
Aero-Optics 1

Physics and Computation of Aero-Optics

Meng Wang

Department of Aerospace and Mechanical Engineering, University of Notre

Dame, Notre Dame, IN 46556; email: m.wang@nd.edu

Ali Mani

Department of Chemical Engineering, Massachusetts Institute of Technology,

Cambridge, MA 02139; email: alimani@mit.edu

Stanislav Gordeyev

Department of Aerospace and Mechanical Engineering, University of Notre

Dame, Notre Dame, IN 46556; email: sgordeye@nd.edu

Key Words wavefront distortion, turbulent flow, high-fidelity simulation, opti-

cal mitigation

Abstract

This article provides a critical review of aero-optics with an emphasis on recent developments

in computational predictions and the physical mechanisms of flow-induced optical distortions.

Following a brief introduction of the fundamental theory and key concepts, computational tech-

niques for aberrating flow fields and optical propagation are discussed along with a brief survey
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of wavefront sensors used in experimental measurements. New physical understanding generated

through numerical and experimental investigations are highlighted for a numbers of important

aero-optical flows including turbulent boundary layers, separated shear layers and flow over

optical turrets. Approaches for mitigating aero-optical effects are briefly discussed.

1 INTRODUCTION

Distortions of optical signals by turbulent flow are widely observed in nature and

in technological applications. The twinkling of stars, or stellar scintillation, is

the result of refraction of light (electro-magnetic waves) by turbulent fluctua-

tions in the Earth’s atmosphere. Shadowgraphs and Schlieren are popular flow

visualization techniques which exploit the optical distortions to visualize the flow

field that produced them. Over the past four decades, much attention has been

paid to the aero-optical effects on the performance of airborne laser systems for

communication, target tracking and directed-energy weapons. In these systems

optical distortions produced by turbulent flows surrounding the projection aper-

ture pose a serious problem, causing beam distortion, jitter and much reduced

effective range. The performance of airborne and ground-based imaging systems

is likewise impaired by turbulent flows in the vicinity of the viewing aperture.

The direct cause of optical distortions is the density variations in the flow field.

For air and many other fluids, the index of refraction is linearly related to the

density of the fluid by the Gladstone-Dale relation (Wolfe & Zizzis 1978). When

a beam of an initially planar wavefront is transmitted through a variable density

field, different parts of the beam propagate at different local speed of light, result-

ing in distortions of the wavefront. An optical beam emitted from a projection

aperture, or received by a viewing aperture, typically transmits/receives through

two distinct flow regions: the active turbulence region induced by solid objects
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near the optical window, and atmospheric turbulence. The propagation through

atmospheric turbulence has been studied extensively (Chernov 1960, Tatarski

1961) and is relatively well understood. Because of the large temporal and spatial

scales associated with atmospheric turbulence, its aberrating effects are of low

frequency (< 100 Hz) and can be largely corrected using Adaptive-Optic (AO)

systems (e.g. Lloyd-Hart 2003, Hardy 1998). In contrast, the turbulent flow in-

duced by solid surfaces near the aperture, which may be comprised of turbulent

boundary layers, free shear-layers, wakes, and shock waves for supersonic and

transonic flows, is characterized by much smaller turbulence scales. The size of

the optically-active flow region is typically thinner than or comparable to the

aperture size. Aero-optics, to follow the conventional definition (Gilbert & Otten

1982,Sutton 1985, Jumper & Fitzgerald 2001), is concerned with the aberrating

effects of compressible turbulence in this region. Compared to the atmospheric

boundary layer, the aero-optical flow generates stronger optical aberrations at

smaller scales and higher frequencies, which are beyond the capability of today’s

AO technology. Mitigation of these aberrations via active and passive flow-control

has been actively pursued in recent years (e.g. Gordeyev et al. 2010a, 2010b).

The types of aero-optical distortions and their far-field impact depend on a

number of physical and geometric parameters, including the optical wavelength

λ, aperture or beam size a, turbulence length scale ℓ of the aberrating field, and

distance of propagation L. In crude terms, small-scale turbulence, with eddy sizes

less than the optical aperture (ℓ < a), causes optical scattering, beam spread,

and consequent attenuation of intensity, whereas turbulent eddies larger than

or comparable in size to the aperture (ℓ ≥ a) are mostly responsible for the un-

steady tilt of the beam (beam jitter) (Cassady et al. 1989). In addition, the mean
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density gradient in the beam path causes steady wavefront distortions known as

lensing effect. The magnitude of wavefront distortions OPDrms (its precise def-

inition will be given later) is generally small in an absolute sense but can be a

significant fraction of, or even exceed the optical wavelength. In other words,

the optical phase distortion 2πOPDrms/λ, which determines the far-field beam

quality, can be easily of O(0.1) to O(1). For the same distortion magnitude, the

phase distortion of an aberrated beam is inversely proportional to the optical

wavelength, making the aero-optics problem particularly acute for short wave-

length beams (Jumper & Fitzgerald 2001). This poses a significant impediment

to using shorter wavelength laser systems, which are preferable in the absence of

aero-optical aberrations; for an unaberrated beam the diffraction-limited optical

intensity scales with a2/(L2λ2) (Born & Wolf 2002).

A number of review articles have been written on aero-optics in the past. Re-

search in the pre-1980 era is documented in Gilbert & Otten (1982). Progress

since then has been surveyed by Sutton (1985), Jumper & Fitzgerald (2001),

and more recently Gordeyev & Jumper (2010) with a focus on the aero-optics of

turrets. Among recent advances in this field are high-speed and high-resolution

wavefront sensors which allow measurements of instantaneous wavefront errors

in unprecedented detail, and the increasing role played by numerical simula-

tions. Application of computational fluid dynamics (CFD) to aero-optics prob-

lems has historically lagged most other areas because of the challenging nature

of the computations, which must be time-accurate, compressible, and capture

optically important flow scales. However, this has begun to change with recent

advances in high-fidelity simulation tools and the concomitant increase in com-

puting power. A new generation of computational techniques including direct
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numerical simulation (DNS), large-eddy simulation (LES), and hybrid methods

combining LES with Reynolds-averaged Navier-Stokes (RANS) approaches, have

been employed hand-in-hand with experimental and theoretical approaches to

elucidate the physics of aero-optics, predict aberration effects, and develop tech-

niques for their mitigation. This article is an attempt to provide a critical review

of some recent progress in the understanding and prediction of aero-optical ef-

fects. The discussion is primarily from a computational perspective, although

important experimental findings are also included.

