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Sources. This discussion draws heavily from Otis Dudley Duncan’s Introduction to Structural 
Equation Models. 

Overview. Our theories often lead us to be interested in how a series of variables are 
interrelated. It is therefore often desirable to develop a system of equations, i.e. a model, which 
specifies all the causal linkages between variables.For example, status attainment research asks 
how family background, educational attainment and other variables produce socio-economic 
status in later life. Here is one of the early status attainment models (see Hauser, Tsai, Sewell 
1983 for a discussion): 

 

 
Among the many implications of this model are that Parents’ Socio-Economic Status (X7) 
indirectly affects the Educational Attainment (X2) and Occupational Aspirations (X3) of 
children. These, in turn, directly affect children’s Occupational Attainment (X1). In other words, 
higher parental SES helps children to become better educated and gives them higher 
occupational aspirations, which in turn leads to greater occupational achievement. Our earlier 
discussion of the Logic of Causal Order, combined with the current discussion of Path Analysis, 
can help us better understand how models such as the above work. 

Review of key lessons from the logic of causal order. In the logic of causal order, we 
learned that the correlation between two variables says little about the causal relationship 
between them. This is because the correlation between two variables can be due to 

http://www3.nd.edu/%7Erwilliam/


Intro to path analysis Page 2 
 

• the direct effect of one variable on another 

• indirect effects; one variable affects another variable which in turn affects a third 

• common causes, e.g. X affects both Y and Z. This is spurious association 

• correlated causes, e.g. X is a cause of Z and X is correlated with Y 

• reciprocal causation; each variable is a cause of the other 

Hence, a correlation can reflect many non-causal influences. Further, a correlation can’t tell you 
anything about the direction of causality. 

At the same time, only looking at the direct effect of one variable on another may also not be 
optimal. Direct effects tell you how a 1 unit change in X will affect Y, holding all other variables 
constant. However, it may be that other variables are not likely to remain constant if X changes, 
e.g. a change in X can produce a change in Z which in turn produces a change in Y. Put another 
way, both the direct and indirect effects of X on Y must be considered if we want to know what 
effect a change in X will have on Y, i.e. we want to know the total effects (direct + indirect). 

We have done all this conceptually. Now, we will see how, using path analysis, this is done 
mathematically and statistically. We will show how the correlation between two variables can be 
decomposed into its component parts, i.e. we will show how much of a correlation is due to 
direct effects, indirect effects, common causes and correlated causes. We will further show how 
each of the structural effects in a model affects the correlations in the model. 

Path analysis terminology. Consider the following diagram: 

X1

X2

X3

X4

u

v

w

 
In this diagram, 

• X1 is an exogenous variable. Exogenous variables are those variables whose causes are not 
explicitly represented in the model. Exogenous variables are causally prior to all dependent 
variables in the model. There is no causal ordering of the exogenous variables. There can be 
more than one exogenous variable in a model. For example, if there was a 2-headed arrow 
linking X1 and X2 instead of a 1-headed arrow, then X1 and X2 would both be exogenous. 

• Conversely, X2, X3, and X4 are endogenous variables. The causes of endogenous variables 
are specified in the model. 

• Exogenous variables must always be independent variables. However, endogenous variables 
can be either dependent or independent. For example, X1 is a cause of X2, but X2 is itself a 
cause of X3 and X4. 
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• u, v, and w are disturbances, or, if you prefer, the residual terms. Many notations are used for 
disturbances; indeed, sometimes no notation is used at all, there is just an arrow coming in 
from out of nowhere. ε2, ε3, and ε4 would also be a good notation, given our past practices. 

