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Motivated by closed-loop flow control applications, a new formulation of the proper 
orthogonal decomposition (POD) is presented which is capable of characterizing not only the 
controlled and natural states of a given flow but also the transient behavior between these 
states. This approach, which is termed temporal POD (TPOD) extracts the optimum frame-
of-reference and the temporal information regarding the dynamics of the system in the 
presence of the flow control. The TPOD concept is developed in this paper and demonstrated 
experimentally in an application involving a circular cylinder in cross flow at ReD = 5,000 
with active plasma flow control. The resulting model is shown to properly capture the 
correct dynamics of the first TPOD mode, including the natural, forced and transient 
regimes.  

I. Motivation and Objectives 
ONVENTIONAL proper orthogonal decomposition (POD)-based modeling extracts an optimal complete set of 
dominant (in the energy sense) spatial modes, with a minimum number of modes to represent a particular flow 

state1-3. These modes are usually projected onto the Navier-Stokes (N-S) equations to obtain a low-dimensional 
system of ODE equations to describe the temporal evolution of the modes4, 5. 
 This approach is shown to give satisfactory results, if the flow does not deviate much from a given state, such as 
the natural evolution of a shear layer or jet, for instance. But when the flow is actively manipulated using some form 
of flow control, the set of POD modes extracted from the natural flow state typically does a very poor job describing 
the forced or controlled flow state. From a topological point of view, this can be explained as shown in Figure 1: for 
the natural state the dynamical system (the flow) 
occupies a particular finite region in phase space. 
POD extracts a set of eigenvectors (modes) and 
provides a low-dimensional frame of reference to 
describe the system evolution within this region. 
When the flow control is activated, the system is 
forced to travel and to occupy a different finite 
region in the phase space. So, the set of POD 
modes derived to describe the system evolution in 
one region with as few eigenvectors as possible 
becomes quite non-optimal for another region, 
and, although the set of POD modes is still 
complete, it results in dramatic increase in the 
number of POD modes needed to provide a 
proper frame of reference to describe the forced 
system.  
 To address this issue, several modifications of 
the basic POD approach have been proposed to 
solve this problem. For periodic flows, the double 
POD or DPOD approach6, 7 provides a set of POD 
modes calculated within each period, and 
performs a second POD-optimization among POD 
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Figure 1. Topology of the dynamical system in phase space.
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modes between periods, thus providing the eigenvector basis to optimally describe the natural, the transient and the 
forced states. However, the method may not be readily extended to aperiodic flows. Split POD8 provides the 
extended POD basis, which is optimal for both the natural and the forced states, but may not be optimal for the 
transient state, thus potentially losing information of how the system goes from the natural to the forced state and 
back. Balanced POD9 was demonstrated to capture proper dynamical modes from the flow, but can be used only in 
computational studies, since it requires the solution of the adjoint problem, though recently a technique called 
Eigensystem Realization Algorithm10 was shown some promise to calculate Balanced POD modes directly from the 
experiments11. 
 All of the mentioned techniques extract an optimal set of spatial eigenmodes to describe the system evolution 
with the presence of the flow control. However, to extract the temporal evolution or trajectories of these modes, they 
rely on either the Galerkin projection into the N-S equations or an empirical set of temporal equations. The former 
approach usually suffers from the closure problem, while the second one requires significant amount of empirical 
knowledge about the system dynamics. 
 We propose an alternative to the approaches outlined above; a new time-dependent version of the POD 
procedure is described in the following section. For the sake of simplicity we describe a 2-dimensional version of it, 
with a straightforward extension to a 3-dimensional version. To demonstrate the effectiveness of the proposed 
TPOD technique, the flow behind the circular cylinder at a moderate Reynolds number was chosen. This flow has 
well-understood vortical-street dynamics11 and had been extensively studied using different low-dimensional 
techniques, see [6] and references therein. In Section III the experimental set-up, the principle of operation of the 
plasma actuator as a flow control device and the velocity-field extraction procedure are described. In Section IV we 
apply the TPOD technique to the experimental PIV snapshots of the instantaneous velocity field downstream of the 
cylinder with and without the flow control to extract the dominant TPOD mode and to develop the simple non-linear 
model to correctly predict its dynamical evolution with the presence of the flow control. Preliminary conclusions 
and future work are discussed in Section V.     

