Using Stata for Categorical Data Analysis

NOTE: These problems make extensive use of Nick Cox's tab_chi, which is actually a collection of routines, and Adrian Mander's ipf command. From within Stata, use the commands ssc install tab_chi and ssc install ipf to get the most current versions of these programs. Thanks to Nick Cox, Richard Campbell and Philip Ender for helping me to identify the Stata routines needed for this handout.

This handout shows how to work the problems in Stata; see the related handouts for the underlying statistical theory and for SPSS solutions. Most of the commands have additional optional parameters that may be useful; type help commandname for more information.

CASE I. COMPARING SAMPLE AND POPULATION DISTRIBUTIONS.

Suppose that a study of educational achievement of American men were being carried on. The population studied is the set of all American males who are 25 years old at the time of the study. Each subject observed can be put into 1 and only 1 of the following categories, based on his maximum formal educational achievement:

1 = college grad
 2 = some college
 3 = high school grad
 4 = some high school
 5 = finished 8th grade
 6 = did not finish 8th grade

Note that these categories are <u>mutually exclusive and exhaustive</u>.

The researcher happens to know that 10 years ago the distribution of educational achievement on this scale for 25 year old men was:

1 - 18% 2 - 17% 3 - 32% 4 - 13% 5 - 17% 6 - 3%

A random sample of 200 subjects is drawn from the current population of 25 year old males, and the following frequency distribution obtained:

The researcher would like to ask if the present population distribution on this scale is exactly like that of 10 years ago. That is, he would like to test

- H₀: There has been no change across time. The distribution of education in the present population is the same as the distribution of education in the population 10 years ago
- H_A: There has been change across time. The present population distribution differs from the population distribution of 10 years ago.

Stata Solution. Surprisingly, Stata does not seem to have any built-in routines for Case I, but luckily Nick Cox's chitesti routine (part of his tab_chi package) is available. Like other Stata "immediate" commands, chitesti obtains data not from the data stored in memory but from numbers typed as arguments. The format (without optional parameters) is

chitesti #obs1 #obs2 [...] [\ #exp1 #exp2 [...]]

In this case,

. chitesti 35 40 83 16 26 0 \ 36 34 64 26 34 6, sep(6)

observed frequencies from keyboard; expected frequencies from keyboard

Pearson chi2(5) = 18.4557 Pr = 0.002 likelihood-ratio chi2(5) = 24.6965 Pr = 0.000

+-----+

ļ	observed	expected	obs – exp	Pearson
	35	36.000	-1.000	-0.167
ĺ	40	34.000	6.000	1.029
İ	83	64.000	19.000	2.375
ĺ	16	26.000	-10.000	-1.961
İ	26	34.000	-8.000	-1.372
ĺ	0	6.000	-6.000	-2.449
+				+

The significant chi-square statistics imply that the null should be rejected, i.e. the distribution today is not the same as 10 years ago.

Alternatively, we could have the data in a file and then use the chitest command, e.g. the data would be

```
. list observed expected, sep(6)
```

-	+	
	observed	expected
1.	35	36
2.	40	34
3.	83	64
4.	16	26
5.	26	34
6.	0	б
-	+	

We then give the command

. chitest observed expected, sep(6)

observed frequencies from observed; expected frequencies from expected

Other Hypothetical Distributions: In the above example, the hypothetical distribution we used was the known population distribution of 10 years ago. Another possible hypothetical distribution that is sometimes used is specified by the <u>equi-probability model</u>. The equi-probability model claims that the expected number of cases is the same for each category; that is, we test

H₀: $E_1 = E_2 = ... = E_c$

H_A: The frequencies are not all equal.

The expected frequency for each cell is (Sample size/Number of categories). Such a model might be plausible if we were interested in, say, whether birth rates differed across months. If for some bizarre reason we believed the equi-probability model might apply to educational achievement, we would hypothesize that 33.33 people would fall into each of our 6 categories.

With the chitesti and chitest commands, if you DON'T specify expected frequencies, the equi-probability model is assumed. Hence,

Or, using a data file,

. chitest observed, sep(6)

observed frequencies from observed; expected frequencies equal

Pearson chi2(5) = 119.3800 Pr = 0.000 likelihood-ratio chi2(5) = 133.0330 Pr = 0.000

+			
observed	expected	obs - exp	Pearson
35	33.333 33.333	1.667 6.667	0.289 1.155
83	33.333	49.667	8.603
26	33.333	-17.333	-3.002
0	33.333	-33.333	-5.774

Obviously, the equi-probability model does not work very well in this case, but there is no reason we would have expected it to.

CASE II. TESTS OF ASSOCIATION

A researcher wants to know whether men and women in a particular community differ in their political party preferences. She collects data from a random sample of 200 registered voters, and observes the following:

	Dem	Rep	
Male	55	65	
Female	50	30	

Do men and women significantly differ in their political preferences? Use $\alpha = .05$.