• The one way arrows represent the direct causal effects in the model, also known as the 
structural effects. Sometimes, the names for these effects are specifically labeled, but other 
times they are left implicit. The structural equations in the above diagram can be written as 

X X u

X X X v

X X X X w

2 21 1

3 31 1 32 2

4 41 1 42 2 43 3

= +

= + +

= + + +

β

β β

β β β

 

• Note that we use 2 subscripts for each structural effect. The first subscript stands for the DV, 
the second stands for the IV. When there are multiple equations, this kind of notation is 
necessary to keep things straight. Note, too, that intercepts are not included. Discussions of 
path analysis are simplified by assuming that all variables are “centered,” i.e. the mean of the 
variable has been subtracted from each case. Finally, note that the paths linking the 
disturbances to their respective variables are set equal to 1. 

• In the above example, each DV was affected by all the other predetermined variables, i.e. 
those variables which are causally prior to it. We refer to such a model as being fully 
recursive, for reasons we will explain later. There is no requirement that each DV be affected 
by all the predetermined variables, of course. For example, β43 could equal zero, in which 
case that path would be deleted from the model. Indeed, it is fairly easy to include paths in a 
model; the theoretically difficult part is deciding which paths to leave out. 

 

Determining correlations and coefficients in a path model using standardized variables. 
We will now start to examine the mathematics behind a path model. For convenience, WE WILL 
ASSUME THAT ALL VARIABLES HAVE A MEAN OF 0 AND A VARIANCE OF 1, i.e. are 
standardized. This makes the math easier, and it is easy enough later on to go back to 
unstandardized variables. Recall that, when variables are standardized, 

E(X1
2) = V(X1) = 1,  

E(X1X2) = COV(X1,X2) = ρ12 (where ρ12 is the population counterpart to the sample estimate r12) 
Also, we assume (at least for now) that the disturbance in an equation is uncorrelated with any of 
the IVs in the equation. (Note, however, that the disturbance in each equation has a nonzero 
correlation with the dependent variable in that equation and (in general) with the dependent 
variable in each “later” equation.) 

Keeping the above in mind, if we know the structural parameters, it is fairly easy to compute the 
underlying correlations. Perhaps more importantly, it is possible to decompose the correlation 
between two variables into the sources of association noted above, e.g. correlation due to direct 
effects, correlation due to indirect effects, etc. And, of course, if we know the correlations, we 
can compute the structural parameters, although this is somewhat harder to do by hand. 

There are a couple of ways of doing this. The normal equations approach is more mathematical; 
while perhaps less intuitive, it is less prone to mistakes. second, Sewell Wright’s rule, is very 
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diagram-oriented and is perhaps more intuitive to most people once you understand it. I find that 
using both together is often helpful. (Both approaches are probably best learned via examples, so 
in class I will probably just skip to the examples and then let you re-read the following 
explanations on your own). 

Normal equations. To get the normal equations, each structural equation is multiplied by its 
predetermined variables, and then expectations are taken. If the structural parameters are known, 
simple algebra then yields the correlations. We’ll show how to use normal equations in the more 
complicated example. 

Sewell Wright’s multiplication rule: To find the correlation between Xh and Xj, where Xj 
appears “later” in the model,  

• begin at Xj and read back to Xh along each distinct direct and indirect (compound) path, 
forming the product of the coefficients along that path. (This will give you the correlation 
between Xj and Xh that is due to the direct and indirect effects of Xh on Xj) 

• After reading back, read forward (if necessary), but only one reversal from back to forward is 
permitted. (This will give you correlation that is due to common causes.) 

• A double-headed arrow may be read either forward or backward, but you can only pass 
through 1 double-headed arrow on each transit. (This will give you correlation due to 
correlated causes) 

• If you pass through a variable, you may not return to it on that transit.  

• Sum the products obtained for all the linkages between Xj and Xh. (The main trick to using 
Wright’s rule is to make sure you don’t miss any linkages, count linkages twice, or make 
illegal double reversals.) This will give you the total correlation between the 2 variables. 

To illustrate path analysis principles, we’ll first go over a generic and complicated example. 
We’ll then present a fairly simple substantive (albeit hypothetical) example similar to what 
we’ve discussed before.  

