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ABSTRACT

Visualization of the large-scale coherent structure in fully turbulent flows is notoriously difficult owing to
the presence of fine-scale fluctuations and inability to inject markers at the appropriate phase speed. In
this study, the proper orthogonal decomposition and wavelet analysis are used in combination to reveal
instantaneous streamlines associated with the large-scale structure in the turbulent planar jet.

1 INTRODUCTION

Visualization of the large-scale vortical structures in any fully turbulent flow is a challenging prob-
lem. The presence of small-scale incoherent fluctuations characteristic of turbulent flows makes
it difficult to visually extract any information regarding the flow topology of the underlying large-
scale organized motions. In addition, these structures convect downstream and the introduction of
a flow marker like smoke or dye atstationary point(s)does not necessarily reveal any flow pattern
because of a mismatch in phase speeds. Thus, the development of sophisticated experimental data
extraction combined with proper data acquisition is necessary, if the dynamics and topology of
the large-scale structures in the turbulent flow are to be visualized.

In this paper, the fully turbulent planar jet is chosen as a candidate flow for visualization of the
topology of the underlying large-scale structures. One of the first indications of large-scale struc-
ture in the planar turbulent jet was reported by Goldschmidt and Bradshaw [1] and later by Everitt
and Robins [2] and Cervantes and Goldschmidt [3] who observed negative time-averaged corre-
lation between streamwise velocity fluctuations on opposite sides of the jet centerline. Oler and
Goldschmidt [4] suggested that such correlation measurements are consistent with the presence
of large-scale coherent structures in the similarity region of the planar jet. Detailed iso-correlation
contour maps based on both streamwise and lateral velocity fluctuations as obtained in different
jet facilities by Mumford [5], Antonia et al [6] and Thomas and Brehob [7] exhibit a remarkable
likeness and appear consistent with the existence of a large-scale structural array in the planar
jet similarity region. The study by Antonia et al [6] was performed in a heated jet and the ex-
istence of laterally coherent temperature fronts was used as the basis for a conditional sampling
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scheme. The resulting coherent structure topology inferred from this method was suggestive of
an antisymmetric structural array.

Thus, while time-average correlation measurements suggest the presence of the large-scale
structure in the planar jet, introduction of a passive tracer of smoke to the self-similar region
of the planar jet provides no indication whatsoever of large-scale organized motions. As was
pointed out before, the reason for this is the presence of small-scale fluctuations which quickly
diffuse any markers introduced to the flow and make the direct visualization of organized motions
nearly impossible.

Several experimental techniques have been developed for the extraction of the coherent struc-
ture from turbulent shear flows and these are reviewed by Bonnet and Delville [8]. Such tech-
niques may be broadly classified as ”conditional” or ”nonconditional”. Conditional techniques
involve sampling the flow only during those intervals of time that satisfy some predetermined
criterion that is deemed dynamically significant and is related to the presence of the coherent
structure that is sought. One downside of these techniques is a lack of objectivity in the sense
that one must have some predetermined idea regarding the structural topology in order to set the
sampling criterion. In contrast, the Proper Orthogonal Decomposition (POD) proposed by Lum-
ley [9] for investigation of the structure of inhomogeneous turbulent shear flows is an example of
a nonconditional technique which is based on the two-point correlation tensor. The mathematical
background behind the POD is the Karhunen-Loeve expansion as described in Karhunen [10] and
Loève [11]. The analysis of turbulent flow via the POD is the subject of a recent comprehensive
review by Berkooz, Holmes, and Lumley [12] and the text by Holmes, Lumley and Berkooz [13].

In an experimental context, the POD objectively extracts a complete set of spatial eigenfunc-
tions (i.e. ”modes”) from the measured second-order cross correlation (or cross-spectral) matrix.
The extracted modes serve as a set of optimal basis functions for expansion of the flow. The
resulting expansion is optimal in the sense that convergence is more rapid than for any other pos-
sible basis. That is, the projection of the POD modes on the velocity field is maximized. It is
generally recognized that the empirical eigenfunctions extracted by POD are intimately related
to the coherent structure although the exact relationship is debated. For example, it was noted
by Lumley [14] that the first POD mode represents the coherent structure only if it contains a
dominant percentage of the fluctuation energy. For the purpose in this paper, the authors consider
a summation of the most energetic POD modes as synonymous with the term coherent structure.

