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We saw that the effects of education and job experience were smaller for blacks than for whites. 
However, we also saw that blacks had lower levels of education and less job experience than 
whites. Both of these contribute to the differences in income between whites and blacks. How 
can we disentangle the relative importance of these differences? 
 
One way to address this is via a “what if” question: Suppose that blacks had as much education 
and job experience as whites, but the effects of education and job experience were the same for 
blacks as they are now. What would the gap be between whites and blacks then? In other words, 
if you control for compositional differences on the independent variables, how much difference 
remains between whites and blacks on the dependent variable? I’ll show you a variety of 
approaches. 
 
First, remember that in the real world (the real world we made up in this example, anyway) the 
difference between the average black and white income is $11,250. Further, on average whites 
also have 3.7 more years of education and 2.9 more years of job experience than do blacks. 
 
. use https://www3.nd.edu/~rwilliam/statafiles/blwh.dta, clear 
. tabstat income educ jobexp, by(black) columns(variables) 
 
Summary statistics: mean 
  by categories of: black  
 
black |    income      educ    jobexp 
------+------------------------------ 
white |     30.04      13.9      14.1 
black |     18.79      10.2      11.2 
------+------------------------------ 
Total |     27.79     13.16     13.52 
------------------------------------- 
 
Remember too that the effects of education and job experience are greater for whites (for variety 
I’ll use Stata’s estimates command to make side by side comparisons easier): 
 
. quietly reg income educ jobexp if black==1 
. estimates store blackmodel 
. quietly reg income educ jobexp if black==0 
. estimates store whitemodel 
. quietly reg income educ jobexp 
. estimates store bothmodel 
. estimates table blackmodel whitemodel bothmodel 
 
----------------------------------------------------- 
    Variable | blackmodel   whitemodel   bothmodel    
-------------+--------------------------------------- 
        educ |  1.6779491    1.8933377    1.9451204   
      jobexp |    .421975    .72225495    .70822118   
       _cons | -3.0512005   -6.4611885   -7.3829348   
----------------------------------------------------- 
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To find out how much difference there would be in our hypothetical world where blacks have the 
same average levels of education and job experience as whites, while education and job 
experience continue to have the same effect on blacks as they do now, we can now use Stata’s 
margins command. 
 
. quietly reg income educ jobexp if black == 1 
. margins, at(educ = 13.9 jobexp = 14.1) 
 
Adjusted predictions                              Number of obs   =        100 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
at           : educ            =        13.9 
               jobexp          =        14.1 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   26.22214   .4666424    56.19   0.000     25.29598    27.14829 
------------------------------------------------------------------------------ 

 
Here is what we did. We estimated the model for blacks only. Then, with the margins 
command, we asked Stata to compute the predicted income for a black who had the white 
average values for educ (13.9) and jobexp (14.1). The predicted value was $26, 222.14. While 
this is much more than the average black makes ($18,790) it is still much less than the average 
white makes ($30,040).  
 
Put another way, margins computed the following, using the coefficient values for blacks (i.e. 
beduc = 1.6779491, bjobexp = .421975, constant = -3.0512005) and the variable means for whites 
(mean of educ = 13.9, mean of educ = 14.1): 
 

E(Y) = -3.0512005 + (1.6779491 * 13.9) + (.421975 * 14.1) = 26.22214 
 

Interpretation. In the “real” world, there is a difference of $11,250 in black and white income. 
Blacks average $18,790, whites average $30,040 dollars. HOWEVER, if blacks had the same 
average levels of education (13.9 years) and job experience (14.1 years) as whites, while the 
effects of education and job experience stayed the same for them as they currently are, their 
average income would increase to $26,222.14. This would be an increase of $26,222.14 - 
$18,790 = $7,432.14. However, they would still trail whites by $30,040 – $26,222.14 = 
$3,817.86. 
 
So, of the original difference between black and white income, 66% (7432.14/11250) of the 
difference is due to blacks having lower levels of education and job experience than do whites; 
34% (3817.86/11250) is due to the effects of education and job experience being different for 
whites than they are for blacks. 
 
Hence, compositional differences can account for about 2/3 of the income differences between 
blacks and whites; but a third of the difference still remains. One possible explanation might be 
that there is discrimination against blacks, but there are several other possible explanations as 



Group Comparisons: Using “What If” Scenarios to Decompose Differences Across Groups Page 3 
 

well, e.g. the quality of education and job experience may differ by race, or there could be other 
variables not currently included in the model that account for these differences. 
 