II. Time-Dependent POD Approach (TPOD) 
 The system at any moment, t, is described by an instantaneous field, α),,( tyxu , where u is the velocity field 
and α denotes a particular realization. Flow control is activated at time t = t0, so the system is in the natural state 

α),,( tyxu N for t < t0 and it is in the forced or controlled state α),,( tyxu C  for ∞→− 0tt .  

 The traditional low-dimensional POD approach1-3 consists of computing eigenvectors )},({ yxiϕ  for any 
stationary state as solutions of the eigenvalue problem, 

),()','()',';,( yxyxyxyxR βγβγ λϕϕ = ,          (1) 

where, ),','(),,()',';,( tyxutyxuyxyxR =βγ  is a cross-correlation matrix, eigenvalue λi gives the average energy 
of each mode, and the overbar denotes averaging in the time-domain. The system is then typically approximated by 
a (relatively) small number of modes. After projecting the truncated set onto the N-S equations, the system of ODEs 
can be derived as,  

)(),()(
)(

aNaaQtAa
dt

tda
i

i ++= ,          (2) 

where A, Q and N are constant matrices, responsible for linear mode evolution (convection, production and 
dissipation), quadratic interaction between modes (energy transfer) and non-linear stabilizing terms, respectively. 
 Both the natural and controlled states are stationary states, so they can be described by separate sets of POD 
modes, )},({ yxN

iϕ  and )},({ yxC
iϕ , respectively. These sets describe the system in both states, but the very 

important information about how the system gets from the natural to the controlled state is completely lost during 
time-averaging. So in order to extract the trajectory information, another averaging operator is needed. 
 Note that by activating the flow control at time t = t0, the system becomes non-stationary and therefore it can be 
presented as u(x,y, τ = t - t0; t0). Here τ is the time delay from the initiation of actuation, which describes the system 
trajectory in time and t0 defines where this trajectory starts, that is provides the initial condition of the trajectory. 
Topologically it can be explained as follows: at any given fixed t0 the system leaves the natural state and goes 
toward the control state along a particular trajectory from a set of trajectories (since the system is stochastic), see 
Figure 2. We propose to define this set of trajectories using POD approach as follows: 
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1. For a fixed t0, an ensemble of system trajectories is collected, {u(x, y,τ ; t0- fixed)}.  
2. For a given time delay, τ, POD modes are calculated by ensemble-averaging over many realizations, so 

time-dependent POD modes or TPOD modes, )};,(~{ τϕ yxi , and corresponding mode energies, λi(τ), are 
functions of the time delay. 

3.  The system can be represented as  a summation  of the first few TPOD modes, 

 ∑∑
==

=≈−
M

i
ii

M

i
iii yxcyxcfixedtyxu

11
0 ),,(),,(~)();,,( τϕτϕτλτ .      (3) 

Here coefficients c are ensemble-averaged energy-
related weights of the corresponding TPOD modes.   

The first TPOD mode represents the temporal 
evolution or a trajectory of the most energetic mode in 
the flow when the flow control is activated. Each TPOD 
mode is a function of space and the time-delay and it 
gives valuable information about how dominant flow 
structures evolve as a result of the flow control.  
 It is convenient to project each spatio-temporal 
TPOD mode, ),,( τφ yxi  into a set of spatial modes, 

),(, yxjiψ as 

∑=
j

jijii yxayx ),()(),,( ,, ψττϕ ,   (4) 

The set of finite number of Ψ(i,j)-POD modes provides 
the most optimal set of eigenvectors to describe the 
natural, transient and control states. The temporal 
coefficients, ai,j(τ), define trajectories in this eigenvector 
phase-space.  
 By construction, TPOD modes are function of t0, so 
to describe the full system, a set of TPOD modes, 

