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Abstract

The coherent structure in the self-similar region of a turbulent planar jet at moderate
Reynolds number was experimentally investigated by application of wavelet-based techniques
and the Proper Orthogonal Decomposition (POD). Three rakes containing a total of 24 X-wire
probes were used to acquire the required u0, v0 and w0 velocity uctuation time-series data.
The measurements were performed for di�erent spanwise separations between the rakes (i.e.
di�erent spanwise wavenumbers) at several streamwise locations. The POD technique was
used to extract average coherent structures and their associated energy. Coherent structures
are de�ned as spatial POD modes. The results show that the POD modes exhibit self-similar
behavior for x=D > 60 (D is the nozzle width), which proves that the dynamics of the jet is self-
similar. Projection of the POD modes onto instantaneous realizations of the ow �eld provides
instantaneous shape of the coherent structure in the spatio-temporal domain. Two di�erent
kinds of structure were found in the jet: planar spanwise vortices and more complex spanwise
periodic structures, topologically similar to an array of spanwise vortices. Among other things,
a distinct intermittent behavior of these structures is observed. The results provide important
and unique information about the topology of structures in the planar jet and lead to a better
understanding of the jet physics.
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Chapter 1

INTRODUCTION

The fact that many turbulent ows are not completely random, but possess large-scale,
spatially-correlated motions or coherent structures (CS) was experimentally discovered in the
middle of the century (Theodorsen [136], Townsend [140], Brown & Roshko [32], Winant &
Browant [147]). Since then coherent structures have been studied quite extensively and have
been shown to be an important factor governing the macrocharacteristics of turbulent ows, like
mass and heat transfer and mixing properties. At this juncture there is no universally agreed
upon de�nition for the term coherent structure. For example, among others, Hussain [80],
[81], [82] has introduced one possible de�nition of coherent structure as a connected turbulent
uid mass with instantaneously phase-correlated vorticity over its spatial extent and thereby
emphasized vorticity as a characteristic measure of coherent structures. Extending Reynold's
idea of decomposing turbulent ow into the mean part and the uctuating component, he
proposed a triple-decomposition of the ow into a mean ow, coherent structures and incoherent
turbulence. Also he proposed possible origins of coherent structures and their time evolution
as a strange attractor in phase space. Cantwell [35] in 1981 reviewed research into organized
motion in di�erent types of turbulent ows and discussed possible ways to investigate the
dynamics of coherent structures. Particularly, their applications in transition and control of
mixing were described.

Decomposition of the ow into a mean part, a number of coherent structures or modes and
small-scale turbulence looks attractive from the point of view that it could provide a di�erent
way to describe the ow dynamics. The system can be thus modeled as a �nite number of modes
interacting with the mean ow, small-scale turbulence and between themselves (intermodal
interactions). However, despite progress in this area, the coherent structure approach still has
not generated new turbulence models that embody the coherent structure concept. One of the
diÆculties in using the coherent structure approach lies in limited information about coherent
structures and their properties like topology, dynamics and evolution.

From the experimental point of view, coherent structure identi�cation requires sophisticated
equipment, considerable computer resources to process the large amount of experimental data
required for their characterization and proper mathematical tools to interpret and analyze the
results. One of the possible candidates for experimental investigation of coherent structure
dynamics is turbulent jets.

Turbulent jets appear in many practical applications. Further, the simple geometry and
boundary conditions make jets really attractive for fundamental investigations into turbulence.
The research reported in this document will focus on the coherent structure in the planar
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turbulent jet. In the following section an introduction to the structure of a turbulent planar
jet is presented.

1.1 Previous studies of the structure of the turbulent

planar jet

A planar turbulent jet can be divided into three regions, presented schematically in Figure 1.1.
In the initial region closest to the nozzle exit the jet consists of two transitioning planar shear
layers (with velocity ratio of unity) which bound a central core of irrotational ow (known as
the potential core). As a result of sequential vortex pairing events and the associated mixing
transition, the shear layers widen with downstream distance and the potential core is engulfed
near x=D � 4. The near �eld of the planar jet is unique in that the shear layers on opposite
side of the jet contain large scale, spanwise coherent vorticity of opposite sign. The merging of
the shear layers near the tip of the jet potential core gives rise to a complex interaction region
which extends to approximately x=D = 10 where the jet begins to reach a state dynamical
equilibrium and the mean velocity pro�les begin to exhibit evidence of self-similar behavior. In
other words, the mean velocity pro�les become congruent when scaled by the local centerline
velocity Umax (x) and the local mean velocity half-width b(x). This region is called a self-
similar region. Since the jet decays and widens in the streamwise direction, Umax and b are
functions x=D. Second-order moments of the velocity also exhibit self-similarly in the region,
but typically the onset occurs further downstream. Well-documented measurements in planar
jets are presented in Bradbury [29] and Gutmark & Wignanski [71], for instance.

D
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U      (x)max

0.5Umax

b(x)

x/D=10

x/D=4..5

Initial
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Interaction
   region

Self-similar
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x

y

Figure 1.1: Jet regions and de�nition of the self-similar variables.

One of the �rst indications of large-scale structure in the plane turbulent jet was the "jet
apping phenomenon" �rst reported by Goldschmidt and Bradshaw [59] and later by Everitt
and Robins [46] and Cervantes and Goldschmidt [36]. This involved the observation of nega-
tive correlation between streamwise velocity uctuations measured simultaneously by hot-wire
probes placed on opposite sides of the jet centerline. The term "apping" is actually a misnomer
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which stems from early interpretations of this phenomenon in which it was suggested that the
jet aps much as a ag does. A lateral oscillation of the mean velocity pro�le was proposed
as the cause of the negative time-average correlation. In contrast, Oler and Goldschmidt [115]
suggested that such correlation measurements are consistent with the presence of large-scale
coherent structures in the similarity region of the planar jet in the form a self-preserving anti-
symmetric array of counter rotating spanwise vortices. Correlation measurements by Antonia
et al [7] are supportive of such an antisymmetric structural array concept and showed that
the apparent apping could indeed be explained in terms of the passage of vortical structures
past the �xed probe pair and was not associated with bulk lateral displacement of the jet.
Antonia et al [7] also noted that the existence of an anti-symmetric structural pattern was
not in conict with the earlier observations of both Gutmark and Wygnanski [71] and Moum
Kawall and Ke�er [113] which showed the independent, three dimensional random motion of the
turbulent/non-turbulent interface on opposite sides of the jet. Detailed iso-correlation contour
maps based on both streamwise and lateral velocity uctuations as obtained in di�erent jet
facilities by Mumford [114], Antonia et al [8] and Thomas and Brehob [138] exhibit a remark-
able likeness and appear consistent with the existence of a large-scale structural array in the
planar jet similarity region. The study by Antonia et al [8] was performed in a heated jet and
the existence of laterally coherent temperature fronts was used as the basis for a conditional
sampling scheme. The resulting coherent structure topology inferred from this method was
suggestive of an antisymmetric structural array. The temperature fronts were found to be asso-
ciated with the diverging separatrix connecting adjacent structures on the same side of the jet.
The contribution of the coherent and random motions to momentum and heat transport were
found to be comparable. Mumford [114] used an iterative pattern recognition technique in order
to investigate the topology of the large-scale structure in the turbulent plane jet. An initial
structural template, whose form was motivated by conventional correlation measurements, was
convolved with experimental realizations of the ow and subsequently modi�ed as required by
an optimization constraint until convergence was reached. The results suggested the existence
of multiple roller-like structures whose axes extend in either the direction of mean ow homo-
geneity or in the direction of strain associated with the mean velocity gradient. The existence
of multiple structural forms in the ow was suggested by Antonia et al [7] and Thomas and
Brehob [138] to account for the limited spanwise integral macroscales in the similarity region.

Space-time correlation functions formed between streamwise or lateral component velocity
uctuations measured simultaneously on opposite side of the planar jet are found to be quasi-
periodic. As such, a local time scale, �c, may be de�ned as the average time-delay between
successive correlation function maxima or minima. Studies by Cervantes and Goldschmidt [36],
Antonia et al [7], Thomas and Goldschmidt [139] and Thomas and Brehob [138] in di�erent
test rigs all exhibit the same constant Strouhal number,

b

�cUM

= 0:1 (1.1)

where b is the local jet mean velocity half-width and UM is the local jet centerline velocity.
This suggests that the underlying large-scale component of the ow scales in accord with the
requirements for global ow similarity, i.e. that, �c � x3=2, where x is the streamwise spatial
coordinate. More recent theoretical work performed by Ewing [48] has shown that the equations
governing the propagation of the two-point velocity correlation tensor in the planar jet admit
to self-similar solutions.
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The convective velocity of the large-scale structural array has been estimated in studies [60],
[7] and [138] using a variety of two-point measurement techniques. These studies are in general
agreement, suggesting that the large-scale structural array propagates at approximately 60%
of the local centerline mean velocity.

Thomas and Goldschmidt [139] considered the development of coherent structures through-
out both the initial, interaction and similarity regions of the planar jet. The structures were
noted to form and interact symmetrically in the transitional jet shear layers prior to the end
of the potential core. Spanwise integral macroscales showed that the structures exhibit sub-
stantial two-dimensionality in the initial region. When the shear layers merged beyond the jet
potential core, a restructuring of the ow was observed to occur which led to a loss in spanwise
two-dimensionality on average and the formation of the self-preserving anti-symmetric struc-
tural pattern described above. Antonia et al [7] also found that structures initially formed and
interacted symmetrically in the initial region, with the shear layer interaction near the tip of
the jet core triggering the formation and apparent dominance of the antisymmetric structural
pattern downstream. The planar jet interaction region has been the focus of detailed studies
by Weir et al [145] and Browne et al [33]. The latter study characterized the redistribution of
turbulence quantities in the interaction region of the plane jet as "dramatic" with a complex
and violent interaction between initially symmetric jet shear layer vortices noted.

Although many details regarding the coherent structure's topology, origin, evolution, mutual
interaction and role in the ow �eld dynamics are still unclear, there can be little doubt from
the studies cited above that a signi�cant coherent structure resides in the planar jet similarity
region. Further, this structure appears to originate from the shear layer interaction near the
tip of the jet core. The resulting structural topology may well be complex since studies have
suggested both rollers aligned in the spanwise direction as well as in the direction of strain
associated with the mean velocity pro�le.

1.2 Application of Proper Orthogonal Decomposition to

extract structures

A variety of conditional sampling techniques are widely used to investigate coherent structures
in ows. One shortcoming of these techniques is that they require some a priori knowledge
about the shape of structure. On the contrary, the Proper Orthogonal Decomposition (POD),
proposed by Lumley [101], [102] provides an unconditional procedure of decomposing a ow
into an in�nite series of the orthogonal modes. This technique computes these modes from
the velocity two point cross-correlation matrix. Thus, the shape of the modes depends on the
particular ow �eld. The series form the most optimum set in a sense that it possess the fastest
convergence among all possible orthogonal sets. In other words, that �rst mode contains the
most possible energy, the second mode keeps the most of the energy remaining and so on. The
velocity �eld can be represented as a sum of the modes. Because of the fastest convergence
property, the number of energetically signi�cant modes is minimum. Since there is no unique
de�nition of the coherent structure, one can de�ne coherent structures as POD modes, like
Lumley did in [102].

If most of the energy of the ow is contained within the �rst few POD modes, one can use
a truncated number of the POD modes as a basis set. Projecting them on the Navier-Stokes
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equations, one can reduce the system of PDEs down to a low-order system of ODE's, where the
rest of the modes can be modeled by a dissipative term. This low-order model can be realtively
easily analyzed comparing with the original PDE system. We'll discuss this issue in detail in
Chapter 8.

As the ow can be presented as a sum of interacting coherent structures, any information
about the shape, origin and evolution of the structures leads to a better understanding of the
underlying physics. If the number of the most energetic structures is small, a low-dimensional
model of the turbulent jet can be built as a non-linear interaction between POD modes or
structures. Yet, up to the author's knowledge, no research had been made to investigate POD
modes in the self-similar region of a planar turbulent jet. One of the questions about the planar
jets is as follows: Provided that all mean quantities are self-similar, is the dynamics of the
planar jet in the self-similarity region self-similar as well? Are coherent structures in the jet
self-similar? Theoretical work performed by Ewing [48] has shown that the equations for the
evolution of the two-point correlation matrix admit self-similar solutions in the jet. This provide
a necessary condition for the POD modes to be self-similar. Preliminary POD measurements
done by Gordeyev & Thomas [64] has extracted large pseudo two-dimensional vortex-like POD
modes existing in the region. They appear to have self-similar shapes. This reference seems to
be the only application of the POD technique to investigate the self-similar region of the planar
jet.

1.3 Application of wavelet transform to analyze the co-

herent structure

POD gives only average information about PODmodes, because it is based on the time averaged
velocity correlations. Projection of POD modes back to the instantaneous ow �eld can provide
information about an instantaneous shape of the structures. In general, coherent structures
appear to be well-localized in time and space and exhibit distinct intermittent behavior. One
way to analyze them is to use the wavelet transform. In recent years the wavelet transform
[69] has appeared as an extension of Fourier transform. It utilizes basis functions localized in a
time-frequency domain and shows a clear superiority in investigating temporally intermittent
signals. Wavelet-based temporal reconstruction of POD modes provides valuable information
about instantaneous shape and dynamics of the underlying structures. For the modeling it
means a fair and rigorous comparison between the model predictions and the actual temporal
dynamics of structures in the jet.In the author's opinion, a proper combination of POD and
wavelet transform gives a powerful way of investigating a spatio-temporal evolution of the
structures existing in the planar turbulent jet.

An investigation of the dynamics of the structures leads to a better understanding of the
physics of the planar jets and, as one of possible applications could provide more eÆcient jet
control strategies. The ability to control the characteristics of jet (noise radiation, mixing
properties, heat transfer, to name a few) would bene�t numerous engineering applications. De-
spite progress in investigating the planar jet coherent structures, no dynamical models utilizing
information about coherent modes in the planar jets has been constructed so far.
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1.4 Thesis organization

In this thesis a rigorous experimental technique of extracting spatial information about coherent
structures in a planar jet is presented. The thesis is organized as follows. Research objectives
are stated in Chapter 2. A brief theory of POD and wavelet transform with short reviews of
their applications in aerodynamics are given in Chapters 3 and 4. In Chapter 5 the experimen-
tal set-up and measurement techniques are presented and disscussed. In Chapter 7 the results
are described. The POD modes are shown to be self-similar ones. Using the wavelet decom-
position, an instantaneous topology of the structures is obtained. In Chapter 8 possible ways
and potential problems of constructing a dynamical model of the planar jet in the self-similar
region are outlined and briey discussed.
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Chapter 2

RESEARCH OBJECTIVES

The objective of the research is to experimentally investigate the topology and dynamics of
large-scale coherent structures in the self-similar region of a planar jet using both of Proper
Orthogonal Decomposition (POD) and wavelet analysis techniques. The cross-spectral matrix
is experimentally measured and the POD modes are extracted by applying POD theory. In
this work coherent structures are de�ned as dominant POD modes. The use of POD allows one
to extract an average shape of large-scale structures. Since the jet mean characteristics reveal
a self-similar behavior, the question of whether the POD modes behave in a self-similar matter
arises. Similarity of the modes implies self-similarity of the jet dynamics, since the ow can
be decomposed into a series of the modes. Galerkin projection of the �rst few most energetic
and therefore the most dynamically important POD modes into governing equations gives a
low-dimensional nonlinear system of equations for the temporal evolution of the modes. The
optimality of POD guarantees that the number of equations is minimal. One can hope that
the number of equations would be reasonably small to apply standard mathematical tools to
analyze the system. Keeping more modes in the truncated expansion would lead to a greater
number of equations, but provides a better description of the dynamics of the jet. One of the
fundamental question is 'How many modes need to be kept in order to realistically model the
jet dynamics? The proposed research will seek to answer this question.

The model describes the dynamical behavior of the jet in terms of the temporal evolution
of the modes. To obtain the experimental data regarding the temporal evolution of the modes,
the modes are projected back to the instantaneous velocity �eld, using wavelet reconstruction
technique. Comparing the modeled evolution of the modes with that experimentally determined
can provide a sound veri�cation of the quality of the modeling. Also, a detailed analysis of the
experimentally obtained temporal coeÆcients itself can provide useful information about the
underlying dynamics of the structures. The wavelet transform can provide answers to questions
regarding the temporal dynamics of the structures like

1. Do the structures exhibit periodic or intermittent behavior in time?

2. What is the variation in the instantaneous size of the structures?

3. Do they travel alone or in packets?

This information is vital to the turbulence modeling of the jet.
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Chapter 3

BRIEF OVERVIEW OF THE
PROPER ORTHOGONAL
DECOMPOSITION (POD)

3.1 Basic Theory

The mathematical background behind the POD is essentially the Karhunen-Lo�eve (KL) proce-
dure, Karhunen [86], Lo�eve [99]. The basic idea is to describe a given statistical ensemble with
the minimum number of deterministic modes. Let u(s) be a random generalized process with s
as a parameter (spatial and/or temporal). We would like to �nd a deterministic function �(s)
with a structure typical of the members of the ensemble in some sense. One way to do it is to
maximize the projection of u(s) into �(s). Mathematically, a functional in the following form
needs to be maximized, D

j(u; �)j2
E

(�; �)
= � � 0 (3.1)

where h�i is the averaged or expected value, (�; �) is a scalar product. The classical methods of
the calculus of variations with a restriction (�; �) = 1 gives the �nal result for � [77],Z

R(s; s0)��(s0)ds0 = ��(s) (3.2)

The equation (3.2) is a homogeneous Fredholm integral equation of the second kind. Here
R(s; s0) = hu(s)u�(s0)i is an integrable cross-correlation Hermitian matrix or tensor between
two points s and s0 and the asterisk denotes a complex conjugate. The solution of (3.2) forms
a complete set of a square-integrable orthonormal functions �n(s) with associated eigenvalues
�n [108]. Any ensemble of random generalized functions can be represented by a series of
orthonormal functions with random coeÆcients, the coeÆcients being uncorrelated with one
another:

u =
1X
n=1

cn�n; hcncmi = Ænm�m (3.3)

These functions are the eigenfunctions of the autocorrelation with positive eigenvalues.
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The cross-correlation tensor itself can be presented in terms of the orthogonal functions as

R(s; s0) =
1X
n=1

�n�n(s)�
�

n(s
0); (3.4)

Finally,

h(u; u)i =
Z
R(s; s)ds =

1X
n=1

D
j(u; �n)j2

E
=

1X
n=1

�n (3.5)

Thus, the eigenvalues provide the energy content of the various eigenfunctions (modes).
Moreover, since the modes were determined by maximizing � (the energy of a mode), the series
(3.3) converges as rapidly as possible. This means that it gives an optimal set of basis functions
from all possible sets in terms of energy convergence.

If the averaging is performed in time domain, h�i = 1=T
R T
0 (�)dt, then u(t;x) (here t and x

are time and space coordinates) can be represented as follows,

u(t;x) =
1X
n=1

cn(t)�n(x); (3.6)

where c's are temporal coeÆcients and �'s are the spatial eigenfunctions or modes.
The transformation (3.2)-(3.3) is the POD transformation. A more complete account of the

theory can be found in [77], for instance.
Because of discretization of experimental data, a vector form of POD is widely used. In

this case the integrations are replaced by a �nite quadrature form. The signal u becomes an
ensemble of �nite-dimensional vectors, the correlation function R becomes a correlation matrix
and the eigenfunctions are called eigenvectors.

On practical grounds, (3.3) or (3.6) usually is represented only in terms of a �nite set of
functions,

u � uL =
LX
l=1

cl�l (3.7)

Number of modes L kept in the expansion depends on the error of approximation one is willing
to accept.

3.2 Properties of POD

1. The generalized coordinate system de�ned by the eigenfunctions of the correlation matrix
is optimal in the sense that the mean-square error resulting from a �nite representation
of the process is minimized. That is for any �xed L:

RL =
Z T

0
[u(t)�

LX
n=1

cn�n(t)]
2dt! min (3.8)

if and only if �n(t) are eigenfunctions of (3.2).

2. The random variables appearing in an expansion of the kind given by the equation (3.3)
are orthonormal if and only if the orthonormal functions and the constants are respectively
the eigenfunctions and the eigenvalues of the correlation matrix.
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3. In addition to the mean-square error minimizing property, the POD has some additional
desirable properties. Of these, satisfaction of the continuity equations is worth mention-
ing.

4. Algazi and Sakrison [6] show that Karhunen-Lo�eve expansion is optimal not only in terms
of minimizing mean-square error between the signal and it's truncated representation
(Property 1), but also minimizes the number of modes required to describe the signal for
a given error.