2 THEORETICAL BACKGROUND

2.1 Basic Equations

The theoretical foundation for electromagnetic wave propagation in a turbulent

medium is discussed extensively in Monin & Yaglom (1975), and is briefly outlined

here in the context of aero-optics. In the most general sense, the propagation of

electromagnetic waves is governed by the Maxwell equations along with compress-

ible Navier-Stokes equations. Various simplifications can be made depending on

relevant physical parameters and length and time scales. For aero-optical prob-

lems, the time scale for optical propagation is negligibly short relative to flow

time scales, and hence optical propagation can be solved in a frozen flow field at

each time instant. If the optical wavelength is much shorter than the smallest

flow scale (Kolmogorov scale), which is generally the case, the effect of depolar-

ization is negligible, and the Maxwell equations reduce to a vector wave equation

in which all three components of the electromagnetic field are decoupled. A scalar



6 WANG, MANI & GORDEYEV

component of the electric field at frequency ω is governed by

∇2U +
ω2n2

c2
0

U = 0, (1)

where c0 is the speed of light in vacuum and n is the index of refraction. The

latter is related to the density of air via the Gladstone-Dale relation: n(x, y, z) =

1+KGD(λ)ρ(x, y, z), where KGD is the Gladstone-Dale constant and is in general

weakly dependent on the optical wavelength (Wolfe & Zizzis 1978). In aero-

optics, fluctuations in index of refraction are small (∼ 10−4) and have scales

much larger than the optical wavelength, and hence an optical beam propagates

predominantly in the axial (z) direction with slowly varying amplitude. It is

customary to invoke the paraxial approximation, which assumes U(x, y, z) =

A(x, y, z) exp(−ikz) and |∂2A/∂z2| ≪ |k∂A/∂z|, where k = ω/c∞ is the optical

wavenumber in the free stream. This leads to the parabolized wave equation for

the complex amplitude

−2ik
∂A

∂z
+ ∇2

⊥A + k2

(

n2

n2
∞

− 1

)

A = 0, (2)

where ∇2
⊥

is the Laplacian operator in the transverse directions. Effects not in-

cluded in the paraxial wave equation include large-angle scattering and energy

dissipation/absorption, which are insignificant for aero-optical problems. A de-

tailed discussion of the approximations and limitation of applicability is given by

Monin & Yaglom (1975).

Further approximations can be made to obtain closed-form solutions to Equa-

tion 2. As depicted schematically in Figure 1, the propagation domain consists

of two distinct regions: the optically active turbulent near-field (from z = 0 to

z1) and the free space extending to the distant far field (from z = z1 to L, with

L ≫ z1). For transmission across the aero-optical region, it can be shown that the
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contribution from the Laplacian term in Equation 2, which represents the diffrac-

tion effect, is negligible relative to the last term for z1 ≪ ℓ2
⊥
/λ, where ℓ⊥ is the

transverse length scale of the optical wave. If the refractive index is expressed as

n = n∞+n′, and the linear approximation n2/n2
∞ ≈ 1+2n′/n∞ is made about the

index-of-refraction deviation from the free-stream value, Equation 2 can be inte-

grated from 0 to z1 to obtain A(x, y, z1) = A(x, y, 0) exp
(

− ik
n∞

∫ z1

0
n′(x, y, z)dz

)

,

or

U(x, y, z1) = U(x, y, 0) exp

(

−ik0

∫ z1

0

n(x, y, z)dz

)

, (3)

where k0 = k/n∞ = ω/c0 = 2π/λ0 is the optical wavenumber in vacuum.

Once the solution past the aero-optical region, U(x, y, z1), has been determined,

it can be used as the initial condition to propagate the optical beam to the far field

using the wave equation (Equation 1) or paraxial wave equation (Equation 2).

By setting n = n∞ and n′ = 0, either equation can be solved analytically using

Fourier transform techniques, which are the basis for Fourier optics (Goodman

2004).

2.2 Near-Field Distortion Measures

Equation 3 suggests that the dominant aero-optical effect after transmission

through the turbulence region is a phase distortion of the optical wavefront;

the amplitude is approximately unchanged. The integral in Equation 3 is known

as the optical path length (OPL). It is most commonly derived from geometric

optics by assuming straight ray paths and is generally dependent on the flow-time

scale (but not optical time scale):

OPL(x, y, t) =

∫ z1

0

n(x, y, z, t)dz. (4)
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Ray bending can be accounted for by solving the eikonal equation (Born & Wolf

2002) but is generally negligible for aero-optics. In practice, the relative difference

in the OPL over the aperture is a more relevant representation of wavefront

distortions. It is called the optical path difference (OPD) and is defined as

OPD(x, y, t) = OPL(x, y, t) − 〈OPL(x, y, t)〉, (5)

where the angle brackets denote spatial averaging over the aperture. The optical

phase distortion is then 2πOPD/λ. It should be noted that the optical wavefront,

defined as the locus of constant phase, is (after removing the spatial mean) the

conjugate (negative) of the OPD: W (x, y, t) = −OPD(x, y, t).

To facilitate analysis and mitigation of distortions, the time-dependent OPD

is often decomposed into a time-averaged spatial component, called the steady-

lensing term, OPDsteady(x, y), and an unsteady component. The unsteady part

can be further split into a spatially linear component, called unsteady tilt or beam

jitter, and the rest, usually called high-order distortions (Gordeyev & Jumper

2010). In other words,

OPD(x, y, t) = OPDsteady(x, y) + [A(t)x + B(t)y] + OPDhigh−order(x, y, t). (6)

Physically, these three components affect an outgoing beam in different ways. The

steady-lensing term, OPDsteady(x, y), is a function of the time-averaged density

field only and imposes a steady distortion like defocus, coma and so on. The tilt

or jitter, represented by the second term on the right-hand side, does not change

the spatial distribution of the outgoing beam but simply re-directs it in directions

defined by functions A(t) and B(t). The specific forms of A(t) and B(t) depend

on the definition of tilt. For the so-called G-tilt (Tyson 2000), A(t) and B(t)

are the spatially-average gradient components of the OPD in x- and y-directions,
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respectively, whereas for the Z-tilt (Sasiela 2007), they are defined such that the

magnitude of OPDhigh−order in Equation 6 is minimized in the least square sense

at each time instant. Finally, the high-order term causes the beam to change its

shape and intensity distribution.

The decomposition in Equation 6 is particularly useful when an adaptive optic

system is used to correct for aberrating wavefronts. The purpose of an adaptive

optic system is to apply a conjugate wavefront to the outgoing beam so that

it will negate optical aberrations from the flow and the beam will become re-

collimated after passing through the turbulent media (Tyson 1997). Among the

distortion components given in Equation 6, steady lensing is easily corrected by

a deformable mirror with a large range of motion, the tilt component is removed

using a fast-steering mirror, and the high-order term can be compensated for by

using a high-bandwidth deformable mirror (Tyson 1997).

2.3 Statistical Theory

An important equation relating the statistical properties of a turbulent medium

and those of aero-optical aberrations, the so-called linking equation, was derived

by Sutton (1969) (see also Sutton 1985, Steinmetz 1982, and Havener 1992). In

the most general form, the linking equation can be written as,

〈OPD2〉 = K2
GD

∫ z1

0

∫ z1

0

Covρ′(z, z′)dz′dz, (7)

where the overbar denotes time averaging, Covρ′ is the covariance function of

density fluctuations, and z1 is the integration distance along the traversing beam

through the turbulence region. In the case of homogeneous turbulent flows,

the density covariance is most commonly modeled by an exponential function

(Steinmetz 1982), ρ2
rms exp(− |z − z′| /Λ), or a Gaussian function (Wolters 1973),



10 WANG, MANI & GORDEYEV

ρ2
rms exp(− |z − z′|2 /Λ2), where Λ is the characteristic length scale for density

fluctuations. Substituting these models into Equation 7 leads to

〈OPD2〉 = αK2
GD

∫ z1

0

ρ2
rms(z)Λ(z)dz, (8)

where α = 2 for the exponential covariance function and
√

π for the Gaussian

covariance function. Both the density fluctuation magnitude and length scale are

allowed to vary slowly along the beam path.