0
)};;,({ 0 ti tyx τφ  for each t0 should be extracted from the experiment by means of conditional sampling. In the 

case, when the natural state is periodic and can be described as a closed orbit, TPOD-mode extraction is reduced to 
the conditional sampling as a function of the phase along the closed natural orbit. 
 It is worth noting that from Eqs. (3) and (4) it follows that Ψ-modes can be calculated directly from the original 
velocity field, u, by averaging all velocity fields in time and computing the correlation matrix, R, (1), but the 
temporal evolution of these modes will be lost in the time-averaging procedure. 
 The original system is governed by N-S equations and the Galerkin projection of the set of standard POD modes 
onto the N-S equations gives the system of ODE’s to describe temporal evolution of coefficients for each standard 
POD mode. In general, this system has linear, quadratic and higher non-linear terms (2)1-3. When POD modes are 
extracted experimentally, this approach involves the numerical calculation of the spatial derivatives, which typically 
suffers from experimental error. Also, the truncated system of equations requires some kind of closure to make the 
system stable. 
 Several approaches were developed to address these issues. Artificial neural network (ANN-ARX)6, 7 was used 
to develop a stable system of equations to describe the wake evolution behind a cylinder flow in the presence of 
forcing. Other researchers look for the set of equations in a specified form, inspired by studying the dynamics of the 
system.13, 14 A similar, but more general approach, used in [15] postulated the presence of linear, quadratic and cubic 
terms in (2) and found corresponding matrices and tensors using time-dependent POD coefficients extracted from 
the experiment via the least-square analysis.   
  Adapting the approach from [15], we also seek the temporal evolution of TPOD modes as a combination of the 
linear, quadratic and cubic terms,   

  BfaaaTaaQaA
d
ad

+++= )()()()()()()( ττττττ
τ
τ rrrrrr

r
 ,               (5) 

where A, Q, T and B are assumed to be constant matrices and tensors. The effect of the forcing “strength”, f, is 
modeled by the linear term Bf, similar to [13,14,16]. Since the temporal evolution of each TPOD mode is known 
from (4), the system (5) can be solved to find A, Q, T and B using the least-squared analysis,  

 
Figure 2. Topological definition of TPOD modes.  
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and now the original system is modeled by the set of ODE’s (5). 

III. Experimental Set-up 
 In order to experimentally demonstrate the TPOD approach, active control of the flow over a circular cylinder in 
cross-flow using dielectric barrier discharge (DBD) plasma actuators17 is used.  Effective control of the cylinder in 
cross-flow using DBD plasma actuation has been demonstrated in previous studies.18, 19 Plasma actuators were 
demonstrated to have a dramatic effect on the cylinder wake flow with the complete elimination of unsteady Karman 
shedding in the wake. Consequently, the flow has two very distinct states: the natural state with unsteady Karman 
shedding of large-scale vortices into the wake and the controlled state, where the separation region is greatly 
reduced in size and shedding is essentially completely suppressed. These two states are clearly illustrated in the 
sample flow visualization images shown in Figure 3. The flow visualization is obtained by seeding the flow with 1 
micron diameter olive oil droplets which are illuminated by a pulsed Nd-Yag laser. 
 

    
 
Figure 3. Flow visualization of the flow over the circular cylinder at ReD =5,000: (left) the natural state, 
(plasma off) , (right) the controlled state (plasma on). 
 

The flow control experiments are performed in one of the low-turbulence, subsonic, in-draft wind tunnels 
located at the Hessert Laboratory for Aerospace Research at the University of Notre Dame. The wind tunnel has an 
inlet contraction ratio of 20:1. A series of 12 turbulence management screens at the front of the inlet give rise to 
tunnel freestream turbulence levels less than 0.1% (0.06% for frequencies above 10 Hz). Experiments are performed 
in a test section of 0.610m square cross-section and 1.82m in length. One sidewall and the test section ceiling has 
optical access for non-intrusive laser flow field diagnostics (in this case Particle Image Velocimetry). 

