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Aero-Optical Measurements in a Heated, Subsonic, 
Turbulent Boundary Layer 

Jacob A. Cress*, Stanislav Gordeyev†, and Eric J. Jumper‡ 
University of Notre Dame, Notre Dame, IN  46556, USA 

A scaling relationship for OPDrms that accounts for the fluctuating total temperature 
profile within a turbulent boundary is derived from the modified Crocco relation.  
Experimental data from heated, compressible boundary layers at six subsonic Mach 
numbers in two wind tunnel facilities are shown to be consistent with the theory.  The results 
show that a temperature mismatch between the freestream and underlying wall has a 
significant impact on the overall optical aberration. 

Nomenclature 
cf = skin friction coefficient γ = specific heat ratio 
cp = constant pressure specific heat δ = boundary layer thickness 
f = frequency δ * = displacement thickness 
h = enthalpy λ = wavelength 
I = instantaneous intensity on the optical axis Λρ = density correlation length 
I0 = diffraction limited intensity Λu = velocity correlation length 
k = wavenumber (2π/λ) ρ = density 
KGD = Gladstone-Dale constant σρ′ = mean-square density variance 
M = Mach number σφ = mean-square phase error 
OPD = optical path difference ϕ = deflection angle 
OPL = optical path length Subscripts 
p = pressure 0 = total property value 
Pr = Prandtl number aw = adiabatic wall or recovery value 
q = dynamic pressure c = convective value 
r = recovery factor norm = normalized 
R = ideal gas constant p =  peak value 
Reθ = Reynolds number rms = root-mean-square 
St = Strouhal number SL = sea level conditions 
St = Strehl ratio w = wall value 
t = time ∞ = freestream conditions 
T = temperature Superscripts 
u, U = streamwise velocity component ′ = fluctuating time or Reynolds avg. 
x = streamwise coordinate  = mean time or Reynolds avg. 
y = wall normal coordinate ″ = fluctuating Favre-averaging 
β = elevation angle ˜ = mean Favre-averaging 

I. Introduction 
HE aero-optic problem is concerned with the study of wavefront aberrations caused by a variable 
index-of-refraction turbulent flow over an optical aperture, typically this distortion takes place within one to two 

aperture lengths of the aircraft.  Free-shear layers, compressible boundary layers, shocks, and mixed density flows 
are potential sources for aero-optical aberrations.  When a collimated laser beam with a planar (i.e. in-phase) 
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wavefront is projected through this variable index-of-refraction field, the emerging beam’s wavefront will be 
distorted.  These wavefront aberrations can have a severe negative effect on the performance of an optical-system, 
be it free-space communication, imaging, or directed-energy applications.1  Many different optical-system 
configurations have been envisioned:  most employing an external turret that is exposed to the flow or an enclosed 
beam steering mirror with the aperture flush to the aircraft skin.  The first configuration must contend with a 
complex flow field due to the presence of the turret in flow, while the latter configuration only has the aircraft’s 
turbulent boundary layer over the aperture. 

Turbulent boundary layers have been the subject of aero-optical research since the early 1950’s with the first 
work being published by Liepmann in a Douglas Aircraft Company Technical Report.2  Liepmann measured the 
jitter angle of a thin light beam that was passed through the compressible boundary layers on the sides of high-speed 
wind tunnels as a means to quantify the crispness of Schlieren photographs.  In 1956 Stine and Winovich performed 
a significant piece of work on light diffusion through turbulent boundary layers.3  This comprehensive report 
brought together the previous work in the field of optical propagation through variable index-of-refraction, turbulent 
flows.  In this study, photometric measurements of the time-averaged radiation field at the focal plane of a receiving 
telescope were made in an attempt to verify Liepmann’s formulation.  A consequence of this work was the prospect 
of using the optical aberration measurements as a method of inferring turbulent scales.  Sutton, in 1969, reported a 
theoretical formulation for the aberrating effect of turbulent boundary layers based upon statistical measures of the 
turbulence.4  The “linking equation” between turbulence quantities and optical phase variance is given as, 

 

€ 

σφ
2 = 2KGD

2 k 2 σρ '
2 Λρ y( )dy

0

L

∫ , (1) 

where σφ is the mean-square phase error, KGD is the Gladstone-Dale constant (which for air and visible wavelengths 
is approximately 2.27×10-4 m3/kg), k is the wavenumber (2π/λ), σρ′ is the mean-square density variance, and Λρ is 
the density correlation length.  Jumper and Fitzgerald1 showed that using the realization, first proposed by 
Malley et. al5, that aberrations caused by structures convecting in the turbulent flow themselves convect, 
Liepmann’s and Sutton’s formulations are equivalent. 

