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Part I.  Random Measurement error. 
 
a. Enter the following commands into Stata.  If in doubt as to what a command does (e.g. drawnorm), either use Stata’s 
help command or consult the online reference manuals.  Yt and Xt are assumed to be perfectly measured, whereas X suffers from 
random measurement error. 
 
version 12 
set seed 123456789 
set obs 1000 
drawnorm Yt Xt e, corr(1 .5 0 \ .5 1 0 \ 0 0 1) 
reg  Yt Xt 
gen X = Xt + e 
reg  Yt X 
 
Compute the reliability of X.  (There are at least two or three ways to do this, and because a sample is being used the results 
won’t be exactly identical.) Explain why the results of the two regressions differ, and why researchers should be concerned about 
this.  Would a larger sample size take care of this problem?  Why or why not?  You can, of course, also enter any other 
commands that will help you to answer this question.  If in doubt, feel free to explore, e.g. you could try creating larger or smaller 
samples and see what happens when you rerun the same commands. 
 
Here are the results from running the program: 
 
. version 12 
. set seed 123456789 
. set obs 1000 
obs was 0, now 1000 
. drawnorm Yt Xt e, corr(1 .5 0 \ .5 1 0 \ 0 0 1) 
. reg  Yt Xt 
 
      Source |       SS       df       MS              Number of obs =    1000 
-------------+------------------------------           F(  1,   998) =  334.48 
       Model |  264.955975     1  264.955975           Prob > F      =  0.0000 
    Residual |  790.555131   998   .79213941           R-squared     =  0.2510 
-------------+------------------------------           Adj R-squared =  0.2503 
       Total |  1055.51111   999  1.05656767           Root MSE      =  .89002 
 
------------------------------------------------------------------------------ 
          Yt |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          Xt |   .5180475   .0283259    18.29   0.000     .4624623    .5736326 
       _cons |   .0214104   .0281517     0.76   0.447    -.0338331    .0766538 
------------------------------------------------------------------------------ 
 
. gen X = Xt + e 
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. reg  Yt X 
 
      Source |       SS       df       MS              Number of obs =    1000 
-------------+------------------------------           F(  1,   998) =  134.27 
       Model |  125.166627     1  125.166627           Prob > F      =  0.0000 
    Residual |   930.34448   998  .932208898           R-squared     =  0.1186 
-------------+------------------------------           Adj R-squared =  0.1177 
       Total |  1055.51111   999  1.05656767           Root MSE      =  .96551 
 
------------------------------------------------------------------------------ 
          Yt |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           X |   .2566741   .0221511    11.59   0.000     .2132061    .3001421 
       _cons |   .0099768   .0305321     0.33   0.744    -.0499376    .0698913 
------------------------------------------------------------------------------ 

 
The version 12 and set seed commands make it possible for us to reproduce these results 
when we run the program again.  With the set obs and drawnorm commands, we create a 
random sample of 1,000 cases drawn from a population where Xt and Yt have a .5 correlation 
and both have 0 correlation with the random error term, e.  Since means and sds are not 
specified, drawnorm uses the default mean of 0 and default sd of 1 for every variable.  Since 
V(Xt) = V(e) = 1, V(Xt + e) = V(Xt) + V(e) = 2.  Reliability = true variance/total variance = ½ = 
.5.  Sampling variability causes the sample to differ a little from the population, but in this case 
you know the population values so you don’t need to use sample estimates when computing the 
reliability. But, if you didn’t know the population values, you could estimate the reliability in the 
sample via something like (remember that reliability is the squared correlation between the true 
values and the observed values that have random measurement error): 
 
. corr 
(obs=1000) 
 
             |       Yt       Xt        e        X 
-------------+------------------------------------ 
          Yt |   1.0000 
          Xt |   0.5010   1.0000 
           e |  -0.0234  -0.0354   1.0000 
           X |   0.3444   0.6954   0.6935   1.0000 
 
 
. di "Reliability equals " .6954 ^ 2 
Reliability equals .48358116 
 

Or, if you want to use variance of X / variance of Xt, you get 
 
. corr X Xt, cov 
(obs=1000) 
 
             |        X       Xt 
-------------+------------------ 
           X |  1.90177 
          Xt |  .953397  .988255 
 
 
. di .988255 / 1.90177 
.51965012 
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These two estimates differ a bit because we are using a sample rather than the entire population. 
In the population the approaches used above would all give the same numbers. (If in doubt, 
change the drawnorm command to corr2data and see how the results compare.) 
 
