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Sources: Berry & Feldman’s Multiple Regression in Practice 1985; Pindyck and Rubinfeld’s Econometric Models 
and Economic Forecasts 1991 edition; McClendon’s Multiple Regression and Causal Analysis, 1994; SPSS’s 
Curvefit documentation. Also see Hamilton’s Statistics with Stata, Updated for Version 9, for more on how Stata 
can handle nonlinear relationships.  

Linearity versus additivity. Remember again that the general linear model is 
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The assumptions of linearity and additivity are both implicit in this specification. 

• Additivity = assumption that for each IV X, the amount of change in E(Y) associated with a 
unit increase in X (holding all other variables constant) is the same regardless of the values of 
the other IVs in the model. That is, the effect of X1 does not depend on X2; increasing X1 
from 10 to 11 will have the same effect regardless of whether X2 = 0 or X2 = 1.  

• With non-additivity, the effect of X on Y depends on the value of a third variable, e.g. 
gender. As we’ve just discussed, we use models with multiplicative interaction effects 
when relationships are non-additive. 

 

• Linearity = assumption that for each IV, the amount of change in the mean value of Y 
associated with a unit increase in the IV, holding all other variables constant, is the same 
regardless of the level of X, e.g. increasing X from 10 to 11 will produce the same amount of 
increase in E(Y) as increasing X from 20 to 21. Put another way, the effect of a 1 unit 
increase in X does not depend on the value of X.  

• With nonlinearity, the effect of X on Y depends on the value of X; in effect, X 
somehow interacts with itself. This is sometimes refered to as a self interaction. The 
interaction may be multiplicative but it can take on other forms as well, e.g. you may 
need to take logs of variables. Examples: 
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Dealing with Nonlinearity in variables. We will see that many nonlinear specifications can be 
converted to linear form by performing transformations on the variables in the model. For 
example, if Y is related to X by the equation 

E Y Xi i( ) = +α β 2  

and the relationship between the variables is therefore nonlinear, we can define a new variable Z 
= X2. The new variable Z is then linearly related to Y, and OLS regression can be used to 
estimate the coefficients of the model. There are numerous other cases where, given appropriate 
transformations of the variables, nonlinear relationships can be converted into models for which 
coefficients can be estimated using OLS. We’ll cover a few of the most important and common 
ones here, but there are many others. 

Detecting nonlinearity and nonadditivity. The key question is whether the slope of the 
relationship between an IV and a DV can be expected to vary depending on the context. 

• The first step in detecting nonlinearity or nonadditivity is theoretical rather than technical. 
Once the nature of the expected relationship is understood well enough to make a rough 
graph of it, the technical work should begin. Hence, ask such questions as, can the slope of 
the relationship between Xi and E(Y) be expected to have the same sign for all values of Xi? 
Should we expect the magnitude of the slope to increase as Xi increases, or should we expect 
the magnitude of the slope to decrease as Xi increases? 

• Can do scatterplots of the IV against the DV. Sometimes, nonlinearity will be obvious.  

• Can often do incremental F tests or Wald tests like we have used in other situations. Stata’s 
estat ovtest command can also be used in some cases; see below. 

Types of nonlinearity 

1. Polynomial models. Some variables have a curvilinear relationship with each other. 
Increases in X initially produce increases in Y, but after a while subsequent increases in X 
produce declines in Y, e.g. 
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Polynomial models can estimate such relationships. A polynomial model can be appropriate if it 
is thought that the slope of the effect of Xi on E(Y) changes sign as Xi increases. For many such 
models, the relationship between Xi and E(Y) can be accurately reflected with a specification in 
which Y is viewed as a function of Xi and one or more powers of Xi, as in 

Y X X X XM
M= + + + + + +α β β β β ε1 1 2 1

2
3 1

3
1...  

The graph of the relationship between X1 and E(Y) consists of a curve with one or more 
“bends”, points at which the slope of the curve changes signs. The numbers of bends nearly 
always equals M - 1. For M = 2, the curve bends (changes sign) when X1 = -b1/2b2. If this value 
appears within the meaningful range of X, the relationship is nonmonotonic. If this value falls 
outside the meaningful range of X, the relationship appears monotonic (i.e. Y always decreases 
or increases as X increases.) 

This model is easily estimated — simply compute X2 = X12, X3 = X13, etc., and regress Y on 
these terms. (In practice, we usually stop at M =2 or M = 3). Or, in Stata 11 or higher, use factor 
variables, e.g. c.x1#c.x1 (equivalent to X12), c.x1#c.x1#c.x1 (equivalent to X13). 