Through the 1960’s and 1970’s, aero-optical studies of turbulent boundary layers intensified due to an interest in 
placing optical-systems on aircraft.  In the 1970’s Rose conducted an extensive experimental study of optical 
aberrations caused by a turbulent boundary layer.6  Using hotwire anemometry measurements taken at several wall 
normal locations within the turbulent boundary layer, Rose obtained the density fluctuations, ρ′, and density 
correlation lengths, as a function of the wall normal location, y.  It should be noted that in inferring ρ′ from velocity 
measurements, Rose assumed that pressure fluctuations, p′, were negligible.  These measurements were then used to 
estimate the amount of aberration a wavefront would experience when propagated through the same boundary layer 
under the assumption of homogeneous turbulence.  The on-average wavefront spatial aberrations, in the form of 
root-mean-square optical path difference, OPDrms, were calculated using Sutton’s linking equation, Eq. (1), which 
when expressed as OPDrms loses the k 2 term.  Rose empirically found that OPDrms was proportional to dynamic 
pressure, q, and boundary layer thickness, δ, such that OPDrms ~ qδ. 

Rose’s hotwire anemometry velocimeter results and optical aberration scaling relationship were complemented 
by Gilbert’s 1982 interferometer measurements.7  Using a double pulse technique, Gilbert measured the difference 
in the aberrated wavefront from one pulse to the next.  Gilbert found that the interferometry generally supported the 
velocity integral method of the linking equation as found by Rose.  However, he concluded that the square of the 
OPDrms is linearly dependent on the dynamic pressure, 

€ 

OPDrms
2 ~ q.  In 1994 Masson et al.8 revisited the Gilbert and 

Rose data and concluded that after removing systematic errors from Gilbert’s data, OPDrms ~ (ρM∞
2)1.16, where M is 

the Mach number.  Masson also found that there appeared to be a systemic difference between direct (i.e. 
interferometric) and indirect (i.e. the linking equation) wavefront error measurements, with the interferometric 
estimates consistently yielding higher estimates for OPDrms than the hotwire estimates, but he did not offer an 
explanation for why optical and velocimeter data did not agree. 

By the 1990’s, several experimental measurements of the OPDrms through a turbulent boundary layer had been 
performed, with estimates for the in-flight root-mean-square optical aberration being around 0.1 µm.  The affect that 
wavefront aberrations have on an optical-system are quantified with the time-averaged Strehl ratio, 

€ 

St , which is 
defined as 

€ 

St = I I0 , where I is the instantaneous intensity on the optical axis and I0 is the diffraction limited, 
distortion-free intensity value.  The time-averaged Strehl ratio can be approximated using the OPDrms value and the 
“large-aperture approximation,” 
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where λ is the laser wavelength.9  Lasers being used on airborne platforms in the 1960’s and 1970’s primarily used 
CO2 lasers that have a lasing wavelength of 10.6 µm.  Using the large-aperture approximation, the time-averaged 
Strehl ratio through a turbulent boundary layer at this wavelength is 99.65%.  As a result, turbulent boundary layers 
were initially thought to have little or no impact of the optical-system performance.1  However, as Eq. (2) shows, for 
a fixed value of OPDrms, decreasing the laser wavelength will have the effect of decreasing the time-averaged Strehl 
ratio.  Optical-systems being considered today use near infrared and visible wavelengths (~1 µm), which have an 
order of magnitude shorter wavelength than the CO2 laser, decreasing the time-averaged Strehl ratio to 67.38%.  
Therefore, the turbulent boundary layer that did not previously factor into the optical-system design because of the 
small impact on far-field beam intensity now has a discernable time-averaged influence. 

Based on this fact, turbulent boundary layer investigations picked up in the 1990’s.  In 1992, Malley et al.5, 
introduced a pioneering new instrument to measure wavefront aberrations using a small-aperture beam which would 
be deflected by the turbulent flow.  Gordeyev et al.10 advanced the described instrument by adding a closely spaced 
beam in the streamwise flow direction in order to extract convective velocity using Taylor’s frozen flow assumption.  
The resulting Malley probe gives accurate, highly time-resolved information (exceeding 100 kHz) on the deflection 
of the small-aperture beam at a single location.  Beam deflection angle, ϕ, is related to streamwise OPD by, 

 