The regression results differ because random measurement error in the independent variable 
produces a downward bias in the regression coefficient.  Would a larger N help?  No; look at the 
formula for the slope coefficient. N is not a factor: 

β
σ
σyx

xy

x

= 2  

But if in doubt, try rerunning the problem with a sample of 100,000: 
 
. clear all 
. version 12 
. set seed 123456789 
 
. set obs 100000 
obs was 0, now 100000 
. drawnorm Yt Xt e, corr(1 .5 0 \ .5 1 0 \ 0 0 1) 
. gen X = Xt + e 
. reg  Yt Xt 
 
      Source |       SS       df       MS              Number of obs =  100000 
-------------+------------------------------           F(  1, 99998) =33039.93 
       Model |  24845.6397     1  24845.6397           Prob > F      =  0.0000 
    Residual |  75197.3254 99998  .751988294           R-squared     =  0.2483 
-------------+------------------------------           Adj R-squared =  0.2483 
       Total |  100042.965 99999  1.00043966           Root MSE      =  .86717 
 
------------------------------------------------------------------------------ 
          Yt |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          Xt |   .4993678   .0027473   181.77   0.000     .4939832    .5047524 
       _cons |  -.0026293   .0027423    -0.96   0.338    -.0080041    .0027455 
------------------------------------------------------------------------------ 
 
. reg  Yt X 
 
      Source |       SS       df       MS              Number of obs =  100000 
-------------+------------------------------           F(  1, 99998) =14257.19 
       Model |  12483.7369     1  12483.7369           Prob > F      =  0.0000 
    Residual |  87559.2282 99998  .875609794           R-squared     =  0.1248 
-------------+------------------------------           Adj R-squared =  0.1248 
       Total |  100042.965 99999  1.00043966           Root MSE      =  .93574 
 
------------------------------------------------------------------------------ 
          Yt |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           X |   .2503951    .002097   119.40   0.000     .2462849    .2545053 
       _cons |  -.0036685   .0029591    -1.24   0.215    -.0094683    .0021312 
------------------------------------------------------------------------------ 
 

The results differ slightly, but only because of sampling variability, not because a larger N 
reduces the problem caused by measurement error. 
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b. Briefly discuss the possible consequences of random measurement error in each of the following situations. 
 

1. A researcher is interested in how Age affects feelings of Self-Efficacy.  Age is believed to be very well-
measured.  Self-efficacy is measured on a scale that ranges from 0 to 100; because self-efficacy is a fairly abstract concept to 
most people, it is believed that this scale will suffer from at least some random measurement error. 

 
Note that the DV, Self-efficacy, is the var thought to suffer from random measurement error.  
The bivariate correlation will be biased downward in magnitude (attenuated) because of this 
error.  The slope coefficient is not biased when the DV has random measurement error; however, 
the standard errors will be larger, making our parameter estimates less precise and making it 
more difficult to determine if there is a significant relationship between the two variables.  
(Incidentally, a larger N would help in this case, because it would reduce the standard errors.) 
 

2. A researcher has collected data from a sample of men and a sample of women.  She believes that political 
attitudes will have less of an effect on the political activism of men than they do on the political activism of women.  Political 
activism is known to be very well measured for both men and women.  Political attitudes are measured by respondents’ self-
reports to a lengthy series of questions.  During the interview process, the researcher notices that women tend to give careful 
thought to the questions before answering.  Men, on the other hand, tend to rush through the questionnaire and finish quickly.  
 
In this problem, the independent variable, political attitudes, may suffer from random 
measurement error.  Random error in the IV biases correlations downward and also produces a 
downward bias in the estimated slope coefficient.  An added problem here is that men may 
provide less reliable answers than the more careful women do.  This could cause a greater 
downward bias in the estimated effects for men than it does for women.  As a result, the 
researcher could appear to be right – the estimated effect of political activism is less for men than 
it is for women – when she really isn’t right.  The apparent differences between men and women 
could be an artifact of the superior measurement of women’s attitudes. 
 