Example: In psychology, the Yerkes-Dodson law predicts that the relationship between 
physiological arousal and performance will follow an inverted U-shaped function, i.e. higher 
levels of arousal initially increase performance, but after a certain level of arousal is achieved 
additional arousal decreases performance.  

INTERPRETATION. When M = 2, the b1 coefficient indicates the overall linear trend (positive or 
negative) in the relationship between X and Y across the observed data. The b2 coefficient 
indicates the direction of curvature. If the relationship is concave upward, b2 is positive, if 
concave downward b2 is negative. For example, a positive coefficient for X and a negative 
coefficient for X2 cause the curve to rise initially and then fall. 

More generally, a polynomial of order k will have a maximum of k-1 bends (k-1 points at which 
the slope of the curve changes direction); for example, a cubic equation (which includes X, X2, 
and X3) can have 2 bends. Note that the bends do not necessarily have to occur within the 
observed values of the Xs. 
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SOME POLYNOMIAL MODELS, WITH QUADRATIC TERMS: [Note: These are often refered to as 
quadratic models.] 
 
b1 positive, b2 positive; Y = 2X + X2 

 
 
 

b1 positive, b2 negative; Y = 2X - X2 

 
 
 

 
b1 negative, b2 positive; Y = -2X + X2 

 
 
 

 
b1 negative, b2 negative; Y = -2X - X2 

 
 
 

b1 zero, b2 positive; Y = X2 

 

b1 zero, b2 negative; Y = -X2 
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SOME POLYNOMIAL MODELS, WITH CUBIC TERMS: [NOTE: These are often referred to as cubic 
models.] 
 
b1 positive, b2 positive, b3 negative;  
Y = 2X + X2 - X3 

 

 
 
 

b1 negative, b2 positive, b3 positive;  
Y = -2X + X2 + X3 
 

 
 
 

b1 zero, b2 zero, b3 positive;  
Y = X3 
 

 
 
 

b1 zero, b2 zero, b3 negative;  
Y = - X3 
 

 
 
 

Testing whether polynomial terms are needed. As usual, you can use incremental F tests or 
Wald tests to test whether polynomial terms belong in a model. In the following example, x2 is 
x^2, x3 is x^3, and x4 is x^4.  
 
. use https://www3.nd.edu/~rwilliam/statafiles/nonlin1.dta, clear 
. nestreg, quietly: reg y x1 (x2 x3 x4) 
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Block  1: x1 
Block  2: x2 x3 x4 
 
  +-------------------------------------------------------------+ 
  |       |          Block  Residual                     Change | 
  | Block |       F     df        df   Pr > F       R2    in R2 | 
  |-------+-----------------------------------------------------| 
  |     1 |    3.21      1        59   0.0782   0.0516          | 
  |     2 |   34.10      3        56   0.0000   0.6645   0.6129 | 
  +-------------------------------------------------------------+ 

 
This shows us that at least one polynomial term should be in the model. Or, using a Wald test, 

. quietly reg y x1 x2 x3 x4 

. test x2 x3 x4 
 
 ( 1)  x2 = 0 
 ( 2)  x3 = 0 
 ( 3)  x4 = 0 
 
       F(  3,    56) =   34.10 
            Prob > F =    0.0000 
 

Using factor variable notation, 
 
. reg y x1 c.x1#c.x1 c.x1#c.x1#c.x1 c.x1#c.x1#c.x1#c.x1 
 
      Source |       SS       df       MS              Number of obs =      61 
-------------+------------------------------           F(  4,    56) =   27.73 
       Model |  44318.4937     4  11079.6234           Prob > F      =  0.0000 
    Residual |  22372.3755    56  399.506705           R-squared     =  0.6645 
-------------+------------------------------           Adj R-squared =  0.6406 
       Total |  66690.8692    60  1111.51449           Root MSE      =  19.988 
 
------------------------------------------------------------------------------------- 
                  y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
--------------------+---------------------------------------------------------------- 
                 x1 |  -5.295304   3.637185    -1.46   0.151    -12.58146    1.990853 
                    | 
          c.x1#c.x1 |   .8421613   3.238257     0.26   0.796    -5.644847     7.32917 
                    | 
     c.x1#c.x1#c.x1 |   1.714328   .5977291     2.87   0.006     .5169324    2.911723 
                    | 
c.x1#c.x1#c.x1#c.x1 |   .9803527   .3897181     2.52   0.015     .1996535    1.761052 
                    | 
              _cons |   .8290378   4.801439     0.17   0.864    -8.789401    10.44748 
------------------------------------------------------------------------------------- 
. test c.x1#c.x1 c.x1#c.x1#c.x1 c.x1#c.x1#c.x1#c.x1 
 