In order to obtain dynamical information regarding the coherent structure the empirically
determined basis functions can be projected onto instantaneous realizations of the flow field.
This allows the extraction of temporal phase coefficients for each of the modes that embodies
their temporal behavior. In order to preserve phase information (and thereby realize the full
potential of this technique), rakes or meshes containing multiple probes (so-called ”multipoint
measurements”) are required. A comprehensive review of multipoint measurement techniques
for turbulent flows and associated sampling requirements is presented by Glauser and George
[15].

In this paper, the large-scale structure in the turbulent planar jet similarity region is examined
by application of POD and a continuous wavelet transform. The POD spatial eigenfunctions for
each of the three velocity components are extracted by means of twin cross-stream rakes of x-
wire probes positioned with different spanwise separations. The reconstruction and subsequent
visualization of the large-scale structure in the physical space are performed by projection of
the obtained POD modes onto the instantaneous flow field realizations, obtained from three-rake
experiments.
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2 EXPERIMENTAL SET-UP

The experiments were conducted in the planar jet flow field facility located at the Hessert Center
for Aerospace Research at the University of Notre Dame. The experimental setup was described
in detail in Gordeyev and Thomas [16]. Here the authors highlight only essential aspects.

The flow is driven by a centrifugal blower that supplies air to a cubic plenum chamber with
dimensions of 1.2 m per side. Inside the plenum air is forced to diffuse through a large layer
of porous fiberglass insulation material which serves both to filter the air and decouple the flow
from any blower pulsation. Air leaving the plenum enters a rectangular flow conditioning duct
that leads to the nozzle assembly. The jet is formed by a two-dimensional nozzle contraction that
takes the form of a cubic polynomial contour with zero derivative end conditions. The nozzle has
a contraction ratio of 16:1 and ends in a two-dimensional slot that isD = 1:27 cm in width and
H = 45:7 cm in height giving an aspect ratio (height/width) of 36:1. The longer dimension nozzle
walls are contoured while the walls in the shorter dimension are flat. The flow field is formed
between two horizontal confining plates of dimension 2.5 m in the flow direction and 1.61 m in
width which serve to keep the base flow two-dimensional in nature. Twin sheet metal face plates
mounted flush with the nozzle exit plane extend laterally to the edge of the flow field. All other
sides of the flow field remain open. A series of large screens surround the jet facility in order
to insure that any laboratory room air circulation has minimal effect on flow field. Since the jet
was operated in a large laboratory space (353m2 floor area) with room ventilation fans off during
experimental runs, any such effects on the flow were exceedingly small.

In this paper,x will denote the streamwise spatial coordinate which is made non-dimensional
by the nozzle slot width,D. The cross-stream spatial coordinate is,y, and is made non-dimensional
by the local mean velocity half-width,b(x). The half-width is defined as the distance from the jet
centerline to the lateral location where the local mean velocity has fallen to one-half its centerline
value. The spanwise spatial coordinate extending in the direction of mean flow homogeneity is
denotedz. The origin of thez-axis is chosen in the centerplane midway between the two flow
field confining plates. The fluctuating velocity components corresponding to coordinatesx;y;z
are denotedu;v;w, respectively.

For the experiments reported, the nozzle exit velocity isU0 = 35 m/sec which corresponds
to a Reynolds number based on nozzle slot width ofReD = 28;000. The second-order turbu-
lence moments exhibit similarity forx=D > 50: The POD measurements were performed over the
streamwise interval 50� x=D � 90. The flow is considered stationary in time and the spanwise
coordinate is treated as statistically homogeneous. The cross flow direction is taken as the single
inhomogeneous coordinate.

3 EXTRACTION PROCEDURE

In this section the method by which the POD spatial eigenmodes and associated eigenvalues were
extracted is briefly described and some key results presented. Since this aspect of the study was
the focus of Gordeyev and Thomas [16], only those aspects considered essential in providing the
relevant framework for the current work are described here. The reader is referred to the cited
reference for a more detailed presentation.