 
Part II.  Outliers/Heteroscedasticity. 
 
The problem on outliers and heteroscedasticity is selected from J.D.Jobson's book Applied Multivariate Data Analysis, pp. 169-
172. This is a sample of 116 real estate sales transactions in a particular region of a large city. The variables include the 
dependent variable, selling price (SELLP) and the independent variable, number of square feet (SQF) of each transaction. You 
need to copy the file resales.dta from the course web page. 
 
a. First, check the data for outliers.  Your analysis should include the following.  For each part, explain whether and how 
the analysis helps you to identify outliers. 
 1. A scatter plot of sellp and sqf 
 
. scatter sellp sqf 
 

Notice the one case off by itself in the lower left hand side: 
 



Homework #3—Random Measurement Error/Heteroscedasticity/Outliers Page 5 
 

 
 
 2. An examination of the extreme values of sellp and sqf 
 
. extremes sellp sqf 
 
  +---------------------+ 
  | obs:   sellp    sqf | 
  |---------------------| 
  |   4.    7400   1040 | 
  |  49.   74000   1190 | 
  |   1.   75000   1001 | 
  |  18.   75000   1089 | 
  |   5.   76000   1040 | 
  +---------------------+ 
 
  +----------------------+ 
  | 104.   124000   1380 | 
  | 113.   124000   1480 | 
  | 112.   125000   1460 | 
  |  98.   128000   1340 | 
  | 115.   130000   1491 | 
  +----------------------+ 
 
note: 4 values of 76000 
 
. extremes sqf sellp 
 
  +---------------------+ 
  | obs:    sqf   sellp | 
  |---------------------| 
  |   1.   1001   75000 | 
  |   2.   1040   85000 | 
  |   3.   1040   88000 | 
  |   4.   1040    7400 | 
  |   5.   1040   76000 | 
  +---------------------+ 
 
  +----------------------+ 
  | 112.   1460   125000 | 
  | 113.   1480   124000 | 
  | 114.   1490    99000 | 
  | 115.   1491   130000 | 
  | 116.   1564   110000 | 
  +----------------------+ 
 
note: 2 values of 1460 
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Case 4 has a much lower value on sellp than any other case does. 
 
 3. The computation and examination of diagnostic statistics.  At a minimum, these should include the 
standardized residuals and a leverage measure and the dfbetas. The predicted yhat value may also be useful. 
 
 
. reg sellp sqf 
 
      Source |       SS       df       MS              Number of obs =     116 
-------------+------------------------------           F(  1,   114) =   87.26 
       Model |  1.1063e+10     1  1.1063e+10           Prob > F      =  0.0000 
    Residual |  1.4453e+10   114   126780027           R-squared     =  0.4336 
-------------+------------------------------           Adj R-squared =  0.4286 
       Total |  2.5516e+10   115   221874821           Root MSE      =   11260 
 
------------------------------------------------------------------------------ 
       sellp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sqf |   83.30545   8.918024     9.34   0.000     65.63892     100.972 
       _cons |  -7277.273      10905    -0.67   0.506    -28879.99    14325.45 
------------------------------------------------------------------------------ 
 
. predict yhat 
(option xb assumed; fitted values) 
. predict rstandard, rstandard 
. predict rstudent, rstudent 
. predict leverage, leverage 
. dfbeta 
                       _dfbeta_1: dfbeta(sqf) 
. predict cooksd, cooksd 
. extremes rstudent sellp sqf yhat rstandard leverage _dfbeta_1 cooksd 
 
  +------------------------------------------------------------------------------------------+ 
  | obs:    rstudent   sellp    sqf       yhat   rstandard   leverage   _dfbeta_1     cooksd | 
  |------------------------------------------------------------------------------------------| 
  |   4.   -8.124243    7400   1040    79360.4   -6.483429   .0283122    1.156535   .6123872 | 
  | 103.   -1.911213   85400   1365   106434.7   -1.889357   .0223294   -.2263141   .0407646 | 
  | 114.   -1.642972   99000   1490   116847.9   -1.630861   .0553149   -.3652734    .077868 | 
  |  49.   -1.604063   74000   1190   91856.22   -1.593109   .0090839    .0346796   .0116331 | 
  | 100.   -1.473081   88000   1340     104352    -1.46558   .0180848   -.1446201   .0197801 | 
  +------------------------------------------------------------------------------------------+ 
 