Both forms of the linking equation allow one to calculate aero-optical distor-

tions indirectly from statistical properties of the turbulent flow. Since the full

covariance matrix in Equation 7, is difficult to measure experimentally, the sim-

plified equation, Equation 8 is commonly used instead. However, since the sim-

plified linking equation is derived for homogenous and isotropic turbulent flows,

its applicability to inhomogeneous flows, such as shear layers (Hugo & Jumper

2000) and boundary layers (Gilbert & Otten 1982, Tromeur et al. 2006b), has

been questioned. It has been shown that with appropriate choice of the length

scale Λρ, the simplified linking equation can be used to obtain accurate results for

flow fields with anisotropic and inhomogeneous turbulence. The key is to use the

correct density correlation length defined based on Equation 7 (Wang & Wang

2011).

3 PREDICTION OF FAR-FIELD DISTORTIONS

Given the OPD profiles after the beam passes the turbulence region, its free-space

propagation from z = z1 to L can be solved using Fourier optics to obtain the

exact far-field projection. Figure 2 shows an example of instantaneous far-field

irradiance of a Gaussian beam subject to strong aero-optical distortions by the

turbulent wake behind a circular cylinder of diameter D (Mani et al. 2009). It
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contrasts the distorted beam pattern to that of an undistorted, diffraction limited

beam for two different optical wavelengths. In this case the near-field OPDrms

is 6.7 × 10−6D, corresponding to phase distortions of 2πOPDrms/λ ≈ 17 and

4.2 for the two wavelengths (6.7 and 1.7 respectively, after tilt removal). Drastic

losses of far-field beam intensity and coherence are observed. Note that in the

absence of distortions, the shorter wavelength beam delivers more energy to the

target than the longer wavelength one, but this advantage is offset by aero-optical

distortions. In fact, the ratio of the maximum intensity of the distorted beam

to that of the undistorted one is about 1.5% for the shorter wavelength case and

10% for the longer wavelength case.

While Fourier optics provides a complete description of the optical propagation,

it requires as input detailed spatio-temporal history of the near-field wavefront,

which may not available from experimental measurements. Furthermore, from a

systems point of view, statistical measures, rather than instantaneous quantities,

are of primary interest, and it is desirable to relate the far-field beam statistics to

statistics of the aberrating flow field. A widely-adopted relation is the Maréchal

approximation (Maréchal 1947, Born & Wolf 2002) for the Strehl ratio (SR),

defined as the ratio of the peak on-axis far-field irradiance of an aberrated beam

(after tilt removal) to the corresponding peak irradiance of an unaberrated beam;

it is a measure of beam quality relative to a diffraction-limited beam at each time

instant. In his original paper Maréchal (1947) showed that, in the limit of small

phase distortions, OPDrms/λ < 0.1, SR(t) = I(t)/I0 ≈ 1− [2πOPDrms(t)/λ]2. A

more commonly adopted expression, however, takes the exponential form

I(t)

I0

= SR(t) ≈ exp

[

−
(

2πOPDrms(t)

λ

)2
]

. (9)

This equation, also known as Maréchal approximation, was proposed by Mahajan
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(1982, 1983) based on empirical fitting of SR versus OPDrms data for a variety

of distortion modes. In comparison with the original form, Mahajan found that

Equation 9 gave a better approximation for the Strehl ratio over a wider range

of phase distortions.

Ross (2009) recently re-examined the derivation of the Maréchal approximation

and found that for OPD data with Gaussian probability-density distribution,

Equation 9 was in fact exact. It is important to note that the original Maréchal

approximation is a relationship between the spatial statistics of the instantaneous

wavefront and the far-field intensity. In the case when the aperture size is much

larger than the turbulence length scale, a ≫ l, Steinmetz (1982) showed that the

Maréchal approximation is also approximately valid for the time-averaged Strehl

ratio:

SR ≈ exp

[

−
(

2πOPDrms

λ

)2
]

. (10)

This equation is known interchangeably as the large-aperture approximation and

Maréchal approximation. However, in many practical applications, the assump-

tions of large (infinite) aperture and small aberrations are not exactly valid.

For stationary, Gaussian-in-space processes, an exact version of time-averaged

Maréchal approximation can be expressed in terms of the temporal probability-

density function of OPDrms (Porter et al. 2011).

The time-averaged version of Maréchal approximation is currently the de facto

standard approach for estimating and comparing the effect of aero-optical dis-

tortions on the degradation of beam performance. Despite its routine use, some

uncertainties still exist concerning the accuracy and applicability of this approx-

imation, particularly for cases with large phase distortions.

Mani et al. (2006) proposed a new set of statistical measures to quantify the
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far-field optical distortions, and derived exact algebraic relations between these

measures and the statistics of near-field OPD. Instead of characterizing beam

distortions in terms of peak irradiance, they proposed to use the spatial spread of

the beam, in terms of the second spatial moment of the far-field irradiance, as a

measure of distortion (see Figure 2). Through statistical solutions of the paraxial

wave equation, it was shown that the square of the beam spread about its center

(i.e. with tilt removal) can be expressed, in the Fraunhofer limit Lλ/a2 ≫ 1, as

(σx

L

)2

= C
λ2

π2a2
+

〈

(

∂

∂x
OPD

)′2
〉

. (11)

where σx is the beam spread in the x-direction, a is the aperture diameter, the

prime represents deviation from the mean value, and the angle brackets indicate

a spatial average. C is a constant determined by the shape of the aperture and its

optical intensity profile; it is an O(1) quantity for beams with smooth aperture

intensity profiles and is exactly equal to one for Gaussian beams. The beam

spread in the y-direction (see Figure 2) has the same form. One can observe

clearly that the anisotropy of the beam spread about its axis is directly linked to

the anisotropy of OPD gradients and thus in the refractive index field.

The first term on the right-hand side of Equation 11 represents the effect of

diffraction on the beam spread, which is decoupled from the aero-optical effect

represented by the second term. The latter is simply the variance of OPD gradi-

ent. The ratio of these two terms was proposed by Mani et al. (2006) as the basis

for a new distortion measure, which they termed the “fidelity ratio”. Compared

with the Strehl ratio based on Maréchal approximation, the new measure has the

advantage of being applicable to highly aberrated beams because Equation 11 is

exact. The disadvantage is that its applicability is limited to beams with initially

smooth (continuous) aperture intensity profiles since the beam spread becomes a
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singular measure for beams with discontinuous intensity profile. Equation 11 also

provides insight into scaling of aero-optical distortions with key optical parame-

ters such as the aperture size. For instance, one can expect that the aero-optical

effect is a lesser concern for naked human eyes (with a ∼ 1 mm) compared to

tactical airborne system (with a ∼ 20 cm), since the far-field resolution of an eye

is predominantly limited by the diffraction term for typical aero-optical flows.

4 COMPUTATIONAL AND EXPERIMENTAL APPROACHES

4.1 Computational Methods

4.1.1 Optical Propagation Computations of aero-optics consist of two

essential parts: solutions of the aberrating flow field via CFD techniques and

propagation of the optical beam through the aberrating flow to the target. In

practices, the beam propagation is easily computed by a combination of ray

tracing with Fourier optics. For propagation through the thin aero-optical region

surrounding an aperture, ray optics is applicable, and Equation 3 or its OPD

representation provides satisfactory results. The numerical evaluation involves

a simple integration of the index-of-refraction field along the optical path. The

validity of this approach is established based on scaling arguments, and has been

confirmed numerically by White (2010) through a comparison with the numerical

solution of paraxial wave equation (Equation 2) using a high-order scheme in

the case of optical propagation through a supersonic turbulent boundary layer.