Some other things to note. In this particular example, both compositional differences and 
differences in effects worked against blacks. There is nothing that says this always has to 
happen. For example, the effects of education and job experience could have been greater for 
blacks than whites; but if blacks were far behind in terms of years of education and job 
experience, they could still have lower levels of income than whites. 
 
Also, how you phrase your “what if” question will affect your results. For example, you could 
have asked, what if whites had the same levels of education and job experience as blacks, while 
education and job experience continued to have the same effects on whites as they do now? 
Doing it that way would produce different numbers. To me, it is more intuitively appealing to 
“raise up” the group that is behind than it is to “bring down” the group that is ahead – but the 
main thing is to be clear as to how you are doing things. That is, I would usually use the 
coefficients for the disadvantaged group (in this case blacks) with the means for the advantaged 
group (in this case whites). 
 
While I now prefer the above approach, Appendix A will demonstrate a few other alternatives. 
This is because 
 

• If you don’t understand one approach, a different approach may make things clearer to 
you 

• These other approaches have been used in the past so you may encounter them being 
used on old exams 

• In the above example, the means were exactly correct to 1 decimal place. Sometimes it 
may take several decimal places to report the value of a mean. Usually, rounding to a few 
decimal places will be sufficient. But, the most precise possible estimates can be obtained 
using methods outlined in Appendix A, which include some minor variations of the 
above margins command 

• If there are several independent variables in the model, the methods in Appendix A may 
be a little easier to use since you don’t have to specify the mean for each variable 
separately. 

 
Appendix B presents a different detailed example using these techniques. 
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Appendix A: Alternative Approaches 
 

In case the first approach isn’t clear, here are several other ways to do it. 
 
Predict command. Regress income on education and job experience for blacks only. Then use 
the predict command, but select whites only: 
 
. quietly reg income educ jobexp if black==1 
. predict whcompblcoef if black==0 
(option xb assumed; fitted values) 
(100 missing values generated) 
 
In other words, you estimate the regression using one group, blacks, but then compute the 
predicted values using the other group, whites. In effect, what this does is give us predicted 
values of income for a hypothetical group that has the same levels of education and job 
experience as whites, where the effects of education and job experience are the same as they 
currently are for blacks. 
 
We then get the mean of this new variable: 
 
. sum whcompblcoef 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
whcompblcoef |       400    26.22214    5.791108   19.23387   39.35931 

 
 

 
Adjust command. The adjust command has largely been replaced by margins, but it still 
works. Again, you estimate the model for blacks, and then plug in the mean values for whites. 
 
. quietly reg income educ jobexp if black == 1 
. adjust educ jobexp if black == 0 
 
-------------------------------------------------------------------------------------- 
     Dependent variable: income     Command: regress 
 Covariates set to mean: educ = 13.9, jobexp = 14.1 
-------------------------------------------------------------------------------------- 
 
---------------------- 
      All |         xb 
----------+----------- 
          |    26.2221 
---------------------- 
     Key:  xb  =  Linear Prediction 

 
 
Margins command using precise values for the means: In this example the means were 
exactly reported to 1 decimal place and hence were easy to specify in the margins command. 
You’ll probably be fine if you use values rounded to a few decimal places. But if, say, the means 
went to several decimal places, you can be super precise by doing something like the following. 
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Basically we compute scalars that are equal to the means (to several decimal places anyway) and 
we then use those scalar values in the margins command.  
 
. * More precise approach 
. sum educ if black == 0, meanonly 
. scalar whitemeaneduc = r(mean) 
. sum jobexp if black == 0, meanonly 
. scalar whitemeanjobexp = r(mean) 
. scalar list 
whitemeanjobexp =       14.1 
whitemeaneduc =       13.9 
 
. quietly reg income educ jobexp if black == 1 
. margins, at(educ = `=whitemeaneduc' jobexp = `=whitemeanjobexp') 
 
Adjusted predictions                              Number of obs   =        100 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
at           : educ            =        13.9 
               jobexp          =        14.1 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   26.22214   .4666424    56.19   0.000     25.29598    27.14829 
------------------------------------------------------------------------------ 
 

 
 
Margins command using atmeans. Or, we can use the margins command, this time using 
the atmeans option. This would also be more precise if the means needed to be calculated to 
several decimal places, and be less tedious if there were several independent variables. As 
before, we estimate a model for blacks only, and then use the means for whites. By default, 
margins only does calculations using cases that were used in the estimation command. The 
noesample option overrides that. 
 