5. For homogeneous directions POD modes are Fourier modes [102]. Thus, if a direction x
in the ow is homogeneous, the correlation tensor between two points (x; y) and (x0; y0)
depends only on �x = x� x0,

R(x; x0; y; y0) = R(�x; y; y0) (3.9)

and eigenmodes in x-direction are Fourier modes exp(ikx). Thus the problem (3.2) is
decoupled into a set of one-dimensional problems for every Fourier wavenumber k,Z bR(y; y0; k)'�(y0; k)dy0 = �(k)'(y; k) (3.10)

where bR(y; y0; k) is Fourier transform of R(�x; y; y0) in the x-direction, bR(y; y0; k) =R
R(�x; y; y0)eik�x�x. The velocity decomposition (3.6) will become

u(x; y; t) =
X
n

Z
c(n)(t; k)eikx'(n)

� (y; k)dk (3.11)

Note that in this case ''s are known up to an arbitrary function eif(k), that is
the phase information in between modes is lost. All the phase information resides in
the temporal coeÆcients c(n)(t; k). In order to �nd them, a projection back to
an instantaneous ow is needed. This can be done either experimentally using rakes
of probes or theoretically using Galerkin projection. An example of the wavelet-based
projection procedure is described in Chapter 4.

3.3 Practical applications and limitations of POD

In the case of a large number of spatial points, and consequently number of elements in the
second-order correlation tensor, the approximating (3.2) or even (3.10) by a �nite di�erence
and solving the obtained matrix problem directly becomes practically impossible. Sirovich [129]
pointed out that the temporal correlation matrix will yield the same dominant spatial modes,
while often giving rise to a much smaller and computationally more tractable eigenproblem - the
method of snapshots. Mathematically, for a process u(t; x), instead of �nding a spatial two-point
correlation matrix Rij = 1=M

PM
m=1[u(xi; tm)u(xj; tm)], where N is a number of spatial points

and solving (3.2) (N�N -matrix), one can compute a temporal correlationM�M -matrix Amn,

Amn =
1

M

Z
V
u(x; tm)u(x; tn)dx; (3.12)
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where M is number of temporal snapshots and calculate �i(x) from um(x) = u(tm; x) series as

�i(x) =
MX
m=1

bm;ium(x) (3.13)

where bm;i's are the solutions of the equationAb = �b. UsuallyM � N and the computational
cost of �nding �'s can be reduced dramatically. The method of snapshots also overcomes the
diÆculties associated with the large data sets that accompany more than one dimension.

In [68] the limitations of POD with temporal averaging were discussed. It was shown that in
this case the analysis uses only information that is close to a particular �nal state of the system
and thus cannot be used for the system which has a several �nal states. Also it was pointed
out that the analysis de-emphasizes infrequent events, although they could be dynamically very
important (burst-like events in a turbulent boundary layer). Alternative averaging techniques
were proposed and shown to be more informative in terms of investigating the system dynamics.
Delville [44] pointed out that POD technique can be treated as a generalization of Fourier
transform in inhomogeneous direction.

As it was pointed out before, in homogeneous directions the POD reduces to a Fourier-
Stiltjes integral and gives Fourier modes as eigenmodes (Property 5). Because of an in�nite
span in time and/or space, these function are not well-suited to describe physically compact
coherent structures (CS). Lumley [103] proposed a shot-noise method to reconstruct CS in
these homogeneous direction. Recently Berkooz et al. [23] have proposed a usage of wavelets
on homogeneous directions, although no clear advantage was achieved in this approach.

In an experimental context, the POD objectively extracts a complete set of spatial eigen-
functions (i.e. "modes") from the measured second-order cross correlation (or cross-spectral)
matrix. The extracted modes serve as a set of optimal basis functions for expansion of the ow.
The associated eigenfunctions are sometimes called the characteristic eddies of the turbulence
�eld. The term was introduced by Lumley [118]. It is generally recognized that the empirical
eigenfunctions extracted by POD are intimately related to the coherent structure although the
exact relationship is debated. For example, it was noted by Lumley [103] that the �rst POD
mode represents the coherent structure only if it contains a dominant percentage of the uctu-
ation energy. In other cases, POD modes give an optimal basis for ow decomposition but may
have little to do with the physical shape of the underlying coherent structure. In this paper,
we consider the dominant POD modes as synonymous with the term coherent structure.

Because of the large amount of computational and/or experimental work required to �nd
the eigenvectors, the POD technique was virtually unused until the middle of the century.
A historical note about POD is presented in Appendix A.1. Radical changes came with the
appearance of powerful computers and the development of eÆcient algorithms to compute the
eigenfunctions (like the method of snapshots, [129]). A really good review of POD application
in turbulence can be found in [22]. A literature review on applications of POD to a variety of
turbulent ows is given in Appendix A.2. As to other �elds of science, POD (KL expansion) is
used extensively in the �elds of detection, estimation, pattern recognition [10], [54], and image
processing as an eÆcient tool to store random processes [4], in system controls [93], [121], wind
engineering [24], [25], to name just a few; because of the optimality of the expansion the KL
decomposition is widely used in data compaction and reduction.

Relevant to POD techniques, conditional sampling techniques [9] are widely used to identify
and describe coherent motions or structures in turbulent ows. Another unconditional extrac-
tion technique that is closely related to the POD is Linear Stochastic Estimation (LSE) [2], [3].
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LSE, as well as the POD, use the cross-correlation matrix to extract structure from the ow.
In [30] it is shown that LSE can be treated as a weighted sum of an in�nite number of POD
modes. Therefore LSE provides a representation of the coherent structure in terms of a single
characteristic ow pattern.

The ow �elds obtained from the type of conditional averages were referred by Adrian [3]
to as 'conditional ow patterns', or, more briey, 'conditional eddies' in an e�ort to distinguish
them clearly from physical coherent structures and 'characteristic modes' �n(x; t) obtained from
POD technique.
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Chapter 4

WAVELET TRANSFORMATION

4.1 Brief theory

The wavelet transformation of the continuous signal f(t) 2 L2(R) is de�ned the following way:

WT (�; a) ff(t)g = ef(�; a) = 1p
a

Z +1

�1

f(t)g�
�
t� �

a

�
dt (4.1)

where parameter a is called dilatation or scale parameter, � is called a shift parameter and
asterisk denotes a complex conjugate. The complex valued function g(x) is called a wavelet
mother function and satis�es the following conditions:Z

g(x)g�(x)dx <1 (4.2)

C(g) = 2�
Z +1

�1

jbg(!)j2
!

d! <1 (4.3)

Here and everywhere below the hat signbover a function denotes a Fourier transformation of
the function, bg(!) = 1p

2�

Z +1

�1

g(x)e�i!xdx (4.4)

The condition (4.3) is called the admissibility condition and in the case of integrable functions
g(x) implies that

R+1
�1

g(x)dx = 0. The admissibility condition guarantees the existence of the
inverse wavelet transformation,

f(t) =WT�1(t)
n ef(�; a)o = 1

C(g)

Z +1

0

Z +1

�1

ef(�; a)p
a

g
�
t� �

a

�
da d�

a2
(4.5)

Because of the local support in physical domain (4.2), the integration in (4.1) is evaluated
over a �nite domain, proportional to a and centered near � . This property of the wavelet
transformation allows one to analyze local characteristics of the signal at time � and at scale a.

The wavelet transformation (4.1) can be rewritten in the Fourier space as follows

ef(�; a) = p
a
Z +1

�1

bf(!)bg�(a!)ei�!d! (4.6)

and gives another highly useful interpretation of the wavelet transformation as a multiple band-
bass �ltering acting on the signal f(t).
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4.2 Summary of useful properties of wavelet transforma-

tion

1. Linear operator:

WT ff1 + f2g (�; a) = WT ff1g (�; a) +WT ff2g (�; a)

2. Commutative with di�erentiation:

dn

dtn
[WT ffg (�; a)] =WT

(
dnf

dtn

)
(�; a)

3. Parseval's theorem - the energy of the signal can be decomposed in terms of the wavelet
coeÆcients ef(�; a) asZ +1

�1

f(t)f �(t)dt =
1

C(g)

Z +1

0

Z +1

�1

ef(�; a) ef �(�; a)da d�
a2

4. Energy at the scale a is de�ned as

E(a) =
1

C(g)

1

a2

Z +1

�1

ef(�; a) ef �(�; a)d�
5. For any function f(t) of homogeneous degree � at t = t0, which is by de�nition f(�t) =
��f(t) near t = t0, the following property holds,

WT ffg (t0; a) = a�+1=2WT ffg
�
t0
a
; 1
�

or WT ffg (t0; a) � a�+1=2 as a �! 0

This property can be useful when analyzing a local continuity of the function f(t). For
instance, if the function is discontinuous at t0, � = �1.

6. The information provided by the complete set of the coeÆcients is redundant, which means
there is a strong correlation between the wavelet coeÆcients,

ef(�0; a0) = Z Z
p
�
�0 � �

a
;
a0
a

� ef(�; a)da d�
a2

;

where

p(�; a) =
1

C(g)

1p
a

Z
g�
�
t� �

a

�
g(t) d�

This last property is not desirable when working with turbulence modeling, because it could
give rise to non-physical coupling between the coeÆcients. One can construct the orthonormal
basis of the functions f ij(x)g, complete in L2(R) and orthogonal to themselves when translated
by a discrete step and dilatated by a power of 2:

 ij(x) = 2j=2 (2jx� i)Z
 ij(x) 

�

kl(x)dx = ÆikÆjl

14



The discrete version of the wavelet decomposition

f(x) =
X
i

X
j

Fij ij(x) ; where

Fij =
Z
f(x) (x� 2�ji)dx

removes the redundancy and thus minimizes the number of the wavelet coeÆcients Fij in L
2-

norm required to describe a given function f(x). This transformation is attractive from compu-
tational point of view as an alternative candidate for the Fourier transformation of Navier-Stokes
equations [52], [143]. the complete theory of discrete wavelet transforms can be found in [42],
[43].

A variety of wavelet mother functions have been constructed as required for di�erent appli-
cations. A few important wavelets worth of mentioning are:

Continuous wavelet transform

1. Morlet wavelet - a complex wavelet that is good for the analysis of local periodicity of a
signal:

g(x) = exp(irx� x2=2)� exp(�r2=2� x2=2); r � 5

2. 'Mexican Hat' wavelet (Maar wavelet) - good for a search of local minima or maxima:

g(x) =
d2

dx2
exp(�x2=2)

3. First derivative of a Gaussian - localization of gradients:

g(x) =
d

dx
exp(�x2=2)

Discrete wavelet transform

4. Lemarie-Meyer-Battle (LMB) wavelet - explicit de�nition [104]

5. Daubechies compactly supported wavelet - recurrent de�nition [42]

Generalization of the wavelet transformation to a multi-dimensional case is straightforward
([50], for instance) and will be not discussed here.

4.3 Historical background

Historically the idea of generating the basis which possesses a locality property in both physical
and Fourier spaces goes to quantum mechanics [19] and signal processing [55]. In aerodynamics
an similar constructions can be found in work by Siggia [127] and Zimin [149]. In an attempt
to build a model capable of predicting intermittent properties of small-scale turbulence, they
proposed an algorithm of constructing a basis of wave packets which is local in Fourier and
physical space. Independently Morlet [110], [67] applied a wavelet decomposition as a modi-
�cation of Gabor elementary wavelets [55] in seismology. The �rst rigorous theory of wavelet
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decomposition was done by Morlet and Grossmann in 1984 [69]. A discrete version of the
wavelet transform was developed by Daubechies [42], [43]. An excellent presentation of wavelet
theory as well as it's application in turbulence research was done by Farge in [50]. Another
good reference source is the IEEE issue on wavelets [49] or Kaiser [84].

A literature review on applications of the wavelet transform in turbulent research is pre-
sented in Appendix A.3. A brief discription of other techniques similar to the wavelt transform
is given in Appendix A.4.
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Chapter 5

EXPERIMENTAL SET-UP

5.1 Flow-�eld facility

All the experiments were conducted in the planar jet facility located at the Hessert Center
of the University of Notre Dame. A schematic of the facility is shown in Figure 5.1.The ow
is driven by a centrifugal blower that supplies air to a cubic plenum chamber with dimensions
of 1.2 m per side. Inside the plenum the air is forced to di�use through a large layer of porous
�berglass insulation material which serves to both �lter the air and decouple the ow from any
blower pulsation. After leaving the plenum, the air enters a rectangular ow conditioning duct
that leads to the nozzle assembly. The duct contains a section of honeycomb ow straighteners
and a series of turbulence reducing screens of various mesh sizes. The jet is formed by a
two-dimensional nozzle contraction that was constructed from aircraft foam which was then
laminated with an acrylic material in order to achieve a smooth and polished �nish. The nozzle
contraction takes the form of a cubic polynomial contour with zero derivative end conditions.
The nozzle has a contraction ratio of 16:1 and ends in a two-dimensional slot that is D = 1:27
cm in width and H = 45:7 cm in height giving an aspect ratio (height/width) of 36:1. It is in
the longer dimension that the nozzle walls are contoured while the shorter dimension walls are
at. From the nozzle the air discharges to the surrounding ambient environment. The ow �eld
is formed between two horizontal con�ning plates of dimension 2.4 m in the ow direction and
1.6 m in width which serve to keep the base ow two-dimensional in nature. Twin sheet metal
face plates mounted ush with the nozzle exit plane extend laterally to the edge of the ow �eld
and insure that entrained air enters the near �eld of the jet with negligible axial momentum
component. All other sides of the ow �eld remain open. The entire setup is supported in
a sturdy angle iron frame to which a computer controlled traversing mechanism is attached
which provides precise hot-wire probe positioning in the three coordinate directions. A series
of large screens surround the jet ow �eld facility in order to insure that any laboratory room
air circulation has minimal e�ect on the planar jet ow �eld. It should be noted, however, that
the jet was operated in a large laboratory space (353 m2 oor area) so that any such e�ects on
the ow were exceedingly small.

The nozzle exit velocity was U0 = 35 m/sec with a corresponding Reynolds number based
on nozzle slot width of ReD = 28; 000. The initial jet mean velocity pro�les are at (i.e. a
"top-hat" shape) with the mean velocity variation across the nascent jet shear layers closely

17



Centrifugal
Blower

Plenum
Chamber

Screens and
Honeycombs

Acquisition
System

Jet Exit Confining
Plates

Top View

z

y
x

1.2 m

3 m

1.6 m

2.4 m
Traverse
System

X-Wire
Rakes

Screens and
Honeycombs

Nozzle

Jet
Centrifugal
Blower

Fiberglass Foam
Material

x

y

z
0.28 m

Figure 5.1: Schematic of the planar jet facility.

approximated by a classic hyperbolic tangent type of pro�le. The free shear layers at the nozzle
lip are both laminar and have an initial momentum thickness �0 = 0:12 mm.

The coordinate system is shown in Figure 5.1. In this thesis x will denote the streamwise
spatial coordinate which is made non-dimensional by the nozzle slot width, D. The cross-stream
spatial coordinate is y and is made non-dimensional by the local mean velocity half-width, b(x).
The half-width is de�ned as the distance from the jet centerline to the lateral location where the
local mean velocity has fallen to one-half its centerline value. In the crosstream direction the
origin y = 0 was taken at the centerline of the jet. The spanwise spatial coordinate extending
in the direction of mean ow homogeneity is denoted z. The origin of the spanwise z-axis
is chosen midway between the con�ning plates, with positive direction upward. The velocity
components (u1; u2; u3) � (u; v; w) correspond to the (x; y; z) coordinates, respectively.
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5.2 Instrumentation

All velocity measurements were performed using constant temperature hot-wire anemometry
X-wire probes allow one to measure two components of the velocity vector simultaneously at
high sampling rates. The complete theory of hot-wire anemometry can be found elsewhere [61].

Up to 24 x-wires are used in the experimental work, so 48 constant temperature anemometers
with low-pass �lters were build in-house to reduce the cost. Appendix B provides a schematic of
the electronic circuit board layout. All transducers were thoroughly tested against a commercial
AA Lab Systems hot-wire anemometer and found to perform quite well within all the require-
ments of the experiments. The dynamic response of the transducers was found to be at up
to 50 kHz, which was suÆcient for the goal of the experiments. The probes in use are hot-wire
probes with "X"-orientation of two 5 �m diameter and 0.8 mm in length tungsten sensor wires
inclined at 45 degrees to the probe axis (types A55P61 or AHWX-100) fabricated by Auspex
Corporation. The spacing between the sensors is 0.9 mm. Each x-wire is connected by a thin
co-axial cable (manufactured by Belden Wire and Cable Co., type 8700, NEC type CXC FT1)
to the transducer. Output voltages from transducers are digitized by a MicroStar Laboratories
simultaneous sample-and-hold Analog/Digital acquisition system MSXB. The system is capable
of sampling up to 512 channels simultaneously. For 48 channels the acquisition system gives
a maximum sampling rate of 33 kHz/channel with no detectable phase lag between channels.
Low-pass �lters on each transducer have an adjustable cut-o� frequency in range 1-25 kHz.
Digital data are logged to an external drive in a binary format and pre-processed on a Gateway
2000 computer with Pentium Pro 200 processor. All the primary data processing codes are
written in C++ language. The data are subsequently downloaded to a SPARC Station 30 for
further post-processing.

5.3 Calibration

In order to obtain the relationship between the velocity and the output voltage from the
anemometer, a proper calibration of x-wires was performed. All x-wires were calibrated in
the planar jet ow �eld facility by means of a small removable rotating table which simulta-
neously placed all of the x-wires into the potential core near the nozzle exit of the planar jet.
See Figure 5.2 for the calibration set-up.The rotating table places all the x-wire sensors into
the core of the jet, where the speed is constant. The table pivots the probes about an axis
passing through the center of the X-array and thereby allows one to set a given angle between
the probe axis and the oncoming uniform ow. During calibration the speed of the jet was
set to 12 di�erent values within the range from 0 to U0 as measured by a Pitot-static probe
connected to a U-tube micromanometer. The probe angle with respect to the oncoming ow
was set to 11 di�erent values within the range of �45 to +45 degrees. The output voltage
from each anemometer was recorded for each velocity-ow angle combination. These data were
used to create a look-up table to compute velocity vectors from the voltages measured during
the experiment. The look-up table procedure is similar to the one described in [39] and [142].
Appendix C provides a complete description of the calibration procedure.
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Figure 5.2: Schematic of the calibration set-up.

5.4 Flow �eld validation

The focus of this research is on the self-similar region of the planar turbulent jet and the
measurement region spans the streamwise direction between x=D = 50::90. Figure 5.3a presents
mean velocity pro�les measured at several streamwise locations in the jet.The collapse of the
pro�les in the similarity coordinates U=Umax versus y=b is apparent. Figure 5.3b summarizes
the streamwise variation of both the mean velocity half-width, b(x), and the centerline velocity,
Umax(x) for the jet under investigation here. For x=D > 10 both quantities exhibit classic
similarity scaling with b(x) [1] well approximated by,

b

D
= K1

�
x

D
+ C1

�
(5.1)

with the measured widening rate, K1 = 0:1, and the geometric virtual origin given by C1 =
0:071. The local centerline velocity variation closely follows,

�
Umax

U0

��2
= K2

�
x

D
+ C2

�
(5.2)

with the measured mean velocity decay rate, K2 = 0:22, and the kinematic virtual origin C2 =
�0:18. These values of K1 and K2 are quite typical of those found in the open literature (see
Chu [39] for a compilation of values). Published values for the virtual origins show considerable
scatter and the study by Flora and Goldschmidt [53] has shown them to be strong functions of
ow �eld initial conditions.
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It is well known that pro�les of various turbulent moments typically require larger stream-
wise distances for the onset of self-similar behavior than does the mean velocity. Figure 5.4a
presents pro�les of the scaled Reynolds stress, �u0v0=U2

max versus y=b as obtained at repre-
sentative streamwise locations in the planar jet. Also shown for comparison are the Reynolds
stress measurements of both Gutmark and Wygnanski [71] and Bradbury [29]. In addition, the
Reynold's stress �u0v0 is calculated from the velocity mean pro�le using the mass conservation
and thin shear layer form of the momentum equations,

@U

@x
+
@V

@y
= 0 (5.3)

U
@U

@x
+ V

@U

@y
= �@(�u

0v0)

@y
(5.4)

The agreement is quite good for y=b < 1. Outside of this region a disparity between stress
pro�les is noticeable, and is most likely associated with intermittency e�ects near the edge of
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the jet. Figure 5.4b presents measured pro�les of scaled streamwise urms=Umax and lateral-
component vrms=Umax uctuation intensities at several representative streamwise locations.
From these measurements it was concluded that self-similarity for second-order statistics starts
at approximately x=D = 50. Since the focus of this research is on coherent structure in
the similarity region, the POD measurements were performed within the streamwise interval
50 � x=D � 90. Although the jet facility allows measurements to be made at larger x=D, the
low velocities associated with these stations give rise to larger relative uncertainties in multi-
component hot-wire measurements. The streamwise range quoted above represents an optimum
in the sense of achieving both self-similar jet behavior and minimal measurement uncertainty.
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Chapter 6

MULTIPLE RAKE
MEASUREMENTS

The experimental implementation of the POD requires the measurement of the spatial cross-
correlation tensor at selected x=D locations throughout the similarity region of the jet. The
process of obtaining the cross-correlation tensor is expedited by the use of cross-stream rakes of
probes. This also allows one to obtain simultaneous velocity-time histories at multiple lateral
locations across the jet which is also essential later if one is to reconstruct the temporal dynamics
of the extracted POD eigenfunctions.