 ( 1)  c.x1#c.x1 = 0 
 ( 2)  c.x1#c.x1#c.x1 = 0 
 ( 3)  c.x1#c.x1#c.x1#c.x1 = 0 
 
       F(  3,    56) =   34.10 
            Prob > F =    0.0000 

 
Stata also provides the estat ovtest command (ov = omitted variables; you can just use 
ovtest for short). In its default form, ovtest regresses y on yhat^2, yhat^3, and yhat^4. A 
significant test statistic indicates that polynomial terms should be added. In this particular 
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example, ovtest gives the same results as above, but that wouldn’t necessarily be true in a 
more complicated model. 
 
. quietly reg y x1 
. ovtest 
 
Ramsey RESET test using powers of the fitted values of y 
       Ho:  model has no omitted variables 
                  F(3, 56) =     34.10 
                  Prob > F =      0.0000 

 
As Appendix A explains in more detail, there are various ways to plot the relationship between y 
and x1. Here I will use the user-written routine curvefit, which “produces curve estimation 
regression statistics and related plots between two variables for 35 different curve estimation 
regression models.” Look at the help file to get the codes for the functions you want. In this case 
I am telling curvefit to fit and display a linear model (function 1) and a 4th order polynomial 
model (function h). 
 
. curvefit y x1, f(1 h) 
 
Curve Estimation between y and x1 
 
------------------------------------------ 
    Variable |   Linear      Polynomial    
-------------+---------------------------- 
b0           | 
       _cons |     20.3918     .82903778   
             |        4.86          0.17   
             |      0.0000        0.8635   
-------------+---------------------------- 
b1           | 
       _cons |   4.2672153    -5.2953044   
             |        1.79         -1.46   
             |      0.0782        0.1510   
-------------+---------------------------- 
b2           | 
       _cons |                  .8421613   
             |                      0.26   
             |                    0.7958   
-------------+---------------------------- 
b3           | 
       _cons |                 1.7143277   
             |                      2.87   
             |                    0.0058   
-------------+---------------------------- 
b4           | 
       _cons |                 .98035267   
             |                      2.52   
             |                    0.0148   
-------------+---------------------------- 
Statistics   |                             
           N |          61            61   
        r2_a |    .0355574     .64057445   
------------------------------------------ 
                             legend: b/t/p 
 

These are the same coefficient estimates we got before. Here is the graph produced by 
curvefit: 
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That is a little bizarre looking (but then again these are fake data!) In the probably more common 
case where you just had a squared term, it would look something like this (function 1 = linear, 
function 4 = quadratic) 
 
. curvefit y x1, f(1 4) 
 
Curve Estimation between y and x1 
 
------------------------------------------ 
    Variable |   Linear       Quadratic    
-------------+---------------------------- 
b0           | 
       _cons |     20.3918    -6.4231073   
             |        4.86         -1.52   
             |      0.0000        0.1348   
-------------+---------------------------- 
b1           | 
       _cons |   4.2672153     4.2672153   
             |        1.79          2.66   
             |      0.0782        0.0100   
-------------+---------------------------- 
b2           | 
       _cons |                 8.6499701   
             |                      8.49   
             |                    0.0000   
-------------+---------------------------- 
Statistics   |                             
           N |          61            61   
        r2_a |    .0355574     .56277883   
------------------------------------------ 
                             legend: b/t/p 
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2A. Exponential models – Growth Models. We often think that variables will increase 
exponentially rather than arithmetically. For example, each year of education may be worth an 
additional 5% income, rather than, say, $2,000. Hence, for somebody who would otherwise 
make $20,000 a year, an additional year of education would raise their income $1,000. For those 
who would otherwise be expected to make $40,000, an additional year could be worth $2,000. 
Note that the actual dollar amount of the increase is different, but the percentage increase is the 
same. Such relationships can often be modeled as 

Y e X= + +( )α β ε  

When β is positive, the curve has positive slope throughout, but the slope gradually increases in 
magnitude as X increases. When β is negative, the curve has a negative slope throughout and the 
slope gradually decreases in magnitude as X increases, with the curve approaching the X axis as 
Y gets infinitely large. (NOTE: This is often called a growth model.) 