Beyond the aero-optical region, the index of refraction is considered uniform,

and propagation in free space can be treated with Fourier optics as exemplified

in Section 3. If the target is in the optical far field, the Fraunhofer approximation

(Goodman 2004) can be applied to simplify the solution.
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The long-range propagation of optical waves in atmospheric turbulence is sig-

nificantly more difficult to compute. Ray tracing is invalid because amplitude

variations accumulated over a large distance are significant, and numerical solu-

tions of the wave equation or paraxial wave equation are impeded by the vast

scale disparity and prohibitive computational expenses required to obtain the

fluctuating index-of-refraction field over the entire propagation range. Current

approaches are predominantly based on statistical modeling of the turbulent me-

dia in terms discrete thin “phase screens” along the direction of propagation

and numerical integration of the paraxial wave equation (e.g. Coles et al. 1995,

Frehlich 2000). Because its distortion effect can be corrected by adaptive optic

techniques, atmospheric propagation is not considered a pressing issue in aero-

optics and is therefore not discussed further.

4.1.2 Computation of Aberrating Flows The most challenging part

of computational aero-optics is the computation of the aberrating flows surround-

ing optical apertures. These flows are compressible, turbulent, generally three-

dimensional at high Reynolds numbers and often with separation. In order to

accurately compute the index of refraction field, turbulence scales over all op-

tically relevant wavenumbers and frequencies must be captured, which poses a

significant challenge in terms of computational expenses and numerical accuracy.

Because of these difficulties, application of CFD to aero-optics did not start until

late 1980s, and significant growth occurred only in the last decade as a result of

the advancement and maturation of high-fidelity simulation techniques.

Limited by computing power, early numerical investigations involved two-

dimensional solutions of Euler equations and RANS equations. Cassady et al.

(1989) performed RANS simulations of the flow over an open cavity in the Mach
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number range between 0.6 and 0.8 under standard conditions at altitudes of

40,000 to 50,000 feet, and analyzed image distortions at different look angles

across the shear layer. Because their RANS calculations did not capture the

coherent structures in the shear layer, only the steady tilt of the optical beam

was predicted directly. Beam jitter was modeled, and high-order distortions were

largely unaccounted for. Tsai and Christiansen (1990) solved Euler equations

numerically to study the degradation of a laser beam by a plane mixing layer

at low Mach numbers (M1 = 0.2 and M2 = 0.1 for the two air streams). Their

solutions were able to capture qualitative features of large-scale coherent struc-

tures including vortex pairing, but this is a result of the numerical viscosity in the

simulation code based on a combination of MacCormack and Godunov methods.

While the Euler and RANS solutions are computationally efficient, their use-

fulness for aero-optical predictions is limited. Euler equations do not describe

the correct physics of refractive-index fluctuations in a turbulent flow and must

rely on numerical dissipation to mimic the effect of physical viscosity. In a steady

RANS calculation, all turbulence scales are modeled, resulting in an ensemble-

averaged (time-averaged) density field from which the steady-lensing effect of

optical aberrations can be evaluated but not the unsteady tilt and high-order

effects. It is, however, possible to combine a RANS simulation with a statisti-

cal model for optics, such as the linking equation, Equation 8, to estimate the

aero-optical effects. This provides a practical approach for high-Reynolds-number

flows in realistic configurations which is not currently affordable with more ac-

curate techniques. Smith et al. (1990) proposed a transport equation for the

variance of index-of-rafraction fluctuations, and solved it along with compressible

turbulent boundary-layer equations with k-ε model for a plane mixing layer. The
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computed refractive-index variance, together with the turbulence length scale

estimated based on k and ε solutions, allowed the linking equation to predict

the wavefront error for a beam passing the mixing layer and its impact on tar-

get intensity. Using the same methodology, Pond & Sutton (2006) performed

an aero-optic analysis of a nose-mounted optical turret on an aircraft. Their

solutions are based on three-dimensional RANS equations, the k-ε model, and

the transport equation for the refractive-index variance proposed by Smith et al.

(1990).

For more accurate computations of index-of-refraction fluctuations, a hierarchy

of high-fidelity methods including DNS, LES and hybrid RANS/LES approaches,

are available. Among them DNS (Moin & Mahesh 1998), which resolves all flow

scales down to the dissipative scale, is the most accurate. Due to the well-known

Reynolds number limitation it is primarily a research tool and has only found

limited use in aero-optics. Truman & Lee (1990) and Truman (1992) used DNS

data to investigate the phase distortions in optical beams through a homogeneous

shear flow with uniform mean shear and a turbulent channel flow. Their simula-

tions were based on incompressible Navier-Stokes equations, and the fluctuating

index-of-refraction field was represented as a passive scalar. The magnitude of

phase distortions was found to be sensitive to the direction of propagation, which

was explained in terms of the anisotropic vortical structures in the flow. Despite

the low Reynolds numbers and incompressible nature of the simulations, the

findings in these studies are qualitatively consistent with subsequent experimen-

tal measurements (Cress et al. 2008) and results of compressible flow simulations

(Wang & Wang 2009); see Section 5.1.

LES offers a less expensive alternative to DNS because it resolves only the
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large, energy-containing scales of fluid motions which are optically important.

The effect of small scales are modeled by a subgrid-scale (SGS) model. The

prevalent SGS models in use today are of the Smagorinsky eddy-viscosity type

(Smagorinsky 1963) for which the dynamic procedure (Germano et al. 1991,Lilly

1992, Moin et al. 1991) provides a robust way of computing the model coeffi-

cient from the resolved scales, thus eliminating the need for adjustable model

parameters. Some practioners use implicit LES, or ILES, in which a high-order

low-pass spatial filter acts as the SGS model to selectively provide numerical

dissipation (e.g. Visbal 2009, White et al. 2010), often out of numerical-stability

consideration for high-order accurate compressible LES codes.

The first application of LES to aero-optics was made by Childs (1993), who

carried out LES of high-speed turbulent mixing layers at convective Mach num-

bers of up to 2.5 and analyzed the induced wavefront distortions. Significant

growth in LES-based investigations occurred in the past decade as a result of

maturation of LES methodology, advances in computing power and a renewed

interest in the field of aero-optics. LES has to date been employed in a variety

of aero-optical configurations including turbulent shear layers (Visbal 2008,Vis-

bal 2009,White et al. 2010), open-cavity flows (Sinha et al. 2004,Visbal 2008),

turbulent boundary layers (Tromeur et al. 2003, 2006a, 2006b; Wang & Wang

2009, 2011; White & Visbal 2010), flow over a cylinder (Mani et al. 2009), and

flows over cylindrical turrets (Wang & Wang 2009,Morgan & Visbal 2010,Wang

et al. 2010) and realistic three-dimensional turrets (Jones & Bender 2001,Aruna-

jatesan & Sinha 2005). In addition, there have been attempts to employ LES to

predict the effect of passive flow control on aero-optical mitigation (Morgan &

Visbal 2010,Wang et al. 2010). Among the afore-mentioned studies, the simple
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canonical flows such as turbulent shear layers, boundary layers and flow over a

cylinder were simulated to study the fundamental physics of aero-optics and were

afforded adequate grid resolution and numerical accuracy. Some of the findings

from these studies will be discussed in Section 5. On the other hand, the simula-

tions of three-dimensional turret flows were under-resolved and used simulation

codes with large numerical dissipation.