  +----------------------------------------------------------------------------------------+ 
  |  90.    1.37313   115000   1284   99686.93   1.367828   .0114222   .0730979   .0108087 | 
  | 104.   1.475247   124000   1380   107684.3   1.467694   .0252526   .1927036   .0279033 | 
  |  74.   1.753662   116000   1246   96521.32   1.737914    .009142   .0402246   .0139334 | 
  |  86.   2.034321   121000   1270   98520.66   2.006883   .0103714   .0855633   .0211047 | 
  |  98.    2.15302   128000   1340     104352    2.11949   .0180848   .2113734   .0413687 | 
  +----------------------------------------------------------------------------------------+ 
 
. extremes _dfbeta_1 sellp sqf yhat rstandard leverage rstudent cooksd 
 
  +-------------------------------------------------------------------------------------------+ 
  | obs:   _dfbeta_1    sellp    sqf       yhat   rstandard   leverage    rstudent     cooksd | 
  |-------------------------------------------------------------------------------------------| 
  | 114.   -.3652734    99000   1490   116847.9   -1.630861   .0553149   -1.642972    .077868 | 
  | 116.   -.3473086   110000   1564   123012.5    -1.20755   .0840802   -1.210006   .0669293 | 
  | 103.   -.2263141    85400   1365   106434.7   -1.889357   .0223294   -1.911213   .0407646 | 
  | 109.   -.2073178   100000   1440   112682.6   -1.149461   .0397683   -1.151098   .0273602 | 
  | 108.   -.2017698    98000   1424   111349.7   -1.207216   .0354558   -1.209666   .0267858 | 
  +-------------------------------------------------------------------------------------------+ 
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  +------------------------------------------------------------------------------------------+ 
  | 112.   .1905783   125000   1460   114348.7    .9683108   .0456105    .9680437   .0224047 | 
  | 104.   .1927036   124000   1380   107684.3    1.467694   .0252526    1.475247   .0279033 | 
  |  98.   .2113734   128000   1340     104352     2.11949   .0180848     2.15302   .0413687 | 
  | 115.   .2670693   130000   1491   116931.2    1.194392   .0556578    1.196653   .0420398 | 
  |   4.   1.156535     7400   1040    79360.4   -6.483429   .0283122   -8.124243   .6123872 | 
  +------------------------------------------------------------------------------------------+ 
 

Case 4 has by far the largest standardized residual (much greater in magnitude than 3) and also 
has by far the largest dfbeta (which exceeds the rule of thumb of 1 or greater). 
 
 4. The leverage-versus-residual-squared plot. 
 
You can clearly see one case (which we have already identified as belonging to case 4) has a 
much larger normalized squared residual. It also has slightly above average leverage. 
 
. lvr2plot 
 

 
 
 5. Based on the above and any other analysis you do, indicate whether any of the cases appear to be outliers.  
[HINT: You have to be blind if you don’t spot a problem right away.] If you find an outlier, discuss possible explanations for it.  
Coding error is always a possibility, but suggest other possible explanations as well. 
 
Case 4, with a sellp value of 7,400, looks a tad suspicious.  One obvious possibility is that 
somebody left off a zero.  Also, notice that it’s predicted value is 79,360, very close to 74,000.  
But, the value might be legitimate.  Property values are determined by more than just square 
footage.  This particular property might be in terrible shape or be located in a terrible area.  
Perhaps the seller gave the buyer a great deal for some reason, e.g. maybe it was sold to a 
relative or a charity. 
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b. Try up to three different strategies for dealing with the outlier: 
 1. Robust regression (rreg) [Optional] 
 
. rreg  sellp sqf, nolog genwt(w) 
 
Robust regression estimates                            Number of obs =     116 
                                                       F(  1,   114) =   98.06 
                                                       Prob > F      =  0.0000 
 
------------------------------------------------------------------------------ 
       sellp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sqf |   74.26163   7.499139     9.90   0.000      59.4059    89.11737 
       _cons |   4239.196   9169.981     0.46   0.645    -13926.46    22404.86 
------------------------------------------------------------------------------ 
 