In this thesis results from three types of experiments are reported:

� The main two-rake experiment involves correlation measurements involving all three uc-
tuating velocity components at selected x=D planes in the similarity region of the jet as
obtained by means of two spanwise-separated rakes of eight x-wire probes each. Both
of the rakes are located at the same x=D location and are oriented in the cross-stream
direction, parallel to each other. The two rakes are separated in the spanwise direction
by a user selected distance �z. The rakes are mounted on a computer-controlled tra-
verse system which allows both their relative spanwise separation and mutual streamwise
position to be controlled. The details are described in section 6.1.

� The one-rake experiment involved a single cross-stream rake of 16 x-wire probes. At
each streamwise location investigated, this measurement was con�ned to a single line
extending in the crosstream direction. The one-rake experiment was performed in support
of the two rake experiment. By doubling the number of probes in the y-direction it
allowed examination of spatial aliasing in the inhomogeneous coordinate, with the results
presented in section 6.2. In addition, since many previous studies of the planar turbulent
jet have focused on measurements in a �xed x� y plane, it seems appropriate to compare
POD eigenmodes extracted from the one and two-rake experiments. See section 6.3 for
further details.

� The set of three-rake measurements was conducted to obtain a time record of velocity
components. It allows one to investigate the shape of coherent structure in physical
space by projecting the dominant POD modes onto the instantaneous velocity �eld. A
description of the experimental procedure is given in section 7.7.
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6.1 Two-rake experiments

6.1.1 Two-rake set-up

Measurements of (u; v) and (u; w) uctuation velocity components at several planes x=D =
50; 60; 70; 80; 90 were done by using two rakes of x-wires with M = 8 evenly spaced probes on
each rake. Due to a similarity in basic ow �eld geometries, our approach is patterned after
that developed and successfully implemented by Ukeiley and Glauser [142], [45] for their study
of the plane mixing layer. Figure 6.1 presents a schematic and photograph of these two x-wire
rakes in the planar jet facility.

Schematic

Actual View

∆z
Data
Aquisition
System

Flow

Rakes of X-wire probes

y

Measurement grid
    at fixed x/D

x/D

Figure 6.1: Orientation of the rakes in two-rake experiment.

Both rakes are positioned at the same streamwise location and are oriented in the cross-
stream direction, parallel to each other. One rake is positioned on a manual traverse and another
one is mounted on a computer-controlled traverse system. The traverse system allows one to
control the location of the second rake with respect to the �rst one in the spanwise direction.
Also both traverses move the rakes in the streamwise direction. Probes on rakes are aligned
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in the streamwise direction and evenly spaced with �y = 5 cm. One rake is centered between
the con�ning plates, which corresponds to z = 0. The second rake is positioned below the �rst
rake at Nz = 15 di�erent equally spaced z-locations with the step h = 1:9 cm. Temporal and
spatial aliasing issues are discussed in details in section 6.2. All x-wire sensors are oriented
horizontally or vertically to measure either (u; v) or (u; w) components of the velocity vector,
respectively.

6.1.2 Calculation of correlation matrices and POD modes

In this section we describe the basic procedure by which the POD eigenmodes and associated
eigenvalues, introduced in Chapter 3 are extracted from the two rake experiment.

Correlation measurements involving the (u; v) and (u; w) velocity components were per-
formed at several planes of constant x=D over the streamwise range 50 � x=D � 90:We denote
the cross-correlation tensor as,

R�� (y; y
0; z; z0; t; t0) = hu� (y; z; t)u� (y0; z0; t0)i; (6.1)

where h�i denotes an ensemble average and Greek subscripts denote a uctuating velocity
component u, v or w. The velocity measurement u�(y; z; t) corresponds to the �rst rake and
u�(y

0; z0; t0) corresponds to the second. Because the ow is stationary in time and is assumed
homogeneous in the spanwise direction (z), the cross-correlation matrix R��(y; y

0; z; z0; t; t0) de-
pends on the relative coordinates �z = z� z0 and � = t� t0. Using the property 5, Section 3.2,
we perform the Fourier transform of R�� in time,

S��(y; y
0;�z; f) =

Z
R��(y; y

0;�z;�t)e�2�if�td�t; (6.2)

One can show that the cross-correlation matrix can be computed from Fourier Transforms
of the individual velocity signals (Bendat & Pierson [21]),

S��(y; y
0;�z; f) = lim

T!1

1

T
hû��(y; z; f)û�(y0; z +�z; f)i (6.3)

where û�(y; z; f) =
R T
0 u�(y; z; t)e

�2�iftdt is Fourier transformation of the velocity vector for
each block, T is a duration of the block and the asterisk denotes a complex conjugate. The
x-wire probes are capable of measuring simultaneously either (u; v) or (u; w) components of
velocity, therefore � and � are 1&2 or 1&3 respectively. The next step is to perform a spatial
Fourier transformation in the homogeneous z-direction to get

���(y; y
0; f; kz) =

Z
S��(y; y

0;�z; f)e�2�ikz�zd(�z); (6.4)

where kz is a spanwise wavenumber. This spectral correlation tensor will be a kernel in the
integral equation to �nd POD modes for di�erent f and kz (see [102] or [77] for details),Z

���(y; y
0; f; kz)'

(n)
� (y0; f; kz)dy

0 = �(n)(f; kz)'
(n)
� (y; f; kz) (6.5)

Thus, the problem of �nding POD modes is reduced to a set of one-dimensional integral equa-
tions (6.5) with f and kz as parameters. The solution of (6.5) gives a complete set of orthonormal
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eigenfunctions '(n)
� (y; f; kz) with positive eigenvalues �(n)(f; kz). Any velocity realization can

be represented as a sum of the eigenvalues,

u�(y; z; t) =
1X
n=1

Z Z
c(f; kz)'

(n)
� (y; f; kz) exp(2�ift) exp(2�ikzz) df dkz (6.6)

The spectral correlation tensor ���(y; y
0; f; kz) also can be expanded in terms of POD modes,

similar to (3.4),

���(y; y
0; f; kz) =

1X
n=1

�(n)(f; kz)'
(n)
� (y; f; kz)

n
'
(n)
� (y0; f; kz)

o
�

(6.7)

Finally, the eigenvalues �(n)(f; kz) represent the energy distribution of each POD mode in a
frequency-wavenumber space.

6.1.3 Symmetries of S-matrix

Before considering details regarding the practical implementation of the above relationships, it
is useful to point out certain symmetries possessed by the cross-spectral tensor when measured
in the planar jet ow �eld. By the term "symmetries" we mean certain transformations of the
physical variables which leave the ow invariant. Consideration of these symmetries leads to a
simpli�cation of the experiment. The particular symmetries in the planar jet worth mentioning
are:

1. Invariance with respect to translations in both homogeneous directions: time and z-
direction,

t! t+ const; z ! z + const (6.8)

This property was used to simplify the multi-dimensional integral equation (3.2) to a
number of one-dimensional integrals (6.5).

2. Reections in the z-direction,

z ! �z; u! u; v ! v; w! �w (6.9)

Application of (6.9) to (6.4) gives the following property of the cross-spectral matrix S��,

S��(y; y
0;�z; f) = �S��(y; y0;��z; f); (6.10)

where the minus sign should be chosen if either � or � is equal to 3, but not both. This
symmetry allows one to restrict the measurements of the S-matrix to positive �z only,
which reduces the required data collection at a given streamwise location by a factor of
two.

3. Physical symmetry in the y-direction,

y ! �y; u! u; v ! �v; w! w

leads to following equality,

S��(y; y
0;�z; f) = �S��(�y;�y0;�z; f): (6.11)

The minus sign is chosen if � or � is equal to 2: Equation (6.11) says that the S��-matrix
exhibits a central symmetry about the origin y = y0 = 0.
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4. Symmetry with respect to the interchange of the probe pair,

(y; z) $ (y0; z0)

S��(y; y
0;�z; f) = S���(y

0; y;��z; f) (6.12)

For �z = 0, this property implies that the RefS��g is symmetrical about the line y =
y0, while ImfS��g is antisymmetric. Combining (6.10) and (6.12), one can show that
diagonal terms of the S-matrix are Hermitian, that is, S��(y; y

0;�z; f) = S���(y
0; y;�z; f).

6.1.4 Numerical calculation of the �-matrix

A discrete windowed Fourier transform [21] of the digitized time-series velocity uctuation data
was used to compute (6.3),

û�(y; z;n�f) = �t

s
8

3

Np�1X
k=0

w(k;Np) u�(y; z; k�t) exp(�2�ikn=Np); (6.13)

n = 0::Np � 1

where �t is the sampling interval, �f = 1=T = fs=Np, fs is the sampling frequency, Np = 2p is
the number of points per data block, T is the data block time duration and w(k;Np) is a suitably
chosen windowing function to suppress side lobe spectral leakage. A number of windowing
functions were tried early on with the best results obtained with the Hanning window [21],

w(j; N) = 1� cos2(j�=N); j = 0::N � 1 (6.14)

which was selected for use in this study. The factor
q
8=3 appearing in (6.13) properly accounts

for the signal content lost in the windowing process. In order to compute ���(y; y
0; f; kz) via

(6.4), the S-matrix was extended to negative �z's by application of (6.10) and a discrete spatial
Fourier transform was performed with a Hanning weighting function (6.14) to obtain,

���(y; y
0;n�f;m�kz) = �z

s
8

3

NzX
k=�Nz

w(k;Ne)f�S��(y; y0; kh; n�f)ge�2�ikm=Ne ;

m = 0::(Ne � 1) (6.15)

where Ne = 2Nz + 1, Nz is the number of z measurement locations at a �xed streamwise
location, h is the spatial step size between consecutive z-locations, �kz = 1=(Ne h). Again,
only the �rst (2Nz +1)=2 = Nz points m = 0:: Nz� 1 are given unambiguously. A Fast Fourier
Transform algorithm [21] was used compute both (6.13) and (6.15).

6.1.5 Numerical calculation of POD modes

The ���-correlation tensor is known at �nite, equally spaced experimental points fyig, i =
1; ::;M , where M is the number of the probes on one rake; for two-rake and three-rake ex-
periments M = 8 and for one-rake experiment M = 16. Hence all the integrals (6.5) should
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be replaced with a �nite quadrature form. Appendix D provides the details on the numer-
ical integrating procedure. The �nite approximation of the integration (6.5) for M -vector
' = f'(yi)gMi=1 can be written in the following form,

MX
j=1

���(yi; yj; f; kz)w(yj)'
(n)
� (yj; f; kz)�y = �(n)(f; kz)'

(n)
� (yi; f; kz) ; (6.16)

or ���W'� =
�

�y
'�; (6.17)

where the W-matrix is a weighting [M �M ] matrix,

W =
M�columns

fw; :::;wg; w = (0:5;

M�2z }| {
1; 1; ::; 1; 0:5)T -trapezoidal weighting M -vector;

��� = f���(yi; yj; f; kz)gM;M
i;j=1 is the [M �M ] Hermitian matrix and �y is the spacing between

probes in the rake. After multiplication the �W-matrix is no longer a Hermitian matrix. Let's
multiply (6.17) by W1=2 from the left and make some rearrangements,

W1=2���W'� =
�
W1=2���W

1=2
� �
W1=2'�

�
=

�

�y

�
W1=2'�

�
or e��� e'� =

�

�y
e'� (6.18)

Now the e��� = W1=2���W
1=2 is a Hermitian matrix with �=�y and e'� = W1=2'� the

corresponding eigenvectors and eigenvalues.
The matrix (6.18) was solved using the Hermitian Matrix Solver from the IMSL library

for UNIX systems. After a back transformation '� = W�1=2 e'�, a �nite set of M orthogonal
spatial modes at the discrete spatial points '(n)

� (yi; f; kz) with the corresponding eigenvalues
�(n)(f; kz) are obtained.

Since the�-matrix is known only at discrete points in frequency-wavenumber space, (f; kz) =
f(n�f;m�kz)g, n = 0::Np=2� 1, m = 0::Nz � 1, then �(n)(f; kz) and '

(n)
� (yi; f; kz) are known

at discrete points too. The number of eigenmodes that can be resolved is limited by the need
to avoid spatial aliasing as described by Glauser and George [58]. In this experiment it is found
that m probes generally allow m=2 modes to be resolved although this also depends on the
particular velocity component considered. Spatial and temporal aliasing issues are addressed
in the next section.

6.2 Aliasing issues

The acquired data is discrete in both time and space and therefore careful consideration must
be given to avoid temporal and spatial aliasing. Avoidance of aliasing in the homogeneous
directions is straightforward and is considered �rst.

6.2.1 Aliasing in z-direction

When measuring correlations in the z-direction, questions arise regarding how many points to
choose and what spatial separation to take. The more points we use, the better resolution we
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have. On the other hand, each measurement point requires both a considerable amount of time
to measure and storage space to save the data. So, the number of points in z-direction should be
rationally minimized without a considerable loss of accuracy and resolution in measurements
through aliasing. In the two-rake experiment, the traverse system allows one to control the
spanwise position of the second rake with respect to the �rst. At each streamwise location
investigated, one rake is placed in the x�y centerplane midway between the ow �eld con�ning
plates, which corresponds to z = 0. The second rake is sequentially positioned below the �rst
rake at Nz = 15 di�erent equally spaced z-locations. In order to establish the appropriate
z increment for these measurements (which we denote as h), consideration was given to the
character of the spanwise correlation coeÆcient function,

�11 (�z) � u(y; z)u(y; z +�z)

u2(y; z)
(6.19)

at y=b = 0 for x=D = 70.
Figure 6.2a presents a sample correlation coeÆcient function as obtained at x=D = 70 for 40

equally spaced z-locations with a step size of 4:5 mm: This step provides a maximum resolved
wavenumber k(max)

z = 111 m�1. The probe separation �z is made non-dimensional with the
local mean velocity half-width. A spatial Fourier transform of the correlation coeÆcient function
yields a cross-spectral density function of spanwise wavenumber kz.

F11(kz) =
Z
�11(�z) exp(�2�ikzz)dz (6.20)

Figure 6.2b presents F11(kz) corresponding the �11 (�z) of Figure 6.2a. From this �gure one
observes that there is little spanwise correlation for kzb > 2: De�ning kmax

z � 2=b we then
require that h satisfy the Nyquist constraint,

kmax
z � 1

2h
: (6.21)

This gives the requirement that h � 0:21b. The selected value of the stepsize in the z-direction
was chosen to be h = 1:91 cm for all streamwise stations. This stepsize in z satis�es the Nyquist
constraint over the range 50 � x=D � 90: For example, at x=D = 70, h � 0:19b.

6.2.2 Macroscales in z-direction

From correlation measurements, other ow characteristics like macroscales can be calculated.
The integral macroscale value for u-component is de�ned as �(u)

z =
R
1

0 �11(�z)d(�z) and is
found to be approximately �(u)

z =b = 0:22. This has been observed by other investigators (e.g.
Everitt and Robins [46], Antonia et al [7] and Thomas and Brehob [138]). The other macroscales
at y=b = 0 are calculated, �(v)

z =b = 0:6, �(w)
z =b = 0:32. Similar macroscales values are reported

in [46], [7].

6.2.3 Temporal aliasing

For the conditions under which the jet was operated, conventional power spectra reveal that
the frequency bandwidth for the uctuating velocity extends to approximately 5 kHz. In
order to avoid temporal aliasing and to satisfactorily characterize the turbulence, this would
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Figure 6.2: a) Normalized correlation of u-component in z-direction �11(�z) and b) it's Fourier
transform F11(kz) at y = 0 for x=D = 70.

dictate a sampling frequency for conventional turbulence measurements of approximately 10
kHz.However, since the focus of this experiment is on the large-scale structure in the ow

Figure 6.3: Normalized spectral cross-correlations jS11(+b; y0; f)j=S11(b; b; f) and
jS22(+b; y0; f)j=S22(b; b; f) between two probes for y0 = 0;�b at x=D = 70.

which is investigated via cross-spectral methods, it will be shown that a much lower sampling
frequency combined with the use of analog anti-alias �lters o�ers the best approach. Converged
cross-spectral density functions S�� (y; y

0; f) obtained with a sampling frequency of fs = 10
kHz at a variety of locations in the jet similarity region show that signi�cant correlation is
restricted to much lower frequencies, even for the smallest cross-stream probe spacing. As an
example Figure 6 presents both jS11 (+b; y0; f)j =S11 (b; b; f)and jS22 (+b; y0; f)j =S22 (b; b; f) as
obtained for y0 = 0;�b at x=D = 70. Note that there is virtually no spectral coherence for
frequencies f > 400 Hz. From this �gure (and others that are not presented here) it can be
seen that the spatially coherent structures lie at comparatively low frequencies, so the use of
relatively low sampling rates is justi�ed for two point correlation measurements. In general,
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it is found that the cross-spectral functions exhibit little correlation for local nondimensional
frequencies fb=Umax > 1: Consequently, the local non-dimensional sampling frequency for the
experiments was set at

St = fsb=Umax = 8:0: (6.22)

From (6.22) and using (5.1) and (5.2), the streamwise dependence of the sampling frequency
is fs(x=D) = 170 U0=D (x=D)�3=2 = 4:7 � 105(x=D)�3=2 (Hz). The numerical values at experi-
mental streamwise locations are presented in Table 6.1.

Table 6.1: Sampling frequencies at the measurement streamwise locations.
x=D 50 60 70 80 90
fs (Hz) 1300 1000 800 650 550

For the range of x=D investigated in this experiment the sampling frequency varied from
1:3 kHz at x=D = 50 to 0:55 kHz at x=D = 90: In each case the cuto� frequency of the anti-alias
analog �lters was set to fs=2 in order to prevent temporal aliasing.

6.2.4 Spatial aliasing in inhomogeneous direction

The two rake experiment uses 8 x-wire probes (per rake), equally spaced in the inhomogeneous
y direction with �y = 5 cm. In order to assess and minimize the degree of spatial aliasing in the
y direction, use was made of a single rake experiment with 16 equally spaced x-wires across the
jet. Thus the spacing between probes was half that for the two-rake case, �y1 = �y=2 = 2:5
cm. In order for the two-rake experiment to correctly resolve the cross-spectral matrix in
the y-direction, the spatial Nyquist wavenumber k(N)

y = 1=(2�y) must be greater than the
maximum wavenumber exhibiting non-zero lateral spatial correlation. At each x=D location
the cross-spectral density S��(y; y

0; St) (where St = fb=Umax) was computed between all probe
pairs. For the 16 probe rake this represents a total of 120 cross-spectral measurements at
each streamwise location for each combination of velocity components S11; S22 and S33. A
spatial Fourier transform of the resulting cross-spectra for each y-position is calculated as
jX�j2(ky; y; St) = jX�(ky; y; St)X

�

�(ky; y; St)j, where

X�(ky; y; St) =
Z
S��(y; y

0; St) exp(�2�ikyy0)dy0 (6.23)

is a spatial Fourier transform of the S-matrix obtained from the one-rake measurements and the
asterisk denotes a complex conjugate.The magnitude jX1j2 (ky; y; St) is plotted as a function of
kyb for selected representative values of the parameter St in Figure 6.4. The spatial wavenumber
is normalized by b. All signi�cant lateral correlation of streamwise uctuations occurs for
kyb < 0:7. Similar results were examined for jX2j2 (ky; y; St) and jX3j2 (ky; y; St) and the
results are presented in Figure 6.5 and in Figure 6.6, respectively. For u- and v- correlations
signi�cant spectral content is limited to kyb � 0:5 and 1:2, respectively. In order to avoid
spatial aliasing in the measurement of S11 (y; y

0; St) it is required that the lateral probe spacing
�y=b � 1=(2kyb)max = 0:7. This corresponds to a requirement on lateral probe spacing of
between 4:45 cm at x=D = 50 to 8:0 cm at x=D = 90. The requirements for measurement
of S22 (y; y

0; St) are less stringent. In this case the minimum required lateral probe separation
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Figure 6.4: jX1j2(ky; y; St) for four frequencies St = 0:042; 0:9; 0:14; 0:18 at x=D = 70.

varies from 6:35 cm to 11:4 cm over the same streamwise range. The most stringent requirement
for the avoidance of aliasing is associated with measurement of S33 (y; y

0; St) which requires a
probe separation of from 2:7 cm to 4:8 cm over the range 50 � x=D � 90.

A summary of the all restrictions on �y for di�erent S-matrix measurements at all stream-
wise stations is presented in Table 6.2.

Summarizing, it was concluded that based upon the single rake measurements spatial alias-
ing would not be expected to signi�cantly inuence the u- or v-modes except perhaps at
x=D = 50 where higher order u modes could be a�ected. The constraint on the w compo-
nent means that only the lowest order w modes can be faithfully captured. Fortunately, it will
be shown that the higher order w modes are of very low energy so this was not deemed a critical
factor in the experiment.

Table 6.2: Maximum separation between the probes �ymax (cm) for the two-rake experiments
to avoid spatial aliasing for di�erent S-matrix measurements.
x=D 50 60 70 80 90

S11 4.45 5.3 6.2 7.1 8.0
S22 6.35 7.6 8.9 10.1 11.4
S33 2.7 3.2 3.7 4.2 4.8
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Figure 6.5: jX2j2(ky; y; St) for four frequencies St = 0:042; 0:9; 0:14; 0:18 at x=D = 70.

