlations supports a claim that 

these models control for all time-invariant confounders, either observed or unobserved.  
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As in the cross-lagged panel model, wit and zi are assumed to be strictly exogenous. But 

xit is assumed to be predetermined (Arellano 2003) or, equivalently, sequentially exogenous 

(Wooldridge 2010). This means that for all s > t, xit is independent of εis. That is, the x variables 

are independent of all future values of ε but may be correlated with past values of ε.  

The assumption that xit is predetermined allows for the existence of equation (2), but it 

also allows for a much wider range of possibilities. In particular, equation (2) could be modified 

to have multiple lags of y, or it could be a non-linear equation. For example, if x is dichotomous, 

a logistic regression equation could substitute for equation (2).  

It should now be fairly clear that the cross-lagged panel model can be regarded as a 

special case of the dynamic panel data model. You can get from the latter to the former by (a) 

lagging x and reducing it from a vector to a scalar, (b) converting fixed effects into random 

effects, and (c) imposing the structure of equation (2) on the dependence of x on prior y’s.  

We agree with economists that the less restricted model is a better way to go. The ability 

to control for unmeasured confounders is a huge advantage in making claims of causality. And 

not having to specify the functional form of the dependence of x on y both simplifies the 

estimation problem and reduces the danger of misspecification. If you are interested in the 

dependence of x on y, you can always specify a second dynamic panel data model for y and 

estimate that.  

  On the other hand, we believe that those working in the cross-lagged panel tradition have 

chosen the better approach to estimation. Except in the simple case of two-wave data, most 

cross-lagged models are formulated as structural equation models and estimated by maximum 

likelihood using standard SEM packages. Economists have taken a rather different path, one that 

has led to possibly inferior estimators and to a few dead ends.  
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3. GMM ESTIMATION 

Estimation of the dynamic panel data model represented by equation (1) is not 

straightforward for reasons that are well known in the econometric literature. First, the presence 

of the lagged dependent variable as a predictor implies that conventional fixed-effects methods 

will yield biased estimates of the β coefficients (Arellano 2003). Second, even if the lagged 

dependent variable is excluded, the fact that the x’s are merely predetermined, not strictly 

exogenous, implies that conventional fixed effects methods will yield biased estimates of the 

coefficients whenever T>3 (Wooldridge 2010).  

Until recently, econometricians focused almost exclusively on instrumental variable 

methods. The dominant method is usually attributed to Arellano and Bond (1991) although there 

were important earlier precedents (Anderson and Hsiao 1981, Holtz-Eaken et al. 1988). To 

remove the fixed effects (α) from the equations, they reformulated the model in terms of first 

differences: ∆yit = yit – yit-1, ∆xit = xit – xit-1, and ∆wit = wit – wit-1. Note that first differencing not 

only removes α from the equation, but also z, the vector of time-invariant predictors. They then 

used lagged difference scores for y, x, and w as instrumental variables for ∆y and ∆x, and 

estimated the resulting system of equations by the generalized method of moments (GMM). 

Models with instrumental variables imply multiple restrictions on the moments in the 

data, specifically, that covariances between instruments and certain error terms are 0. GMM 

chooses parameter estimates that minimize the corresponding observed moments. Since there are 

multiple moments, the method requires a weight matrix that optimally combines the observed 

moments into a unidimensional criterion. In many settings, GMM requires iteration to minimize 

that criterion. But for the moments used in the AB method, minimization is accomplished by 

solving a linear equation that requires no iteration.  
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AB estimators come in two forms, the one-step method (the usual default in software) 

and the two-step method. The latter uses results from the first step to reconstruct the weight 

matrix, but there is little evidence that its performance is any better than the one-step method 

(Judson and Owen 1999). Another extension is the GMM system estimator of Blundell and Bond 

(1998) which uses both levels and first differences of the lagged variables as instruments. This 

method produces more efficient estimators, but at the cost of making the rather unrealistic 

assumption that the initial observations reflect stationarity of the process generating the data.  

AB estimators are known to suffer from three problems: 

1. Small sample bias. AB estimators are consistent, that is, they converge in probability to 

the true values as sample size increases. However, simulation evidence indicates that they are 

prone to bias in small samples, especially when the autoregressive parameter (the effect of yt-1 on 

yt) is near 1.0 (Blundell and Bond 1998, Kiviet et al. 2014).  

2. Inefficiency. AB estimators do not make use of all the moment restrictions implied by 

the model. As a consequence, they are not fully efficient. Ahn and Schmidt (1995) proposed an 

efficient GMM estimator that does make use of all restrictions, but its nonlinear form makes it 

more difficult to implement. In any case, their method is not generally available in commercial 

software packages.  

3. Uncertainty about the choice of instruments. Anyone who has attempted to use the  

AB method knows that there are many choices to be made regarding what variables to use as 

instruments (and whether they are to be entered as levels or first differences). In principle, it 

would make sense to use all possible instruments that are consistent with the model. But 

available evidence suggests that “too many” instruments can be just as bad as too few, leading to 
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additional small-sample bias (Roodman 2009). This problem is especially acute when T is large, 

in which case the number of potential instruments is also large.   

4. ML ESTIMATION OF DYNAMIC PANEL MODELS 

 In an effort to solve some of these problems, there has been quite a bit of work in the 

econometric literature on ML estimation of dynamic panel models. However, that work has yet 

to have a significant impact on empirical applications. Bhargava and Sargan (1983) considered 

ML estimation of dynamic panel models, but they assumed that the time-varying predictors were 

uncorrelated with the fixed effects, which is precisely what we do not want do. The seminal 

paper of Hsiao et al. (2002) proposed a ML estimator that does allow the predictors in each 

equation to be correlated with the fixed effects. In their view, accomplishing this was difficult for 

two reasons: 

There are two issues involved in the estimation of the fixed effects dynamic panel data 
model when the time-series dimension is short. One is the introduction of individual-
specific effects that increase with the number of observations in the cross-section 
dimension. The other is the initial value problem. Both lead to the violation of the 
conventional regularity conditions for the MLE of the structural parameters to be 
consistent because of the presence of “incidental parameters”. 

The issue of incidental parameters is a well-known problem in maximum likelihood estimation. 

It’s what happens when the number of parameters increases with the sample size, thereby 

invalidating the usual asymptotic arguments for consistency and efficiency of ML estimators 

(Nickell 1981). 

Hsiao et al. dealt with the first issue by using the same device as Arellano and Bond—

taking first differences of the time-varying variables, thereby eliminating the individual-specific 

fixed effects. The likelihood was then formulated in terms of the difference scores. To deal with 

the initial value problem, they introduced assumptions of stationarity for the generation of the 

initial values from some, prior, unobserved process, assumptions that they admitted may be 
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“controversial.” They also presented simulation evidence indicating that the performance of their 

ML estimator was somewhat better than that of several different GMM estimators. 