When β is positive and small in magnitude (around .25 or less) β * 100 is approximately equal to 
the percentage increase in E(Y) associated with a unit increase in X, e.g. if β = .10, then a 1 unit 
increase in X will produce about a 10% increase in E(Y). 

Here is a graph of such a relationship. The curved line is a plot of X versus Y, where there is an 
exponential relationship between the two.  
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Following is an example of an exponential growth model. It shows the problems that occur if 
you instead use a linear model of constant growth. 
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Exponential (growth) model. 
Income starts at $10,000 and grows 10% a year, compounded annually 
 
Year  Income   Increase in $   Regr Prediction  LN(Income) Increase in ln($) Regr Prediction 

1  $  10,000.00   ($12,279.83) 9.2103404  9.21034 
2  $  11,000.00   $    1,000.00  ($7,651.47) 9.3056506 0.09531 9.30565 
3  $  12,100.00   $    1,100.00  ($3,023.11) 9.4009607 0.09531 9.40096 
4  $  13,310.00   $    1,210.00  $1,605.24  9.4962709 0.09531 9.49627 
5  $  14,641.00   $    1,331.00  $6,233.60  9.5915811 0.09531 9.59158 
6  $  16,105.10   $    1,464.10  $10,861.96  9.6868913 0.09531 9.68689 
7  $  17,715.61   $    1,610.51  $15,490.31  9.7822015 0.09531 9.7822 
8  $  19,487.17   $    1,771.56  $20,118.67  9.8775116 0.09531 9.87751 
9  $  21,435.89   $    1,948.72  $24,747.02  9.9728218 0.09531 9.97282 

10  $  23,579.48   $    2,143.59  $29,375.38  10.068132 0.09531 10.06813 
11  $  25,937.42   $    2,357.95  $34,003.74  10.163442 0.09531 10.16344 
12  $  28,531.17   $    2,593.74  $38,632.09  10.258752 0.09531 10.25875 
13  $  31,384.28   $    2,853.12  $43,260.45  10.354063 0.09531 10.35406 
14  $  34,522.71   $    3,138.43  $47,888.81  10.449373 0.09531 10.44937 
15  $  37,974.98   $    3,452.27  $52,517.16  10.544683 0.09531 10.54468 
16  $  41,772.48   $    3,797.50  $57,145.52  10.639993 0.09531 10.63999 
17  $  45,949.73   $    4,177.25  $61,773.88  10.735303 0.09531 10.7353 
18  $  50,544.70   $    4,594.97  $66,402.23  10.830613 0.09531 10.83061 
19  $  55,599.17   $    5,054.47  $71,030.59  10.925924 0.09531 10.92592 
20  $  61,159.09   $    5,559.92  $75,658.94  11.021234 0.09531 11.02123 
21  $  67,275.00   $    6,115.91  $80,287.30  11.116544 0.09531 11.11654 
22  $  74,002.50   $    6,727.50  $84,915.66  11.211854 0.09531 11.21185 
23  $  81,402.75   $    7,400.25  $89,544.01  11.307164 0.09531 11.30716 
24  $  89,543.02   $    8,140.27  $94,172.37  11.402475 0.09531 11.40247 
25  $  98,497.33   $    8,954.30  $98,800.73  11.497785 0.09531 11.49778 
26  $108,347.06   $    9,849.73  $103,429.08  11.593095 0.09531 11.59309 
27  $119,181.77   $  10,834.71  $108,057.44  11.688405 0.09531 11.68841 
28  $131,099.94   $  11,918.18  $112,685.80  11.783715 0.09531 11.78372 
29  $144,209.94   $  13,109.99  $117,314.15  11.879025 0.09531 11.87903 
30  $158,630.93   $  14,420.99  $121,942.51  11.974336 0.09531 11.97434 

Average  $  54,831.34   $  54,831.34     

 

  
 
Note that income increases 10% per year. In absolute terms, the growth is small at first ($1,000 a year) and then gets 
bigger and bigger ($14,420 in year 30). The linear regression model (left-hand side) predicts a constant growth of 
about $4,628.36 a year. Hence, it overestimates growth in the early years and underestimates it later. OLS works 
much better with the exponential growth model (right-hand side), where the dependent variable is the log of income. 
Note that e.09531 = 1.1, which shows that there is 10% annual growth.  
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Estimation. To estimate the exponential model using OLS: The traditional (but often inferior) 
approach has been to take the log of both sides of the equation, yielding 

lnY X= + +α β ε  

We therefore merely compute a new variable which equals ln Y and regress the Xs on it. In Stata 
we could do something like 