6.2.5 Averaging times for correlation measurements

In order to insure stationary statistics, convergence tests were performed. For the sampling
rates quoted above (6.22), these showed that by sampling the uctuating velocity in blocks of
Np = 1024 points for a total of Nb = 500 blocks the required cross-spectral statistics were fully
converged. This corresponds to a total sample time of between 6:5 to 15:5 minutes as x=D
varies from 50 to 90, respectively.

6.3 One-rake experiments

The cross-spectral matrix S��(y; y
0; f;�z = 0) obtained with the single rake of 16 x-wire probes

can be used to compute a set of single rake POD eigenmodes  (n)
� (y; f) with corresponding

eigenvalues �(n)(f) from the relation,Z
S��(y; y

0; f;�z = 0)  
(n)
� (y0; f) dy0 = �(n)(f)  (n)

� (y; f): (6.24)

The approach taken in the numerical solution of the above integral equation is similar to that
described for (6.5) in section 6.1.5. In this case, however, the resulting eigenfunctions are
not functions of spanwise wavenumber kz but depend only on Strouhal number, St, and the
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Figure 6.6: jX3j2(ky; y; St) for four frequencies St = 0:042; 0:9; 0:14; 0:18 at x=D = 70.

inhomogeneous spatial coordinate y. Since the probe spacing in y is one-half that for the
two rake experiment, the spatial resolution of the eigenmodes is improved. However, since
the one-rake experiment does not resolve the spanwise direction, the resulting POD modes
will represent a weighted sum of the two-rake spanwise wavenumber dependent POD modes.
Hence, comparison of the results obtained in the one and two rake experiments allows one to
gauge the e�ects of rake resolution (because of the larger number of probes in the inhomogeneous
coordinate) and the e�ects of aliasing multiple spanwise wavenumber kz modes in measurements
con�ned to a single x� y plane.

The one-rake data were taken in blocks of Np = 1024 points for a total of Nb = 2000 blocks
at the same sampling frequencies, as for two rake experiments, Table 6.1.

6.4 Blockage e�ect

In order to check whether the rakes block the ow, a conventional measurements of the velocities
were performed at x=D = 70 and compared with a single x-probe measurements. The results
are shown in Figure 6.7. One can see that the blockage e�ect on the rake support system is
negligible. So, the rakes don't disturb the jet and consequently the velocity components can be
measured accurately.
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Figure 6.7: Comparison between single X-probe (solid lines) and the rake of X-probes (symbols)
measurements of the selected velocity quantities.

6.5 Computer memory requirements

The required space to store the digital data for the two-rake experiments for one streamwise
location is 2 bytes � 2 rakes � M � 2 velocity components � Np � Nb � Nz � 0:5 GBytes.
For 5 streamwise locations and two types of velocity measurements (u; v) and (u; w) the total
amount of memory required is 2� 5� 0:5 GBytes = 5 GBytes.

For one-rake measurements Nz = 1 and Nb = 2000 and the total memory requirement is 1.3
Gbytes.

6.6 Three-rake experiments

The set of three-rake measurements is conducted to investigate the shape of POD modes in
physical space. Unlike one- and two-rake experiments, where the cross-spectral measurements
are taken, the three rakes are used to acquire an instantaneous velocity record across the jet.
The set-up is similar to the two-rake experiment, with three rakes of 8 x-wire probes each (for
a total of 24 probes) with a constant z-separation H between them, see Figure 6.8.The value of
H = 8:9 cm is chosen for the reasons to be discussed in Section 6.8.1. The separation between
probes at each rake is the same as in two-rake experiment, �y = 5 cm. The instantaneous
velocity �eld at x=D = 70 was recorded with sampling frequency fs = 800 Hz for Nb = 100
blocks of Np = 1024 points each. Thus, the total sampling time is T = NpNb=fs = 128 seconds.
Both (u; v) and (u; w) velocity components are measured. These records are used to apply
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Figure 6.8: Orientation of the rakes in three-rake experiment.

the wavelet reconstruction procedure to reconstruct POD modes in the physical space. The
reconstruction procedure is described in the following section.

6.7 Wavelet reconstruction of POD modes

In order to reconstruct the shape of the POD modes �(n)(y; f; kz) in the physical space, an
inverse transform in frequency and wavenumber domains must be performed. But the POD
modes are known only up to an arbitrary phase exp(i�(f; kz)). (Property 5, Section 3.2). Phase
information can be restored by projection of the POD modes onto instantaneous realizations
u�(y; z; t) of the ow, using the continuous wavelet transformation. The algorithm consists of
six steps, which are listed below,

1. The Fourier transform in the z-direction is performed to compute û�(y; kz; t) = FT fu�(y; z; t)g ;
2. The wavelet transformation in time (4.1) is calculated, ~u�(y; kz; a(f); �) =WT (a; �) fû�(y; kz; t)g :
3. Using the orthogonality of PODmodes, the phase related wavelet coeÆcients c(n)(kz; a(f); �)

can be computed by projecting POD modes onto an instantaneous realization,

c(n)(kz; a(f); �) =
Z
~u�(y; kz; a(f); �)'

(n)
� (y; f; kz)dy

4. The wavelet transform of each POD mode can be restored

~u(n)� (y; kz; a(f); �) = c(n)(kz; a(f); �)'
(n)
� y; f; kz)
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5. The inverse wavelet transform (4.5) provides the POD mode in physical space,

û(n)� (y; kz; t) = WT�1(a; �)
n
~u(n)� (y; kz; a(f); �)

o
6. Finally, the inverse Fourier transform restores the PODmodes in physical domain, u(n)� (y; z; t) =
FT�1fû(n)� (y; kz; t)g
The ow �eld is a sum of all POD modes,

u�(y; z; t) =
1X
n=1

u(n)� (y; z; t)

6.7.1 Morlet mother function

Particular choice of the mother function for the wavelet transform (4.1) usually depends on
what kind of information we are interested in extracting from the signal and is determined by
its shape. This investigation uses a complex Morlet wavelet mother function as the basis for
the wavelet transform. An analytical expression for the Morlet wavelet is as follows,

g(x) = eirxe�x
2=2 � e�r

2=2e�x
2=2; (6.25)

where r is a user speci�ed constant. Note that since the Morlet wavelet is complex, it can
provide local information concerning both amplitude and phase at a given scale. For example,
if the Morlet wavelet transformation is applied for the simple case of f(t) = Aei(2�ft+�) the
straightforward calculation gives

ef(a; �) = p
2�ae�(2�fa�r)

2=2(1� e�r2�fa)Aei(2�f�+�) (6.26)

The resulting wavelet transform is a function of a and � . Note, that the wavelet transformation
gives only �nite frequency resolution. The modulus of (6.26) is maximum at

a(f) � r=2�f (6.27)

for r > 3 and allows one to relate scale a and frequency f . For the research described in this
thesis the constant r was chosen to be r = 6.

6.8 Numerical implementation of wavelet reconstruction

From the three-rake experiment, (u; v) or (u; w) components of the velocity �eld are given
at discrete spatial and temporal points, u�(m�y; z(k); ti), where z(k) are the z-locations of
the rakes, ti = i=fs. Therefore, all the continuous integrations in the wavelet reconstruction
algorithm, described in Section 6.7 should be replaced by an appropriate �nite summation.

6.8.1 Discrete Windowed Fourier Transform

The Fourier transform is replaced with its discrete analog. Since only three points in the z-
direction are available, the Discrete Windowed Fourier Transform was chosen to process the
data,

X(k) =
1

2

2X
n=0

x(n)w(n) exp

 
�2�ikn

2

!
; k = 0; ::; 2; (6.28)
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where x(n) = u�(m�y; z(n); ti); n = 0; 1; 2 are velocities from the corresponding rakes, posi-
tioned at z(n)-locations. The trapezoidal weighting vector is w = [0:5; 1; 0:5] and the transfor-
mation (6.28) looks as follows,

X(0) = 0:5[0:5x(0) + x(1) + 0:5x(2)]

X(1) = 0:5[0:5x(0)� x(1) + 0:5x(2)]

X(2) = 0:5[0:5x(0) + x(1) + 0:5x(2)] = X(0)

The zeroth coeÆcient X(0) represents the (kz = 0)-mode or planar mode. The �rst coeÆcient
X(1) provides information about the (kz = 1=(2H))-mode. The discrete Fourier transform
works as a band-pass �lter in the z-direction with the Nyquist wavenumber k(N)

z = 1=H. In
order to avoid aliasing from non-zero kz-modes into the planar mode, the separation H must be
chosen in such way that there is no signi�cant correlation in the z-direction above the Nyquist
wavenumber. This constraint can be rewritten in terms of the cross-spectral matrix � as

���(yi; yj; f; kz > k(N)
z = 1=H) � 0: (6.29)

This criterion provides the restriction for the separation H between the rakes. Based on the
results to be presented in section 7.5.1, the value of H = 8:9 cm was chosen.

The inverse Discrete Fourier Transform is taken in the following form,

x(n) =
2X

k=0

X(k)w(k) exp

 
2�ikn

2

!
= X(0) +X(1)(�1)n; n = 0; 1; 2

6.8.2 Numerical implementation of wavelet transform

To compute the forward wavelet transform, equation (4.1) is replaced by a �nite integral ap-
proximation for the case of a zero-order interpolation between data points,

~u�(m�y; k�kz; an; �j) =
1p
an

NpX
i=1

û�(m�y; k�kz; ti)g
�

�
ti � �j
an

�
�t;

The complex Morlet mother function g(x) = exp(irx� x2=2), r = 6 is used. Since POD modes
are known only at �nite points '�(m�y; n�f; k�kz), the wavelet transform is calculated at
discrete time points �j = tj for Np=2 scales, chosen according to (6.27), a(n�f) = r=(2�n�f),
n = 1::Np=2, �f = 1=T = fs=Np.

The inverse wavelet transform is computed by replacing the integral to a �nite summation,

û(n)� (m�y; k�kz; ti) =
�t

C(g)

Np=2�1X
n=1

NpX
j=1

~u(n)� (m�y; k�kz; an; �j)p
an

g
�
ti � �j
an

�
(an+1 � an)

a2n
;

where C(g) = 0:471, according to (4.2).

6.8.3 Numerical projection of POD modes into the ow

The numerical calculation of the projection of POD modes into the instantaneous ow �eld
looks as follows,

c(n)(k�k; an; �j) =
MX
m=1

~u�(m�y; k�kz; an; �j)'
(n)
� (m�y; n�f; k�kz)w(m)�y
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with w(m) = (0:5;

M�2z }| {
1; 1; ::; 1; 0:5)T as a trapezoidal weighting function.
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Chapter 7

RESULTS

All information about the POD modes is contained in the cross-spectral matrix ��� (6.4). In
order to understand the essential features of the cross-spectral matrix, recall that it is obtained
by applying a spatial Fourier transform to the experimentally measured matrix S�� (6.3). So,
before going into details about the shape of the POD modes, let us �rst examine essential
features of both the �-matrix and S-matrix.

7.1 One-rake measurements of S��(y; y
0; St;�z = 0)-matrix

During one rake experiments, 16 probes were placed at one rake and the S-matrix was measured.
For this case, the separation between rakes can be treated as zero, �z = 0. Otherwise noticed,
everywhere below the S-matrix is a function of (y; y0; St). Let us examine some important
features of the S-matrix.

The measurements of S11, S12, S22, S13, and S33 (6.3) with 16 probes placed on one rake were
performed at �ve streamwise stations, x=D = 50; 60; 70; 80 and 90. In this section the results
are presented only for x=D = 70 and the results may be considered representative. Everywhere
below the crosstream coordinate y is scaled by the local half-width b and the frequency f is
scaled by Umax=b to obtain the Strouhal number, St = fb=Umax. Analysis of S�� reveals that
S11, S22 and S33 reach maximum value at St = 0:05, 0:1 and 0:14 correspondingly. For these
reason, the frequencies (along with with an additional St = 0:19) are chosen to characterize
the S-matrix behavior in the (y; y0) planes.The real and imaginary parts of S11(y; y

0; St) for
four frequencies St = 0:05; 0:1; 0:14; 0:19 are shown in Figure 7.1 as contour plots. Central
symmetry about the origin y = y0 = 0 (6.12) and symmetry about the line y = y0 (6.11) can
be clearly observed in both the real and imaginary parts. Note, that from these symmetries it
follows that ImfS��(y; y; f)g = ImfS��(y;�y; f)g = 0; � = 1::3. This property of imaginary
part also can be observed in Figure 7.1. The maximum positive correlation occurs for probes
at one side of the jet at y=b = y0=b = �0:9 for St = 0:05 and quickly decays as St increases
with the peak's locations gradually shifting to y=b = y0=b = �0:7 . In the center of the jet
the correlations are much smaller. The reason is that the S-matrix reects only large-scale
correlations, on the order of the spacing between the probes �y1 = 1". Small correlation in the
center of the jet means that mostly small scale turbulent uctuations are responsible for the
essentially non-zero values of urms(y = 0) (see Figure 5.4). Positive correlations are con�ned
to a regions on either side of the jet, with no positive correlation across the jet. Note that,
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negative correlation of u-component of velocity across the centerline of the jet is indicated in
the Figure 7.1. The maximum negative correlation occurs at (y=b; y0=b) = �(0:7;�0:7) for
St = 0:05 and dies out rapidly with St increasing. We'll discuss the importance of negative
correlations as an indicator of large-scale structure in section 7.4. Finally note the generally
smaller magnitude of the imaginary part of S11 relative to the real part.

The v-component S22(y; y
0; St = 0:05; 0:1; 0:14; 0:19) is presented in Figure 7.2. It reveals

only positive v-correlation across the jet, with maximum values at St = 0:1. This value is in
good agreement with the value obtained in [36] and [7]. Figure 7.2 shows that the correlation
magnitude decreases for large St.For each St, maximum auto-correlations form a plateau of
fairly constant values in the center of the jet. The plateau width shrinks with increasing
frequency. The imaginary part is signi�cantly smaller than the real part. Both symmetries
(6.11) and (6.12) are clearly observed.

The values of the real and imaginary parts of S33(y; y
0; St = 0:05; 0:1; 0:14; 0:19) represent

w-component correlation and are plotted in Figure 7.3.Small squares visible on the diagonal
line y = y0 are artifacts of the plotting software. Non-zero correlation values are con�ned to
the region near the diagonal y = y0 and quickly decay for j(y � y0)=bj > 0:7. Two peaks of
the correlation are located at y=b = �0:7 with maximum values at St = 0:14. Small negative
correlations are noticeable at (y=b; y0=b) = �(0:7;�0:7) around St = 0:14. Note, that the
maximum values of the S33-matrix are roughly four times smaller than the maximum values of
the S11-matrix. The rate of decay of S33 is slower as St!1 than in the case for S11 and S22.

The real and imaginary parts of the cross-correlation between u- and v-components S12(y; y
0; St =

0:05; 0:1; 0:14; 0:19) is plotted in Figure 7.4.The U -component is measured at the y-location and
and v-velocity is taken along y0-axis. Positive correlations occur for y > 0 and negative corre-
lations exist for y < 0. Maximum value of the correlation is located at (y=b; y0=b) = �(0:7; 0:7)
over the range of St = [0:05::0:1]. No correlation between u-and v-components exists along
the line y = 0, u0(y = 0)v0(y0) = 0. Recall that the v-component is positively correlated across
the jet while the u-component is antisymmetric with respect to the jet centerline. That Figure
7.4 shows that Re fS12g = 0 when y = 0 but is nonzero for y0 = 0 indicates that streamwise
uctuations on the centerline must be associated primarily with small scales and are uncorre-
lated with the larger-scale lateral uctuations. The iso-contours of Im fS12g shown in Figure
7.4 indicate that the imaginary part of the tensor is considerably smaller than the real part.
The correlation magnitude gets weaker for large St. Figure 7.5 presents the real and imaginary
parts of S13(y; y

0; St). The magnitude of both the real and imaginary parts of S13 are at a given
Strouhal number are generally much smaller than for S12. Signi�cant values of S13 are restricted
to smaller probe separations than for S12. Finally, the iso-contours exhibit much more complex
patterns than for other components of the cross-spectral tensor.

7.2 Behavior of S11�matrix for �z 6= 0

Let's �rst briey examine the symmetries and behavior of S��(y; y
0;St;�z) for a non-zero

separation between the two rakes. To illustrate the �z-variation of the S��-matrix, contour
plots of the real part of the S11(y; y

0;St = 0:05;�z) for six di�erent �z separations are presented
in Figure 7.6. The separation �z is normalized by b(x). Symmetries (6.11) and (6.12) are
observed in this �gure. Comparison of the �z=b = 0 case shown in Figure 7.6 with the
corresponding part of the Figure 7.1 reveals an almost identical behavior in the (y; y0) domain.
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The small di�erence is likely associated to the lower lateral spatial resolution for the two-rake
case.

Figure 7.6 shows that increasing �z weakens the correlation between the probes on di�erent
rakes. Note that the correlation between two probes located near y=b = y0=b = �1 even changes
sign, being positive for �z=b < 1:5 and becoming negative for �z=b > 1:5: For all z-separations
the S11-matrix is symmetrical about the center y = y0 = 0. As it was discussed before, this is
a consequence of the lateral symmetry of the jet about the centerline (6.11).
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Figure 7.1: The spectral correlation matrix S11(y; y
0; St) � 103 for St = 0:05; 0:1; 0:14; 0:19 at

x=D = 70
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Figure 7.2: The spectral correlation matrix S22(y; y
0; St) � 103 for St = 0:05; 0:1; 0:14; 0:19 at

x=D = 70
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Figure 7.3: The spectral correlation matrix S33(y; y
0; St) � 103 for St = 0:05; 0:1; 0:14; 0:19 at

x=D = 70
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Figure 7.4: The spectral correlation matrix S12(y; y
0; St) � 103 for St = 0:05; 0:1; 0:14; 0:19 at

x=D = 70

46



Figure 7.5: The spectral correlation matrix S13(y; y
0; St) � 103 for St = 0:05; 0:1; 0:14; 0:19 at

x=D = 70
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Figure 7.6: Spanwise variation of the real part of spectral correlation matrix
Re fS11(y; y0; St = 0:05;�z)g for �z=b = 0:0; 0:4; 0:8; 1:2; 1:6; 2:0 at x=D = 70
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7.3 Two-rake measurements of the �-matrix

In this section the experimental measurements of the spectral cross-correlation matrix �(y; y0; f; kz)
(6.4) are presented. Essentially, the �-matrix unfolds the S-matrix in the z-direction. It is based
on the measurements of S-matrix for di�erent spanwise separations between rakes. Computing
the �-matrix involves taking the Fourier transform in z-direction only, so a similar variation
in the y-direction and in frequency space as the S-matrix exhibits is expected. Measurements
of �11; �22; �12; �23 and �33 using two rakes are performed at several streamwise locations
x=D = 50; 60; 70; 80 and 90. Because of the self-similar behavior of the �-matrix in the stream-
wise direction for the reported stations, the results for x=D = 70 will be presented only.

In general, �-matrix is a complex matrix and is a function of four variables, (y; y0; f; kz).
Everywhere below the spanwise wavenumber kz is scaled by 1=b. From symmetry (6.12) it
follows ImfS��(y; y; f;�z)g � 0 and, using (6.3),
Imf���(y; y; f; kz)g � 0, � = 1::3.
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Figure 7.7: The real part of the spectral correlation matrix Re[�11(y; y; St; kzb)] for kzb =
0; 0:33; 0:66; 1

A plot of the real part of u � u-correlations �11(y; y; St; kzb) for four wavenumbers kzb =
0; 0:33; 0:66; 1 is shown in Figure 7.7. The correlation matrix has two well-de�ned positive
peaks at (y=b = �1; St = 0:05). It quickly decays for large St, so the spectral correlation in
frequencies higher than St > 0:4 is negligible. Nevertheless, small tales in correlation for large
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St suggest some degree of intermittency in time of the underlying structure. As a function of
kz, the maximum correlation occurs at kz = 0 and gets weaker for large kz, so virtually no
signi�cant correlation is present above kzb > 1. At the centerline of the jet correlation values
are fairly small. The frequency St = 0:05 corresponds to a peaks in the frequency domain. The
spectral correlation across the centerline of jet for �11(y; y

0; St = 0:05; kz) for the same selected
wavenumbers kzb = 0; 0:33; 0:66; 1 is plotted in Figure 7.8. The negative correlation between
the velocities at the opposite sides of the jet is clearly seen for kz = 0 (negative correlations
are indicated with dashed lines). This �gure is quite similar to S11(y; y

0; St) at Figure 7.1. It
follows from (6.4)

S11(y; y
0;�z = 0; St) =

Z
�11(y; y

0;St; kz)dkz: (7.1)

that the similarity between S11(y; y
0; St) and �11(y; y

0;St; kz = 0) indicates that higher kz
modes contribute little to S11. This means that the dominant structure responsible for u-u
correlations is a planar structure in the spanwise direction. Nevertheless, correlations at non-
zero wavenumbers indicates a presence of three-dimensional structures as well.

