NOTE: The routines `spost13`, `lrdrop1`, and `extremes` are used in this handout. Use the `findit` command to locate and install them. See related handouts for the statistical theory underlying logistic regression and for SPSS examples. Most but not all of the commands shown in this handout will also work in earlier versions of Stata, but the syntax is sometimes a little different. The output may also look a little different in different versions of Stata.

Commands. Stata and SPSS differ a bit in their approach, but both are quite competent at handling logistic regression. With large data sets, I find that Stata tends to be far faster than SPSS, which is one of the many reasons I prefer it.

Stata has various commands for doing logistic regression. They differ in their default output and in some of the options they provide. My personal favorite is `logit`.

```
. use "http://www3.nd.edu/~rwilliam/statafiles/logist.dta", clear
. logit grade gpa tuce psi
```

```
Iteration 0:   log likelihood =  -20.59173
Iteration 1:   log likelihood = -13.496795
Iteration 2:   log likelihood = -12.929188
Iteration 3:   log likelihood = -12.889941
Iteration 4:   log likelihood = -12.889633
Iteration 5:   log likelihood = -12.889633

Logit estimates                                   Number of obs   =         32
LR chi2(3)      =      15.40
Prob > chi2     =     0.0015
Log likelihood = -12.889633                       Pseudo R2       =     0.3740
------------------------------------------------------------------------------
grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
gpa |   2.826113   1.262941     2.24   0.025     .3507938    5.301432
tuce |   .0951577   .1415542     0.67   0.501    -.1822835    .3725988
psi |   2.378688   1.064564     2.23   0.025       .29218    4.465195
  _cons |  -13.02135   4.931325    -2.64   0.008    -22.68657    -3.35613
------------------------------------------------------------------------------
```

Note that the log likelihood for iteration 0 is LL_0, i.e. it is the log likelihood when there are no explanatory variables in the model - only the constant term is included. The last log likelihood reported is LL_M. From these we easily compute

$\text{DEV}_0 = -2LL_0 = -2 \times -20.59173 = 41.18$

$\text{DEV}_M = -2LL_M = -2 \times -12.889633 = 25.78$

Also note that the default output does not include $\exp(b)$. To get that, include the `or` parameter (or = odds ratios = $\exp(b)$).
. logit grade gpa tuce psi, or nolog

Logistic regression Number of obs = 32
LR chi2(3) = 15.40
Prob > chi2 = 0.0015
Log likelihood = -12.889633 Pseudo R2 = 0.3740

--
grade | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
gpa | 16.87972 21.31809 2.24 0.025 1.420194 200.6239
 tuce | 1.099832 .1556859 0.67 0.501 .8333651 1.451502
 psi | 10.79073 11.48743 2.23 0.025 1.339344 86.93802
 _cons | 2.21e-06 .0000109 -2.64 0.008 1.40e-10 .03487
--

Or, you can use the \texttt{logistic} command, which reports \texttt{exp(b)} (odds ratios) by default:

. logistic grade gpa tuce psi

Logistic regression Number of obs = 32
LR chi2(3) = 15.40
Prob > chi2 = 0.0015
Log likelihood = -12.889633 Pseudo R2 = 0.3740

--
grade | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
gpa | 16.87972 21.31809 2.24 0.025 1.420194 200.6239
 tuce | 1.099832 .1556859 0.67 0.501 .8333651 1.451502
 psi | 10.79073 11.48743 2.23 0.025 1.339344 86.93802
 _cons | 2.21e-06 .0000109 -2.64 0.008 1.40e-10 .03487
--

[Note: Starting with Stata 12, the exponentiated constant is also reported]. To have \texttt{logistic} instead give you the coefficients,

. logistic grade gpa tuce psi, coef

Logistic regression Number of obs = 32
LR chi2(3) = 15.40
Prob > chi2 = 0.0015
Log likelihood = -12.889633 Pseudo R2 = 0.3740

--
grade | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
gpa | 2.826113 1.262941 2.24 0.025 .3507938 5.301432
 tuce | .0951577 .1415542 0.67 0.501 -.1822835 .3725988
 psi | 2.378688 1.064564 2.23 0.025 .29218 4.465195
 _cons | -13.02135 4.931325 -2.64 0.008 -22.68657 -3.35613
--

There are various other options of possible interest, e.g. just as with OLS regression you can specify robust standard errors, change the confidence interval and do stepwise logistic regression.
You can further enhance the functionality of Stata by downloading and installing `spost13` (which includes several post-estimation commands) and `lrdrop1`. Use the `findit` command to get these. The rest of this handout assumes these routines are installed, so if a command isn’t working, it is probably because you have not installed it.