Although the use of first differences solves the incidental parameters problem for the 

fixed effects, it greatly complicates the subsequent development of the method. Moreover, Han 

and Phillips (2013) argued that the first-difference likelihood is not a true likelihood function and 

that, consequently, it may behave in pathological ways, especially when the autoregressive 

coefficients have values near 1.0.  

For many years, there was no readily available software to implement the ML method of 

Hsiao et al. However, Grassetti (2011) showed that implementation is possible with conventional 

random effects software by working with variables that are differences from initial values instead 

of differences between adjacent time points. Recently, Kripfganz (2016) introduced a Stata 

command, xtdpdqml, that implements both the method of Hsiao et al. and the “random effects” 

model of Bhargava and Sargan (1983). However, Kripfganz also points out that that the method 

of Hsiao et al. does not yield consistent estimators for models with predetermined variables.  

In contrast to Hsiao et al., Moral-Benito (2013) showed that parameters in equations (1) 

or (2) can be directly estimated by maximum likelihood without first differencing and without 

any assumptions about initial conditions. The key insight is that αi and ηi do not have to be 

treated as fixed parameters. As pointed out long ago by Mundlak (1978) and further elaborated 

by Chamberlain (1982, 1984), the fixed effects model is equivalent to a random effects model 

that allows for unrestricted correlations between the individual-specific effects (αi and ηi) and 

the time-varying predictors. Once that approach is adopted, there is no longer any need to impose 

arbitrary assumptions on the initial observations, y1 and x1. They can be treated as strictly 



 12 

exogenous, which is entirely appropriate given the lack of knowledge about what precedes those 

observations. 

5. ML ESTIMATION VIA SEM 

In this section, we show how Moral-Benito’s method can be implemented with SEM 

software. The essential features of the ML-SEM method for cross-lagged panel models with 

fixed effects were previously described by Allison (2000, 2005a, 2005b, 2009), but his approach 

was largely pragmatic and computational. Moral-Benito provided the theoretical foundation for 

this method.  

The justification for using SEM software rests on the fact that equations (1) and (2) are a 

special case of the linear structural equation model proposed by Jöreskog (1978) and generalized 

by Bentler and Weeks (1980). In its most general form, the model may be compactly specified as 

ΓxΒyμy ++=  (3) 

where y is a p×1 vector of endogenous variables that may be either observed or latent, x is a k×1 

vector of exogenous variables that, again, may be either observed or latent (including any 

disturbance terms in the model), µ is a vector of intercepts, and  B and Γ are matrices of 

coefficients. The endogenous vector y and any latent variables in x are assumed to have a 

multivariate normal distribution conditional on the observed exogenous variables. The B matrix 

has zeros on the main diagonal, and both B and Γ may have many additional restrictions. Most 

commonly, these restrictions take the form of setting certain parameters equal to 0, but there may 

also be equality restrictions . The remaining parameter ϴ is the variance matrix for x, which 

usually has many elements set to 0.  
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There are several widely-available software packages that will estimate any special case 

of this model via maximum likelihood. These include LISREL, EQS, Amos, Mplus, PROC 

CALIS (in SAS), sem (in Stata), lavaan (for R), and OpenMx (for R). Remarkably, the earliest 

version of LISREL, introduced in 1973, could probably have estimated the dynamic panel 

models considered here, albeit with considerably more programming effort than with 

contemporary packages.  

 How does this model relate to equations (1) and (2)? Although (1) and (2) can be 

estimated simultaneously, we follow the econometric tradition of focusing only on equation (1), 

while allowing (2) to determine certain constraints (or lack thereof) on ϴ, the variance matrix for 

the exogenous variables.  

Equation (1) is a special case of (3), in the following sense. Without loss of generality, 

we treat wit and zi as scalars rather than vectors. We then have, y' = (yi2, …, yiT), x' = (αi, zi, yi1, 

xi1, …, xi(T-1), wi2, …, wiT, εi2, …, εiT) and µ' = (µ2, …, µT). For Γ we have 
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For ϴ, the following covariances are set to 0:  
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• α with z 
• α with all ε 
• z with all ε 
• all w with all ε 
• all ε with each other 
• xit with εis whenever s ≥ t 

 
All other elements of ϴ are left unrestricted. Note that α is allowed to correlate with both w and 

x. And x is allowed to correlate with all prior realizations of ε, as a consequence of equation (2). 

The restriction that cov(α, z) = 0, while perhaps undesirable, is essential for identification. That 

is, we must assume that the fixed effects are uncorrelated with any time-invariant variables.  

 6. EMPIRICAL EXAMPLE 

 As an example of how to implement ML-SEM for dynamic panel models, we re-analyze 

data described by Cornwell and Rupert (1988) for 595 household heads who reported a non-zero 

wage in each of 7 years from 1976 to 1982. For purposes of illustration, we use only the 

following variables from that data set: 

 y = WKS = number of weeks employed in each year 

 x = UNION = 1 if wage set by union contract, else 0, in each year 

 w = LWAGE = ln(wage) in each year 

 z = ED = years of education in 1976  

The goal is to estimate equation (1), reproduced here 

itiiittititit zwyxy εαγδββµ ++++++= −− 111,21,1 ,   (1) 

with x treated as predetermined, and w and z treated as strictly exogenous. To this point, we have 

assumed that x is a single variable, but the proposed method can easily handle multiple 

predetermined variables. For instance, we could make LWAGE predetermined rather than 

strictly exogenous. 
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 By treating UNION as predetermined, we allow for the possibility that number of weeks 

worked at time t could affect union status at time t+1 or, indeed, at any future time. However, we 

don’t have to specify the functional form of that relationship. It could, for example, be a logistic 

regression model, but it could also have any other functional form.  

 We use PROC CALIS in SAS to illustrate the estimation of equation (1) because CALIS 

has a syntax and default settings that are particularly well suited to dynamic panel models. Like 

most SEM packages, CALIS requires that the data be in the “wide form” rather than the “long 

form”.1 For our example, the wide-form data set has one record per person, with seven variables 

corresponding to each conceptual variable at the seven time points. Thus, we have WKS1, 

WKS2, …, WKS7, LWAGE1, LWAGE2,…, LWAGE7, etc. Of course, there is only one 

variable for ED, which did not vary over time. In contrast, most software packages for the 

analysis of panel data (including those for the AB method) expect the data to be in the long form, 

with separate records for each individual at each point in time.  

 Because the setup for this kind of model will be unfamiliar to most readers, it’s worth 

examining it in some detail. Figure 1 shows the CALIS program for estimating the model. 