The cylinder model is shown schematically in Fig. 4. It consists of two coaxial fused quartz tubes: 13.5mm 
I.D. x 19mm O.D. x 533.4mm long and 6mm I.D. x 13mm O.D. x 533.4mm long. The dielectric constant of quartz 
is 3.7. The ends of the cylinder terminate in plastic endplates which 
elongate the model by 19.05mm. The wall of the outer tube serves as 
the dielectric barrier for the DBD plasma actuators. The exposed and 
insulated electrodes are common for both plasma actuators due to 
space limitations. These electrodes are made of Saint Gobain C661 
1.6mil (0.041mm)-thick copper foil tape with acrylic adhesive. As 
indicated, the outer, exposed electrode (2) is mounted to the outer 
surface of the outer quartz tube with its plasma generating edges 
located at ±90 degrees with respect to the approach flow direction 
(left-to-right in Figure 4). The insulated electrode (3) is mounted to 
the outer surface of the inner quartz tube (4). Both inner and outer 
electrodes extend 444.5mm in the spanwise direction. The inner and 
outer electrodes have a small overlap, which gives rise to a large 
local electric field. Plasma (5) forms near the edge of the exposed 
electrode and extends a distance along the cylinder’s dielectric 
surface as depicted in Fig. 4. As indicated in the figure, the actuators 
are connected to a high voltage a.c. source that provides 62kV peak-
to-peak positive ramp waveform excitation to the electrodes at a frequency of 1 kHz. The high-frequency, high-
amplitude a.c. voltage is created using a circuit described in [17].  

 
 

Fig. 4 Schematic of the cylinder model.
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 The velocity data for the POD analysis was obtained non-intrusively by using PIV measurements. The air 
upstream of the wind tunnel inlet was seeded with olive oil droplets of nominally 1 micrometer diameter that are 
produced by a TSI atomizer. A model Y120-15 New Wave Research Nd:Yag laser produced double laser pulses 
with a 25µs time interval. The maximum pulse repetition rate for this laser was 15 Hz. PIV images were captured by 
a PIV CAM 10-30 digital camera. TSI Insight 6 software was used to obtain a vector velocity field from each image 
pair. The interrogation region was approximately 6 cylinder diameters downstream of the end of the cylinder and 6 
diameters in the cross-stream direction.  
 The free stream velocity for the experiments was U∞ = 4m/s which correspond to the Reynolds number of 
approximately ReD = 5,000.  The plasma was turned on and off at the frequency of 4Hz (corresponding to a period 
of 250ms) and a duty cycle of 50%. The whole period of 250ms was divided into 50 time steps with Δτ = 5ms 
increment, starting from the moment the plasma actuators were turned on. The PIV data was conditionally sampled 
at each of these time steps over 200 periods of turning plasma on and off. Thus, for each delay-time step there is an 
ensemble of 200 acquired velocity fields for the POD analysis. 

As was mentioned in the previous section, the TPOD approach should be applied to u(x, y,τ ; t0 - fixed) or the 
phase-locked trajectories (see Figure 2) at the moment the control is turned on or off. When the plasma actuation 
was turned off, the starting vortices began to develop on both sides of the cylinder. Due to small asymmetry of the 
cylinder assembly the upper vortex was always slightly stronger than the bottom one, so the flow was naturally 
locked into the fixed state when the flow control was turned off. The flow control was turned off for 125 msec and 
due to the periodic nature of the shedding vortical street, by the time the flow control was turned on, it was 
approximately in the same fixed state as before each actuation-on event. In other words, the slow 4-Hz on/off 
actuation cycle (compared to the natural shedding frequency of approximately 42 Hz) worked as a modulation 
frequency and effectively had locked the flow into a preferred flow topology at the time the actuation was turned on. 
Therefore, since the objective of this preliminary work was to collect the data at any fixed flow state and apply the 
TPOD approach, no special provision was taken to lock the flow into a particular state. Of course, additional 
experiments with asymmetric actuation are needed to demonstrate extraction of TPOD modes at other fixed states. 