Hypothesis testing. Stata makes you go to a little more work than SPSS does to make contrasts between nested models. You need to use the `estimates store` and `lrtest` commands. Basically, you estimate your models, store the results under some arbitrarily chosen name, and then use the `lrtest` command to contrast models. Let’s run through a sequence of models:

```
. * Model 0: Intercept only
   quietly logit grade
   est store M0

. * Model 1: GPA added
   quietly logit grade gpa
   est store M1

. * Model 2: GPA + TUCE
   quietly logit grade gpa tuce
   est store M2

. * Model 3: GPA + TUCE + PSI
   quietly logit grade gpa tuce psi
   est store M3

. * Model 1 versus Model 0
   lrtest M1 M0
   likelihood-ratio test LR chi2(1) = 8.77
   (Assumption: M0 nested in M1) Prob > chi2 = 0.0031

. * Model 2 versus Model 1
   lrtest M2 M1
   likelihood-ratio test LR chi2(1) = 0.43
   (Assumption: M1 nested in M2) Prob > chi2 = 0.5096

. * Model 3 versus Model 2
   lrtest M3 M2
   likelihood-ratio test LR chi2(1) = 6.20
   (Assumption: M2 nested in M3) Prob > chi2 = 0.0127

. * Model 3 versus Model 0
   lrtest M3 M0
   likelihood-ratio test LR chi2(3) = 15.40
   (Assumption: M0 nested in M3) Prob > chi2 = 0.0015
```

Also note that the output includes z values for each coefficient (where $z = \text{coefficient divided by its standard error}$). SPSS reports these values squared and calls them Wald statistics. Technically, Wald statistics are not considered 100% optimal; it is better to do likelihood ratio tests, where you estimate the constrained model without the parameter and contrast it with the unconstrained model that includes the parameter. The `lrdrop1` command makes this easy (also see the similar `bicdrop1` command if you want BIC tests instead):
. logit grade gpa tuce psi

Iteration 0: log likelihood = -20.59173
[Intermediate iterations deleted]
Iteration 5: log likelihood = -12.889633

Logit estimates

Number of obs = 32
LR chi2(3) = 15.40
Prob > chi2 = 0.0015
Log likelihood = -12.889633
Pseudo R2 = 0.3740

--
grade | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
gpa | 2.826113 1.262941 2.24 0.025 .3507938 5.301432
tuce | .0951577 .1415542 0.67 0.501 -.1822835 .3725988
psi | 2.378688 1.064564 2.23 0.025 .29218 4.465195
_cons | -13.02135 4.931325 -2.64 0.008 -22.68657 -3.35613
--

. lrdrop1

Likelihood Ratio Tests: drop 1 term
logit regression
number of obs = 32

--
grade Df Chi2 P>Chi2 -2*log ll Res. Df AIC
--
Original Model 25.78 28 33.78
-gpa 1 6.78 0.0092 32.56 27 38.56
-tuce 1 0.47 0.4912 26.25 27 32.25
-psi 1 6.20 0.0127 31.98 27 37.98
--
Terms dropped one at a time in turn.

You can also use the test command for hypothesis testing, but the Wald tests that are estimated by the test command are considered inferior to estimating separate models and then doing LR chi-square contrasts of the results.

. test psi

(1) psi = 0

 chi2(1) = 4.99
 Prob > chi2 = 0.0255

Also, Stata 9 added the nestreg prefix. This makes it easy to estimate a sequence of nested models and do chi-square contrasts between them. The lr option tells nestreg to do likelihood ratio tests rather than Wald tests. This can be more time-consuming but is also more accurate. The store option is optional but, in this case, will store the results of each model as m1, m2, etc. This would be handy if, say, you wanted to do a chi-square contrast between model 3 and model 1.
. nestreg, lr store(m): logit grade gpa tuce psi
[intermediate output deleted]

| Block | LL LR df Pr > LR AIC BIC |
|-------+--|
1	-16.2089 8.77 1 0.0031 36.4178 39.34928
2	-15.99148 0.43 1 0.5096 37.98296 42.38017
3	-12.88963 6.20 1 0.0127 33.77927 39.64221
+--+

.lrtest m3 m1

Likelihood-ratio test
 LR chi2(2) = 6.64
(Assumption: m1 nested in m3)
 Prob > chi2 = 0.0362

Also, you don’t have to enter variables one at a time; by putting parentheses around sets of
variables, they will all get entered in the same block.