 

Generic, Complicated Example (pretty much stolen from Duncan). We will illustrate both 
the Wright rule and the use of normal equations for each of the 3 structural equations in the 
model presented earlier: 

X1

X2

X3

X4

u

v

w
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(1) X2. For X2, the structural equation is 

X X u2 21 1= +β  

The only predetermined variable is X1. Hence, if we multiply both sides of the above equation 
by X1 and then take expectations, we get the normal equation 

2121

1
2

12121 )()()(
βρ
β

=
=+= uXEXEXXE

 

NOTE: How did we get from the structural equation to the normal equation? First, we multiplied both 
sides of the structural equation by X1, and then we took the expectations of both sides, i.e. 

2121
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Again, remember that when variables are standardized, E(X1
2) = 1 and E(X1X2) = ρ12 (where ρ12 is the 

population counterpart to the sample estimate r12). Also remember that we are assuming that the 
disturbance in an equation is uncorrelated with any of the IVs in the equation, ergo E(X1u) = 0. 

Hence, as we have seen before, in a bivariate regression, the correlation is the same as the 
standardized regression coefficient. Also, all of the correlation between X1 and X2 is causal. 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X2 to X1. 

(2) X3. For X3, the structural equation is 

X X X v3 31 1 32 2= + +β β  

There are two predetermined variables, X1 and X2. Taking each in turn, the normal equations are 

213231

12323113

12132
2

13131 )()()()(

βββ
ρββρ

ββ
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+=

=++= vXEXXEXEXXE
 

(Remember that β21 = ρ12). As the above makes clear, there are two sources of correlation 
between X1 and X3:  
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(a) There is a direct effect of X1 on X3 (represented in β31) 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X3 to X1. 

(b) An indirect effect of X1 operating through X2 (reflected by β32β21). All of the association 
between X1 and X3 is causal. 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X3 to X2, and then back from X2 to X1. 

NOTE: Recall that the sum of a variable’s direct effect and its indirect effects is known as its 
total effect. So, in this case, the total effect of X1 on X3 is 213231 βββ + . 

Doing the same thing for X2 and X3, we get 

322131

32123123

2
2
232213132 )()()()(

βββ
βρβρ

ββ
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+=

=++= vXEXEXXEXXE
 

Again, as the above makes clear, there are two sources of correlation between X2 and X3:  

(a) There is a direct effect of X2 on X3 (represented in β32).  

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X3 to X2. 
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(b) But, there is also correlation due to a common cause, X1 (reflected by β31β21). Hence, 
part of the correlation between X2 and X3 is spurious. 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X3 to X1, go forward from X1 to X2. 

 

(3) X4. For X4, the predetermined variables are X1, X2, and X3. The structural equation is 

X X X X w4 41 1 42 2 43 3= + + +β β β  

The normal equations are, first, for X1, 

2132433143214241

21323143214241

134312424141

131432142
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This shows there are 4 sources of association between X1 and X4: 

 (a) Association due to the direct effect of X1 on X4 (β41) 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X4 to X1. 
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 (b) Association due to an indirect effect: X1 affects X2 which then affects X4 (β42β21) 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X4 to X2, go back from X2 to X1. 

 

 (c) Association due to another indirect effect: X1 affects X3 which then affects X4 
(β43β31) 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X4 to X3, go back from X3 to X1. 

 

 (d) Association due to yet another indirect effect: X1 affects X2, which then affects X3, 
which then affects X4 (β43β32β21) 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X4 to X3, back from X3 to X2, back from X2 to X1. 

 

Note that you sum (b), (c) and (d) to get the total indirect effect of X1 on X4. Note too that all of 
the correlation between X1 and X4 is causal. 
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The normal equations for X2 and X4 are 

2131433243422141

21313243422141

234342124142

23243
2
242124142
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This shows there are 4 sources of association between X2 and X4: 

 (a) Association due to X1 being a common cause of X2 and X4 (β41β21) 

X1

X2

X3

X4

u

v

w

 
SW Rule: GO back from X4 to X1, go forward from X1 to X2. 