The real part of �22(y; y; St; kzb) (v-v correlations) for kzb = 0; 0:17; 0:33; 0:5 is given in
Figure 7.9. The correlation reaches maximum at (y = 0; St = 0:1; kz = 0) and quickly decays
for large St and kz. The contours of �22(y; y

0; St = 0:10; kzb = 0; 0:33) are plotted in Figure 7.10
and indicate only positive correlations for v-component of the velocity across the jet. In this
case only two spanwise wavenumbers are shown since the decay of �22 with kz is even more
rapid than was the case for the streamwise uctuations. The implication is that the structure
in the ow responsible for the large-scale v-component correlation is quite two-dimensional in
nature. Also the correlations are quite similar to S22(y; y

0; St) at Figure 7.2. Therefore, a
similar conclusion about the dominant planar structure in the jet can be made.

The real part of the w�w correlation, �33(y; y; St; kzb = 0; 0:33; 0:66; 1) is presented in Fig-
ure 7.11. The two-positive correlation peaks are located at (y=b = �0:7; St = 0:11; kz = 0) and
no visible correlations exist for St > 0:4 and kzb > 0:5. Comparison with results for �11 and
�22 shown in Figures 7.7 and 7.9, respectively, reveal that the correlation levels associated with
the w-component are considerably smaller than those for the u and v-component uctuations.
The variation of the real and imaginary parts of �33 (y; y

0; St = 0:14; kzb = 0; 0:33; 0:66) with
spanwise wavenumber are presented in Figure 7.12. This �gure indicates a small negative corre-
lation of w-component across the jet for kz = 0. The rate of decay with increased wavenumber
is generally smaller in this case suggesting that a non-planar structure is responsible. This
is also evident in comparing Figure 7.12 with S33 shown in Figure 7.3. There is considerable
di�erence, especially in the imaginary parts. This suggests that higher spanwise wavenumber
modes are considerably more signi�cant for the w-component uctuations than was the case
for v or u.

The real and imaginary parts of the mixed correlation between u-and v-velocity components
�12(y; y; St; kzb = 0; 0:33; 0:66; 1) are plotted in Figures 7.13 and 7.14. This �gure reveals a
strong anti-symmetrical correlation between the u- and v-components of the velocity at St =
0:07 for small kzb < 0:5. The maximum values of the correlations are located at y=b = �1.
Much smaller values of the imaginary part of �12 suggests near zero phase correlation. These
�gures reveal a fairly rapid decay of �12 with kz which suggests that motions responsible for
large-scale u� v correlation are largely two-dimensional.This is also apparent from comparison
of �12 (y; y

0; St = 0:1; kzb = 0; 0:33) in Figure 7.15 with S12 as measured in the single rake
experiment (Figure 7.4). The pattern exhibited by Re(�12) is consistent with the existence of
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Figure 7.8: The spectral correlation matrix �11(y; y
0; St = 0:05; kzb)�103 for kzb = 0; 0:33; 0:66.

a structure that gives rise to antisymmetric large-scale u-uctuations and v-uctuations which
exhibit positive correlation across the jet.

The variation with spanwise wavenumber of the real and imaginary parts of �13 (y; y
0; St = 0:1; kz)

are shown in Figure 7.16. These show signi�cant correlation between u and w-component uc-
tuations. The real part of the u� w correlation �13(y; y; St; kzb = 0; 0:33; 0:66; 1) is presented
in Figure 7.17 and the imaginary part of the �13 is shown in Figure 7.18. From (6.10) it fol-
lows that �13 (y; y

0; St; kz = 0) = 0. Hence, there is no contribution to the �13-tensor by the
planar structure (kz = 0). It has already been noted that the motions responsible for the w
uctuations must be three-dimensional in nature. Figure 7.17 suggests that a component of the
streamwise uctuations is attributable to this structure as well. The decay of �13 with spanwise
wavenumber is slower than for �12. In addition, there is little resemblance between the contour
plots shown in Figure 7.17 with S13 as measured in the single rake experiment (Figure 7.5).
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Figure 7.9: The real part of the spectral correlation matrix Re[�22(y; y; St; kzb)] for kzb =
0; 0:17; 0:33; 0:5

Summarizing, the most energetic spectral correlations ���(y; y
0; St; kzb) are con�ned in the

region (St < 0:4; kzb < 1) and have a well-de�ned peaks in frequency domain. This implies
pseudo-periodic structures in time with large spanwise size L � 1=kz � b. U - and w-components
reveal negative correlations across the jet with positive correlation for v-component at kz � 0.
W -correlation values are several times smaller than u- and v-correlations.

7.4 Correlation measurements and underlying structures

The negative time-average correlation of u-component uctuations on opposite sides of planar
jet based on the analysis of conventional correlation matrix R(y; y0; x; x0; z�z0; t�t0) were noted
by Goldschmidt and Bradshaw [59], Everitt and Robbins [46], Cervantes and Goldschmidt [36]
,Mumford [114], Antonia at al [7]. In addition, positive correlation of v-components across the
centerline of the jet were noted [7]. Initially these correlations were thought to be an indicator
of apping lateral motion of the jet, similar to a apping of a ag. But apparent uncorrelated
motion of the boundaries of the jet on opposite sides of the jet, revealed in [148] and [112], along
with measurements of bulk displacement of the velocity mean pro�le, conducted in [59], [36],
[7] were not supportive of this scenario. Oler and Goldschmidt [115], Mumford [114], Antonia
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Figure 7.10: The spectral correlation matrix �22(y; y
0; St = 0:1; kzb)� 103 for kzb = 0; 0:33.

et al [7], [8] had proposed a di�erent scenario consisting of an array of the spanwise roller-like
large-scale counter-rotating vortices existing in the jet, similar to a Karman vortex street. The
review of early research on large-scale structures in the self-similar region of the jet can be
found in [137].

By analyzing space-time correlation functions with probe positioned on opposite sides of the
jet, an average time-delay between minima or maxima of passing structures Tcor was calculated
in [36], [139], [138]. This value was found to evolve in a self-similar fashion downstream such
that,

St =
b

TcorUmax

= 0:1 (7.2)

These observations provide a strong indication that underlying structures exhibit self-similar
behavior in the self-similar region of the jet. This Strouhal number is of the same order as St
corresponding to maxima of the spectral correlation, S��(y; y

0; St), discussed in Section 7.1.
Ewing in [48] has theoretically predicted that the evolution of cross-correlations in the self-
similar region of the jet admit self-similar solutions. This is a necessary, but not suÆcient
condition for the dynamics of the jet to be a self-similar one. The suÆcient condition is the
self-similarity of coherent structures or, in our de�nition, POD modes.
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Figure 7.11: The real part of the spectral correlation matrix Re[�33(y; y; St; kzb)] for kzb =
0; 0:33; 0:66; 1

7.5 POD modes

7.5.1 Two-rake POD modes measurements

In this section the POD eigenfunctions and associated eigenvalues obtained from the solution
of equation (6.17) using the experimentally obtained cross-spectral matrix ��� are presented.
The cross-correlation matrix � gives a large-scale correlation, averaged in time among many
blocks. It means that POD modes, extracted from �-matrix (6.7), will represent an average
shape of large-scale structures. Furthermore, time and spatial z-direction are transformed into
frequency and wavenumber spaces by two Fourier transforms, (6.2), (6.4). Therefore POD
modes give an averaged shape of the structure in a mixed physical-Fourier space (y; St; kz).
The reconstruction procedure, which transforms POD modes to a physical domain is described
in section 6.7. The reconstruction allows to restore an instantaneous shape of the structures
and the results are presented in section 7.7.

To �nd the POD modes, the equation (6.5) must be solved. This requires determination of
all nine components of the cross-spectral matrix, ���. Unfortunately, only the �ve components
�11, �12, �22, �13 and �33 can be directly measured via the x-wire rakes; the term �23 is not
directly available. However, as will be described in some detail in section 7.7.1, this term can

54



Figure 7.12: The spectral correlation matrix �33(y; y
0; St = 0:14; kzb)�103 for kzb = 0; 0:33; 0:66

be calculated from a knowledge of the other components by means of the continuity equation
and by invoking a Taylor's frozen �eld approximation. The remaining terms �21, �31 and �23

follow by using the property that the �-matrix is Hermitian.
The focus of this section is on the character of the eigenmodes extracted from two-rake

experiments and exploration the self-similarity of the underlying large-scale structure in the
jet. In order to do this we avoid invoking assumptions required for the solution of (6.5) (e.g. a
Taylor's frozen �eld approximation) and present POD modes calculated using only the diagonal
terms ���, Z

���(y; y
0; f; kz)'

(n)
� (y0; f; kz)dy

0 = �(n)� (f; kz)'
(n)
� (y; f; kz): (7.3)

It is important to note that the above relation excludes any information contained in the o�-
diagonal terms, �12; �32, and so on. Strictly speaking then, the POD modes derived from
solving (7.3) and those obtained from solving (6.5) will be di�erent. In fact, they will be the
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Figure 7.13: The real part of the spectral correlation matrix Re[�12(y; y; St; kzb)] for kzb =
0; 0:33; 0:66; 1

same only if the o�-diagonal terms are zero. Since, as shown in the previous section, �11 and
�22 dominate the o�-diagonal term �12 we can expect the u- and v-component POD modes
obtained by solution of (7.3) to be quite similar to the POD modes obtained by (6.5). In fact,
this turns out to be the case as will be shown in section 7.7. In the case of the w-mode the results
from the previous section show that �33 and �13 are of the same order of magnitude. Hence
we can expect a more substantial disparity between the w-component POD modes derived
from (7.3) and (6.5). Nevertheless, it is also worth mentioning that the set of w-component
POD modes obtained via (7.3) is still complete and can be treated as another completely valid
way to investigate the �33-term. Thus, while the u and v-component POD modes obtained
from (7.3) can shed light onto the shape of the structure, more caution must be exercised in
forming conclusions regarding the w-component structure based on the presented w-modes. As
it will be discussed in section 7.7, only the w-component POD modes from (6.5), combined with
instantaneous phase information obtained from the projection onto the ow �eld will provide
the physical ow structure responsible for the w-component uctuation.

In summary, the information contained in the o�-diagonal terms of the cross-spectral matrix
is crucial for modeling the jet dynamics and for reconstructing the large-scale structure in
physical space. The focus of this section is on (1) the documentation of the cross-spectral
matrix, (2) examination of the basic character of the POD modes in the y; St; kz domain and

56



0
0.2

0.4

−2

0

2
−4

−2

0

2

x 10
−4

St

Im[Φ
12

(y, y, St; k
z
b=0)]

y/b 0
0.2

0.4

−2

0

2
−4

−2

0

2

x 10
−4

St

Im[Φ
12

(y, y, St; k
z
b=0.33)]

y/b

0
0.2

0.4

−2

0

2
−4

−2

0

2

x 10
−4

St

Im[Φ
12

(y, y, St; k
z
b=0.66)]

y/b 0
0.2

0.4

−2

0

2
−4

−2

0

2

x 10
−4

St

Im[Φ
12

(y, y, St; k
z
b=1)]

y/b

Figure 7.14: The imaginary part of the spectral correlation matrix Re[�12(y; y; St; kzb)] for
kzb = 0; 0:33; 0:66; 1

(3) the exploration of the self-similarity of the POD modes and eigenvalues. To do this we
exploit the dominance of the diagonal terms in the cross-spectral matrix and thereby avoid use
of a Taylor's frozen �eld approximation by working with (7.3) instead of (6.5).

Modes '� with the corresponding eigenvalues �(n)� (St; kzb; x=D) were calculated from (7.3)
using (6.17) for each individual ���, � = 1::3. Later we will refer to the modes '1, '2 and
'3 as u-, v- and w-modes, respectively. As was the case in the presentation of the correlation
matrices S�� and ���, we choose to highlight results obtained at x=D = 70 and these may be
considered representative. Results obtained at the other streamwise locations will be presented
when we examine similarity scaling of the eigenfunctions and eigenvalues.

The eigenvalues for the �rst and the most energetic u-mode at x=D = 70 is presented
at Figure 7.19.a). The eigenvalue plots represent the modal energy distribution in Strouhal
number-wavenumber domain. The peak u-eigenvalue is located at (St = 0:05; kz = 0). Essen-
tially all the energy of the �rst u-mode is concentrated in a low wavenumber range kzb � 1,
which again suggests an extended(i.e. of order of b) structure in the spanwise direction. The
pick in frequency reects a pseudo-periodic behavior in time.

Because eigenmodes are orthonormal, from (6.7) it is convenient to multiply them by the

amplitude corresponding factor
q
�
(n)
� (f; kz). All modes have been properly scaled using the

local maximum velocity Umaxand the local-half-width b. The details will be given in section
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Figure 7.15: The spectral correlation matrix �12(y; y
0; St = 0:1; kzb)� 103 for kzb = 0; 0:33.

7.6. The square of the modulus of the �rst u-mode for several wave-numbers kzb = 0, 0:33,
0:66 is shown in Figure 7.19.b), c), and d) The square modulus of the u-mode at kz = 0 is
symmetric in the y-direction, which appears as two positive symmetrical 'humps' at y=b = �1.
For kzb = 0:33 though, the mode reveals an asymmetrical cross-stream pattern, where the mode
amplitude on one side of the jet (negative values of y) dominates the opposite side of the jet. A
similar trend is seen for kzb = 0:66 wavenumber; however the mode amplitude is smaller here.

The second u-mode is presented in Figure 7.20. The eigenvalue still has a peak at (St = 0:03,
kz = 0) but the peak has a small at plateau in the wavenumber direction kz. Again, however,
there is little energy content for kzb > 1. As was the case for u-mode 1, the St band of signi�cant
energy content is also rather narrow. The mode at kz = 0 is symmetrical in the y-direction and
appears to be slightly asymmetric for kzb = 0:33, with the positive side of the jet dominating
another side this time. Figure 7.20.b) presents the scaled modulus-squared of '

(2)
1 for kz = 0:

It is symmetrical in the y-direction. Higher wavenumber modes presented in Figures 7.20.c)
and d) reect a similar cross-stream asymmetry as occurred for �rst u-mode. For kzb = 0:33
the modal amplitude on the +y side of the jet dominates the �y side.Comparison of this �gure
with Figure 7.19.c) reveals that the shape of the second mode at kzb = 0:33 is almost a mirror
image of the �rst mode at the same wavenumber. The same can be said of a comparison
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Figure 7.16: The spectral correlation matrix �13(y; y
0; St = 0:1; kzb)� 103 for kzb = 0:33; 0:66.

between u-mode 1 and 2 shapes at kzb = 0:66 (Figures 7.19.d and 7.20.d). These results
suggest the existence of two di�erent physical structures in the jet, namely a planar structures
aligned in spanwise direction (for kz = 0) and essentially three-dimensional structures with
asymmetrical shape in y-direction and pseudo-periodically distributed in spanwise direction
with wavenumbers kzb = 0:33::0:66. An approximate scale of the latter structures in spanwise
direction is Lz � 1=kz � 5::10 inches at x=D = 70. These observations are similar to those
of Mumford [114], who found evidence of two kinds of vortical structures, planar ones and the
vortices aligned in the direction of local strain rate.

The �rst v-mode is shown in Figure 7.21. The maximum v-eigenvalue occurs at (St = 0:09,
kz = 0). In this case the decrease in energy with increased kz is much more rapid than for the
u-modes previously presented. The v-mode shows a symmetrical behavior in the crosstream
direction for kz = 0 and approximately symmetrical shape for non-zero wavenumbers. Figure
7.21 suggests that the �rst v-mode is essentially planar. The second v-mode in Figure 7.22
clearly exhibits minimum amplitude on the jet centerline and exhibits two peaks near y=b = �1:
The mode shape is similar for both zero and non-zero spanwise wavenumbers. The associated
eigenvalue distribution is shown in Figure 7.22.a). Again the peak occurs at kz = 0 and
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Figure 7.17: The real part of the spectral correlation matrix Re[�13(y; y; St; kzb)] for kzb =
0; 0:33; 0:66; 1

St = 0:10 but the peak eigenvalue is only about one-sixth the value for v-mode 1. The rapid

reduction in
����(2)2

���2 with kz is also indicative of a planar mode.
Finally, the �rst w-mode is presented in Figure 7.23. The maximum eigenvalue is one-sixth

the maximum u-eigenvalue. The eigenvalue peak (Figure 7.23.a) is located at (St = 0:12,
kz = 0). Figures 7.23.b)-d) show that near St = 0:12 the w-mode appears symmetrical in the
crosstream direction for both zero and non-zero wavenumbers. Its shape exhibits minimum
value near the jet centerline and peak values occur near y=b = �1. The mode shape at lower St
are asymmetric in y. The second w-mode is shown in Figure 7.24 and comparison with Figure
7.23 reveals that its cross-stream shape is basically a mirror image of the �rst w mode.

7.5.2 Convergence of the POD eigenvalues

We can give consideration to the energy content of the POD modes as expressed through
their respective eigenvalues. For a given uctuating component �, one can investigate the
relative amount of energy contained in mode number n expressed as a ratio of the total energy
contained within that uctuating component. That is, the relative energy of the �-component
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Figure 7.18: The imaginary part of the spectral correlation matrix Im[�13(y; y; St; kzb)] for
kzb = 0; 0:33; 0:66; 1

mode number n is given by,

ER(n;��mode) =

P
f;kz �

(n)
� (f; kz)P

n

P
f;kz �

(n)
� (f; kz)

(7.4)

Alternately, for a given uctuating component we can consider the cumulative e�ect of all
modes up to the n-th mode again expressed as a ratio of the total energy in that uctuating
component,

EC(n;��mode) =

Pn
k=1

P
f;kz �

(k)
� (f; kz)P

n

P
f;kz �

(n)
� (f; kz)

(7.5)

Figure 7.25 presents both ER(n;� � mode) and EC(n;� � mode) for the u-, v- and w-
components. Note that the �rst u-mode contains approximately 36% of the total energy of
the u-component, u02, and the �rst four modes account for approximately 85% of the total u-
component energy. The convergence is even more rapid for the v-component. The �rst v-mode
is responsible for 61% of the v-component energy with the �rst three modes capturing nearly
90% of v02. The w-component eigenvalues show a slower convergence, with 33% of w02 being
contained in the �rst mode. The �rst four modes account for over 80% of the total w-component
energy in the ow. With regard to the possibility of building a low-dimensional model of the
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Figure 7.19: The �rst u-mode: a) Eigenvalues �
(1)
1 (St; kz; x=D = 70) and the eigenmodes

j�(1)1 (y; St; kz; x=D = 70)j2 for for b) kzb = 0, c) kzb = 0:33 and d) kzb = 0:66.

self-similar region of the turbulent planar jet, Figure 7.25 is very encouraging. Considering
that this is a fully turbulent shear ow, it is of interest to note that such a large fraction of the
uctuation energy is accounted for by the �rst 3-4 POD modes and this suggests that Galerkin
projection of these modes onto the Navier-Stokes equations could provide the basis for a model
that can capture the essential large-scale dynamics of the ow [15], [142], [37].
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Figure 7.20: The second u-mode: a) Eigenvalues �
(2)
1 (St; kz; x=D = 70) and the eigenmodes

j�(2)1 (y; St; kz; x=D = 70)j2 for for b) kzb = 0, c) kzb = 0:33 and d) kzb = 0:66.
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Figure 7.21: The �rst v-mode: a) Eigenvalues �
(1)
2 (St; kz; x=D = 70) and the eigenmodes

j�(1)2 (y; St; kz; x=D = 70)j2 for for b) kzb = 0, c) kzb = 0:33 and d) kzb = 0:66.
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Figure 7.22: The second v-mode: a) Eigenvalues �
(2)
2 (St; kz; x=D = 70) and the eigenmodes
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Figure 7.23: The �rst w-mode: a) Eigenvalues �
(1)
3 (St; kz; x=D = 70) and the eigenmodes

j�(1)3 (y; St; kz; x=D = 70)j2 for for b) kzb = 0, c) kzb = 0:33 and d) kzb = 0:66.
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Figure 7.24: The second w-mode: a) Eigenvalues �
(2)
3 (St; kz; x=D = 70) and the eigenmodes

j�(2)3 (y; St; kz; x=D = 70)j2 for for b) kzb = 0, c) kzb = 0:33 and d) kzb = 0:66.
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7.5.3 One-rake POD modes

We consider the two rake implementation of the POD the primary experiment and the most
proper way of exploring the structure of the planar jet. This method provides eigenmodes and
eigenvalues that exhibit an explicit dependence on spanwise wavenumber, kz. However, a single
rake implementation of the POD was also performed in support of the primary experiment as
described in section 7.5.1. This was motivated by the fact that many previous investigations in
the planar jet have utilized probes con�ned to a single x� y plane. In addition, the single rake
implementation allows a larger number of probes to be placed in the inhomogeneous direction
and thereby enables eigenmode resolution issues to be addressed.