. quietly reg income educ jobexp if black == 1 
. margins if black == 0, noesample atmeans 
 
Adjusted predictions                              Number of obs   =        400 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
at           : educ            =        13.9 (mean) 
               jobexp          =        14.1 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   26.22214   .4666424    56.19   0.000     25.29598    27.14829 
------------------------------------------------------------------------------ 
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Appendix B: A Blast from the Past 
 
Here is a problem I use when I teach Grad Stats I. This problem addresses the same sorts of 
issues we are dealing with here. Men make more than women. However, men are also more 
likely to be in higher-paying occupations than are women. To what extent is difference in pay 
due to compositional differences in occupation distribution, and to what extent is it due to the 
fact that the effect of occupation on pay differs between men and women? We’ll repeat how I did 
it originally, and then show how we can solve the problem using our current framework. 
 
A researcher is doing a study of gender discrimination in the American labor force. She has come up with a 3-part 
classification of occupations (Occupation 1, Occupation 2, and Occupation 3) and a 2-part classification for wages 
(“good” and “bad”). She finds that, by gender, the distribution of occupation and wages is as follows: 
 

 
 

 
Women 

 
Men 

 
Pay/Occ 

 
Occ 1 

 
Occ 2 

 
Occ 3 

 
Occ 1  

 
Occ 2 

 
Occ 3 

 
Good Pay 

 
20% 

 
7% 

 
10% 

 
7% 

 
10% 

 
60% 

 
Bad Pay 

 
50% 

 
8% 

 
5% 

 
8% 

 
5% 

 
10% 

 
From the table, it is immediately apparent that 37% of all women receive good pay, compared to 77% of the men. At 
the same time, it is also very clear that the types of occupations are very different for men and women. For women, 
70% are in occupation 1, which pays poorly, while 70% of men are in occupation 3, which pays very well. Therefore, 
the researcher wants to know whether differences in the types of occupations held by men and women account for 
the wage differential between them. How can she address this question? 
 
SOLUTION. This problem is best addressed by asking a “what if” sort of question: Suppose women were distributed 
across occupations the same way men were, but within each occupation had the same wage structure that they do 
now. If differences in types of occupations alone account for the wage discrepancies, then this approach should 
control for those differences and wage differentials should disappear. 
 

We will use the following terms: 
 

Event A = Receives Good pay, A = Bad pay, Ei = Employed in occupation i. 
 

Given these definitions, this problem requires that we combine the occupational distribution for men (P(Ei))M with the 
conditional probabilities that a woman receives good wages given the occupation she is in (P(A | Ei))F 
 

For men P(E1)M = .15, P(E2)M = .15, P(E3)M = .70 
 
For women P(A | E1)W = 2/7, P(A | E2)W = 7/15, P(A | E3)W = 10/15 

 
Using the marginal probability theorem, we get 
 

0.5795238 = )*  (.70 + )*  (.15 + )*  (.15 = )E | P(A)EP( = P(A) 15
10

15
7

7
2W

i
M

i∑  
 
Hence, if women had the same occupational distribution while continuing to make the same salaries within 
occupations that they do now, 58% of women would make good wages. This is much more than the 37% of women 
who currently make good wages, but still well short of the male figure of 77%. Differences in occupational structure 
account for much of the difference between men and women, but not all. 
 
Alternative Solution. Let goodpay = 1 if pay is good, 0 otherwise; female = 1 if female, 0 if 
male; occ2 = 1 if in occupation 2, 0 otherwise; occ3 = 1 if in occupation 3, 0 otherwise. You then 
get 
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. clear all 
. use https://www3.nd.edu/~rwilliam/statafiles/goodpay.dta, clear 
. tabstat goodpay occ1 occ2 occ3, by(female) columns(variables) 
 
Summary statistics: mean 
  by categories of: female  
 
female |   goodpay      occ1      occ2      occ3 
-------+---------------------------------------- 
  Male |       .77       .15       .15        .7 
Female |       .37        .7       .15       .15 
-------+---------------------------------------- 
 Total |       .57      .425       .15      .425 
------------------------------------------------ 
 