 

 (b) Association due to the direct effect of X2 on X4 (β42) 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X4 to X2. 

 (c) Association due to the indirect effect of X2 affecting X3 which in turn affects X4 
(β43β32) 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X4 to X3, go back from X3 to X2. 
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 (d) Association due to X1 being a common cause of X2 and X4: X1 directly affects X2 
and indirectly affects X4 through X3 (β43β31β21). 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X4 to X3, back from X3 to X1, forward from X1 to X2. 

Note that you sum (a) and (d) to get the correlation due to common causes. This represents 
spurious association, while (b) + (c) represents causal association. 

 

The normal equations for X3 and X4 are, 

4321314232422132413141

432131324221323141
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This shows there are 5 sources of association between X3 and X4: 

 (a) Association due to X1 being a common cause of X3 and X4 (β41β31) 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X4 to X1, go forward from X1 to X3. 
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 (b) Association due to X1 being a common cause of X3 (by first affecting X2, which in 
turn affects X3) and X4 (β41β21 β32) 

X1

X2

X3

X4

u

v

w

 
  SW rule: Go back from X4 to X1, forward from X1 to X2, forward from X2 to X3. 

 (c) Association due to X2 being a common cause of X3 and X4 (β42β32) 

X1

X2

X3

X4

u

v

w

 
SW Rule: Back from X4 to X2, go forward from X2 to X3. 

 

 (d) Association due to X1 being a common cause of X3 and X4: X1 directly affects X3 
and indirectly affects X4 through X2 (β42β21β31). 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X4 to X2, back from X2 to X1, forward from X1 to X3. 
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 (e) Association due to X3 being a direct cause of X4 (β43) 

X1

X2

X3

X4

u

v

w

 
SW Rule: Go back from X4 to X3. 

Note that you sum (a), (b) (c) and (d) to get the correlation due to common causes. This is the 
spurious association. There are no indirect effects of X3 on X4. 

 

In reviewing the above, note that, if there are no double-headed arrows in the model 

• If you go back once and then stop, it is a direct effect 

• If you go back 2 or more times and never come forward, it is an indirect effect 

• If you go back and later come forward, it is correlation due to a common cause 

 
Correlated causes. Suppose that, in the above model, X1 and X2 were both exogenous, i.e. 
there was a double-headed arrow between them instead of a 1-way arrow. This would not have 
any significant effect on the math, but it would affect our interpretation of the sources of 
correlation. Anything involving ρ12 would then have to be interpreted as correlation due to 
correlated causes. Further, we could not always say what effect changes in X1 would have on 
other variables, since we wouldn’t know whether changes in X1 would also produce changes in 
X2 (unless we have good reasons for believing that that couldn’t be the case, e.g. gender and race 
might both be exogeneous variables in a model, but we are pretty confident that changes in one 
are not going to produce changes in the other.). That is, with two-headed arrows we often can’t 
be sure what the indirect effects are, which also means that we can’t be sure what the total effects 
are. Ergo, the fewer 2-headed arrows in a model, the more powerful the model is in terms of the 
statements it makes. 
For example: 

X1

X2

X3

X4

v

w

 
Instead of X1 and X3 being correlated because of the indirect effect of X1 affecting X2 which in 
turn affects X3 (which is a causal relationship) X1 and X3 are correlated because of the 
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correlated causes of X1 and X2 (which we do not assume to be causal), i.e. X1 is correlated with 
a cause of X3. 

Or, 

X1

X2

X3

X4

v

w

 
Instead of X2 and X3 being correlated because they share a common cause, they are correlated 
because of a correlated cause, i.e. X1 is a cause of X3 and X2 is correlated with X1.  

 
SUBSTANTIVE HYPOTHETICAL EXAMPLE (Adapted From the 1995 Soc 593 Exam 2): 

A demographer believes that the following model describes the relationship between Income, 
Health of the Mother, Use of Infant formula, and Infant deaths. All variables are in standardized 
form. The hypothesized value of each path is included in the diagram. 