Stata Solution. There are various ways to do this in Stata. Nick Cox's tabchii and tabchi commands, which are part of his tab_chi package, can be used. See their help files. But, Stata's tabi and tabulate commands are already available for Case II. tabi has the following format:

tabi #11 #12 [...] \setminus #21 #22 [...] [\setminus ...], tabulate_options

i.e. you enter the data for row 1, then row 2, etc. The command also includes several options for displaying various statistics and other types of information, e.g. chi2 gives you the Pearson chi-square, lrchi2 gives you the Likelihood Ratio Chi-Square, and exact gives you Fisher's Exact Test. For this problem,

. tabi 55 65 $\50$ 30, chi2 lrchi2 exact

	col			
row	1	2	Total	
1 2	55 50	65 30	120 80	
Total	105	95	200	
Pe likelihood 1 1-sided 1	earson chi2(1) -ratio chi2(1) Fisher's exact Fisher's exact	= 5.346 = 5.387 =	67 Pr = 0.0 75 Pr = 0.0 0.0 0.0)21)20)22)15

You could also enter the data like this: let gender = 1 if male, 2 if female; party = 1 if Democrat, 2 =Republican; wgt = frequency. Then,

. list gender party wgt

-	+		+
	gender	party	wgt
1.	1	1	55
2.	1	2	65
3.	2	1	50
4.	2	2	30
-	+		+

We can now use Stata's tabulate command (which can be abbreviated tab). The [freq=wgt] parameter tells it to weight each of the four combinations by its frequency.

. tab gender party [freq = wgt], chi2 lrchi2 exact

```
-> tabulation of gender by party
```

	party			
gender	1 +	2	Total	
1	55	65	120	
2	50	30	80	
Total	105	95	200	
Pe	earson chi2(1)	= 5.346	57 $Pr = 0$.021
likelihood-	-ratio chi2(1) Fisher's exact	= 5.387 =	75 Pr = 0	.020
1-sided H	Fisher's exact	=	0	.015

If you have individual-level data, e.g. in this case the data set would have 200 individual-level records, the tab command is

. tab gender party, chi2 lrchi2 exact

-> tabulation of gender by party

gender	party 1	2	Total
1 2	55 50	65 30	120 80
Total	105	95	200
Pe likelihood H 1-sided H	earson chi2(1) = -ratio chi2(1) = Fisher's exact = Fisher's exact =	5.3467 5.3875	Pr = 0.021 Pr = 0.020 0.022 0.015

Sidelights. (1) I used the command expand wgt to create an individual-level dataset. This duplicated records based on their frequencies, i.e. it took the tabled data and expanded it into 200 individual-level records. (2) Yates correction for continuity is sometimes used for 1 X 2 and 2 X 2 tables. I personally don't know of any straightforward way to do this in Stata. [UPDATE OCT 2014: The user-written exactcc command (findit exactcc) can calculate the Yates correction if you really need it.] Fisher's Exact Test is generally better anyway. (3) Fisher's Exact Test is most useful when the sample is small, e.g. one or more expected values is less than 5. With larger N, it might take a while to calculate.

Alternative Approach for 2 X 2 tables. Note that, instead of viewing this as one sample of 200 men and women, we could view it as two samples, a sample of 120 men and another sample of 80 women. Further, since there are only two categories for political party, testing whether men and women have the same distribution of party preferences is equivalent to testing whether the same proportion of men and women support the Republican party. Hence, we could also treat this as a two sample problem, case V, test of $p_1 = p_2$. We can use the prtesti and prtest commands. We'll let p = the probability of being Republican. Using prtesti,

Using a data file, we first create a new version of party that is coded 0 = Democrat, 1 = Republican, and then use the prtest command.

. gen party2 = party - 1 . prtest party2, by(gender)						
Two-sample tes	st of proport	ion		Male: Female:	Number of obs = Number of obs =	= 120 = 80
Variable	Mean	Std. Err.	 Z	P> z	[95% Conf.	Interval]
Male Female	.5416667 .375	.0454848 .0541266			.4525181 .2689138	.6308152 .4810862
diff	.1666667 under Ho:	.0707004	2.31	0.021	.0280963	.305237
Ho: proportion(Male) - proportion(Female) = diff = 0 Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 z = 2.312 $z = 2.312$ $z = 2.312P < z = 0.9896 P > z = 0.0208 P > z = 0.0104$						
<pre>. * z squared . display r(z) 5.3467001</pre>	= the chi-sq) ^ 2	uare value we	got ea	rlier		

A small advantage of this approach in this case is that the sign of the test statistic is meaningful. The positive and significant z value tells us men are more likely than women to be Republicans.