€ 

OPL t( ) = −Uc ϕ t( )dt
0

t

∫ ,

OPD t( ) =OPL t( ) −OPL t( ),
 (3) 

where OPL is the optical path length, defined as the integral of the index-of-refraction along the beam propagation 
length, and Uc is the convective velocity of the optically active flow structures.  The reader is directed to [10] for 
further information and a discussion of the Malley probe setup, operation, and data analysis.  Wyckham and Smits17 
used a two-dimensional Shack-Hartmann sensor to study aero-optical properties of subsonic and supersonic 
boundary layers and developed a scaling law for these aberrations as a function of the freestream Mach number, the 
local skin friction coefficient, cf, and the ratio of the freestream static temperature, T∞, to the wall temperature, Tw, 

 

€ 

OPDrms = 0.96KGDδM∞
2 c f

Tw
T∞

+1
 

 
 

 

 
 

−3
2

. (4) 

Aero-optical studies on turbulent boundary layers have been an ongoing topic of research at the University of 
Notre Dame since the early 2000’s.  Gordeyev et al.11 performed optical measurements at several Mach numbers and 
for various boundary layer thicknesses, from which they concluded that the OPDrms scaled with density, 
displacement thickness, δ*, and Mach number squared, OPDrms ~ ρ∞/ρSLδ

 *M∞
2, where the initial constant of 

proportionality was found to be 2.4×10-5.  This scaling is consistent with the scaling of Wyckham and Smits17 in the 
limit of moderate subsonic speeds and adiabatic wall conditions.  Bucker et al.12 verified this scaling using a simple 
vortical structure model, though his model over-estimated the experimental OPDrms values by a factor of 4.  In 2007, 
Wittich et al.13 made improvements to the experimental apparatus and employed new data analysis techniques to 
refine the constant of proportionality to (1.6 ± 0.4)×10-5.  The new analysis technique also showed that the optically 
active structures in the flow (with an approximate displacement-thickness-based Strouhal number of 0.1) convected 
with a velocity of approximately 0.87 of the freestream, suggesting that the optical activity was in the outer region of 
the boundary layer, with the mean structure’s size of about the boundary layer thickness.  Wittich’s study also 
verified that when passing through two statistically independent boundary layers, the contribution to the overall 
root-mean-square optical aberration through both boundary layers was equivalent to the square root of the sum of 
the two boundary layers squared.13  The OPDrms relationship between the double boundary layer, DBL, and two 
single boundary layers, SBL, is therefore, 
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€ 

OPDrms
DBL = OPDrms

SBL, 1( )2
+ OPDrms

SBL, 2( )2
. (5) 

Cress et al.14 adapted the proposed scaling relationship to include a dependence on elevation angle, β, and updated 
the coefficient of proportionality, giving the current scaling relationship as, 

 

€ 

OPDrms = 1.7± 0.2( ) ×10−5 δ *

sin β( )
ρ∞
ρSL

M∞
2 . (6) 

Further, the connective velocity was found to be approximately 0.83 of the freestream, slightly slower than that 
measured by Wittich et al.13 

For nearly as long as turbulent boundary layers have been studied, those with heat transfer at the wall have been 
the subject of experimental and computational research, especially applied to supersonic and hypersonic boundary 
layers.15-21  Smits15 and the review article by Spina16 are excellent compilations of information on heat transfer in the 
compressible, turbulent boundary layer.  A significant advancement in the field came from Morkovin’s 1962 
presentation of the Strong Reynolds Analogy (SRA)15-17, which presumes that p′ is negligible.  From this analogy 
between the Reynolds-averaged form of the energy and momentum equations, a relationship between the fluctuating 
static temperature and fluctuation velocity is achieved, such that, 

 

€ 

′ T 
T 

= − γ −1( )M 2 ′ u 
U 

, (7) 

where T is the static temperature (in absolute scale), γ is the specific heat ratio, and u,U is the local streamwise, x, 
velocity component; primes indicate fluctuating quantities and overbars indicate mean quantities.  Note that Eq. (7) 
is strictly valid only when the Prandtl number, Pr, is unity.  The SRA has been empirically verified for Mach 
numbers up to three.16  However, the SRA, consistent with the assumption that p′ is approximately zero, neglects 
fluctuations in the total temperature in a boundary layer.  For turbulent boundary layers without heat transfer at the 
wall, this assumption does not introduce significant error.15-17  But for non-adiabatic wall conditions, experimental 
and computational studies have shown that fluctuations in the total temperature can be as large as 60% of the 
fluctuating static temperature, thus the fluctuating total temperature cannot be ignored.18,20 

The research conducted at the University of Notre Dame has not previously accounted for the potential 
temperature mismatch between the underlying wall and freestream, so the current study investigates the impact that 
heat transfer at the underlying wall of a subsonic, compressible, turbulent boundary layer has on optical aberrations.  
A simple statistical model for the OPDrms as a function of subsonic Mach number and moderate temperature 
difference is derived using the modified Crocco relation in Section II.  The relationship is compared against 
experimental data from a heated wall experiment in Section IV, which is followed by discussion and conclusions in 
Section V. 