3.1 POD Technique

Cross-spectral measurements involving all three fluctuating velocity components at selectedx=D
planes in the similarity region of the jet(50� x=D � 90) were performed by means oftwo
spanwise-separated rakes of eight x-wire probes each. Both of the rakes were located at the
samex=D location and were oriented in the cross-stream direction, parallel to each other. The
two rakes were separated in the spanwise direction by a user selected distancez� z0 = ∆z. Us-
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ing the two rake system the cross-spectral matrixSαβ(y;y
0; f ;∆z) was computed directly from the

Fourier transformation of the individual velocity-time histories (see Bendat & Piersol [17]),

Sαβ(y;y
0; f ;∆z) = lim

T!∞

1
T



û�α(y;z; f )ûβ(y

0;z0; f )
�

(1)

whereh�i denotes an ensemble average and Greek subscripts denote a fluctuating velocity com-
ponentu, v or w. The velocity measurementuα(y;z; t)corresponds to the first rake anduβ(y

0;z0; t 0)
corresponds to the second. Note that the x-wire probes are capable of the simultaneous measure-
ment of either(α = u;β = v) or (α = u;β = w) depending on their orientation in the flow field.
The quantity ˆuα(y;z; f ) � R T

0 uα(y;z; t)e�2πi f t dt denotes the temporal Fourier transformation of
the velocity vector for each block,T is the total time duration of the data block and the asterisk
denotes a complex conjugate. Aspatial Fourier transformation in the homogeneousz-direction
provides a spanwise wavenumber-dependent cross spectral matrix,

Φαβ(y;y
0; f ;kz) =

Z
Sαβ(y;y

0; f ;∆z)e�ikz∆zd(∆z); (2)

wherekz is a spanwise wavenumber. The matrixΦαβ(y;y
0; f ;kz) essentially unfoldsSαβ(y;y

0; f ;∆z)
in spanwise wavenumber space.

As shown in Lumley [18], the spectral correlation tensorΦαβ(y;y
0; f ;kz)will be a kernel in the

integral equation to find the POD modes for different frequenciesf , and spanwise wavenumbers,
kz,

Z
Φαβ(y;y

0; f ;kz)ϕ
(n)
β (y0; f ;kz)dy0 = λ(n)( f ;kz)ϕ

(n)
α (y; f ;kz): (3)

Here superscriptn denotes mode number. The solution of (3) gives a complete set of orthonormal

eigenfunctionsϕ(n)
α (y; f ;kz) with corresponding positive eigenvaluesλ(n)( f ;kz).

Lumley [18] has shown that for homogeneous directions POD modes are Fourier modes .
Thus, if a directionx in the flow is taken as homogeneous, the eigenmodes in thex-direction are
Fourier modes. Delville [19] pointed out that the POD technique can be treated as a generalization
of Fourier transform in the inhomogeneous direction. Thus, POD can be viewed as a generalized
low-pass filtering technique and some properties of Fourier analysis, like aliasing and filter cut-off
issues can be extended for POD. For further discussion, the reader is referred to [16]

The resulting planar jet streamwise, lateral and spanwise component (i.e.u, v, andw, respec-
tively) eigenmodes were experimentally obtained in a mixed physical - Fourier space(y;St;kz)

wherey denotes the cross stream spatial coordinate,St is a Strouhal number based on the local
mean velocity half-withb(x) and the local jet centerline mean velocityUm andkz is the span-
wise wavenumber. The detailed analysis and discussion of the eigenmodes and eigenvalues in the
planar jet is the topic of the recent paper by Gordeyev and Thomas [16].

3.2 Wavelet Reconstruction

Any velocity realization can be represented as a sum of these experimentally determined eigen-
functions,

uα(y;z; t) =
∞

∑
n=1

u(n)α =
∞

∑
n=1

Z Z
c(n)( f ;kz)ϕ

(n)
α (y; f ;kz)exp(2πi f t )exp(ikzz) d f dkz: (4)

All the phase information necessary for reconstruction of the coherent structure in the physical
domain resides in the coefficientsc(n)( f ;k). In order to find them, a projection of the POD modes
back onto instantaneous realizations of the flow is needed. Instantaneous realizations of the flow
onto which the POD eigenfunctions are to be projected were acquired with a triple x-wire rake
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Fig. 1 Schematic of the triple x-wire rake set-up.

arrangement, Figure 1, as described in details in [24]. This allows the unambiguous extraction
of the planar component of the jet structure as well as the most energetic nonplanar part. All the
rakes are located at the samex=D location and extend in the cross-stream direction, parallel to
each other. The rakes are separated in the spanwise direction by a distance,H = b. Each of the
three rakes contains eight x-wire probes.

