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Definitions. For two variables, X and Y, the following hold: 

Parameter Explanation 

x
i
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X

XE µ== ∑)(  Expectation, or Mean, of X 

V X E X x x( ) [( ) ]= − =µ σ2 2  Variance of X 

SD X V X x( ) ( )= = σ  Standard Deviation of X 

COV X Y E X Yx y xy( , ) [( )( )]= − − =µ µ σ  Covariance of X and Y 
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x y
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 Correlation of X and Y 

β
σ
σyx

xy

x

= 2
 Slope coefficient for the Bivariate regression of Y 

on X (Y dependent) 

 
Question:  Suppose X suffers from random measurement error - that is, the values of X that we observe 
differ randomly from the true values that we are interested in. For example, we might be interested in 
income. Since people do not remember their income exactly, reported income will sometimes be higher 
and sometimes be lower than true income. In such a case, how does random measurement error affect the 
various statistical measures we are typically interested in? That is, how does unreliability affect our 
statistical measures and conclusions? 
 
Revised Question:  Let us put the question more formally. Let X = Xt +ε, where ε is a random error 
term (i.e. has mean 0 and variance s²ε). That is, Xt is the “true” value of the variable, and X is the flawed 
measure of the variable that is observed. We want to see how the statistics for the observed variable, X, 
differ from the statistics for the true variable, Xt. When thinking about this question, keep in mind that, 
because ε is a random error term, it is independent from all other variables (except itself), e.g. 
COV(X, ε) = COV(Y, ε) = 0. 
 
Definition of Reliability:  The reliability of a variable is defined as: 

 REL(X) =
σ
σ

x

x

t

2

2  = r2
XtX 

The first equality says reliability is true variance divided by total variance. The second equality says the 
reliability of a variable is the squared correlation between the true value of the variable and the observed 
value that suffers from random measurement error. If there is no random measurement error, reliability = 1. 
 
Some additional rules for expectations. Before answering the question, the following additional rules 
are helpful. Let A, B, C, and D be random variables. Then, 
 (1) E(A + B) = E(A) + E(B) 
 (2) If A and B are independent, V(A + B) = V(A) + V(B) 
 (3) COV(A + B, C + D) = COV(A,C) + COV(A,D) + COV(B,C) + COV(B,D) 
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Hypothetical Data. To help illustrate the points that will follow, we create a data set where the true 
measures (Yt and Xt) have a correlation of .7 with each other – but the observed measures (Y 
and X) both have some degree of random measurement error, and the reliability of both is .64. 
The way I am constructing the data set, using the corr2data command, there will be no 
sampling variability, i.e. we can act as though we have the entire population. 
 
. matrix input corr = (1,.7,0,0\.7 ,1,0,0\0,0,1,0\0,0,0,1) 
. matrix input sd = (4,8,3,6) 
. matrix input mean = (10,7,0,0) 
. corr2data Yt Xt ey ex, corr(corr) sd(sd) mean(mean) n(500) 
 (obs 500) 
. * Create flawed measures with random measurement error 
. gen Y = Yt + ey 
. gen X = Xt + ex 
 

 
Effects of Unreliability 
 
A. For the mean:  
 E(X) = E(Xt + ε) = E(Xt) + E(ε) = E(Xt)   [Expectations rule 1] 
 NOTE:  Remember, since errors are random, ε has mean 0. 
 
 Implication: Random measurement error does not bias the expected value of a variable - that is, 

E(X) = E(Xt) 
 
B. For the variance:  
 V(X) = V(Xt + ε) = V(Xt) + V(ε)    [Expectations rule 2] 
 NOTE:  Remember, COV(Xt, ε) = 0 because ε is a random disturbance. 
 
 Implication: Random measurement error does result in biased variances. The variance of the 

observed variable will be greater than the true variance. 
 