II. Statistical Model 
The SRA presumes that the total temperature fluctuations are zero; however, Walz and van Driest proposed a 

form of the enthalpy equation such that 

€ 

˜ h = h ˜ u ( ) , where fluctuations in the total temperature are not ignored.15  
Carrying out the analysis similar to [15], the following relationships for mean and fluctuating static temperature are 
found, 
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˜ T 
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2
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2

, (8a) 
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′ ′ T 
T∞

= −
˜ T aw −

˜ T w
T∞

′ ′ u 
U∞
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 
 

 

 
 − r

˜ u ′ ′ u 
cpT∞

, (8b) 

where 

€ 

˜ T , 

€ 

˜ T ∞, 

€ 

˜ T w , and 

€ 

˜ T aw  are the Favre-averaged static, freestream, wall, and adiabatic or recovery temperatures, 
respectively, r is the recovery factor, cp is the constant pressure specific heat, 

€ 

˜ u  is the Favre-averaged mean 
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velocity, and u″ is the Favre-averaged fluctuating velocity.  Equation (8a) is known as the modified Crocco relation 
or the Walz equation.  The recovery factor is defined, 

 

€ 

r =
˜ T aw −

˜ T ∞
˜ T 0∞ −

˜ T ∞
. (9) 

The difference between Reynolds and Favre-averaging has been shown to be less than 1.5% for Mach numbers less 
than 3, thus they can be interchanged for this subsonic and low supersonic analysis.15  Letting ΔT = Tw - Taw, and 
replacing fluctuating values with root-mean-square values, the following expression for Trms can be found, 
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where U is the mean local streamwise velocity. 
From the ideal gas law, p = ρRT, and assuming that pressure fluctuations in the boundary layer are much smaller 

than density and temperature fluctuations,15-17 (this assumption will be further discussed in Section V) it follows 
that, 
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2

. (11) 

Substituting Eq. (10) into Eq. (11) gives the following relationship for (ρrms)2 in terms of the velocity profile in the 
wall normal direction and ΔT, 
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Equation (1) expressed in terms of OPDrms and with Eq. (12) substituted in for the square of fluctuating density 
variance, results in the following relationship, 
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where, 
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Rewritten with A = B0B1
1/2, C1 = B2/B1, and C2 = B3/B1, Eq. (13) becomes, 



Cress, Gordeyev, and Jumper  AIAA-2010-0434 

 
American Institute of Aeronautics and Astronautics 

 
 

6 

 

€ 

OPDrms = Aδ * ρ∞
ρSL

M 4 +C1
ΔT
T∞

M 2 +C2
ΔT
T∞

 

 
 

 

 
 

2 

 

 
 

 

 

 
 

1
2

. (14) 

Note that Eq. (14) reduces to the previous scaling relation given by Eq. (6) (neglecting the elevation dependence on 
δ*) if the difference between the wall temperature and adiabatic wall temperature is zero.  Equation (14) can be 
rearranged in the following manner, 
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where D1 = C1/2 and D2 = C2 – (C1/2)2.  If the last term in the square brackets of Eq. (15b) can be shown to be much 
less than 1, then, 
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OPDrms = Aδ * ρ∞
ρSL

M 2 +D1
ΔT
T∞
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 
 , (16) 

becomes the scaling relationship for OPDrms as a function of Mach number and temperature difference.  This 
assumption will be discussed and shown valid over the range of tested Mach numbers and ΔT values in 
Sections IV.A and V.  The OPDrms scaling relationship given by Eq. (16) will be compared to experimental data 
obtained in a heated, compressible, subsonic turbulent boundary layer. 