The large-scale structure is reconstructed in physical space by projection of measuredu, v;
andw-component POD eigenmodes onto instantaneous flow field realizations. The projection is
performed by means of a continuous wavelet transform-based technique. To the authors’ knowl-
edge, the approach of using wavelet transform methods as the basis for the projection of the
POD modes onto the flow (instead of Fourier methods) is unique to the study of Gordeyev and
Thomas [24]. A presentation of basic wavelet theory may be found in several recent texts on the
subject (e.g. Daubechies [20], Kaiser [21] and Farge [22]). The application of wavelet analysis
techniques to experimental fluid mechanics is the topic of the paper by Lewalle [23].

The wavelet transformation of a continuous signalf (t) 2 L2(R) is defined in the following
way:

WT(τ;a)f f (t)g = ef (τ;a) = 1p
a

Z +∞

�∞
f (t)g�

�
t� τ

a

�
dt (5)

where the parametera is called adilatation or scale parameter,τ is called ashift parameter,and
the asterisk denotes a complex conjugate. The complex valued functiong(x) is called awavelet
mother functionand it satisfies the following conditions:Z

g(x)g�(x)dx< ∞ (6)

C(g) = 2π
Z +∞

�∞

jbg(ω)j2
ω

dω < ∞: (7)

As before, the hat sign,(b�) over a function denotes a Fourier transformation,

bg(ω)� Z +∞

�∞
g(x)e�iωxdx: (8)

The condition (7) guarantees the existence ofthe inverse wavelet transformation,

f (t) =WT�1(t)
nef (τ;a)o=

1
C(g)

Z +∞

0

Z +∞

�∞

ef (τ;a)p
a

g

�
t� τ

a

�
da dτ

a2 (9)
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This investigation uses a complex Morlet wavelet mother function,

g(x) = eirxe�x2=2�e�r2=2e�x2=2; (10)

as the basis for the wavelet transform, with the value ofr = 1.

3.3 Wavelet-based Reconstruction

In order to reconstruct the shape of the POD modesϕ(n)
α (y; f ;kz) in physical space, an inverse

transform in frequency and wavenumber domains should be performed. But the POD modes
are known only up to an arbitrary phase. The phase information required for reconstruction of
the flow structure can be restored by projection of the POD modes onto instantaneous flow field
realizationsuα(y;z; t) obtained at selected streamwise locations,x=D, in the similarity region of
the jet. The approach outlined in the following section uses the continuous wavelet transformation
to perform the projection. The reconstruction procedure consists of the following six steps:

1. A spatial Fourier transform in thez-direction is performed in order to compute ˆuα(y;kz; t) =
FT fuα(y;z; t)g :

2. The wavelet transformation in time (5) is calculated,euα(y;kz;a( f );τ)=W T(a;τ)fûα(y;kz; t)g :

3. Using the orthogonality of the POD modes, the coefficients (in wavelet space)c(n)(kz;a( f );τ)
can be computed by projecting the POD modes onto an instantaneous realization,

c(n)(kz;a( f );τ) =
Z euα(y;kz;a( f );τ)ϕ(n)�

α (y; f ;kz)dy:

4. The wavelet transform of each POD mode can be restored,

eu(n)α (y;kz;a( f );τ) = c(n)(kz;a( f );τ)ϕ(n)
α (y; f ;kz):

5. The inverse wavelet transform (9) provides the POD mode in a mixed Fourier-physical
space,

û(n)α (y;kz; t) =WT�1(a;τ)
neu(n)α (y;kz;a( f );τ)

o
:

6. Finally, the inverse Fourier transform restores the POD modes in the physical domain,

u(n)α (y;z; t) = FT�1fû(n)α (y;kz; t)g

The fluctuating flow field is then the sum of all POD modes,

uα (y;z; t) =
∞

∑
n=1

u(n)α (y;z; t): (11)

It is common to use a triple decomposition of the velocity field in order to account for the
presence of the large-scale flow structure,u = U+uLS+u f s, whereU is the mean velocity field,
uLS represents the large-scale coherent structure andu f s is fine scale, phase incoherent turbulence.
The authors will represent the coherent structure in terms ofa summation of the dominant POD
modes, u(n). In addition, since the authors are interested only in the large scale motions, they
neglectu f s which are those motions that do not contribute to the cross-spectral tensor for the∆y
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Fig. 2 Reconstructed flow field for planar coherent structure (in the moving frame of reference).

and∆zprobe separations used in the experiment. The large-scale flow structure is then represented
as a series consisting of the mean flowU(y) and firstN POD modes,

eu = U(y)+
N

∑
n=1

u(n): (12)

Note that the mean flow is time-independent and thus is orthogonal to the POD modes. From
(12) it follows that the mean flow can be treated asthe dominant POD mode. The remaining POD
modes can be viewed asperturbations of the mean flow. The three-rake experiment allows one
to extract the planar part of the structure, as well as a dominant nonplanar part of the structure.
For an extended discussion of the three-rake experiment, see [24]. The authors takeN = 3 to
reconstruct the planar structure andN = 2 for the non-planar structure.