A & B illustrated with our hypothetical data. We see that the flawed, observed measures have the same 
means as the true measures – but their variances & standard deviations are larger: 
 
. sum  Yt Y Xt X 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
          Yt |       500          10           4  -2.639851   22.83863 
           Y |       500          10           5  -3.706503   26.55569 
          Xt |       500           7           8  -16.16331   28.80884 
           X |       500           7          10  -23.81675   38.49127 
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C. For the covariance (we’ll let Yt stand for the perfectly measured Y variable): 
 COV(X,Yt) = COV(Xt + ε, Yt) = COV(Xt, Yt) + COV(ε, Yt)  
 = COV(Xt, Yt)      [Expectations rule 3] 
  
 NOTE:  Remember, COV(ε,Yt)  = 0 because ε is a random disturbance. 
 
 Implication: Covariances are not biased by random measurement error. 
 

C illustrated with our hypothetical data. Random measurement error in X does NOT affect the 
covariance: 
 
. corr Yt Xt X, cov 
 
(obs=500) 
 
             |       Yt       Xt        X 
-------------+--------------------------- 
          Yt |       16 
          Xt |     22.4       64 
           X |     22.4       64      100 
 

 
D. For the correlation: 
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 Thus, when X and Yt covary positively, CORR(X,Yt) ≤ CORR(Xt,Yt) 
 
 Implication:  Random measurement error produces a downward bias in the bivariate correlation. 

This is often referred to as attenuation. 
 

D with hypothetical data. The correlation is attenuated by random measurement error: 
 
. corr Yt Xt X 
 
(obs=500) 
 
             |       Yt       Xt        X 
-------------+--------------------------- 
          Yt |   1.0000 
          Xt |   0.7000   1.0000 
           X |   0.5600   0.8000   1.0000 
 

 

Note that the correlation between X and Xt is .8 – and that the correlation between X and Yt 
(.56) is only .8 times as large as the correlation between Xt and Yt (.7). Also, the .8 correlation 
between X and Xt means that the reliability of X is .64. 
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E. For ßYtX: (Yt is perfectly measured, X has random measurement error) 

 
σ
σβ 2

X

XYt
YtX = , 2

Xt

XtYt
YtXt σ

σβ =  Thus, when X and Yt covary positively, ßYtX ≤ ßYtXt  

 
 Implication:  Random measurement error in the Independent variable produces a downward bias 

in the bivariate regression slope coefficient. 
 

E with hypothetical data. In a bivariate regression, random measurement error in X causes the slope 
coefficient to be attenuated, i.e. smaller in magnitude. First we run the regression between the true 
measures, and then we run the regression of Yt with the flawed measure X: 
 
. reg Yt Xt 
 
      Source |       SS       df       MS              Number of obs =     500 
-------------+------------------------------           F(  1,   498) =  478.47 
       Model |  3912.16007     1  3912.16007           Prob > F      =  0.0000 
    Residual |  4071.84001   498  8.17638555           R-squared     =  0.4900 
-------------+------------------------------           Adj R-squared =  0.4890 
       Total |  7984.00008   499  16.0000002           Root MSE      =  2.8594 
 
------------------------------------------------------------------------------ 
          Yt |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          Xt |        .35   .0160008    21.87   0.000     .3185627    .3814373 
       _cons |       7.55    .169994    44.41   0.000     7.216006    7.883994 
------------------------------------------------------------------------------ 
 
. reg Yt X 
 
      Source |       SS       df       MS              Number of obs =     500 
-------------+------------------------------           F(  1,   498) =  227.52 
       Model |  2503.78247     1  2503.78247           Prob > F      =  0.0000 
    Residual |  5480.21761   498   11.004453           R-squared     =  0.3136 
-------------+------------------------------           Adj R-squared =  0.3122 
       Total |  7984.00008   499  16.0000002           Root MSE      =  3.3173 
 
------------------------------------------------------------------------------ 
          Yt |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           X |       .224   .0148503    15.08   0.000     .1948231    .2531769 
       _cons |      8.432   .1811488    46.55   0.000      8.07609     8.78791 
------------------------------------------------------------------------------ 
 
Note that X has a reliability of .64 – and the slope coefficient using the flawed X (.224) is only .64 times 
as large as the slope coefficient using the perfectly measured Xt (.35). 
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F. For ßYXt: (Now Y is measured with random error, while Xt is measured perfectly) 
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 Implication:  Random measurement error in the Dependent variable does not bias the slope 

coefficient. HOWEVER, it does lead to larger standard errors. Recall that the formula for the 
standard error of b is 
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 When you have random measurement error in Y, R2 goes down because of the previously noted 

downward bias. This increases the numerator. Also, the variance of Y goes up, which further 
increases the standard error. 