. extremes w sellp sqf 
 
  +----------------------------------+ 
  | obs:           w    sellp    sqf | 
  |----------------------------------| 
  |   4.           0     7400   1040 | 
  |  98.   .48557151   128000   1340 | 
  |  86.   .54778108   121000   1270 | 
  | 103.   .62259287    85400   1365 | 
  |  74.   .65492325   116000   1246 | 
  +----------------------------------+ 
 
  +----------------------------------+ 
  |  15.   .99980315    84000   1080 | 
  |  17.   .99980315    84000   1080 | 
  |  95.   .99984885   101000   1308 | 
  |  42.   .99984886    90000   1160 | 
  |  20.   .99999392    86000   1100 | 
  +----------------------------------+ 

 
Robust regression (rreg) uses an iterative weighting scheme that causes outliers to be weighted 
less heavily in the calculations than are other cases.  By using the genwt parameter, we can see 
the weights it generated.  Case 4 received a weight of 0, meaning that it was basically dropped 
from the calculations, while some other outlying cases received weights considerably less than 1.  
Conversely, the cases with the largest weights had very small residuals. 
 
 2. Median regression (qreg) [Optional] 
 
. qreg  sellp sqf, nolog 
 
Median regression                                    Number of obs =       116 
  Raw sum of deviations  1207500 (about 94000) 
  Min sum of deviations 914369.4                     Pseudo R2     =    0.2428 
 
------------------------------------------------------------------------------ 
       sellp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sqf |   78.82883   9.938526     7.93   0.000     59.14069    98.51697 
       _cons |  -1135.135   12136.36    -0.09   0.926    -25177.18    22906.91 
------------------------------------------------------------------------------ 
 
Median regression (the default for qreg) estimates the median of the dependent variable given 
the values of X.  It doesn’t toss out outliers, but outliers have less impact because the median is 
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less affected by outliers than the mean is.  The coefficient for sqf is larger than in the other 
options (where case 4 is dropped) but not as large as it was in the original regression. 
 
 3. OLS regression, with the outlying case deleted. 
 
. reg sellp sqf if sellp!=7400 
 
      Source |       SS       df       MS              Number of obs =     115 
-------------+------------------------------           F(  1,   113) =  109.07 
       Model |  8.8061e+09     1  8.8061e+09           Prob > F      =  0.0000 
    Residual |  9.1237e+09   113  80741091.2           R-squared     =  0.4911 
-------------+------------------------------           Adj R-squared =  0.4866 
       Total |  1.7930e+10   114   157279664           Root MSE      =  8985.6 
 
------------------------------------------------------------------------------ 
       sellp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sqf |   75.07451   7.188646    10.44   0.000     60.83251    89.31652 
       _cons |   3379.622   8800.875     0.38   0.702     -14056.5    20815.74 
------------------------------------------------------------------------------ 
 
With this approach, you are just assuming the outlier should be excluded, perhaps because it is a 
coding error or because you feel it does not fall in the population of interest.  In this particular 
situation, the results are similar to rreg, which also wound up dropping the same case.  The 
results are not identical, partly because rreg also gives other cases weights that are less than 
one. 
 
Briefly explain the rationale behind each approach and discuss any important differences in the results.  Discuss any other 
strategies you might want to try, at least if you had the necessary information and resources to do so. 
 
The first thing I would want to do is try to double-check the coding!  If case 4 is supposed to be 
74,000, then change the coding accordingly.  If I can’t check the coding, then I might prefer just 
to drop the case; or, run the analysis a couple of different ways, both with and without the 
outlier. 
 
But, if the coding is legitimate, I’d like to try some additional variables if possible.  As noted 
before, the property could be in poor condition or in a poor location. 
 
If the code was legitimate, I might be tempted to prefer qreg.  I think it makes more intuitive 
sense.  Also, with real estate values, I could see where outliers might skew the distribution, 
perhaps making the median more substantively interesting and appropriate to examine than the 
mean.  Luckily, all three of the above methods produce similar results in this case, so even if you 
choose the wrong approach the error won’t be too costly. 
 
c. For the remainder of this homework, DROP the outlying case.  Then do the following tests for heteroscedasticity. 
 1. A visual inspection of the plot of the residual versus fitted cases. 
 