(Equivalent code for Stata, Mplus and lavaan can be found in Appendix B). Line 1 invokes the 

CALIS procedure for the data set MY.WAGEWIDE. Line 2 begins the PATH statement, which 

continues until the end of Line 13. Lines 3 through 8 specify an equation for each of the six time 

points. Note that there is no equation specified for WKS1 because at time 1 we do not observe 

the lagged values of the predictor variables.  

The variable ALPHA refers to the “fixed effects” variable αi that is common to all 

equations. When CALIS encounters a variable name like ALPHA that is not on the input data 

                                                 
1 Mplus can analyze “long form” data using its multilevel add-on, but the multilevel mode is not suitable for the 
dynamic panel models considered here.   
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set, it presumes that the name refers to a latent variable. After the equals sign on each line, there 

is a list of coefficient names or values corresponding to the predictor variables in the equation. 

Because the coefficient names are the same for each equation, the corresponding coefficients are 

also constrained to be the same. The coefficient of ALPHA is constrained to have a value of 1.0 

in each equation, consistent with equation (1).  

By default in PROC CALIS, latent exogenous variables like ALPHA are allowed to 

covary with all observed exogenous variables, including WKS1 and all the LWAGE and UNION 

variables. This is exactly what we want to achieve in order for ALPHA to truly behave as a set of 

fixed effects (Teachman et al. 2001, Allison and Bollen 1997, Bollen and Brand 2010). 

However, because ED does not vary over time, the correlation between ALPHA and ED is not 

identified, so it is constrained be 0 in Line 9. Lines 10-13 allow the error term ε in each equation 

to be correlated with future values of UNION. This is the key device that allows UNION to be a 

predetermined (sequentially exogenous) variable.2  

---------------------------------------------------------------- 
FIGURE 1 ABOUT HERE 

---------------------------------------------------------------- 

By default, CALIS allows the intercept to differ for each equation, which is equivalent to 

allowing for an unrestricted effect of time itself. It is easy to constrain the intercepts to be the 

same if desired. With a little more difficulty, one can impose constraints that correspond to a 

linear or quadratic effect of time. Also by default, the error variances are allowed to differ across 

equations, which is not the case for most AB software. Line 14 constrains the error variances to 

be the same for each equation, in order to produce results that can be directly compared with AB 

                                                 
2 An equivalent method is to specify five additional regressions for UNION2 through UNION6 as dependent 
variables, with predictor variables that include all values of LWAGE, prior values of WKS, prior values of UNION, 
and ALPHA.   



 17 

estimates. This line assigns names to the error variances for each variable. Because they are 

given the same name (v), the corresponding parameter estimates are constrained to be the same. 

 Table 1 displays the results in the first four columns. Not surprisingly, there is a highly 

significant effect of WKS(t-1) on WKS(t), although the magnitude of the effect is not large. 

There is also a significant negative effect (at the .05 level) of UNION(t-1) on WKS(t), and a not 

quite significant negative effect of ED on WKS(t). By constraint, these coefficient estimates are 

the same for all six equations.  

---------------------------------------------------------------- 
TABLE 1 ABOUT HERE 

---------------------------------------------------------------- 
 

This is only a small portion of the output from PROC CALIS. The full output also contains 

estimates of the variances and covariances for all the exogenous variables, including ALPHA 

and the error terms for each equation. As with all SEM software, there is also a likelihood ratio 

chi-square statistic comparing the fitted model with a “saturated” model that perfectly reproduces 

the covariance matrix for all the variables. For this example, it has a value of 138.48 with 76 

degrees of freedom, yielding a p-value less than .0001. The 76 degrees of freedom correspond to 

76 over-identifying restrictions on the covariance matrix of the observed variables.  

Because this is a goodness-of-fit statistic, higher p-values indicate a better fitting model. 

So by conventional significance standards, the model does not fit the data. However, the 

consensus in the SEM literature is that with large sample sizes, it may be hard to find any 

reasonably parsimonious model that yields a p-value greater than .05. There are numerous 

alternative measures of fit that are relatively insensitive to sample size, and many of these are 

reported by PROC CALIS. For example, Bentler’s Comparative Fit Index is .995 while Bentler 
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and Bonnet’s Non-Normed Index (also known as the Tucker-Lewis index) is .987.3 Values near 

1.0 are desirable, so these measures suggest a very good fit to the data. One of the most popular 

measures of fit is the root mean squared error of approximation (RMSEA). For this example, it 

has a value of .037. Anything less than .05 is considered to be a good fit.  

For comparison, we also estimated the same model using the standard AB method, as 

implemented with the Stata command xtdpd. The last three columns of Table 1 display the 

results. Note that this method—because it is based on difference scores—cannot produce any 

estimates for the effect of ED, which does not change over time.4 The lagged effects of UNION 

and WKS (on itself) are similar to the estimates produced by PROC CALIS. However, the 

coefficient for the lagged effect of LWAGE is dramatically different from the ML estimate. This 

naturally raises the question of which method performs better, in general.  

 

7. MONTE CARLO STUDY 

  To evaluate the performance of the ML-SEM method and compare it with the  

AB method, we generated observations from the following cross-lagged panel model: 
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for i=1,…, N and t=2,…,T. The time-invariant, unmeasured components αi and ηi, were 

generated as bivariate standard normal variates with correlation ρ. The time-specific disturbances 

                                                 
3 Stata, Mplus, and lavaan report somewhat lower values of these measures because they define the baseline model 
in a different way.   
4 The xtdpd model also included dummy variables for time in order to ensure comparability with the ML-SEM 
estimates.  
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uit and vit were each standard normal and independent of all other exogenous variables. 

Parameters and data structures were varied as shown in Table 2. 

---------------------------------------------------------------- 
TABLE 2 ABOUT HERE 

---------------------------------------------------------------- 
 

The numbers in bold are the values for the baseline model. Each parameter was varied in turn, 

while keeping all others at their baseline values. For each condition, 1000 samples were 

generated. There were a total of 30 different conditions.  

 For each sample, we estimated the parameters in the equation for y as the dependent 

variable using both ML-SEM and AB. We used Stata both to generate the data and to estimate 

the models. The sem command5 was used for ML-SEM and the xtdpd command was used for 

AB. For the latter, we used the default one-step method with all available instruments.6 Program 

code for the Monte Carlo simulations is available in an online appendix.  

 We will focus on the estimates for β1, the cross-lagged effect of x on y, and β2, the 

autoregressive effect of y on y. For each of those parameters and for each condition, Appendix 

Table A.1 reports the mean and the standard deviation of the estimates for β1 across the 1000 

samples, as well as the “coverage”—the proportion of nominal 95 percent confidence intervals 

(calculated in each sample using the conventional normal approximation) that actually include 

the true values. If a method is performing well, the coverage should be close to .95.  