III. Experimental Setup 
Double boundary layer measurements were conducted in two wind tunnel facilities at the Hessert Laboratories 

for Aerospace Research at the University of Notre Dame.  Five Mach numbers, 0.2, 0.3, 0.4, 0.5, and 0.6, were 
tested in the transonic facility and one Mach number, 0.12, was tested in the low speed wind tunnel.  The transonic 
wind tunnel facility, shown schematically in Figure 1, is an indraft tunnel with an inlet contract ratio of 150:1, 
followed by a boundary layer development section, measurement section, and diffuser.  The development and 
measurement sections have a constant cross-sectional area measuring 10.1 cm by 9.9 cm.  The measurement section 
was located 156 cm downstream from the beginning of the development section.  The value of the freestream 
velocity in the measurement section was obtained with total and static pressure ports.  A variable speed vacuum 
pump was used to precisely lower the pressure in a plenum to which the diffuser was attached, achieving the desired 

 
Figure 1. Schematic of the Notre Dame transonic turbulent boundary layer test facility configured for 
heated boundary layer measurements. 
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flow velocity.  The indraft low speed wind tunnel facility has a test section with a constant cross-sectional area of 
2 ft by 2 ft.  The distance from the beginning of the boundary layer development section to the measurement 
location was approximately 150 cm.  The freestream velocity was measured with a pitot-static probe.  The tunnel 
was powered with a single stage fan rotating at 55 Hz. 

In both facilities, one wall of the boundary layer development section was replaced with an aluminum plate that 
had flexible, electric resistive coil heaters thermally epoxied to the outside surface and insulated, see Figure 1.  The 
temperature of the heaters were controlled with a PID circuit with the temperature input coming from a thermal tab 
embedded flush to the inside wall which measured the wall surface temperature.  The thickness of the aluminum 
plate was chosen to be relatively thick to ensure a uniform wall surface temperature. 

The boundary layer mean and rms velocity profiles in each facility were quantified with hotwire anemometry 
measurements at several streamwise locations.  The transonic facility boundary layer was measured with a 
freestream Mach number of 0.5 and the low speed wind tunnel was measured at Mach 0.12. 

Optical measurements were performed in each facility using a Malley probe.  The beams were propagated in the 
wall normal direction through the heated and the unheated boundary layer on each wall at the measurement location 
for the six Mach numbers stated above.  Several wall temperatures were tested at each Mach number; it should be 
noted that due to the fixed output power of the heaters, the maximum achievable wall temperature was dependent on 
the flow speed with a greater difference between freestream and wall temperature achieved in the transonic tunnel at 
Mach 0.2 (ΔT ~ 28 K) than at Mach 0.6 (ΔT ~ 15 K).  The low speed tunnel had a slightly different heater 
configuration that allowed a maximum temperature difference of 10 K. 

IV. Results 

A. Velocity Measurements 
Hotwire anemometry velocity measurements were performed at Mach 0.12 in the low-speed tunnel and at Mach 

0.5 in the transonic tunnel.  The normalized mean and rms profiles are shown in Figure 2.  The mean velocity 
profiles for the two facilities show excellent agreement for y/δ* greater than 1, below this value the low speed tunnel 
decreases in velocity faster than the transonic tunnel with the slowest measurable point in the Mach 0.12 data being 
approximately 0.3U∞ while the lowest measured transonic tunnel velocity was about 0.5U∞.  The two facility rms 
velocities, however, differ over a larger region of the boundary layer.  While each are of the same magnitude, the 
fluctuating velocity at Mach 0.5 is greater than the Mach 0.12 profile between 2 and 7δ*. 

Gilbert7 provides values for the streamwise velocity correlation length, Λu, as a function of the wall normal 
direction, see Figure 3.  From the mean and rms velocity profile results and the Gilbert streamwise velocity 
correlation lengths, which are directly related to density correlation lengths, it is possible to evaluate the B 
coefficients given in Eq. (13) and then solve for the coefficients A, C1, and C2.  A recovery factor of 0.89 was 
assumed.  For the low speed, M = 0.12, using the measured velocity profile, A was calculated to be 1.45×10-5, and 

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

U(y/!*)/U
"

y/
!*

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

7

8

9

10

urms(y/!
*)/U

"

y/
!*

 

 
M0.12
M0.5

 
Figure 2. Normalized mean (left) and rms (right) velocity profiles at Mach 0.5 in the transonic 
wind tunnel facility and at Mach 0.12 in the low speed tunnel facility. 
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C1 and C2 were found to be 6.59 and 10.99, respectively.  At Mach 0.5, A, C1, and C2 were determined to be 
1.89×10-5, 6.38, and 10.28, respectively.  The calculated values of A are consistent with the experimentally 
measured14 constant of 1.7×10-5.  For M = 0.12, these values of C1 and C2 give D1 and D2 constant values of 3.29 
and 0.15, respectively; at the higher M = 0.5, the values for these constants were calculated to be D1 = 3.19 and 
D2 = 0.1.  To verify that Eq. (15) can be simplified into Eq. (16), for the tested Mach number and temperature 
ranges, the second term in Eq. (15b) must be shown to be much less than 1.  Inspection of that term at two Mach 
numbers of 0.12 and 0.5 and with the calculated values of D1 and D2, shows the value of that term to be less than 
0.007 for temperature differences as large as 2T∞; suggesting that Eq. (16) is a valid simplification for the present 
study. 