4 RESULTS OF THE FLOW RECONSTRUCTION

The jet coherent structure travels with a convective speed in the range ofUc�0:60::0:65UM which
is approximately independent ofy for the inner region of the flowy=b< 1. In a frame of reference
moving downstream at speedUc new variables are then defined asx! x�Uct, y! y, u! u�Uc.
One way to represent the structural topology of the planar mode is to plot the velocity vector field
and instantaneous streamlines ofu�Uc as a function of lateral positiony and a pseudo-spatial
streamwise coordinatex=�Uct.

4.1 Planar Part of the Structure

For better visualization for the flow field corresponding to the planar part of large-scale structure,
the streamlines were used in addition to velocity vector plots. The extracted planar flow field was
first spline interpolated throughout the region in interest. Then, streamlines were computed as a
numerical solution of the streamline equation for a series of initial points located aty=b= �1
and uniformly distributed in the streamwise direction. Each streamline equation was numerically
integrated forward and backward in time using a Runge-Kutta method. This is similar to putting
dots of dye in the real flow, but here we use the filtered velocity field corresponding to the first
three dominant planar POD modes. Figure 2 presents a sample of both the velocity vector field
and ”instantaneous streamlines” associated with the planar component of the jet coherent structure

9th International Symposium on Flow Visualization, Heriot-Watt University, Edinburgh, 2000
Editors G M Carlomagno and I Grant 106–7



y ,

obtained by superimposing the mean flow and the first three planar POD modes. It must be
remembered that this flow pattern is presented in a frame of reference moving with constant
speedUc. Both the crosstream and pseudo-spatial streamwise coordinatesy andx have been non-
dimensionalized by the local mean velocity half-widthb. Note that the streamlines shown are
actually particle path lines. However, since time is treated as equivalent to a spatial coordinate
by the assumption of a frozen field convected atUc, they may be interpreted as instantaneous
streamlines.

The pattern shown in Figure 2 is characterized by a streamwise series of centers and sepa-
ratrices on both sides of the jet. This clearly shows the presence of large-scale counter-rotating
vortical structures on either side of the jet which are arranged approximately antisymmetrically
with respect to the jet centerline. In fact, the structural arrangement shown in Figure 2 closely
resembles the classic Karman vortex street arrangement, with the locations of the two vortex lines
centered at approximatelyy=b��0:85. There is a strong interaction between structures on op-
posite sides of the jet in the form of lateral streaming motions that extend well across the flow. In
viewing these structures it must be remembered that the POD essentially works as a spatial filter
and so the small scale turbulent noise is effectively removed from the large-scale motions in the
jet. This allows one to see clearly the underlying structural topology. The structural pattern shown
in Figure 2 also resembles that proposed by Oler and Goldschmidt [4] in their simple kinematic
model of the jet large scale structure. In conditional sampling of a heated planar jet Antonia et
al [6] associated strong temperature fronts with the separatrix between adjacent structures in the
jet. Although their conditional measurements were confined to a single side of the flow, there is a
resemblance between aspects of their Figure 6 and the structural pattern shown in Figure 2 of this
paper.

4.2 Three-Dimensional Reconstruction

In order to restore the shape of the non-planar structure in physical space, an inverse Fourier
transform should be performed,u(n)non�planar = u(n)α (y;z; t) =

R bu(n)α (y;kz; t)exp(ikzz)dkz. Since the
triple rake arrangement only allows one to obtain the planar and a single non-planar mode, the
integration can be replaced by a simple multiplication of the spanwise Fourier component by
a periodic function exp(ikzz). Taking into account that the resolved spanwise wavenumber is
kzb=2π = 0:5, the final version of the spanwise velocity reconstruction will be as follows,

u(n)non�planar(y;z; t) =
nbu(n)(y;kz; t)cos(πz=b); bv(n)(y;kz; t)cos(πz=b); bw(n)(y;kz; t)sin(πz=b)

oT

(13)
The resulting flow field is periodic in the spanwise direction with a period ofz=b= 2. The reason
the sine function appears in thew-component is because the flow field must satisfy the continuity
equation∂uα=∂xα = 0.