                                                 
5 We actually used the user-written command, xtdpdml, which serves as a simplifying shell for the sem command. 
For details, see Williams et al. (2016) 

6 The ML models were less restrictive than the AB models.  Specifically, the ML-SEM models allowed for a 
different intercept and a different error variance at each point in time, while the AB models constrained those 
estimates to be the same for all time points. Since the data generating model embodied those constraints, both AB 
and ML-SEM should produce consistent estimates. However, the fact that AB estimated fewer parameters may have 
given it some advantage in assessing the relative efficiency of the two estimators.  
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 Unlike AB, ML-SEM requires an iterative algorithm, and that algorithm sometimes fails 

to converge, especially with small samples and more extreme parameter values. Of the 30 

conditions in the simulation, 12 had convergence failures for at least one of the 1,000 samples. 

For each condition, Appendix Table A.1 gives the number of convergence failures. Of those 

conditions that had convergence failures, the number of failures ranged from 1 to 23 (out of 

1,000 samples). Thus, in the worst case, only about 2% of the samples suffered convergence 

failures.  

 Samples with convergence failures are likely to be more extreme or unusual than those 

without such failures, and the exclusion of those samples could give an unfair advantage to the 

ML-SEM. To avoid that, we also excluded the same non-convergent samples from the AB 

estimation.  

  

 In Appendix Table A.1, both ML-SEM and AB estimators appear, at first glance, to 

produce approximately unbiased point estimates of β1 (the cross-lagged effect of x on y) under 

all 30 conditions. However, the AB estimator actually shows a small downward bias under many 

conditions. Specifically, for AB, 11 of the thirty 95% Monte Carlo confidence intervals (not 

shown) do not include the true value because the upper confidence limit is less than the true 

value. For ML-SEM, on the other hand, every 95% Monte Carlo confidence interval includes the 

true value. Despite the downward bias in AB, the two estimators did about equally well for 

interval estimation. For both ML-SEM and AB, the median coverage over the 30 conditions was 

.949. ML-SEM coverage ranged from .934 to .957. For AB, the coverage ranged from .937 to 

.958.  
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 For β2 (the lagged effect of y on itself), AB does substantially worse than ML-SEM, as 

shown in Table A.2. Again, ML-SEM produces approximately unbiased estimates of β2 under all 

conditions. Every 95% Monte Carlo confidence interval included the true value. On the other 

hand, AB estimates are persistently smaller than the true values, and only one of the 95% Monte 

Carlo confidence intervals included the true value. This downward bias is generally small, 

however, except for the smaller sample sizes of N=50 and N=100 where it’s quite apparent. 

Somewhat surprisingly, given earlier literature, the bias is small even when β2 is at or close to 

1.0.  

 The bias in AB for β2 translates into slightly worse coverage for interval estimates. For 

ML-SEM, the median coverage over the 30 conditions was .951 with a range from .937 to .965. 

For AB, the median coverage was .941, ranging from .890 (for N=50) to .961.  

 Next we examine the relative efficiency of ML-SEM and AB. We calculate relative 

efficiency as the ratio of the estimated mean squared error for ML-SEM to the estimated mean 

squared error for AB. Mean squared error is the sampling variance plus the square of the bias. 

Across 30 different conditions, the relative efficiency of AB compared with ML-SEM for 

estimating β1 ranged from .83 (AB did 17% worse) to 1.12 (AB did 12% better), with a median 

of .96. So there was no clear winner for the cross-lagged effect. For β2, however, the relative 

efficiency ranged from .34 (AB did 66% worse) to .87 (AB did 13% worse) with a median of 

.68. To put this in perspective, if the relative efficiency is .50, then using AB rather than ML 

would be equivalent to discarding half of the sample.  

 What affects relative efficiency? Although the relative efficiencies for all conditions are 

shown in the last column of Tables A.1 and A.2, we also present some of them here to highlight 
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key results. Table 3 gives the relative efficiencies of the estimators for β1 and β2 as a function of 

the number of time points: 

---------------------------------------------------------------- 
TABLE 3 ABOUT HERE 

---------------------------------------------------------------- 
 

For both β1 and β2, the relative efficiency of AB declines with the number of time points, 

although the decline is much more precipitous for β2, the autoregressive coefficient. These 

declines are consistent with the literature suggesting that when there are many time points—and 

therefore many instruments—AB is vulnerable to overfitting.  

 Unfortunately, there is a potential problem with the results in Table 3. Because our data 

generating model was not constrained to be stationary, the variances and covariances at later 

time points may have differed from those at earlier time points. So the declines in efficiency 

observed in Table 3 could reflect not the number of time points but rather changes over time in 

the pattern of variances and covariances. To avoid this possible confounding, we first achieved 

approximate stationarity by generating data from 1,000 time points. Then, for T=4, we used the 

data from the next four time points to estimate the model. The same strategy was used for T=5, 7, 

and 10. Results in Table 4 show that the ML and AB estimators do about equally well for β1 

regardless of the number of time points. For β2, however, the efficiency of AB is quite low at all 

time points and declines noticeably as the number of time points grows larger. In this case, the 

inferiority of AB stems both from downward bias in the coefficients and from larger standard 

errors.  

---------------------------------------------------------------- 
TABLE 4 ABOUT HERE 

---------------------------------------------------------------- 
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 Previous work (Kiviet 2005) has suggested that the ratio of the fixed effects variance to 

the error variance may be an important factor in the efficiency of AB. Table 5 confirms this for 

β2 but not for β1. When the standard deviation of α (and η) is held constant at 1.0, increases in 

the standard deviation of ε (and ν) are associated with declines in the relative efficiency of AB 

for β2 but not for β1. The direction is reversed when the standard deviation of ε is held constant 

and the standard deviation of α is varied—higher standard deviations of α result in higher 

relative efficiency of AB for β2.  

---------------------------------------------------------------- 
TABLE 5 ABOUT HERE 

---------------------------------------------------------------- 
 

 Table 6 shows how relative efficiency is affected by the value of ρ, the correlation 

between the two fixed effects, α and η. For β1 there is no apparent trend. For β2, however, the 

relative efficiency of AB increases substantially as the correlation goes from 0 to .90.  

---------------------------------------------------------------- 
TABLE 6 ABOUT HERE 

---------------------------------------------------------------- 
 

 Finally, Table 7 shows how relative efficiency is affected by the magnitude of β1, the 

cross-lagged coefficient. As in the last two tables, the relative efficiencies of AB estimates of β1 

are virtually unaffected. For β2, relative efficiency increases substantially as β1 gets larger.  