 

Income

Mother's Health

Infant Formula Usage

Infant Deaths

u

v

w
.7 -.8

-.5

-.8

 

 

 a. Write out the structural equation for each endogenous variable. 

wIFMHwIFMHID
vMHvMHIF

uIncomeuIncomeMH

IFIDMHID

MHIf

IncMH

+−−=++=

+−=+=

+=+=

*5.*8.**

*8.
*7.

,,

,

,

ββ

β
β

 

 b. Determine the complete correlation matrix. (Remember, variables are 
standardized. You can use either normal equations or Sewell Wright, but you might want to use 
both as a double-check.) 
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Correlation Sewell-Wright Approach 

rmh,inc = .7 

 

Go back from Mother’s health to Income. (Direct effect of 
Income on MH) 

rif,MH = -.8 

 

Go back from IF to MH. (Direct effect of MH on IF) 

rIF,Inc = -.8 * .7 = -.56 

 

Go back from IF to MH, then back from MH to income. 
(Indirect effect of Income – Income affects mother’s 
health which in turn affects Infant formula usage) 

rid,IF = -.5 + -.8*-.8 = .14 

 

Go back from ID to IF. (Direct effect of Infant formula on 
infant deaths) 

Then, go back from ID to MH, then go forward from MH to 
IF. (Mother’s health is a common cause of both Infant 
formula usage and infant deaths) 

Note that, even though the direct effect of infant formula 
usage on infant deaths is negative (which means that 
using formula reduces infant deaths) the correlation 
between infant formula usage and infant deaths is 
positive (which means that those who use formula are 
more likely to experience infant deaths). We discuss this 
further below. 

rid,MH = -.8 + -.8*-.5 = -.4 

 

Go back from ID to MH. (Direct effect of Mother’s Health 
on Infant deaths) 

Then, go back from ID to IF to MH. (Indirect effect of 
Mother’s health on infant deaths – Mother’s health affects 
infant formula usage which in turn affects infant deaths) 

rid,INC = -.8*.7 + -.5*-.8*.7 
= -.28 

 

Go back from Infant Death to Mother’s Health, then back 
to Income. (Income is an indirect cause of Infant deaths – 
Income affects mother’s health which in turn affects infant 
deaths.) 

Then go back from Infant deaths, then back to Mother’s 
Health, then back to Income. (Income is yet again an 
indirect cause – Income affects Mother’s Health, which 
affects Infant Formula Usage, which affects Infant 
Deaths.) 
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 c. Decompose the correlation between Infant deaths and Usage of Infant formula 
into 

• Correlation due to direct effects 

-.5 (see path from IF to ID) 

• Correlation due to common causes 

-.8 * -.8 = .64 (Mother’s health is a cause of both IF and ID) 

 d. Suppose the above model is correct, but instead the researcher believed in and 
estimated the following model: 

Infant Formula Usage Infant Deaths w  

What conclusions would the researcher likely draw? Why would he make these mistakes? 
Discuss the consequences of this mis-specification. 

The correlation between IF and ID is positive, hence, if the above model was estimated, 
the expected value of the coefficient would be .14. This would imply that infant formula 
usage increases infant deaths, when in reality the correct model shows that it decreases 
them. The correlation is positive because of the common cause of Mother’s health: less 
healthy mothers are more likely to use infant formula, and they are also more likely to 
have higher infant death rates. Belief in the above model could lead to a reduction in 
infant formula usage, which would have exactly the opposite effect of what was 
intended. 
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Appendix: Basic Path Analysis with Stata 

We have been doing things a bit backwards here. We have been starting with the coefficients, 
and then figured out what the correlations must be. Normally, of course, we start with the 
data/correlations and then estimate the coefficients.  