In this section the single rake POD modes  (n)
� (y=b;St) with corresponding eigenvalues

�(n)� (St) as computed from (6.24) for the diagonal terms S�� are presented and compared to
results from the two rake experiment. Note that in the single rake experiment the result-
ing eigenfunctions are not explicit functions of spanwise wavenumber kz but depend only on
Strouhal number, St, and the inhomogeneous spatial coordinate y. Since the one-rake ex-
periment does not resolve the spanwise direction, the resulting POD modes will represent a
weighted sum of the two-rake POD modes previously presented.
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Figure 7.26: The �rst two one-rake u-modes  
(n)
1 (y; St; x=D) with the corresponding eigenvalues

�
(n)
1 (St; x=D), n = 1; 2 at x=D = 70

Figure 7.26a presents
��� (1)

1 (y;St)
���2 and ��� (2)

1 (y; f)
���2 as obtained at x=D = 70. The associ-

ated eigenvalues �
(1)
1 (St) and �

(2)
1 (St) are presented in Figure 7.26b. A cross-stream asymmetry
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in both eigenmodes is apparent from Figure 7.26a. Note, in particular, that values of
��� (1)

u

���2
are greater for �y than for +y. The opposite is true for

��� (2)
u

���2. Recall from the two-rake POD
results that the �rst two u-component eigenmodes also exhibited an identical cross-stream
asymmetry for nonzero spanwise wavenumbers. This may be seen by comparing Figure 7.26a
with Figures 7.19c,d and 7.20c,d. Since the one rake results presented here represent a weighted
sum over all spanwise wavenumbers, the cross-stream asymmetry is an expected consequence
of the contribution of the nonzero kz modes. Similarly comparison of Figure 7.26a with Fig-
ures `7.19b and 7.20b clearly demonstrate that single rake measurements do not properly capture
planar modes. Figure 7.26b shows that the peak eigenvalues �

(1)
1 and �

(2)
1 occur at St = 0:04

and St = 0:03, respectively. These values are quite similar to those obtained in the two rake
experiment.
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Figure 7.27: The �rst two one-rake v-modes  
(n)
2 (y; St; x=D) with the corresponding eigenvalues

�
(n)
2 (St; x=D), n = 1; 2 at x=D = 70

The v-component eigenmodes
��� (1)

2 (y; St)
���2and ��� (2)

2 (y; St)
���2 are presented in Figure 7.27a

and both are observed to be symmetric in y. This is expected since the �rst and second
POD modes from the two-rake experiment as shown in Figures 7.21 and 7.22 are also both
symmetric in y. Note, however, that their are di�erences in the mode shapes between the two

experiments. For example Figure 7.27a shows the
��� (1)

2 (y; St)
���2 mode shape to exhibit a broader

peak near the jet centerline than is shown in Figure 7.21b. This di�erence is most likely due
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to the contribution of nonzero spanwise wavenumber modes. Figure 7.27b shows that peak
eigenvalues �

(1)
2 and �

(2)
2 occur at St = 0:09 and St = 0:07, respectively.
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Figure 7.28: The �rst two one-rake w-modes  
(n)
3 (y; St; x=D) with the corresponding eigenvalues

�
(n)
3 (St; x=D), n = 1; 2 at x=D = 70

Figure 7.28a presents
��� (1)

3 (y; St)
���2and ��� (2)

3 (y; St)
���2. Their respective shapes are observed

to be quite similar to those shown previously in Figures 7.23 and 7.24 for
����(1)3 (y; St; kz = 0)

���2
and

����(2)3 (y; St; kz = 0)
���2. The peak eigenvalues �

(1)
3 and �

(2)
3 occur at St = 0:12 and St = 0:1,

respectively.

7.6 Self-similarity of POD modes

In this section we investigate the self-similarity of the POD eigenvalues and eigenmodes by
application of suitable scaling. To answer the question about the self-similarity of the two-rake
POD modes, all quantities should be properly scaled. The dimension of R�� (6.4) is [m2= sec2],
and since ��� is a Fourier transform of R�� in time t and space z, the appropriate dimensions of
��� is [m2= sec2 �m � sec] = [m3= sec]. From (6.5) it follows that the dimension of � is [m4= sec].
Thus, the appropriate scaling for � is b3Umax and eigenvalues can be written in the following
non-dimensional form,
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Figure 7.29: Unscaled eigenvalues �(1)(f; kz; x=D) for the �rst u-mode for several x=D-stations.

�(n)(f; kz; x=D) = b3Umax
~�(n)(St; kzb; x=D) (7.6)

The appropriate non-dimensionalization for the POD modes will beq
�
(n)
� (f; kz; x=D)'

(n)
� (y; f; kz; x=D) =

q
b3Umax

~�
(n)
� (St; kzb; x=D)'

(n)
� (y=b;St; kzb; x=D): (7.7)

An example of the measured eigenvalue variation over the streamwise distance covered in
this experiment is presented in Figure 7.29. In particular, Figure 7.29a shows the streamwise
variation of �

(1)
1 (f; kz; x=D); the unscaled u-component mode 1 eigenvalues over the streamwise

range 50 � x=D � 90. This �gure shows that the maximum unscaled eigenvalue increases in
magnitude and shifts to smaller frequencies with increased streamwise distance. This is also
apparent readily from Figure 7.29b which highlights the streamwise development of the kz = 0
(i.e. a planar mode) u-component mode 1 eigenvalues.

If the POD eigenmodes and eigenvalues exhibit self-similarity then after a suitable rescaling
(7.6) and (7.7), we must have congruence of both the non-dimensional eigenvalues ~�(n)� (St; kzb; x=D)
in St� kzb space and the eigenfunction in y=b; St; kzb space.
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Figure 7.33: Scaled u-eigenmode j�(n)1 (y=b; St; kz = 0; x=D)j2, n=1,2.

cross-stream shape of the higher w-modes as noted in section 6.2. By proving the self-similarity
of the POD modes, the self-similarity of S- and �-matrices follow from (6.7) and (6.4). It
experimentally veri�es the theoretical prediction of the self-similarity of the cross-correlation
matrix by Ewing [48]. Furthermore, as the dynamics of the jet can be expanded in terms of
POD-modes (Chapter 8), we can conclude that the dynamics of the jet and an average shape
of large-scale structures in self-similar region are self-similar after x=D � 50 :
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Figure 7.34: Scaled v-eigenmode j�(n)2 (y=b; St; kz = 0; x=D)j2, n=1,2.
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Figure 7.35: Scaled w-eigenmode j�(1)3 (y=b; St; kz = 0; x=D)j2.
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7.7 Three-rake results

7.7.1 Full set of POD modes

As noted earlier, the implementation of the POD presented in section 7.5.1 is based on the
diagonal elements of the cross-spectral matrix ��� and neglects information contained in the
o�-diagonal terms. This was done in order to examine the self-similarity of the POD modes
without implementing a Taylor's frozen �eld approximation to �nd the �23 term required for
the solution of (6.5). In order to reconstruct the POD modes in physical space, all components
of the ���-matrix must be known. The term �32 can be obtained by a procedure described in
Ukeiley and Glauser [142]. A Fourier transform of the continuity equation gives,

@û�(y; z; f)

@x�
=
@û1(y; z; f)

@x
+
@û2(y; z; f)

@y
+
@û3(y; z; f)

@z
= 0 (7.8)

Since the spreading rate db=dx � 0:1 is small, the streamwise direction is weakly inhomoge-
neous and, as a �rst approximation, will be considered as homogeneous. We'll return to this
assumption in chapter 8. According to Antonia et al[7], Thomas and Brehob [138], the struc-
tures in the self-similar region of the turbulent plane jet convect at approximately 60% of the
local jet centerline velocity (Uc � 0:6Umax). First we form the complex conjugate of equation
(7.8), multiply by û2(y

0; z0; f) and average over multiple ensembles. After performing a spatial
Fourier transform in the z-direction and applying a constant group speed hypothesis in the
x-direction,

@

@x
= � 1

Uc

@

@t
= �2�if 1

Uc

= 2�ikx; (7.9)

the equation (7.8) can be rewritten in terms of ��2 (6.4) as in [142],

2�ikx�12 +
@�22

@y
+ 2�ikz�32 = 0 (7.10)

From the above relation, �32 can be easily calculated. The remaining terms �21, �31 and �23

can be found using the property that the �-matrix is Hermitian,

���(y; y
0; kx; kz) = ����(y

0; y; kx; kz) (7.11)

This spectral correlation tensor ��� is a kernel in the integral equation (6.5) to �nd the POD
modes for di�erent streamwise and spanwise wavenumbers, kx and kz, respectively.

By exploiting certain symmetries of the ��� matrix which are discussed at length in sec-
tion 6.1.3 and by application of a �nite quadrature form of (6.18), the POD eigenfunctions
'(n)
� (yi; f; kz) and associated eigenvalues �(n) (f; kz) were determined.
The resulting �rst POD eigenvalues �(1)(St; kz) are presented in Figure 7.36. In this im-

plementation of the POD the eigenvalues are the same for all three velocity components. The
eigenvalue distribution has a peak at St = 0:09, kz = 0. Recall that the eigenvalues �(1)u and �(1)v

obtained using (7.3) peak at St = 0:05 (Figure 7.19) and St = 0:1 (Figure 7.21), respectively.
It is interesting to note that the peak Strouhal number for the planar mode compares quite
well with the Strouhal number corresponding to the jet "apping frequency" (7.2) reported in
earlier studies of the planar jet. The planar component (kz = 0) of the �rst POD mode is pre-
sented in Figure 7.37.a). Note that since this is a planar mode, the w-component POD mode
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Figure 7.36: Combined eigenvalue distribution for the �rst POD mode �(1)(St; kz) at x=D = 70.

is nearly zero. Recall that the diagonal elements �11 and �22 are dominant with respect to �12.
Therefore, the POD modes obtained from the solution of (6.5) shown in �gure 7.37.a) compare
quite favorably with those shown in Figures 7.19 and 7.21 which result from the diagonal terms
only (7.3).

Three non-planar parts of the �rst POD mode for kzb = 0:33; 0:5; 0:66 are shown in Figure
7.37.b), c) and d), respectively. While the shape of the u-component for the non-planar mode
is relatively similar to the u-component of the planar part, the v-component changes quite
dramatically with increased kz. Inspection of the �rst POD mode at di�erent wavenumbers kz,
Figure 7.37, reveals that while the (kzb = 0:33)-mode is still somewhat close in shape to the
planar (kz = 0) mode, the (kzb = 0:5)-mode exhibits a qualitatively di�erent behavior. The
v-component shows two peaks in the y-direction and the amplitudes of v- and w-components
are of the same order. The (kzb = 0:66)-mode is quite similar to the (kzb = 0:5)-mode, the
only di�erence being a smaller amplitude. The v-mode amplitude decreases with kz while the
w-mode increases. For high wavenumbers, the amplitude of the w-component is comparable
with the amplitude of the v-component.

Based upon the implementation of the POD as outlined above, it was found that the turbu-
lent planar jet supports a planar structure aligned in the spanwise direction (kz = 0) as well as
an essentially three-dimensional structure with asymmetrical shape in the y-direction. Because
of this "dual aspect" of the time averaged structure, both were chosen to restore the shapes of
planar and non-planar coherent structure in physical space.

7.7.2 Choice of separation between rakes

As was already discussed in section 6.8.1, the three-rake experiment allows one to extract
information about the planar (kz = 0) and one non-planar (kz = 1=(2H)) structure. By
adjusting H, di�erent non-planar structures can be extracted from the ow. So, the question
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arises as to what particular wavenumber to choose. An eigenvalue spectrum for the �rst POD
mode, Figure 7.36 shows a monotonous decay of energy in the kz-direction, with peak value at
kz = 0. The eigenvalue distribution for the �rst POD mode is essentially zero for kzb > 1. In
order to avoid the spatial aliasing in the z-direction to resolve the planar mode, the restriction
(6.29) gives a lower limit for the separation between rakes,

2k(N)
z b = 2b=(2H) � 1; or H � b (7.12)

If the condition (7.12) is satis�ed, the planar mode will be resolved properly. But all non-planar
modes with 0 < kz < k(N)

z will be contaminated by modes above the Nyquist wavenumber k(N)
z =

1(2H). So, the completely accurate measurement of any non-planar structure is impossible with
the three-rake experiment. Still, some useful qualitative results can be extracted. It is noted
�rst from Figure 7.37, that all the modes with kzb � 0:5 appear to be from the same family.
Second, the three-rake experiment works as a band-pass �lter in the z-direction with fairly
wide band (section 6.8.1) and all modes within this band around the chosen wavenumber will
be present with some weights in the extracted mode. Consequently, not the exact shape, but
only a qualitative topology of the non-planar structure can be reconstructed.

In addition to the planar mode, the non-planar (kzb = 0:5)-mode was chosen to be recon-
structed in the physical domain for the following reasons:

1. It satis�es the restriction (7.12).

2. It shows a distinctively di�erent shape in y � St space compared with the planar mode.

3. All components' amplitudes are essentially non-zero.

4. This mode is the most energetic among all modes, satisfying the restriction (7.12).

Based on the above criteria, the separation between rakes was chosen to be H = b = 8:9
cm. This arrangement provides the measurements of both the planar (kz = 0) mode and
(kzb = 0:5)-mode.

7.7.3 Planar mode kz = 0

The three-rake experiment provides measurements of either (u; v) or (u; w) components of the
velocity. Since the w-component of the planar part of the POD mode is nearly zero, as shown
in Figure 7.37.a), the instantaneous w-�eld is not necessary in order to restore the shape of
the planar structure. Thus, only the (u; v)-instantaneous velocity �eld was used to restore �rst
three planar (u; v)-POD modes in the physical space.

A plot of the instantaneous �eld and �rst two POD modes are plotted in Figure 7.38 as
vector plots. Additional sequential time records are presented in Figures 7.39, 7.40 and 7.41.
The temporal coordinate is converted to a pseudo-spatial coordinate and nondimensionalized
by b, x = Uct=b. Here Uc is a convective velocity of the structures, which was chosen to be
Uc = 0:6Umax. Also in the �gure, the instantaneous velocity uctuations u

0 and v0 (black line) at
y=b = 0:4 are compared to a reconstructed velocity based on sum of the �rst three POD modes
(grey line). One can see, that the three modes do an admirable job in capturing large-scale
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velocity variations. The deviation of the sum of the �rst three modes from the instantaneous
velocity can be qualitatively characterized as,

�2�(y) = h[u�(y; t)instant �
3X

n=1

u(n)� (y; t)]2i (7.13)

For instance, for y=b = 0:4 �1 = 1:2 m/sec. Again, it is consistent with the fact that �rst few
POD modes cover most of the turbulent energy of the ow, as shown in Figure 7.25.

The �rst POD mode clearly reveals the existence of vortical structures. Clockwise rotat-
ing vortices are visible at x = 1:5; 7; 10; 16; 18; 20:5 and counterclockwise rotating vortices are
present at x = 5; 13; 17: Vortices are centered along the line y = 0 and vary in size. It seems that
the alignment along the jet centerline does not support the Karman vortex street hypothesis
of earlier investigations. The intermittent appearance of vortices is also obvious. Analysis of
longer time records has revealed that the vortices are more likely to exist in packets or trains
of several alternately rotating vortices. One example of such train of structures is visible at
x = 13::19.

The ow �eld corresponding to the second POD mode (Figure 7.38) is more complicated
and less obvious for physical interpretation. Since this mode is energetically weaker that the
�rst one, other non-planar modes might contaminate it, due to a coarse �lter resolution in the
z-direction.

7.7.4 Non-planar mode (kzb = 0:5)

For a three-dimensional coherent structure, instantaneous measurements of all velocity compo-
nents are necessary to reconstruct the non-planar POD mode in the physical space. Working
only with either (u; v) or (u; w) components, an exact calculation of the phase-related coeÆ-
cients c(n)'s (see section 6.7) cannot be performed. This lack of experimental measurements of
simultaneous (u; v; w) introduces some ambiguity into the reconstruction procedure. One way
to deal with this issue is to recognize what the u-component of the POD mode, shown in Fig-
ure 7.37.c) is dominant over v- and w-parts of the POD mode and will, consequently, provide
the most information about the phase. Hence two reconstructions using the (u; v) or (u; w)
instantaneous velocity �eld can be performed. This provides some information about either
(u; v) or (u; w) parts of the coherent structure. Since both of them involve the u-component,
one way to qualitatively restore the (u; v; w)-velocity �eld of the coherent structure is as follows.
One can analyze the u(y; x)-�eld for both cases and look for similar patterns or signatures
of structures. Matching the u-signatures gives the qualitative (u; v; w)-ow corresponding to
the structure. In e�ect, the projections are used as the basis for conditional sampling of a
characteristic u-signature.

The decomposition of the non-planar component of the instantaneous (u; v) velocity �eld for
kzb = 0:5 into a �rst non-planar POD modes is presented in Figure 7.42. Again, the �rst 3 POD
modes represent reasonably well the large scale instantaneous u0 and v0 velocity uctuations.
Using (7.13), the deviation was found as �1(y=b = 0:4) = 1:2 m/sec. The �rst and second (u; v)
POD modes are shown as well.

An example of results using the matching procedure described above is given in Figure 7.43.
Figure 7.43.b) and Figure 7.43.c) show contours of the u-component for (u; v) and (u; w) parts
of the structure. Since they look quite similar to some extent, the u-, v- and w-�elds must
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represent the same kind of structure. All three velocity components are essentially non-zero.
The structure can be divided into three regions. They are displayed as square boxes in (u; v)-
and w-plots in Figure 7.43.a). The 'head' of the structure is located at x = 36::37 , y=b < 0:5 and
is characterized by a local (u; v) velocity �eld (Figure 7.43.a) with essentially no w-component
(Figure 7.43.d). The 'wings' of the structures lie in regions jy=bj > 0:5. Within the 'wings' exist
extended regions of non-zero w-component. The signs of w-component are di�erent at opposite
'wings'. The 'tail' of the structure (x = 39::41) consists of series of upward or downward motion,
with the (u; v)-ow similar to 'head"s ow, but in opposite direction. Small vortical motions
in the (u; v)-plane are visible at the centerline at x = 38:7 and x = 40:5. They seem to roughly
coincide with the locations of non-zero w-ow. The sketch of the possible streamline topology
is given in the Figure 7.44. The top view summarizes the ow �eld topology, described before.
The prospective view gives a spanwise unfolding of the structure. The back view reveals the
ow topology similar to streamwise vortices aligned in spanwise direction. The location of the
vortex centers is approximately at y=b = 0:5::1. This seems to support Mumford's hypothesis
[114] regarding the existence of streamwise vortices aligned along the maximum shear stress.
The spanwise size of the structure is in the order of b, Lz � 1=kz = 10::20. So, structures
with di�erent Lz, similar to sketched structure in Figure 7.44, exist in the jet. Based on the
analysis of the long time records, no apparent correlation between locations of planar spanwise
structure and locations of the non-planar spanwise-periodic structure was found. The possible
modes of energy exchange between the structures are not known at this time. More rakes of
the probes or/and conditional sampling techniques, based on the preliminary information about
non-planar POD mode are required to investigate the ow topology of the non-planar structure
in suÆcient detail to give the answer to the above question.

The streamlines at the 'wings' of the structures are inclined relative to the centerline of the
jet. If we de�ne the structure as the event where the u-component exceeds a certain threshold
umin, the mean slope of the structures can be de�ned from conditional sampling,

� =
D
tan�1(v=u) j u > umin

E
(7.14)

The calculation over large number of events gives the constant value of the slope as � =
0:3::0:4 rad = 17::22 degrees, independent from umin for 1:5 m/sec < umin < 3 m/sec. Thus,
the angle between the streamlines and the centerline is approximately constant inside the tales.
It is not clear at this point why the streamlines behave in such fashion. Re�ned measurements
and/or numerical modeling are needed to address this issue.

The physical interpretation of the second mode is obscure, probably for the same contami-
nation reasons, briey discussed in the previous section.

7.7.5 Comparison of Fourier- and wavelet-based reconstructions

Instead of the wavelet transform, one can use a Fourier transform as a basis to reconstruct
POD modes in the reconstruction algorithm described in Section 6.7. This implementation
is straightforward and won't be discussed here. Such an approach was used to reconstruct
dynamical behavior of vortical structures in the near �eld of a round jet in [37].

In this study, the Fourier-based reconstruction was applied to reconstruct planar modes
and the results are plotted in Figure 7.45. The wavelet reconstruction of the same ow is
given in Figure 7.38. Comparison of instantaneous u0 and v0 velocity traces at y=b = 0:4
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resulting from a sum of the �rst three POD modes reveals that the Fourier reconstruction
misses some important large-scale uctuations. The vortical structures are still visible in the
�rst POD modes, although they are less pronounced. The second mode velocity �eld also di�ers
from the wavelet reconstructed second mode. Applying (7.13), the deviation was found to be
�1(y=b = 0:4) = 1:27 m/sec, which is greater than the deviation �1(y=b = 0:4) = 1:22 m/sec
for the wavelet reconstruction case.