---------------------------------------------------------------- 
TABLE 7 ABOUT HERE 

---------------------------------------------------------------- 
 

 There were three other factors that had no apparent effect on relative efficiency: the sign 

of β4 (the cross-lagged effect of y on x), sample size, and the magnitude of β2 (the autoregressive 



 24 

coefficient). The absence of a relationship with sample size and β2 is somewhat surprising. We 

expected ML-SEM to do better in smaller samples, and we expected AB to perform more poorly 

when β2 was close or equal to 1.0. In fact, AB did quite well when β2 = 1, both in absolute terms 

and relative to ML-SEM.  

 Because ML-SEM is based on the assumption of multivariate normality, it has been 

suggested that it may be less robust than AB when distributions are not normal. To check this 

out, for the baseline set of parameter values, all the random draws were made from a chi-square 

distribution with two degrees of freedom, a distribution that is highly skewed to the right. The 

last rows of Tables A.1 and A.2 show that both estimators did well under this condition, but ML-

SEM did better. The relative efficiency of AB was .908 for β1 and .619 for β2.   

 

8. DISCUSSION AND CONCLUSION 

Panel data have a lot of potential for improving our ability to make causal inferences from non-

experimental data. But appropriate methods are needed take advantage of such data. The linear 

dynamic panel model of econometrics protects against two major threats to valid causal 

inference, unmeasured confounders and reverse causation. The Arellano-Bond method can 

produce approximately unbiased estimates of the parameters of that model under a wide range of 

conditions. As shown in this paper, cross-lagged panel models can be estimated within this 

framework.  

 However, the AB method is reputed to be problematic when the autoregressive parameter 

is near 1.0, and its efficiency has also been questioned. Maximum likelihood methods based on 

first differences have been offered as an alternative, but they rely on questionable assumptions 

about the initial conditions. 



 25 

 In this paper, we have shown that the linear dynamic panel model with predetermined 

regressors is a special case of the well-known linear structural equation model. Instead of relying 

on difference scores to eliminate the fixed effects, maximum likelihood estimation of this model 

is accomplished by allowing the fixed effects to have unrestricted correlations with the time-

varying predictors. And the initial observations of the dependent variable are be treated just like 

any other exogenous variables. Reciprocal causation is accommodated by allowing the error term 

in each equation to correlate with future values of the time-dependent predictors. Many different 

statistical packages, both freeware and commercial, can implement the ML-SEM method.  

 Monte Carlo simulations showed that ML-SEM produced approximately unbiased 

estimates under all the conditions studied. Confidence interval coverage was also excellent. The 

AB estimator also did very well for the cross-lagged parameter, although with some downward 

bias. For the autoregressive parameter, however, the downward bias in AB was much more 

substantial. Moreover, for the autoregressive parameter, the ML-SEM estimator was 

substantially more efficient than the AB estimator under all conditions. For this parameter, the 

efficiency of AB relative to ML-SEM declined markedly as the number of time points increased.  

 The ML-SEM method can be extended in several ways, as described in detail in Bollen 

and Brand (2010). Although maximum likelihood is the default estimator for all SEM packages, 

most packages offer alternative methods, including the asymptotic distribution free method of 

Browne (1984). Many packages also have options for robust standard errors. Many of the 

constraints that are implied by the linear dynamic panel model can be easily relaxed in the SEM 

setting. We already showed how the error variances can be allowed to vary with time. One could 

also allow the coefficients to vary with time. As pointed out by Bollen and Brand (2010), one 

can even allow the coefficient of α¸ the fixed effect, to vary with time instead of being 
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constrained to 1 for every time point. This option is very attractive because it removes one of the 

principal limitations of the classic fixed effects estimator: that it does not control for unmeasured 

time-invariant variables when their effects change over time. It is also possible to allow for 

individual-specific trends that are correlated with the time-varying predictors (Teachman 2014).  

 With regard to unbalanced samples and missing data more generally, most SEM 

packages have the option of handling missing data by full information maximum likelihood. 

Unlike AB, full information maximum likelihood can easily handle missing data on predictor 

variables.  

 Although we have not considered models with simultaneous reciprocal effects, such 

effects can certainly be built into SEM models if appropriate instruments are available. Finally, 

some SEM packages (like Mplus or the gsem command in Stata) can estimate similar models for 

categorical dependent variables.  

 Are there any downsides to ML-SEM? As noted earlier, ML-SEM is not suitable when T 

is large relative to N. This is easily seen from the fact that ML-SEM operates on the full 

covariance matrix for all the variables at all points in time. For example, if the predictors in the 

model consist of 9 time varying variables and T=11, then the covariance matrix will be 101 x 

101. And unless N > 101, that matrix will not have full rank, causing the maximization algorithm 

to break down. As noted earlier, ML-SEM will sometimes fail to converge. And even if it 

converges, computation time can be considerably greater than for AB, especially when using 

FIML to handle unbalanced data.  

 As can be seen from Figure 1 and Appendix B, program code for ML-SEM can be more 

complex than for the AB method. Not only are ML-SEM programs typically longer, but it can 

also be challenging for the analyst to figure out exactly how to specify the model so that the 
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correct covariances are either set to 0 or left unconstrained. Different packages have different 

defaults and different ways of overriding those defaults.  

 Of course, this is just a programming issue, and it would certainly be feasible to write a 

Stata command, a SAS macro, or an R function that would automatically set up the correct 

model with minimal input from the user. In fact, a user-written Stata command called xtdpdml is 

already available for ML-SEM (Williams et al. 2016). This command radically reduces the 

programming needed for ML-SEM, and is no more difficult to use than the built-in Stata 

commands for AB estimation (xtabond, xtdpd, or xtdpdsys).  
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 1   proc calis data=my.wagewide; 
 2   path 
 3   wks2 <- wks1 union1 lwage1 ed alpha = a b c d 1, 
 4   wks3 <- wks2 union2 lwage2 ed alpha = a b c d 1, 
 5   wks4 <- wks3 union3 lwage3 ed alpha = a b c d 1, 
 6   wks5 <- wks4 union4 lwage4 ed alpha = a b c d 1, 
 7   wks6 <- wks5 union5 lwage5 ed alpha = a b c d 1, 
 8   wks7 <- wks6 union6 lwage6 ed alpha = a b c d 1, 
 9   alpha <-> ed = 0, 
10   wks2 <-> union3 union4 union5 union6, 
11   wks3 <-> union4 union5 union6, 
12   wks4 <-> union5 union6, 
13   wks5 <-> union6, 
14 <-> wks2 wks3 wks4 wks5 wks6 wks7 = v v v v v v; 
14   run; 

Figure 1.  SAS Program for Estimating Dynamic Panel Model with Fixed Effects. 
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Table 1. Alternative Estimates for Dynamic Model with Fixed and Lagged Effects 

 

 ML-SEM Arellano-Bond 

Predictor Estimate SE z Estimate SE z 

wks(t-1) 0.188 0.020 9.59 0.163 0.039 4.18  

lwage(t-1) 0.588 0.488 1.20 -1.276 .462 -2.76 

union(t-1) -1.206 0.522 -2.31 -1.175 .513 -2.29 

ed -0.107 0.056 -1.89    
 

Table 2. Parameter Values for Monte Carlo Simulation 

N 50, 100, 400, 1600 
T 4, 5, 7, 10 
ρ 0, .25, .50, .75, .90 
β1 0, .25, .50, .75, 1.00 
β2 0, .25, .50, .75, 1.00, 1.25 
β4 -.25, 0, .25 
g .75, 1.00, 1.50, 2.00 
c .50, 1.00, 1.50 2.00 

 

Table 3. How Number of Time Points Affects Relative Efficiency of the AB Method 

  β1 β2 

T=4 1.040 0.827 
T=5 0.944 0.708 
T=7 0.939 0.505 
T=10 0.832 0.337 

 

Table 4. Number of Time Points and Relative Efficiency Under Approximate Stationarity.  