. use "https://www3.nd.edu/~rwilliam/statafiles/nonlinln.dta", clear 

. gen lninc = ln(inc2) 

. reg lninc year 
 
      Source |       SS       df       MS              Number of obs =      30 
-------------+------------------------------           F(  1,    28) =  140.03 
       Model |  18.0405098     1  18.0405098           Prob > F      =  0.0000 
    Residual |  3.60730356    28   .12883227           R-squared     =  0.8334 
-------------+------------------------------           Adj R-squared =  0.8274 
       Total |  21.6478134    29  .746476324           Root MSE      =  .35893 
 
------------------------------------------------------------------------------ 
       lninc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        year |   .0895931   .0075712    11.83   0.000     .0740843    .1051019 
       _cons |   2.393403   .1278533    18.72   0.000     2.131508    2.655299 
------------------------------------------------------------------------------ 
 
The potential problem with this approach is that the log of 0 is undefined; ergo, any cases with 0 
(or for that matter negative) values will get dropped from the analysis. Further, most of us don’t 
think in terms of logs of variables; we would rather see how X is related to the unlogged Y. It is 
therefor often better to estimate this model: 
 

( )( ) XE Y e α β+=  
 
When you do this, Y itself can equal 0; all that is required is that its expected value be greater 
than zero. In Stata, we can estimate this as a generalized linear model with link log. The 
commands are 
 
. glm inc2 year, link(log) 
 
Generalized linear models                          No. of obs      =        30 
Optimization     : ML                              Residual df     =        28 
                                                   Scale parameter =  490.7657 
Deviance         =  13741.44059                    (1/df) Deviance =  490.7657 
Pearson          =  13741.44059                    (1/df) Pearson  =  490.7657 
 
Variance function: V(u) = 1                        [Gaussian] 
Link function    : g(u) = ln(u)                    [Log] 
 
                                                   AIC             =  9.098184 
Log likelihood   = -134.4727664                    BIC             =  13646.21 
 
------------------------------------------------------------------------------ 
             |                 OIM 
        inc2 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        year |   .0845539   .0114012     7.42   0.000     .0622081    .1068998 
       _cons |   2.531094   .2774882     9.12   0.000     1.987228    3.074961 
------------------------------------------------------------------------------ 
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In this case, it didn’t make a whole lot of difference in the estimates, but it might matter more if 
there were some 0 values for income. We can also plot the results. The original values of income, 
rather than the logged values, are used in the graph. As you can see, the distance between each 
point keeps getting bigger and bigger (i.e. the growth fit curve keeps getting steeper and steeper), 
which is what you expect with exponential growth. With curvefit we use function 0 (growth 
model). 
 
. curvefit inc2 year, f(1 0) 
 
Curve Estimation between inc2 and year 
 
------------------------------------------ 
    Variable |   Linear        Growth      
-------------+---------------------------- 
b0           | 
       _cons |  -5.6227464     2.5310939   
             |       -0.63          9.34   
             |      0.5344        0.0000   
-------------+---------------------------- 
b1           | 
       _cons |   4.2123271     .08455397   
             |        7.96          7.60   
             |      0.0000        0.0000   
-------------+---------------------------- 
Statistics   |                             
           N |          30            30   
        r2_a |   .68249588     .90169583   
------------------------------------------ 
                             legend: b/t/p 
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2A. Exponential models – Power Models. Another common exponential function, 
especially popular in economics, is 
 

Y X= α εβ  

which, when you log each side, becomes 

ln ln (ln ) lnY X= + +α β ε  

Ergo, to estimate this model, you can compute new variables that equal ln Y and ln X (or just 
compute ln X and then estimate a glm with link log). This model says that every 1% increase in 
X is associated with a β percentage change in E(Y), e.g. if β =1, a 1% increase in X will produce 
a 1% increase in Y. Economists generally refer to the percentage change E(Y) associated with a 
1% increase in X as the elasticity of E(Y) with respect to X. [NOTE: curvefit calls this 
particular model a power model.] 

3.  Piecewise regression/Switching regression models. Suppose we think that a variable 
has one linear effect within a certain range of its values, but a different linear effect at a different 
range. For example, we might think that each additional year of elementary school education is 
worth $5,000, and each year of college education is worth $8,000, i.e. all years of education are 
not equally valuable. Piecewise regression models and the more general switching regression 
models provide a means for dealing with this. 