. nestreg, lr: logit grade gpa (tuce psi)
[intermediate output deleted]

| Block | LL LR df Pr > LR AIC BIC |
|-------+--|
| 1 | -16.2089 8.77 1 0.0031 36.4178 39.34928 |
| 2 | -12.88963 6.64 2 0.0362 33.77927 39.64221 |
+--+

Note that AIC and BIC are reported. These are also useful statistics for comparing models, but I
won’t talk about them in this handout. Adding the stats option to lrtest will also cause
these statistics to be reported, e.g.

. lrtest m3 m1, stats

Likelihood-ratio test
 LR chi2(2) = 6.64
(Assumption: m1 nested in m3)
 Prob > chi2 = 0.0362

 | Model | Obs ll(null) ll(model) df AIC BIC |
|-------+--|
| m1 | 32 -20.59173 -16.2089 2 36.4178 39.34928 |
| m3 | 32 -20.59173 -12.88963 4 33.77927 39.64221 |
|--|

R^2 analogs and goodness of fit measures. Although it is not clearly labeled, the Pseudo R^2
reported by Stata is McFadden’s R^2, which seems to be the most popular of the many alternative
measures that are out there. One straightforward formula is

\[
Pseudo R^2 = 1 - \frac{LL_m}{LL_0} = 1 - \frac{-12.889633}{-20.59173} = 1 - 0.625961636 = .374
\]

You can also get a bunch of other pseudo R^2 measures and goodness of fit statistics by typing
fitstat (part of the spost13 routines) after you have estimated a logistic regression:
To get the equivalent of SPSS's classification table, you can use the `estat clas` command (lstat also works). This command shows you how many cases were classified correctly and incorrectly, using a cutoff point of 50% for the predicted probability.
. lstat

Logistic model for grade

<table>
<thead>
<tr>
<th>Classified</th>
<th>D</th>
<th>~D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>8</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>-</td>
<td>3</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>21</td>
<td>32</td>
</tr>
</tbody>
</table>

Classified + if predicted Pr(D) >= .5
True D defined as grade != 0

Sensitivity Pr(+| D) 72.73%
Specificity Pr(-|~D) 85.71%
Positive predictive value Pr(D| +) 72.73%
Negative predictive value Pr(~D| -) 85.71%

False + rate for true ~D Pr(+|~D) 14.29%
False - rate for true D Pr(-| D) 27.27%
False + rate for classified + Pr(~D| +) 27.27%
False - rate for classified - Pr(D| -) 14.29%

Correctly classified 81.25%

Predicted values. Stata makes it easy to come up with the predicted values for each case. You run the logistic regression, and then use the predict command to compute various quantities of interest to you.

. quietly logit grade gpa tuce psi
. * get the predicted log odds for each case
. predict logodds, xb
. * get the odds for each case
. gen odds = exp(logodds)
. * get the predicted probability of success
. predict p, p
Hypothetical values. Stata also makes it very easy to plug in hypothetical values. One way to do this in Stata 11 or higher is with the `margins` command (with older versions of Stata you can use `adjust`). We previously computed the probability of success for a hypothetical student with a gpa of 3.0 and a tuce score of 20 who is either in psi or not in psi. To compute these numbers in Stata,
. * Probability of getting an A
. quietly logit grade gpa tuce i.psi
. margins psi, at(gpa = 3 tuce = 20)

Adjusted predictions Number of obs = 32
Model VCE : OIM

Expression : Pr(grade), predict()
at : gpa = 3
tuce = 20

--
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
psi | 0 | .066617 .0611322 1.09 0.276 -.0531999 .1864339
 | 1 | .4350765 .1812458 2.40 0.016 .0798413 .7903118
--

This hypothetical, about average student would have less than a 7% chance of getting an A in the traditional classroom, but would have almost a 44% chance of an A in a psi classroom.

Now, consider a strong student with a 4.0 gpa and a tuce of 25:

. margins psi, at(gpa = 4 tuce = 25)

Adjusted predictions Number of obs = 32
Model VCE : OIM

Expression : Pr(grade), predict()
at : gpa = 4
tuce = 25

--
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
psi | 0 | .6597197 .2329773 2.83 0.005 .2030926 1.116347
 | 1 | .9543808 .0560709 17.02 0.000 .8444837 1.064278
--

This student has about a 2/3 chance of an A in a traditional classroom, and a better than 95% chance of an A in psi.