Nonetheless, we can use Stata to verify we have calculated the correlations correctly. Just give 
Stata the correlations we computed by hand and then use one of the methods below to estimate 
the various regressions. If we’ve done everything right, the regression parameters should come 
out the same as in the path diagram. Remember, this is easier if you use the “input matrix by 
hand” submenu. (Click Data/ Matrices / Input matrix by hand.)  

. matrix input Corr = (1,.7,-.56,-.28\.7,1,-.80,-.40\-.56,-.80,1,.14\-.28,-.40,.14,1) 

. matrix input SDs = (1,1,1,1) 

. matrix input Means = (0,0,0,0) 

. corr2data income mhealth formula death, corr(Corr) mean(Means) sd(SDs) n(100) 
(obs 100) 
 

There are  now at least three ways to estimate the path models (or at least, the simple models we 
are estimating here; approach 2, the sem commands, is probably best for more complicated 
models.) 
 
I. Estimate separate regressions for each dependent variable. 
 
. reg  mhealth income 
 
      Source |       SS       df       MS              Number of obs =     100 
-------------+------------------------------           F(  1,    98) =   94.16 
       Model |  48.5099991     1  48.5099991           Prob > F      =  0.0000 
    Residual |  50.4899995    98  .515204077           R-squared     =  0.4900 
-------------+------------------------------           Adj R-squared =  0.4848 
       Total |  98.9999987    99  .999999986           Root MSE      =  .71778 
 
------------------------------------------------------------------------------ 
     mhealth |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      income |         .7   .0721393     9.70   0.000     .5568419    .8431581 
       _cons |   6.41e-10   .0717777     0.00   1.000    -.1424405    .1424405 
------------------------------------------------------------------------------ 
 
. reg  formula  income mhealth 
 
      Source |       SS       df       MS              Number of obs =     100 
-------------+------------------------------           F(  2,    97) =   86.22 
       Model |  63.3600001     2       31.68           Prob > F      =  0.0000 
    Residual |       35.64    97  .367422681           R-squared     =  0.6400 
-------------+------------------------------           Adj R-squared =  0.6326 
       Total |  99.0000001    99           1           Root MSE      =  .60615 
 
------------------------------------------------------------------------------ 
     formula |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      income |   4.93e-09   .0853061     0.00   1.000    -.1693091    .1693091 
     mhealth |        -.8   .0853061    -9.38   0.000    -.9693091   -.6306909 
       _cons |  -2.31e-09   .0606154    -0.00   1.000    -.1203048    .1203048 
------------------------------------------------------------------------------ 
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. reg  death income mhealth formula 
 
      Source |       SS       df       MS              Number of obs =     100 
-------------+------------------------------           F(  3,    96) =   10.67 
       Model |   24.749999     3  8.24999966           Prob > F      =  0.0000 
    Residual |  74.2500011    96  .773437511           R-squared     =  0.2500 
-------------+------------------------------           Adj R-squared =  0.2266 
       Total |  99.0000001    99           1           Root MSE      =  .87945 
 
------------------------------------------------------------------------------ 
       death |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      income |   1.63e-09   .1237684     0.00   1.000    -.2456784    .2456784 
     mhealth |        -.8   .1709021    -4.68   0.000    -1.139238   -.4607621 
     formula |        -.5   .1473139    -3.39   0.001    -.7924158   -.2075842 
       _cons |  -6.54e-09   .0879453    -0.00   1.000      -.17457      .17457 
------------------------------------------------------------------------------ 
 
. * The mis-specified model 
. reg  death formula 
 
      Source |       SS       df       MS              Number of obs =     100 
-------------+------------------------------           F(  1,    98) =    1.96 
       Model |  1.94039993     1  1.94039993           Prob > F      =  0.1648 
    Residual |  97.0596001    98  .990404083           R-squared     =  0.0196 
-------------+------------------------------           Adj R-squared =  0.0096 
       Total |  99.0000001    99           1           Root MSE      =  .99519 
 
------------------------------------------------------------------------------ 
       death |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     formula |        .14   .1000204     1.40   0.165    -.0584872    .3384872 
       _cons |  -5.23e-09    .099519    -0.00   1.000    -.1974923    .1974923 
------------------------------------------------------------------------------ 
 

II. The sem commands. We can also use the sem (Structural Equation Modeling) commands 
that were introduced in Stata 11. This example is pretty simple so it isn’t too hard to do. Among 
the nice features of sem is that you can specify all the equations at once, and you can get 
estimates of the direct, indirect and total effects. Time permitting, we will talk about sem more 
later in the semester. 
 