  β1 β2 

T=4 0.982 0.562 
T=5 0.989 0.527 
T=7 1.038 0.371 
T=10 1.029 0.305 
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Table 5. How Relative Efficiency Depends on the Variance of ε and α.  

  β1 β2 
SD(ε)=.25 0.924 0.716 
SD(ε)=1.0 0.944 0.708 
SD(ε)=1.5 0.974 0.640 
SD(ε)=2.0 0.964 0.570 
SD(α)=0.5 0.981 0.629 
SD(α)=1.0 0.944 0.708 
SD(α)=1.5 0.989 0.814 
SD(α)=2.0 0.974 0.863 

 

Table 6. How Relative Efficiency Depends on ρ. 

 
 β1 β2 
ρ=0 0.936 0.378 
ρ =.25 1.044 0.467 
ρ =.50 0.881 0.535 
ρ =.75 0.944 0.708 
ρ =.90 0.942 0.759 

 

Table 7. How Relative Efficiency Depends on β1. 

 β1 β2 
β1=0 0.978 0.483 
β1=.25 0.944 0.708 
β1=.50 0.959 0.750 
β1=.75 0.875 0.814 
β1=1.00 0.938 0.779 
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Appendix A. Results from Monte Carlo Simulations 
 
Table A.1 Performance of ML and AB Estimators of β1, the lagged effect of x on y.  
 

   Maximum Likelihood Arellano-Bond  

Condition Truea 
Non-
Convergee Meanb SDc Coveraged Meanb SDc Coveraged 

Relative 
Efficiency 

N=50 0.25 19 0.256 0.0975 0.934 0.240 0.0918 0.939 1.121 
N=100 0.25 23 0.250 0.0664 0.946 0.242 0.0664 0.943 0.985 
N=400 0.25  0.250 0.0314 0.949 0.249 0.0323 0.952 0.944 
N=1600 0.25  0.250 0.0161 0.947 0.250 0.0164 0.952 0.964 
β2=0 0.25  0.250 0.0325 0.950 0.252 0.0324 0.955 1.004 
β2=.25 0.25  0.251 0.0322 0.947 0.252 0.0310 0.954 1.076 
β2=.50 0.25  0.251 0.0313 0.950 0.249 0.0318 0.949 0.969 
β2=.75 0.25  0.250 0.0314 0.949 0.249 0.0323 0.952 0.944 
β2=.90 0.25  0.251 0.0324 0.953 0.248 0.0343 0.943 0.890 
β2=1.0 0.25  0.249 0.0328 0.949 0.249 0.0346 0.949 0.900 
β2=1.25 0.25  0.249 0.0335 0.957 0.248 0.0345 0.941 0.942 
β1=0 0.00 2 0.000 0.0331 0.947 -0.002 0.0334 0.947 0.978 
β1=.25 0.25  0.250 0.0314 0.949 0.249 0.0323 0.952 0.944 
β1=.50 0.50  0.500 0.0310 0.953 0.498 0.0316 0.958 0.959 
β1=.75 0.75  0.750 0.0304 0.954 0.749 0.0325 0.957 0.875 
β1=1.00 1.00  1.001 0.0300 0.948 1.000 0.0310 0.948 0.938 
β4=-.25 0.25  0.250 0.0314 0.949 0.249 0.0323 0.952 0.944 
β4=0 0.25 4 0.250 0.0337 0.948 0.250 0.0336 0.949 1.007 
β4=.25 0.25 23 0.250 0.0311 0.950 0.251 0.0309 0.949 1.014 
ρ=0 0.25 4 0.251 0.0325 0.947 0.248 0.0336 0.941 0.936 
ρ =.25 0.25  0.250 0.0337 0.939 0.248 0.0329 0.949 1.044 
ρ =.50 0.25  0.250 0.0315 0.954 0.247 0.0334 0.951 0.881 
ρ =.75 0.25  0.250 0.0314 0.949 0.249 0.0323 0.952 0.944 
ρ =.90 0.25  0.252 0.0321 0.940 0.249 0.0331 0.953 0.942 
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SD(ε)=.25 0.25 15 0.251 0.0305 0.950 0.249 0.0317 0.944 0.924 
SD(ε)=1.0 0.25  0.250 0.0314 0.949 0.249 0.0323 0.952 0.944 
SD(ε)=1.5 0.25 1 0.250 0.0325 0.954 0.247 0.0328 0.951 0.974 
SD(ε)=2 0.25 13 0.250 0.0318 0.949 0.247 0.0322 0.954 0.964 
SD(α)=0.5 0.25  0.250 0.0336 0.938 0.247 0.0338 0.937 0.981 
SD(α)=1.0 0.25 21 0.250 0.0314 0.949 0.249 0.0323 0.952 0.944 
SD(α)=1.5 0.25  0.251 0.0315 0.949 0.250 0.0318 0.955 0.989 
SD(α)=2.0 0.25 2 0.251 0.0317 0.945 0.250 0.0322 0.941 0.974 
T=4 0.25  0.250 0.0402 0.947 0.249 0.0394 0.948 1.040 
T=5 0.25  0.250 0.0314 0.949 0.249 0.0323 0.952 0.944 
T=7 0.25 8 0.251 0.0247 0.952 0.248 0.0254 0.949 0.939 
T=10 0.25  0.250 0.0188 0.949 0.246 0.0203 0.941 0.832 
chi-square 0.25  0.252 0.0315 0.941 0.250 0.0331 0.947 0.908 

 

aTrue value of the coefficient in the model producing the data. 
bMean of 1000 parameter estimates. 
cStandard deviation of 1000 parameter estimates 
dPercentage of nominal 95% confidence intervals that include the true value. 
eNumber of non-convergent samples for ML.  
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Table A.2. Performance of ML and AB Estimators of β2, the lagged effect of y on itself.  
 