B. Deflection Angle Spectra 
From Eq. (3) it follows that the deflection angle spectrum, 

€ 

ˆ ϕ f( ) , is proportional to OPDrms divided by U∞, 

 

€ 

ˆ ϕ f( )∝ 1
U∞

OPDrms , (17) 

where f is frequency.  Therefore, using Eq. (5), the deflection angle spectrum for a single boundary layer is, 

 

€ 

ˆ ϕ f( )SBL, heated = ˆ ϕ f( )DBL, heated( )2
− 1

2
ˆ ϕ f( )DBL, unheated( )2

. (18) 

Figure 4 (left) shows the spectrum amplitude scaled to a single boundary layer for five Mach numbers and near zero 
difference between the wall and adiabatic wall temperature, ΔT ~ 0.  The narrow band spikes present in the spectrum 
data are at a fixed frequency for all Mach numbers and are related to electronic noise in the data acquisition system.   

Using Eq. (17) and the OPDrms scaling derived in Eq. (16), the deflection angle spectrum can be expressed as, 

 

€ 

ˆ ϕ f( ) =
δ *

U∞

ρ∞
ρSL

M 2 +D1
ΔT
T∞

 

 
 

 

 
 ⋅ ˆ ϕ norm St( ) , (19) 

where 

€ 

ˆ ϕ norm St( )  is introduced as a normalized deflection angle spectrum and St is the Strouhal number, St = fδ*/U∞.  
The right plot in Figure 4 shows the normalized spectrum for five Mach numbers at ΔT ~ 0.  The scaling collapses 
the data fairly well, though there are discrepancies.  The slope of the roll-off steadily becomes more negative from 
the Mach 0.2 curve (blue) to the Mach 0.6 curve (cyan).  This change in slope is the result of the zero level noise 
being sufficiently large relative to the optical signal to artificially boost the high frequencies at the lower Mach 
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Figure 3. Streamwise velocity correlation lengths, Λu, normalized by the displacement 
thickness, δ* as a function of the wall normal direction.  [Gilbert 1982] 
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numbers; by Mach 0.5 the slope has reached a constant value.  Also, in the peak region, St ~ 0.1, the two lower 
Mach numbers, 0.2 and 0.3, are slightly lower than the other cases.  This result appears to be a real feature of the 
turbulence and becomes more apparent as the temperature difference is increased. 

To determine the value of the D1 constant in Eq. (16), the peak of the spectrum amplitude corresponding to the 
maximum value near St = 0.1, was investigated as a function of temperature difference.  The left plot in Figure 5 
shows the peak values of the spectra amplitudes for the six tested Mach numbers and numerous temperature 
differences.  Writing Eq. (19) in terms of the peak spectrum amplitude and solving for D1ΔT/T∞ gives, 

 

€ 

U∞

δ * ρ∞ ρSL

ˆ ϕ p, heated − ˆ ϕ p, unheated

ˆ ϕ p, norm

 

 
  

 

 
  = D1

ΔT
T∞

. (20) 

The normalized peak values of the spectra amplitude are plotted versus ΔT/T∞ in Figure 5 (right).  Of interest is that 
the value of D1 increases with Mach number below 0.3.  The values of D1 are plotted versus the Reynolds number 
based on momentum thickness, Reθ, in Figure 6.  It can be seen that the value of D1 increases until approximately a 
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Figure 4. (left) Spectra amplitude for the turbulent boundary layer at five Mach numbers and ΔT ~ 0.  
(right) Normalized spectra amplitude for the same five Mach number and ΔT ~ 0. 
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Figure 5. (left) Peak values from the spectra amplitude at six Mach numbers and a range of temperature 
differences.  (right) Normalized peak values of the spectra amplitude, Eq. (20), plotted versus ΔT/T∞. 
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Reθ of 20,000; for larger Reθ values D1 settles on a constant value of about 2.15.  The experimental values of D1 are 
approximately 1.5 times less than the values calculated from the mean and rms velocity profiles and correlation 
lengths in Section IV.A.  Additionally, the calculated values from the velocity profiles do not show the Reynolds 
number dependence seen in the experimental data at lower Reθ values.  The simplification from Eq. (15) to Eq. (16) 
has been empirically shown valid for low subsonic flow with moderate temperature differences; therefore another 
effect must be the source for the D1 dependence on Reynolds number. 