. sem (mhealth <- income) (formula <- income mhealth) (death <- income mhealth formula) 
 
Endogenous variables 
 
Observed:  mhealth formula death 
 
Exogenous variables 
 
Observed:  income 
 
Fitting target model: 
 
Iteration 0:   log likelihood = -466.43145   
Iteration 1:   log likelihood = -466.43145   
 
Structural equation model                       Number of obs      =       100 
Estimation method  = ml 
Log likelihood     = -466.43145 
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------------------------------------------------------------------------------ 
             |                 OIM 
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Structural   | 
  mhealth <- | 
      income |         .7   .0714143     9.80   0.000     .5600306    .8399694 
       _cons |   6.41e-10   .0710563     0.00   1.000    -.1392678    .1392678 
  -----------+---------------------------------------------------------------- 
  formula <- | 
     mhealth |        -.8   .0840168    -9.52   0.000    -.9646699   -.6353301 
      income |   4.93e-09   .0840168     0.00   1.000    -.1646699    .1646699 
       _cons |  -2.31e-09   .0596992    -0.00   1.000    -.1170084    .1170084 
  -----------+---------------------------------------------------------------- 
  death <-   | 
     mhealth |        -.8   .1674491    -4.78   0.000    -1.128194   -.4718057 
     formula |        -.5   .1443376    -3.46   0.001    -.7828964   -.2171036 
      income |   1.63e-09   .1212678     0.00   1.000    -.2376805    .2376805 
       _cons |  -6.54e-09   .0861684    -0.00   1.000     -.168887     .168887 
-------------+---------------------------------------------------------------- 
Variance     | 
   e.mhealth |      .5049   .0714036                      .3826725    .6661675 
   e.formula |      .3564   .0504026                      .2701218    .4702359 
     e.death |      .7425   .1050054                      .5627537    .9796581 
------------------------------------------------------------------------------ 
LR test of model vs. saturated: chi2(0)   =      0.00, Prob > chi2 =      . 
 
. * Estimate the direct, indirect, and total effects of each variable 
. estat teffects 
 
Direct effects 
------------------------------------------------------------------------------ 
             |                 OIM 
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Structural   | 
  mhealth <- | 
      income |         .7   .0714143     9.80   0.000     .5600306    .8399694 
  -----------+---------------------------------------------------------------- 
  formula <- | 
     mhealth |        -.8   .0840168    -9.52   0.000    -.9646699   -.6353301 
      income |   4.93e-09   .0840168     0.00   1.000    -.1646699    .1646699 
  -----------+---------------------------------------------------------------- 
  death <-   | 
     mhealth |        -.8   .1674491    -4.78   0.000    -1.128194   -.4718057 
     formula |        -.5   .1443376    -3.46   0.001    -.7828964   -.2171036 
      income |   1.63e-09   .1212678     0.00   1.000    -.2376805    .2376805 
------------------------------------------------------------------------------ 
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Indirect effects 
------------------------------------------------------------------------------ 
             |                 OIM 
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Structural   | 
  mhealth <- | 
      income |          0  (no path) 
  -----------+---------------------------------------------------------------- 
  formula <- | 
     mhealth |          0  (no path) 
      income |       -.56   .0819928    -6.83   0.000     -.720703    -.399297 
  -----------+---------------------------------------------------------------- 
  death <-   | 
     mhealth |         .4   .0420084     9.52   0.000      .317665     .482335 
     formula |          0  (no path) 
      income |       -.28   .0944557    -2.96   0.003    -.4651298   -.0948702 
------------------------------------------------------------------------------ 
 
