EE30372 - Electric Machinery and Power Systems Analysis Miscellaneous formulae

Physics:

 $Work(W) = \int F dr = \int \tau d\theta$, Power = $\frac{dW}{dt}$

Flux density: $B = \frac{\mu Ni}{l_c}$ for i amperes in coil of N turns and mean flux path length l_c

Total flux(ϕ): $\phi = \int \mathbf{B} \cdot d\mathbf{A}$

Faraday's and Lenz's laws for N turns around flux ϕ : $e_{ind} = -N \frac{d\phi}{dt}$

Force on wire carrying i amperes in field of flux density **B**: $\mathbf{F} = i(\mathbf{I} \times \mathbf{B})$

Voltage induced in conductor moving at velocity \mathbf{v} in flux density \mathbf{B} : $e_{ind} = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$

Torque between two flux fields \mathbf{B}_R and $\mathbf{B}_S = k\mathbf{B}_R \times \mathbf{B}_S$.

General:

Complex power: $\mathbf{S} = \mathbf{V}\mathbf{I}^* = P + jQ$

Turns ratio of transformer: $a = \frac{\aleph_p}{N_s}$ Referencing of impedance through transformer (ref. to primary): $\mathbf{Z}'_L = a^2 \mathbf{Z}_L$

Autotransformer apparent power rating advantage: $\frac{N_{SE}+N_C}{N_{SE}}$

Per-unit analysis: $Z_{base} = \frac{(V_{base})^2}{S_{base}} = \frac{V_{base}}{I_{base}}$, $S_{base} = V_{base}I_{base}$.

Transformer phasor diagrams (ref. to secondary): $\frac{\mathbf{V}_{P}}{a} = \mathbf{V}_{s} + R_{eq}\mathbf{I}_{S} + jX_{eq}\mathbf{I}_{S}$ Per-unit in 3-phase: $Z_{base} = \frac{3(V_{LN,base})^{2}}{S_{base}}$, $I_{base} = \frac{S_{base}}{3V_{LN,base}}$ Voltage induced in coils of P-pole stator windings with N_{C} turns enclosing total flux ϕ_{tot} in P-pole field, and rotating at speed ω_m relative to magnetic field: $N_C \phi_{tot} \omega_e \cos(\omega_e t)$, where $\omega_e = \omega_m P/2.$

Mechanical power in rotating machine: $P_{conv} = \tau_{ind}\omega_m$.

Power output by rotating machine: $P_{out} = \tau_{load}\omega_m$. "Regulation" of quantity γ : $\frac{\gamma_{no~load} - \gamma_{full~load}}{\gamma_{full~load}} \times 100\%$ Parallel generators: $P = s_P(f_{nl} - f_{sys}), \ Q = s_Q(V_{nl} - V_{fl})$

Motors:

Induction motor speed: $n_{sync} = \frac{120*f_e}{no.\ poles}$, $s = \frac{n_{sync} - n_m}{n_{sync}}$

Induction rotor internal frequency: $f_r = sf_e$.

Power transferred to induction rotor: $P_{AG} = P_{conv} + P_{RCL} = \tau_{ind}\omega_{sync}$

Three-phase induction motor torque: $\tau_{ind} = \frac{3V_{TH}^2 R_2/s}{\omega_{sync}[(R_{TH} + R_2/s)^2 + (X_{TH} + X_2)^2]}$

DC motor converted power: $P_{conv} = E_A I_A$

Back EMF in DC motor: $E_A = K\phi\omega$.

Induced Torque in DC motor: $\tau_{ind} = K\phi I_A$ Shunt DC motor speed: $\omega = \frac{V_t}{K\phi} - \frac{R_A}{(K\phi)^2} \tau_{ind}$ Series DC motor speed: $\omega = \frac{V_T}{\sqrt{Kc}\sqrt{\tau_{ind}}} - \frac{R_A + R_S}{Kc}$