To further reduce computational costs for wall-bounded flows at high Reynolds

numbers, LES can be combined with a RANS model to form a hybrid RANS/LES

method. A popular class of hybrid methods, proposed and recently reviewed by

Spalart (2009), is detached-eddy simulation (DES). In this method less expensive

RANS equations are solved with an appropriate turbulence model in an attached

boundary layer, and LES is used to treat the separated-flow region. It there-

fore avoids the stringent boundary-layer resolution demanded for LES but at the

same time inherits many weaknesses of RANS methods such as poor prediction

of pressure-driven incipient separation. In addition, the lack of turbulent fluctu-

ations prior to separation may affect the instability of the separated shear layer

and its aero-optical behavior. DES and similar hybrid methods have been applied

in simulations of flow over three-dimensional optical turrets, with limited success

(Nahrstedt et al. 2008,Ladd et al. 2009,Morgan & Visbal 2010); more discussion

will follow in Section 5.3. Another class of hybrid methods, which is more ac-

curate and robust but computationally more demanding than DES, is LES with

wall modeling (Piomelli & Balaras 2002,Wang & Moin 2002). In this case only

the near-wall region in a turbulent boundary layer is treated with RANS mod-

eling, whereas the bulk part of the boundary layer is computed using LES. This

avoids the strong Reynolds number scaling of grid-resolution requirements in a
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fully resolved LES. LES with wall modeling has to date not been used for aero-

optical computations but holds a bright promise as computing power continues

to grow.

4.2 Resolution Requirement

Turbulent flows relevant to aero-optics contain eddies over a wide range of scales,

typically from order meter to order 10 microns. When practical computational

tools such as LES is employed for aero-optical computations it is important to

ensure that the optical effects of the unresolved flow is negligible. Addressing

this issue requires an understanding of the range of optically active flow scales

in aero-optical flows. Such knowledge not only helps select the mesh size for

computations, but also provides insight for adaptive optics requirements. In

other words, if distortion effects are to be canceled by deformable mirrors, the

range of length scales (and frequencies) to be corrected can be determined from

the same theory.

From Equation 3 it is clear that lack of flow resolution will cause errors in

computation of the optical phase when the beam is traced through the turbulence.

If the true refractive-index field is written in terms of the resolved field, nr, and

the error, ne which is basically the unresolved n, substituting n = nr + ne into

Equation 3 yields:

U(x, y, z1) ≃ Ur(x, y, z1) −
(

ik0

∫ z1

0

ne(x, y, z)dz

)

Ur(x, y, z1), (12)

where a leading order expansion for small ne is used and Ur is the computed

optical wave (by substituting the resolved field, nr, into Equation 3). According

to this description, the true optical wave at z1 is written in terms of two beams:

the first term on the right hand side represents the computed beam and the
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second term represents the “error” beam associated with lack of resolution in

predicting the refractive index field. An acceptable resolution should ensure that

the energy of the error beam is much smaller than the energy of the resolved

beam.

Mani et al. (2008) used this criterion in conjunction with the Kolmogorov hy-

pothesis for unresolved turbulence to develop a theory to estimate the smallest

optically-important flow length scale in a general aero-optical framework. Ac-

cording to their analysis, in the limit of high Reynolds number the smallest opti-

cally important flow scale does not depend on the Kolmogorov scale. For a given

geometry, this length scale depends only on the flow Mach number, freestream

refractive index n∞, and the optical wavelength λ0:

ℓc ≈ C
λ

6/7
0 ℓ4/7

M12/7(n∞ − 1)6/7z
3/7
1

, (13)

where ℓc is the smallest optically active scale, M is the turbulent Mach number,

z1 is the depth of the turbulent field in the propagation direction, and ℓ is the

length scale of the largest turbulent eddy. The proportionality constant C in

Equation 13 can be written in terms of the universal constant of the Kolmogorov

spectrum and the acceptable energy treshold for the “error” beam in Equation 12,

and is generally of small value; for example, this constant is approximately 0.05

for 95% accuracy (see Mani et al. 2008 for details). A crude estimate based

on practical aero-optical parameters indicates that the length scale predicted by

this theory is in the inertial range and of order of typical LES resolutions. This

indicates that LES, without the need for subgrid optical modeling, is adequate for

aero-optical computations, and DNS is not necessary. Extension of this analysis

to complex flow regimes with inhomogeneous turbulence and mesh spacing can

be found in Mani et al. (2008).
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The results of this analysis and the conclusion regarding negligible optical ef-

fects by small-scale turbulence are consistent with previous experimental findings

of Zubair & Catrakis (2007), who verified the “resolution robustness” of optical

distortions by systematically examining the refractive-index data of separated

shear layers at various resolution levels.

4.3 Wavefront Sensors

The most critical device for experimental aero-optics is the wavefront sensor.

The wavefront is the locus of constant phase for the complex intensity (see Equa-

tion 3). This quantity cannot be measured directly, as any light-recording device

is sensitive to the absolute value of the complex intensity only. Wavefront sensors

can be divided into several categories depending on how the wavefront is mea-

sured, which also defines the sensor performance in terms of the dynamic range,

temporal and spatial resolution and sensitivity to real-life corrupting effects such

as the quality of the optical elements involved or large jitter of the incoming

beam due to mechanical vibration. Interferometry-based sensors combine the

measured wavefront with a known wavefront, which creates an interference pat-

tern with variable light intensity on the sensor, and the measured wavefront can

be directly reconstructed from it. They have very good spatial (tens of thou-

sands of points) and temporal (up to 100 kHz) resolution, but usually require

very good optical elements to manipulate the incoming beam before sending it

to the sensor. Slope-based sensors, like a Shack-Hartmann sensor (Tyson 1997),

rely on the Huygens’ Principle, which states that the wavefront propagates in the

direction normal to itself (Born & Wolf 2002). A lenslet array is used to break the

wavefront into a large number of small sub-apertures and the overall tilt or the
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deflection angle over each sub-aperture is measured by tracing the dot motion at

the lenslet focal plane. The deflection angles are gradients of the wavefront, and

different techniques are used to reconstruct the original wavefront. These sensors

are perhaps the most robust and widely used wavefront sensors with a large dy-

namic range and relative insensitivity to the quality of the optical components

and the overall beam jitter. The spatial resolution is, however, limited by the

lenselet array, which typically has several thousand sub-apertures, and temporal

resolution is usually limited to several kHz; however, more recent cameras have

now increased this limit to tens of kHz. Finally, phase-diversity and distorted-

grating sensors use the intensity transport equation to measure the wavefront

(Blanchard et al. 2000) and ultimately are sensitive to the wavefront curvature.

They have good spatial resolution (several thousand points) and very high tempo-

ral resolution (up to 100 kHz), but typically require good optical components to

manipulate the beam, as well as small overall beam jitter, and selective aperture

geometries.

Most of the wavefront devices use high-speed digital cameras to record im-

ages, which contain information about measured wavefronts. For slope-based

wavefront sensors, these digital devices limit the sampling speed of data collec-

tion. To overcome this problem, analog-only wavefront devices were developed,

which use photo-sensitive diodes to record instantaneous deflection angles over

sub-apertures. Examples of these devices include a Malley Probe (Gordeyev

et al. 2007a), a Small-Aperture Beam Technique (SABT) sensor (Hugo & Jumper

1996) and an analog-only Shack-Hartmann wavefront sensor (Abado et al. 2010).

These devices have high sampling rates (∼ 100 kHz), but either measure only

one-dimensional slice of the wavefront (the Malley probe) or have limited spa-



24 WANG, MANI & GORDEYEV

tial resolution (SABT sensor, analog-only Shack-Hartmann sensor. As a final

note, Equation 13 provides a practical estimate on the minimum number of sub-

apertures needed to correctly measure wavefronts, and for most subsonic flows,

only a few thousand sub-apertures are sufficient for accurate measurements of

OPDrms.