Shown in Figure 7 (left), are the normalized spectra amplitudes at Mach 0.4 for two temperature difference 
extremes, ΔT ~ 0 and 19.2 K, where the temperature difference term has been neglected in the normalization (i.e. 
D1 = 0).  The right plot in Figure 7 shows the normalized spectra amplitudes for the same conditions but now 
including the temperature difference in the normalization with D1 as found by Eq. (20) and Figure 5 (right).  The 
proposed normalization for temperature dependence from Eq. (19) shows an excellent collapse of the experimental 
data.  As previously discussed, the two cases show some disagreement in the slope of the roll-off at higher 
frequencies.  However, the location of the peak spectrum value near St ~ 0.1 is not affected with the change in 
temperature difference, and moreover the shape of the spectrum in general was not altered, but rather it was just 
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Figure 6. Equation (16) D1 “constant” plotted versus 
Reynolds number based on momentum thickness. 
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Figure 7. (left) Normalized spectra amplitude, Eq. (19), neglecting the temperature dependence (i.e. D1 = 0), 
for the Mach 0.4 turbulent boundary layer at two ΔT extremes, 0 and 19.2 K.  (right) Normalized spectra 
amplitude with temperature dependence included at the same conditions. 
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linearly shifted vertically with ΔT.  This suggests that the effect of temperature difference, at least in the regime 
studied, did not significantly change the overall statistical properties of the boundary layer structures, but only 
amplified the fluctuating density values within the structures.  Also, that the spectrum was linearly amplified across 
a large range of St values, suggests that the temperature difference equally affected a broad scale of structure sizes. 

The complete set of normalized spectra at Mach 0.2, 0.3, 0.4, 0.5, and 0.6, at the temperature difference 
extremes, ΔT ~ 0 and ΔTmax, are shown in Figure 8.  For each of the Mach numbers, the linear temperature scaling 
successfully collapses the two temperature differences to a single curve.  However, as was seen in the normalization 
for ΔT ~ 0 in Figure 4 (right), the two lower Mach numbers, 0.2 and 0.3, are clearly separated from the higher Mach 
number cases.  As the Mach number increases, the spectra appear to better collapse with the proposed scaling.  As a 
consequence of the data failing to collapse to a universal curve, it is possible that the Mach number dependence, not 
accounted for in the proposed scaling in Eq. (19), may be due to the boundary layer being in transition between 
Mach 0.3 and 0.4.  In addition to the spectra amplitudes not definitively collapsing, the location of the peak value of 
the spectra, which occurs near St ~ 0.1, does slightly increase as the Mach number decreases. 

C. OPDrms Scaling 
The value of OPDrms was found by taking the root-mean-square of the calculated OPD time series, found by 

multiplying the integral of the deflection angle time history by the convection velocity, as given by Eq. (3).  Prior to 
integration, the deflection angle time series was high-pass filtered at 300 Hz to remove low frequency vibration 
contamination.  OPDrms is plotted versus the scaling relation given by Eq. (16) for five Mach numbers and several 
temperature differences in Figure 9.  It is evident from this figure that the scaling relation successfully collapses the 
OPDrms values over a wide range of subsonic Mach numbers and ΔT values.  The slope, A, was found to be 1.7×10-5, 
which is consistent with the previously reported value of (1.7±0.2)×10-5 by Cress et al.14  These results show that a 
temperature mismatch between the wall and the freestream of 28 K at Mach 0.2 can more than double the value of 
OPDrms that an optical-system would experience.  Thus, the effect of varying total temperature in the wall normal 
direction cannot be ignored in the turbulent boundary layer. 