CASE III: CHI-SQUARE TESTS OF ASSOCIATION FOR N-DIMENSIONAL TABLES

A researcher collects the following data:

Gender/Party	Republican		Democrat		
	W	NW	W	NW	
Male	20	5	20	15	
Female	18	2	15	5	

Test the hypothesis that sex, race, and party affiliation are independent of each other. Use $\alpha = .10$.

Stata Solution. Problems like this can be addressed using advanced Stata routines like poisson and glm. For our current purposes, however, Adrian Mander's ipf command (iterative proportional fitting) provides a simple, straightforward solution. (ipf also could have been used for some of the previous problems.)

The format of the ipf command depends on how the data have been entered. One approach is to enter the data as 8 cases, with the variables gender, race, party and freq:

. list , sep(4)

	+			4
	gender	race	party	freq
1.	Male	White	Republican	20
2.	Male	NonWhite	Republican	5
3.	Male	White	Democrat	20
4.	Male	NonWhite	Democrat	15
5.	Female	White	Republican	18
6.	Female	NonWhite	Republican	2
7.	Female	White	Democrat	15
8.	Female	NonWhite	Democrat	5

You then use ipf specifying [fw = freq], i.e. you weight by the frequency count. (If instead your data set consists of the 100 individual-level cases, then just leave this parameter off.)

The fit parameter tells ipf what model to fit; by specifying fit(gender+race+party) we tell ipf to fit the model of independence, i.e. we fit the main effects only but do not allow for any interactions (dependence) among the variables.

```
. ipf [fw = freq], fit(gender + race + party)
Deleting all matrices.....
Expansion of the various marginal models
        -------
marginal model 1 varlist : gender
marginal model 2 varlist : race
marginal model 3 varlist : party
unique varlist gender race party
N.B. structural/sampling zeroes may lead to an incorrect df
Residual degrees of freedom = 4
Number of parameters = 4
Number of cells
                             = 8
Loglikelihood = 166.0760865136649
Loglikelihood = 166.076086513665
Goodness of Fit Tests
_____
df = 4
Likelihood Ratio Statistic G^2 = 9.0042 p-value = 0.061
Pearson Statistic X^2 = 9.2798 p-value = 0.054
```

These are the same chi-square statistics we got before. If we are using the (rather generous) .10 level of significance, we should reject the model of independence. However, we do not know where the dependence is at this point.

CONDITIONAL INDEPENDENCE IN N-DIMENSIONAL TABLES

Using the same data as in the last problem, test whether party vote is independent of sex and race, WITHOUT assuming that sex and race are independent of each other. Use $\alpha = .05$.

Stata Solution. We are being asked to test the model of <u>conditional independence</u>. This model says that party vote is not affected by either race or sex, although race and sex may be associated

with each other. Such a model makes sense if we are primarily interested in the determinants of party vote, and do not care whether other variables happen to be associated with each other.

To estimate this model with ipf, we use the * parameter to allow for an interaction (dependence) between gender and race, but we do not allow for gender or race to interact with party:

```
. ipf [fw = freq], fit(gender + race + party + gender*race)
Deleting all matrices.....
Expansion of the various marginal models
_____
marginal model 1 varlist : gender
marginal model 2 varlist : race
marginal model 3 varlist : party
marginal model 4 varlist : gender race
unique varlist gender race party
N.B. structural/sampling zeroes may lead to an incorrect df
Residual degrees of freedom = 3
Number of parameters = 5
Number of cells = 8
Loglikelihood = 167.6620628360595
Loglikelihood = 167.6620628360595
Goodness of Fit Tests
_____
df = 3
Likelihood Ratio Statistic G<sup>2</sup> = 5.8322 p-value = 0.120
Pearson Statistic X^2 = 5.6146 \text{ p-value} = 0.132
```

Again, the chi-square statistics are the same as before. Because they are not significant at the .05 level (or .10 for that matter) we do NOT reject the model of conditional independence. Having said that, however, it can be noted that the model probably should include an effect of race on party affiliation, as the fit improves significantly when this interaction is added to the model:

```
. ipf [fw = freq], fit(gender + race + party + gender*race + race*party)
N.B. structural/sampling zeroes may lead to an incorrect df
Residual degrees of freedom = 2
Number of parameters = 6
Number of cells
                              = 8
Loglikelihood = 170.486282357668
Loglikelihood = 170.4862823576681
Goodness of Fit Tests
_____
df = 2
Likelihood Ratio Statistic G^2 = 0.1838 \text{ p-value} = 0.912
Pearson Statistic X^2 = 0.1841 \text{ p-value} = 0.912
. display 5.8322-.1838
5.6484
. display chi2tail(1, 5.6484)
.01747131
```

Note that, when the race*party interaction is added to the model, the Likelihood Ratio Chi-Square drops from 5.8322 to .1838, i.e. by 5.6484. This change (which has 1 degree of freedom) is significant at the .0175 level, implying that we should allow for a race*party interaction. We'll talk more about chi-square contrasts between models during 2nd semester.