If you want the log odds instead of the probabilities, give commands like
. margins psi, at(gpa = 4 tuce = 25) predict(xb)

Adjusted predictions Number of obs = 32
Model VCE : OIM
Expression : Linear prediction (log odds), predict(xb)
at : gpa = 4
 tuce = 25

--
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
psi | 0 | .6620453 1.037809 0.64 0.524 -1.372022 2.696113
 1 | 3.040733 1.287859 2.36 0.018 .5165768 5.564889
--

To get the odds, you need to exponentiate the log odds. You can do that via

. margins psi, at(gpa = 4 tuce = 25) expression(exp(predict(xb)))

Adjusted predictions Number of obs = 32
Model VCE : OIM
Expression : exp(predict(xb))
at : gpa = 4
 tuce = 25

--
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
psi | 0 | 1.938754 2.012055 0.96 0.335 -2.004802 5.88231
 1 | 20.92057 26.94274 0.78 0.437 -31.88622 73.72737
--

Long & Freese’s spost commands provide several other good ways of performing these sorts
of tasks; see, for example, the mtable and mchange commands.

Stepwise Logistic Regression. This works pretty much the same way it does with OLS
regression. However, by adding the lr parameter, we force Stata to use the more accurate (and
more time-consuming) Likelihood Ratio tests rather than Wald tests when deciding which
variables to include. (Note: stepwise is available in earlier versions of Stata but the syntax is a
little different.)
. sw, pe(.05) lr: logit grade gpa tuce psi

LR test begin with empty model
p = 0.0031 < 0.0500 adding gpa
p = 0.0130 < 0.0500 adding psi

Logistic regression Number of obs = 32
LR chi2(2) = 14.93
Prob > chi2 = 0.0006
Log likelihood = -13.126573 Pseudo R2 = 0.3625

--
| grade | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
| gpa | 3.063368 1.22285 2.51 0.012 .6666251 5.46011
| psi | 2.337776 1.040784 2.25 0.025 .2978755 4.377676
| _cons | -11.60157 4.212904 -2.75 0.006 -19.85871 -3.344425
--

Diagnostics. The *predict* command lets you compute various diagnostic measures, just like it did with OLS. For example, the *predict* command can generate a standardized residual. It can also generate a deviance residual (the deviance residuals identify those cases that contribute the most to the overall deviance of the model.) [WARNING: SPSS and Stata sometimes use different formulas and procedures for computing residuals, so results are not always identical across programs.]

. * Generate predicted probability of success
 . predict p, p

. * Generate standardized residuals
 . predict rstandard, rstandard

. * Generate the deviance residual
 . predict dev, deviance

. * Use the extremes command to identify large residuals
 . extremes rstandard dev p grade gpa tuce psi

The above results suggest that cases 2 and 27 may be problematic. Several other diagnostic measures can also be computed.
Multicollinearity. Multicollinearity is a problem of the X variables, and you can often diagnose it the same ways you would for OLS. Phil Ender’s `collin` command is very useful for this:

```
collin gpa tuce psi if !missing(grade)
```

Robust standard errors. If you fear that the error terms may not be independent and identically distributed, e.g. heteroscedasticity may be a problem, you can add the `robust` parameter just like you did with the `regress` command.

```
logit grade gpa tuce psi, robust
```

```
Iteration 0:   log pseudo-likelihood =  -20.59173
Iteration 1:   log pseudo-likelihood = -13.496795
Iteration 2:   log pseudo-likelihood = -12.929188
Iteration 3:   log pseudo-likelihood = -12.889941
Iteration 4:   log pseudo-likelihood = -12.889633
Iteration 5:   log pseudo-likelihood = -12.889633
```

Logit estimates

```
Number of obs   =         32  
Wald chi2(3)    =       9.36  
Prob > chi2     =     0.0249  
Log pseudo-likelihood = -12.889633  
Pseudo R2       =     0.3740
```

```
<table>
<thead>
<tr>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>grade</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>gpa</td>
</tr>
<tr>
<td>tuce</td>
</tr>
<tr>
<td>psi</td>
</tr>
<tr>
<td>_cons</td>
</tr>
</tbody>
</table>
```

Note that the standard errors have changed very little. However, Stata now reports “pseudo-likelihoods” and a Wald chi-square instead of a likelihood ratio chi-square for the model. I won’t try to explain why. Stata will surprise you some times with the statistics it reports, but it generally seems to have a good reason for them (although you may have to spend a lot of time reading through the manuals or the online FAQs to figure out what it is.)

Additional Information. Long and Freese’s `spost13` routines include several other commands that help make the results from logistic regression more interpretable. Their book is very good:

The notes for my Soc 73994 class, Categorical Data Analysis, contain a lot of additional information on using Stata for logistic regression and other categorical data techniques. See

http://www3.nd.edu/~rwilliam/xsoc73994/index.html