. drop in 4 
(1 observation deleted) 
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. reg sellp sqf 
 
      Source |       SS       df       MS              Number of obs =     115 
-------------+------------------------------           F(  1,   113) =  109.07 
       Model |  8.8061e+09     1  8.8061e+09           Prob > F      =  0.0000 
    Residual |  9.1237e+09   113  80741091.2           R-squared     =  0.4911 
-------------+------------------------------           Adj R-squared =  0.4866 
       Total |  1.7930e+10   114   157279664           Root MSE      =  8985.6 
 
------------------------------------------------------------------------------ 
       sellp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sqf |   75.07451   7.188646    10.44   0.000     60.83251    89.31652 
       _cons |   3379.622   8800.875     0.38   0.702     -14056.5    20815.74 
------------------------------------------------------------------------------ 
 
. rvfplot 
 

 
 

Ideally, this would look more like a random scatter of points.  You can see from this plot that the 
variance of the residuals does not appear to be constant.  As the predicted Y increases, the 
magnitude of the residuals tends to increase (although eventually it seems to level off or even 
decline a bit).  [NOTE: if there were more than 1 X, you would probably want to plot each of 
them against the residuals using the rvpplot command—or at least plot the X which you think 
might cause heteroscedasticity.  In the bivariate case, it doesn’t matter whether you use the 
predicted Y (i.e. the fitted values), or the observed X,  because they are perfectly correlated with 
each other—predicted Y is computed from X and X only] 
 
Of course, visual analyses can be deceiving, and sampling variability alone could produce the 
appearance of heteroscedasticity when it doesn’t actually exist; hence we do the next two tests. 
 
 2. The Breusch-Pagan test and White’s general test. 
 
Breusch-Pagan tests whether the residuals are linearly related to the variables specified.  In its 
default form (below) it tests whether, as the fitted values go up, the error variances also tend to 
go up (or, go down).  In this particular case, since there is only one IV, the commands hettest 
and hettest sqf will produce identical results, but we could specify other IVs or even 
variables not in the model if we felt they were related to heteroscedasticity in the data. 
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. estat hettest 
 
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity  
         Ho: Constant variance 
         Variables: fitted values of sellp 
 
         chi2(1)      =    10.73 
         Prob > chi2  =   0.0011 
 

This test is consistent with our visual impressions.  The significant chi-square indicates that, as 
the fitted values go up, the error variances also tend to go up (well actually, they could go down, 
but the visual inspection suggests otherwise.) 
 
White’s general test probably isn’t necessary here, but it is useful when there may be non-linear 
relationships between the residuals and the variables specified. 
 
. estat imtest, white 
 
White's test for Ho: homoskedasticity 
         against Ha: unrestricted heteroskedasticity 
 
         chi2(2)      =     12.75 
         Prob > chi2  =    0.0017 
 
Cameron & Trivedi's decomposition of IM-test 
 
--------------------------------------------------- 
              Source |       chi2     df      p 
---------------------+----------------------------- 
  Heteroskedasticity |      12.75      2    0.0017 
            Skewness |       0.97      1    0.3253 
            Kurtosis |       1.17      1    0.2793 
---------------------+----------------------------- 
               Total |      14.89      4    0.0049 
--------------------------------------------------- 
 

Again, the test confirms that heteroskedasticity is present.  The small increase in chi-square from 
Breusch-Pagan probably means we do not have to worry too much about non-linear 
relationships. 
 
Based on your analyses (and any other analyses you choose to do) indicate whether heteroscedasticity appears to be a problem 
(and how the test supports your conclusion).  If heteroscedasticity does appear to be a problem, explain why you think it occurs in 
this case. 
 