Each POD mode can be approximated by a sum of the planar and non-planar parts,u(n)(y;z; t)�
u(n)planar(y; t)+u(n)non�planar(y;z; t). Although this is not an exact representation, it does serve to give
an approximate picture of the three-dimensional velocity field associated with the POD mode.

By including the nonplanar mode, the velocity field corresponding to the coherent structure
is now a function of the three coordinates(y;z; t). This poses a challenge in presenting the results.
We first investigate the flow structure by looking at cross-cuts in the three planesz=b= 0;0:5;1. It
follows from (13) that in these planes the effect of the non-planar POD component is maximum.
In Figures 3(a), (b) and (c) the velocity vector field and 2-D instantaneous streamlines associated
with the (u;v) components are plotted for each plane. For clarity, only every fourth point in
the temporal direction is plotted for the velocity vector plots. In addition, the iso-contours of
the amplitude of thew-component atz=b= 0:5 is presented in Figure 3(d). Comparison of the
flow patterns shown in Figures 3(a), (b) and (c) reveal an overall similarity which suggests the
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Fig. 3 The velocity field(u;v) and instantaneous streamlines of the reconstructed non-planar
coherent structureunon�planar

α (y;z; t) with first N = 2 POD modes ata) z=b = 1, b) z=b = 0:5
andc) z=b = 0 spanwise locations andd) w-component of velocity atz=b = 0:5 (red-negative,
blue-positive).

dominance of the planar mode. Closer inspection, however, reveals some important differences
resulting from the nonplanar mode. First, the positions of certain vortical structures appear shifted
in the differentz=b planes. A particular example is labeled S1 which shows a distinct streamwise
shift with changes inz. Others (e.g. S2) occur at virtually the same location. This suggests
that some of the structures are tilted with respect to the z-axis while others are not. Another
difference is the apparent strengthening or weakening of thez-directed vorticity associated with
particular structures with changes inz. An example is labeled S3. This is also consistent with the
tilting or bending of structures which will serve redistributez-directed vorticity. Other evidence
of the three-dimensional character of the flow field comes from noting that many of the centers
exhibited by the planar mode streamline patterns become foci upon inclusion of the nonplanar
mode. This observation is also consistent with Figure 3(d) which shows large scale, laterally
coherent upward and downward (spanwise) fluid motions. Hence, Figures 3 suggest that while
the planar component of the jet coherent structure is dominant, the non-planar part gives rise to
its spanwise perturbation in the form of bending or tilting.

In order to investigate the structural topology, several streamlines were traced in the three-
dimensional space around different vortical structures in the flow. This was done by tracking
particle paths released at the samey location but in differentz-planes. The particle paths are then
followed in time and the resulting sheet traced. In other words, this procedure is equivalent to
introducing a thin sheet from a line of smoke or dye sources extending in the spanwise direction
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Fig. 4 Several examples of the reconstructed 3-D flow field around non-planar structures.

and observing their response to the imposed velocity field. With the assumption of a frozen
field convected atUc these particle paths become equivalent to instantaneous streamlines. To
calculate these streamlines, the 3-D streamline equation was solved numerically for the velocity
field (13) for 10 initial points placed uniformly along a line in the spanwise direction for a half of
the periodz=b= 0::1. A cubic spline interpolation was used in the(Uct;y) plane. The locus of
obtained streamlines are plotted as a surface. A few examples are shown in Figure 4. This figure
shows instantaneous streamline surfaces which wrap around a spanwise vortical structure thereby
revealing the flow pattern near the core. Two projections are also shown in gray to facilitate
visualizing these 3-D surfaces. Investigation of the topology of nonplanar modes shows that
they indeed both tilt and bend the spanwise vortex tubes. The bending occurs primarily in the
streamwise direction. The degree to which the spanwise vortices are distorted varies greatly; in
some cases they are nearly streamwise oriented and in others only slight distortion of a spanwise
vortex is noted. The Figure 4 reveals an obvious advantage of the low-pass filtering property of the
POD technique. The most of small-scale velocity fluctuations are removed from the processed
data and the topology of the large-scale structures are clearly visible. Although only a single
nonplanar mode was examined, in reality a continuous spectrum of nonplanar modeskzb=2π < 1
will distort the spanwise vortices. The result will be similar in overall topology to that presented
in Figure 2 but will involve finer scale convolutions of the primary vortex tube.
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