IV. Results 

A. TPOD modes 
 The experimental 2-D velocity field was processed to extract time-dependent TPOD modes using the snapshot 
method20, as described before. The freestream velocity was subtracted from each velocity field. The first dominant 
TPOD mode at different time delays from the actuation-on part of the cycle is shown in Figure 5 with the 
corresponding energy evolution of the first 5 modes shown in Figure 6. It is apparent that the flow undergoes drastic 
changes when it switches between the natural and controlled states at time delays of 0 and 125 msec. Clearly, the 
flow is phase-locked, so the shedding vortices are clearly seen in Figure 5 at τ = 160 and 215, for instance. If the 
flow was not phase-locked, the POD modes would have been the same regardless of the time delay after the 
actuation is on or off. The first TPOD mode holds between 60% and 80% of the total resolved kinetic energy. 
 Knowing the TPOD modes at given discrete times, the spatial-only Ψ(i,j)-modes were calculated using (4) and 
the first six modes for the first TPOD mode, );,(1 τϕ yx , are presented in Figure 7, left plot. The first mode, 
Ψ(1,1), represents the mean natural flow. The second mode, Ψ(1,2), is a linear combination of the mean flows 
during the natural and forced states and is related to the ‘shift” mode [6,21,22]; the third and the fourth modes, 
Ψ(1,3) and Ψ(1,4), describe the vortex shedding behind the cylinder and higher modes are responsible for the 
transient regime between the natural and the control cases. Temporal coefficients for these first six Ψ-modes, 
calculated by projecting TPOD mode into the spatial Ψ-mode frame of reference, are shown in Figure 7, right plot. 
These coefficients represent the temporal evolution of the “most-energetic” portion of the flow. Clearly, these modes 
have hysteresis effects with the forcing being on/off. The vortex shedding modes, a(1,3) and a(1,4), are almost zero 
during the forcing and experience the Hopf-type bifurcation when the actuation is turned off. Finally, the transient 
modes, a( 1,j = 5,6) are essentially non-zero only during the transient regimes (between control and natural states).   
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Figure 5. The vorticity of first TPOD mode, );,(1 τϕ yx at different time delays. The actuation is turned on at 
τ = 0 msec and is turned off at τ = 125 msec. Numbers in parenthesis are relative amounts of energy, 

∑
i

i )(/)(1 τλτλ .  

 
Figure 6. Eigenvalues )(τλi and cumulative energies  ∑

i
i )(τλ at different time delays. 
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Figure 7. (Left} Modes Ψ(i,j) and (right) corresponding coefficients a(i,j), defined in (4). 
 

B. Modeling. 
 Experimentally extracted coefficients, a(i,j)(τ), equation (4), of the first six Ψ-modes were used to calculate 
matrices in (5). To reduce number of unknown coefficients, different combinations of the non-linear terms were 
tried; the non-linear-term coefficients were calculated using (6) and only those terms with large non-zero 
coefficients were kept in the right-hand-side of (5). After several attempts, the system (5) was finally written as the 
following system of ODE’s,  
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da1(τ)
dτ

= c1 + l11a1 + l12a2 + q112a1a2 + q122a2
2 + b1 f

da2(τ)
dτ

= c2 + l21a1 + l22a2 + q211a1
2 + q212a1a2 + b2 f

da3(τ)
dτ

= l33 + t3 a3
2 + a4

2( )[ ]a3 + l34a4 + q313a1a3 + b3 f

da4 (τ)
dτ

= l43a3 + l44 + t4 a3
2 + a4

2( )[ ]a4 + q414a1a4 + b4 f

da5(τ)
dτ

= l55 + t5 a5
2 + a6

2( )[ ]a5 + l56a6 + q515a1a5 + t5511a5a1
2 + +t5512a5a1a2 + b5 f

da6(τ)
dτ

= l56a5 + l66 + t5 a5
2 + a6

2( )[ ]a5 + q616a1a6 + t6611a6a1
2 + +t6612a6a1a2 + b6 f

                    (7) 

 
 To model the temporal evolution of the first two modes responsible for the mean flow evolution in the presence 
of the forcing, only the linear and quadratic terms were explicitly included. Equations for the vortex shedding 
modes, a3 and a4, have simple stabilizing cubic terms, t3 a3

2 + a4
2( )a3 and t4 a3

2 + a4
2( )a4 ; an interaction with the 

mean flow, a1, was modeled by including only quadratic terms 31313 aaq  and 41414 aaq . Equations for the transient 

terms, a5 and a6, have similar stabilizing cubic terms, t5 a5
2 + a6

2( )a5 and t6 a5
2 + a6

2( )a6 and interaction with the 
mean-flow modes, a1 and a2, was modeled as a cubic interaction only. The forcing coefficient, f, was set to 0 for the 
no-forcing case and 1 for the forcing case. Temporal derivatives at discrete times, dai(τ)/dτ, were numerically 