From the simple statistical model, Eq. (16), and experimental data in Figure 9, it is clear that OPDrms increases 
with increasing wall temperature, Tw.  The model proposed by Wyckham and Smits17 in fact gives the opposite 
trend, since from their model, Eq. (4), 

€ 

OPDrms ~ Tw T∞ +1( )−3 2 , predicts that OPDrms decreases with increasing 
wall temperature. 
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Figure 8. Normalized spectra amplitude, Eq. (19), for 
Mach 0.2, 0.3, 0.4, 0.5, and 0.6 at the temperature 
difference extremes, ΔT ~ 0 and ΔTmax. 
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V. Conclusions and Discussion 
The work presented in this paper shows that heat addition at the wall in a subsonic, compressible turbulent 

boundary layer has an important impact on the optical aberration of a transmitted wavefront.  Further, a simple 
model for the OPDrms for subsonic boundary layers was derived from the modified Crocco relation, which assumes 
that the streamwise pressure gradient is zero.  This relation does not assume a constant total temperature across the 
boundary layer.  The derived scaling relationship for OPDrms, incorporating the boundary layer thickness, elevation 
angle, altitude, Mach number, and temperature dependencies is given as,  

 

€ 

OPDrms = 1.7± 0.2( ) ×10−5 δ *

sin β( )
ρ∞
ρSL

M 2 +D1
ΔT
T∞

 

 
 

 

 
 , (21) 

where the D1 constant is thought to be a function of Reθ, see Figure 6.  The values found experimentally for A and 
D1, were consistent with values calculated using the mean and rms velocity profiles and the velocity correlation 
lengths as reported by Gilbert.7 

The validity of Eq. (21) for positive ΔT values has been empirically shown with a set of heated wall experiments 
at several Mach numbers and in two wind tunnel facilities.  The effect on OPDrms due to temperature dependencies 
in a heated wall have been shown to be successfully scaled by application of the modified Crocco relation and the 
linking equation between velocity and optical fluctuations.  From these results, some thoughts on the effect of 
cooling the wall have been considered.  The non-simplified form of the OPDrms scaling, Eq. (14), takes a quadratic 
form with respect to the temperature difference.  The location of the minimum value of the OPDrms is found at 

€ 

ΔT T∞ = − 12C1M
2 C2 .  At Mach 0.12, this corresponds to a value of -0.004 (ΔT = -1.3 ºC assuming T∞ = 300 K), 

while at Mach 0.5, the minimum location moves to -0.078 (or ΔT = -23.3 ºC).  The deviation between the linear 
scaling, Eq. (16), and the true quadratic Eq. (14) becomes important as this minimum ΔT/T∞ location is approached 
from positive temperature differences and passed into large negative differences.  Therefore, for small negative ΔT 
values relative to the Mach number squared, the proposed linear scaling with temperature remains valid.  However, 
for large negative ΔT quantities, the quadratic form of the OPDrms, Eq. (14), is required.  An implication from this 
extension into cooled walls is that some limited amount of heat extraction at the wall will lead to a decrease in the 
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Figure 9. OPDrms versus the scaling relationship given by Eq. (16) and 
the D1 constants found by the spectra analysis for five Mach numbers and 
several temperature differences.  The constant of proportionality, A, was 
found to be 1.7×10-5. 
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optical aberration over an aperture, where the OPDrms based on the ΔT/T∞ value at the minimum of Eq. (14) is 
0.1Aδ*ρ∞/ρSLM∞

2, or 10% of the value at zero ΔT.  Since most aero-optical applications would experience a set of 
flight conditions where the aircraft skin is at an elevated temperature relative to the freestream temperature, 
decreasing the skin temperature could greatly improve the optical environment. 

From the spectra results, it is apparent that for the range of ΔT values tested, the moderate temperature 
contamination from the heated wall simply amplifies the density fluctuations in the boundary layer with little or no 
effect on the statistics of the boundary layer structures size and shape.  Further, the energy in the amplitude spectrum 
varied linearly with temperature difference.  Both results are consistent with the theory derived in Eq. (16).  This 
result suggests that low speed flows with very low levels of optical aberrations can be made optically active by 
introducing a temperature mismatch between the wall and freestream; therefore, optical aberrations that were 
unobservable at ΔT = 0 could be measured with common optical wavefront instruments without distorting the 
optically relevant structures, simply by heating the wall. 

Further work is necessary to complete the temperature contamination picture.  Larger positive temperature 
differences need to be investigated to determine at what temperature buoyancy and gravity effects become a factor 
in the movement, organization and optical characteristics of boundary layer structures.  The value of D1 needs to be 
further investigated to determine its functional dependence on Reθ and Mach number; also, the presumption that p′ 
equals to zero which led to the value of D1 needs to be revisited.  Finally, cooled wall experiments need to be 
performed to investigate whether the derived OPDrms continues to decrease to a minimum value as the temperature is 
decreased as predicted by Eq. (14). 
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