5 AERO-OPTICAL FLOWS AND DISTORTION MECHANISMS

5.1 Turbulent Boundary Layers

The optically-aberrating effects of high-speed, turbulent boundary layers have

been the subject of research since the early 1950s. The first investigation was

by Liepmann (1952) and made use of the jitter angle of a thin beam of light as

it traveled through the compressible boundary layer on the sides of high-speed

wind tunnels as a way to quantify the crispness on Schlieren photographs. Stine

& Winovich (1956) performed photometric measurements of the time-averaged

radiation field at the focal plane of a receiving telescope, and this work also

raised the prospect of using an optical degradation measurement as a method

of inferring turbulence scales. Rose (1979) used hot-wire measurements and the

linking equation (Equation 8) to estimate aero-optical aberrations caused by tur-

bulent boundary layers, and found empirically that OPDrms ∼ qδ, where q is

the dynamic pressure and δ is the boundary-layer thickness. As reviewed by

Gilbert & Otten (1982), research up until 1980 focused on the measurement of

time-averaged optical distortions, either directly by optically-based methods or

indirectly using fluid-mechanical measurements and the linking equation.

The development of high-temporal-resolution Malley probe and other high-

speed wavefront devices in recent years allowed accurate time-space-resolved op-
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tical measurements in turbulent boundary layers. Wyckham & Smits (2009)

investigated the aero-optical performance of transonic and supersonic boundary

layers using a two-dimensional Shack-Hartman wavefront sensor. Based on the

OPD equation (Equation 5), and by assuming negligible pressure fluctuations in

the boundary layer and invoking the strong Reynolds analogy (SRA) (Morkovin

1962), they proposed the scaling relation OPDrms ∼ ρM2δ
√

Cfr
3/2
2 , where Cf

is the local skin friction coefficient and r2 is the ratio between the bulk and

free-stream temperatures (r2 ≈ 1 at subsonic speeds). Gordeyev et al. (2011a)

employed the linking equation along with the assumption of negligible pressure

fluctuations and SRA to develop a model for OPDrms at both subsonic and su-

personic speeds. Their model takes the form OPDrms ∼ ρδ
√

CfF1(M), where

F1(M) is a function of the mean and fluctuating velocity profiles and the free-

stream Mach number M ; F1(M) ≈ M2 at subsonic speeds. This model was

shown to correctly predict both the amplitude and the convective velocity of

optically-active structures in compressible boundary layers. Both models (Wyck-

ham & Smits 2009, Gordeyev et al. 2011a) were found to generally agree with

each other up to M = 5.

Non-adiabatic effects with heated and cooled walls were studied by Cress (2010)

and Cress et al. (2010). It was predicted and experimentally verified that proper

cooling of the wall upstream of the aperture will significantly decrease aero-optical

distortions. Large intermittent increases of aero-optical aberrations with subse-

quent drop-outs in far-field intensities have also been investigated experimentally

(Gordeyev et al. 2003,Cress 2010).

All these experimental studies strongly suggest that the majority of optically-

active structures in compressible boundary layers are located in the outer re-
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gion of the boundary layer, moving at 0.82–0.85 times the freestream velocity.

The predominant mechanism for density fluctuations in compressible boundary

layers is believed to be adiabatic heating/cooling due to velocity fluctuations

via strong Reynolds analogy, as pressure fluctuations inside boundary layers are

much smaller than temperature fluctuations. This was also confirmed in numer-

ical simulations (Wang & Wang 2011).

While experimental investigations have shed much light on the characteris-

tics and scaling laws of boundary-layer aero-optics, numerical simulations have

started to play a significant role in gaining physical understanding of distortion

mechanisms and testing aero-optical theories and their underlying assumptions.

High-fidelity approaches like DNS and well-resolved LES are ideally suited for

such fundamental studies because they provide detailed spatial and temporal in-

formation about the index-of-refraction field along with the velocity field, making

it possible to directly relate flow structures to optical aberrations.

Tromeur et al. (2003, 2006a, 2006b) undertook the first numerical investigation

of the optical-aberrating effects of turbulent boundary layers using LES. They

considered temporally and spatially evolving flat-plate boundary layers at free-

stream Mach numbers of 0.9 and 2.3 and momentum-thickness Reynolds number

Reθ = 2917. Converged flow and optical statistics were obtained and analyzed in

the case of spatially developing boundary layers with an adiabatic wall. By com-

paring directly computed OPDrms with that obtained using the linking equation,

Equation 8, with LES density-fluctuation data, Tromeur et al. (2006a, 2006b)

found significant discrepancies between the two, and consequently questioned the

applicability of the linking equation to boundary-layer flows. However, it was

later noted by Wang & Wang (2011) that these discrepancies were caused by
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improper choice of the correlation-length definition that is inconsistent with the

linking equation.

Wang & Wang (2009, 2011) performed a well-resolved LES study of optical-

distortion mechanisms in a Mach 0.5, adiabatic-wall boundary layers at Reynolds

numbers Reθ = 875, 1770 and 3550. They obtained detailed statistics of fluctuat-

ing density and wavefront distortions, including the rms values, spatial and tem-

poral correlations, and frequency spectra. Contributions from different boundary-

layer regions to wavefront errors were evaluated, which shows dominance of the

logarithmic layer and wake region. Consistent with the analysis of Mani et al.

(2008), the effect of small-scale flow structures on optical aberrations was found to

be small. The applicability of Sutton’s linking equation was re-examined, and it

was found that, with a definition of the density correlation-length consistent with

the linking equation, the latter provides an excellent prediction of OPDrms. The

effect of turbulence inhomogeneity is too small to affect the validity of the linking

equation. The convection velocities of the optical wavefront were computed and

found to be consistent with previous experimental values.

It is well-established that turbulent boundary layers contain packets of vortical

structures with a preferred angular direction (e.g. Adrian 2007, Wu & Moin 2009).

They are believed to be important sources of aero-optical distortions, and there-

fore the boundary layer exhibits an anisotropic behavior for different elevation

angles of beam propagation. This behavior was measured experimentally (Cress

et al. 2008) and later observed computationally (Wang & Wang 2009, 2011). As

illustrated in Figure 3, a beam is distorted more severly when it is tilted toward

downstream than upstream with the same relative angle to the normal direction.

This is consistent with the linking-equation prediction, Equation 8, because the
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correlation length Λ is longer when the beam is aligned with the elongated vortical

structures in the boundary layer (see right plot in Figure 3). Similar directional

dependence of optical distortions was observed by Truman & Lee (1990) in an

incompressible DNS of turbulent shear flow with uniform mean-shear rate.

Although it is generally believed that OPDrms is insensitive to Reynolds num-

ber at sufficiently high Reynolds numbers, the results of Wang & Wang (2011)

still exhibit a significant variation of OPDrms with Reynolds number (see Fig-

ure 3), although the rate of variation is seen to decrease with increasing Reynolds

number. Simulations at higher Reynolds numbers are required to allow direct,

quantitative comparisons with experimental measurements, which are typically

performed at much high Reynolds numbers.

5.2 Turbulent Shear Layers and Wakes

Separated turbulent shear layers are omnipresent around aero-optical devices

such as turrets and laser cavities. The presence of large-scale vortical structures

in shear layers was firmly established for the last 30 years or so, yet until few

years ago, most models used for aero-optical aberrations in shear layers largely

ignored the role of these structures, assuming that pressure fluctuations inside the

shear layer are negligible and using strong Reynold analogy to compute density

fluctuations. The reader is referred to Fitzgerald & Jumper (2004) for a detailed

survey of different shear layer models.