The better job of the wavelet reconstruction stems from the fact that, due to the local nature
of the wavelet basis functions, any errors in reconstruction remain local and do not a�ect the
entire time domain. On the contrary, the Fourier transform operates with in�nitely spanned
basis functions and any local error will spread out throughout the temporal region. In the limit
of increasing the sampling frequency and the number of points in time the Fourier and wavelet
reconstruction will coincide, but for �nite resolution and limited information in time, which is
a common case in experimental measurements, the wavelet reconstruction is preferred against
the Fourier reconstruction.
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Figure 7.37: Modulus squared of the �-components of the �rst POD mode j�(1)� (y; St; kz)j2 for
kzb = 0; 0:33; 0:5; 0:66 at x=D = 70.
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Figure 7.38: Planar (u; v) mode: Instantaneous velocity �eld, reconstruction with �rst three
POD modes, the �rst and second POD modes and the comparison of the instantaneous velocity
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Figure 7.39: Planar (u; v) mode: Instantaneous velocity �eld, reconstruction with �rst three
POD modes, the �rst and second POD modes and the comparison of the instantaneous velocity
and three-mode reconstruction at y=b = 0:4, 21 < Uct=b < 42
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Figure 7.40: Planar (u; v) mode: Instantaneous velocity �eld, reconstruction with �rst three
POD modes, the �rst and second POD modes and the comparison of the instantaneous velocity
and three-mode reconstruction at y=b = 0:4, 42 < Uct=b < 63
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Figure 7.41: Planar (u; v) mode: Instantaneous velocity �eld, reconstruction with �rst three
POD modes, the �rst and second POD modes and the comparison of the instantaneous velocity
and three-mode reconstruction at y=b = 0:4, 63 < Uct=b < 84
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Figure 7.42: Non-planar kzb = 0:5 (u; v) mode: Instantaneous velocity �eld, reconstruction
with �rst three POD modes, the �rst and second POD modes and the comparison of the
instantaneous velocity and three-mode reconstruction at y=b = 0:4
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Figure 7.43: Non-planar kzb = 0:5 structure: (u; v) �eld, u(�v)-, u(�w)-, and w-velocity �elds.

90



Top View

Prospective View

z

y

x

Back View

y

z Centerline

��������
����
����
����
����

��������
��������Centerline����
��

Nonzero w-flow

Streamlines

��
��
��
��

x

y

H

H

Figure 7.44: Sketch of non-planar kzb = 0:5 structure: Top, Prospective and Back views.

91



0 2 4 6 8 10 12 14 16 18 20
−2

0

2
Instantaneous Field

(U
c
 t)/b

y/
b

0 2 4 6 8 10 12 14 16 18 20
−2

0

2
Modes 1+2+3

(U
c
 t)/b

y/
b

0 2 4 6 8 10 12 14 16 18 20
−2

0

2
Mode #1

(U
c
 t)/b

y/
b

0 2 4 6 8 10 12 14 16 18 20
−2

0

2
Mode #2

(U
c
 t)/b

y/
b

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

u’−component at y/b=0.4

(U
c
 t)/b

u’
 (

m
/s

ec
)

Inst. Field

Modes 1+2+3

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

v’−component at y/b=0.4

(U
c
 t)/b

v’
 (

m
/s

ec
)

Inst. Field

Modes 1+2+3

Figure 7.45: Fourier reconstruction of planar (u; v) mode, using the same ow �eld as in Figure
7.38.
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Chapter 8

CONCLUSIONS AND FUTURE
WORK

8.1 Conclusions

Experimental investigation of the coherent structure in the self-similar region of the planar tur-
bulent jet is performed by applying the Proper Orthogonal Decomposition (POD) in conjunction
with the continuous wavelet transform. Detailed measurements of the spectral cross-correlation
matrix ���(y; y

0; f; kz) are obtained at several streamwise locations using two spanwise sepa-
rated x-wire rakes. The obtained matrix is used as an input to compute the POD eigenmodes
'�(y; f; kz) in the jet. An eigenvalue convergence analysis shows that the �rst 4 modes account
for approximately 90% of the turbulent energy. In addition, the POD modes are found to
behave in a self-similar fashion when scaled by the local half-width and the local maximum
velocity. This is a suÆcient condition for the self-similarity of the coherent structure dynamics
in the planar turbulent jet.

The results from the two-rake experiment indicate that the self-similar large-scale structure
in the planar jet is three-dimensional in nature. However, it is natural given the geometry of the
ow �eld, to question whether some portion of this underlying structure can be approximated
as planar. From the results presented here the answer seems to be yes. The results suggest that
the ow supports a planar structure aligned in the spanwise direction (kz = 0) as well as an
essentially three-dimensional structure with asymmetrical shape in the y-direction and pseudo-
periodically distributed in the spanwise direction. In particular, modal eigenvalue distributions
in kz; St space indicate that a substantial fraction of the energy associated with the u-component
POD modes and nearly all the energy associated with the v-component POD modes are due
to an essentially planar component of the large-scale structure that extends in the spanwise
direction. That is, most of the u and v-component energy is associated with kz = 0 and falls
o� quite rapidly for kz > 0. The eigenvalues also exhibit a well de�ned peak in St with tails
extending to somewhat higher values of St. This suggests that the planar structure is quasi-
periodic and may also exhibit an intermittent behavior. This planar structure is reminiscent of
the "spanwise roller" structures noted by Mumford [114] using a pattern recognition method.
Measurements of �12 indicate that large-scale Reynolds stress u0v0 is governed largely by this
planar component of the ow structure.
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In order to investigate the topology and dynamics of the structures in the physical domain,
phase related temporal coeÆcients are needed. A novel wavelet reconstruction procedure is
used to project the POD modes onto instantaneous ow �eld realizations, which allows one to
calculate these coeÆcients. The wavelet based reconstruction technique is shown to perform
better for �nite time records than a more conventional Fourier-based reconstruction technique.
The topology of the most energetic extracted structures is investigated in detail. Two types
of structures are found: The �rst involves planar spanwise vortical structures. These tend
to cluster in packs of several vortices with alternating rotations. The second is a more com-
plex structure, asymmetric in the cross-stream direction and pseudo-periodic in the spanwise
direction. These are topologically similar to an array of streamwise vortices. Thus, the mea-
surements support the scenario of two topologically distinct structures co-existing in the planar
jet. This is in general agreement with the topology proposed by Mumford [114], using a pattern
recognition technique. The new information about the coherent structures in the jet provided
by this study will help our understanding of the dynamics of the jet. Since some important
question about origin, interaction and evolution of the structures are still to be answered. The
results of the present research can be used to de�ne suitable criteria for a variety of conditional
techniques that can be used to address these issues.

8.2 Prospective for Future Work

Since the POD modes provide a complete set of functions which exhibit optimum convergence
they can be used to build a low-dimensional model of the planar jet. The approach outlined
below is similar to that taken in recent investigations of the dynamics of the boundary layer
[15] and the planar turbulent shear layer [142].

8.2.1 Streamwise Direction

The inability to perform direct measurements of the velocity cross-correlation matrix for
cases involving streamwise probe separations due to probe wake interference makes analysis of
the streamwise coordinate problematic. Since in the self-similar region the spreading rate of
the jet db=dx � 0:1, almost all the existing approaches to investigate jet dynamics are based
on the assumption that the ow in homogeneous in streamwise direction. Using the Taylor's
hypothesis, the streamwise evolution is then analyzed through the temporal evolution, with
the latter one much easier to get experimentally. Physically this is equivalent to imposing
wall-like boundary conditions which prevent the jet from spreading. One then expects that the
new modi�ed system is locally dynamically similar to the original system. Using this approach
is clearly inappropriate for addressing issues related to global dynamics, though. Another
approach is to recall that the dynamics of the jet in this region has been proven to be self-
similar. Thus, the governing equations can be rewritten in self-similar coordinates and the
streamwise direction will become a homogeneous one. Unfortunately, the time is this case will
thus become an inhomogeneous coordinate. So there is no clear advantage of one approach
against another.
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8.2.2 Dynamical Modeling of the Jet

After the spatial orthogonal modes are extracted, the velocity can be decomposed in the
series,

u�(x; y; z; t) =
X
n

X
kx

X
kz

c(n)� (t; kx; kz)e
2�ikxxe2�ikzz�(n)� (y; kx; kz) (8.1)

This series will be truncated to keep the minimal number of the most energetic modes. Sym-
bolically this can be written as

u(x; t) � uN =
NX
n

cn(t)'
(n)(x) + smaller scale modes (8.2)

The rest of the modes are considered as a dissipative inuence on the large scales. The number
of modes kept in the truncation can be varied to investigate the e�ect of neglected modes. We
would like to keep as few modes as possible, but don't want to lose essential physics because of
the truncation of dynamically signi�cant modes. The Galerkin procedure will be performed to
get a system of equations for the c's. The governing Navier-Stokes equations are symbolically
written as

NS(u) =
@u

@t
+ L(u) +Q(u;u) = 0; (8.3)

where L and Q are linear and quadratic operators, respectively. For explicit expressions of
these operators, see [142], for instance. We would like to minimize the error after truncating
the series (8.2) by orthogonalizing the N-S equations with the truncated velocity series to the
orthogonal basis,

(NS(uN ) � '(n)) = 0 (8.4)

In terms of temporal coeÆcients, the system (8.4) becomes a �nite set of ODE's,

dcn
dt

= Bcn +NL(cn) (8.5)

where B is a matrix and NL is a nonlinear matrix operator on cn.
There still exists an energy transfer from large resolved modes to small unresolved dissipative

scales. This interaction can be parametrically described by any simple model, like a Heisenberg
spectral model for isotropic turbulence [15]. This model expresses the Reynolds stress of unre-
solved modes in terms of the strain rate of the resolved modes and is similar to sub-grid scale
modeling in the numerical large-eddy simulation approach. The model introduces a parameter
 into the system (8.5) regulating the energy transfer from the large resolved modes to small
unresolved ones. Since the exact mechanism of how the energy of the large modes dissipates
is not likely to be important (see section 8.2.3), this simple parametric model is widely used
to describe the dissipative inuence of the small modes. Now we have two parameters to play
with: the number of resolved modes N and the Heisenberg parameter  in order to 'tune-up'
our truncated system behavior (8.5) as close as possible to the real one. Also the system (8.5)
can be analyzed by means of the theory of dynamical systems to investigate the dynamics of
the system.
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8.2.3 Viscous E�ects

Rigorously speaking, the dynamical model is based on experimental data obtained at one
Reynold number, namely Re = 28; 000. While the set of basis POD functions is still complete,
it could become non-optimal for ows with di�erent Re. This could narrow the applicability
of the model. But the viscosity e�ects appear mostly on small scales. Investigations of large-
scale structures in di�erent turbulent ows indicate that the shapes of these structures are
macroscale-dependent and are primarily a function of the boundary and initial conditions. For
the coherent structure, reported in this thesis, the characteristic Reynold number can be com-
puted from the typical rms velocity U� and the size L of the structure, Re = U�L=�. For the
planar structure at x=D = 70, Replanar = 5000. So, the coherent structure is mostly governed
by inertia forces, rather than viscous ones. Since the model deals with the �rst few energetic
modes and the rest of the modes are modeled by a dissipative term, the viscosity will not likely
change the spatial shape of �rst few POD modes. Rather, it will mostly e�ect the values of
the tuning parameters in the model (like number of involved modes and the dissipation energy
rate from the large-scale modes). Hence it is expected that the set of POD modes will still be
close to the optimal set and the application of the model can be relatively easily extended for
a range of planar turbulent jets with di�erent Re-numbers.

8.2.4 Checking the Theory

Since we extracted the temporal-spatial behavior of the most energetic structures in the jet,
this valuable information provides a rigorous check of the validity of the model predictions.
If the system is reasonably small and can be studied analytically or numerically, comparison
of the predicted dynamics with the results of the wavelet reconstruction analysis will help in
tuning the model and in verifying all the assumptions made while building the model. The
wavelet analysis is a very necessary component of this process.

8.2.5 Will the Model Work ?

The dynamical model is heavily based on the experimental data. The number of equations
in the model depends on how fast the POD series converges. We need to have a minimum
of three modes to model a nonlinear interaction between modes, so the minimum number is
3 � 2 = 6 (the factor of two comes from the fact that the temporal coeÆcients are complex).
For more realistic modeling more modes (5::10 modes) should be included. So we potentially
face a model with up to 20 equations. Analysis of such system can be quite complicated. In
the worst scenario, it would be impossible to analyze the model. The wavelet reconstruction
analysis of the experimental data in this case will be the only way to investigate the dynamics
of the jet directly. The results of such analysis can help building alternative dynamical models.
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Appendix A

LITERATURE REVIEW ON POD
AND WAVELET TRANSFORM

A.1 Historical background on POD

Historically, the Proper Orthogonal Decomposition was proposed by Lumley, 1967, [101]. But
the method itself is known under a variety of names in di�erent �elds: Karhunen-Lo�eve pro-
cedure, (Karhunen, 1946, [86]; Lo�eve, 1955, [99]), Principal Component or Hotelling Analysis
(Hotelling, 1953, [78]), Empirical Component Analysis (Lorenz, 1956, [100]), Quasiharmonic
Modes (Brooks el at., 1988, [31]), Singular Value Decomposition (Golub and Van Loan, 1983,
[62]), Empirical Eigenfunction Decomposition (Sirovich, 1987, [129]) and others. Closely re-
lated to this technique is factor analysis, which is used in psychology and economics (Harman,
1960, [74]).

From the mathematical point of view the POD (3.2) is just a transformation which diago-
nalizes a given matrix R and brings it to a canonical form R = ULV, where L is a diagonal
matrix. Therefore the roots of the KL expansion actually go into the middle of the last century.
The mathematical content of KL procedure is therefore classical and is contained in the paper
by Schmidt [126], which dates to 1907. A complete review of the early history of KL expansion
can be found in [133].

A.2 POD: Application to turbulent ows

POD extracts a complete set of orthogonal modes by maximizing the energy of the modes. Any
member of statistical ensemble can be expanded on this set, and this series converges as fast
as possible. Also POD gives the eigenvalues, which correspond to the kinetic energy of each
mode. The requirements of large data storage and automated computer controlled experiments
to obtain detailed second-order statistics from the ow delayed the wide application of POD
until the last decade of the century.

A.2.1 Turbulent boundary layers

The �rst attempts to apply the POD to turbulent ow occurred in boundary layers. One of
the reasons to look at the boundary layer was the existence of a strong peak in production
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of turbulent energy on the outer edge of the viscous sublayer. Kline et al. [90] were �rst to
observe streamwise vortex pairs in the boundary layer near the wall and bursting events associ-
ated with them. Bakewell et al. [17] using experimentally obtained 2-point correlation matrix,
have sketched dominant structures within the wall region. These consisted of randomly dis-
tributed counter-rotating eddy pairs elongated in streamwise direction. They showed that the
sublayer and the adjacent wall region play an active role in the generation and preservation of
a turbulent shear ow. The nonlinear mechanism of vortex stretching suggests that linearized
theories cannot provide an adequate description of the viscous sublayer. Later these structures
were identi�ed with burst-like events in the boundary layer. Cantwell [35] provided a detailed
discussion of the research of turbulent boundary layer. Aubry et al [15] successfully utilized the
experimental POD eigenfunctions of Herzog [75] to create a dynamical systems model of the
near-wall region of a turbulent boundary layer. By truncation of the series a low-dimensional
system was obtained from the Navier-Stokes equation via Galerkin procedure. This model
represented the dynamical behavior of the rolls and was analyzed by methods of dynamical sys-
tems theory. The model captured major aspects of the ejection and bursting events associated
with streamwise vortex pairs. This paper appeared to be one of the �rst to provide a reason-
ably coherent link between low-dimensional chaotic dynamics and realistic turbulent open ow
system. Spatio-temporal three-dimensional structures in a numerically simulated transitional
boundary layer were examined by Rempfer & Fasel [122] using the POD technique. �-shaped
vortices were found to be the most energetic modes in the ow. They correspond to physically
observed structures and resemble bursting events in fully turbulent boundary layers. It was
argued that the POD modes correspond to physically existing structures, when most of the
energy is contained in the �rst mode.

Because of the experimental diÆculties in obtaining second-order statistics from the ow,
the POD technique has been applied to a number of computational simulation results. Moin
& Moser [109] made direct numerical simulations of N-S equations in a turbulent channel for
128 x 128 x 128 grid points and Re=3200. The shot-noise expansion proposed by Lumley [103]
was used to �nd the spatial shape of the coherent structure (CS). A dominant eddy was found
responsible for 76% of the turbulent kinetic energy. Similar computational research was done by
Ball et al. [18] for 24 x 32 x 12 grid points, Re=1500. A "snapshot technique" [129] was applied
in order to extract the modes. The eigenfunctions were found as rolls (the most energetic mode)
and shearing motions. The �rst 10 modes captured 50% of the turbulent energy. Rolls provide
the mechanism for the transport in channel ows like turbulent 'bursts', while shearing modes
were suggested to relate to the instabilities in the ow.

Sirovich & Park [131], Howes et al [79] performed numerical simulations of Rayleigh-Benard
convection in a �nite box for 17 x 17 x 17 grid points. POD technique, snapshot method and
group symmetry considerations were applied to investigate CS. Ten classes of eigenfunctions
were discovered. The �rst eigenmode being captured 60% of the energy. Numerically simulated
ow in a square duct (Re = 4800, grid 767 x 127 x 127) was analyzed by POD in [56]. Two
di�erent structures were found. Near the wall this consists of a pair of high and low-speed
streaks with the �rst POD mode seizing 28% of energy. In the corner domain a vortex pair
with common ow toward the corner with 43% of the total energy was discovered. It was found
that the energy in this region goes from the turbulence back to the mean ow. The ow in
duct was found to have a greater degree of organization.
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A.2.2 Turbulent jets and shear ows

Payne & Lumley [118] used experimentally obtained 2-point diagonal correlation tensor to
extract CS in the turbulent wake behind a circular cylinder. Glauser et al. [57] investigated a
large-scale vortex ring-like structure in the mixing layer in axisymmetric jet ( Re � 110; 000) at
x=D = 3 by POD and shot-noise decomposition. The �rst 3 modes were found to contain almost
all the uctuation energy of the ow. Kirby et al. [88] used a snapshot method for 2-dimensional
large-eddy simulation of an axisymmetric compressible jet ow on 240 x 80 point grid for
Re � O(104). They found the �rst 10 modes hold 94% of the total uctuation energy. A similar
approach was used by Kirby et al. [89] to investigate a simulated supersonic shear ow. Sirovich
et al. [130] applied POD to the analysis of digitally imaged 2-dimensional gas concentration
�elds from the transitional region of axisymmetric jet. Here POD was proposed basically as
a methodology for analyzing and treating a large body of experimental and numerical data.
Ishikawa et al [83] applied POD and wavelet technique to investigate coherent structures in a
turbulent mixing layer. POD procedure revealed the �rst mode to be the most energetic one,
while wavelet transform found low-frequency modulation of vorticity in this mode. Hilberg et
al [76] investigated large-scale structures existed in a mixing layer in a narrow channel using
a rake of probes. They applied both classical and snapshot POD techniques and were able to
identify the largest 2-dimensional mode. Snapshot POD for a conditionally averaged velocity
�eld showed that �rst two modes contain the largest portion of coherent vorticity. Delville [44]
also applied POD to the plane turbulent shear layer. Two rakes of hot-wire probes were used to
extract the required correlation matrix from the ow. Vectorial version of the POD was found to
give a better presentation of structures in the ow. Di�erent aspects and problems of applying
the POD procedure were also discussed. An axisymmetric jet was investigated in [13]. POD
modes for near-�eld pressure in the inhomogeneous streamwise direction were obtained for the
�rst time and observed as growing, saturating and decaying waves. The phase velocity for the
�rst few modes near saturation point were found to be the same Up = 0:58Uj. A characteristic
structure was reconstructed using the shot-noise decomposition. It was observed that vortex
pairings do not happen periodically and vortex tripling events occur quite often. Citriniti [37]
applied POD to an axisymmetric mixing layer in a fully turbulent (Re = 80; 000) axisymmetric
jet. An array of 138 hot wires were used to obtain the correlation data. POD modes were
projected onto instantaneous realization of the velocity �eld at x=D = 3 and the temporal
coeÆcients of the corresponding POD modes were investigated. Kopp et al [92] investigated
large-scale structure in far �eld of a wake behind a cylinder (x=d = 420, Re = 1200). They
used a rake of 8 x-wire probes to get the instantaneous velocity �eld in both cross-stream and
spanwise directions. They applied the POD technique to extract the �rst modes and used the
�rst two as a template for a Pattern Recognition (PR) technique. The structures found via PR
and POD were similar and represented negative u-uctuations with outward v-uctuation in
the cross-stream direction. In the spanwise direction a double roller structure was discovered.
A ow �eld in lobed mixer (mixing enhancement device) was considered by Ukeiley et al [141].
A rake of the probes in the streamwise direction was used to collect data on the correlation
matrix. The �rst POD modes were projected back to instantaneous ow �eld to get information
about multifractal nature of the ow.
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A.2.3 POD-based modeling

The optimal mean square convergence of POD modes make them useful as a basis for con-
structing low-order dynamical models for di�erent applications. Using a truncated number of
the POD modes as a basis and projecting them onto the Navier-Stokes equations allows one
to reduce the governing PDE to a low-order system of ODE's. The rest of modes are modeled
by a dissipative term. Analysis of the obtained system can shed light into the dynamics of
the system. Aubry et al. [15] were able to model a turbulent boundary layer by such an ap-
proach. The model captured major aspects of the ejection and bursting events associated with
streamwise vortex pairs. Aling et al [5] proposed a POD-based technique to construct low-order
dynamical models for rapid thermal systems. Gunes et al [70] applied the POD technique to
reconstruct the �rst six modes for numerical time-dependent transitional free convection in a
vertical channel. A low-order system of ODE's based on knowledge of the most energetic modes
in the ow was able to predict stable oscillations with correct amplitudes and frequencies. The
same approach [125] was used to investigate the dynamics of transitional ow and heat transfer
in a periodically grooved channel. Ukeiley [142] applied the POD technique in attempt to build
a dynamical model of a turbulent mixing layer. This model was based on experimental data
from two 12-probe rakes placed in the ow. Two-dimensional spanwise structures along with
streamwise vortical structures were extract from the ow. The model correctly predicted the
statistical distribution of energy in the cross-stream direction.