This shows us that 77% of the men and 37% of the women receive good pay, a 40% difference. 
It also shows the sharp differences in occupational distribution by gender. We next run a 
regression model for women only: 
 
. reg  goodpay occ2 occ3 if female == 1 
 
      Source |       SS       df       MS              Number of obs =     100 
-------------+------------------------------           F(  2,    97) =    4.45 
       Model |  1.95761905     2  .978809524           Prob > F      =  0.0142 
    Residual |   21.352381    97  .220127639           R-squared     =  0.0840 
-------------+------------------------------           Adj R-squared =  0.0651 
       Total |       23.31    99  .235454545           Root MSE      =  .46918 
 
------------------------------------------------------------------------------ 
     goodpay |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        occ2 |   .1809524    .133491     1.36   0.178    -.0839904    .4458951 
        occ3 |   .3809524    .133491     2.85   0.005     .1160096    .6458951 
       _cons |   .2857143   .0560775     5.09   0.000     .1744161    .3970125 
------------------------------------------------------------------------------ 
 

We regress goodpay on the two occupation dummies, for women only. This shows how 
occupation is related to women’s pay. The constant shows us that 28.57% of women in 
occupation 1 receive good pay. For occupation 2, 46.66% (.2857143 + .1809524) receive good 
pay; for occupation 3, 66.66% (.2857143 + .3809524) receive good pay. This is consistent with 
the original table. (As we’ll see, when the dependent variable is a dichotomy, logistic regression 
is preferable to OLS regression; but in this particular problem, where all the variables are dummy 
variables, both OLS regression and logistic regression will work equally well.) 
 
We can now use the margins command. For occ2 and occ3, we plug in the mean values for 
men, i.e. 15% of men are in occupation 2 while 70% of men are in occupation 3: 
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. margins, at(occ2 = .15 occ3 = .7) 
 
Adjusted predictions                              Number of obs   =        100 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
at           : occ2            =         .15 
               occ3            =          .7 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   .5795238   .0871308     6.65   0.000     .4065932    .7524544 
------------------------------------------------------------------------------ 

 
What this shows us is that, if women had the same occupational distribution as men while still 
receiving the same wages within occupations as they do now, 57.95% of women would receive 
good pay. Hence, about half the 40 point gap in men’s and women’s pay is due to differences in 
occupational structure, but about half is due to differences in pay within occupations. This is the 
exact same conclusion reached before. 
 

 
 
We can get the same results using other approaches we have discussed. 
 
. quietly reg goodpay occ2 occ3 if female == 1 
. predict mcompfcoef if female == 0 
(option xb assumed; fitted values) 
(100 missing values generated) 
 
. sum  mcompfcoef 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
  mcompfcoef |       100    .5795238    .1427537   .2857143   .6666667 

 
Alternatively, using the adjust command, 
 
. quietly reg goodpay occ2 occ3 if female == 1 
. adjust occ2 occ3 if female == 0 
 
-------------------------------------------------------------------------------------- 
     Dependent variable: goodpay     Command: regress 
 Covariates set to mean: occ2 = .15, occ3 = .7 
-------------------------------------------------------------------------------------- 
 
---------------------- 
      All |         xb 
----------+----------- 
          |    .579524 
---------------------- 
     Key:  xb  =  Linear Prediction 
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Or, using margins with super-precise values for the means, 
 
. sum occ2 if female==0, meanonly 
. scalar malemeanocc2 = r(mean) 
. sum occ3 if female==0, meanonly 
. scalar malemeanocc3 = r(mean) 
. scalar list 
malemeanocc3 =         .7 
malemeanocc2 =        .15 
 
. quietly reg goodpay occ2 occ3 if female == 1 
. margins, at(occ2 = `=malemeanocc2' occ3 = `=malemeanocc3') 
 
Adjusted predictions                              Number of obs   =        100 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
at           : occ2            =         .15 
               occ3            =          .7 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   .5795238   .0871308     6.65   0.000     .4065932    .7524544 
------------------------------------------------------------------------------ 

 
Or, using margins with atmeans 
 
. quietly reg goodpay occ2 occ3 if female == 1 
. margins if female == 0, noesample atmeans 
 
Adjusted predictions                              Number of obs   =        100 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
at           : occ2            =         .15 (mean) 
               occ3            =          .7 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   .5795238   .0871308     6.65   0.000     .4065932    .7524544 
------------------------------------------------------------------------------ 

 