Vortical structures are characterized by a strong radial pressure gradient ac-

companied by significant pressure fluctuations. Based on this fact, Fitzgerald &

Jumper (2004) developed a physics-based numerical procedure for approximating

the density field, and thus the refractive index, from a known two-dimensional
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velocity-field data for total-temperature-matched shear layers. The velocity, den-

sity and pressure fields are connected by the Euler equations, and by assuming

an isentropic process and using a simplified version of the energy equation and

the ideal gas law, they developed a procedure for iteratively retriving density and

pressure fileds based on the given velocity field. Their model, called the Weakly

Compressible Model (WCM), takes into account the radial pressure gradients re-

quired to sustain the vortical flow and curved path-lines. Fitzgerald & Jumper

(2004) showed that this model predicted reasonably well the experimentally-

observed aero-optical aberrations for a high subsonic shear layer, when other

shear-layer models failed to do so. However, as a simplified model, the accuracy

of WCM is limited by its underlying assumptions. A comparison with the numer-

ical results of a compressible shear layer obtained by Visbal (2009) using ILES

with a high-order scheme shows that WCM, while correctly predicting density

fluctuations inside vortical structures, is unable to predict the sharp density-

gradients numerically observed in braid regions between vortical structures.

To further investigate the nature of this discrepancy, simulations for laminar

mixing layers with either matched total or static temperature of the upper and

lower streams were performed by Visbal (2009). It was found that when the

total temperature was matched, a density interface between the two streams

was apparent in the shear layer braid regions, although this effect has not yet

been observed experimentally. In contrast, sharp density gradients were absent

when the static temperature was matched. Despite the significant differences

in the density field, the OPD distributions were found to be similar, indicating

that optical distortions are dominated by compressible effects instead of density

interfaces.
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For transitional mixing layers, Visbal (2009) showed that optical distortions

near a splitter plate are similar to those caused by laminar mixing layers and

increase downstream as the mixing layer grows. The effects of forcing with either

spanwise uniform or non-uniform excitations on turbulent mixing layers have been

studied as well (Visbal 2008, White et al. 2010). It was shown that in general,

forced mixing layers induce larger OPD, and the forcing regularizes the shear

layer, confirming the experimental results of Rennie et al. (2008).

Mani et al. (2009) performed a fundamental study of optical distortions by

separated shear layers and wakes using a highly accurate LES with high grid

resolution. They considered a Mach 0.4 flow over a circular cylinder at Reynolds

numbers Re = 3900 and 10, 000. They found that optical distortions by the fully

developed wake was insensitive to the Reynolds number while distortions by the

separated shear layers were sensitive to the Reynolds number. This finding was

explained on the basis that the instability of the wake is predominantly inviscid

and that the Reynolds number only affects the Kolmogorov scale which was

found to be optically unimportant (Mani et al. 2008). In contrast, the instability

and transition in the early separated shear layers are Reynolds-number sensitive,

leading to Reynolds-number sensitivity of their optical effects.

The aero-optics of shear layers with different gases on both sides were studied

by Dimotakis et al. (2001), Catrakis & Aguirre (2004), and Zubair & Catrakis

(2007), to name a few. Dimotakis et al. (2001) studied subsonic shear layers at

low and high Reynolds numbers with different gases on the two sides. Gases were

density-matched, but had different index-of-refraction coefficients. Instantaneous

snapshots of index-of-refraction fields were taken using the Rayleigh scattering

technique and instantaneous wavefronts were calculated by integrating the field in
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the beam-propagation direction. The large-scale structures in the shear layer were

found to be the dominant source for aero-optical distortions, and a level-set model

was proposed to explain observed wavefront characteristics. As pointed out by

Jumper & Fitzgerald (2001), the combined aero-optical effects were from both

index-of-refraction mixing and compressible turbulent mixing and, ultimately,

the proposed level-set model underestimated the experimentally-measured aero-

optical levels of subsonic index-of-refraction-matched compressible shear layers

(Fitzgerald & Jumper 2004). Catrakis & Aguirre also used the Rayleigh scatter-

ing technique to study the aero-optical structure in dissimilar-gas mixing layers

at high Reynolds numbers. They developed a new interfacial fluid thickness ap-

proach, based on tracing regions of high gradients of the index-of-refraction field,

to study the physics of aero-optical distortions.

5.3 Flow over Optical Turrets

One of the most used platforms to point-and-track lasers are turrets of hemisphere-

on-cylinder type. They provide a convenient way to steer-and-stay the beam in

a desired direction for a transmitting station or to keep lock on the incoming

beam for a receiving station. Most airborne laser-based systems, both past and

present, use the turret geometry of some sort. But their less-than-ideal aero-

dynamic shape creates complex flow fields consisting of all major fundamental

turbulent flows: boundary layers, separated shear layers, wake, necklace vortex

and other large-scale vortical structures, as shown schematically in Figure 4.

Depending on the viewing direction, the laser beam will encounter one or sev-

eral of these fundamental flows. Even the time-averaged flow around the turret

has significant steady pressure and density gradients, causing steady-lensing ef-
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fects. Flow is typically attached on the front portion of the turret with a relatively

thin boundary layer, so the outgoing laser beam has mostly steady-lensing aber-

rations imposed on it. Flow is separated on the aft portion of the turret and,

when transmitting through the separated region, the beam will experience signif-

icant unsteady aero-optical aberrations even at relatively small subsonic speeds

(Gordeyev et al. 2007a,Gordeyev et al. 2007b,Vukasinovic et al. 2010,Gordeyev

et al. 2010b). Aero-optical distortions in this region are predominantly caused by

shear-layer vortical structures and the separation bubble formed downstream of

the turret (see Figure 4). At transonic and supersonic flows, shock-induced aero-

optical effects with large density gradients are added to this already complicated

picture (Gordeyev & Jumper 2010).

Due to technological importance of turrets, they have been studied extensively

in the 1970s and 1980s, and good reviews of research efforts during that period

are presented in Gilbert & Otten (1982) and Sutton (1985). But laser systems of

those days had long wavelengths (∼ 10 microns), and unsteady aero-optical effects

caused by turrets were found to be negligible at subsonic speeds; only steady-

lensing effects were considered. The switch to shorter wavelength (∼ 1 micron)

laser in recent years has exacerbated the aero-optical effects, which spurred a

renewed interest in aero-optics of turrets. A summary of recent efforts, includ-

ing flow-control strategies to mitigate aero-optical effects around turrets, can be

found in Gordeyev & Jumper (2010).

Recent experiments (Gordeyev & Jumper 2010) have shown that for subsonic

flows at large Reynolds numbers, OPDrms ∼ A(geometry, a/D)B(α, γ)ρ∞M2D,

where ρ∞ and M are the free-stream density and Mach number, respectively,

D is the turret radius, A is a “constant” depending on the turret geometry and
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the relative aperture size, a/D, and B is a function of the beam-transmitting

direction, defined by window angle α and elevation angle γ shown in Figure 4.

This simple scaling was found to collapse most of the experimental results avail-

able in open literature, as shown in Figure 5. The turret geometry was found

to influence aero-optical aberrations. A hemispherical turret is more optically-

aberrating than a hemisphere-on-cylinder turret due to increased proximity of

the near-the-wall vortices to the aperture. A flat-window turret creates more

aero-optical distortions compared to a conformal-window turret due to an earlier

separation from the front portion of the flat-window aperture.