All the tests indicate heteroscedasticity.  Substantively, we might suspect heteroscedasticity 
because, with bigger and more expensive lots, there may be more variability (in absolute terms) 
in the range of reasonable prices.  For example, a small lot might sell for between $60 and $80 
thousand (a $20,000 range), a bigger lot might reasonably sell for between $150,000 and 
$200,000 (a $50,000 range).  Also, larger square footage may be a necessary but not sufficient 
condition for the addition of features that disproportionately increase a house’s value, e.g. a 
larger house may just be larger, but it might also include a swimming pool, better construction, 
nicer rooms. 
 
d. Try up to three different strategies for dealing with the heteroscedasticity 
 1. Regular OLS regression (i.e. do nothing about the heteroscedasticity) 
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. reg sellp  sqf 
 
      Source |       SS       df       MS              Number of obs =     115 
-------------+------------------------------           F(  1,   113) =  109.07 
       Model |  8.8061e+09     1  8.8061e+09           Prob > F      =  0.0000 
    Residual |  9.1237e+09   113  80741091.2           R-squared     =  0.4911 
-------------+------------------------------           Adj R-squared =  0.4866 
       Total |  1.7930e+10   114   157279664           Root MSE      =  8985.6 
 
------------------------------------------------------------------------------ 
       sellp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sqf |   75.07451   7.188646    10.44   0.000     60.83251    89.31652 
       _cons |   3379.622   8800.875     0.38   0.702     -14056.5    20815.74 
------------------------------------------------------------------------------ 
 

2. Regression with Robust Standard Errors 
 
. reg sellp  sqf, robust 
 
Regression with robust standard errors                 Number of obs =     115 
                                                       F(  1,   113) =   85.66 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.4911 
                                                       Root MSE      =  8985.6 
 
------------------------------------------------------------------------------ 
             |               Robust 
       sellp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sqf |   75.07451   8.111358     9.26   0.000     59.00445    91.14458 
       _cons |   3379.622   9595.886     0.35   0.725    -15631.56     22390.8 
------------------------------------------------------------------------------ 
 

When heteroskedasticity is present, OLS coefficient estimates are unbiased but the estimates of 
the standard errors are biased.  The use of robust standard errors does not change the coefficient 
estimates.  But, the assumption that errors are independent and identically distributed is dropped, 
causing the standard errors and hence the T values and confidence intervals to change.  As a 
result, in this particular case the effect of sqf is a little less significant and its confidence interval 
is a little larger, but our main conclusions do not change much. 
 
 3. Weighted Least Squares [Optional] 
 
. reg sellp  sqf [aw = 1/sqf^2] 
(sum of wgt is   7.9476e-05) 
 
      Source |       SS       df       MS              Number of obs =     115 
-------------+------------------------------           F(  1,   113) =  107.50 
       Model |  8.0127e+09     1  8.0127e+09           Prob > F      =  0.0000 
    Residual |  8.4231e+09   113  74540296.6           R-squared     =  0.4875 
-------------+------------------------------           Adj R-squared =  0.4830 
       Total |  1.6436e+10   114   144173552           Root MSE      =  8633.7 
 
------------------------------------------------------------------------------ 
       sellp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sqf |   75.44355   7.276581    10.37   0.000     61.02733    89.85976 
       _cons |   2931.524   8753.001     0.33   0.738    -14409.75     20272.8 
------------------------------------------------------------------------------ 
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We have previously determined that as sqf goes up, the error variances tend to go up.  With 
WLS, estimates which are less precise (i.e. have larger error variances) are weighted less heavily 
than estimates which are more precise (have smaller error variances). The result (assuming we 
do the weighting correctly) is parameter estimates that are more efficient and that have unbiased 
standard errors, i.e. they will vary less from sample to sample than regular OLS regression or 
regression with robust errors would. 
 
For 2 (and 3 if you use it), briefly explain the rationale for each method.  Indicate whether methods 2 and 3 change the 
conclusions you would reach using OLS regression without any attempt to deal with heteroscedasticity. [HINT: The differences 
between the three methods are not too dramatic in this case.] 
 
Alas, in this case, even though the various tests all indicated heteroscedasticity, the harms it 
caused were obviously slight.  Both robust standard errors and weighted least squares led us to 
almost the exact same conclusion as did regular OLS.  This is consistent with Allison’s claim 
that, unless heteroskedasticity is marked, it tends not to have much of an effect. 
 
Of course, it could be that we have not approached this problem in the optimal fashion either.  
There are undoubtedly important variables omitted from the model.  It may be that we should 
transform the variables in some way, e.g. use the log of selling price rather than selling price.  If 
we had more information or had more of a theory about how square footage is related to selling 
price, we might be able to come up with a better solution than we have here. 
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