Using Stata for One-Way Analysis of Variance

We have previously shown how the following one-way ANOVA problem can be solved using SPSS. We will now approach it using Stata. See the related handouts for the underlying theory and formulas.

Problem: A firm wishes to compare four programs for training workers to perform a certain manual task. Twenty new employees are randomly assigned to the training programs, with 5 in each program. At the end of the training period, a test is conducted to see how quickly trainees can perform the task. The number of times the task is performed per minute is recorded for each trainee, with the following results:

Observation	Program 1	Program 2	Program 3	Program 4
1	9	10	12	9
2	12	6	14	8
3	14	9	11	11
4	11	9	13	7
5	13	10	11	8
$T_{\rm Aj} = \Sigma y_{ij}$	59	44	61	43
$\hat{\boldsymbol{\mu}}_{j} = \mathrm{T}_{\mathrm{A}j}/\mathrm{N}_{\mathrm{j}}$	11.8	8.8	12.2	8.6

Stata Solution. Like SPSS, Stata has oneway and anova routines, either of which can be used for one-way analysis of variance (loneway is also available, and is typically used if you have several hundred categories). oneway is quicker than the anova command and allows you to perform multiple comparison tests. We'll use oneway in this handout and the corresponding two-way ANOVA handout will show how to use the anova command.

The basic syntax of the oneway command is

oneway dv iv

where the iv is a categorical variable, e.g. race, gender, religion, or, in this case, program.

. oneway score program

Source	Analysis of SS	E Va df	ariance MS	F	Prob > F
Between groups Within groups	54.95 41.6	3 16	18.3166667 2.6	7.04	0.0031
Total	96.55	19	5.08157895		
Bartlett's test for	equal variances	3:	chi2(3) = 0.5	685 Prol	o>chi2 = 0.904

This is very similar to SPSS's output. Stata adds Bartlett's test for equal variances. As you'll recall, one of the assumptions of ANOVA is that the variances are the same across groups. The small value for Bartlett's statistic confirms that this assumption is not violated in these data, so the use of ANOVA is ok.

There are some useful optional parameters. To get descriptive statistics, add the tabulate parameter, abbreviated t.

. oneway score program, t									
	Summary o	f score	e						
program	Mean Std.	Dev.	Freq.						
1	11.8 1.92	 35384	5						
2	8.8 1.64	31677	5						
3	12.2 1.30	38405	5						
4	8.6 1.51	65751	5						
Total	10.35 2.25	42358	20						
Analysis of Variance									
Source	SS			F	Prob > F				
Between groups	54.95	3	18.3166667	7.04	0.0031				
Within groups	41.6	16	2.6						
Total	96.55	19	5.08157895						

Bartlett's test for equal variances: chi2(3) = 0.5685 Prob>chi2 = 0.904

The significant F value of 7.04 tells us that at least one treatment effect differs from zero, i.e. the means are not all equal. However, it does not tell us where the differences are. Bonferroni, Scheffe, and Sidak multiple comparison tests can help to identify these differences. These tests examine the differences between each pair of means. However, just using the .05 level of significance on a pair by pair basis can be misleading: because so many comparisons are being done (J*[J-1]/2 = 6 in this case) the probability is greater than .05 that some differences could be significant just by chance. These tests therefore apply corrections to the reported significance levels that take into account the fact that multiple comparisons are being conducted. You can have oneway compute these tests by using the options bon, sch, and sid. Note that these tests tend to be conservative: they reduce the likelihood that you will reject the null when the null is true (i.e. they reduce the likelihood of Type I error.) However, they increase the likelihood of not rejecting the null when the null is false (i.e. they make Type II error more likely.)

As you can see from the printout, the difference between the means of programs 1 and 2 is 3 (11.8 - 8.8). With all three corrections, this difference is not quite significant at the .05 level. On the other hand, the difference between programs 2 and 3 is 3.4, and all three corrections show this difference as significant at the .05 level or better. Basically, the adjustments all agree that there is little difference between the means of 1 and 3, and 2 and 4; there are significant difference between 1 and 4, 2 and 3, and 3 and 4; and the difference between 1 and 2 falls just short of being statistically significant.

. oneway score program, t bon sid sch

progra	am	S Mea	ummary of n Std.I			Freq.				
	1 2 3 4	11. 8. 12. 8.	8 1.6431 2 1.3038	L677 3405		 5 5 5 5				
Tota	+ al	10.3	5 2.2542	2358		20				
Source	9		Analysis o SS					F	Prob > F	
Between gi Within gi			54.95 41.6		18.3	166667		7.04	0.0031	
Total			96.55	19	5.08	157895				
Bartlett's	s test	for equa	l variance	es: c	hi2(3) =	0.5685	Prob	o>chi2 = 0.9	04
Comparison of score by program (Bonferroni)										
Row Mean- Col Mean		1	2		3					
2		-3 0.057								
3		.4 1.000	3.4 0.025							
4		-3.2 0.038	2 1.000		-3.6 .017					
			Comparisor	n of s (Sche		by pro	gram			
Row Mean- Col Mean	 +	1	2		3					
2		-3 0.068								
3		.4 0.984	3.4 0.034							
4		-3.2 0.048	2 0.998		-3.6 .024					
	1		Comparisor	n of s (Sid		by pro	gram			
Row Mean- Col Mean		1	2		3					
2	 	-3 0.056								
3		.4 0.999	3.4 0.025							
4		-3.2 0.038	2 1.000		-3.6 .017					