  Maximum Likelihood Arellano-Bond  

Condition Truea Meanb SDc Coveraged Meanb SDc Coveraged 
Relative 
Efficiency 

N=50 0.75 0.752 0.0917 0.953 0.680 0.1021 0.890 0.549 
N=100 0.75 0.752 0.0675 0.951 0.716 0.0760 0.914 0.657 
N=400 0.75 0.750 0.0325 0.953 0.742 0.0377 0.950 0.708 
N=1600 0.75 0.750 0.0159 0.955 0.748 0.0195 0.946 0.656 

β2=0 0.00 0.001 0.0327 0.948 -0.005 0.0377 0.955 0.738 
β2=.25 0.25 0.248 0.0322 0.964 0.241 0.0456 0.951 0.554 
β2=.50 0.50 0.499 0.0378 0.952 0.488 0.0492 0.947 0.554 
β2=.75 0.75 0.750 0.0325 0.953 0.742 0.0377 0.950 0.708 
β2=.90 0.90 0.901 0.0257 0.961 0.895 0.0289 0.952 0.769 
β2=1.0 1.00 0.999 0.0219 0.956 0.996 0.0243 0.940 0.798 
β2=1.25 1.25 1.250 0.0150 0.947 1.249 0.0160 0.942 0.867 

β1=0 0.25 0.752 0.0425 0.960 0.730 0.0577 0.936 0.483 
β1=.25 0.25 0.750 0.0325 0.953 0.742 0.0377 0.950 0.708 
β1=.50 0.75 0.750 0.0249 0.953 0.747 0.0286 0.952 0.750 
β1=.75 0.75 0.750 0.0208 0.956 0.748 0.0229 0.946 0.814 
β1=1.00 0.75 0.751 0.0175 0.948 0.748 0.0198 0.933 0.779 
β4=-.25 0.75 0.750 0.0325 0.953 0.742 0.0377 0.950 0.708 

β4=0 0.75 0.751 0.0303 0.953 0.743 0.0344 0.942 0.749 
β4=.25 0.75 0.749 0.0294 0.938 0.743 0.0323 0.938 0.788 

ρ=0 0.75 0.753 0.0418 0.948 0.727 0.0640 0.919 0.378 
ρ =.25 0.75 0.752 0.0380 0.948 0.736 0.0540 0.929 0.467 
ρ =.50 0.75 0.750 0.0352 0.948 0.737 0.0464 0.925 0.535 
ρ =.75 0.75 0.750 0.0325 0.953 0.742 0.0377 0.950 0.708 
ρ =.90 0.75 0.751 0.0305 0.950 0.742 0.0343 0.949 0.759 

SD(ε)=.25 0.75 0.751 0.0254 0.942 0.745 0.0296 0.944 0.716 
SD(ε)=1.0 0.75 0.750 0.0325 0.953 0.742 0.0377 0.950 0.708 
SD(ε)=1.5 0.75 0.751 0.0455 0.951 0.731 0.0536 0.935 0.640 
SD(ε)=2 0.75 0.750 0.0519 0.965 0.723 0.0632 0.934 0.570 

SD(α)=0.5 0.75 0.752 0.0552 0.948 0.725 0.0650 0.919 0.629 
SD(α)=1.0 0.75 0.750 0.0325 0.953 0.742 0.0377 0.950 0.708 
SD(α)=1.5 0.75 0.751 0.0232 0.946 0.747 0.0256 0.943 0.814 
SD(α)=2.0 0.75 0.751 0.0176 0.951 0.749 0.0189 0.961 0.863 

T=4 0.75 0.752 0.0483 0.944 0.744 0.0529 0.946 0.827 
T=5 0.75 0.750 0.0325 0.953 0.742 0.0377 0.950 0.708 
T=7 0.75 0.750 0.0224 0.938 0.739 0.0295 0.928 0.505 
T=10 0.75 0.750 0.0157 0.950 0.736 0.0231 0.898 0.337 

chi-square 0.75 0.750 0.0317 0.959 0.744 0.0398 0.941 0.619 
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aTrue value of the coefficient in the model producing the data. 
bMean of 1000 parameter estimates. 
cStandard deviation of 1000 parameter estimates 
dPercentage of nominal 95% confidence intervals that include the true value.  
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Appendix B. Example Program Code for Other Software Packages 

Stata 
 

1 use c:\wagewide.dta, clear 
2 sem (wks2 <- lwage1@a wks1@b union1@c ed@d Alpha@1 E2@1) /// 
3     (wks3 <- lwage2@a wks2@b union2@c ed@d Alpha@1 E3@1) /// 
4     (wks4 <- lwage3@a wks3@b union3@c ed@d Alpha@1 E4@1) /// 
5     (wks5 <- lwage4@a wks4@b union4@c ed@d Alpha@1 E5@1) /// 
6     (wks6 <- lwage5@a wks5@b union5@c ed@d Alpha@1 ) /// 
7     (wks7 <- lwage6@a wks6@b union6@c ed@d Alpha@1 ), /// 
8 var(e.wks2@0 e.wks3@0 e.wks4@0 e.wks5@0) /// 
9 cov(Alpha*(ed E*)@0) cov(_OEx*(E2 E3 E4 E5)@0) ///  

10 cov(E2*(E3 E4 E5)@0) cov(E3*(E4 E5)@0) cov(E4*(E5)@0)  /// 
11 cov(E2*(union3 union4 union5 union6)) /// 
12 cov(E3*(union4 union5 union6)) /// 
13 cov(E4*(union5 union6)) cov(E5*union6) noxconditional 

Explanation 

• Line 1 reads the wide-form data into memory 
• Lines 2-13 are all one single sem command. The /// at the end of each line allows the 

command to be spread across multiple lines in a DO file.  

• Lines 2-7 specify the linear equations for years 2 through 7.  

• The rule is that variable names (like lwage1) that begin with lower-case letters are 
observed variables, while variable names that begin with upper-case letters (like Alpha) 
are latent.  

• @a assigns the name a to the coefficient for lwage1. Giving parameters the same name 
constrains them to be equal. Alpha@1 constrains the coefficient of Alpha to be 1.0.  

• An unfortunate limitation of the sem command is that it does not allow the error term in 
an equation to be correlated with observed, exogenous variables. But that’s exactly what 
we need to do for the dynamic panel model: allow error terms to be correlated with future 
values of the time-dependent predictors, in this case union. The workaround is to 
suppress the original error terms (by setting their variances equal to 0 in line 8), and 
introducing new latent error terms E2-E5 in lines 2-5. There is no need to do that at times 
6 and 7 because there are no future values of union in the model.  