Numerical simulations of flow over turrets are extremely challenging due to

the complex vortex structures discussed above and the wide range of flow scales

associated with them. The high Reynolds numbers encountered at realistic flight

or laboratory conditions make these flows out of reach by LES. In addition, sim-

ulations must cope with traditional difficulties such as the laminar-to-turbulence

transition of the boundary layer and incipient separation from the turret sur-

face. Aside from a few LES attempts (Jones & Bender 2001, Arunajatesan &

Sinha 2005), which are grossly under-resolved, most recent computational efforts

are based on RANS/LES hybrid approaches. Nahrstedt et al. (2008) employed

the partially-averaged Navier-Stokes (PANS) method (Girimaji & Abdol-Hamid

2005) with the k-ε model in a finite-volume CFD code to compute the aero-

optical flow and OPDrms of a 12-inch-diameter hemispherical/cylindrical turret

in a wind-tunnel experiment (Gordeyev et al. 2007b) at Mach numbers ranging

from 0.3 to 0.5. With a 2.7 million mesh, their results captured some aspects of

the experimental measurements, but sizable discrepancies existed, and the vorti-

cal structures in the shear and wake were apparently too coherent. Ladd et al.
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(2009) used DES with the two-equation k-ω SST model to compute the same flow

with 3.2 million structured mesh and 10 million unstructured mesh, and obtained

improved solutions. Their mean turret-surface pressure and velocity profiles at

several wake stations showed reasonable agreement with experimental values, as

did their OPDrms over a range of elevation angles. The best resolved turret-flow

simulation to date was performed by Morgan & Visbal (2010), who again consid-

ered the experimental configuration of Gordeyev et al. (2007b). Using a hybrid

RANS/ILES method with a k-ε model and a 6th-order compact-difference solver

on a 23.6 million mesh, their simulation captured fine details of turbulence struc-

tures and many flow features observed in the experiment, but there were also

significant differences in the separated region. Major discrepancies were observed

between the computed OPDrms values and experimental data.

Virtually all numerical simulations of turret flows to date are for turrets with a

conformal window. Flows around flat-window turrets are more difficult to study

both experimentally and computationally. The slope-discontinuity around the

flat aperture causes a premature flow separation and creates a weak separation

bubble over the aperture at some angles (Gordeyev et al. 2007a, Gordeyev et

al. 2010b), leading to increased aero-optical distortions. Aside from increased

geometric and flow complexity, computational expenses are higher due to the

fact that a separate flow simulation is required for each viewing angle because

the flow field around the turret depends on the window position.

Evidently, current computational capabilities still do not allow accurate and

robust predictions of the fluctuating index-of-refraction field around a three-

dimensional optical turret at realistic Reynolds numbers. Hybrid LES/RANS

methods continue to offer the best practical approach in the foreseeable future,
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but a number of weaknesses and outstanding issues need to be addressed. For

DES methods, which treat attached boundary layers with RANS, prediction of

boundary-layer transition and incipient separation from the turret surface is a

significant challenge. Furthermore, the shear layer immediately after separation,

which is in the optically important region, may not behave realistically without

upstream turbulence. The effect of upstream turbulent fluctuations on the shear-

layer instability and how to incorporate them in DES-type simulations requires

further investigation.

Given the significant computational challenges for three-dimensional turrets, it

would be prudent to first validate solution techniques in simpler flows that cap-

ture some crucial physical aspects of realistic turret flows. The two-dimensional

cylindrical turret investigated experimentally by Gordeyev et al. (2011b) provides

an excellent benchmark configuration for computational validation. Because the

turret is mounted horizontally on two flat surfaces of different altitude, the flow

upstream of the turret is a flat-plate turbulent boundary layer, which can be

easily characterized and realistic turbulent inflow can be fed into the simulation

(Wang & Wang 2009). This configuration has been employed in a number of re-

cent LES investigations (Morgan & Visbal 2010,Wang & Wang 2009,Wang et al.

2010).

6 CONCLUDING REMARKS

Aero-optics is an interdisciplinary area that has seen a renewed interest and sig-

nificant growth over the past decade. At the core of aero-optical phenomena is

compressible turbulence, whose accurate prediction in a practical aero-optical en-

vironment over optically active flow scales remains a significant challenge. This
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review is focused on the fundamental understanding and prediction of aero-optics,

and related numerical and experimental techniques. Given the diverse nature of

the field and space limitation, the contents in this article are necessarily selective;

they are by no means reflective of the relative level of research activities or ac-

complishments. Computational techniques and their applications to aero-optical

problems are afforded more coverage considering the growing role of computations

and their future promise.

The discussions presented in this paper are mostly on the aero-optical effects

of subsonic flows. The presence of shock waves and shock-turbulence interaction

in a supersonic flow exacerbates aero-optical effects and gives rise to additional

computational and experimental challenges, which are not discussed here. Wave-

front sensors and data reduction algorithms are only briefly mentioned, but they

are the most critical part in collecting accurate aero-optical measurements.

Another important part of aero-optics research not covered in the present arti-

cle is mitigation strategies. The goal of aero-optical mitigations is to reduce the

overall distortions of an optical beam, which can be achieved through a variety of

flow control and/or adaptive optic techniques. Passive control devices placed in

front of an optical turret have shown promise (Gordeyev et al. 2010a), and active

flow control using pulsating micro-jets has effectively reduced aero-optical distor-

tions around turrets (Vukasinovic et al. 2010). Although adaptive optics alone

currently only works for low-frequency aberrations typical of atmospheric turbu-

lence, progress has been made in extending it to high-frequency aero-optics. One

promising technique, which has been demonstrated in a compressible shear layer

(Rennie at al. 2008), involves a combination of adaptive optics with flow control.

By first regularizing the flow using active flow contol, the aberrations become
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predictable and can be corrected by a deformable mirror without instantaneous

wavefront measurements.

In the development of mitigation techniques for optical systems, fundamental

understanding of aero-optical mechanisms gained through physical and numeri-

cal experiments has played and will continue to play an essential role. Further

advances in experimental and computational techniques leading to acccurate pre-

dictive tools are much needed in order to accelerate the development of practical

airborne laser systems.
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Figure 1: Schematic of the aero-optics problem.
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Figure 2: Instantaneous far-field optical irradiance for Gaussian beams through

the wake of a circular cylinder of diameter D at a distance of 105D for two

optical wavelengths. The top plots show the distorted beams, and the bottom

plots show the undistorted, diffraction limited beams. The aperture diameter

is a = 0.3D. The peak dimensionless intensity (relative to the aperture value)

for the undistorted beams are 0.074 and 0.005 for λ/D = 2.5 × 10−6 and 10−5,

respectively. The results are obtained using LES at free-stream Mach number

M = 0.4 and Reynolds number ReD = 3900 (Mani et al. 2009).
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Figure 3: Left: OPDrms variation with elevation angle (measured from upstream

wall) for an optical beam passing through a Mach 0.5 turbulent boundary layer at

three different Reynolds numbers. The aperture size is 7δ in streamwise (x) and

2.4δ in spanwise (z) directions. Right: two-point spatial correlations of density

fluctuations in the x-y plane at two wall-normal locations for Reθ = 3550. The

results are obtained from LES (Wang & Wang 2011).
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Figure 4: Flow topology around an optical turret and measurement coordinates,

from Gordeyev & Jumper (2010).
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Figure 5: Normalized levels of aero-optical distortions induced by turret flows

measured for different viewing angles and turret geometries (Gordeyev & Jumper

2010).