calculated using the second-order finite difference, 
τ

ττττ
τ
τ

Δ
Δ−−Δ+

≈
2

)()()( iii aa
d

da  , with Δτ = 5 msec, and the 

least-squared procedure was used to find the best fit for all unknown coefficients. The resulted numerical values are 
given in Table 1.  
 The system (7) was then solved numerically with these values of coefficients in the time interval [0..250 msec] 
with a numerical time step of 0.1 msec. The forcing term was set f = 1 between 0 and 125 msec and f = 1 between 
125 and 250 msec. Results of the modeling and the comparison with experimentally obtained coefficients are 
presented in Figure 8. The system of equations (7) correctly predicts most of the essential features of the temporal 
evolution of the first six modes with the forcing on/off.  The natural vortex shedding frequency was calculated to be 
l43/(2π) = 44.6 Hz, which is close to the experimentally observed frequency of approximately 42 Hz. The first and 
second modes, a1(τ) and a2(τ), were correctly predicting the mean-flow changes with the forcing turned on and off, 
but exhibited a moderate decaying-oscillation behavior when the forcing was switched off. The modeled values of 
the vortex-shedding modes, a3(τ) and a4(τ), were in general correctly predicting the experimental values, but were 
slightly out-of-phase compared to the experimentally-measured values. The transient terms, a5(τ) and a6(τ), while 
predicting correct trends, miss some details of high-oscillation features when the control was turned off.  
 

Table 1. Coefficients in system (7) 
Linear terms Quadratic terms Cubic terms Forcing 

c1 = -5, c2 = 32.7, 
l11 = 30; l12 = 36.5,  
l21 = -111.7; l22 = -120.5 
 
l33 = -340, l34 = -280, 
l34 = 280, l44 = 101.2 
 
l55 = -246, l56 = 160, 
l65 = -160, l66 = -510 
 

q112 = -45.4, q122 = 47.2, 
q211 = -361.1, q212 = 304  
 
 
q313 = 3020; q414 = -367 
 
 
q515 = 6093, q616 = 7446 

 
 
 
 
t3 = -3400, t4 = -350 
 
 
t5 = - 400, t6 = - 400 
t5511 = -23707,  
t5512 = -886 
t6611 = -25364,  
t6612 = 6697 

b1 = -4.2 
b2 = -7.3 
 
 
b3 = 2.0 
b4 = 2.0 
 
b5 = -1.9 
b6 = -20.9 
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Figure 8. Numerical solution of the system (7) (solid red lines) and experimental results (blue dashed lines 
with circles). Forcing is turned on at 0 msec and turned off at 125 msec. 
  
 The main factor contributing to the existing small differences between the predicted and measured values of the 
temporal coefficients is most likely the numerical calculation of the temporal derivatives, dai(τ)/dτ, since the 
coefficients are given at discrete times. Also, adding more non-linear terms in (7) will probably improve the model, 
but obviously will make it more complicated and subject to artificial numerical instabilities.  

V. Discussion and future work. 
 This paper has demonstrated a novel technique, Temporal POD (TPOD), to extract the optimum set of 

eigenmodes and the temporal evolution of these modes from the experimental data with the presence of the flow 
control. Retaining the time in TPOD modes allows one to extract important information about the system trajectories 
in the optimum frame of reference. The technique was applied to the wake flow downstream of a cylinder at 
moderate Reynolds number with active flow control in the form of two plasma actuators. The extracted temporal 
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coefficients were used to develop a non-linear model with various linear, quadratic and cubic terms; the least-square 
analysis was used to analyze the importance of individual terms. The developed model showed excellent promise in 
capturing the dynamics of the natural, controlled and transient states of the flow, as well as hysteresis effects with 
the presence of the flow control. It is important to note that in order to build the model, no additional knowledge 
about the flow dynamics was used. 

While we were encouraged by these promising results, this work is obviously only the first step toward the larger 
goal of achieving a complete model of the flow with flow control. Additional studies will include experiments with 
different forcing levels to verify the range of applications of the model and/or to update the model at different 
forcing regimes. Also, to extract TPOD modes for other fixed states, additional measurements with asymmetric 
plasma excitation should be taken. Ultimately, the model with the closed-loop control will be tested and results will 
be compared with experiments.  
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