 

 

F with hypothetical data. Random measurement error in Y does not cause the slope coefficient to be 
biased – but it does cause the standard error for the slope coefficient to be larger and the t value smaller. 
Again we run the true regression followed by the regression of Y with Xt. 
 
. reg Yt Xt 
 
      Source |       SS       df       MS              Number of obs =     500 
-------------+------------------------------           F(  1,   498) =  478.47 
       Model |  3912.16007     1  3912.16007           Prob > F      =  0.0000 
    Residual |  4071.84001   498  8.17638555           R-squared     =  0.4900 
-------------+------------------------------           Adj R-squared =  0.4890 
       Total |  7984.00008   499  16.0000002           Root MSE      =  2.8594 
 
------------------------------------------------------------------------------ 
          Yt |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          Xt |        .35   .0160008    21.87   0.000     .3185627    .3814373 
       _cons |       7.55    .169994    44.41   0.000     7.216006    7.883994 
------------------------------------------------------------------------------ 
 
. reg Y Xt 
 
      Source |       SS       df       MS              Number of obs =     500 
-------------+------------------------------           F(  1,   498) =  227.52 
       Model |  3912.16001     1  3912.16001           Prob > F      =  0.0000 
    Residual |  8562.84011   498   17.194458           R-squared     =  0.3136 
-------------+------------------------------           Adj R-squared =  0.3122 
       Total |  12475.0001   499  25.0000002           Root MSE      =  4.1466 
 
------------------------------------------------------------------------------ 
           Y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          Xt |        .35   .0232035    15.08   0.000     .3044111    .3955889 
       _cons |       7.55   .2465171    30.63   0.000     7.065658    8.034342 
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Additional implications 
 
• When you have more than one independent variable, random measurement error can cause 

coefficients to be biased either upward or downward. As you add more variables to the 
model, all you can really be sure of is that, if the variables suffer from random measurement 
error (and most do) the results will probably be at least a little wrong! 

• Reliability is a function of both the total variance and the error variance. True variance is a 
population characteristic; error variance is a characteristic of the measuring instrument.  

• The fact that reliabilities differ between groups does not necessarily mean that one group is 
more “accurate.” It may just mean that there is less true variance in one group than there is in 
another.  

• Comparisons of any sort can be distorted by differential reliability of variables. For example, 
if comparing effects of two variables, one variable may appear to have a stronger effect 
simply because it is better measured. If comparing, say, husbands and wives, the spouse who 
gives more accurate information may appear more influential. For a more detailed discussion 
of how measurement error can affect group comparisons, see  Thomson, Elizabeth and 
Richard Williams (1982) “Beyond wives family sociology: a method for analyzing couple 
data” Journal of Marriage and the Family Vol 44 999:1008 

 
Dealing with measurement error. For the most part, this is a subject for a research methods 
class or a more advanced statistics class. I’ll toss out a few ideas for now: 

• Collect better quality data in the first place. Make questions as clear as possible. 

• Measure multiple indicators of concepts. When more than one question measures a concept, 
it is possible to estimate reliability and to take corrective action. For a more detailed 
discussion on measuring reliability, see Reliability and Validity Assessment, by Edward G. 
Carmines and Richard A. Zeller. 1979. Paper # 17 in the Sage Series on Quantitative 
Applications in the Social Sciences. Beverly Hills, CA: Sage. 

• Create scales from multiple indicators of a concept. The scales will generally be more 
reliable than any single item would be. In SPSS you might use the FACTOR or 
RELIABILITY commands; in Stata relevant commands include factor and alpha. 

• Use advanced techniques, such as LISREL, which let you incorporate multiple indicators of a 
concept in your model. Ideally, LISREL “purges” the items of measurement error hence 
producing unbiased estimates of structural parameters. In Stata 12+, this can also be done 
with the sem (Structural Equation Modeling) command. 
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