It was pointed out by Lumley [103], that the POD mode or 'characteristic eddy' represents
the ow coherent structure only if it contains a dominant percentage of energy. In other cases,
POD modes do not actually extract the shape of the CS, but rather simply provide an optimum
basis to decompose the ow.

Poje & Lumley [119] proposed another technique to obtain information about structures
in ow. They decomposed the ow into mean, coherent modes and incoherent small-scale
turbulence and applied "energy method" analysis [116] to �nd the most energy containing
large-scale modes. The results compared well the with conventional POD technique.

A.3 Wavelet Transform: Applications to turbulent ows

A.3.1 Turbulence modeling

It is well-known that turbulence has both energy spectrum cascade, which is well-described in
Fourier space and spatial intermittent events, localized in space and time (e.g [105]). Conse-
quently, the wavelet property of being local in both physical and Fourier spaces looks really
attractive for application in turbulence research. Original Kolmogorov's theory of turbulence
[91] was modi�ed to incorporate experimentally discovered properties of real turbulence such
as intermittency e�ects and energy backscatter (transfer of energy from small scales to large
scales). A number of so called hierarchical models of 2-D and 3-D isotropic turbulence, based on
the wavelet decomposition were built. One of the �rst attempts for 2-D turbulence was made
in 1977 [127]. It utilized a wave-packet decomposition, which is essentially a wavelet transform.
It was pointed out that the convection term in the N-S equations is essentially local in physical
space and the pressure term is local in wavenumber space and guarantees the incompressibility.
Thus, the Fourier space was divided in number of shells bn < jkj < bn+1; n = 1:: lnb �K: Here
b � 2, k is a wavenumber in Fourier space and �K is Kolmogorov dissipation scale. Wave-
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packets were introduced as a functions 'n(r) with their Fourier transform �n(k) to have a
non-zero value only within a corresponding shell. The functions 'n are local in both Fourier
and physical space. The Fourier decomposition in physical space within a shell was used to
describe the functions. After projecting the N-S equations into this basis, a system of non-linear
ODE's was obtained. After several simplifying assumptions, the interaction between adjacent
shells was examined numerically for 4 shells x 26 Fourier mode decomposition within a shell.
The resulting energy cascade and temporal intermittency was investigated.

Independently in 1984 [149] essentially the same approach was taken to build a model of
3-D turbulence. A basis function with a non-zero value within a shell was introduced. After
inverse transformation, the physical representation was obtained. These eddies were distributed
in physical space randomly and were allowed to move. After projecting the N-S equations onto
this basis a system of non-linear ODE's was investigated. The model was found to exhibit
qualitative agreement with experimental data. Later this model was modi�ed using an eddy
representation in wavelet form in [150]. This model does not involve any empirical assumptions
and possesses some important features of the turbulence, including a k�5=3 variation in the
wavenumber spectrum. The model describes non-local interactions between the scales and
back-scatter of energy from small scales to large scales. It can be used as a basis for subgrid
modeling of non-equilibrium turbulence.

In [16] a hierarchical-tree model of 2-D turbulence was presented. The cascade of vortices
was arranged in a tree-like structure, with smaller 'children' vortices connected to a bigger
'parent' vortex from the previous level. The main di�erence from the shell-based models was
that the distances between 'parent' and 'children' physical vortices were kept �xed. Thus the
new variables for this Hamiltonian model were the amplitudes of vortices and the relative angles
between adjacent vortices. An almost orthogonal basis of discrete wavelets was used. The model
reveals the spatial intermittent events and their fractal properties were obtained. The model
showed good agreement with the theoretically predicted energy cascade for 2-D turbulence.

One of the �rst applications of wavelets in turbulence was done by Farge et al [51], where
an optimally constructed wavelet decomposition was proposed to reduce the number of basis
functions (modes) required to describe turbulence evolution. Investigating the evolution of
a truncated subset of important modes, they have shown better performance of the wavelet
decomposition against the standard Fourier decomposition. Another classical paper in this
area is [50], where a brief theory and the basic properties of the wavelets and their application
to turbulence is well-presented.

In [98] the wavelet transformation was applied to the analysis of di�erent turbulent ows. It
was pointed out that the wavelets closely resemble the 'eddy' structures introduced by Lumley
[135] as the building blocks for turbulence. The brief theory and basic properties of the con-
tinuous wavelet transformation were presented. In shock wave/free turbulence interaction the
advantage of the wavelet transform to detect discontinuities of a signal (front of a shock-wave)
has been demonstrated. Thus, intermittent events can be easily localized using 'Mexican hat'
wavelets. Another example concerning wall turbulence was considered. The wavelet technique
was compared with VITA technique [27] for a detection of sweep and ejection events taking
places in the boundary layer. It was found that the VITA technique could give false or no de-
tections of these burst-like events and requires some knowledge about the characteristic scales
of the events. This is due to the fact that the VITA technique is a single scale �ltered tech-
nique. Because of variable scaled �ltered property of the wavelet transformation it detects all
the events well and does not require any a priori information of the events to be detected. Also
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a discretized version of the wavelet transformation was proposed as a competitive technique in
CFD (versus Fourier based techniques) for ows with large local gradients or discontinuities.

In [20] coherent structures (ejections and sweeps) in a heated turbulent boundary layer
were investigated. Regions near the viscous sublayer y+ = 7 and a fully turbulent central
region y+ = 180 were considered and both velocity and thermal measurements were taken in
these regions using cold and hot wire probes. Several techniques like VITA, WAG (Window
Averaged Gradients)[26] and wavelet analysis based on the Morlet mother function were used to
analyze the intermittent events. Conditional spectra for cooling (ejection) and heating (sweeps)
events were obtained. The ejections were found to be relatively slow more localized events with
comparison to more rapid sweep events.

In [106], [107] a discretized version of the three-dimensional wavelet transformation us-
ing Lemarie-Meyer-Battle (LMB) wavelet was applied for both experimental (wake behind a
cylinder) and numerically simulated turbulent ows. Spatially dependent quantities like total
kinetic energy E(k; x), net transfer to the wavenumber k; T (k; x) and total ux through the
wavenumber k to all smaller scales, �(k; x) were derived using wavelet analysis. Analysis of
these quantities from experimental data have shown a signi�cant level of spatial intermittency
with large variations from the mean values at smaller scales. Spatial pdf's for the energy
distribution and dissipation were obtained and revealed the existence of long exponential tails.
Several versions of the wavelet mother function were used to verify the robustness of the results.
The wavelet results revealed a multifractal nature of the turbulence at small scales and some
fractal statistics (the generalized dimensions) of the multifractal turbulence were calculated.
An additive mixed multifractal cascade model was built and was shown to duplicate all the
essential results of the experiments. The multifractal behavior of turbulence was also explored
in [105].

A similar approach of analyzing the generalized dimensions of turbulence was taken in
[95]. Again, the turbulence was treated as a multifractal process and the continuous wavelet
transformation was applied to the equations of motion. The author was able to come up with
the system of dynamical equations for an evolution of the generalized dimensions based on
the dynamics of Navier-Stokes equations. Thus, a model which possesses both multifractal
thermodynamical properties and the dynamics inherent to N-S equations was proposed.

An application of the discrete wavelet transform to explore the intermittency in turbulent
ows was the purpose of the work reported by [34]. The authors established a �rm connection
between the intermittent events and underlying coherent structures. Using experimental data
for isotropic turbulence behind a grid, they found that the ow exhibits a high degree of
intermittency for Re� � 10. Also applying a phase-averaged velocity based technique on the
wavelet transform, they were able to reconstruct the 'signature' of the coherent structures
corresponding to the intermittent events. For an isotropic turbulence a typical size of the
small-scale �lamentary-like structures have been found as of (4::5) Kolmogorov scales , with
these structures capturing about 1% of the ow energy. For a jet-generated turbulence (Re� =
250::800) large-scale structures (vortex rings) from a longitudinal component of velocity as
well as small-scale structures (�lamentary structures) from a transverse component were found.
A strong phase correlation between the large and small scale structures was observed. The
universality of a scaling exponents �(p) in Kolmogorov's scaling law jU(x + r)� U(x)jp � r �(p)

for p = 2::6 was veri�ed for a grid generated turbulence and turbulent jet ows for moderate
Re�.
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A transition to turbulence in a shear layer was investigated using the continuous wavelet
transform in [28]. A pairing process was found to be intermittent in the region where the
subharmonic dominates over the fundamental mode, with the intermittency being stronger for
large scales of motion.

In [132] ow behind a sphere in a strati�ed uid was analyzed for a range of Re and Fr
numbers. The Particle Image Velocimetry (PIV) technique was used to get the velocity �eld.
The two-dimensional version of the Morlet wavelet was applied to obtain spatially local length
scales, as well as local Re and Fr numbers. Spatial distributions of Re and Fr were found to
be similar. Vortex core centers were marked by very low Re and Fr numbers.

In [47] 2-D turbulence from an axisymmetric jet with ReD = 4; 000 was investigated. A
two-dimensional version of the 'Mexican Hat' wavelet was used to decompose dye concentration
pictures. Two di�erent structures, consisting of both large-scale beads and small-scale strings
were observed. Strings were found to be strongly anisotropic structures with an essential lack
of self-similarity across scales.

Structures in the initial and transient regions of a planar jet were the focus in [96] and
[97]. Small-scale structures within large ones were found, with large-scale structures moving
slower than the small ones. Wavelet cross-correlation analysis was developed in this research as
well. In [28] a continuous wavelet analysis was applied to investigate transition in a turbulent
mixing layer. It revealed that the paring process is intermittent. In [73] intermittent events
on di�erent scales in the atmospheric boundary layer were reported by applying the wavelet
technique. In [40], [41] several techniques like wavelet transform, VITA and WAG were applied
to wind velocity data . Intermittent coherent large and small structures were discovered and in-
vestigated. Dynamics of the sweep-ejection process was discussed and the obtained results were
found in agreement with previous results. In [63], [66] a shear layer in a region of strong interac-
tion between a fundamental and subharmonic modes was investigated by a continuous Morlet
wavelet transform. Intermittent �-shifts in subharmonic phase were discovered. Motivated
by the experimental data, a dynamical Hamiltonian model based on structural interactions of
vortices was proposed and it was shown that the model exhibits very good agreement with the
experiment.

Multiple acoustic modes in an underexpended supersonic rectangular jet were investigated
by the wavelet transform in [144]. The acoustic modes were found to exist simultaneously and
did not exhibit a mode switching. Detailed wavelet-based analysis of acoustic mode behavior
in supersonic jets can be found in [65]

In [87] new methods for investigating complex structures based on fractals and wavelet
analysis were presented. The application of the wavelet transform was shown to provide a
simple functional description in terms of local length scales and the distribution of velocity
and vorticity within turbulence structures. In [72] several techniques for analysis of turbulent
ows were discussed. The wavelet transform was found useful to detect intermittent events and
turbulent structures in ows.

The wavelet transform was successfully used as a diagnostic tool in seismology [67], car-
diology [111], in diagnostics of engine cylinders [146]. In optics, an optical version of wavelet
transform (OWT) was introduced in [120]. Also the wavelet transform is actively used in
multifractal analysis [14], [12], information theory [104], pattern recognition [94].
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A.4 Some other wavelet-like techniques.

A.4.1 Windowed Fourier transformation

The main problem with the Fourier transform as a tool to analyze a temporal evolution of
a signal is that the basis functions exp(i!t) do not belong to L2(R). In other words, they
have an in�nite span in physical space and provide no information about spatial localization
of the signal. This problem could be overcome, if the signal is windowed or multiplied by a
function with local physical support w(t). This idea was introduced by Gabor in 1946 [55]. The
windowed transformation is as follows

L(�; !) =
Z
f(t)w(t� �)e�i!(t��)dt (A.1)

In practice, two kinds of w(t) are widely used: (1) a cosine window cos(�=2 t); t 2 [�1; 1]
and (2) a Gabor packet exp(�t2=2�2). Transform (A.1) resembles (4.1), but provides a �xed
time window for any !. This time window can be varied by an appropriate dilatation of w(t),
though.

A.4.2 Variable Integral Time Averaging (VITA)

VITA technique was introduced in 1976 [27]. The idea is to look for a short-time averaging
version of RMS of the signal,

var(t; T ) =
1

T

Z t+T=2

t�T=2
f(t)2dt�

 
1

T

Z t+T=2

t�T=2
f(t)dt

!2

�f = lim
T!1

var(t; T ) � RMS of the signal

The event is said to be detected if var(t; T ) > K � �f
The technique introduces two parameters which can be varied, T and K. This technique

is valid only for second-order stationary signals. It uses a �xed time window, which means
low-pass single scale �ltering. Problems with VITA are listed below,

1. Choice of T and K is intricate.

2. Does NOT detect events separated by time less than T .

3. Possible false detections.

4. Smoothing of some events.

A.4.3 Window Averaged Gradients (WAG)

Another technique to detect sudden changes in velocity signal was proposed in [26] and it is
based on the analysis of the average gradients.

WAG(t; T ) =
1

�f

1

T

"Z t

t�T=2
f(t)dt�

Z t+T=2

t
f(t)dt

#

The event is detected when WAG(t; T ) > � � u0RMS. WAG has similar problems as VITA
technique: single scale �ltering, applied for stationary signals only.
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Appendix B

CONSTANT TEMPERATURE
ANEMOMETRY TRANSDUCER

The principal layout for the CTA transducer that was built in house for use in this study is
given in Figure B.1. It is a modi�ed version of the transducer used by Citriniti [37]. Four CTA
anemometer units are contained on a single to one board along with the built-in low-pass �lter
for each transducer. The �lter cut-o� frequency can be set between 1 and 25 kHz. Each X-wire
was connected to a transducer by a three-feet thin co-axial cable, manufactured by Belden Wire
and Cable Co. (type 8700, NEC type CXC FT1) of three feet length to reduce background
noise. The outputs from the transducers were sampled and digitized by a four daisy-chained
MicroStar Laboratories Analog/Digital Simultaneous Sample-and-Hold Boards, part number
MSXB 028, each capable of acquiring 16 analog signals simultaneously. The total number of
channels is 64 channels. The maximum sampling frequency with no detectable phase lag for 48
channels (=24 x-wires � 2 channels-per-x-wire) was found to be 33 kHz/channel.
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Appendix C

LOOK-UP TABLE PROCEDURE

The response of each probe (e1; e2) to a known velocity vector (q; �) in polar coordinates is
given as a discrete mapping from the velocity to voltage spaces, M : (u; v) 7�! (e1; e2). During
the experiment, the inverse mapping M�1 : (e1; e2) 7�! (u; v) = (q cos(�); q sin(�)) gives a way
to convert a voltage pair into a velocity vector. See Figure C.1 for a graphical explanation of
the mapping.

Velocity Space
(u-v)

Voltage Space
(e1-e2)

Calibration

Measurements

Angle,
Flow Speed, q

probe

(e1,e2)

θ

Figure C.1: Mapping procedure.
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The �tting surface (u; v) = f(e1; e2) for the inverse mapping was found experimentally as
follows,

1. From the calibration procedure, a relationship between the velocity and voltages was
obtained at �nite points (qc; �c) = [0::U0]� [�45Æ::45Æ],

e1 = e1(qc; �c)

e2 = e2(qc; �c)

2. Second-order polynomials were �tted though all (e1; e2) corresponded to given �xed cali-
bration angles �c,

e1(e2(qc); �c) = A(�c)e
2
2 +B(�c)e2 + C(�c): (C.1)

3. The single wire response for moderate speeds is known to satisfy King's law [61], E2 =
C1 + C2

p
U , U � 3 m= sec. For the small velocities a series of tests showed that the

wire response follows a power law, E � Un, n = 3 � 3:5. Based on this information, an
empirically constructed Power-King's Law function was �tted along each line �c = const,
using the least-square technique,

q(x; �c) =
h
D(�c)x

m
m�1 + E(�c)x

1

1�m

i2(1�m)
(C.2)

=

(
� xm; x! 0 (Power Law)
� (x+ const)2; x!1 (King's Law)

where x = e21(�c)+ e22(�c), m = m(�c). This empirical function was found to give the best
single �tting function for all ranges of q and �.

4. The coeÆcient functions A(�), B(�), C(�), D(�), E(�), and m(�) were linearly interpo-
lated for all � = �45Æ::45Æ.

5. The reconstruction procedure for a given pair of voltages (e1; e2) solves (C.1) using New-
ton's method to �nd � and a direct substitution into (C.2) gives q. Thus, the velocity
vector (u; v) = (q cos(�); q sin(�)) is found.

An example of the calibration �tting surfaces u = u(e1; e2) and v = v(e1; e2) is shown in
Figure C.2.
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109



Appendix D

NUMERICAL INTEGRATION

Let the function f(t) 2 C[a; b] be given at discrete equally spaced points ftig, i = 0::N , with
�t = ti+1 � ti = �t = (b� a)=N = const. Thus, the continuous integrationZ b

a
f(t)dt =

NX
n=0

Z ti+1

ti
f(t)dt (D.1)

can be approximated by a �nite summation by interpolating the function f(t) inside the interval
[ti; ti+1]. If the trapezoidal rule is chosen,Z ti+1

ti
f(t)dt � �t

2
[f(ti) + f(ti+1)] (D.2)

After substituting (D.2) into (D.1) and rearranging terms, one can get the expression for the
integral approximation,R b

a f(t)dt � �t f0:5[f(t0) + f(t1)] + ::: + 0:5[f(tN�1) + f(tN)]g
= �t f0:5f(t0) + f(t1) + ::: + f(tN�1) + 0:5f(tN)g = �t

PN
n=0w(n)f(n) (D.3)

where w(n) is called a weighting function. For the above interpolation,

w(n)= (0:5;

N�1z }| {
1; 1; ::; 1; 0:5) and is called a trapezoidal weighting function. Using Taylor's series

for f(t) around ti, f(t) = f(ti)+f
0(ti)(t� ti)+f 00

(ti)(t� ti)2=2+ ::: and performing integration
(D.2), one can �nd thatZ ti+1

ti
f(t)dt = f(ti)�t + f 0(ti)

�t2

2
+ f

00

(ti)
�t3

3
+O(�t4) (D.4)

On the other hand,

�t

2
[f(ti) + f(ti+1)] =

�t

2
[f(ti) + f(ti) + f 0(ti)�t+ f

00

(ti)
�t2

2
+O(�t3)]

= �t[f(ti) + f 0(ti)
�t

2
+ f

00

(ti)
�t2

4
+O(�t3)] (D.5)

Subtracting (D.5) from (D.4),Z ti+1

ti
f(t)dt� �t

2
[f(ti) + f(ti+1)] = f

00

(ti)
�t2

12
+O(�t3) (D.6)
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Finally, performing summation over all time intervals,

Z b

a
f(t)dt�

NX
n=0

Z ti+1

ti
f(t)dt �

NX
n=0

f
00

(ti)
�t2

12
< max

t2[a;b]
f 00(t)

 
(b� a)

N

!2

N = C(b� a)�t (D.7)

So, the �nite approximation (D.3) is of the �rst order in �t.
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Appendix E

SELF-SIMILARITY OF THE
SECOND POD MODE

In addition to the �rst mode eigenvalues, the second mode was investigated to investigate the
possible self-similarity of the corresponding eigenvalues.

Figure E.1 presents the scaled mode 2, u-component eigenvalues. The �gure shows the
variation of the planar mode (kz = 0) eigenvalues, ~�

(2)
1 , with St for 50 � x=D � 90. In

addition, the variation of ~�
(2)
1 with kzb is shown for four representative values of St over the same

streamwise locations. This �gure shows that the scaled u-component eigenvalue distribution
becomes self-similar for x=D > 50

Figure E.2 shows a similar representation of the scaled mode 2, v-component eigenvalues,
~�
(2)
2 . The variation of the planar mode (kz = 0) eigenvalues with St for selected streamwise

locations is shown to exhibit similarity. In addition, the variation with spanwise wavenumber
kzb for selected St also exhibits collapse for the various x=D locations shown. Figure E.2 shows
that the v-component mode eigenvalues exhibit similarity scaling for x=D � 50.

The scaled, w-component, mode 2 eigenvalues are shown in Figure E.3. These �gures also
show evidence of self- similar behavior for ~�

(2)
3 .The data suggest that self-similar behavior for

the second w-component eigenvalues occurs only for x=D > 60.
Although not shown here, all experimentally resolved POD modes were found to exhibit a

self-similarity shape in the region x=D = 50::90.
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