A piecewise regression model allows for changes in slope, with the restriction that the line being 
estimated be continuous; that is, it consists of two or more straight line segments. The true model 
is continuous, with a structural break. At the point of the structural break, the slope becomes 
steeper, but the line remains continuous. The data might follow a pattern such as the following: 

 

A switching regression model is similar, except that both the intercept and slope can change at 
the time of the structural break; the regression line need not be continuous. For example, 
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Here, both the slope and the intercept change at the time of the structural break, and the line is no 
longer continuous. In the case of education, this might occur because of some sort of 
“certification” effect; e.g. you get a “bonus” just for having some college. 

With both piecewise and switching regressions, the key is to figure out where the meaningful 
split points are. You also don’t want to do this indiscriminately, as with a large sample, it can be 
fairly easy to come up with statistically significant but substantively trivial deviations from 
linearity. When the breakpoints are not known, more advanced techniques can be used to 
estimate them and the parameters of the model. Pindyck and Rubinfeld discuss these models 
further.  

Stata Example. The mkspline command makes it easy to estimate piecewise regression 
models. 

. use https://www3.nd.edu/~rwilliam/statafiles/blwh.dta, clear 

. mkspline educ1 12 educ2 = educ, marginal 

. reg  income educ1 educ2 
 
      Source |       SS       df       MS              Number of obs =     500 
-------------+------------------------------           F(  2,   497) =  618.37 
       Model |  28662.6998     2  14331.3499           Prob > F      =  0.0000 
    Residual |  11518.5495   497  23.1761559           R-squared     =  0.7133 
-------------+------------------------------           Adj R-squared =  0.7122 
       Total |  40181.2493   499  80.5235456           Root MSE      =  4.8142 
 
------------------------------------------------------------------------------ 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       educ1 |   .9064348   .1097101     8.26   0.000      .690882    1.121988 
       educ2 |   1.599544   .1652037     9.68   0.000     1.274961    1.924128 
       _cons |    12.4063   1.167048    10.63   0.000     10.11335    14.69926 
------------------------------------------------------------------------------ 
 

In the above, we are allowing for education to have one effect for grades 1-12 (reflected by 
educ1), and a different effect at higher grades (educ2). The marginal option specifies that the 
new variables are to be constructed so that, when used in estimation, the coefficients represent 
the change in the slope from the preceding interval. A key advantage of this is that it makes it 
possible to test whether the change in slope is significant, i.e. if the effect of educ2 is not 
significant then the effect of education does not change after the break point. The above tells us 
that each of the first 12 years of education produces an additional $906 in average income. For 
years 13+, the effect of each year is about $1,600 greater, or about $2,506 altogether. The T 
value for educ2 tells us the difference in effects across years is statisticially significant, i.e. 
college years produce greater increases in income than do earlier years of schooling. 

However, the default is to construct the variables so that the coefficients will measure the slopes 
for the intervals rather than the difference in the slopes. So, if you don’t use marginal, you get 
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. mkspline educ3 12 educ4 = educ 

. reg  income educ3 educ4 
 
      Source |       SS       df       MS              Number of obs =     500 
-------------+------------------------------           F(  2,   497) =  618.37 
       Model |  28662.6998     2  14331.3499           Prob > F      =  0.0000 
    Residual |  11518.5495   497  23.1761559           R-squared     =  0.7133 
-------------+------------------------------           Adj R-squared =  0.7122 
       Total |  40181.2493   499  80.5235456           Root MSE      =  4.8142 
 
------------------------------------------------------------------------------ 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       Educ3 |   .9064348   .1097101     8.26   0.000      .690882    1.121988 
       Educ4 |   2.505979   .0883207    28.37   0.000     2.332451    2.679507 
       _cons |    12.4063   1.167048    10.63   0.000     10.11335    14.69926 
------------------------------------------------------------------------------ 
 
Personally, I do not like this latter approach as well, since it doesn’t tell you whether the effects 
of education significantly differ after the break point or not. But, a simple test command will 
give you that information: 
 
. test educ3=educ4 
 
 ( 1)  educ3 - educ4 = 0 
 
       F(  1,   497) =   93.75 
            Prob > F =    0.0000 
 

Note that the square root of the F value, 9.68, is the same as the T value for educ2 in the previous 
regression. Hence, it is largely a matter of personal preference whether you use the marginal 
option or not. 
 