 
Total effects 
------------------------------------------------------------------------------ 
             |                 OIM 
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Structural   | 
  mhealth <- | 
      income |         .7   .0714143     9.80   0.000     .5600306    .8399694 
  -----------+---------------------------------------------------------------- 
  formula <- | 
     mhealth |        -.8   .0840168    -9.52   0.000    -.9646699   -.6353301 
      income |       -.56   .0828493    -6.76   0.000    -.7223816   -.3976184 
  -----------+---------------------------------------------------------------- 
  death <-   | 
     mhealth |        -.4   .1726381    -2.32   0.021    -.7383645   -.0616355 
     formula |        -.5   .1443376    -3.46   0.001    -.7828964   -.2171036 
      income |       -.28       .096    -2.92   0.004    -.4681565   -.0918435 
------------------------------------------------------------------------------ 
 
. * Incorrect model 
. sem death  <- formula 
 
Endogenous variables 
 
Observed:  death 
 
Exogenous variables 
 
Observed:  formula 
 
Fitting target model: 
 
Iteration 0:   log likelihood = -281.79294   
Iteration 1:   log likelihood = -281.79294   
 
Structural equation model                       Number of obs      =       100 
Estimation method  = ml 
Log likelihood     = -281.79294 
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------------------------------------------------------------------------------ 
             |                 OIM 
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Structural   | 
  death <-   | 
     formula |        .14   .0990152     1.41   0.157    -.0540661    .3340661 
       _cons |  -5.23e-09   .0985188    -0.00   1.000    -.1930934    .1930934 
-------------+---------------------------------------------------------------- 
Variance     | 
     e.death |    .970596    .137263                      .7356317    1.280609 
------------------------------------------------------------------------------ 
LR test of model vs. saturated: chi2(0)   =      0.00, Prob > chi2 =      . 
 

III. UCLA’s pathreg command. You can get this with the findit command. Again, it lets 
you specify all the equations at once, but doesn’t offer the many additional features that sem 
does. Also, pathreg does not support factor variables as of March 2013. 
 
. pathreg (mhealth income) (formula income mhealth) (death income mhealth formula) 
 
------------------------------------------------------------------------------ 
     mhealth |      Coef.   Std. Err.      t    P>|t|                     Beta 
-------------+---------------------------------------------------------------- 
      income |         .7   .0721393     9.70   0.000                       .7 
       _cons |   6.41e-10   .0717777     0.00   1.000                        . 
------------------------------------------------------------------------------ 
                 n = 100  R2 = 0.4900  sqrt(1 - R2) = 0.7141 
 
------------------------------------------------------------------------------ 
     formula |      Coef.   Std. Err.      t    P>|t|                     Beta 
-------------+---------------------------------------------------------------- 
      income |   4.93e-09   .0853061     0.00   1.000                 4.93e-09 
     mhealth |        -.8   .0853061    -9.38   0.000                      -.8 
       _cons |  -2.31e-09   .0606154    -0.00   1.000                        . 
------------------------------------------------------------------------------ 
                 n = 100  R2 = 0.6400  sqrt(1 - R2) = 0.6000 
 
------------------------------------------------------------------------------ 
       death |      Coef.   Std. Err.      t    P>|t|                     Beta 
-------------+---------------------------------------------------------------- 
      income |   1.63e-09   .1237684     0.00   1.000                 1.63e-09 
     mhealth |        -.8   .1709021    -4.68   0.000                      -.8 
     formula |        -.5   .1473139    -3.39   0.001                      -.5 
       _cons |  -6.54e-09   .0879453    -0.00   1.000                        . 
------------------------------------------------------------------------------ 
                 n = 100  R2 = 0.2500  sqrt(1 - R2) = 0.8660 