• In line 9, the first cov option sets to 0 the covariance between Alpha and the time-
invariant predictor ed, as well as the covariances between Alpha and the new error terms. 
The second cov option sets to 0 the covariances between the new error terms and all of 
the observed, exogenous variables ( _OEx).  

• Line 10 constrains the all the new error terms to be uncorrelated with each other.  
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• Lines 11-13 allow the new error terms to be correlated with future values of the 
predetermined predictor, union.  

• The noxconditional option on line 13 requests that the means, variances and covariances 
of the observed exogenous variables be included in the parameters. For unknown reasons, 
the model will not run correctly without this option.  

 

This model can also be estimated in Stata with the user-written xtdpdml command, which acts 
as a simplifying shell for the sem command (Williams 2016). The code for this example is: 
 
use c:\wages.dta, clear 
xtset id t 
xtdpdml wks L.lwage, pre(L.union) inv(ed) 
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Mplus 
 

1 data: file = 'C:\wagewide.csv'; 
2 variable: names = 
3    id ed fem blk wks1 wks2 wks3 wks4 wks5 wks6 wks7  
4    lwage1 lwage2 lwage3 lwage4 lwage5 lwage6 lwage7  
5    union1 union2 union3 union4 union5 union6 union7  
6    ms1 ms2 ms3 ms4 ms5 ms6 ms7; 
7 usevar=ed wks1 wks2 wks3 wks4 wks5 wks6 wks7 
8    lwage1 lwage2 lwage3 lwage4 lwage5 lwage6  
9    union1 union2 union3 union4 union5 union6; 

10 model: 
11   alpha by wks2@1 wks3@1 wks4@1 wks5@1 wks6@1 wks7@1;  
12   wks2 on lwage1 (1) 
13             wks1 (2) 
14           union1 (3) 
15               ed (4); 
16   wks3 on lwage2 (1) 
17             wks2 (2) 
18           union2 (3) 
19               ed (4); 
20   wks4 on lwage3 (1) 
21             wks3 (2) 
22           union3 (3) 
23               ed (4); 
24   wks5 on lwage4 (1) 
25             wks4 (2) 
26           union4 (3) 
27               ed (4); 
28   wks6 on lwage5 (1) 
29             wks5 (2) 
30           union5 (3) 
31               ed (4); 
32   wks7 on lwage6 (1) 
33             wks6 (2) 
34           union6 (3) 
35               ed (4); 
36   alpha with wks1 lwage1-lwage6 union1-union6; 
37   wks2 with union3-union6; 
38   wks3 with union4-union6; 
39   wks4 with union5 union6; 
40   wks5 with union6; 
41   ed on wks1 lwage1-lwage6 union1-union6; 
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Explanation 

• Line 1 specifies the location of the data file. It must be a text file in free format: one record 
per person, no variable names, and spaces between values. 

• Lines 2-6 assign names to the variables in the order in which they appear on the data file.  

• Lines 7-9 restrict the variables to those that actually appear in the model. 

• Line 10 begins the model specification. 

• Line 11 defines the latent variable alpha by specifying its indicators, each of which has a 
“factor loading” constrained to be 1.0. 

• Lines 12-15 specify the first regression equation. In order to constrain coefficients to be the 
same across equations, the predictors much be on different lines, with a number in 
parentheses at the end of each line.  

• Lines 16-35 specify the regressions for the remaining time points. Coefficients for variables 
followed by the same numbers are constrained to be the same.  

• Line 36 allows the latent variable alpha to be correlated with the predictor variables, except 
for ed. 

• Lines 37-40 allow the error term in each equation to be correlated with future values of the 
predetermined variable union.  

• Line 41 allows ed to be correlated with all the other exogenous variables. It accomplishes 
this by specifying a regression with ed as the dependent variable.  
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lavaan (R package) 
 

1 wage <- read.table("C:/wagenames.txt",header=T) 
2 wagemod <-' 
3 alpha =~ 1*wks2 + 1*wks3 + 1*wks4 + 1*wks5 + 1*wks6 + 1*wks7 
4 wks2 ~ a*wks1 + b*union1 + c*lwage1 + d*ed  
5 wks3 ~ a*wks2 + b*union2 + c*lwage2 + d*ed  
6 wks4 ~ a*wks3 + b*union3 + c*lwage3 + d*ed  
7 wks5 ~ a*wks4 + b*union4 + c*lwage4 + d*ed  
8 wks6 ~ a*wks5 + b*union5 + c*lwage5 + d*ed  
9 wks7 ~ a*wks6 + b*union6 + c*lwage6 + d*ed  

10 wks2 ~~ union3 + union4 + union5 + union6 
11 wks3 ~~ union4 + union5 + union6 
12 wks4 ~~ union5 + union6 
13 wks5 ~~ union6 
14 alpha ~ wks1+lwage1+lwage2+lwage3+lwage4+lwage5+lwage6+   
15    union1+union2+union3+union4+union5+union6 
16 union6 ~ ed+wks1+lwage1+lwage2+lwage3+lwage4+lwage5+lwage6+ 
17    union1+union2+union3+union4+union5 
18 union5 ~ ed+wks1+lwage1+lwage2+lwage3+lwage4+lwage5+lwage6+ 
19    union1+union2+union3+union4 
20 union4 ~ ed+wks1+lwage1+lwage2+lwage3+lwage4+lwage5+lwage6+    
21    union1+union2+union3 
22 union3 ~ ed+wks1+lwage1+lwage2+lwage3+lwage4+lwage5+lwage6+  
23    union1+union2 ' 
24 wagefit <- sem(wagemod,data=wage) 
25 summary(wagefit) 

 
Explanation 

• Line 1 reads the data from a text file in free format with variable names in the first row. This 
data set is assigned the name wage.  

• Lines 2-23 specify the model, which is stored in the object wagemod. The model 
specification is a “literal” that is demarcated by single quotes.  

• Line 3 defines the latent variable alpha by naming its indicators, each with a “factor loading” 
of 1.0. The symbol =~ means “is measured by”.  

• Lines 4-9 specify the six regression equations. The symbol ~ means “is regressed on.” The 
letters preceding each variable are the names of the coefficients. Coefficients with the same 
names are constrained to be equal.  

• Lines 10-13 allow the error terms in each of the equations to be correlated with future values 
of the predetermined variable union. The symbol ~~ means “is correlated with.”  

• Lines 14-15 allow the latent variable alpha to be correlated with other exogenous variables, 
except for ed.  

• Lines 16-23 allow the union variables to be correlated with other exogenous variables. This 
is necessary because lines 10-13 caused the union variables to be treated as endogenous, and 
the default in lavaan is to presume that endogenous and exogenous variables are 
uncorrelated.  
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• Line 24 calls the sem function which actually fits the model, using the wage data and the 
wagemod model specification.  

• Line 25 reports the estimates and associated statistics.  
 