As far as I know, curvefit can’t graph something like this, but here is an alternative approach 
(see Appendix A for more details) 
 
. use "https://www3.nd.edu/~rwilliam/statafiles/blwh.dta", clear 
. mkspline educ1 12 educ2 = educ, marginal 
. quietly reg  income educ1 educ2 
. predict spline 
(option xb assumed; fitted values) 
. scatter income educ || line spline educ, sort scheme(sj) 
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Note: If you want to allow for a different intercept, you can do something like 
 
. use "https://www3.nd.edu/~rwilliam/statafiles/blwh.dta", clear 
. mkspline educ1 12 educ2 = educ, marginal 
. gen int2 = educ > 12 
. reg  income educ1 educ2 int2 
 
      Source |       SS       df       MS              Number of obs =     500 
-------------+------------------------------           F(  3,   496) =  453.65 
       Model |  29448.6717     3   9816.2239           Prob > F      =  0.0000 
    Residual |  10732.5776   496  21.6382612           R-squared     =  0.7329 
-------------+------------------------------           Adj R-squared =  0.7313 
       Total |  40181.2493   499  80.5235456           Root MSE      =  4.6517 
 
------------------------------------------------------------------------------ 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       educ1 |   1.154626   .1137254    10.15   0.000     .9311829    1.378069 
       educ2 |   1.860707   .1654055    11.25   0.000     1.535726    2.185689 
        int2 |  -4.114868   .6827529    -6.03   0.000    -5.456312   -2.773423 
       _cons |   10.79802   1.158806     9.32   0.000      8.52125     13.0748 
------------------------------------------------------------------------------ 
 
. predict spline 
(option xb assumed; fitted values) 
. scatter income educ || line spline educ, sort scheme(sj) 

 

 
 
Closing Comments. Visual inspection and empirical tests can often be inconclusive in 
determining which nonlinear transformation is best. For example, both an exponential model and 
a piecewise regression model can appear to be consistent with the data: 
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Remember, too, the presence of random error terms will cause the observed data to not show as 
clear of relationships as we have depicted here. In the end, theoretical concerns need to guide 
you in determining which transformations are most appropriate for the data. 
 
There are lots of other transformations that can be useful. For example, rather than use a log 
transformation, it is sometimes useful to use the cube root of a variable instead. Unlike the log, a 
cube root transformation can deal with 0 and negative values. 
 
As of this writing (July 31, 2021), other userful references include 
 
http://fmwww.bc.edu/repec/bocode/t/transint.html (Very good) 
 
https://stats.idre.ucla.edu/stata/faq/how-can-i-run-a-piecewise-regression-in-stata/  
 
https://stats.idre.ucla.edu/stata/faq/how-can-i-find-where-to-split-a-piecewise-regression/  
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Appendix A: Graphing Nonlinear Relationships with Stata 
 
Stata has several ways to graph nonlinear relationships involving a single Y and a single X. 
 
Use the built-in functions of the twoway command. With twoway, you can easily plot the 
observed values, the linear fitted values (X only), and the quadratic fitted values (X and X2). 
Further, you can combine all these in a single graph if you want. You just need to use the lfit 
and the qfit options. Example: 
 
. use "https://www3.nd.edu/~rwilliam/statafiles/nonlin1.dta", clear 
. twoway scatter ypp0 x1 || lfit ypp0 x1 || qfit ypp0 x1, scheme(sj) 
 

 
 
Use the user-written curvefit command. Liu Wei’s curvefit command, available from 
SSC, “produces curve estimation regression statistics and related plots between two variables for 
35 different curve estimation regression models.” Different plots can be combined. curvefit 
doesn’t give you much direct control over the appearance of the graph, but you can always edit if 
you want (e.g. you can change to a different scheme like sj). Look at the help file to get the codes 
for the functions you want. To reproduce the above graph, we want functions 1 (linear) and 4 
(quadratic). 
 
. curvefit ypp0 x1, f(1 4) 
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To add an X3 term, we use functions h (nth order Polynomial) and option count (set order of 
model 'nth order Polynomial'). Example: 
 
. curvefit yppn x1, f(1 4 h) c(3) 
 

 
 
To fit an exponential/growth model, use function 0. 
 
