EE372 - Electric Machinery and Power Systems Analysis Miscellaneous formulae

Physics:

$\operatorname{Work}(\mathrm{W})=\int F d r=\int \tau d \theta, \quad$ Power $=\frac{d W}{d t}$
Flux density: $B=\frac{\mu N i}{l_{c}}$ for i amperes in coil of N turns and mean flux path length l_{c}
Total flux $(\phi): \phi=\int \mathbf{B} \cdot d \mathbf{A}$
Faraday's and Lenz's laws for N turns around flux $\phi: e_{i n d}=-N \frac{d \phi}{d t}$
Force on wire carrying i amperes in field of flux density $\mathbf{B}: \mathbf{F}=i(\mathbf{l} \times \mathbf{B})$
Voltage induced in conductor moving at velocity \mathbf{v} in flux density \mathbf{B} : $e_{i n d}=(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$
Torque between two flux fields \mathbf{B}_{R} and $\mathbf{B}_{S}=k \mathbf{B}_{R} \times \mathbf{B}_{S}$.

General:

Complex power: $\mathbf{S}=\mathbf{V I}^{*}=P+j Q$
Turns ratio of transformer: $a=\frac{N_{p}}{N_{s}}$
Referencing of load impedance through transformer (ref. to primary): $\mathbf{Z}_{L}^{\prime}=a^{2} \mathbf{Z}_{L}$
Per-unit analysis: $Z_{\text {base }}=\frac{\left(V_{\text {base }}\right)^{2}}{S_{\text {base }}}=\frac{V_{\text {base }}}{I_{\text {base }}}, S_{\text {base }}=V_{\text {base }} I_{\text {base }}$.
Transformer phasor diagrams (ref. to secondary): $\frac{\mathbf{V}_{P}}{a}=\mathbf{V}_{s}+R_{e q} \mathbf{I}_{S}+j X_{e q} \mathbf{I}_{S}$
Per-unit in 3-phase: $Z_{\text {base }}=\frac{3\left(V_{L N, \text { base }}\right)^{2}}{S_{\text {base }}}$, $I_{\text {base }}=\frac{S_{\text {base }}}{3 V_{L N, b a s e}}$
Voltage induced in coils of P-pole stator windings with N_{C} turns enclosing total flux $\phi_{\text {tot }}$ in
P-pole field, and rotating at speed ω_{m} relative to magnetic field: $N_{C} \phi_{t o t} \omega_{e} \cos \left(\omega_{e} t\right)$, where
$\omega_{e}=\omega_{m} P / 2$.
Mechanical power in rotating machine: $P_{\text {conv }}=\tau_{i n d} \omega_{m}$.
Power output by rotating machine: $P_{\text {out }}=\tau_{\text {load }} \omega_{m}$.
"Regulation" of quantity $\gamma: \frac{\gamma_{\text {no }} \text { load }}{}-\gamma_{\text {full load }}\left(\gamma_{\text {full load }}\right) \times 100 \%$

Motors:

Induction motor speed: $n_{\text {sync }}=\frac{120 * f_{e}}{\text { no. poles }}, s=\frac{n_{s y n c}-n_{m}}{n_{s y n c}}$
Induction rotor internal frequency: $f_{r}=s f_{e}$.
Power transferred to induction rotor: $P_{A G}=P_{\text {conv }}+P_{R C L}=\tau_{\text {ind }} \omega_{\text {sync }}$
Three-phase induction motor torque: $\tau_{\text {ind }}=\frac{3 V_{H}^{2} R_{2} / s}{\omega_{s y n c}\left[\left(R_{T H}+R_{2} / s\right)^{2}+\left(X_{T H}+X_{2}\right)^{2}\right]}$
DC motor converted power: $P_{\text {conv }}=E_{A} I_{A}$
Back EMF in DC motor: $E_{A}=K \phi \omega$.
Induced Torque in DC motor: $\tau_{\text {ind }}=K \phi I_{A}$
Shunt DC motor speed: $\omega=\frac{V_{t}}{K \phi}-\frac{R_{A}}{(K \phi)^{2}} \tau_{\text {ind }}$
Series DC motor speed: $\frac{V_{T}}{\sqrt{K c} \sqrt{\tau_{\text {ind }}}}-\frac{R_{A}+R_{S}}{K c}$