. use "https://www3.nd.edu/~rwilliam/statafiles/nonlinln.dta", clear 
. curvefit inc2 year, f(0) 
 

 
 
Estimate the models and use the predicted values in the plots. This approach can be 
especially useful if you have an odd graph that isn’t easily plotted via other commands. To 
reproduce our graph that had X3 in it, 
 
. use "https://www3.nd.edu/~rwilliam/statafiles/nonlin1.dta", clear 
. quietly reg yppn x1 
. predict linear 
(option xb assumed; fitted values) 
. quietly reg yppn x1 c.x1#c.x1 
. predict quadratic 
(option xb assumed; fitted values) 
. quietly reg yppn x1 c.x1#c.x1 c.x1#c.x1#c.x1 
. predict cubic 
(option xb assumed; fitted values) 
. twoway scatter yppn x1 || line linear x1 || line quadratic x1 || line cubic x1, 
scheme(sj) 
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For an unusual graph like our spline functions (use the sort option if data are not already sorted 
by x) 
 
. use "https://www3.nd.edu/~rwilliam/statafiles/blwh.dta", clear 
. mkspline educ1 12 educ2 = educ, marginal 
. reg  income educ1 educ2 
 
      Source |       SS       df       MS              Number of obs =     500 
-------------+------------------------------           F(  2,   497) =  618.37 
       Model |  28662.6998     2  14331.3499           Prob > F      =  0.0000 
    Residual |  11518.5495   497  23.1761559           R-squared     =  0.7133 
-------------+------------------------------           Adj R-squared =  0.7122 
       Total |  40181.2493   499  80.5235456           Root MSE      =  4.8142 
 
------------------------------------------------------------------------------ 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       educ1 |   .9064348   .1097101     8.26   0.000      .690882    1.121988 
       educ2 |   1.599544   .1652037     9.68   0.000     1.274961    1.924128 
       _cons |    12.4063   1.167048    10.63   0.000     10.11335    14.69926 
------------------------------------------------------------------------------ 
 
. predict spline 
(option xb assumed; fitted values) 
. scatter income educ || line spline educ, sort scheme(sj) 
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Appendix B (Optional): The underlying math for piecewise regression. 

The piecewise regression model can be written as 

E Y X X structural break value Breakdummy( ) [( _ _ ) * ]= + + −α β β1 1 2 1  

where breakdummy = 1 if X1 is greater than the structural break value, 0 otherwise. Note that the 
main effect of breakdummy is NOT included in the model; this implies that the intercept is the 
same both before and after the structural break. 

So, in the case of education, the structural break value would be 12. Those with 12 years of 
education or less would be coded 0 on the dummy variable (and the interaction), and those with 
more than 12 years of education would be coded 1 on the dummy. On the interaction term, their 
value would be [years of education - 12].  

The switching regression model can be written as 

E Y X Breakdummy X structural break value Breakdummy( ) [( _ _ ) * ]= + + + −α β β β1 1 2 3 1  

Both of the above correspond to the coding used by the marginal option of Stata’s 
mkspline command. As noted in the Stata example, you can reparameterize these depending 
on whether you’d rather have the coefficients represent the slope of the interval or the change in 
the slope from the preceding interval. 

A listing of the first 20 cases in the data set makes clear how Stata has computed the variables: 
 
. list educ educ1 educ2 educ3 educ4 in 1/20 
 
     +--------------------------------------+ 
     | educ   educ1   educ2   educ3   educ4 | 
     |--------------------------------------| 
  1. |    2       2       0       2       0 | 
  2. |    4       4       0       4       0 | 
  3. |    8       8       0       8       0 | 
  4. |    8       8       0       8       0 | 
  5. |    8       8       0       8       0 | 
     |--------------------------------------| 
  6. |   10      10       0      10       0 | 
  7. |   12      12       0      12       0 | 
  8. |   12      12       0      12       0 | 
  9. |   12      12       0      12       0 | 
 10. |   12      12       0      12       0 | 
     |--------------------------------------| 
 11. |   12      12       0      12       0 | 
 12. |   13      13       1      12       1 | 
 13. |   14      14       2      12       2 | 
 14. |   14      14       2      12       2 | 
 15. |   15      15       3      12       3 | 
     |--------------------------------------| 
 16. |   15      15       3      12       3 | 
 17. |   16      16       4      12       4 | 
 18. |   16      16       4      12       4 | 
 19. |   17      17       5      12       5 | 
 20. |   21      21       9      12       9 | 
     +--------------------------------------+ 

 



Nonlinear Relationships Page 23 

As we see, when the marginal parameter is specified, educ1 = educ, while educ2 = max(0, 
educ – 12). Hence, the slope for educ2 shows you the difference in effects between the first 12 
years of education and any later years.  
 
When the marginal parameter is not specified, educ3 = min(educ, 12) and educ4 = max(0, 
educ – 12). Hence, the slope for educ4 shows you the effect for each additional year of 
education after year 12. 
 
 


